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Abstract This paper explores the urban carbon cycle from the natural sciences perspective, identifying
key knowledge gaps and priority areas for future research. The combination of large, concentrated carbon
fluxes and rapid change makes cities key elements of the carbon cycle and offers the potential for them to
serve as “first responders” for climate action. Estimates of urban-scale carbon fluxes are significantly more
uncertain than at larger spatial scales, in part because past studies have mostly avoided local/urban scales
where the mix of anthropogenic and natural fluxes is complex and difficult to observationally isolate. To
develop effective emission reduction policies, we need to understand emission sources and how they may
be changing. Such improved quantification and understanding of underlying processes at the urban scale
will not only provide policy-relevant information and improve the understanding of urban dynamics and
future scenarios, but will also translate into better global-scale anthropogenic flux estimates, and advance
our understanding of carbon cycle and climate feedbacks across multiple scales. Understanding the rela-
tionship between urbanization and urban carbon flows requires intellectual integration with research
communities beyond the natural sciences. Cities can serve as interdisciplinary process laboratories that
are sufficiently constrained in both spatial and governance scale to support truly integrated research by
the natural sciences, social sciences, and engineering. A thoughtfully crafted science research agenda that
is grounded in sustained, dense observations relevant to estimating urban carbon fluxes and their control-
ling processes and is focused on a statistically significant sample of cities will advance our understanding
of the carbon cycle.

1. Motivation

The relationship between urbanization, urban areas, and the carbon cycle has received increased atten-
tion from the natural science community in recent years driven by several intersecting interests and
priorities. Foremost among these is the recognition that urban areas represent the dominant source of
energy-related CO2 emissions and a significant share of CH4 emissions, proportions that are expected
to climb as the global urban extent and the urban population grow disproportionately in the coming
decades [Seto et al., 2012a; United Nations Department of Economic and Social Affairs (UNDESA), 2012]. Fur-
thermore, urbanization constitutes an important land-use and land-cover change process, with impacts
on both terrestrial and aquatic carbon pools. The combination of large, concentrated carbon fluxes and
rapid change in pools makes cities a large and dynamic element of the global carbon cycle. Between
2002 and 2011, global fossil fuel and cement production emissions averaged 8.3± 0.4 PgC yr−1 [Le Quéré
et al., 2013], with over 70% of fossil fuel CO2 emissions attributable to urban areas [Energy Information
Administration (EIA), 2013]. Annual urban CO2 emissions are more than double the net terrestrial or ocean
carbon sinks [Le Quéré et al., 2013]. Understanding and quantifying carbon flows in cities offers a powerful
lens into urban ecosystems and provides a compact metric of urban sustainability [Bettencourt et al., 2007;
Fragkias et al., 2013].
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The interest in urban carbon flows is additionally motivated by climate policy emerging at the local level
responding, in part, to limited international and national policy progress [Rosenzweig et al., 2010]. For
example, over 1000 mayors have signed the U.S. Mayors Climate Protection Agreement, which commits
them to meeting or exceeding the Kyoto Protocol reductions within their cities. Even if national and inter-
national policy progresses more rapidly than in the past, cities remain critical participants in the imple-
mentation of climate policy because the urban landscape is where the majority of industry operates,
consumers live, and power is consumed. It is at the municipal scale that knowledge about local mitiga-
tion options, costs, and opportunities is the greatest [Betsill and Bulkeley, 2006; Fleming and Webber, 2004;
Dhakal and Shrestha, 2010; Rosenzweig et al., 2010; Salon et al., 2010; Marcotullio et al., 2014].

The recent attention to urban climate policy, in turn, has placed growing emphasis on understanding and
quantifying current urban carbon flows and their potential responses to policy. Quantifying baseline emis-
sions, planning emission mitigation efforts, and assessing progress toward climate mitigation targets all
require improved monitoring, reporting, and verification (MRV) at the urban scale [Vine and Sathaye, 1999;
Schakenbach et al., 2006; Lutsey and Sperling, 2008; NRC, 2010]. Many developed megacities around the
world are working together to pursue stabilization policies with greenhouse gas (GHG) inventories used
by local governments, regulators, and business being a primary mechanism for assessing progress [C40,
2011]. In addition to implementing policies to reduce fossil fuel emissions, many cities have developed
urban greening initiatives that seek to offset urban emissions through increasing uptake and storage by
vegetation. Rigorous quantification and monitoring are required to ensure success of all mitigation efforts.
Simple, first-order emission estimations based on population and economic characteristics are not accu-
rate enough for our policy needs.

Interest among natural scientists in the urban domain also comes from researchers working at the global
scale. For many years, the global carbon cycle science community has been studying the uncertainty asso-
ciated with feedbacks between global climate change and carbon uptake on the land and in the oceans.
Within that context, anthropogenic emissions, particularly the fossil fuel combustion component of those
emissions (FFCO2), are typically used as a near-certain boundary condition in assessing total carbon bud-
gets. Assuming FFCO2 emissions are known, other components of the carbon cycle can be studied by
difference rather than requiring direct measurement [Gurney et al., 2007]. For example, atmospheric CO2

inversion and assimilation studies rely on an accurate quantification of fossil fuel CO2 emissions [Enting,
2002]. It has been shown that errors in the location, timing, or magnitude of fossil fuel CO2 fluxes can be
aliased (transferred) onto the remaining flux components of carbon inversion studies [Gurney et al., 2005].
Though traditionally considered well quantified, the accuracy of the FFCO2 flux is sensitive to the space
and time scales needed for analysis. At the global and annual scales, uncertainties have traditionally been
estimated at 6%–10% [Marland and Rotty, 1984]. However, the global-scale uncertainty of the FFCO2 has
been increasing with time, driven by the increase in emissions from developing countries. With uncer-
tainty at the global/national scale growing, uncertainty at the spatial scale of individual cities is far larger
or unknown—estimates of 50%–100% error in the emissions estimates are not uncommon in the liter-
ature [NRC, 2010; Rayner et al., 2010]. Furthermore, CH4 uncertainties are large at all spatial scales [Miller
et al., 2012; Kirschke et al., 2013; Brandt et al., 2014]. The current uncertainties associated with urban emis-
sions typically exceed emission reduction goals, making verification of emission reduction goals very
challenging.

The large uncertainty associated with urban carbon emissions is due, in large measure, to the relative
dearth of systematic, comprehensive, scientifically driven data collection at the urban scale. Emissions
monitoring data that have been collected for regulatory or economic purposes are often incomplete
or rarely checked against scientific standards and procedures. For example, mandatory CO2 monitoring
at large power plants in the United States shows little bias when examined in the national-aggregate
scale but shows considerable uncertainty when examined on an individual facility basis [Ackerman and
Sundquist, 2008]. In other sectors, such as transportation, which can be the largest sectoral CO2 emit-
ter in a city, there are missing or inconsistent data [Gately et al., 2013]. Similarly, the locations and mag-
nitudes of fugitive emissions from urban point sources, such as leaks in natural gas infrastructure, are
largely unknown [Phillips et al., 2013; Jackson et al., 2014]. These problems result in significant scale gaps
(between facility- and national-level emissions) and sectoral gaps in understanding. Additionally, the lack
of information about the temporal characteristics of urban carbon emissions represents another difficulty
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in establishing causal links between controlling activities and behaviors and emissions for key sectors.
For example, although weekly cycles in emissions have been previously described [Cervery and Balling,
1998; Nassar et al., 2013], the consequences of these types of fine temporal variations for scaled-up annual
emissions have only recently been explored [Peylin et al., 2011].

All of these intersecting interests highlight an urgent need to connect the social, political, economic,
engineering, and physical dimensions of urban carbon flows and the urbanization process itself. Though
admittedly complex, urban areas offer an ideal “process laboratory” for this purpose because they con-
tain the complete suite of anthropogenic-driving activities and biogenic fluxes. They are the focal point
for many political decisions that affect carbon, as well as being home to many products of human inno-
vations and activity, including the built environment itself. Improved quantification and understanding of
underlying processes at the urban scale will not only provide policy-relevant information to urban practi-
tioners and improve the understanding of urban dynamics and future scenarios, but will also translate into
better global-scale anthropogenic flux estimates, and thereby advance our understanding of carbon cycle
and climate feedbacks at multiple scales. However, a complete understanding of the relationship between
urbanization and urban carbon flows requires intellectual integration with research communities beyond
the natural sciences.

