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Abstract

Background: Mesenchymal to Epithelial Transition (MET) plasticity is critical to cancer progression, and we recently
showed that the OVOL transcription factors (TFs) are critical regulators of MET. Results of that work also posed the
hypothesis that the OVOLs impact MET in a range of cancers. We now test this hypothesis by developing a model,
OVOL Induced MET (OI-MET), and sub-model (OI-MET-TF), to characterize differential gene expression in MET
common to prostate cancer (PC) and breast cancer (BC).

Results: In the OI-MET model, we identified 739 genes differentially expressed in both the PC and BC models. For
this gene set, we found significant enrichment of annotation for BC, PC, cancer, and MET, as well as regulation of
gene expression by AP1, STAT1, STAT3, and NFKB1. Focusing on the target genes for these four TFs plus the
OVOLs, we produced the OI-MET-TF sub-model, which shows even greater enrichment for these annotations, plus
significant evidence of cooperation among these five TFs. Based on known gene/drug interactions, we prioritized
targets in the OI-MET-TF network for follow-on analysis, emphasizing the clinical relevance of this work. Reflecting
these results back to the OI-MET model, we found that binding motifs for the TF pair AP1/MYC are more frequent
than expected and that the AP1/MYC pair is significantly enriched in binding in cancer models, relative to
non-cancer models, in these promoters. This effect is seen in both MET models (solid tumors) and in non-MET
models (leukemia). These results are consistent with our hypothesis that the OVOLs impact cancer susceptibility
by regulating MET, and extend the hypothesis to include mechanisms not specific to MET.

Conclusions: We find significant evidence of the OVOL, AP1, STAT1, STAT3, and NFKB1 TFs having important roles
in MET, and more broadly in cancer. We prioritize known gene/drug targets for follow-up in the clinic, and we
show that the AP1/MYC TF pair is a strong candidate for intervention.
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Background
Cancer progression is characterized, in part, by altered
or aberrant transcription factor (TF) function, leading to
changes in expression of cancer related genes [1]. Mes-
enchymal to Epithelial Transition (MET) and its mirror
process (Epithelial to Mesenchymal Transition, EMT)
are critical to metastasis in cancer progression [2]. We re-
cently demonstrated [3] a novel function of the OVOL1
(ovo-like 1, Entrez GeneID 5017) and OVOL2 (ovo-like 2,
GeneID 58495) TFs as critical inducers of MET in pros-
tate cancer. (Note that there is a human OVOL3 gene,
GeneID 728361, but it is “provisional” and largely un-
annotated so we excluded it from this analysis.) One
of the outcomes of this recent work suggests the hy-
pothesis that the OVOLs have roles in regulating
MET in multiple cancers. This hypothesis is also con-
sistent with our earlier work [4-8], where we found
common underlying genetic etiology for related dis-
ease phenotypes. We also found in earlier work [6,7,9]
that exploring this common underlying genetic etiology
using a systems biology approach can lead to im-
proved understanding of the related phenotypes and
interactions among the genetic influences on them,
and may point out potential clinically significant bio-
markers or drug targets.
In the present work (Figure 1), we explore the hypothesis

that the OVOL TFs induce MET (OI-MET) in multiple
cancers, focusing on commonalities between prostate can-
cer (PC) and breast cancer (BC) models. We generate a
common OI-MET gene expression signature, consistent
with a common underlying genetic etiology for MET in
PC and BC, and show that the OI-MET gene set is signifi-
cantly enriched for cancer, BC, PC, and MET-associated
genes. Using a systems biology approach, we identify regu-
lation of gene expression as the primary influence of the
OVOLs on MET in these two models, though this effect is
indirect and depends on interaction with AP1, STAT1,
STAT3, and NFKB1 TFs. We create an OI-MET-TF
sub-model of the genes annotated as being regulated
by the OVOLs and these other four TFs. We test this
model for consistency with known genetic influences
on MET, BC, PC and cancer, and find that there is
significant evidence supporting the use of this network as
a model of gene expression influences on MET, as
well as BC and PC, and more generally in cancer. We
reflect the inference from the OI-MET-TF model back
to the larger set of all OI-MET genes and show that
the effects of the OVOLs and the other TFs in the OI-
MET-TF model are likely to be consistent in the larger
set, with experimental data significantly in support of this
hypothesis. In particular, we find significant evidence that
the AP1/MYC TF pair has an important role in regulating
gene expression in MET related to BC, PC, and to cancer
in general.

Results
OI-MET gene expression signature
We established MET gene expression signatures to
characterize changes of gene expression in models of PC
and BC (Additional file 1). Previously we demonstrated
a role for the OVOL-TFs in the induction of MET [3].
Furthermore, based on Oncomine [10] data, we found
that the gene expression analysis of the OVOL-TFs sig-
nificantly correlates with the expression of MET markers
in multiple cancer types. We approached the discovery
of the MET signature by over-expression of OVOL1,
OVOL2, or both OVOLs in the mesenchymal prostate

Figure 1 Analysis flow. We began the analysis with the hypothesis
that the OVOLs impact MET in multiple cancers. We used RNA-Seq
to identify sets of genes that are differentially expressed in response
to OVOL TFs overexpression in BC and PC models. At the intersection
of these sets are genes that are differentially expressed in OVOL
Induced MET (OI-MET) across these two cancer models. We test the
hypothesis that this set should be enriched for genes annotated for
association with cancer, breast cancer, prostate cancer, and MET. We
find annotation consistent with this hypothesis, as well as annotation
for regulation of gene expression by AP1, STAT1, STAT3, and NFKB1
TFs. Pursuing this secondary hypothesis, we developed the OI-MET-TF
model, based on the genes annotated as being regulated by these TFs
and the OVOL TFs. Genes in the OI-MET-TF network are even more
significantly enriched for cancer, breast cancer, prostate cancer, and
MET annotation than the OI-MET set. Within the OI-MET-TF set, we
identified genes documented to be drug targets and prioritized them
for validation and near-term clinical follow up. Reflecting our inference
from the OI-MET-TF model back to the OI-MET model, we found
enrichment of AP1/MYC binding motif pairs in the promoters of the
OI-MET gene set, suggesting the hypothesis that the AP1/MYC TF pair
is important in regulating this gene set. Testing this hypothesis
based on ChIP-Seq data, we find significant evidence consistent with
this hypothesis.
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cancer (PC3-EMT14) and breast cancer (MDA-MB-231)
cell lines. In the prostate cancer model, we analyzed the
following cell lines: PC3-EMT14-OVOL1 (OVOL1 over-
expression), PC3-EMT14-OVOL2 (OVOL2 overexpres-
sion) and PC3-Epi (epithelial cells that express OVOL1
and OVOL2 and from which the mesenchymal PC3-
EMT14 were initially obtained) [3]. Each of these OVOL-
expressing cell lines demonstrated a stable transition to the
MET phenotype. We also confirmed the MET phenotype in
these models by showing differential expression of critical
MET markers including: up-regulation of E-Cad expression
plus down-regulation of both vimentin and the EMT-
inducing TF ZEB15 [3]. We performed a parallel analysis for
BC using breast cancer MDA-MB-231 cells, a poorly differ-
entiated mesenchymal-type [3]. In this model we analyzed
the following cell lines: MDA-MB-231-OVOL1 (OVOL1
overexpression), MDA-MB-231-OVOL2 (OVOL2 overex-
pression) and MDA-MB-231- OVOL1/2 (overexpression of
both OVOL1 and OVOL2 in MDA-MB-231 cells) [3]. As in
the PC experiment, the BC OVOL-expressing cell lines
demonstrated a stable transition to the MET phenotype and
appropriate expression of METand EMT related genes.
Given these two models of related cancer phenotypes,

and testing our hypothesis that they should share under-
lying genetic influences, we searched for a common
OI-MET gene expression signature for these two models.
We assessed differential gene expression in each of the
models of OI-MET by RNA-Seq, and established a set of
genes representing the OI-MET expression signature for
each model. In each model (BC and PC), we selected the
union of sets of genes responsive to OVOL1, OVOL2, or
both, using FDR ≤ 0.05 AND Fold Change ≥ ± 2.0 AND
“test OK” thresholds (Additional file 1). This selection
yielded 1,622 genes in BC and 2,692 genes in PC. Focusing
on common underlying genetic etiology for these related
phenotypes, the 739 genes at the intersection of these two
sets (Additional file 1, MET signature 739 genes) represent
a common OI-MET gene expression signature for these two
cancer models. Of these 739 genes, 66% follow the same
pattern (both up, or both down) in the comparison of
OVOL1&2 treated cells across the BC and PC models.
We included all 739 genes in this analysis, ignoring direc-
tion, to include all genes that show strong responses in both
models and to minimize the assumptions required in gene
selection. For responsive genes, the direction of expression
change is frequently a result of transient factors [11,12], even
to the extent that the individual mRNAs that compose a
single gene can be oppositely regulated [13]. We opted to
pursue those details on a gene-by-gene basis in future work.

