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Abstract

Objective: The first US Food and Drug Administration–approved clinical trial

to treat amyotrophic lateral sclerosis (ALS) with neural stem cell–based therapy

is in progress. The goal of the current study was to identify and assess the sur-

vival of human spinal cord–derived neural stem cells (HSSCs) transplanted into

the spinal cord in patients with ALS. Methods: Spinal cords transplanted with

HSSCs were examined from six autopsy cases. Homogenized tissues were inter-

rogated for the presence of donor versus recipient DNA using real-time PCR

methods (qPCR). Fluorescence in situ hybridization (FISH) was performed

using DNA probes for XY chromosomes to identify male donor HSSCs in one

female case, and immunohistochemistry (IHC) was used to characterize the

identified donor cells. Results: Genomic DNA from donor HSSCs was identi-

fied in all cases, comprising 0.67–5.4% of total tissue DNA in patients surviving

196 to 921 days after transplantation. In the one female patient a “nest” of cells

identified on H&E staining were XY-positive by FISH, confirming donor origin.

A subset of XY-positive cells labeled for the neuronal marker NeuN and stem

cell marker SOX2. Interpretation: This is the first study to identify human

neural stem cells transplanted into a human spinal cord. Transplanted HSSCs

survived up to 2.5 years posttransplant. Some cells differentiated into neurons,

while others maintained their stem cell phenotype. This work is a proof of con-

cept of the survival and differentiation of human stems cell transplanted into

the spinal cord of ALS patients.

Introduction

Amyotrophic lateral sclerosis (ALS) is a rare, yet fatal

neurodegenerative disease resulting from progressive

degeneration of upper and lower motor neurons. ALS

patients typically die within 3–5 years from diagnosis due

to respiratory failure. Therapeutic options for ALS are

limited to a single medication and supportive care, thus

driving the search for innovative approaches to slow dis-

ease progression and improve survival.1–4 Our group is

conducting the first US Food and Drug Administration–

approved clinical trial to surgically transplant human

spinal cord–derived stem cells (HSSCs) into the spinal

cord of ALS patients. The details of the rationale, surgical

methods, and phase I results of this trial have been pub-

lished previously.5–8 Briefly, the injection of HSSCs into

the spinal cord is safe, although the efficacy of this

approach is not yet known.

Previous reports from therapeutic trials of intraspinal

injection of stem cells were not able to demonstrate the

presence or localization of cells in living patients due to

the lack of intracellular markers that could be identified
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by imaging.9–12 Similarly, the stem cells used in our trial

were not identifiable during life. This report focuses on

postmortem identification of transplanted cells using

qPCR and, in the one female patient autopsied to date,

fluorescence in situ hybridization (FISH) using XY

markers for the male donor cells.

Subjects and Methods

Subjects

The clinical trial design and initial results are published

previously.5–7 This report focuses on six ALS patients

who came to autopsy. Five males received injections of

HSSCs into the lumbar spinal cord, and one female

received injections into the cervical spinal cord.

Human neural stem cells and surgical
injection into spinal cord

Details of the derivation, viability of the stem cells, and

the clinical trial were described previously.5 Briefly,

human neural stem cells (HSSCs) HSSC NSI-566RSC

(Neuralstem, Inc., Rockville, MD) were derived from a

single source 8-week gestation human fetal spinal cord,

and serially expanded in culture. Of the six autopsy cases

reported here, three patients received five unilateral injec-

tions and two patients received five bilateral injections

(total 10) spaced 4 mm apart into the lumbar spinal cord

at levels L2–L4. One patient received five unilateral injec-

tions into the cervical spinal cord at levels C3–C5. All

injections contained a suspension of 100,000 cells in

10 lL volume.

Immunosuppression

All patients were placed on immunosuppressive therapy

consisting of prednisone, basiliximab, mycophenolate mo-

fetil, and tacrolimus.5 Tolerance of the immunosuppres-

sive regimen was variable, and five of the six patients

eventually stopped immunosuppressive medications. The

period of time on immunosuppressive medications post-

operatively and prior to death is presented in Table 1.

Spinal cord collection at autopsy

All patients were transported to Emory University Hospi-

tal for autopsy. The entire spinal cord was removed and

the region of injection was identified by the location of

the dural sutures overlying the transplantation field, as

well as the matching of vascular anatomy to images taken

at the time of surgery (see Fig. 2). The region of interest

was cut in 0.5 cm sequential cross-section blocks (“bread

loafed”) and alternate blocks were frozen on dry ice or

fixed for 2–3 days in 4% paraformaldehyde. There were

~20 blocks for each spinal cord, 10 frozen and 10 fixed.