To that end, this paper reviews the urban carbon cycle from a natural sciences perspective, with a focus
on our current understanding and capability to quantify and model urban carbon flows through the land,
water, and air. We then explore those elements of research where collaborations with engineers and
social scientists are necessary to enrich our complete understanding of carbon and urban areas. Figure 1
provides a conceptualization of the urban carbon cycle, highlighting transboundary carbon movements,
drivers, and flows. The scientific community must provide better constraints on the processes, pools, and

Figure 1. Urban carbon budget schematic showing key urban carbon reservoirs and processes (colored boxes), carbon emission and
removal fluxes (blue block arrows), major drivers (rounded rectangles), and examples of process linkages (colored thin arrows).
Examples of carbon pools and key emission and removal processes of particular importance are indicated within each reservoir box.
The outer boxes acknowledge the relationship between the local-scale carbon budget of a given city and surrounding region and,
ultimately, global through transboundary (lateral) carbon fluxes as well as interconnected drivers (socioeconomic, geographical, and
built systems).
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fluxes in order for us to add robust numeric values to this diagram. To that end, addressing the following
scientific questions will fundamentally advance our understanding:

1. What are the urban anthropogenic carbon fluxes? How are these fluxes and associated carbon pools
changing in time and space? How are they likely to change in the future?

2. What are the primary causes for discrepancies between research-grade and regulatory or
“self-reported” emission inventories? Can we reconcile “top-down” and “bottom-up” approaches to
quantifying FFCO2 emissions?

3. Can we attribute fluxes to their underlying processes and resolve emissions in space and time?
4. How are these emissions manifested across cities and what are their sensitivities to the many

controlling factors in different urban environments: geography, topography, climate, ecosystem type,
socioeconomics, and engineering/technological factors? Are there emerging urban typologies for
carbon emissions?

5. How do we apply natural science information on urban carbon flows to support and assess climate
change policy options and assess efficacy?

2. Current Research Approaches to Understanding Urban Carbon

Research undertaken by the natural sciences into urban carbon flows has been focused primarily on quan-
tification of carbon pools (e.g., fossil fuels, urban biota, aquatic systems, carbon-containing materials, and
the atmosphere) and the fluxes between pools. Of particular interest to both carbon cycle research and
the decision-support needs is the flux between the urban surface and the atmosphere. Flux estimation
typically relies upon direct flux observations, atmospheric monitoring of CO2, CH4 and related species,
and model/data approaches that rely on local data such as energy statistics, traffic modeling, and stack
monitoring. Often, these methods are combined in various mixtures depending on the available observ-
ing systems, the relative magnitude of the carbon pools/fluxes in a given urban area, and the resources
available.

The approaches to flux characterization pursued by the natural sciences can be broadly categorized as
“top-down” and “bottom-up.” Top-down efforts can be further subdivided into methods that rely primar-
ily on atmospheric CO2 mixing ratio measurements and those that downscale larger-scale carbon budgets
using various space/time proxies (e.g., remote sensing and socio-demographics). Bottom-up approaches
start with data (energy statistics, land parcel data, and traffic monitoring) and models (building energy
demand and travel demand modeling) on individual emitting entities—power plants, factories, and
vehicles—and assemble the urban landscape emissions through integration. In practice, research has
often availed of mixtures of both approaches. Note that, although not discussed in this paper, the term
“top-down” can also refer to macroscale and mesoscale economic approaches for emission estimation
[e.g., economic input-output tables; Wright et al., 2011a; Baynes and Wiedmann, 2012].

Bottom-up approaches to urban carbon research have typically quantified carbon flows for a whole city or
the census tract with sector- or fuel-specific information. For example, a number of studies have quanti-
fied fossil fuel CO2 emissions at the scale of an entire county or city [Baldasano et al., 1999; Ngo and Pataki,
2008; Ramaswami et al., 2008; Hillman and Ramaswami, 2010; Kennedy et al., 2010; Parshall et al., 2010;
Sovacool and Brown, 2010]. Other studies have attempted somewhat smaller spatial scales by quantifying
emissions at the census tract or “community” level [VandeWeghe and Kennedy, 2007]. Most of this research
has focused on urban areas within high-income countries where data are more readily available and meth-
ods are more harmonized. Much of this work has been motivated by improved understanding of urban
“metabolism” or the relationship between urban form/function and energy flows (see Chester et al., Posi-
tioning infrastructure and technologies for low-carbon urbanization, submitted to Earth’s Future, 2014).

In addition to the academic literature, urban practitioners and nongovernmental organizations have
engaged in carbon “footprinting” efforts as part of climate action plans or aspirational emission mitigation
goals [Wright et al., 2011a]. Though the methods and comprehensiveness of these individual city efforts
are not consistent, they offer a diverse, though qualitative, illumination of the dynamics at play in urban
carbon flows.

An approach to urban carbon flows unique to the natural science perspective has been the attempts
in recent years to quantify emissions at the scale of individual buildings and street segments for whole
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cities [Gurney et al., 2012]. This is particularly important when attempting to link emissions to atmospheric
concentration measurements within or near urban areas, to support MRV efforts [e.g., McKain et al., 2012].
However, there is also potential for these fine-grained efforts to offer much more detailed and sectorally
discrete information in support of urban-based mitigation policies [Schulz, 2010]. Fine-scale FFCO2 esti-
mates also offer a useful comparison point for satellite observations (see section 2.2.2).

Top-down approaches are categorized here as methods starting with atmospheric mixing ratio mea-
surements used to infer fluxes through inversion of atmospheric transport and methods that downscale
fluxes quantified at larger space/time scales using proxies. The approach based on atmospheric measure-
ments has a relatively long history at larger space/time scales [Enting, 2002]. For example, atmospheric
CO2 model inversions were begun in the 1980s in an attempt to quantify large-scale fluxes of carbon
between the land, ocean, and atmosphere with CO2 concentration measurements as the primary obser-
vational constraint. Critical to this approach is simulation of atmospheric motions that link the observed
constraint to the fluxes of interest. Scientists studying atmospheric chemistry and air quality have solved
closely related estimation problems at the global scale over the past several decades through long-term,
cross-calibrated measurements of multiple pollutant species [e.g., Prinn et al., 2000; Brasseur et al., 2003].
Translation of these approaches to the urban domain presents a number of challenges that are only in
very recent years being overcome [McKain et al., 2012; Bréon et al., 2014]. In addition to the observational
constraint associated with the flux of interest, atmospheric tracer transport models require meteorolog-
ical observations at fine space/time scales to properly simulate atmospheric transport between the flux
source and the location of atmospheric CO2 measurements. Many of the transport processes at the urban
scale are notoriously difficult to simulate due to small-scale turbulence, highly heterogeneous surface
characteristics, and changes in the planetary boundary layer (PBL) height [Lauvaux et al., 2009].

Downscaling flux estimates from larger space/time scales to the urban domain has used proxy informa-
tion of many differing types. State- or national-level consumption or activity data have typically been
downscaled using metrics such as urban extent, population, road density, and affluence, but these prox-
ies can introduce biases in the estimates where the relationship between emissions and proxies breaks
down or becomes nonlinear. The fundamental relationships between emissions and the proxies may also
be geographically variable and statistically nonstationary.

Directly measured, long-term time series of emission fluxes from cities are scarce and the common
carbon cycle tool of eddy covariance can be challenging to implement in urban areas due to urban
structural heterogeneity [Grimmond et al., 2002]. However, recent eddy flux measurements from an
aircraft platform show promise in this regard [Cambaliza et al., 2013]. Furthermore, land- and water-based
carbon stocks and fluxes in and around urban areas have not been systematically measured, much
less in conjunction with atmospheric observations and in the context of understanding carbon cycle
dynamics in urban ecosystems. The discussion below is not intended to be a comprehensive treat-
ment of carbon cycle science writ large; rather, we focus on key urban facets of the problem for which
there is some data availability. Further, while linkages with climate change and air quality are clearly
coupled to the urban carbon cycle, the scope of this discussion is largely limited to urban carbon
flows.

