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Bayesian sensitivity analysis of
incomplete data: bridging
pattern-mixture and selection models
Niko A. Kacirotia,b*† and Trivellore Raghunathanb,c

Pattern-mixture models (PMM) and selection models (SM) are alternative approaches for statistical analysis
when faced with incomplete data and a nonignorable missing-data mechanism. Both models make empirically
unverifiable assumptions and need additional constraints to identify the parameters. Here, we first introduce
intuitive parameterizations to identify PMM for different types of outcome with distribution in the exponential
family; then we translate these to their equivalent SM approach. This provides a unified framework for per-
forming sensitivity analysis under either setting. These new parameterizations are transparent, easy-to-use, and
provide dual interpretation from both the PMM and SM perspectives. A Bayesian approach is used to perform
sensitivity analysis, deriving inferences using informative prior distributions on the sensitivity parameters. These
models can be fitted using software that implements Gibbs sampling. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Missing data remains a common problem in statistical modeling. A wide range of statistical models
for analyzing outcomes with missing data is available, but their validity depends on the nature of the
missing-data mechanism as well as on the assumptions used.

For analyzing data with missing values that are potentially missing not at random (MNAR), two
widely used approaches are available: pattern-mixture models (PMMs) and selection models (SM). Both
approaches derive their inferences based on the joint distribution f (Y ,R) of the outcome Y and the
response data indicator R, but use a different decomposition for f (Y ,R). PMMs express the joint distri-
bution as the product of f (Y|R) and f (R) where data are stratified by missing-data patterns, with distinct
parameters for each pattern [1–3]. On the other hand, SM partition f (Y ,R) as the product of f (Y) and
f (R|Y) [4, 5]. This requires explicit modeling of the missing-data mechanism where the probability that
a subject is missing may depend on observed and unobserved values. In addition, SM requires correct
specification of f (y) for likelihood-based inferences. However, semiparametric approaches are commonly
used where no likelihood function is specified for f (y), while a parametric model is assumed for f (r|y).
The choice between using PMM or SM is based on different reasons, such as the analysis objective, the
robustness of each model, how best to formulate and incorporate assumptions about the missing-data
mechanism, as well as on the flexibility of the sensitivity analysis that is followed. For example, Scharf-
stein et al. [6, 7] and Rotnitzky et al. [8, 9] used an SM approach; Little and Rubin [3], Little [10, 11],
and Hogan and Laird [12] used a pattern-mixture design. For additional comparisons of SM and PMM,
see Glynn [2], Michiels et al. [13], and Little [14].

Regardless of which model is used, assumptions not verifiable from the observed data, or additional
data, are needed to identify some of the parameters in the joint distribution. These assumptions rely
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heavily on expert opinions about a plausible range of non-identifiable parameters and are usually followed
with sensitivity analysis [15–18]. A recent report by the National Research Council includes the following
recommendation (Recommendation 15): “Sensitivity analysis should be part of the primary reporting
of clinical trials. Examining sensitivity to the assumptions about the missing data mechanism should
be a mandatory component of reporting” [19]. Although both frameworks can be used to do this, it
may be more desirable, whenever possible, to choose parameters for sensitivity analysis that are easily
interpretable from both PMM and SM settings.

In this article, we introduce Bayesian models for sensitivity analysis across a range of missing-data
mechanisms, using missing at random (MAR) as the departure point of sensitivity. We propose intuitive
parameterizations for sensitivity analysis focusing on a single outcome response. First, we introduce easy-
to-use parameterizations to identify the PMM for different types of outcome with distribution from the
exponential family. We then translate these to their equivalent SM approach. The new parameterizations
thus provide a dual interpretation under both PMM and SM and are intuitive and easy to communicate to
subject-matter experts using either a PMM or SM setting. This presents a unified framework of sensitivity
analysis using transparent assumptions about the missing-data mechanism. The Bayesian approach also
enables us to provide a probabilistic range to capture differences among observed and missing subjects by
introducing an informative prior distribution (with mean l and coefficient of variation c) on the sensitivity
parameters. Then, the l and c become second-order sensitivity parameters: l indicates the average differ-
ence from MAR, and c indicates our degree of uncertainty on the departure from MAR. A coefficient of
c = 0 corresponds to a deterministic constrain.

In Section 2, we outline the general framework for outcomes within the exponential family and expand
it in Section 3 to include covariates. In Section 4, we apply the proposed method for normal and binary
outcomes. Conclusions are given in Section 5.

2. The proposed method

In this section, we introduce a general parameterization within PMM framework and relate it to the
corresponding SM for single outcomes y in the exponential family distribution. That is, y has the density
f (y|𝜃, 𝜙) = exp((𝜃y − b(𝜃))∕a(𝜙) + c(y, 𝜙)), where 𝜃, which can be a scalar or vector (e.g., multinomial
distribution), is the main parameter of interest and 𝜙 is referred to as dispersion parameter. When 𝜙 is
known (e.g., 𝜙 = 1 for Poisson), we have an exponential-family model with canonical parameter 𝜃.
Examples with 𝜙 unknown include normal distribution where 𝜙 = 𝜎2. We consider binary, multinomial,
count, and normal outcomes.

We focus on randomized controlled studies where subjects are randomized into two or more treatment
groups and the primary analysis is test for treatment effect. The statistical analysis plan usually follows
the intention-to-treat principle where all subjects are included in the analysis regardless of whether they
completed the study. Hence, it is important in such studies to use methods that deal with missing data,
which are potentially MNAR. Our proposed method can also be applied to nonrandomized settings for
group comparisons.

Using the generalized linear models approach [20], the PMM for outcomes within the exponential
family is

h(E(Y|Trt = g,R = r)) = 𝜃(r)g , (1)

where h(.) is the link function, Trt is a group indicator (Trt = 1 for treatment, Trt = 0 for control), and
R is the response indicator (R = 1 when y is observed and R = 0 when y is missing). Often we model
𝜃
(r)
g = 𝛽

(r)
0 +𝛽(r)1 Trt, where 𝛽(r)1 = 𝜃

(r)
1 −𝜃(r)0 measures the effect of treatment. Because no data are available

to estimate parameters for pattern R = 0, model (1) is underidentified. Therefore, we identify such models
by relating the distribution of the missing data to that of the observed data via some tilting. So, we assume
that f (y|Trt = g,R = r) are from the same distribution family but have different parameters, with the
model identified by specifying 𝜃(0)g − 𝜃(1)g = log(�̃�g). This parameterization accommodates modeling of
missing data generated from a potentially nonignorable missing-data mechanism and also includes the
MAR mechanism as a special case when �̃�g = 1. The �̃�g captures the departure from the MAR and is
referred to as ignorability index. It is not estimable from the data, hence, we use the Bayesian framework
to perform sensitivity analysis by assuming different informative prior distributions on �̃�g, independent
of the data, with some mean lg, and variance c2l2g. Here, c is the coefficient of variation representing
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the degree of uncertainty where c = 0 translates to a deterministic constraint. The parameters lg and c
are the sensitivity parameters and are chosen to represent the range of departure from MAR. We chose
�̃�g ∼ log − normal to allow for symmetry when capturing the difference between 𝜃(0)g and 𝜃(1)g . However,
other prior distributions are also possible.

Next, we show that the identifying parameter �̃�g allows for a dual interpretation from both PMM and
SM framework, thus bridging the sensitivity analysis derived using PMM or SM. The identifying param-
eter is easy-to-understand and provides flexibility for a subject matter expert to elicit a prior distribution
on �̃�. It also offers additional clarity on assumptions made about the missing data using either PMM or
SM approach.