The frozen blocks for each of the six patients were sam-

pled for qPCR analysis by excising a core of anterior and

lateral cord using the back end of a sterile micropipette

tip, and depositing the tissue into a sterile 1.5 mL eppen-

dorf tube. Two core samples were obtained from each

block. The fixed blocks were embedded in paraffin and

sectioned for routine histochemistry (hematoxylin and

eosin stain, Luxol fast blue [LFB] stain), immunohisto-

chemistry (IHC), and FISH.

Quantitative real-time PCR

Using core samples from the frozen blocks of spinal

cord (each block separated by 1 cm) from six patients,

the presence of the genomic DNA sequence unique to

the donor HSSCs NSI-566RSC was determined by qPCR

on the 7500 SDS System (Applied Biosystem, Foster

City, CA). DNA from frozen tissue was extracted using

the QIAamp DNA Mini Kit according to the manufac-

turer’s instructions (Qiagen, Valencia, CA). During the

screening test, a 96-well screening plate (#5002645; Cel-

era, Alameda, CA) containing two sets of 34 chimerism

assays (CA001 to CA034 qPCR primers and fluorescence

probes) plus an additional assay (CA999) were used for

Table 1. Patient demographic data.

Patient

number Gender

HSSC injection and

region of SC

Number of days

on FK506

Number of days

on MMF

Number of days IM meds

discontinued before death

Survival

days % Donor DNA

1 M U/L 177 165 216 394 0.06–5.40

2 M Bi/L 107 503 67 572 0.18–0.93

3 M Bi/L 259 259 0 259 0.03–2.39

4 M U/L 189 192 133 325 0.07–4.20

5 M U/L 94 283 638 921 0.14–0.67

6 F U/C 139 134 57 196 0.06–0.96

HSSC, human neural stem cells; SC, spinal cord; FK506, tacrolimus; MMF, mycophenolate mofetil; IM, immunomodulatory; U, unilateral; Bi,

bilateral; L, lumbar; C, cervical.
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negative and positive controls. One set was used for the

recipient DNA and one set for the donor DNA. Each

assay well contained a final 25 lL reaction volume of

5 ng of DNA in a 5 lL PCR Master Mix (#5002681;

Celera) containing buffer and DNA polymerase. Recipi-

ent and donor-specific informative markers were identi-

fied by the AlleleSEQR Screening Software, Celera,

Alameda, CA following the PCR. One or more recipi-

ent-specific informative markers (CA001 to CA034,

#5002646 to #5002679; Celera) were then used for quan-

titation. CA999 (#5002680; Celera), the primer/probe set

for RNase P gene, was included as the reference assay.

Each DNA sample was tested at 50–250 ng per reaction.

A pretransplant recipient sample served as a 100%

reference. A total of four PCR reactions were performed:

presample/informative marker, postsample/informative

marker, presample/CA999, and postsample/CA999. Pres-

ample is the recipient’s genomic DNA prior to transplant,

postsample is the genomic DNA extracted from the

spinal cord tissue. Each reaction was run in triplicate and

the mean threshold cycle (CT) was applied in the for-

mula for accurate quantitation. CT is the point on the

qPCR curve where the amplification becomes exponential

and is a relative measure of the target concentration in

the PCR reaction. The calculations were performed by

the AlleleSEQR Quantitation Software based on the rela-

tive quantitation method (2-ΔΔCT). The sensitivity for

detecting DNA chimerism is 0.01–0.1%.

Fluorescence in situ hybridization

One of the six patients was female, while the neural

stem cells were derived from a male donor. Cervical

spinal cord from this patient containing the HSSCs

injection region and noninjection lumbar regions were

embedded in paraffin, sectioned at 4 lm, and mounted

on Superfrost plus slides. Sections were used for dual-

color FISH targeting X and Y chromosomes and pro-

cessed according to the manufacturer’s protocol (Abbott

Molecular, Inc., Des Plaines, IL) at Emory University

Hospital Oncology Cytogenetics Laboratory. CEP X

Spectrum orange (X-chromosome) and Y Spectrum

green (Y-chromosome) direct-labeled fluorescent DNA

probe kit was used (Abbott Molecular). Briefly, slides

were preheated on a hot plate at 56°C overnight, depa-

raffinized three times 5 min each in Americlear, twice in

100% EtOH 1 min each, 0.2 N HCl for 20 min, and

rinsed in dH2O for 3 min. Slides were pretreated using

Pretreatment Reagent (Abbott Molecular) for 30 min at

80°C, rinsed in dH2O for 3 min, and digested in Prote-

ase I (Abbott Molecular) for 40 min at 37°C. Sections

were rinsed in dH2O for 3 min, fixed in 10% buffered

formalin for 10 min, rinsed in dH2O for 3 min, dehy-

drated in a series of graded ethanol (70%, 85%, 100%)