Enrichment of BC, PC, cancer, and MET annotation among
the OI-MET signature genes
We hypothesized that the OI-MET signature gene set rep-
resents a model of differential gene expression in MET,

common to BC and PC. Therefore, we expected a signifi-
cant proportion of these genes to have been previously
associated with MET, BC, PC, and/or cancer in the litera-
ture. To test this hypothesis, we searched both PubMed
and PubMed Central (PMC) using an NCBI E-Utilities
Perl script to search for each of the 739 genes (using
the HGNC gene symbol) AND the phenotype of in-
terest. For example, the query for one of these searches
was (“TMEM163”[Text Word] +OR + “tmem163”[Text
Word] + OR + “Tmem163”[Text Word]) + AND+ (“breast
cancer”[Text Word] + OR + “breast neoplasms”[Text
Word]). Text word searches for these keywords cast a
relatively wide net, capturing essentially any co-occurrence
of the gene symbol and the keyword(s) of interest in the
manuscript. For instance, a manuscript could mention a
given gene and cancer but only in a tangential way, not
really associating the gene with cancer. These searches are
not very specific because the definition of “text words” is
broad, but they provide an upper bound on the number of
publications associating each gene with the keyword. We
tested the significance of over-representation of each of
these annotations in our gene set using a re-sampling
approach similar to Li, et al. [14], by randomly selecting
100 sets of 739 genes from the HGNC set, repeating the
query for each of these sets, then comparing the number
of “hits” in the observed set of 739 genes versus the ran-
dom sets. We ranked the proportion of genes with hits in
the observed set with the proportions of genes in the 100
random sets to produce an empirical p-value.
We are also interested in testing the selected 739 gene

set for association with MET, but the text for “mesenchy-
mal to epithelial transition” and “epithelial to mesenchy-
mal transition” are complex, so they are relatively little
used in the literature. To overcome this limitation and to
balance the high false positive rate expected with the text
word searches, we used MeSH [15] (Medical Subject
Heading) searches to look for associations between each
gene and MET/EMT in the literature. A MeSH term
search is more conservative than a text word search,
because the MeSH annotation for each manuscript is spe-
cific and curated. As such, true gene/keyword associations
may be missed, but this provides a lower bound on the
number of publications associating each gene with MET.
The query for one of these searches was (“TMEM163”[Text
Word] +OR+ “tmem163”[Text Word] +OR+ “Tmem163”
[Text Word]) +AND+ (“epithelial-mesenchymal transition”
[MeSH Terms]). To test the significance of these results
we used a contingency table (count of “hits” in the 739
gene see vs the count of “hits” for all genes) to calculate a
χ2 value and corresponding p-value.
PubMed is a valuable resource for finding text on

genes related to cancer in the biomedical literature but
not all of PubMed is searchable. PMC is another valu-
able source of text relating genes to cancer, but it is a
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less complete collection of manuscripts than PubMed -
only ones that are entirely open source. Therefore, we
used both the PubMed and PMC databases for our
search. In both cases, we compare the proportion of
genes associated with each of the keywords in the 739
gene OI-MET signature set, versus the proportion genes
associated with each of the keywords for all 36,973
HGNC gene symbols. Notably, many genes have aliases
that do not match the HGNC symbol. In that sense, our
literature search is conservative because it misses associ-
ations between gene and keyword where the gene is not
identified by HGNC symbol. Another important consid-
eration is that the literature includes genes that are ex-
tensively studied, others that are not as well studied, and
some that are essentially unstudied. The genes that are
unstudied do not show up in manuscripts, though they
may be included in both sets of genes that we studied.
In Table 1, assessing the upper bounds on gene associ-

ations with BC, PC, and cancer in the PubMed [text
words] search, we see that ~30.9% to 70.5% of genes in
the OI-MET signature set are associated with the tested
keywords. The equivalent percentages are ~91.9% to
95.1% of genes in the PMC search. For all six tests the
empirical p-value is < 0.01. These results are consistent
with the OI-MET signature set having a high concentra-
tion of BC, PC, and cancer associated genes. It also is
consistent with the OI-MET set being a useful model for
differential gene expression in BC, PC, and cancer. Asses-
sing the lower bounds on association of the OI-MET gene
set with MET/EMT, we find that the MeSH queries in
PubMed and PMC show, respectively, ~12.3% and 39.5%
of the OI-MET genes as being associated with MET in the
literature. Comparing this to the same queries for all
genes, we find a significant enrichment for MET associ-
ated genes in the OI-MET signature set. For the PubMed
comparison, the enrichment is more than 4.5 fold (12.3%
vs 2.7%), with a p-value < 0.0001. For the PMC compari-
son, the enrichment is more than 8.5 fold (38.5% vs 4.5%),
also with a p-value < 0.0001. Both of these results are

statistically significant, and the fold changes are likely to
be biologically relevant, consistent with the OI-MET
signature gene set being a useful model for differential
gene expression in MET.

OVOL TF targets in OI-MET
The set of 739 genes in the OI-MET set were all signifi-
cantly differentially expressed in response to OVOL
expression. As such, we tested whether they could all be
direct targets of the OVOL TFs. Using the Genomatix
Genome Analyzer’s (GGA) Gene2Promoter [16] func-
tion, we found 4,102 promoter sequences associated with
the mRNAs coded by the 739 genes in the common OI-
MET signature. We searched these promoter sequences
for OVOL binding motifs using GGA’s MatInspector [17]
function, with default parameter settings, and found that
only 1,467 of the 4,102 promoters had one or more
OVOL binding motifs. This result suggests that, while
the OVOLs induced differential expression of all of these
genes, the effect must be indirect for at least two thirds of
the OI-MET genes.

Enrichment testing by ConceptGen
Since the OVOLs’ effects on gene expression in MET are
not direct, we sought to understand the direct systems
involved in OI-MET using ConceptGen [18] enrichment
testing. This search is complementary to the literature
search, based on annotation derived from the literature.
Of the 739 genes in the OI-MET signature, 727 uniquely
mapped to Entrez GeneIDs using the DAVID [19] ID con-
verter. Of these 727 genes, 719 had annotation in at least
one category in ConceptGen. In the most significant block
of annotation (Additional file 2), we found enrichment for
annotation consistent with MET (e.g. “Epithelial Cells”
FDR 1.65E-13, “Response to Wounding” FDR 6.10E-13),
and with cancer metastasis (e.g. “Cell Movement” FDR
1.61E-08, “Cell Adhesion” FDR 6.48E-08). As we found in
the literature search, these results are consistent with the
OI-MET signature being a useful model for characterizing

Table 1 PubMed and PMC searches for OI-MET genes and cancer, BC, PC, and MET

For 739 OI-MET genes, number found in: PubMed queries for % PubMed p-value PMC queries for % PMC p-value

(“cancer”[Text Word] + OR + “neoplasms”[Text Word]) 521 70.5% < 0.01 703 95.1% < 0.01

(“breast cancer”[Text Word] + OR + “breast neoplasms”
[Text Word])

344 46.5% < 0.01 699 94.6% < 0.01

(“prostate cancer”[Text Word] + OR + “prostate neoplasms”
[Text Word])

228 30.9% < 0.01 679 91.9% < 0.01

(“epithelial-mesenchymal transition”[MeSH Terms]) 91 12.3% < 0.0001 292 39.5% < 0.0001

For All 36,973 HGNC Genes, Number found in: PubMed queries for PMC queries for % PMC