In PMM, the parameters 𝛽(r) of each pattern r may themselves be of interest. However, our main
interest is on the marginal parameters, 𝛽, which are derived as a weighted average across pattern specific
estimates [21]. Specifically, in a Bayesian approach, by using simulated draws of 𝛽(r), the inferences on
𝛽 are derived via Monte Carlo (MC) simulations, following

E(Y|Trt) = (1 − 𝜋) ∗ E(Y|Trt,R = 0) + 𝜋 ∗ E(Y|Trt,R = 1)

or

𝜃g = h
{
(1 − 𝜋) ∗ h−1

(
𝜃(0)g

)
+ 𝜋 ∗ h−1

(
𝜃(1)g

)}
,

where 𝜋 = Pr(R = 1|Trt) is the proportion of the data observed and depends on Trt. Alternatively, in SM
approach, the inferences on marginal parameters are derived directly.

Here, we show an overall connection between the proposed PMM and the corresponding SM for
outcomes in the exponential family, then apply it to specific y.

Let fr(y|Trt) = fr(y|Trt,R = r), then, following Bayes’ rule, we have

Pr(R = 0|Trt, y)
1 − Pr(R = 0|Trt, y)

= 𝜅Trt ∗
f0(y|Trt)
f1(y|Trt)

, (2)

where 𝜅g = Pr(R = 0|Trt = g)∕Pr(R = 1|Trt = g). We assume that the distribution of the observed y is
from exponential family:

f1(y|Trt = g, 𝜃(1), 𝜙(1)) = exp

⎧⎪⎨⎪⎩
𝜃
(1)
g y − b

(
𝜃
(1)
g

)
a
(
𝜙
(1)
g

) + c
(

y, 𝜙(1)
g

)⎫⎪⎬⎪⎭ .
Such an assumption is testable from the data, and if it is true, the following holds:

Proposition 1
The distribution of the missing data is from the same exponential family

f0(y|Trt = g, 𝜃(0), 𝜙(0)) = exp

⎧⎪⎨⎪⎩
𝜃
(0)
g y − b

(
𝜃
(0)
g

)
a
(
𝜙
(0)
g

) + c
(

y, 𝜙(0)
g

)⎫⎪⎬⎪⎭ ,
if, and only if, the selection model of the missing data mechanism follows the following logistic regression
model:

logit(Pr(R = 0|Trt = g, y)) = log(𝜅g) +
b
(
𝜃
(1)
g

)
a
(
𝜙
(1)
g

) −
b
(
𝜃
(0)
g

)
a
(
𝜙
(0)
g

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛾g0

+
⎛⎜⎜⎜⎝

𝜃
(0)
g

a
(
𝜙
(0)
g

) −
𝜃
(1)
g

a
(
𝜙
(1)
g

)⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛾g1

∗ y

+ c
(

y, 𝜙(0)
g

)
− c

(
y, 𝜙(1)

g

)
.

(3)

The proof is straightforward by taking the log in both sides of (2).
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Here, the PMMs assume a parametric distribution on f0 and f1. The parametric assumption about f1 is
testable, and we assume that it is correct. Then, the parametric distribution assumption on f0 is equiva-
lent to a parametric assumption about the missing-data mechanism. For example, when 𝜓 is fixed (e.g.,
binomial, Poisson) or the same in each pattern (e.g., normal distribution where 𝜓 (0) = 𝜓 (1) = 𝜓), then
the missing-data mechanism (3) follows a logistic regression model that is linear on y. When 𝜓 (0) ≠ 𝜓 (1)

for normal distribution, the missing-data mechanism (3) is quadratic on y.
The proposed PMM parameterization and its connection with the corresponding SM (3) provide intu-

itive and easy-to-use tools to assess and understand the assumptions made about missing data using either
PMM or SM framework. It allows for sensitivity analysis over a range of sensitivity parameters, which
have dual interpretations. It also provides tools to fully understand the underlying parametric assumptions
under both PMM and SM and to asess if they are reasonable. For example, if one makes assumptions
about the distribution of the missing data in a PMM, but the corresponding selection model is unlikely
to have the expected parametric form, then the assumed distribution on the missing data is incorrect. In
addition, the equivalence between the PMM and the SM shown in Proposition 1 allows one to apply these
approaches interchangeably – taking advantage of what both have to offer.

Next, we give details of the proposed model for commonly used outcomes: normal, count, binary,
and multinomial.

2.1. Normal outcomes

The normal distribution is from the exponential family where f (y) = exp(y𝜇∕𝜎2 − 𝜇2∕2𝜎2 − y2∕2𝜎2 −
log(𝜎)− log(2𝜋)∕2), and where the mean parameter 𝜇 is the main parameter for interest. We consider the
following PMM in cases of a normal outcome variable Y with dropout:

E(Y|Trt = g,R = r) = 𝜇(r)
g ,

where f (Y|Trt = g,R = r) is 
(
𝜇
(r)
g , 𝜎

2
g
(r)
)

and its natural link function is identity. To identify the PMM
model, we relate the distribution of the missing data to that of the observed data. We use a parameteriza-
tion, which is intuitive under PMM framework and also corresponds to a specific SM. That is, we relate
the location parameters (means) and the scale parameters (variance) between the missing subjects and
the observed subjects as follows:

𝜇(0)
g − 𝜇(1)

g = log(�̃�g) (4)

and

𝜎(0)g

2 = �̃�g𝜎
(1)
g

2
. (5)

Here, log(�̃�g) is the mean difference between the missing-data pattern and the observed-data pattern for
group g. The �̃�g is the ratio of 𝜎2

g parameters between the missing-data pattern and the observed-data
pattern for group g. The �̃�g and �̃�g measure the departure from the MAR. We assume they follow some
prior distribution (e.g., log-normal) with mean lg, 𝜓g, and coefficient of variation c.

For PMM identified by (4, 5), the corresponding selection model following (3) is as follows:

logit(Pr(R = 0|Trt = g, y)) = 𝛾g0 + 𝛾g1y + 𝛾g2y2,

where the unidentified parameters 𝛾g1 and 𝛾g2 (g = 0, 1) are equal to

𝛾g1 = 𝜇(0)
g ∕𝜎(0)g

2 − 𝜇(1)
g ∕𝜎(1)g

2 =
(

log(�̃�g) + 𝜇(1)
g (1 − �̃�g)

)
∕𝜎(1)g

2
�̃�g (6)

𝛾g2 = 1∕2𝜎(1)g

2 − 1∕2𝜎(0)g

2 = (�̃�g − 1)∕2𝜎(1)g

2
�̃�g. (7)

Thus, when the distributions of the missing data and observed data are normal, but with different
location and scale parameters, the corresponding SM is a logistic regression that is quadratic on Y . In
this situation, the identifiability of the model using a PMM approach is easier to understand than the SM
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approach. When 𝜎(0)g = 𝜎
(1)
g then 𝛾g2 = 0 and the corresponding selection model is linear on Y , with

𝛾g1 = log(�̃�g)∕𝜎
(1)
g

2
. Then log(�̃�g) has an easy interpretation under SM, it represents the odds ratio of

dropping out per 𝜎(1)g
2

increase on Y. The converse is true, provided that the distribution of the observed
data is normal: if SM is linear on Y , then the distribution of the missing data is also normal with the same
variance as that of the observed data, but with a different location parameter.