1 min each, and air dried. XY probes were added onto

the sections, covered by coverslip, sealed with rubber

cement, codenatured, and incubated at 37°C for 14–
16 h. Rubber cement and coverslips were removed from

the slides and posthybridization washes were conducted

as follows: preheated 2X SSC/0.3% NP-40 at 72 � 1°C
for 2 min, air dried, DAPI II (4’,6-Diamidino-2-Pheny-

lindole, Dihydrochloride) (Abbott Molecular, Abbott

Park, Illinois) was added, and sections were re-covered

with coverslips. Slides were stored in the dark at �20°C
overnight before imaging. Fluorescently labeled sections

were analyzed using an Olympus microscope with the

appropriate filters (Olympus, Melville, NY). Images were

captured using CytoVision� (Leica Biosystems, Buffalo

Grove, IL). For quantitative analysis, hematoxylin and

eosin (H&E)-stained sections containing nests of putative

stem cells were identified and outlined. Corresponding

regions were marked on FISH sections and 100 cells

each within these regions were counted by two indepen-

dent readers. The percentage of XY- and XX-positive

cells was computed from the total 200 cells counted.

Immunohistochemistry

Formalin-fixed, paraffin-embedded spinal cord sections

(4 lm) were deparaffinized and IHC was performed on

a DAKO Autostainer using antibodies for NeuN (mouse

monoclonal, 1:800; Millipore, Billerica, MA), SOX2 (goat

polyclonal, 1:50; R&D Systems, Minneapolis, MN), glial

fibrillary acidic protein (GFAP) (mouse monoclonal,

1:100; Dako, Carpinteria, CA), OLIG2 (rabbit polyclonal,

1:100; Lifespan Biosciences, Seattle, WA), and LCA

(CD45; monoclonal, 1:640; Dako, Carpinteria, CA) and

costained with hematoxylin. Avidin–biotin–peroxidase
complex was used to detect the antibodies using 3, 30-
diaminobenzidine (DAB) as the chromogen. Standard

positive controls and normal sera without primary anti-

bodies as negative controls were used.

Results

Subject demographics

Demographic data for the six cases, five males and one

female, are presented in Table 1. Five patients received

tacrolimus for 94–259 days and mycophenolate mofetil

for 134–503 days posttransplant. One patient was on both

immunosuppressive drugs until the time of death. Sur-

vival posttransplant surgery ranged from 196 to 921 days.

Patients 1, 4, and 5 received unilateral lumbar injections,

Patients 2 and 3 bilateral lumbar, and Patient 6 unilateral

cervical injections.
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Identification of donor DNA

To assess HSSCs graft survival, the presence of donor

DNA within the recipient spinal cord was measured by

qPCR. Sixteen core samples, eight from each side of the

spinal cord, were analyzed from each case. In all cases,

donor NSI-566RSC DNA was identified in several of the

samples, with maximum percentage of donor DNA in

each case ranging from 0.67% to 5.4% of total DNA

(Fig. 1).

Neuropathology and localization of
transplanted cells

At autopsy, localization of the site of transplant was

accomplished by the presence of dural sutures and match-

ing of the vascular anatomy between intraoperative videos

and postmortem tissue. Gross inspection of the cord sur-

face (Fig. 2A and B) and of the cross sections (Fig. 2C)

did not reveal any tissue disruption, discoloration, or cav-

itation. Indeed, the sites of injection could not be grossly

identified. Each paraffin-embedded block was sectioned

through its entirety and stained with H&E. In three of

the six cases we could identify one or more needle tracks

corresponding to injection sites (Fig. S1). There was

otherwise no tissue disruption, discoloration, or cavitation

of sectioned tissue. In four cases (three male, one female),

we identified “nests” of round cells with little cytoplasm

that did not correspond to normal microanatomy; these

cells did not stain with the GFAP or with the neuronal

precursor protein doublecortin. Representative images

from male Patient 4 spinal cord show histological staining

with H&E (Fig. 2D and G) and LFB (Fig. 2E and H).