(“epithelial-mesenchymal transition”[MeSH Terms]) 995 2.7% 1669 4.5%

“Cancer”, “breast cancer”, and “prostate cancer” text word searches show that a high proportion of OI-MET genes are associated with these concepts in the literature.
“Epithelial-mesenchymal transition” MeSH term searches show a significant enrichment of this annotation in the OI-MET set, relative to all genes: 12.3% ÷ 2.7% = 4.6 Fold
Enrichment for PubMed; 39.5% ÷ 4.5% = 8.8 Fold Enrichment for PMC; both with p-value < 0.0001.
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differential gene expression in MET associated with BC
and PC progression.
Also consistent with the observation that the OVOL

TFs likely regulate gene expression in OI-MET, Con-
ceptGen found enrichment for “Signal Transduction”
FDR 1.75E-10 and “Gene Expression Regulation, Neo-
plastic” FDR 2.06E-08. This led us to pursue the details
of gene expression regulation in this annotation, and we
found enrichment for regulation of gene expression by
five TFs: AP-1 (AP1) FDR 1.16E-04, c-Jun (JUN) FDR
5.47E-03, NF-kappa B (NFKB1) FDR 4.78E-05, STAT1 FDR
3.40E-02, and STAT3 FDR 1.07E-02 (Additional file 2).
The genes in the AP1 and JUN sets are annotated as
TransFac [20] (direct binding) targets while the genes in
the NFKB1, STAT1, and STAT3 sets are annotated as
being associated with the TFs in MeSH [15] annotation.
Notably, though ConceptGen identified one set of genes
as being TransFac targets for AP1 and an overlapping set
for JUN, AP-1 is a dimer [21,22] of subunits from the FOS
and JUN gene families (c-Fos, FosB, Fra-1, Fra-2, c-Jun,
JunB, JunD), so we collapsed the AP-1 and c-Jun sets into
a single set of genes targeted by the AP1 dimer. Note that
NF-kappa B is also a dimer composed of subunit pairs
[23] (NF-kB1, NF-kB2, c-Rel, RelA, and RelB). TFs rou-
tinely work together as homo- or hetero-dimers, or in
modules composed of multiple TF complexes [24]. This
observation, along with our previous observation that the
OVOLs influence the OI-MET gene set indirectly, led us
to hypothesize that the OVOL TFs impact MET through
interaction with, or in collaboration with, these other
four TFs.

OVOLs use complex mechanisms to regulate AP1, STAT1,
STAT3, and NFKB
We used the expression data derived from this experi-
ment to test this hypothesis (Table 2). We assessed the
effects of the OVOLs on expression of AP1, STAT1,
STAT3, and NFKB. For some genes, “Expression Level”
is assayed at only the gene level. Other genes are derived
from multiple mRNAs, so they are assayed at the iso-
form level then the data are aggregated to produce gene
level expression information. We looked for up-
regulation (at least one observation of Fold Change ≥
1.5) or down-regulation (at least one observation of FC ≤
0.67). We looked for isoform switching, meaning that
one isoform is up-regulated and another isoform is
down-regulated (switch), as a potential regulatory mech-
anism in genes where more than one mRNA was tested.
Within the AP1 (FOS/JUN) group, the FOS genes are
regulated in both BC and PC, at both the gene and iso-
form levels (e.g. FOSB). The individual members of the
JUN family are regulated at the gene level, similar to the
way isoform switching is used in the FOS group. Within
the STAT group (Stat1/Stat3), isoform level regulation is

employed in BC while both isoform switching and gene
level regulation are employed in PC. Within the NFKB
group, gene level regulation is employed.

Development of the OI-MET-TF network
To help us understand the potential roles of these TFs
in OI-MET, we used GeneGo MetaCore [25] to model
the networks of interactions among each of the gene sets
annotated as targets for the four TFs (AP1, NFKB1,
STAT1, STAT3), and the OVOL TFs. In each of these
subsets, we included the genes annotated as TF targets
in the ConceptGen analysis, as well as the TF, and used
parameter settings to produce the most parsimonious
models possible (i.e. the simplest models that include all
of the input genes).
The AP1, STAT3, and STAT1 networks each include

all of the input genes in a very simple, parsimonious,
network (Figures 2, 3, and 4). This is consistent with
what was expected for the AP1 network because the
genes in this set are annotated as being direct AP1 bind-
ing targets in TransFac annotation. Note that Additional
file 3 is the key for interpreting GeneGo graphics and
that the icon labeled “AP1 (FOS/JUN)” represents the
dimer of FOS and JUN gene family members in a single
icon. Genes in the STAT1 and STAT3 networks are
found in MeSH annotation and, while all the genes are
in the network, they are not all direct targets of the TF.
The NFKB1 network (Figure 5), also derived from MeSH
annotation, illustrates that the annotation does not ne-
cessarily indicate direct interaction with the TF. Rather,
using the same parameter settings as for the other net-
works, NGFR, CARD6, and NALP3 are disconnected
genes. Also, this network includes NFKBIA, which inter-
acts closely with, but is distinct from the NFKB1 dimer.
Note that GeneGo used two icons for NFKB1, but we
collapsed them into a single rectangular icon in this
graphic. It’s possible that a more complex (less parsimo-
nious) NFKB1 network would connect all the genes in
the NFKB1 set, but our hypothesis is that these four TFs
work together in regulating the genes differentially
expressed in OI-MET. Therefore, we developed the net-
work for the combined set of genes targeted by the four
TFs using the parameter settings for the parsimonious
network. The network we found (Figure 6) is consistent
with this hypothesis; it connects all the genes and in-
cludes only one gene that was not part of the input set
(the aforementioned NFKBIA).
While this network is highly consistent with the co-

operative regulation of these genes by this set of four
TFs in OI-MET, it does not yet explain the effects of the
OVOL TFs. To understand how the OVOLS impact this
network, we created a network similar to those of the
four TFs enriched in the ConceptGen analysis. Consist-
ent with the other networks, we focused on the targets
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of OVOL1 and OVOL2 (Figure 7). In the OVOL sub-
network, OVOL1 shows eight annotated targets while
OVOL2 shows only three annotated targets, with MYC
as the single target common to the two OVOLs. As we
did in developing the network in the previous step, we
added the OVOL targets sub-network to the AP1, NFKB1,
STAT1, and STAT3 network and found that the OVOLs
have multiple indirect influences on this combined
network (Figure 8). We call this the OI-MET-TF network
because it focuses on only the genes annotated as being
targets of the four TFs enriched in ConceptGen data, plus
the OVOLs and their targets.

We hypothesized that the OVOLs work indirectly in
influencing the expression of the OI-MET genes. Based
on this hypothesis, we would expect the OI-MET-TF
gene set to form a connected and parsimonious network.
Consistent with this hypothesis, every gene in the OI-
MET-TF model is included in the network and there are
no disconnected nodes. The network is parsimonious, as
only a single gene (NFKBIA) that is not part of the input
gene set is included in this network. The GeneGo inter-
actions annotation shows that the five TFs of interest do
work together to regulate the combined set of genes. For
example, NGFR, CARD6, and NALP3 are disconnected

Table 2 Regulation of AP1, STAT1, STAT3, and NFKB expression by OVOLS

BC fold change PC fold change

Gene Expression level OVOL1 OVOL2 OVOL1&2 Up/Down switch OVOL1 OVOL2 OVOL1&2 Up/Down switch