2.1. Urban Fossil Fuel Emission Estimation

2.1.1. Space/Time Explicit

The capabilities associated with bottom-up efforts at urban carbon quantification have advanced dra-
matically in recent years. Numerous studies have quantified urban carbon budgets at whole city/annual
scales and there exists rich literature in terms of quantity, methodological approach, and scope [e.g.,
Kennedy et al., 2010; Chavez et al., 2012; Hoesly et al., 2012; Chester et al., submitted manuscript, 2014].
The natural science community’s interest in quantifying urban carbon emissions with space/time detail
is driven by the importance of the atmospheric mixing ratio constraints and assessing how urban car-
bon flows are actualized in the atmosphere. Atmospheric measurements have two important attributes
that make this linkage critical: (1) mixing ratios of CO2 (and most GHGs) can be measured with consider-
able accuracy (well-established techniques can achieve accuracies of <1 part in 400) and (2) atmospheric
mixing ratios provide an integral constraint due to atmospheric mixing [Weiss and Prinn, 2011]. This latter
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attribute poses problems when interest turns to attribution of fluxes to specific elements of an emitting
landscape because uptake and release processes occur simultaneously across the landscape. The sepa-
ration of FFCO2 emissions from CO2 emitted by biotic activity can be achieved with carbon-14 (14C), but
further separation of the fossil fuel signal into space or functional class (buildings versus roads) is chal-
lenging.

In order for atmospheric CO2 measurements (12C or 14C) to be used as a constraint on flux estimates at
the surface, those flux estimates must be correctly placed in space and time. The desired resolution of
the underlying space/time fluxes is closely related to the atmospheric mixing ratio observational den-
sity, the complexity of the meteorological conditions/observations, and the adequacy of the atmospheric
transport modeling capabilities.

The explanation for the relative dearth of fine-resolution efforts is likely a combination of the fact that
interest and motivation in high-resolution work is very recent and that the data requirements have typi-
cally far exceeded availability in most urban areas. However, the availability, regularization, and connect-
edness of fine-scale data have grown tremendously in the last decade as cities make information such
as land parcel data, socio-demographic data, traffic data, and pollution reporting publically available in
digitized and common formats.

It is worth noting that the recent efforts focused on quantifying FFCO2 emissions at suburban reso-
lution are also drawing from urban planning and transportation research communities. For example,
agent-based, microsimulation models have been developed, which attempt to simulate activities at
an individual level (person, household, firm, or other agents) within the urban domain [Fissore et al.,
2011] and capture the interactions between land use and transportation [e.g., Waddell, 2002; Miller et al.,
2004]. Similarly, energy consumption and energy conservation policy measures have also generated
high-resolution modeling and data systems research that focuses on residential and commercial buildings
within a whole-city treatment [e.g., Shimoda et al., 2007; Richardson et al., 2010a]. Though historically not
emphasizing GHG emissions, these communities have begun to apply planning tools to the problem of
energy consumption and environmental impact, of which GHG emissions is a recent focus [e.g., Keirstead
and Calderon, 2012].

2.1.2. Definitions, Modalities, and Frameworks

Quantifying urban carbon emissions as part of a system that includes atmospheric CO2 monitoring has
implications for the accounting framework adhered to. This is an important distinction between the
space/time explicit quantification and the quantification that has been undertaken at coarser scales for
policy considerations. Accounting frameworks for GHG emissions focus on how to assign responsibility
for emissions and are often chosen to best match local interests or, more often, type or thoroughness of
available data. The integration with atmospheric CO2 measurement necessitates what has been variously
called “production-based” accounting, “geographically-based” accounting, or “in-boundary” (IB) account-
ing [e.g., Chavez and Ramaswami, 2011; Wright et al., 2011a; Ramaswami and Chavez, 2013]. IB accounting
is also directly aligned with “scope 1” emissions following the WRI/WBCSD corporate GHG accounting
schema [World Resources Institute/World Business Council on Sustainable Development (WRI/WBCSD),
2011]. IB emissions accounting quantifies all direct carbon emissions within the geographic boundaries
of the urban area of study. It concerns itself with direct, physical fluxes of carbon between the land and
atmosphere within a city and hence, does not include carbon embedded in goods/services, waste, and
electricity produced outside the given urban area. IB accounting can be contrasted to consumption-based
accounting which assigns emissions to consumers engaged in not only direct emitting activity but also
indirect emitting activity such as the production of goods and services that give rise to emissions far from
the consumption location [BSI, 2013].

A number of other characteristics are important when describing the distinction between the bottom-up
emissions quantification pursued within the natural science community and “footprint” efforts intended
to satisfy policy needs [e.g., Wright et al., 2011b]. In order to maintain the fidelity of bottom-up emissions
to adjustments as deemed necessary by an atmospheric observational constraint, bottom-up data prod-
ucts are sector, fuel, or even “process” specific. Sector categories are most commonly defined as industrial,
residential, commercial/institutional, transportation (onroad, nonroad, air, and waterborne), and elec-
tricity production. It has been common practice to isolate municipal or government operations when
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performing responsibility-based accounting. This is often considered within the commercial/institutional
sector in the sector-based categorization.

“Process” refers to a more specific emission activity to which a singular emission factor or emission pro-
cess can be applied. There are many different processes that emit carbon-containing compounds into the
atmosphere and specifying which processes are considered is critical—not only to the accuracy of the
emissions, but to the representativeness of emissions at a particular space/time scale. The most dominant
and hence the most common process captured in urban carbon emissions research at high resolutions is
the combustion of fossil fuels. Examples include emissions from gasoline internal combustion engines or
bituminous coal boilers. However, other processes emit CO2 via other carbon oxidation processes, such
as cement manufacturing, fugitive emissions (e.g., evaporation of gasoline), and miscellaneous indus-
trial processes (e.g., ammonia or aluminum production). Furthermore, combustion of other material,
synthetic or organic, must also be considered. Indeed, the consideration of biogenic material is com-
plicated as it typically necessitates consideration of the upstream CO2 removal from the atmosphere to
properly account for the net emissions. Similarly, net exchange of CO2 with the biosphere outside of biotic
material included in combustion is another process requiring careful accounting. Given the importance of
quantifying the net exchange of atmospheric CO2 with vegetation to CO2 mixing ratios measured in the
atmosphere, this category is critical (see section 2.4).

The spatial domain (or extent) considered by researchers varies, and typically this reflects the lack of a
singular definition for what constitutes an “urban” area. Multiple data sources exist that define urban areas
depending upon the needs and uses of the organizations or applications involved [see Parshall et al., 2010;
Raciti et al., 2012]. These definitions can have a considerable impact on both the resulting emissions and
their functional mixture. For example, inclusion of suburban areas can increase the need to consider the
net exchange of carbon with vegetation, as suburban areas typically have higher vegetation cover than
the urban cores [Hutyra et al., 2011a]. With the growth of megacities and the agglomeration of previously
separated urban areas into urban corridors (e.g., the Boston-Washington, DC megaregion), these domains
can become larger than U.S. states and incorporate a wide array of carbon-emitting activities and large
biological fluxes.

The spatial resolution of existing studies has also varied and is similarly driven by the questions posed and
the available data. The finest scale attempted in the research literature is at the individual built structure
and street segment (e.g., from intersection to intersection) level [Shu and Lam, 2011; Gurney et al., 2012;
Gately et al., 2013].

From this finest resolution, a number of other resolutions are reflected in the literature. These gener-
ally follow definitions embedded within available data or defined along well-known and understood
service territories. For example, land parcels, which can contain many buildings, are used when build-
ing footprint information is unavailable. Other candidates include zip codes, townships, neighborhoods
(variously defined), and commercial zones. In onroad transportation, various spatial units are possible,
the most common being the Travel Analysis Zone, which typically constitutes a homogeneous socioe-
conomic portion of a city, ranging from fractions to a few square kilometers depending on population
density.

An important consideration is the translation between “native” resolution, often comprising points,
lines, and polygons, and regularized raster grids. The latter is essential to enable atmospheric transport
modeling and the ultimate linkage to atmospheric CO2 measurement. The choice of grid resolution is
often dictated by the available modeling schemes and the density of meteorological data. Typical resolu-
tions range from 200 to 1000 m (c.f. the engineering resolutions in Chester et al., submitted manuscript,
2014).

Temporal resolution has traditionally kept to annual estimation with recent effort at monthly and even
hourly time resolutions. Hourly resolution has a number of advantages. First, it allows one to resolve the
day/night cycle in emissions—an advantage given that many atmospheric monitoring stations now sam-
ple air continuously and can potentially evaluate the emission time structure. Second, resolving nighttime
emissions provides an additional opportunity to minimize the photosynthetic flux, a nuisance variable
when attempting to isolate the fossil fuel CO2 signal.
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2.1.3. Case Studies

Quantifying bottom-up carbon emissions explicitly in space and time within the urban domain has
generally focused on two subsectors: onroad transportation systems and buildings. This is not surpris-
ing as these two physical infrastructural entities and the activities they enable are large components
of urban carbon emissions and tend to require the greatest level of effort to represent in fine space
and time detail.