When the observed data are normally distributed, using PMM and assuming normal distribution for
missing data are equivalent to a missing-data mechanism that follows a logistic regression model of up
to second order on Y . Such equivalence provides an assurance when PMM are implemented. That is, if a
linear or quadratic logistic regression model for missing mechanism is not plausible, then one cannot run
a PMM assuming normality. On the other hand, if a quadratic logistic regression for modeling missing-
data mechanism is likely, fitting SM is equivalent to fitting a PMM model where the parameters for the
missing data are identified using (6, 7).

2.2. Poisson outcomes

Poisson distribution, f (y|𝜃) = exp(𝜃y − exp(𝜃) − log(y!)), is widely used for modeling count outcomes
where data are not overdispersed. In the presence of missing data, we consider the following PMM for Y:

log
(
𝜇(r)

g |Trt = g,R = r
)
= 𝜃(r)g , (8)

where 𝜇(r)
g = E(Y|Trt = g,R = r) and log(.) is the natural link function. To identify this model, we use

the following parameterization:

log
(
𝜇(0)

g

)
− log

(
𝜇(1)

g

)
= log(�̃�g),

or following Bayes’ rule

�̃�g =
𝜇
(0)
g

𝜇
(1)
g

⏟⏟⏟
PMM

=
Pr(R = 0|Y = y + 1,Trt = g)
Pr(R = 1|Y = y + 1,Trt = g)

∕
Pr(R = 0|Y = y,Trt = g)
Pr(R = 1|Y = y,Trt = g)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SM

. (9)

Then the corresponding SM based on (3) following parameterization (9) is

logit(Pr(R = 0|Trt = g, y)) = 𝛾g0 + 𝛾g1y,

where 𝛾g1 = log(�̃�g).
The PMM is identified by giving a prior distribution to �̃�g, which has a dual interpretation. In PMM,

�̃�g represents the risk ratio of having an event between the missing subjects and the observed subjects
for group g [22]. In SM, it represents the odds ratio of dropping out for a one unit increase in Y for
group g.

2.3. Negative binomial outcomes

When count data are overdispersed, we use negative binomial distribution, f (y) = exp(log(1 − p)y +
mlog(p) + log(Γ(y + m) − log(y!) − log(Γ(m + 1)) with mean 𝜇 = (1 − p)m∕p, which is part of the
exponential family when m is known.

For PMM (8) assuming a negative binomial distribution on Y and m(0) = m(1) = m, the corresponding
selection model is

logit(Pr(R = 0)|Trt = g, y)) = 𝛾g0 + 𝛾g1y,

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4841–4857

4845



N. A. KACIROTI AND T. RAGHUNATHAN

where 𝛾g1 = log
((

1 − p(0)
g

)/(
1 − p(1)g

))
. Then, based on parameterization (9), we obtain

𝛾1g = log

⎛⎜⎜⎜⎝
�̃�g

(
m + 𝜇(1)

g

)
m + �̃�g𝜇

(1)
g

⎞⎟⎟⎟⎠ .
Then, for the PMM using a negative binomial distribution on Y , the identifying parameterization using
�̃�g translates to the logistic SM with parameter 𝛾g1 as defined earlier. That is, for one unit increase on Y ,

the odds of dropping out are increased by
�̃�g

(
m+𝜇(1)g

)
m+�̃�g𝜇

(1)
g

for group g.

2.4. Binary outcomes

Bernoulli distribution, f (y|𝜃) = exp(𝜃y − log(1 + e𝜃)), is widely used for modeling binary data, for
example, the presence or absence of an endpoint (e.g., hypertension). In the presence of missing data, we
consider the following PMM for Y:

logit
(

p(r)
g |Trt = g,R = r

)
= 𝜃(r)g ,

where p(r)g = E(Y|Trt = g,R = r) = Pr(Y = 1|Trt = g,R = r) and logit(.) is the natural link function. We
identify the model by using the following parameterization:

logit
(

p(0)
g

)
− logit

(
p(1)g

)
= log(�̃�g),

or following Bayes’ rule

�̃�g =
p(0)g ∕1 − p(0)g

p(1)g ∕1 − p(1)g
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

PMM

=
Pr(R = 0|Y = 1,Trt = g)
Pr(R = 1|Y = 1,Trt = g)

∕
Pr(R = 0|Y = 0,Trt = g)
Pr(R = 1|Y = 0,Trt = g)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SM

. (10)

Then the corresponding SM based on (3) following parameterization (10) is

logit(Pr(R = 0|Trt = g, y)) = 𝛾g0 + 𝛾g1y,

where 𝛾g1 = log(�̃�g).
The PMM is identified by giving a prior distribution to �̃�g, which allows a dual interpretation. In PMM,

�̃�g represents the odds ratio of having an endpoint between the missing subjects and the observed subjects
for group g [23]. In SM, it represents the odds ratio of dropping out between subjects with endpoint versus
subjects without endpoint for group g.

2.5. Multinomial outcomes

Multinomial outcome variables are used to indicate various categories, k = 0, 1, · · · ,K. The distribution
of y is f (y|𝜃) = exp

(
𝜃1I(y = 1) + · · · + 𝜃KI(y = K) − log

(
1 + e𝜃1 + · · · + e𝜃K

))
. This multinomial dis-

tribution is from a vector exponential family, where 𝜃 = (𝜃1, 𝜃2, · · · , 𝜃K) is a vector with K dimension.
Multinomial logistic regression, which models the ratio of probabilities being in one category versus a
reference category, is commonly used to analyze this type of measures [24]. In the presence of dropouts,
we consider the following PMM for multinomial outcome, for j = 1, 2, · · · ,K:

log
(

p(r)
gj ∕p(r)g0 |Trt = g,R = r

)
= 𝜃

(r)
gj ,
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where p(r)gj = Pr(Y = j|Trt = g,R = r) for j = 0,… ,K, with j = 0 being the reference group. We identify
the model by relating the main parameters of interest between the missing-data and the complete-data
patterns using

log
(

p(0)
gj ∕p(0)g0

)
− log

(
p(1)gj ∕p(1)g0

)
= log(�̃�gj),

or following Bayes’ rule

�̃�gj =
p(0)gj ∕p(0)g0

p(1)gj ∕p(1)g0
⏟⏞⏟⏞⏟

PMM

=
Pr(R = 0|Trt = g,Y = j)
Pr(R = 1|Trt = g,Y = j)

∕
Pr(R = 0|Trt = g,Y = 0)
Pr(R = 1|Trt = g,Y = 0)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
SM

. (11)

Then the corresponding SM based on (3) following parameterization (11) is

logit(Pr(R = 0|Trt = g,Y = j)) = 𝛾g0 + 𝛾gj

where 𝛾gj = log(�̃�gj) for j = 1, 2, · · · ,K.
The PMM is identified by giving a prior distribution to �̃�gj, which has the following dual interpretation.

From a pattern-mixture perspective, �̃�gj is the relative risk ratio for Y = j versus Y = 0 between the
missing subjects and the observed subjects for group g. From an SM perspective, �̃�gj is the odds ratio of
having a missing value between subjects in group Y = j versus subjects in reference group Y = 0 for
group g.

In Table I, we summarize the proposed parameterization using PMM followed by the corresponding
SM for each outcome. For simplicity, the group index g is suppressed.

Table I. PMM parameterization and corresponding SM for different outcomes in
exponential family.