IHC shows a lack of labeling with GFAP (Fig. 2F and I).

Based on location and staining properties, these cells were

interpreted to be transplanted HSSCs.

A “nest” of putative HSSCs was identified in one

female patient as previously reported7 and shown in Fig-

ure 3A and B. This region was devoid of GFAP staining

(Fig. 3C). Thus, taking advantage of the gender differ-

ences in male donor HSSCs transplanted in one female

ALS patient, we targeted XY chromosomes for FISH

analysis. Vysis Spectrum orange X probe and Spectrum

green Y probe and counterstained with DAPI were used

for FISH on two regions of the spinal cord – one region

from the HSSCs injection site and one from a noninjected

site that served as a negative control (Fig. S2).

Spinal cord sections from the injection site showed

many XY-chromosome–positive cells within the region

containing the putative HSSCs (Fig. 3D and E). XX-chro-

mosome–positive cells were also noted in close proxim-

ity to XY-chromosome–positive cells (asterisks). Visual

assessment of the DAPI labeling of XY-chromosome–
positive cells showed that the nuclear morphology was

intact and appeared normal with no evidence of conden-

sation or fragmentation. Control sections from the lum-

bar spinal cord, distant from the injection site, showed

exclusively XX-chromosome–positive cells (Fig. S2).

Quantification of randomly selected areas within the

injection site showed 36% XX- and 64% XY-chromo-

some–positive cells, while noninjection site regions had

100% XX-chromosome–positive cells. The female patient

survived 196 days postsurgery demonstrating that many

transplanted HSSCs survived long term. Taken together,

these data demonstrate the identification and survival of

intraspinal transplanted HSSCs into the spinal cord of

ALS patients.

Characterization of transplanted HSSCs

Tissue sections proximate to those demonstrating the

presence of donor cells by FISH were interrogated with

Figure 1. Identification of donor DNA in ALS spinal cord. Schematic diagram showing the presence of donor genomic DNA from spinal cord

autopsy samples in six patients (1–6). Donor genomic DNA was extracted from alternating frozen blocks therefore the distance between each

value is 1 cm. The numbers adjacent to each schematic cord represent the percentage of donor DNA in that tissue homogenate. HSSCs were

unilaterally injected in the lumbar spinal cord in Patients 1, 4, and 5, bilateral lumbar in Patients 2 and 3, and unilateral cervical in Patient 6. The

black bar identifies the region containing the highest percentage of donor DNA, which ranged from 0.67% to 5.4%. ALS, amyotrophic lateral

sclerosis; HSSCs, human spinal cord–derived stem cells.

ª 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. 903

T. Tadesse et al. Transplanted Stem Cells in ALS



antibodies for various cell fate markers and standard

H&E staining (Fig 3F). Sections were stained for the tran-

scription factor SOX2, a marker of multipotent stem cells

in embryos and in adults, NeuN (differentiating neurons),

OLIG2 (developing and differentiated oligodendrocytes),

and GFAP (astrocytes). There were many SOX2-positive

cells in regions of the spinal cord corresponding to the

locations of XY-positive donor cells (Fig. 3G). Visual

analysis of the sections showed many more XY-chromo-

some–positive cells compared to SOX2-positive cells.

There were also NeuN-positive cells located within

regions containing XY-positive donor cells (Fig. 3H).

There was no labeling of OLIG2 suggesting that the

HSSCs did not take on oligodendrocyte fate (data not

shown). There was also no labeling of HSSCs with LCA

(Fig. S4) suggesting the absence of leukocyte infiltration

to the graft region. GFAP labeling was observed through-

out the spinal cord sections, but did not appear to colo-

calize with the XY-positive cells. Thus, there were many

more XY-positive cells than NeuN-positive and SOX2-

positive cells combined, suggesting that transplanted

HSSCs had differentiated beyond stem cell pluripotency

but not to a specific neuronal or glial population.

Discussion

There are three major findings from this autopsy series of

ALS patients undergoing spinal cord transplantation with

HSSCs. First, DNA analysis focused on the regions of trans-

plant identified DNA from donor HSSCs in all patients up

to almost 3 years following surgery. Only one of these

patients tolerated full immunosuppression until the time of

death, suggesting that continuous immunosuppression is

not necessary for continued survival of transplanted cells,

Figure 2. Gross and histological analysis of male ALS spinal cord. Gross image of the spinal cord shows the cord surface at the site of HSSC

transplant (A and B). The vascular anatomy between intraoperative videos (A) corresponds to the postmortem tissue (B). Cross section of the cord

shows no visible tissue disruption (C). Histological staining with H&E (D and G), Luxol fast blue (E and H), and immunohistochemistry for GFAP (F

and I) of 8-lm spinal cord sections from Patient 4 are shown. Nest of putative HSSCs are outlined in D–F. Scale bars: 1 mm (D–F); 50 lm (G–I).