AP1 FOS (c-Fos) Gene 1.4 1.4 1.4 1.0 0.8 1.0

FOSB Gene 1.0 2.1 1.1 Up 0.7 0.5 0.4 Down

NM_006732 2.6 0.0 0.0

Switch

10.0 10.0 10.0

SwitchNM_001114171 0.9 2.3 1.1 0.7 0.5 0.4

FOSL1 (Fra-1) Gene 0.9 0.9 0.8 1.1 1.0 0.7

FOSL2 (Fra-2) Gene 0.7 0.7 0.6 Down 0.8 1.2 1.1

JUN (c-Jun) Gene 1.0 0.9 0.8 0.5 0.5 0.5 Down

JUNB Gene 1.5 2.2 2.1 Up 1.2 1.9 1.4 Up

JUND Gene 1.1 1.1 1.3 1.2 1.6 1.2 Up

STAT STAT1 Gene 1.1 1.3 1.0 1.0 1.4 2.0 Up

NM_007315 1.1 1.3 1.0 1.1 1.4 1.9 Up

NM_139266 1.2 1.3 1.1 0.8 1.7 2.2 Up

STAT3 Gene 0.9 1.2 0.9 0.0 0.4 6.3 Up/down

NM_139276 0.5 1.6 0.9 Up/down 0.0 0.4 0.0

SwitchNM_003150 0.8 1.2 0.9 0.0 1.0 10.0

NM_213662 1.0 1.2 0.9 0.1 1.2 8.6 Up/down

NFKB NFKB1 (NFkB1) Gene 1.0 1.3 1.2 1.0 1.1 1.0

NM_003998 1.0 1.3 1.2 1.3 1.1 1.2

NM_001165412 1.0 1.2 1.2 0.8 1.0 0.9

NFKB2 (NFkB2) Gene 0.9 1.5 1.2 Up 1.4 1.7 0.8 Up/down

NM_001077494 0.9 1.5 1.0 Up 1.9 3.8 0.8 Up

NM_002502 0.7 1.6 0.9 Up 1.3 1.9 0.7 Up

NM_001261403 0.9 1.4 0.9 1.4 1.4 0.8

REL (c-Rel) Gene 1.2 1.3 1.1 1.6 2.2 1.6 Up

RELA Gene 1.0 1.1 1.1 0.9 0.9 0.8

NM_021975 1.0 1.0 1.0 1.0 1.0 1.0

NM_001145138 1.0 1.1 1.1 0.9 0.9 0.8

RELB Gene 0.8 1.5 1.1 Up 1.3 2.4 1.0 Up

We assessed the effects of the OVOLs on expression of AP1, STAT1, STAT3, and NFKB based on our RNA-Seq data for both BC and PC. We looked for up-regulation
(at least one observation of Fold Change ≥ 1.5), down-regulation (at least one observation of FC ≤ 0.67), or isoform switching (switch). Within the AP1 (FOS/JUN) group,
the FOS genes are regulated in both BC and PC, at both the gene and isoform levels (e.g. FOSB). The individual members of the JUN family are regulated at the gene
level, similar to the way isoform switching is used in the FOS group. Within the STAT group (Stat1/Stat3), isoform level regulation is employed in BC while both isoform
switching and gene level regulation are employed in PC. Within the NFKB group, gene level regulation is employed.
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nodes in the NFKB1 network but we now see that NGFR
and NALP3 are targets of AP1, while CARD6 is a target
of STAT1. The OI-MET-TF network shows that many
genes annotated as being targets of one of the five TFs
of interest are also targets of one or more of the other
TFs. For example, SOCS1 is a target of STAT3, STAT1,
and AP1. Based on GeneGo interactions data, we find
that one gene is regulated by 4 of the TFs of interest,
four genes are regulated by 3 of them, and twenty genes
are regulated by 2 of them.
We further hypothesized that the OI-MET-TF network

model is useful in understanding gene expression changes

in MET common to BC and PC. Therefore, we would
expect a significant proportion of the genes in the network
to be associated with BC, PC, cancer, and MET. As we did
with the 739 gene OI-MET gene set, we searched PubMed
and PMC using an NCBI E-Utilities Perl script to search
for each gene (using the HGNC gene symbol) and
phenotype of interest[text words], as well as “epithelial-
mesenchymal transition”[MeSH].
As shown in Table 3, for all six tests the empirical

p-value is < 0.01, and at least 48 of the 52 (92%) genes in
the OI-MET-TF network model are already associated
with each of these key MET and cancer related concepts

Figure 2 AP1 sub-network. The AP1 network, including FOS, JUN and their TransFac annotated targets. All of the nodes in this network are direct
targets of AP1.

Figure 3 STAT3 sub-network. The STAT3 network, including STAT3 and its MeSH annotated targets. All of the nodes are connected, though
MeSH association does not necessarily indicate direct binding.
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in PMC, consistent with the network being a useful model
for analysis of gene expression in MET and cancer. The
evidence is less strong in PubMed but, even in that case,
more than 69% the genes are MET and cancer related.
While we found the 739-gene OI-MET signature set to be
significantly associated with each of these cancer and MET
related terms, we find the enrichment is even greater in
the OI-MET-TF model. Again, assessing the lower bounds
on association of the OI-MET gene set with MET/EMT,
we find that the MeSH queries in PubMed and PMC show,
respectively, ~40.4% and 73.1% of the OI-MET-TF model
genes as being associated with MET in the literature. Also,
comparing this to the equivalent queries for all genes, we
find a significant enrichment for MET associated genes in

the OI-MET-TF signature set. For the PubMed compari-
son, the enrichment is more than 15 fold (40.4% vs 2.7%)
with a p-value < 0.0001. For the PMC comparison, the en-
richment is more than 16 fold (73.15 vs 4.5%), also with a
p-value < 0.0001. Both of these results are consistent with
the OI-MET-TF model being useful for understanding the
regulation of differential gene expression in MET.
As we tested the OI-MET signature gene set with both

literature searches and ConceptGen, we tested the OI-
MET-TF model with both literature searches, above, and
GeneGo’s built in enrichment algorithm for disease pro-
cesses (Table 4). Note that, while ConceptGen provides
FDR values to account for multiple testing, the GeneGo
table presents uncorrected p-values. In the OI-MET-TF

Figure 4 STAT1 sub-network. The STAT1 network, including STAT1 and its MeSH annotated targets. All of the nodes are connected, though
MeSH association does not necessarily indicate direct binding.

Figure 5 NFKB1 sub-network. The NFKB1 network, including NFKB1 (multiple modules) and its MeSH annotated targets. Not all of the nodes
are connected in this network.
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model, we find over-representation of rheumatologic
diseases pathobiology - immune/inflammation, joint, dry
eye, and dry mouth annotated genes. “Inflammation” and
“Wounds and Injuries” are consistent with ConceptGen
enrichment in the common OI-MET set (Additional file 2).

Prioritizing drug targets
Bioinformatics analyses like the one offered here have the
power to provide evidence capable of intelligently guiding
selection of the most promising drug combinations to
test from an otherwise near-infinite possible number

of synergies between approved and in-approval drugs [26].
Using GeneGo’s MetaDrug database, we prioritized drug/
gene target combinations in this network for follow-on
testing, emphasizing the potential clinical/translational
relevance of this work (Figure 9). Note that we expanded
NFKB1 in this graphic to reveal the two groups, both of
which are drug targets. There are 80 drug/gene target
combinations (Additional file 4) based on annotation in
the GeneGo MetaDrug [25] database (14 genes crossed
with 34 drugs). Status of these drugs includes a combin-
ation of Phase I, II, and III clinical trials, as well as drugs

Figure 6 Combined AP1, STAT3, STAT1, and NFKB1 sub-network. In the combined network, all of the nodes are connected.

Figure 7 OVOL1, OVOL2, and their direct targets sub-network. We selected the direct targets of the OVOLs to make the sub-network consistent
with the sub-networks of the other TFs.
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approved for use in humans. The current applications
include drugs used in cancer treatment, across a spectrum
of cancer types, as well as a range of other diseases (e.g.
bronchitis, pulmonary disease, arthritis, psoriasis). For
drugs with known cancer and other applications, network
interactions could help identify, prevent, or explain side
effects. Novel cancer therapies could also be derived for
known drugs that are used for other diseases.
Among recently approved novel cancer chemothera-

peutics are those which inhibit HDAC activity [27], and
those that inactivate of NFKB signaling with proteasome
inhibitors [28]. A growing number of early clinical trials
are exploring attempting to synergize the effects of HDAC
inhibitors and NFKB interfering proteasome inhibitors to
treat solid tumors, with variable reported success [29,30].

The prominence in this network model of HDACs as
direct partners for OVOL function, and the NFKB sig-
naling pathway as a regulator of MET-associated genes,
offer suggestions that this type of synergistic approach,
combining HDAC inhibitors (such as vorinostat) with
proteasome inhibitors (such as bortezomib) might have
value in advanced prostate and breast cancer. Intriguingly,
vorinostat and bortezomib were recently shown to syner-
gistically inhibit the growth of prostate cancer cell lines
and suppress tumor growth in murine xenograft models
[31]. As future therapeutic agents are developed, this
model will continue to provide guidance, potentially allow-
ing identification of those future agents with mechanisms
of action that might be particularly efficacious against
OVOL-related contributions to metastatsis. In addition,

Figure 8 OI-MET-TF network. The combined AP1, STAT3, STAT1, NFKB1, and OVOLs network. The network is parsimonious in that it connects all
the nodes and includes only one gene not part of the input set.