Pattern-mixture model PMM parameterization Corresponding SM

Normal
Y (r) ∼ N(𝜇(r), 𝜎2(r)) 𝜇(0) = 𝜇(1) + log(�̃�) logit(Pr(R = 0|y)) = 𝛾0+𝛾1y+𝛾2y2

log(�̃�) ∼ N(l, c2l2) 𝛾1 =
log(�̃�)+𝜇(1)(1−�̃�)

�̃�𝜎(1)2

𝜎(0)2 = �̃�𝜎(1)2

log(�̃�) ∼ N(𝜓, c2𝜓2) 𝛾2 =
�̃�−1

2�̃�𝜎(1)2

Poisson
Y (r) ∼ Poisson(𝜇(r)) 𝜇(0) = �̃�𝜇(1)) logit(Pr(R = 0|y)) = 𝛾0+𝛾1y

log(�̃�) ∼ N(l, c2l2) 𝛾1 = log(�̃�)

Negative Binomial

Y (r) ∼ Neg-Bin(𝜇(r),m) 𝜇(0) = �̃�𝜇(1)) logit(Pr(R = 0|Yy) = 𝛾0+𝛾1y

log(�̃�) ∼ N(l, c2l2) 𝛾1 = log
(
�̃�(m+𝜇(1))
m+�̃�𝜇(1)

)
Binary

Y (r) ∼ Bernoullie(p(r)) p(0)

1−p(0)
= �̃�

p(1)

1−p(1)
logit(Pr(R = 0|y)) = 𝛾0+𝛾1y

log(�̃�) ∼ N(l, c2l2) 𝛾1 = log(�̃�)

Multinomial

Y (r) ∼ Mult
(

p(r)
0 , ..., p

(r)
K

) p(0)
j

p(0)
0

= �̃�j

p(1)
j

p(1)
0

logit(Pr(R = 0|Y = j)) = 𝛾0+𝛾j

log(�̃�j) ∼ N(lj, c
2l2

j ) 𝛾j = log(�̃�j)

PMM, pattern-mixture model; SM, selection models.
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3. Including covariates

In this section, we expand the proposed PMM to adjust for baseline or time-varying covariates.

3.1. Adjusting for baseline covariates

Baseline covariates are often included in the model for adjusted analysis. In addition, including covariates
can reduce the potential selection bias due to dropouts, resulting in a missing-data mechanism that is
MAR, or closer to it, and therefore increases the validity of local sensitivity analysis. In this section, we
expand our proposed parameterization to the PMM that include baseline covariates x. That is, we consider
the following PMM with covariates:

h(E(Y|Trt = g, x,R = r)) = 𝜃(r)g (x) = 𝛽(r)g + 𝛼(r)g x, (12)

where x is centered to have mean zero. Without loss of generality, we assume x to be a scalar and identify
model (12) by specifying

𝛽(0)g = 𝛽(1)g + log(�̃�g)

𝛼(0)g = 𝛼(1)g + log(�̃�𝛼g
).

Then log(�̃�g) is the difference between 𝜃(1)g (0) − 𝜃(0)g (0) for X equal to 0 (its mean), and log(�̃�𝛼g
) indicates

how much the effect (slope) of x on y is different between missing and observed data patterns. We assume
�̃�𝛼g

follows a log-normal distribution with mean l𝛼g
and coefficient of variation c. For normal outcome

with different dispersion parameter between missing data patterns, the additional identifying constrained
for the variance is used:

𝜎(0)g

2 = �̃�g𝜎
(1)
g

2
.

Under this parametrization, the corresponding SM for PMM (12) is

logit(Pr(R = 0|Trt = g, x, y)) = log(𝜅g(x)) +
b
(
𝜃
(1)
g (x)

)
a
(
𝜙
(1)
g

) −
b
(
𝜃
(0)
g (x)

)
a
(
𝜙
(0)
g

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

f̃g(x;�̃�g)

+
⎛⎜⎜⎜⎝
𝜃
(0)
g (x)

a
(
𝜙
(0)
g

) −
𝜃
(1)
g (x)

a
(
𝜙
(1)
g

)⎞⎟⎟⎟⎠ y

+ c
(

y, 𝜙(0)
g

)
− c

(
y, 𝜙(1)

g

)
.

When the dispersion parameter is the same between the missing-data patterns
(
𝜙
(0)
g = 𝜙

(1)
g = 𝜙g

)
, the

model is reduced to

logit(Pr(R = 0|Trt = g, x, y)) = log(𝜅g(x)) +
b
(
𝜃
(1)
g (x)

)
− b

(
𝜃
(0)
g (x)

)
a(𝜙g)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f̃g(x)

+
𝜃
(0)
g (x) − 𝜃(1)g (x)

a(𝜙g)
y.

The specific SM for each outcome type is given in the succeeding text.

• Normal outcomes

logit(Pr(R = 0|Trt = g, x, y)) = f̃N(x; �̃�g) +
log(�̃�g) + log(�̃�𝛼g

)x + (1 − �̃�g)𝜇
(1)
g

�̃�g𝜎
(1)
g

2
y +

�̃�g − 1

2𝜎(1)g
2
�̃�g

y2

where f̃N(x; �̃�g) = log(𝜅g(x)) +
1
2

log(�̃�g) +
�̃�g𝜇

(1)
g

2
−
(
𝜇
(1)
g +log(�̃�g)+log(�̃�𝛼g

)x
)2

2�̃�g𝜎
(1)
g

2 and 𝜇(1)
g = 𝛽

(1)
g + 𝛼(1)g x.
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For �̃� = 1 the SM reduces to

logit(Pr(R = 0|Trt = g, x, y)) = f̃N(x) +
log(�̃�g) + log(�̃�𝛼g

)x

𝜎2
g

y

and f̃N(x) = log(𝜅g(x)) +
𝜇
(1)
g

2
−
(
𝜇
(1)
g +log(�̃�g)+log(�̃�𝛼g

)x
)2

2𝜎2
g

.

• Poisson outcomes

logit(Pr(R = 0|Trt = g, x, y)) = f̃P(x) + (log(�̃�g) + log(�̃�𝛼g
)x)y

where f̃P(x) = log(𝜅g(x)) +
(

1 − �̃�g�̃�
x
𝛼g

)
𝜇
(1)
g and 𝜇(1)

g = e𝛽
(1)
g +𝛼(1)g x.

• Negative binomial outcomes

logit(Pr(R = 0|Trt = g, x, y) = f̃NB(x) + log

⎛⎜⎜⎜⎝
�̃�g�̃�

x
𝛼g

(
m + 𝜇(1)

g

)
m + �̃�g�̃�

x
𝛼g
𝜇
(1)
g

⎞⎟⎟⎟⎠ y

where f̃NB(x) = log(𝜅g(x)) + log

(
m+𝜇(1)g

m+�̃�g�̃�
x
𝛼g
𝜇
(1)
g

)
and 𝜇(1)

g = e𝛽
(1)
g +𝛼(1)g x.

• Binomial outcomes

logit(Pr(R = 0|Trt = g, x, y)) = f̃B(x) + (log(�̃�g) + log(�̃�𝛼g
)x)y

where f̃B(x) = log(𝜅g(x)) + log

(
1+e𝛽

(1)
g +𝛼(1)g x

1+�̃�g�̃�
x
𝛼g

e𝛽
(1)
g +𝛼(1)g x

)
.