The transportation sector accounts for approximately one third of U.S. GHG emissions; onroad emissions
account for 28% of U.S. GHGs [EPA, 2011]. Onroad transportation has been approached from a number
of perspectives. Some approaches utilize the many decades of local and regional transportation plan-
ning where demand-oriented models are used to predict traffic volumes [e.g., Nejadkoorki et al., 2008].
Other efforts have taken an activity-based approach whereby activity data such as vehicle miles traveled
are combined with information on fleet composition and fuel economy [e.g., Wang et al., 2009]; Gately
et al. [2013] achieved annual emissions to the 1 km scale for Massachusetts with this type of approach.
Finally, onroad emissions have been estimated with regression-based approaches. For example, Brond-
field et al. [2012] found a combination of impervious surface area and road density offered a good model
for the distribution of onroad CO2 emissions. Similarly, Shu and Lam [2011] found best fit predictors using
urban area, population density, and road density. Temporal distribution has been somewhat less studied
for CO2 emissions, but Gurney et al. [2012] used automatic traffic recorder to impute an hourly time struc-
ture. Detailed travel demand modeling has generated temporal emissions using travel scheduling [Goulias
et al., 2011]. Very high-frequency onroad speed, congestion, and volume information are also becoming
available through tracking cell phone GPS signals; the linkage to FFCO2 estimation is an active research
area [Herrera et al., 2010].

Quantifying the emissions from buildings at high resolution across the urban domain has typically relied
on a combination of detailed bottom-up modeling and top-down spatial allocation. VandeWeghe and
Kennedy [2007] allocated Toronto city-level annual emissions to census tracts in the residential sector
based on energy payments. Heiple and Sailor [2008], by contrast, used building energy simulation mod-
eling and geospatial databases to estimate residential and commercial building energy consumption
down to the parcel level every hour. Gurney et al. [2012] built from the Heiple and Sailor approach and
used the nonelectric share of building energy consumption at the individual building level to allocate
county-level fuel-based CO2 emission estimates on an hourly basis. A recent study obtained direct elec-
tricity consumption data associated with buildings in Los Angeles at the zip code+4 level, allowing for
a data-driven estimate of building electricity consumption and the resulting consumption-based CO2

emissions driven by this demand [Pincetl et al., 2014]. Though not widespread, high-resolution energy
consumption data holds tremendous promise for improved accuracy and knowledge generation at these
scales.

The only study to date that has complemented the onroad and building sectors with all other FFCO2

sources in a comprehensive high-resolution FFCO2 emissions data product is the Hestia project [Gurney
et al., 2012]. The first Hestia product was developed for the city of Indianapolis, IN and included the addi-
tion of electricity production, nonroad emissions, aircraft, railroad, and industrial sector emissions for the
year 2002 (Figure 2). Work is complete or underway on quantifying emissions at the same space/time
scales for several other U.S. cities. The Hestia example uses several data sources and space/time con-
ditioning data sets to estimate CO2 and distribute the emissions in space and time. The result is spatial
resolution that is a mixture of points, lines, and polygons at the hourly level.

2.2. Atmospheric Observations

Spatially resolved, bottom-up FFCO2 data sets indicate that even small cities often present very intense,
localized carbon fluxes of over 10 kgC m−2 yr−1 at spatial scales of 10 km2 or less. Larger cities exhibit such
fluxes in complex patterns over large areas (e.g., the LA megacity spans about 10,000 km2; Figure 3). These
emissions lead to significant enhancements in the atmospheric mixing ratios of GHGs over the city rel-
ative to cleaner background air. The magnitude, distribution, and variability of these enhancements are
driven both by local emission fluxes as well as meteorology and topography. For example, some cities
exhibit “urban domes”—persistent and strong enhancements of CO2, CH4, CO, and other gases within
the PBL above a city due to stable air associated with persistent inversion layers. Cities experiencing these
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(a) (b)

Figure 2. Hestia fossil fuel CO2 emissions for Marion County, IN, for the year 2002: (a) top view with numbered zones and (b) blowups of the numbered zones. High-emitting
roadways are typically high volume interstates and primary roads. Large vertical rectangles reflect power production and industrial sources. Color units: log10 kgC yr−1. Box
height units: linear.

conditions, such as Los Angeles and Salt Lake City, routinely exhibit peak PBL CO2 concentration enhance-
ments of over 50 ppm relative to background air even though the net emission fluxes differ between
larger and smaller cities [McKain et al., 2012; Newman et al., 2013]. “Urban plumes” manifest in cases where
the enhancements associated with a city are dominated by prevailing winds—much like plumes from
large point sources [Sparks and Toumi, 2010]. Cities in this category, such as Paris and Indianapolis, exhibit
more diffuse and intermittent CO2 enhancements than cities exhibiting urban dome conditions. In addi-
tion to strong spatial gradients, there are strong temporal variables that affect both local emission fluxes
(e.g., energy and transportation demand cycles) and the evolution of airborne mixing ratios (e.g., diur-
nal changes in PBL height and different wind conditions). While FFCO2 and CH4 emissions from cities are
typically significantly larger than nearby biogenic fluxes, the relative contributions vary by city and often
exhibit strong seasonal dependencies (see section 2.4). Robust flux estimation depends on observational
systems that address all of these variables. Urban CO2 mixing ratio enhancements should not be assumed
to be in steady state; FFCO2 emissions respond to changes in human behavior.

Trace gases have been monitored in many cities for decades, although those efforts have mostly focused
on reactive gases—criteria pollutants including ozone precursors, particulate matter, and other species
important for air quality assessments. Existing air quality observational systems are, in many cases, not
easily adaptable to studies of long-lived GHGs such as CO2 and CH4. Air quality monitoring is generally
conducted at heights of 2–3 m above the ground and is designed to report threshold-crossing events
for a given species. GHG monitoring, by contrast, is intended to estimate net emission fluxes for a much
larger area and/or geolocate and quantify individual fugitive emission sources. These divergent objectives
lead to different requirements on measurement precision, location, and modeling approaches. Measure-
ment networks for GHGs and carbon fluxes have historically been located in rural areas to intentionally
avoid cities as “confounding sources” of anthropogenic carbon—an appropriate strategy for quantifying
biological carbon sources and sinks or background conditions. In recent years, top-down studies have
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Figure 3. Conceptual view of a typical complex urban carbon environment and a tiered observational system. This illustration
describes the Megacities Carbon Project in Los Angeles, CA, but is representative of elements shared with other urban carbon
studies. In situ gas analyzers on towers and rooftops in and around the basin provide near-continuous, high-accuracy measurements
of near-surface atmospheric mixing ratios of CO2, CH4, and CO. Aircraft and mobile laboratories provide infrequent but intensive
measurements of mixing ratios, often focused on specific locations or emission sectors. Other surface-based instruments (not shown)
measure winds and boundary layer height to validate the atmospheric transport models essential for translating mixing ratio data
into carbon fluxes. Surface-based remote-sensing instruments provide daytime measurements of column-averaged mixing ratios.
Satellites in polar orbit are beginning to provide column measurements of CO2 and other species with sufficient sensitivity and
resolution to characterize many cities around the world.

been piloted in selected cities to develop and test methods for using atmospheric mixing ratio observa-
tions of CO2, CH4, and other species to estimate emission fluxes, and also attribute relative contributions
to specific sectors as an independent check on bottom-up estimates.

There are many options for observing the atmospheric abundances of CO2 and CH4 but they are all
grounded in the application of spectroscopy to measure the strength of distinct infrared absorption lines
of these gases. Some of the observational methods described here are also relevant to other GHGs includ-
ing N2O and fluorinated gases, but the focus of this work is on urban carbon (CO2 and CH4). Differences
between methods primarily involve measurement location, specific spatiotemporal sampling schemes,
and the sensing technology and algorithms used to retrieve mixing ratio estimates. Each method has
strengths and limitations. Two major categories are described here: in situ sampling and remote sensing.