Table 3 PubMed and PMC searches for OI-MET-TF genes and cancer, BC, PC, and MET

For 52 OI-MET-TF genes, number found in: PubMed queries for % PubMed p-value PMC queries for % PMC p-value

(“cancer”[Text Word] + OR + “neoplasms”[Text Word]) 45 86.5% < 0.01 48 92.3% < 0.01

(“breast cancer”[Text Word] + OR + “breast neoplasms”
[Text Word])

47 90.4% < 0.01 49 94.2% < 0.01

(“prostate cancer”[Text Word] + OR + “prostate neoplasms”
[Text Word])

36 69.2% < 0.01 48 92.3% < 0.01

(“epithelial-mesenchymal transition”[MeSH Terms]) 21 40.4% < 0.0001 38 73.1% < 0.0001

For All 36,973 HGNC Genes, Number found in: PubMed queries for PMC queries for % PMC

(“epithelial-mesenchymal transition”[MeSH Terms]) 995 2.7% 1669 4.5%

As with the OI-MET gene set “cancer”, “breast cancer”, and “prostate cancer” text word searches show that a high proportion of OI-MET-TF genes are associated
with these concepts in the literature. For all six tests the empirical p-value is < 0.01. “Epithelial-mesenchymal transition” MeSH term searches show an even more
significant enrichment of this annotation in the OI-MET set, relative to all genes: 40.4% ÷ 2.7% = 15.2 Fold Enrichment for PubMed; 73.1% ÷ 4.5% = 16.4 Fold
Enrichment for PMC; both with p-value < 0.0001.

Roca et al. BMC Systems Biology 2014, 8:29 Page 10 of 20
http://www.biomedcentral.com/1752-0509/8/29



while essentially all cancer therapeutics have significant off
target effects, this model may be used to predict off target
effects for both current and future therapies, allowing cli-
nicians to better understand and minimize these compli-
cations in cancer therapy.

Indirect action of the OVOL TFs
As seen in the OI-MET-TF model, the effects of the
OVOL TFs are complex and they interact directly with
only a small number of genes in the network. Focusing on
only the nuclear proteins from that network (Figure 10),
both OVOLs regulate MYC while OVOL1 also directly

regulates MAFF and MYB (transcription factors), ID2 (an
inhibitor of DNA binding), plus HDAC1, HDAC2, and
HDAC3 (histone deacetylases). These interactions are
consistent with the hypothesis that OVOLs influence OI-
MET gene expression indirectly, setting off a cascade of
downstream effects. In this model, the signal propagates
from the OVOLs, through MYC, MYB, and MAFF. This
signal would be modulated by ID2 and the HDACs, which
subsequently regulate TNFAIP3, AP1, STAT1, STAT3,
STAT4, NFKB1, IRF9, ATF3, and CIITA. Note that the
OI-MET-TF model suggests that MAFF, ATF3, MYC,
MYB, STAT4 and IRF9 are potentially important TFs in
this regulatory cascade, in addition to the TFs identified
by ConceptGen (AP1, NFKB1, STAT1, and STAT3) and
the OVOLs. Using publicly available ChIP-Seq data, we
test the validity of this hypothesized cascade, below.

Reflection back to the OI-MET gene expression signature
Keeping in mind that the OI-MET-TF network is neces-
sarily simplistic, this network is strongly consistent with
the hypothesis that the OVOLs regulate MET in concert
with the other four TFs. However, since the roles of the
other four TFs were suggested by enrichment of annota-
tion in the OI-MET signature gene set, we hypothesized
that the effects of these TFs from the OI-MET-TF model
are consistent across the larger OI-MET signature set.
We also observed that, in addition to the four TFs iden-
tified by ConceptGen, MAFF, ATF3, MYC, MYB, and
IRF9 could be important in this regulatory cascade.
Using GGA’s MatInspector function, we searched the
4,102 promoters from the OI-MET gene set, looking for
individual binding sites for these promoters (Table 5).

Table 4 MetaCore enrichment for disease processes in
the OI-MET-TF gene set

Disease phenotype % of genes annotated for: p-Value

Pathologic processes 84.0 8.6E-46

Rheumatic diseases 72.0 9.2E-44

Connective tissue diseases 72.0 4.9E-40

Arthritis 70.7 3.2E-41

Joint diseases 70.7 7.1E-41

Arthritis, rheumatoid 69.3 1.8E-42

Inflammation 62.7 1.8E-46

Dry eye syndromes 54.7 3.4E-43

Lacrimal apparatus diseases 54.7 3.4E-43

Sjogren’s syndrome 53.3 1.4E-43

Xerostomia 53.3 1.4E-43

Salivary gland diseases 53.3 5.4E-40

Disease phenotypes consistent with cancers, as well as inflammation are
enriched in annotation for the OI-MET-TF set. (Note that p-values are not
adjusted for multiple hypothesis tests).

Figure 9 Drug targets in the OI-MET-TF network. Drug targets are boxed. Fourteen genes in the network are documented drug targets.
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Based on the number of sequences with one or more
binding sites for each of these TFs, and comparing to
the frequency expected for all promoters, we find that
NFKB, MYC, and to a lesser extent, MAFF motifs are
over-represented in these promoters. Note that, while
these motifs are over-represented, the modest values
of over-representation make their biological relevance
subject to interpretation. Equally, as noted below, the
presence of single motifs is not a strong indicator of
regulatory control. The proportion of promoters with
the other motifs is not significantly different from the
proportion expected for a random set of promoters at
a significance threshold of p-value ≤ 0.05.
Since TFs generally work in pairs or modules, we

searched the 4,102 promoter sequences for all pairs of
motifs derived from these individual motifs using GGA’s
RegionMiner module (Table 6). RegionMiner compared
the proportion of promoters with each motif pair in the
4,102 promoters versus the proportion of promoters
with the motif pair in all GGA promoters. This is the
observed enrichment in Table 6. For comparison, we
calculated the expected representation in this group of
4,102 promoters as the product of fold enrichment for
the first motif x the fold enrichment for the second motif.
This is the value expected if the motifs were randomly
distributed across the 4,102 promoters (Expected enrich-
ment, Table 6). For almost all of these TF pairs, we found
approximately the expected number of promoters with

the motif pair. However, the V$AP1F/V$EBOX motif pair,
corresponding to the AP1/MYC TF pair, showed 1.38 fold
enrichment relative to all promoters in the RegionMiner
search. Based on our calculation, we would have expected
only 1.07 fold enrichment. This difference (observed 433
promoters with the pair vs. expected 314) is the largest in
our dataset and is significant at the χ2 p-value < 0.01 level.
Finding a much greater proportion of promoters with the
motif pair than expected by chance suggests that coopera-
tive regulation by AP1 and MYC could be important in
the downstream cascade of gene expression regulating
MET.

Testing the OI-MET signature with ChIP-Seq data
Testing for the presence of TF binding motifs is useful
in identifying potential regulatory effects in a set of pro-
moters. Enrichment for motifs and, more significantly,
enrichment for modules composed of motif pairs, as we
did, is potentially even more useful. However, the pres-
ence of a binding motif or motif pair does not necessar-
ily mean that the TFs bind, or that they bind under
relevant conditions. ChIP-Seq is a high-throughput
process for identifying DNA sequences bound by pro-
teins, including transcription factors [32]. To test
whether the 4,102 promoters in the OI-MET set bind
the TFs of interest in relevant tissues, we downloaded
ChIP-Seq data from ChipBase [33]. ChIPBase is a data-
base of transcription factor binding maps, based on

Figure 10 Nucleus only, OI-MET-TF network. Focusing only on the nucleus, it is evident that the OVOL TFs indirectly influence expression in
the network, setting off a cascade of gene expression.