• Multinomial outcomes

logit(Pr(R = 0|Trt = g, x,Y = j)) = f̃M(x) + log(�̃�gj) + log
(
�̃�𝛼gj

)
x

where f̃M(x) = log(𝜅g(x)) + log

(
1+

∑K
j=1 e

𝛽
(1)
gj

+𝛼(1)
gj

x

1+
∑K

j=1 �̃�gj�̃�
x
𝛼gj

e
𝛽
(1)
gj

+𝛼(1)
gj

x

)
.

Note that when the effect of the covariate x on the outcome y in model (12) is the same for both missing-
data patterns, that is, log(�̃�𝛼g

) = 0, then in corresponding SM, the effect of y on the dropout indicator
R does not depend on x and is the same as in the case with no covariates. Hence, in such a case, the
interpretation of log(�̃�g) under PMM or SM will be the same in both models with or without covariates.

When log(�̃�𝛼g
) ≠ 0, in PMM log(�̃�𝛼g

) indicates how much the difference 𝜃(0)g (x) − 𝜃
(1)
g (x) changes

for one unit increase on x, with log(�̃�g) measuring the difference at x = 0 (its mean). Under SM,
log(�̃�𝛼g

) indicates how much the effect of y on R is modified by x, with log(�̃�g) measuring the
effect at x = 0.

The marginal parameters 𝛽g and 𝛼g will be derived using draws of 𝛽(r)g and 𝛼
(r)
g via Monte Carlo

simulations following

𝛽g + 𝛼gx = h
{
(1 − 𝜋g) ∗ h−1

(
𝛽(0)g + 𝛼(0)g x

)
+ 𝜋g ∗ h−1

(
𝛽(1)g + 𝛼(1)g x

)}
Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4841–4857
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or

𝛽g + 𝛼gx = h
{
(1 − 𝜋g) ∗ h−1

(
𝛽(1)g + log(�̃�g) +

(
𝛼(1)g + log

(
�̃�𝛼g

)
x
))

+ 𝜋g ∗ h−1(𝛽(1)g + 𝛼(1)g x)
}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

g

(
x;𝛽(1)g ,𝛼

(1)
g ,�̃�g,�̃�𝛼g

)
,

where 𝜋g = Pr(R = 1|Trt, x). Then, we calculate 𝛽g = g(0) and 𝛼g = g(1) −g(0).
It is important to note that inferences on 𝛽g will not depend on log(�̃�𝛼g

). Thus, if the focus is in infer-

ences on 𝛽g (and the treatment effect 𝛽1 − 𝛽0), one can use PMM (12) and assume 𝛼(0)g = 𝛼
(1)
g . Under this

assumption, log(�̃�𝛼g
) = 0, the interpretation of the identifying parameters log(�̃�g) under PMM and SM is

the same as in the case of no covariates.

3.2. Adjusting for time-varying covariates

Often in randomized trials, time-varying covariates V are included for adjusted analysis. In such case,
the treatment effect on Y , conditional on V is of interest. For simplicity, we do not adjust for baseline
covariates x, although the extension applies in the same way as described in Section 3.1. We consider the
case where V is missing if Y is missing. Then we fit the following PMM for Y and V:

hy(E(Y|Trt = g, v,R = r)) = 𝜃(r)g (v) = 𝛽(r)g + 𝛼(r)v (13)

hv(E(V|Trt = g,R = r)) = 𝜈(r)g , (14)

where 𝛽(r)1 − 𝛽(r)0 is the treatment effect adjusted for V and 𝜈(r)1 − 𝜈(r)0 is the treatment effect on V . Models
(13) and (14) are fitted sequentially [25], where model (14) is fitted first, then model (13) is fitted next
with missing values of V drawn based on model (14). Both models are identified as before by specifying:

𝛽(0)g = 𝛽(1)g + log(�̃�g)

𝛼(0) = 𝛼(1) + log(�̃�𝛼)

𝜈(0)g = 𝜈(1)g + log
(
�̃�𝜈g

)
.

Then log(�̃�g) is the mean difference between patterns, 𝛽(1)g − 𝛽(0)g , controlling for v; log(�̃�𝛼) indicates how
much the slope of v on y (after controlling for Trt) is different between patterns R = 0 and R = 1; and
log

(
�̃�𝜈g

)
has the same distribution and interpretation as described in Table I. For normal outcome (y or v)

with different dispersion parameter between missing data patterns, the additional identifying constrained
for the variance is used:

𝜎(0)g

2 = �̃�g𝜎
(1)
g

2
.

The corresponding SM for PMMs (13) and (14) is derived following

Pr(R = 0|Trt, y, v)
1 − Pr(R = 0|Trt, y, v)

= 𝜅Trt ∗
f0(y|Trt, v)f0(v|Trt)
f1(y|Trt, v)f1(v|trt)

or

logit(Pr(R = 0|Trt = g, x, y)) = log(𝜅g) + log

(
f0(v|Trt)
f1(v|trt)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

SM1

+ log

(
f0(y|Trt, v)
f1(y|Trt, v)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
SM2

. (15)

Thus, the SM (15) comprises two parts: SM1 is as shown in Table I, and SM2 is as shown in Section 3.1
(but replacing x with v). For instance, if y is binary and v follows a normal distribution, the corresponding
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SM (15) would be

logit(Pr(R = 0|Trt = g, v, y)) = 𝛾g0 + 𝛾g1v + 𝛾g2v2 + 𝛾g3y + 𝛾g4vy,

where the unidentifying parameters 𝛾g1, 𝛾g2, 𝛾g3, and 𝛾g4 are equal to

𝛾g1 =
(

log
(
�̃�𝜈g

)
+ 𝜈(1)g (1 − �̃�g)

)
∕𝜎(1)g

2
�̃�g

𝛾g2 = (�̃�g − 1)∕2𝜎(1)g

2
�̃�g

𝛾g3 = log(�̃�g)

𝛾g4 = log(�̃�𝛼).

The overall parameters 𝛽, 𝛼g, and 𝜈g are derived using MC simulations.

4. Application studies

The PMM proposed in Sections 2 and 3 are applied to the data from the TRial Of Preventing Hyper-
tension (TROPHY) [26, 27]. The primary objective of TROPHY was to determine whether for patients
with prehypertension, 2 years of treatment with candesartan would prevent an increase on blood pressure
and consequently reduce the incidence of hypertension for up to 2 years after active treatment is discon-
tinued. In this 4 year, multicenter, randomized study, a total of 772 subjects were randomly assigned to
candesartan group (391) or placebo group (381). We focus on normal data (diastolic blood pressure or
DBP) and binary data (presence of hypertension).

4.1. Normal outcome without covariates

In this section, we apply the proposed PMM for normal outcomes identified using (4, 5), to assess the
effect of treatment on DBP at the end of the active treatment period (year 2). Data on the DBP are available
for 772 subjects at baseline, with 286 subjects having missing values at year 2. We fit the following PMM
to test for treatment effect:

E(Y|Trt = g,R = r) = 𝛽(r)g .

Table II. Sensitivity analyses. Monte Carlo simulation errors range 0.001 − 0.006.