2.2.1. In Situ Observations of Atmospheric Mixing Ratios

In situ sampling involves “point measurements,” meaning air at a given location is directly measured—
either quasi-continuously (e.g., integrating measurements every 1 s to a few minutes) by on-site gas
analyzers or captured in flasks at some cadence (e.g., weekly) and stored for subsequent shipment and
analysis in a laboratory. Flask sampling provides a powerful capability for laboratory instruments to
retrieve mixing ratios for many atmospheric species in ways not practical for field instruments—including
radioisotopes and other coemitted species. Radioisotope data in particular, while logistically challenging
and expensive to collect, provide a unique ability to isolate the FFCO2 sources given the depletion of
radiocarbon (due to radioactive decay) compared to contributions of the contemporary biosphere. This
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use of 14CO2 data as a tracer for FFCO2 has been demonstrated repeatedly from the ground and airborne
platforms [Levin, 2003; Turnbull et al., 2006, 2011; Graven et al., 2009; Miller et al., 2012].

While many in situ instruments are used to retrieve mixing ratios that are subsequently translated to
flux estimates using inverse modeling and other analytical methods, another approach is to deploy
instruments that measure fluxes directly. A flux tower combines measurements from a CO2 gas analyzer
and a colocated three-dimensional wind sensor with eddy-covariance techniques to directly estimate a
flux [Baldocchi, 2003]. The eddy-covariance technique is used extensively in studying ecosystem fluxes
[e.g., Wofsy et al., 1993] with some application to urban domains [e.g., Grimmond et al., 2002; Coutts et al.,
2007; Sparks and Toumi, 2010]. However, the effective footprint or sensitivity of such flux towers is typically
very small, approximately 1 km in diameter. Further, urban locations can often violate the methodological
assumptions for the eddy-covariance measurement. Most contemporary urban-scale carbon studies
rely on inverse methods and atmospheric transport models, yielding footprints of receptor sites that
are many kilometers in diameter—enabling coverage of an urban area with a reasonable number
of instruments.

For urban studies, in situ gas analyzers and flask collection sites are often deployed in surface networks
designed to sample both the local urban dome/plume, as well as relatively unpolluted background air,
thus allowing estimates of the enhancement caused by the city’s emissions [McKain et al., 2012; Bréon
et al., 2014]. The sensitivity of measurements from a given site is strongly dependent on the horizontal
and vertical location of the sampling inlet, sample frequency, proximity to terrain, prevailing meteorol-
ogy, and local sources or sinks. Determining the sensitivity footprint of a given measurement site often
requires applying Bayesian inverse analysis to assess the impact of prevailing winds and other conditions.
For example, one such study for Los Angeles concluded that a minimum network of eight well-located
sites should distinguish fluxes on 8 week time scales and 10 km spatial scales to within 12 gC m–2 d−1 or
10% of average peak fossil CO2 flux [Kort et al., 2012]. The same in situ gas analyzers used at surface sites
can be optimized for faster sample rates and deployed on aircraft platforms to cover larger areas [Mays
et al., 2009; Cambaliza et al., 2013].

Finally, in situ instruments are frequently deployed in automobiles to conduct street-level surveys in
urban environments [e.g., Brondfield et al., 2012; Phillips et al., 2013; Jackson et al., 2014]. Such campaigns
are usually not amenable to estimating fluxes given the aforementioned limitations in sampling height
and complexity of near-surface micrometeorology, although they can be useful in detecting persistent
enhancements that might suggest a nearby point source.

2.2.2. Remote Sensing Observations of Atmospheric Mixing Ratios

Remote sensing-based carbon observations use atmospheric sounders to estimate a column-averaged
dry air mole fraction of CO2, CH4, and CO (referred to as XCO2

, XCH4
, and XCO, respectively). Column mea-

surements have an advantage of being less sensitive to small-scale atmospheric motions that can impact
estimates of fluxes derived from in situ point measurements [McKain et al., 2012]. While some upcoming
satellite instruments will use active (laser) methods, the established state-of-the-art involves passive
solar spectroscopy. Surface-based, upward-looking instruments such as Fourier transform spectrom-
eters (FTS) track the Sun to estimate XCO2

, XCH4
, XCO and sometimes other species in the atmospheric

column over a measurement site [Wunch et al., 2011a]. Surface-based solar FTS instruments tend to
provide higher signal to noise than satellite systems and are able to retrieve additional species. Solar
FTS instruments have been deployed globally, such as NASA’s Total Column Carbon Observing Network
(TCCON), to support validation of satellite observations [Wunch et al., 2011b]. Recently, TCCON sites
have been installed in urban centers and adjacent exurban areas to support urban-background sub-
traction (e.g., at Caltech in the Los Angeles basin and in the nearby Mojave Desert) and smaller, more
portable units are being tested in various cities for characterizing spatial gradients (e.g., across the Boston
region).

Satellite instruments are now becoming available with near-surface sensitivity, precision, and spatial reso-
lution sufficient to contribute to urban flux estimation. Examples include Japan’s Greenhouse gas Observ-
ing Satellite (GOSAT) and NASA’s Orbiting Carbon Observatory (OCO-2; launched in July 2014) [Miller et al.,
2007]. A recent study evaluated midday observations of XCO2

from GOSAT collected over Los Angeles to

HUTYRA ET AL. © 2014 The Authors. 483



Earth’s Future 10.1002/2014EF000255

demonstrate that even nonoptimized space-based remote sensing can provide measurements of megac-
ity CO2 emissions [Kort et al., 2012]. By taking the difference between observations over the megacity
and nearby background measurements, Kort et al. observed robust, statistically significant enhancements
in total XCO2

of 3.2± 1.5 (1𝜎) ppm. The Kort et al. [2012] results were consistent with ground-based XCO2

observations [Wunch et al., 2009], suggesting that these atmospheric enhancements can be exploited to
track trends over time.

The strength of satellite observations is the ability to provide dense spatial sampling resulting in thou-
sands of observations over short intervals that both provide spatial mapping over an area of interest and
enable sample aggregation to significantly reduce random errors [Baker et al., 2010]. The current gener-
ation of space-based CO2 sounders was designed to study regional-to-continental scale natural carbon
fluxes rather than cities and other point sources. Hence, they have significant gaps in spatial coverage and
revisits for a given geolocation are often measured weeks apart. Potential future missions could frequently
target cities, offering more precise flux estimates and diurnal temporal resolution [Duren and Miller, 2012;
Key et al., 2012; Buchwitz et al., 2013].

2.3. Urban-Scale Analytical Frameworks (Top-Down Approaches)

To infer quantitative information on carbon exchange (fluxes) from observations of atmospheric mixing
ratios, it is necessary to account for the influence of atmospheric transport. This is clearly illustrated in the
example of Salt Lake City where observations of CO2 near the surface exhibited a large diurnal variation
primarily modulated by variation in the depth of the PBL [Strong et al., 2011; McKain et al., 2012]. In gen-
eral, urban mixing ratios of GHGs reach a maximum at night when a shallow PBL exists, and a minimum
midday when the deepest mixed layer and maximum ventilation occur. This contrasts with the diurnal
variability of anthropogenic emissions, which typically reach maximum values during the day and min-
ima at night. During the daytime hours, biogenic uptake also draws down atmospheric CO2. Multiple
techniques have been developed and exploited in order to account for atmospheric transport and link
atmospheric observations to net carbon flux.

2.3.1. Transport Box Models

Box or mass-balance techniques present the simplest conceptual technique. This approach represents
transport as a simple flow and uniform mixing process as opposed to numerical transport models, which
attempt to simulate all transport process akin to weather models. In mass-balance approaches, a small
number of boxes are typically considered, representing, for example, the urban zone and its surrounding
region. The problem is thus simplified to a simple reservoir-flow construct—if one measures the change
in water level (i.e., atmospheric mixing ratios) and observes the lateral flows in and out (upwind and down-
wind transport to and from the urban box), one can then quantify the input flow from the surface (net
emissions into the box from the urban surface).

As part of the INFLUX study, an aircraft was used to sample the downwind plume of Indianapolis [Mays
et al., 2009]. Considering the enhanced CO2 and CH4 in the plume, PBL height, and wind speed, a net emis-
sion estimate could be derived. This approach is a powerful method to determine total net emissions,
but is subject to both situational constraints and potential biases resulting from simplifying assump-
tions. It is necessary to have a rather isolated source which experiences steady winds to produce an urban
plume—many urban regions do not meet these criteria. Potential variability in the PBL depth upwind and
over the urban center has the potential to bias the results.