Table 5 Promoters for the OI-MET gene set, proportion with TF motifs tested singly and compared to all promoters

AP1 MAFF ATF3 MYC IRF6 NFKB1 OVOL STAT MYB

Motif name V$AP1F V$AP1R V$CREB V$EBOX V$IRFF V$NFKB V$OVOL V$STAT V$MYBL

# sequences with motif 1380 3193 3267 2472 2696 2386 1467 3191 2873

p-value 5.9E-01 3.1E-02 7.7E-01 3.8E-08 1.0E + 00 3.9E-27 1.0E + 00 9.9E-01 1.0E + 00

Observed proportion 33.6% 77.8% 79.6% 60.3% 65.7% 58.2% 35.8% 77.8% 70.0%

Expected proportion 33.8% 76.6% 80.1% 56.1% 70.5% 49.8% 41.1% 79.4% 74.7%

Fold enrichment 0.995 1.016 0.994 1.074 0.932 1.168 0.870 0.980 0.938

When tested singly, only MAFF, MYC, and NFKB motifs are enriched in promoters from the OI-MET gene set.
Values in bold are significant at the p-value < 0.05 level.
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publicly available ChIP-Seq data, for cell lines derived
from various tissues. Relevant to our study, we were able
to download binding data for AP1 (both FOS and JUN),
ATF3, MYC, NFKB1, and STAT1 TFs. For each TF, we

had zero or more files from cell lines derived from non-
cancer tissue (WBC samples from the Coriel repository
or HUVEC cells), solid tumors (HeLa or HepG2 cell
lines), and leukemia (K562 cell line).
Throughout the earlier steps in the analysis we found

evidence consistent with the hypothesis that the OVOLs
regulate MET, but we also found evidence that the
OVOLs might impact cancer in a broader sense. These
results led us to make a three-way comparison of pro-
moter occupancy across non-cancer, solid tumor, and
leukemia models. The classic mechanism for metastasis
of a solid tumor is EMT, migration, and MET [2]. This
process is generally considered to be distinct from the
mechanisms of progression in leukemia, though there
are elements that are common across these cancer types
[34,35]. To test these distinctions, we hypothesized that
promoter occupancy would be higher in the solid tumor
(MET) model than in the non-cancer model. Also, if the
effect t is specific to the MET model, increased pro-
moter occupancy would not be seen in the leukemia
(Non-MET) model. If the effect is common to both MET
and Non-MET mechanisms, we would see increased oc-
cupancy in both MET and Non-MET models, though the
magnitude of the effect may be different.
We converted the downloaded the .csv ChIP-Seq files

to .bed files and uploaded them to Genomatix GGA. We
also converted the 4,102 promoter sequences from the
OI-MET gene set to .bed files using the GGA mapping
utility. For each TF, we aggregated the .bed files by
tissue/cancer category (not cancer, MET, Non-MET).
This process created proxy datasets for testing promoter
occupancy, allowing us to look for documented binding
of the TFs in sites overlapping the 4,102 promoters, in
the relevant cellular models. For NFKB, only non-cancer
ChIP-Seq data were available. For ATF3, only Non-MET
data were available. For STAT1 and MYC, data were
available for MET and Non-Met cancers, but not for the
non-cancer model. For AP1, ChIP-Seq binding data were
available for all three classes (not cancer, MET, and
Non-MET cancers), for both FOS and JUN TFs. For all
three tissues, for both FOS and JUN, we had relatively
large numbers of peaks in each file to compare with the
4,102 promoters of interest, providing an excellent data-
set for testing the hypotheses that these TFs occupy the
promoters preferentially in MET versus non-cancer cells
and in MET versus Non-MET cancer, but not in Non-
MET versus non-cancer cells. Also, given that the AP1/
MYC TF pair was the most enriched pair in the motif
modules analysis, the AP1 ChIP-Seq data for FOS and
JUN is a particularly good choice for this hypothesis
testing. In addition, though we had only MET and Non-
MET cancer data on MYC, we were able to test for en-
richment of cooperative AP1/MYC binding in promoter
associated locations in the cancer models.

Table 6 Enrichment for binding motifs for TF pairs in the
OI-MET gene set

Motif pair Observed enrichment
in OI-MET promoters
for motif pair

Expected
enrichment

Difference

V$AP1F V$EBOX 1.38 1.07 0.31

V$IRFF V$OVOL 0.91 0.81 0.10

V$AP1R V$EBOX 1.18 1.09 0.09

V$AP1F V$STAT 1.07 1.00 0.07

V$AP1R V$STAT 1.07 1.00 0.07

V$AP1F V$IRFF 0.99 0.93 0.06

V$NFKB V$STAT 1.20 1.14 0.06

V$AP1F V$AP1R 1.04 0.99 0.05

V$AP1F V$CREB 1.03 0.99 0.04

V$IRFF V$STAT 0.95 0.91 0.04

V$AP1F V$NFKB 1.19 1.16 0.03

V$AP1F V$MYBL 0.96 0.93 0.03

V$MYBL V$NFKB 1.12 1.10 0.02

V$AP1R V$IRFF 0.97 0.95 0.02

V$AP1R V$MYBL 0.97 0.95 0.02

V$IRFF V$MYBL 0.89 0.87 0.02

V$AP1R V$CREB 1.02 1.01 0.01

V$MYBL V$OVOL 0.82 0.82 0.00

V$AP1R V$NFKB 1.18 1.19 −0.01

V$AP1R V$OVOL 0.92 0.95 −0.03

V$MYBL V$STAT 0.89 0.92 −0.03

V$OVOL V$STAT 0.82 0.85 −0.03

V$EBOX V$STAT 1.05 1.09 −0.04

V$AP1F V$OVOL 0.82 0.87 −0.05

V$CREB V$NFKB 1.11 1.16 −0.05

V$CREB V$IRFF 0.87 0.93 −0.06

V$CREB V$STAT 0.91 0.97 −0.06

V$IRFF V$NFKB 1.01 1.09 −0.08

V$EBOX V$IRFF 0.92 1.00 −0.08

V$CREB V$MYBL 0.85 0.93 −0.08

V$EBOX V$NFKB 1.17 1.25 −0.08

V$CREB V$OVOL 0.77 0.87 −0.10

V$NFKB V$OVOL 0.92 1.02 −0.10

V$EBOX V$OVOL 0.81 0.93 −0.12

V$EBOX V$MYBL 0.86 1.01 −0.15

V$CREB V$EBOX 0.91 1.07 −0.16

The AP1/MYC binding motif pair is much more common in the OI-MET
promoters than would be expected if they were independent.
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Overlap of ChIP-Seq AP1 binding peaks and promoter
sequences
As seen in Table 7, we tested the overlap of AP1 ChIP-
Seq peaks and the 4,102 promoters two ways (Tables 7
and 8), with each of JUN (upper) and FOS TFs (lower).
In Table 7, upper sub-table (JUN, Promoter Occupancy),
we considered the overlap of each promoter with at least
one peak for the JUN TF. We tested the non-cancer set
against the MET set, comparing the proportion of pro-
moters overlapping non-cancer peaks (277) out of all
non-cancer peaks (75,474), versus the proportion of pro-
moters overlapping MET peaks (503) out of all MET
peaks (120,679). We calculated fold change and p-value
for this difference of proportions. We made the equiva-
lent comparison but focused on the Non-MET peaks,
relative to non-cancer peaks, then compared the MET
peaks to the Non-Met peaks. The set of results in the

lower sub-table (FOS) follow the same pattern as those
in the upper sub-table, but FOS is the tested TF.
Results in Table 7 (counting promoters overlapping one

or more peaks) show that promoter occupancy is slightly
increased for JUN in both the METand Non-MET models,
relative to the non-cancer model, and there is essentially
no difference in rates between the two models. Promoter
occupancy is significantly increased for FOS in the MET
model but is decreased in the Non-MET model, relative to
the non-cancer model. These results are strongly consist-
ent with the hypothesis that FOS, as an element of the
AP1 TF, impacts the MET model in the OI-MET gene
set. The evidence for the Non-MET model is much less
convincing.
Table 8 shows results for peak occupancy. The process

for assessing enrichment is essentially the same as for
promoter occupancy, but we are counting peaks that

Table 7 AP1 (FOS and JUN) promoter occupancy in the OI-MET gene set, based on ChIPBase datasets

Promoter occupancy (number of promoters overlapping with at least one peak)

JUN

Not_cancer MET

Promoters with one or more peaks 277 503

Peaks 75474 120679 Fold change P-value

Promoter occupancy rate 0.367% 0.417% 1.14 0.0966

not_cancer Non-MET

Promoters with one or more peaks 277 483

Peaks 75474 112929 Fold change P-value

Promoter occupancy rate 0.367% 0.428% 1.17 0.0463*

MET Non-MET

Promoters with one or more peaks 503 483

Peaks 120679 112929 Fold change P-value

Promoter occupancy rate 0.417% 0.428% 1.05 0.7083

FOS

Not_cancer MET

Promoters with one or more peaks 119 43

Peaks 20695 3282 Fold change P-value

Promoter occupancy rate 0.575% 1.310% 2.28 <0.0001**

Not_cancer Non-MET

Promoters with one or more peaks 119 161

Peaks 20695 37162 Fold change P-value

Promoter occupancy rate 0.575% 0.433% 0.75 0.0226*

MET Non-MET

Promoters with one or more peaks 43 161

Peaks 3282 37162 Fold change P-value

Promoter occupancy rate 1.310% 0.433% 0.33 <0.0001**

Promoter occupancy is slightly increased for JUN in both the MET and Non-MET models, relative to the non-cancer model, and there is essentially no difference in
rates between the two models. Promoter occupancy is significantly increased for FOS in the MET model but is decreased in the Non-MET model, relative to the
non-cancer model. The difference is highly significant. (*Significant at 0.05 P-value. **Significant at 0.001 P-value).