Posterior mean(SD)

l0∕l1: 1∕1 8∕1 8∕0.125 1∕8 0.125∕8

Model parameters (𝜓g = 1)

𝛽0: C 81.6(.49) 82.6(.49) 82.6(.49) 81.6(.49) 80.5(.49)
𝛽1: Trt 77.6(.40) 77.6(.40) 77.2(.40) 78.1(.40) 78.1(.40)
𝛽1 − 𝛽0: Trt − C −3.94(.63) −5.04(.63) −5.49(.63) −3.49(.63) −2.39(.63)

Model parameters (𝜓g = 2)

𝛽0: C 81.6(.60) 82.6(.60) 82.6(.60) 81.6(.60) 80.5(.60)
𝛽1: Trt 77.6(.46) 77.6(.46) 77.2(.46) 78.1(.46) 78.1(.46)
𝛽1 − 𝛽0: Trt − C −3.94(.75) −5.04(.76) −5.49(.76) −3.49(.76) −2.39(.76)

Model parameters (𝜓g = 0.5)

𝛽0: C 81.6(.42) 82.6(.43) 82.6(.43) 81.6(.42) 80.5(.43)
𝛽1: Trt 77.6(.36) 77.6(.36) 77.2(.37) 78.1(.37) 78.1(.37)
𝛽1 − 𝛽0: Trt − C −3.94(.56) −5.04(.56) −5.49(.56) −3.49(.56) −2.39(.56)

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4841–4857
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We run sensitivity analysis for values of l0 and l1 set at 1 (no difference on means between the observed
data and the missing data), 0.125, and 8 (a difference of ±.3SD between the means of the observed
data and the missing data). The sensitivity parameter for the variance, 𝜓0 = 𝜓1, is set at 0.5, 1, and 2.
The coefficient of the variation is fixed at c = 0.1. The results of sensitivity analysis on the marginal
parameters are shown in Table II, where C stands for the control group and Trt for the treatment
group. The results show that the effect of candesartan on DBP varies for different values of sensitivity
parameters. However, the reduction in DBP is always significant ranging from 2.39 (95%CI = (0.91,
3.88)) to 5.49 (95%CI = (4.39, 6.59)) mmHg. The lowest reduction is when l0 = 0.125, l1 = 8,
and 𝜓 = 2, and the highest when l0 = 8, l1 = 0.125, and 𝜓 = 0.5. In addition, the point estimate
for each parameter is not affected by the sensitivity parameter 𝜓 ; however, the 95%CI increases as
𝜓 increases.

Table III. Sensitivity analyses. Monte Carlo simulation errors range 0.001–0.006.

Posterior mean(SD)

l0∕l1: 1∕1 8∕1 8∕0.125 1∕8 0.125∕8

Logistic SM1 (𝜓g = 1)

�̂�01: C × Y −0.00(.18) 0.35(.19) 0.35(.19) −0.00(.18) −0.36(.19)

𝛾01 =
log(�̃�0)+𝜇

(1)
0

(1−�̃�g)

𝜎
(1)
0

2
�̃�g

0.00(.04) 0.35(.09) 0.35(.09) 0.00(.04) −0.35(.04)

�̂�11: Trt × Y −0.01(.20) −0.01(.20) −0.34(.22) 0.32(.20) 0.32(.20)

𝛾11 =
log(�̃�1)+𝜇

(1)
1

(1−�̃�g)

𝜎
(1)
1

2
�̃�g

−0.00(.02) −0.00(.02) −0.31(.06) 0.30(.03) 0.30(.03)

�̂�02: C × Y2 −0.00(.13) 0.01(.12) 0.01(.12) −0.00(.13) −0.02(.14)
𝛾02 =

�̃�g−1

2𝜎(1)
0

2
�̃�g

−0.01(.06) −0.01(.06) −0.01(.06) −0.01(.06) −0.01(.06)

�̂�12: Trt × Y2 −0.03(.13) −0.03(.13) −0.04(.12) −0.03(.13) −0.03(.13)
𝛾12 =

�̃�g−1

2𝜎(1)
1

2
�̃�g

−0.01(.05) −0.01(.05) −0.01(.05) −0.01(.05) −0.01(.05)

Logistic SM2 (𝜓g = 2)

�̂�2: (1 − Trt) × Y −0.21(.14) −0.04(.15) −0.04(.15) −0.21(.14) −0.39(.15)

𝛾2 =
log(�̃�0)+𝜇

(0)
0

(1−�̃�g)

𝜎
(0)
0

2
�̃�g

−0.21(.05) −0.03(.03) −0.03(.06) −0.21(.05) −0.38(.06)

�̂�3: Trt × Y 0.12(.16) 0.12(.16) −0.04(.16) 0.28(.15) 0.28(.15)

𝛾3 =
log(�̃�1)+𝜇

(0)
1

(1−�̃�g)

𝜎
(0)
1

2
�̃�g

0.10(.03) 0.10(.03) −0.05(.04) 0.26(.04) 0.26(.04)

�̂�4: (1 − Trt) × Y2 0.31(.09) 0.32(.09) 0.32(.09) 0.31(.09) 0.31(.09)
𝛾4 =

�̃�g−1

2𝜎(0)
0

2
�̃�g

0.29(.04) 0.29(.04) 0.29(.04) 0.29(.04) 0.29(.04)

�̂�5: Trt × Y2 0.24(.08) 0.24(.08) 0.24(.08) 0.24(.08) 0.24(.08)
𝛾5 =

�̃�g−1

2𝜎(0)
1

2
�̃�g

0.25(.03) 0.25(.03) 0.25(.03) 0.25(.03) 0.25(.03)

Logistic SM3 (𝜓g = 0.5)

�̂�2: (1 − Trt) × Y 0.40(.30) 1.05(.32) 1.05(.32) 0.40(.30) −0.31(.29)

𝛾2 =
log(�̃�0)+𝜇

(0)
0

(1−�̃�g)

𝜎
(0)
0

2
�̃�g

0.42(.13) 1.12(.21) 1.12(.21) 0.42(.13) −0.28(.09)

�̂�3: Trt × Y −0.22(.28) −0.22(.30) −0.84(.33) 0.43(.30) 0.43(.30)

𝛾3 =
log(�̃�1)+𝜇

(0)
1

(1−�̃�g)

𝜎
(0)
1

2
�̃�g

−0.22(.30) −0.22(.08) −0.82(.14) 0.39(.07) 0.39(.07)

�̂�4: (1 − Trt) × Y2 −0.65(.24) −0.57(.21) −0.57(.21) −0.65(.24) −0.72(.27)
𝛾4 =

�̃�g−1

2𝜎(0)
0

2
�̃�g

−0.60(.13) −0.60(.13) −0.60(.13) −0.60(.13) −0.60(.13)

�̂�5: Trt × Y2 −0.56(.25) −0.56(.25) −0.52(.22) −0.62(.27) −0.62(.27)
𝛾5 =

�̃�g−1

2𝜎(0)
1

2
�̃�g

−0.52(.11) −0.52(.11) −0.52(.11) −0.52(.11) −0.52(.11)
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Next, we fit the corresponding selection model in WinBUGS where the missing values are drawn based
on PMM and the ‘complete’ data are used to fit

logit(Pr(R = 0|Trt = g, y)) = 𝛾g0 + 𝛾g1y + 𝛾g2y2. (16)

Draws of �̂�g1 and �̂�g2 based on fitting SM (16) are then compared to draws of the expected 𝛾g1
and 𝛾g2 as given by (6, 7). The results are given in Table III, (presented per one 𝜎 unit increase in
Y) and show that the SM model fitted based on the ‘complete’ data is similar to the expected SM as
derived in Section 2.1. The posterior mean for each �̂� is the same or very close to the mean of the
expected 𝛾 , but the posterior SD is larger as it includes the uncertainty related to draws/imputation of the
missing values.