ALS, amyotrophic lateral sclerosis; HSSCs, human spinal cord–derived stem cells; GFAP, glial fibrillary acidic protein.

904 ª 2014 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association.

Transplanted Stem Cells in ALS T. Tadesse et al.



though partial rejection cannot be excluded. Second, FISH

analysis using Y-chromosome probes was able to identify

and localize HSSCs in one female patient. Third, immuno-

histochemical labeling of the HSSCs showed evidence of

neuronal differentiation with the expression of NeuN by

some of the XY-positive cells. Other cells continued to

express the stem cell marker SOX2, which is a prominent

marker of these HSSCs prior to transplantation. We did

not see labeling with oligodendrocyte marker OLIG2, and

the astrocyte marker GFAP was difficult to interpret due to

the diffuse expression throughout the spinal cord. How-

ever, there was a focal reduction in GFAP staining identi-

fied in areas of deposition of the transplanted cells (Figs. 2,

3). Taken together, this is the first study showing HSSCs

graft survival and differentiation following transplantation

into human spinal cord.

A critical component to the success of this clinical trial

is the survival of transplanted HSSCs in the spinal cord.

Figure 3. Donor HSSC localization and characterization using XY chromosome FISH and IHC, respectively, in a female ALS patient. H&E staining

shows nests of cells in the female spinal cord (A) (circle). High-power image corresponding to the nest of cells outlined in (A) is shown in (B).

Proximal sections stained with GFAP show lack of labeling of nest of cells (C). FISH labeling shows numerous X (red) Y (green)–positive cells

counterstained with DAPI (blue) (D). Asterisks shows XX–positive recipient cells in the surrounding regions. Inset image from (D) is shown in (E).

Donor HSSCs are positive for XY (solid arrow). H&E labeling of HSSCs graft (arrow) (F) label with SOX2 and (G) and NeuN (H). Scale bars: 1 mm

(A), 50 lm (B–D), 10 lm (E), 100 lm (F–H). HSSC, human spinal cord–derived stem cell; FISH, fluorescence in situ hybridization; IHC,

immunohistochemistry; ALS, amyotrophic lateral sclerosis; GFAP, glial fibrillary acidic protein.
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Our data show that donor HSSC DNA was present 196–
921 days posttransplant survival. Because this is a first-in-

human trial, it is not clear whether immunosuppressive

therapy is necessary for long-term survival of the trans-

planted cells. Interestingly, donor DNA was detected by

qPCR 57–638 days posttransplant after the discontinua-

tion of immunosuppression therapy, and FISH analysis

identified donor cells in situ at 196 days posttransplant.

In this instance, the subject had not been on immunosup-

pressive drugs for 57 days prior to death. We found no

correlation of DNA content to survival period after dis-

continuation of immunosuppressant medications. These

data demonstrate that transplanted HSSCs can survive for

a prolonged period, even in the absence of immunosup-

pression, and raise the interesting question of how long,

if at all, a subject requires immunosuppressive medication

following HSSC transplantation.

The presence of donor DNA using qPCR methods

complimented the histological assessments of HSSC sur-

vival after transplantation. Our H&E staining identified

non-native nests of cells near the injection site in the

spinal cord of three males and one female, which we sus-

pected to be of donor origin.7 In the female patient, XY-

chromosome–positive labeling with FISH confirmed that

the non-native nests of cells were the transplanted HSSCs.

Due to the fact that the H&E labeling identified similar

nests of cells in the male patients, we suspect that all

transplanted ALS patients had successful HSSCs graft sur-

vival. Five of six patients were males, thus limiting our

ability to use FISH analysis to distinguish HSSCs based

on gender. Taken together, this is the first therapeutic

trial localizing HSSCs following intraspinal injection. This

finding is important as it demonstrates that human spinal

cord provides a permissive microenvironment for allogen-

ic fetal-derived transplant and the feasibility of FISH

analysis for future clinical trials.