A simple multibox model has been constructed for Salt Lake City to investigate surface observations and
disentangle the relative roles of transport, anthropogenic, and biogenic emissions [Strong et al., 2011].
This approach facilitates a clear understanding of relative impacts from these three contributors, but fails
to provide robust quantitative information on fluxes.

The box model concept has also been applied to satellite observations, considering the enhanced urban
dome of CO2 in Los Angeles relative to the surrounding region [Kort et al., 2012]. By assessing the differ-
ence in column abundance over an urban region, changes in time in the urban dome and underlying
emissions can be robustly detected. This method enables the tracking of annual time-scale emission
changes, but relies on assumption of spatial stationarity of sources and transport on annual time scales.
Quantification of contributing sectors or net flux is also not robustly retrievable.
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2.3.2. Tracer-Tracer Correlation

A different approach to account for transport without explicit representation leverages the knowledge
that conservative (on the time frame of interest) tracers experience the same atmospheric transport pro-
cesses. With this knowledge, if one knows emissions of gas X with greater certainty than gas Y, and gas
X and Y are either coemitted or have experienced sufficient mixing prior to measurement, the observed
correlation Y:X can then be scaled by the relative molecular weights and the prior emissions of X to derive
the emissions of Y. This technique provides a powerful mechanism to account for the actual transport
experienced by the observed airmass and thus provides a simple approach to quantify net emissions of
a gas. The technique is limited in that good knowledge of emissions of a gas is required, and error in that
representation will directly transfer into gas Y, and colocation or sufficient mixing is required. Isolating
geographic location or particular sector sources is not possible with this approach. This method has been
applied with great success to Los Angeles in quantifying methane emissions [Wunch et al., 2009; Hsu et al.,
2010; Wennberg et al., 2012], where CO emissions are substantially better quantified than methane. A sim-
ilar approach has been used to estimate changes in emissions in Beijing during the Olympic games, both
from the ground [Wang et al., 2009] and from space [Worden et al., 2012]. Space-based estimates leverag-
ing this approach have now been extended to many global urban centers [Silva et al., 2013].

2.3.3. High-Resolution Mesoscale Modeling

In high-resolution mesoscale modeling atmospheric transport is explicitly simulated, and thus a quan-
titative link can be established between atmospheric mixing ratio observations and surface fluxes. In
attempting to fully simulate atmospheric dynamics, this approach provides a powerful platform from
which specific questions may be posed, including quantifying net carbon flux and spatiotemporally
resolved carbon flux. Mesoscale modeling can, and has been, used to design optimal observational
networks [Lauvaux et al., 2009; Kort et al., 2013]. Meteorological parameters have been optimized for
studies within specific cities, demonstrating the importance of proper representation of the urban canopy
[Nehrkorn et al., 2013]. These methods have also been applied to quantify emissions and quantitatively
track changes in emissions with time [McKain et al., 2012; Brioude et al., 2013]. These approaches provide a
powerful tool for many urban carbon investigations, but require robust fine-scale estimates of FFCO2 and
biological fluxes as a model prior to estimate. Proper optimization for each urban environment presents
a challenge, and adequate resolution simulations present computational challenges. Additionally,
quantitatively addressing all contributing sources of errors presents a challenge.

2.4. Urban Biotic C Exchange

Until recently, urban vegetation and soils have not been considered significant within the carbon cycle
research. However, biogenic exchange within cities can significantly influence local atmospheric mixing
ratios [Day et al., 2002; Coutts et al., 2007; Vesala et al., 2008; Briber et al., 2013]. Further, the wide array of
urban greening initiatives underway has the potential to strengthen the urban biogenic fluxes share of
total urban carbon flows within cities.

The construction of urban areas results in widespread ecosystem modification, dramatically altering land
cover and the flows of carbon in and around urbanizing regions. Land-cover changes associated with
urbanization typically decrease carbon storage [Imhoff et al., 2004; Hutyra et al., 2011b; Seto et al., 2012a],
alter biogeochemical cycles [Kaye et al., 2006; Pataki et al., 2006; Grimm et al., 2008] and hydrologic
regimes [Walsh et al., 2005; Pickett et al., 2011], and influence micrometeorology and regional weather
patterns [Oke, 1982; Zhang et al., 2004; Zhou et al., 2011]. Although urban areas are the major centers
for energy consumption and the subsequent emissions of CO2, they do also sequester some of the very
same emissions they produce in urban soils and plant biomass [Imhoff et al., 2004; McPherson et al., 2005;
Golubiewski, 2006; Kaye et al., 2008; Raciti et al., 2012; Briber et al., 2013]. Urban vegetation has also been
credited in aiding local carbon mitigation strategies [Nowak and Crane, 2002; McPherson et al., 2005],
but the urban FFCO2 emissions typically dwarf local biogenic uptake [Pataki et al., 2011; Briber et al.,
2013; Figure 4]. Nonetheless, the diurnal cycle of urban photosynthesis and respiration does significantly
influence atmospheric mixing ratios of CO2; photosynthesis draws down atmospheric CO2 during the
daytime when FFCO2 is maximized [Briber et al., 2013]. Potential urban carbon sinks are inherently limited
due to a lack of available plant growing space and export of litter, but urban vegetation functions as a
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Figure 4. Sample gradient in carbon fluxes from biotic land fluxes and anthropogenic emissions [MgC ha−1 yr−1; after Briber et al.,
2013]. Gross primary productivity (GPP) represents biological uptake through photosynthetic process; ecosystem respiration (Reco)
represents carbon release through autotrophic and heterotrophic process, and fossil fuel emissions were extracted from Gurney et al.
[2009]. Negative fluxes denote uptake of carbon by the land; positive fluxes denote release of carbon to the atmosphere.

vital component of cities providing aesthetic, economic, and ecological value to urban dwellers [Nowak
and Crane, 2002].

Urban vegetation can constitute a significant portion of land cover within the urban mosaic, with pro-
portions in major U.S. cities ranging from 10% to 30% of urban land area [Nowak et al., 2001]. However,
“urban” is often an inconsistently defined land cover. For example, Raciti et al. [2012] compared three
commonly used urban definitions and found that vegetation carbon stock density estimates ranged from
37± 7 to 66± 8 MgC ha−1 for the urban portions of the Boston metropolitan area. Hutyra et al. [2011a]
found an average of 89± 22 MgC ha−1 in vegetation within the Seattle Metropolitan Statistical Area low-
lands, a carbon density comparable to intact temperate forests. In a follow-up study, they found that the
carbon lost to the atmosphere due to clearing of land for expanding urban development accounted for
nearly 15% of local fossil fuel emissions, making it an important, but overlooked, term in the regional C
budget [Hutyra et al., 2011b]. The influence of biological land fluxes on atmospheric CO2 mixing ratios will
vary as a function of the urban definition/extent, vegetation types, and biome.

The aggregate effects of urbanization (including changing land-cover characteristics, land-use patterns,
impervious surface fractions, urban heat islands (UHIs), extended growing seasons, atmospheric pollution,
management activities, etc.) on land-atmosphere exchange processes remain poorly understood despite
decades of study on specific aspects of urbanization [Pouyat et al., 2006; Canadell et al., 2007; Churkina
et al., 2010; Hutyra et al., 2011a; Pickett et al., 2011]. Interactions between urbanization and ecosystem
carbon exchange are complicated by competing positive and negative feedbacks that vary across differ-
ent regions and change over time. Imhoff et al. [2004] estimated that urbanization reduced net primary
production (NPP) by 0.04 PgC yr−1 in the United States, but the uncertainty associated with this estimate
is very high due to incomplete data and understanding of feedbacks. Imhoff et al. [2004] also show that
through localized warming, “urban heat islands” can extend the growing season in colder regions and
increase winter NPP. Using MODIS, Zhang et al. [2004] demonstrated that the timing of both leaf emer-
gence and fall senescence is significantly influenced by UHIs in and around urban centers in the eastern
United States. Specifically, they found that the growing season increased by as much as 15 days in areas
affected by UHIs. Moreover, the signature of the changes in leaf phenology due to UHIs extends well
beyond the footprint of urban land use [Buyantuyev and Wu, 2012]. Changes in growing season lengths
have been widely linked to enhancement in uptake of CO2 [e.g., Richardson et al., 2010b]. Urban vegeta-
tion also often grows in favorable light conditions with open-grown tree crowns and higher diffuse light
fractions. Additionally, recent research has shown that reductions in wind speed within urban areas may
decrease stress on plants, increasing the productivity [Bang et al., 2010].