We use a Bayesian p value to compare �̂� with 𝛾 where p = 2 ∗ min{Pr(�̂� ⩾ 𝛾),Pr(�̂� ⩽ 𝛾)} and is
calculated using MC simulation as the smallest of the proportion of �̂� ⩾ 𝛾 or �̂� ⩽ 𝛾 times 2 for two-sided
test. Thus, if H0 ∶ �̂� = 𝛾 is true, then Pr(�̂� ⩾ 𝛾) = Pr(�̂� ⩽ 𝛾) = 0.5. Small values of Pr(�̂� ⩾ 𝛾) or
Pr(�̂� ⩽ 𝛾) would indicate evidence against H0. The histograms for the difference �̂� − 𝛾 for some of the
results in Table III and the Bayesian p values are shown in Figure 1. All the histograms are symmetric
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Figure 1. Histograms of the difference �̂� − 𝛾 for l0 = 8, l1 = 0.125, and 𝜓 ∈ {0.5, 1, 2}.
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around 0, and the p values for all the results in Table III are very high, ranging from 0.660 to 0.997,
showing no evidence against H0.

4.2. Normal outcomes with covariates

In this section, we apply the PMM to the DBP data controlling for baseline DBP

E(Y|Trt = g,DBP,R = r) = 𝛽(r)g + 𝛼(r)g DBP. (17)

For simplicity, we fix �̃�g = 1, but this approach can be applied for �̃� ≠ 1 in the same way as shown in
Section 4.1. The corresponding SM derived in Section 3 for normal outcome is

logit(Pr(R = 0|Trt = g,DBP, y)) = f̃N(DBP) + (𝛾g + 𝛿gDBP)y. (18)

Table IV. Sensitivity analyses. Monte Carlo simulation errors range 0.001 − 0.006.

Posterior mean(SD)

l0∕l1: 1∕1 8∕1 8∕0.125 1∕8 0.125∕8

Model Parameters (l𝛼 = 1.15)

𝛽0: C 82.3(.46) 83.4(.46) 83.4(.46) 82.3(.46) 81.2(.46)
𝛽1: Trt 77.8(.39) 77.8(.39) 77.4(.39) 78.2(.39) 78.2(.39)
𝛽1 − 𝛽0: Trt−C −4.48(.60) −5.57(.60) −6.00(.60) −4.04(.60) −2.95(.60)

𝛼0: DBP 3.11(.47) 3.39(.47) 3.39(.47) 3.11(.47) 2.83(.47)
𝛼1: DBP 1.81(.42) 1.81(.42) 1.64(.42) 1.98(.42) 1.99(.42)

Logistic SM

�̂�0: Y 0.00(.03) 0.43(.06) 0.43(.06) 0.00(.03) −0.43(.05)
𝛾0 = log(�̃�0)∕𝜎2

0 0.00(.02) 0.43(.05) 0.43(.05) 0.00(.02) −0.43(.05)

�̂�1: Y 0.00(.02) 0.00(.02) −0.32(.04) 0.31(.04) 0.31(.04)
𝛾1 = log(�̃�1)∕𝜎2

1 0.00(.02) 0.00(.02) −0.32(.03) 0.32(.03) 0.32(.03)

𝛿0: X × Y 0.03(.03) 0.04(.03) 0.04(.03) 0.03(.03) 0.04(.03)
𝛿0 = log(�̃�𝛼0

)∕𝜎2
0 0.03(.02) 0.03(.02) 0.03.(.02) 0.03(.02) 0.03(.02)

𝛿1: X × Y 0.02(.02) 0.02(.03) 0.03(.03) 0.02(.02) 0.02(.02)
𝛿1 = log(�̃�𝛼1

)∕𝜎2
1 0.02(.02) 0.02(.02) 0.02(.02) 0.02(.02) 0.02(.02)

Model Parameters (l𝛼 = 0.85)

𝛽0: C 82.3(.46) 83.4(.46) 83.4(.46) 82.3(.46) 81.2(.46)
𝛽1: Trt 77.8(.39) 77.8(.39) 77.4(.39) 78.2(.39) 78.2(.39)
𝛽1 − 𝛽0: Trt−C −4.48(.60) −5.57(.60) −6.00(.60) −4.04(.60) −2.95(.60)

𝛼0: DBP 2.91(.47) 3.19(.47) 3.19(.47) 2.91(.47) 2.63(.47)
𝛼1: DBP 1.73(.42) 1.73(.42) 1.56(.42) 1.90(.42) 1.89(.42)

Logistic SM

�̂�0: Y 0.00(.03) 0.43(.05) 0.43(.05) 0.00(.03) −0.43(.05)
𝛾0 = log(�̃�0)∕𝜎2

0 0.00(.02) 0.43(.05) 0.43(.05) 0.00(.02) −0.43(.05)

�̂�1: Y −0.00(.02) 0.00(.02) −0.32(.04) 0.31(.04) 0.31(.04)
𝛾1 = log(�̃�1)∕𝜎2

1 −0.00(.02) 0.00(.02) −0.32(.03) 0.32(.03) 0.32(.03)

𝛿0: X × Y −0.03(.03) −0.02(.03) −0.02(.03) −0.03(.03) −0.03(.03)
𝛿0 = log(�̃�𝛼0

)∕𝜎2
0 −0.03(.03) −0.03(.02) −0.03(.02) −0.03(.02) −0.03(.02)

𝛿1: X × Y −0.02(.03) −0.02(.03) −0.02(.03) −0.02(.03) −0.02(.03)
𝛿1 = log(�̃�𝛼1

)∕𝜎2
1 −0.03(.02) −0.03(.02) −0.03(.02) −0.03(.02) −0.03(.02)
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We run sensitivity analysis for model (17) with values of l0 and l1 ranging from 0.125 to 8, l𝛼0
and l𝛼1

set at 1.15 and 0.85, and c = 0.1. For each value of lg, l𝛼g
, and c, missing data are drawn based on PMM

and the ‘complete’ data are used to fit SM (18). Draws of �̂�g and 𝛿g based on fitting SM (18) are then

compared to draws of 𝛾g = log(�̃�g)∕𝜎2
g and 𝛿g = log

(
�̃�𝛼g

)
∕𝜎2

g as given in Section 3.1.
The results in Table IV show a robust treatment effect over a range of MNAR missing-data mechanisms.

The treatment is effective resulting in 2.95 (95%CI = (1.77, 4.13)) to 6.00 (95%CI = (4.82, 7.19)) mmHg
reduction in DBP at 2 years. In addition, as expected, the estimates of 𝛽0, 𝛽1 and the treatment effect
𝛽1 − 𝛽0 are the same for l𝛼 = 1.15 and l𝛼 = 0.85.

The posterior mean for each �̂� and 𝛿 (per one 𝜎 increase on Y) is the same or very close to the mean of
the expected 𝛾 and 𝛿, but the posterior SD is larger because it includes the uncertainty related to draws
of the missing values. Bayesian p values for testing H0 ∶ �̂� = 𝛾 (or H0 ∶ 𝛿 = 𝛿) are very high, ranging
from 0.781 to 0.994, showing no evidence against H0.

4.3. Binary outcome with covariates

We apply the PMM for binary outcomes proposed in Section 3 to assess the effect of treatment on reducing
the development of hypertension during the 4 year period of the study. The endpoint outcome is the
presence of hypertension (yes/no) at year 4. At the end of the study, out of the 772 randomized subjects,
199 have a missing value on the endpoint outcome. We fit a PMM logistic regression model to test for
a treatment effect on hypertension, controlling for baseline DBP. Initial analysis based on the observed
data shows that the effect of DBP on predicting hypertension is the same in both groups; hence, we fit

Table V. Sensitivity analyses. Monte Carlo simulation errors range 0.001 − 0.006.