While the current approach demonstrated the survival of

graft cells, it is difficult to rigorously quantify the percent-

age of grafted cells surviving. Such a measure is relevant to

the question of how much immunosuppression to use and

for how long. It is also relevant to assessing the effectiveness

of the graft. That is, one would expect that the number of

surviving cells would directly impact the therapeutic poten-

tial of the treatment. We have currently begun using iron

oxide nanoparticle loading of donor cells prior to trans-

plantation into large animals. This approach appears not to

perturb cell health or differentiation in vitro. It also allows

for visualization of the grafts to assess surgical accuracy in

the immediate postoperative period. Finally, postmortem

iron staining allows for quantification of graft survival, dis-

tribution, and accuracy (N. N. Boulis, pers. comm. 2014).

The therapeutic concept of cell transplantation into the

spinal cord is based on the idea that these cells may sur-

vive, possibly differentiate, and provide trophic support,

acting as “nurse cells” for endogenous motor neurons.

This concept is supported by preclinical studies in ani-

mals showing that these HSSCs survive, differentiate, and

integrate into the recipient spinal cord environment. In

the SOD1 rat model of ALS these stem cells differentiated

into glial cells and interneurons that functionally inte-

grated into preexisting neural circuitry.13 In these studies,

double labeling with IHC showed 70.4% of the human

nuclear protein (HNu) colabeled with class III b-tubulin
(TUJ1), 19.2% with stem cell marker Nestin, and 1.3%

with GFAP suggesting extensive neuronal differentiation.

In addition, these HSSCs produced glial-derived neuro-

trophic factor (GDNF) and brain-derived neurotrophic

factors (BDNF), which may also provide local trophic

support for motor neurons.13–15 In each of these experi-

mental paradigms there was a positive effect of spinal

cord stem cell transplantation on animal survival.

In this first-in-human study, characterization of HSSCs

transplanted in human ALS spinal cord showed evidence

of neuronal differentiation and maintenance of stem cell

markers. Pretransplant examination of cytospin prepared

donor cells and stained with ICC (immunocytochemistry)

revealed all were positive for SOX2, very few were positive

for OLIG2, and no cells labeled with NeuN (Fig. S3). This

finding is similar to previous work characterizing this

HSSC cell line as 100% SOX1, 93.8% Nestin, 8% bIII-
tubulin, and 0.75% OLIG2-positive cells.16 The one

female patient where donor cells could be identified by

FISH showed populations of transplanted cells that were

labeled with SOX2, suggesting maintenance of the stem

cell properties, and NeuN demonstrating differentiation

into neuronal lineage after transplantation, which is con-

sistent with the data from animal models. Future studies

in human tissue will address the integration of donor cells

into the spinal cord, and their effects on the environment

of endogenous neurons.

In conclusion, this demonstration of survival and dif-

ferentiation of transplanted HSSCs in ALS patients is an

essential positive step to test the potential for therapeutic

efficacy of using HSSCs as neuroprotective and/or neuro-

restorative treatment for ALS and possibly other neurode-

generative disorders.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. H&E staining of a spinal cord section from

Patient 6. Representative images show low and high
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power of needle tracks (arrows) corresponding to the

injection site (A and B).

Figure S2. Fluorescence in situ hybridization (FISH)

staining using DNA probes CEP X Spectrum orange (X

chromosome) and Y Spectrum green (Y chromosome) in

a spinal cord section of a female patient. A “noninjected”

lumbar spinal cord section of the same female patient

that received cervical injections shown in Figure 3 served

as a negative control. H&E staining of the lumbar cord

shows an absence of “nest” of cells (A and B). FISH stain-

ing shows exclusively red XX chromosome labeling count-

erstained with DAPI in all the cells (C, inset i & ii).

Cervical spinal cord section from the “injected” region

shows cells from the central canal with H&E (D), FISH

(E), and a blood vessel (F) with XX chromosome labeling.

These images show the specificity of the XY probe label-

ing shown in Figure 3. Scale bars: 1 mm (A), 50 µm (B–
F), 10 µm (i, ii).

Figure S3. Immunocytochemistry staining of cytospin

prepared HSSC. All the HSSCs show positive staining for

SOX2 (A). There are very few cells (circles) that have

positive staining for OLIG2 (B). There are no NeuN-posi-

tive cells (C).

Figure S4. IHC staining of a cervical spinal cord section

from a female patient. There is no LCA staining in the

“nest” of putative HSSCs (A and B). In the same section,

a blood vessel shows numerous LCA-positive labeling

demonstrating the specificity of the antibody (C).
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