Roca et al. BMC Systems Biology 2014, 8:29 Page 14 of 20
http://www.biomedcentral.com/1752-0509/8/29



overlap promoters rather than counting promoters that
overlap one or more peaks. These results are much more
striking. In every case, there is a significant enrichment
of peaks overlapping the OI-MET gene set’s promoters,
for both JUN and FOS, for both the MET and Non-MET
models. The effect of JUN is essentially the same in MET
and Non-MET models. The effect of FOS is greater
in the MET model, though we also see significant en-
richment in the Non-MET model. These results are
consistent with the hypothesis that both FOS and
JUN, as elements of the AP1 dimer, impact the OI-
MET gene set in both MET and Non-MET cancers. Taken
together with results from Table 2, showing that FOS
and JUN are responsive to the OVOLs, these results
are consistent with the regulatory cascade described
for Figure 10. In addition, the effect is not specific to
the MET model.

Enrichment of AP1/MYC peak pairs overlapping the OI-MET
promoters
Based on the motif pair data, we hypothesized enrich-
ment of binding by AP1/MYC pairs in our 4,102 pro-
moters in the cancer models, relative to the non-cancer
model. We tested this hypothesis (Table 9) in a way
similar to how we tested for enrichment of AP1 binding
in the cancer models. As in the previous analysis, Table 9
tests promoter occupancy and Table 10 tests peak occu-
pancy. For both 8a and 8b, the upper sub-tables test JUN
and the lower tables test FOS. In Table 9, for each model
(MET, Non-MET) we first tested for the proportion of the
4,102 promoters occupied by only one member of the TF
pair (e.g. Only JUN, Only MYC). Then, based on the
proportion of promoters overlapping each single TF, and
assuming that the TF binding sites are independent, we
calculated the number of promoters that we would expect

Table 8 AP1 (FOS and JUN) peak occupancy in the OI-MET gene set, based on ChIPBase datasets

Peak occupancy (number of peaks overlapping with promoters)

JUN

Not_cancer MET

Peaks overlapping promoters 287 796

Peaks 75474 120679 Fold change P-value

Peak occupancy rate 0.38% 0.66% 1.73 <0.0001**

Not_cancer Non-MET

Peaks overlapping promoters 287 757

Peaks 75474 112929 Fold change P-value

Peak occupancy rate 0.38% 0.67% 1.76 <0.0001**

MET Non-MET

Peaks overlapping promoters 796 757

Peaks 120679 112929 Fold change P-value

Peak occupancy rate 0.66% 0.67% 1.02 0.7773

FOS

Not_cancer MET

Peaks overlapping promoters 103 34

Peaks 20695 3282 Fold Change P-value

Peak occupancy rate 0.50% 1.04% 2.08 0.0003**

Not_cancer Non-MET

Peaks overlapping promoters 103 251

Peaks 20695 37162 Fold Change P-value

Peak occupancy rate 0.50% 0.68% 1.36 0.0105*

MET Non-MET

Peaks overlapping promoters 34 251

Peaks 3282 37162 Fold Change P-value

Peak occupancy rate 1.04% 0.68% 0.65 0.0252*

Peak occupancy is significantly increased for both JUN and FOS, in both the MET and Non-MET models, relative to the non-cancer model. The effect is essentially
the same for JUN in the MET and Non-MET models, but the effect for FOS is greater in the MET model. These results are consistent with both JUN and FOS
transcription factors trans-locating to occupy the OI-MET promoters in both MET and non-MET models. (*Significant at 0.05 P-value. **Significant at 0.001 P-value).
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to have the TF pair (BOTH Expected). We then found the
actual number of promoters overlapping both TFs (BOTH
Observed). Using these observed and expected values we
calculated Fold Change and p-value for the enrichment. In
every comparison in Table 9, for both JUN and FOS

matched with MYC, for both promoter occupancy and
peak occupancy, we found very significant enrichment for
overlap of both TFs with these promoters, in both MET and
Non-MET cancer models. Also, we found a very large en-
richment of peak occupancy (Table 10), relative to promoter

Table 9 AP1 (FOS and JUN) with MYC promoter occupancy in the OI-MET gene set, based on ChIPBase datasets

JUN Promoter occupancy (# promoters overlapping both JUN and MYC peaks, from a total of 4,102 promoters)

MET

Only JUN Only MYC Both expected Both observed Fold change P-value

Promoters with one or
more peaks

503 436 53.46 228 4.26 <0.0001**

Non-MET

Only JUN Only MYC Both expected Both observed Fold change P-value

Promoters with one or
more peaks

483 398 46.86 288 6.15 <0.0001**

FOS Promoter occupancy (# promoters overlapping both FOS and MYC peaks, from a total of 4,102 promoters)

MET

Only FOS Only MYC Both expected Both observed Fold change P-value

Promoters with one or
more peaks

43 436 4.57 22 4.81 <0.0001**

Non-MET

Only FOS Only MYC Both expected Both observed Fold change P-value

Promoters with one or
more peaks

161 398 15.62 100 6.40 <0.0001**

Promoter occupancy is significantly enriched for both JUN and FOS with MYC, for both the MET and Non-MET models, relative to the expected if they were
independent. This result is consistent with cooperative regulation of a subset of these promoters by AP1 and MYC. (**Significant at 0.0001 P-value).

Table 10 AP1 (FOS and JUN) with MYC peak occupancy in the OI-MET gene set, based on ChIPBase datasets

JUN Peak occupancy (# of JUN and MYC peaks overlapping promoters, of 4,102 promoters)

MET

Only JUN Only MYC Both expected Both observed Fold change P-value

Peaks overlapping promoters 796 305 0.43 152 350.51 <0.0001**

Peaks 120679 19030

Non-MET

Only JUN Only MYC Both expected Both observed Fold change P-value

Peaks overlapping promoters 757 910 0.31 670 2145.60 <0.0001**

Peaks 112929 80131

FOS Peak occupancy (# of FOS and MYC peaks overlapping promoters, of 4,102 promoters)

MET

Only FOS Only MYC Both expected Both observed Fold change P-value

Peaks overlapping promoters 34 305 0.68 17 24.96 <0.0001**

Peaks 3282 19030

Non-MET

Only FOS Only MYC Both expected Both observed Fold change P-value

Peaks overlapping promoters 251 910 0.31 253 804.10 <0.0001**

Peaks 37162 80131

Peak occupancy is significantly enriched for both JUN and FOS with MYC, for both the MET and Non-MET models, relative to the expected if they were independent.
This result is consistent with cooperative regulation of a subset of these promoters by AP1 and MYC. (**Significant at 0.0001 P-value).
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occupancy (Table 9), in both cancer models. This result is
consistent with the AP1/MYC pair having an important
role in the cascade of gene expression regulation in the
OI-MET gene set. Notably, AP1 was identified as being
enriched in annotation in the OI-MET gene set, and MYC
is the common target of OVOL1 and OVOL2, so this
result is also consistent with the regulatory cascade
described for Figure 10.