Posterior mean(SD)

l0∕l1: 1∕1 1.5∕1 1.5∕0.5 1∕1.5 0.5∕1.5

Model Parameters (l𝛼 = 1.05)

𝛽0: C 0.96(.14) 1.06(.14) 1.06(.14) 0.96(.14) 0.76(.14)
𝛽1: Trt 0.31(.13) 0.31(.13) 0.14(.13) 0.41(.13) 0.41(.13)
𝛽1 − 𝛽0: Trt−C −0.65(.19) −0.75(.19) −0.92(.19) −0.55(.19) −0.35(.19)

𝛼: DBP 0.14(.03) 0.14(.03) 0.14(.03) 0.14(.03) 0.14(.03)

Logistic SM

�̂�0: Y −0.04(.32) 0.36(.30) 0.36(.30) −0.05(.32) −0.75(.37)
𝛾0 = log(�̃�0) −0.01(.10) 0.40(.10) 0.40(.10) −0.01(.10) −0.70(.10)

�̂�1: Y 0.02(.24) 0.02(.24) −0.68(.27) 0.42(.23) 0.42(.23)
𝛾1 = log(�̃�1) 0.00(.10) 0.00(.10) −0.70(.10) 0.40(.10) 0.40(.10)

𝛿: X × Y 0.03(.09) 0.03(.09) 0.03(.09) 0.03(.09) 0.03(.09)
𝛿 = log(�̃�𝛼) 0.04(.10) 0.04(.10) 0.04(.10) 0.04(.10) 0.04(.10)

Model Parameters (l𝛼 = 0.95)

𝛽0: C 0.96(.14) 1.06(.14) 1.06(.14) 0.96(.14) 0.76(.14)
𝛽1: Trt 0.31(.13) 0.31(.13) 0.14(.13) 0.41(.13) 0.41(.13)
𝛽1 − 𝛽0: Trt−C −0.65(.19) −0.75(.19) −0.92(.19) −0.55(.19) −0.35(.19)

𝛼: DBP 0.11(.03) 0.11(.03) 0.11(.03) 0.11(.03) 0.11(.03)

Logistic SM

�̂�0: Y −0.05(.28) 0.35(.27) 0.36(.27) −0.05(.28) −0.75(.32)
𝛾0 = log(�̃�0) −0.01(.10) 0.40(.10) 0.40(.10) −0.01(.10) −0.70(.10)

�̂�1: Y −0.01(.24) −0.01(.29) −0.71(.28) 0.40(.23) 0.40(.23)
𝛾1 = log(�̃�1) −0.01(.10) −0.01(.10) −0.70(.10) 0.40(.01) 0.40(.10)

𝛿: X × Y −0.06(.10) −0.06(.10) −0.06(.10) −0.06(.10) −0.06(.10)
𝛿 = log(�̃�𝛼) −0.06(.10) −0.06(.10) −0.06(.10) −0.06(.10) −0.06(.10)

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 4841–4857
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the following PMM

logit(Pr(Y = 1|Trt = g,DBP,R = r)) = 𝛽(r)g + 𝛼(r)DBP. (19)

The corresponding SM model for binary outcome as derived in Section 3 is

logit(Pr(R = 0|Trt = g,DBP, y)) = f̃B(DBP) + (𝛾g + 𝛿DBP)y. (20)

Following PMM (19), we perform sensitivity analysis using log-normal prior distribution on �̃�g

and �̃�𝛼 . We run sensitivity analysis for values of l0 and l1 set at 1 (no difference on odds of developing
hypertension between the observed data and the missing data), 0.5, and 1.5; and l𝛼 set at 0.95 and 1.05;
and c = 0.1. For each value of l0, l1, l𝛼 , and c, missing data are drawn based on PMM, and the ‘complete’
data are used to fit SM (20). Draws of �̂�g and 𝛿g based on fitting SM (20) are then compared to draws of
the expected 𝛾g = log(�̃�g) and 𝛿g = log(�̃�𝛼g

) as given in Section 3.1.
The results given in Table V show a strong treatment effect over a range of MNAR missing-data mech-

anisms. The treatment is effective in reducing the odds of developing hypertension at 4 years with odds
ratio (OR) ranging from OR = 0.40 (95%CI = (0.27, 0.57)) to OR = 0.70 (95%CI = (0.48, 1.01)). The
lowest reduction is when l0 = 0.5, l1 = 1.5, and the highest when l0 = 1.5, l1 = 0.5. In addition, as
expected, the estimates of 𝛽0, 𝛽1, and the treatment effect 𝛽1−𝛽0, are the same for l𝛼 = 1.05 and l𝛼 = 0.95.

Finally, the posterior mean for each �̂� and 𝛿 is the same or very close to the mean of 𝛾 and 𝛿, while
the posterior SD is larger because it includes the uncertainty related to draws/imputations of the missing
values. Bayesian p values for testing H0 ∶ �̂� = 𝛾 (or H0 ∶ 𝛿 = 𝛿) are very high, ranging from 0.906 to
0.998, showing no evidence against H0.

5. Conclusions

In this article, we introduce a parameterization using PMM to analyze outcomes from the exponential dis-
tribution family with missing values that are potentially MNAR. We focus on randomized control trials
(RCT) where the primary hypothesis is to test for group differences. For each outcome (binary, multi-
nomial, count, and normal), we introduce easy-to-understand parameters that are used both to identify
the model and for sensitivity analysis. We then relate the identifying parameters from the PMM to their
equivalent corresponding missing-data mechanism in SM approach. Such equivalence results in a dual
interpretation of the identifying parameters under both PMM and SM perspectives. This provides a unified
framework for performing sensitivity analysis based on transparent assumptions about the missing-data
mechanism. It also provides flexibility and assurance to a subject expert for eliciting information under
both PMM and SM setting. This is used to construct informative prior distributions to identify the model.
We use different informative priors for identifying parameters to capture a range of different missing
data scenarios, and then apply sensitivity analysis to evaluate the range of the results towards different
assumed prior distributions.

When baseline covariates x or time-varying covariates v are included in the model, additional assump-
tions are required to identify the parameters for x and v in the missing-data pattern. We extend PMM
including covariates and derive the corresponding SM. We show that if the focus of the analysis is on
the group comparisons, for example the overall treatment effect in a RCT, then the inferences on the
treatment effect are robust to identifying assumptions about the parameters of baseline covariates x. In
such cases, one could simplify the PMM (and consequently the corresponding SM) by constraining the
parameters of x to be the same in both observed data and missing data patterns.

By relating PMM to an equivalent SM, we bridge the sensitivity analysis between two approaches
and consequently reassure the validity of the PMM assumed. For example, if we assume a PMM using
normal distribution with different means and variances between observed data and missing data patterns,
but the SM is unlikely to be a logistic model quadratic in y, then the normal distribution assumed for the
missing data in the PMM is not correct. In such cases, nonparametric PMM [28] or SM models may be
more appropriate. Further, the equivalence between PMM and SM following proposition 1 allows PMM
and SM to be fitted interchangeably. Thus, one could derive inferences based on the posterior distribution
using the PMM approach while formulating the missing-data problem under either a PMM or an SM
framework.

In future work, we plan to expand this work for data in a longitudinal setting, which is considerably
more complicated [29–31]. We also plan to expand our models to outcomes with distributions in the
double exponential family [32] for overdispersed data with missing values.
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