Urbanization may also increase NPP in resource-limited regions by increasing nutrient availability through
nitrogen (N) deposition [Rao et al., 2014] and through increased water availability in arid areas [Buyantuyev
and Wu, 2009; Zhang et al., 2013]. Cities geographically concentrate activities such as transportation, food
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and energy consumption, and lawn management making urban areas a major global source of reactive,
gaseous forms of N [NOx and NH3; Vitousek et al., 1997; Galloway et al., 2003; Hall et al., 2011]. However,
elevated concentrations of NOx and tropospheric O3 can potentially offset stimulated rates of primary
productivity [Reich, 1987]. Extensive national-scale nitrogen deposition monitoring networks exist in
the United States and Europe, but similar to the global CO2 monitoring networks, sites are intentionally
located away from urban areas and point sources of pollution in order to capture background regional
trends. There have been recent discussions and attempts to expand monitoring into urban areas [e.g.,
Fenn et al., 2003; Lohse et al., 2008] to address some of the challenges discussed in this paper.

Most efforts to model urban biogenic carbon flows have not been spatially explicit or have relied on
coarse-scale remote sensing imagery and relatively simple light-use efficiency models [e.g., Zhang et al.,
2008; Zhao et al., 2012]. Recently, maps of urban biomass at very high resolution have been produced
[Davies et al., 2011; Raciti et al., 2014], and these data will facilitate improved modeling of urban produc-
tivity and net carbon fluxes as a function of the suite of changing urban environmental drivers.

An important additional component of the urban land and aquatic carbon cycle is black carbon (BC).
Incomplete combustion of carbonaceous matter emits BC particles larger than 1 μm that may fail to
become airborne or may otherwise quickly drop to the nearest surface. Precipitation and runoff events
may transfer such particles accumulated on the soil surface to rivers and oceans [Clarke and Patterson,
1997; Masiello, 2004]. Alternatively, larger particles and charred materials may remain on the soil, near
the point of production and deposition. With time, natural processes such as bioturbation and land
development activities can drive the mixing and accumulation of such BC materials into the soil, pro-
moting C sequestration and enhancing nutrient sorption [Shrestha et al., 2010]. Approximately 12–24
TgC yr−1 is produced as BC from fossil fuel combustion [Penner et al., 1998]. Correlating urbanization
history with fossil fuel-derived BC stored in soils [Liu et al., 2011] could be used for assessing the long-term
urbanization impacts. Biomass burning produces 50–260 TgC yr−1 as BC of which approximately 80% is
fire residue [Kuhlbusch and Crutzen, 1996], a significant contribution in the context of rising urbanization
with biomass-based energy systems in developing nations. Large uncertainties in urban BC emissions
and deposition estimates remain, largely due to bottom-up approaches that often do not correctly
reflect recent socioeconomic changes in emerging economies [Rawlins et al., 2008]. The first top-down,
global-scale estimation of BC emissions used data from both column aerosol absorption optical depth
and surface concentrations from global and regional networks (Kalman filters) to constrain a fully coupled
climate-aerosol-urban model, deriving an optimized estimate of BC emissions as 17.8± 5.6 TgC yr−1

[Cohen and Wang, 2014]. Given the recalcitrance of BC in soil, it is worthy of additional consideration in
accounting for urban carbon stocks and fluxes [Masiello and Druffel, 1998].

Taken as a whole, vegetation within cities is likely to significantly influence the urban carbon cycle on both
long and short time scales. The overall contributions will vary with the biogeography and the urban form.
In many respects, vegetation growing in urban environments foreshadows broad-scale global environ-
mental changes with increased local CO2, temperature, and reactive N deposition, longer growing sea-
sons, and significant land-use changes, offering a powerful “process laboratory” for studying the broader
carbon cycle.

2.5. Urban Aquatic C Fluxes

Cities are likely to play a significant role in the fate of aquatic and coastal carbon. In 1990, approximately
44% of the global population lived within 150 km of a coast, and the majority within 100 km of a perennial
river [Small and Cohen, 2004]. Further, 13% of the global urban population live within the low elevation
coastal zone (<10 m asl), with lesser-developed countries having a greater proportion than Organization
for Economic Co-operation and Development (OECD) countries [McGranahan et al., 2007]. Aquatic and
coastal ecosystems within and adjacent to urban areas may contribute significantly to urban C flows, both
as a means of transport for lateral flows and as hotspots of biogeochemical activity.

From a global perspective, inland waters and coastal areas are important components of the carbon cycle
[Cole et al., 2007; Battin et al., 2009; Tranvik et al., 2009; Raymond et al., 2013]. Aquatic ecosystems export
significant amounts of both inorganic and organic carbon from terrestrial sources to recipient systems and
are hotspots [McClain et al., 2003] of carbon transformation. The majority of large rivers are net sources of
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CO2 to the atmosphere [Cole and Caraco, 2001], while coastal ecosystems such as mangroves, salt marshes,
and seagrass beds potentially sequester carbon (colloquially known as “blue carbon”) at rates significantly
higher than forests [Mcleod et al., 2011]. However, many global carbon models exclude fluxes from inland
waters due to the difficulties associated with estimating the extent of these ecosystems, the portion of
the flux that has already been accounted for in the terrestrial sink, the partial pressure of CO2, and gas
exchange rates between water and the atmosphere [Battin et al., 2009]. Blue carbon sequestration is also
frequently not included in estimates of global carbon sinks, which tend to divide the world into solely
terrestrial or ocean compartments. Coastal ecosystems are difficult to map globally, and reported rates of
burial by ecosystem type are highly variable [Mcleod et al., 2011]. It has been proposed that incorporation
of these aquatic fluxes, including outgassing to the atmosphere, storage in coastal biomass, and burial in
sediments, may help reconcile the discrepancies between bottom-up inventories and top-down inversion
estimates of CO2 sinks [Battin et al., 2009; Regnier et al., 2013].

In addition to the difficulties mentioned above, the direct and indirect impacts of anthropogenic activ-
ities add further uncertainty to our understanding of C dynamics in both inland waters and coastal
ecosystems. Erosion, nutrient additions, altered thermal and hydrologic regimes from agricultural activ-
ities, land-cover change, discharge of sewage water, and outright destruction of riverine and coastal
ecosystems are just some of the anthropogenic activities that influence C flux [Walsh et al., 2005; Mcleod
et al., 2011]. Regnier et al. [2013] estimated that anthropogenic perturbations have enhanced the flux
of carbon to inland waters by as much as 1.0 PgC yr−1, with 0.4 Pg yr−1 then emitted to the atmosphere,
and 0.5 PgC yr−1 sequestered in sediments in freshwater systems, and only increasing the input to the
ocean by 0.1 PgC yr−1. Although Regnier et al. [2013] acknowledge low confidence for several of their flux
estimates, they are some of the only values available. No such estimates are yet available for urban aquatic
fluxes of carbon that are specifically urban.

The evaluation of anthropogenic drivers of C fluxes generally does not differentiate between urban and
nonurban (e.g., agricultural and mining) activities. However, the type and intensity of activity may be very
different within cities than outside. At the present time, global estimates of CO2 fluxes from inland waters
are not spatially explicit at a resolution that allows for disentangling anthropogenic impacts as they occur
along the hydrologic flow path. Therefore, it is difficult to separate the indirect effects that cities have on
aquatic carbon fluxes, resulting from teleconnections to nonurban ecosystems [Seto et al., 2012b], from
the direct influence of urban activities on aquatic ecosystems within and adjacent to urban areas. The
aforementioned analysis of anthropogenic perturbation of aquatic carbon fluxes by Regnier et al. [2013]
suggests that the most direct urban contributions stem from inputs to inland waters of sewage and soil C,
potentially increasing sequestration [Lee et al., 2006]. However, ambient urban conditions and the location
of urban areas along the hydrologic flow path could have a significant effect on emissions from aquatic
and coastal ecosystems as well. Urbanization is also frequently the cause of the destruction and resulting
C loss for mangroves [Alongi, 2002], wetlands [Ehrenfeld, 2000; Dewan and Yamaguchi, 2009; Mitsch and
Hernandez, 2013], and streams [Walsh et al., 2005].