Discussion
In this work, we use a systems biology approach to
understand how the OVOL TFs induce MET. Based on
our previous work, we hypothesized that the OVOL TFs
regulate MET in more than one cancer [3]. To test this
hypothesis, we created models for OVOL Induced MET
(OI-MET) in prostate cancer and breast cancer models,
then found the common set of differentially expressed
genes (the OI-MET signature). We used literature sear-
ches to test whether the OI-MET set is associated with
appropriate terminology in PubMed and PMC and found
significant evidence consistent with this hypothesis. Not-
ably, this set is significantly associated with MET in the
literature, as well as BC, PC, and cancer. We looked for
the mechanisms by which the OVOL TFs regulate MET
and found that only one third of the OI-MET genes pro-
moters have the OVOL binding motif, so in most cases
the mechanism is not likely to be direct OVOL TF bind-
ing. We then searched for other fundamental mechanisms
acting in this set by enrichment testing with ConceptGen.
We found significant enrichment for annotation consist-
ent with cancer progression among genes in the OI-MET
gene set, suggesting that the OI-MET set is a useful model
of gene expression changes in MET.
We also found significant enrichment of annotation

consistent with the roles of the OVOLs and AP1, NFKB1,
STAT1, and STAT3 in regulating gene expression in
OI-MET. To understand how these TFs might inter-
act with the OVOL TFs and potentially impact OI-MET,
we first focused the analysis on the subsets of genes asso-
ciated with each of the five TFs (AP1, NFKB1, STAT1,
STAT3, and the OVOL TFs), then assessed their interac-
tions in the set composed of the union of the gene sets
regulated by the individual TFs. This process yielded a
model of how the OVOLs interact with the other TFs
(OI-MET-TF) to influence OI-MET. We tested this model
for association with BC, PC, cancer, and MET in the lit-
erature and found it to be even more enriched than the
OI-MET model. This result is consistent with the hypoth-
esis that the OI-MET-TF model is also useful in under-
standing the impact of the OVOLs in MET and more
generally in cancer, as well as how the OVOLs interact
with the other four TFs in this process. By developing an
improved understanding the genes, interactions, and
related mechanisms impacting disease, we open up the

possibility of intervening in disease progression. We used
the OI-MET-TF model to understand how known drug/
gene interactions could impact the model and offer priori-
tized options for intervention.
We reflected our inference from the OI-MET-TF

model back to the larger set of genes in the OI-MET
signature and tested this gene set for potential regulation
by these TFs. In the OI-MET gene set, we found signifi-
cant enrichment for binding motifs for the AP1/MYC
pair. To investigate potential binding at these sites, we
used publicly available ChIP-Seq data to first test the
hypothesis that AP1 binds preferentially in MET and
Non-MET cancer models, relative to a non-cancer model.
We also compared AP1 binding in the MET versus Non-
MET models. Results of these tests are consistent
with AP1 acting in both the MET and Non-MET can-
cer models. We then tested for preferential binding of
the AP1/MYC pair, and again saw results consistent
with this pair acting in both MET and Non-MET cancer
models. While AP1 and MYC have long been associated
with cancers, to our knowledge this is the first large scale
test of the hypothesis that these TFs bind preferentially in
cancer versus non-cancer models for cancer-related genes,
and that they cooperate in binding. Taken together with
evidence that FOS and JUN show differential expression
in response to the OVOLs, these results are consistent
with a regulatory cascade posed by the OI-MET-TF
model. We also must consider the possibility that the
OVOLs function in ways that are not specific to MET.
This result has been seen with other transcription factors
that were initially thought to act primarily in MET but
were also found to impact cancer in ways not specific to
MET [36].

Conclusions
In this work, we explore the etiology of OVOL-Induced
MET (OI-MET), focusing on commonalities between
prostate cancer (PC) and breast cancer (BC) models, to
test the hypothesis that the OVOLs regulate MET in
multiple cancers. We generate a common OI-MET gene
expression signature, consistent with a common under-
lying genetic etiology for MET in PC and BC, and show
that the OI-MET gene set is significantly enriched for can-
cer, BC, PC, and MET associated genes. Using a systems
biology approach, we identify regulation of gene expres-
sion as the primary influence of the OVOLs on MET,
though this effect is indirect and depends on interaction
with AP1, STAT1, STAT3, and NFKB1 TFs. We create an
OI-MET-TF sub-model of the genes annotated as being
regulated by the OVOLs and these other four TFs. We
test this model for consistency with known genetic influ-
ences on MET, BC, PC and cancer, and find that there is
significant evidence supporting the use of this network as
a model of gene expression influences on MET. Based on
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these results, we believe the networks are useful in model-
ing the impact of the OVOLs and the four other TFs in
MET, and may be appropriate for understanding broader
influences in MET across multiple cancer types.
We use the OI-MET-TF model in several ways to im-

prove our understanding of the mechanisms driving
gene expression in MET. Based on the gene/drug and
gene/gene interactions evident in the model, we prioritize
known drugs for potential clinical application in cancer
therapies. This analysis considers the potential for both
on-target and off-target drug/gene interactions, as well as
downstream effects and the possibility of repurposing
drugs for novel cancer therapies. The OI-MET-TF model
is also appropriate for future testing based on interactions
with environmental factors, other risk genes, or potential
drug therapies.
We extend the inference from the OI-MET-TF model

back to the larger set of all OI-MET genes and show that
the effects of the OVOLs and the other TFs in the OI-
MET-TF model are likely to be consistent in the larger
set, with experimental data significantly in support of
this hypothesis. In particular, we find significant evi-
dence that the AP1/MYC TF pair has an important role
in regulating gene expression in cancers. In addition, we
find that the impact of the OVOLs may extend beyond
MET, influencing mechanisms of cancer progression that
require further investigation.

Methods
RNA-seq sample preparation
The construction of PC and BC cell lines overexpressing
OVOL1, OVOL2, or both was done as previously descri-
bed [3]. Total RNA was isolated from biological replicates
of each cell-type and subjected to deep transcriptome
sequencing.

RNA-seq data analysis
Sequencing was performed by the UM DNA sequencing
core, using the Illumina Hi-Seq platform to generate 50
base, paired-end reads. We downloaded and concatenated
the individual reads files to correspond with individual
samples. These .fastq files are GEO datasets (GSE48230
and GSE51975). We aligned the reads to the reference
transcriptome (UCSC hg19) using TopHat2.0.2, which is
part of the tuxedo next-generation sequencing data ana-
lysis suite [37,38]. We used default parameter settings with
the exception that we specified “–b2-very-sensitive”. We
used FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) to assess a range of quality measures,
and found overall very good quality aligned reads in
each sample. We then used CuffDiff2.0.2, also part of
the tuxedo suite, to assess differential expression be-
tween groups, using the UCSC hg19.gtf transcriptome,

with -u, −N, −-compatible-hits-norm, and -b (relative
to the UCSC hg19.fa) parameter settings. We used a
locally derived Perl script to identify genes/transcripts
as being differentially expressed if they showed: “OK”
test status AND FDR ≤ 0.05, AND fold change (≥ 2.0
or ≤ 0.50).

E-Utils publications searches
We used Perl script with NCBI Entrez Programming Utility
functions (e-utilities) to query NCBI literature databases.
For each gene in the list, we queried both PubMed and
PubMed Central databases using HGNC gene symbol and
each of the terms “cancer”, “breast cancer” and “prostate
cancer” as text words and “epithelial mesenchymal transi-
tion” as the MeSH term for MET. Each query result was
parsed to get a list of PMIDs and PMCIDs, respectively,
that document the co-occurrence of the gene symbol
and the query term. We counted co-occurrence if one
or more publication showed both the gene symbol and
the query term.

GeneGo network building
For each network, we used parameter settings to develop
the most parsimonious network possible (including all
the input genes in the smallest possible network). In
each case, we used: shortest paths algorithm; merged
network; not including canonical pathways; 1 maximum
step in the path; showing disconnected seed nodes;
showing shortest path edges only; using low trust, func-
tional, and binding interactions for network building,
and not using compound-target interactions. Note that,
while we allowed for the potential use of low trust inter-
actions in network building, this did not impact the net-
works built.

Additional files

Additional file 1: Differentially expressed genes in the OI-MET gene
set. Excel spread sheet with set of genes at the intersection of BC and
PC models, yielding the OI-MET gene set.

Additional file 2: ConceptGen enrichment testing results for the
OI-MET gene set. Excel spread sheet with results from the ConceptGen
enrichment testing, sorted by category, with the five TF concepts at the
top of the page.

Additional file 3: Metacore quick reference guide.

Additional file 4: GeneGo MetaDrug gene/drug interactions. Excel
spread sheet with connections between network genes, their descriptions,
and the therapeutic drugs that target them.
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