Many aquatic and wetland ecologists have conducted case studies to examine one or more components
of the carbon cycle in urban aquatic and coastal ecosystems, evaluating, for example, the quality of
dissolved organic matter in storm water runoff from urban areas [McElmurry et al., 2014], or using stable
carbon and nitrogen ratios to separate agricultural from urban wastewater C inputs to coastal sediment
cores [Vaalgamaa et al., 2013]. No study, to date, has evaluated the sum of all impacts in an urban area
to determine the net loss or gain of carbon. Additional case studies, urban comparisons that vary both in
development intensity and physiographic context, and improvements in data quality and resolution will
be vital for assessing the net contribution of aquatic C fluxes to urban carbon budgets. These improve-
ments are especially pressing given the hotspots of urban expansion to 2030 identified by Seto et al.
[2012a], the majority of which occur on coasts, river corridors, lake shores, or small islands.

3. Conclusions and Future Research Needs

Urbanization is a major driver of global environmental change, and cities are key components of the
global carbon cycle due to the combination of large, concentrated carbon fluxes and rapid change. These
characteristics give cities significant leverage to act as “first responders” and influence the trajectory of
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anthropogenic climate change [Rosenzweig et al., 2010]. Unfortunately, as this article documents, the cur-
rent uncertainties and paucity of data regarding urban carbon fluxes and biogeochemical and socioeco-
nomic processes that control those fluxes hamper our understanding and thus limit our ability to evaluate
the efficacy of emissions mitigation efforts. The dearth of urban information is an artifact of historical pri-
orities in carbon cycle research and the realities of observational limitations. Past efforts have primarily
focused on characterizing carbon sources and sinks at regional to global scales, avoiding local and urban
scales where the mix of anthropogenic and natural fluxes is more complex and difficult to observationally
isolate. However, recent advances in observing techniques have brought the urban spatial scale within
reach and offer the opportunity to create scientifically credible carbon monitoring systems to verify fluxes
and therefore advance effective mitigation policies.

It is critical for such carbon monitoring systems to account for both CO2 and CH4. Recognizing this, there
are key distinctions in our current understanding of urban emissions of these gases. Most notably, as
discussed above, “bottom-up” estimates of CO2 emissions can leverage documented information on
emission activities such as traffic and fuel consumption to produce reasonable first estimates. These
“bottom-up” estimates can then be combined and compared with “top-down” estimates to provide
optimized CO2 flux estimates. In the case of CH4, urban emissions do not linearly track with census or
economic drivers, and exhibit difficult to predict spatially heterogeneous structure—dominant urban
sources for CH4 are natural gas pipeline leaks, landfills, and industrial flaring/venting. A direct conse-
quence is that urban methane emission bottom-up estimates contain much greater uncertainty with
no clear path to improvement in the near term. In the case of methane, “top-down” methods
founded in atmospheric observations provide the only current path toward quantification of urban
emissions.

Urban carbon studies have increased in recent years with diverse motivations ranging from urban ecol-
ogy research to testing methods for independently verifying GHG emission inventories. However, these
studies are still quite nascent, have been somewhat ad hoc thus far, and were primarily driven by the
research interests of individual scientists or small research collaborations rather than a formal research
priority with federal science agency leadership. For example, there has not yet been the equivalent of
an urban study of comparable scale to the North American Carbon Program’s Mid-Continent Intensive
experiment, a comprehensive campaign to close the carbon budget of a Midwestern rural region using
top-down and bottom-up methods [Schuh et al., 2013], not to mention an effort that attempts to integrate
the natural sciences, social sciences, and engineering factors relevant to carbon cycling. Additionally, cur-
rent urban carbon studies are limited to a small number of cities that likely do not capture the range of
urban typology needed to make robust inferences about the broader distribution (Table 1). As a result,
important and yet incomplete progress has been made on the urban carbon front in developing method-
ological capabilities and applying them to resolving space-time variations in carbon fluxes or developing
appropriate emission reduction strategies.

We suggest that cities represent ideal “process laboratories” in that they contain a complete suite of pro-
cesses that control the large and complex anthropogenic and biogenic carbon fluxes. Cities can serve as
interdisciplinary test beds that are sufficiently constrained in both spatial and governance scale to sup-
port truly integrated research by the natural sciences, social sciences, and engineering—all motivated
by a common sense of importance and urgency in improving understanding of urban carbon flows. The
research gaps identified throughout this paper can be closed through a thoughtfully crafted urban car-
bon science research agenda that is grounded in sustained, dense observations of atmospheric, land, and
aquatic variables relevant to estimating carbon fluxes and their controlling processes from a statistically
significant sample of cities. The definition of well-posed research questions and an urban carbon typology,
followed by design and implementation of intensive and sustained urban campaigns in representative
cities, should lead to advances in urban carbon understanding similar to that seen over the past decade of
global carbon cycle science.

3.1. Linkages to the Social Sciences and Engineering Communities

Companion papers by Chester et al. (submitted manuscript, 2014) and Marcotullio et al. [2014] provide
thorough reviews and discussion of the urban carbon cycle from engineering and social science perspec-
tives, respectively.
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Table 1. Representative List of Contemporary Urban Carbon Experiments

Study Type Example Projects

Urban

Population

(Thousands of People)

Domain

Size

(km2)

Likely

Emission

Trends

Signature of

Airborne

Enhancement

Dominant

Emission

Sectors

Local

Terrestrial

Biosphere

Local

Aquatic

Systems

Sustained monitoring,
process attribution, and
prototype decision
support for megacities

Megacities Carbon
Project (LA basin)

18,000 25,000 Declining Dome Transport (CO2),
energy (CH4)

Urban green
spaces,
agriculture,
chaparral

Coastal

CarboCount-City
(Paris/IDF)

12,000 12,000 Declining Plume Transport,
residential (CO2)

Forest River

“Top-down” flux
estimation
methodological studies

INFLUX
(Indianapolis)

840 3,600 Stable Plume Transport,
electricity
generation

Agriculture River

Boston study 4,641 10,000 Stable Plume Transport,
residential (CO2)

Forest River, coastal

Salt Lake City study 1,000 12,000 Stable Dome Transport,
residential (CO2)

Sparse Lake

Urban ecology Seattle MSA 3,500 15,000 Stable Plume Transport,
residential (CO2)

Forest River, coastal

Chester et al. (submitted manuscript, 2014) discuss urban infrastructure and technology and the chal-
lenges faced in widening the interdisciplinary perspective on cities and the built environment when
assessing carbon emissions. Links between the natural science research on urban carbon, as outlined here,
and the new research emerging from the engineering sciences on urban infrastructure and technology
are critical for a more complete understanding of the drivers of the carbon pools and fluxes highlighted
in this paper. FFCO2 emissions are embedded within increasingly complex and interdependent built envi-
ronment systems and our ability to progress from diagnosis to prognosis will depend upon our ability to
link the observational and modeling systems outlined in this paper to the built environment. For example,
quantification of bottom-up emissions explicitly in space and time must develop a more mechanistic
link to the processes represented in urban infrastructure and the built environment, and how people
interact with the built environment. A more mechanistic representation then makes the rich past and
emerging work on technological options, socio-technological systems, and the mixed “hard” and “soft”
engineering approaches available to scenario development that can represent the engineering drivers
through to atmospheric realizations. Similarly, the trajectory of future emissions associated with different
infrastructure systems can also be represented alongside immediate emissions to provide a more com-
plete picture of the present and future impacts and offer a more informed policy process. Finally, this link
builds the first bridge toward the more complete conceptualization where the natural science model-
ing and monitoring is linked to the more complex mix of the built environment and the socio-behavioral
drivers.

Marcotullio et al. [2014] explore the relationships between the process of urbanization, socio-institutional
systems, and the carbon cycle. The social science of urbanization has only recently integrated energy
use and subsequent FFCO2 as important outcomes of patterns of urban development, governance,
and social dynamics. Studies examining the relationship between socio-institutional systems, energy
use, and FFCO2 emissions have thus far produced consensus at only the broadest levels (e.g., urban
wealth and urban energy use are correlated) and debate continues around the directionality and
mechanisms underlying such relationships. Social science research examining the relationship
between urbanization and the carbon cycle is nascent, appropriate data are only recently avail-
able, and the relationships are inherently complex. This argues for interdisciplinary collaborations
among the sciences. The way societies organize now and into the future is a vast challenge facing
humanity and generates uncertainty for estimates of future FFCO2 emissions. We need to advance
our understanding of how bioclimatic context, urban lifestyles, human behaviors, economies, demo-
graphics, and governance can lower the impact of urbanization on the carbon cycle and reduce FFCO2

emissions.
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