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Abstract

Constrained Markov decision processes (MDPs) are MDPs optimizing an objective function
while satisfying additional constraints. We study a class of infinite-horizon constrained MDPs
with nonstationary problem data, finite state space, and discounted cost criterion. This problem
can equivalently be formulated as a countably infinite linear program (CILP), i.e., a linear
program (LP) with a countably infinite number of variables and constraints. Unlike finite LPs,
CILPs can fail to satisfy useful theoretical properties such as duality, and to date there does
not exist a general solution method for such problems. Specifically, the characterization of
extreme points as basic feasible solutions in finite LPs does not extend to general CILPs. In
this paper, we provide duality results and a complete characterization of extreme points of the
CILP formulation of constrained nonstationary MDPs with finite state space, and illustrate the
characterization for special cases. As a corollary, we obtain the existence of a K-randomized
optimal policy, where K is the number of constraints.

1 Introduction

For the last couple of decades, growing attention has been given to solving constrained Markov
decision processes (MDPs). Constrained MDPs are MDPs optimizing an objective function while
satisfying constraints, typically on budget, quality, and so on. In addition, decision making problems
with multiple criteria are often approached by optimizing one criterion while satisfying constraints
on the other criteria, which also turns into a constrained MDP. Such problems often arise in
data communications. In queueing systems with service rate control, the average throughput is
maximized with constraints on the average delay [13, 15]. Priority queueing systems with a fixed
service rate are another example [4, 16, 19]. Here, one optimizes the queueing time of noninteractive
tra�c while satisfying a constraint on the average end-to-end delay of interactive tra�c. For these
problems, [20] considered a case where service rate costs and penalty costs of delay are actually
incurred in discrete time periods and it is desired to minimize the discounted service rate cost with
constraints on the discounted delay cost. Facility maintenance is another type of problems modeled
by constrained MDPs. [11] considered finding an optimal maintenance policy for each mile of a
network of highways and [22] studied a building management problem. In the models for these
problems, the total cost is minimized subject to constraints on quality of facilities.

In this paper we study an infinite-horizon constrained MDP minimizing the discounted cost criterion
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with nonstationary problem data and finite state space, which we call constrained nonstationary
MDP with finite state space. Constrained nonstationary MDP with finite state space is obtained
from a constrained stationary MDP with finite state space by dropping the stationary data assump-
tion which often does not hold in practice. It is also well-known that constrained nonstationary
MDPs with finite state space form a subclass of constrained MDPs with stationary data and count-
ably infinite number of states. Constrained nonstationary MDP with finite state space has an
equivalent LP formulation and the LP has countably infinite number of variables and countably
infinite number of constraints [3], which we call countably infinite linear program (CILP). Unlike
finite LPs, CILPs lack a general solution method and may fail useful theoretical properties such
as duality, which make them hard to analyze [5]. By Bauer’s Maximum Principle [1], for finite
LPs the minimum is achieved at an extreme point, and often for CILPs as well. For finite LPs, a
feasible solution is an extreme point if and only if it is a basic solution. This equivalency translates
the geometric concept of an extreme point to the algebraic object of a basic solution. However,
such an algebraic characterization of extreme points does not extend to CILPs [9]. In this paper
we provide algebraic necessary conditions for a feasible solution of the CILP formulation of con-
strained nonstationary MDP with finite state space to be an extreme point of its feasible region.
Using those necessary conditions, we also establish a necessary and su�cient condition for a feasible
solution to be an extreme point that can be checked in a finite dimensional polyhedron with which
we are familiar. This is a complete characterization of extreme points for a class of CILPs repre-
senting constrained nonstationary MDPs with finite state space. [10] recently studied the CILP
representation of unconstrained nonstationary MDPs with finite state space and established duality
results and algebraic characterization of extreme points. They also developed a simplex algorithm
for the CILP and showed that it achieved optimality at the limit. For the CILP representation of
constrained nonstationary MDPs with finite state space, we introduce the duality results proven
in [3], define complementary slackness, and establish its relation to optimality. Thus, this report
sets important foundations for developing a simplex-type algorithm for constrained nonstationary
MDPs with finite state space.

Under typical settings for constrained MDPs, there exists a stationary optimal policy but a deter-
ministic stationary optimal policy may not exist [8]. Thus, a pursued goal in literature is proving
existence of an optimal policy that is as close to deterministic as possible, that is, the existence of
K-randomized optimal policy, where K is the number of constraints and a policy is K-randomized
if it uses K “more” actions than a deterministic stationary policy (for a more precise definition,
see Section 4). It is well-known that extreme points of the LP formulation of unconstrained MDPs
with finite number of states correspond to deterministic policies. Now consider a constrained MDP
obtained by adding linear constraints to an unconstrained MDP. Then, an extreme points of the
LP formulation of the constrained MDP is a convex combination of extreme points of the uncon-
strained MDP, i.e., deterministic policies, and this explains how the randomization is introduced.
For constrained stationary MDPs with finite state space, there exists a K-randomized optimal pol-
icy and it can be found by obtaining an optimal basic feasible solution of their equivalent finite LP
formulation [12, 14, 18]. For constrained stationary MDPs with countably infinite number of states,
a K-randomized optimal policy is proven to exist for single constraint case in [20] using Lagrangian
multiplier approach and general case in [7] by studying the Pareto frontier of the performance set.
We obtain the existence of K-randomized optimal policy for constrained nonstationary MDPs as
a byproduct of characterizing extreme points of their CILP formulation.
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2 Problem Formulation

Consider a dynamic system operating in discrete time periods on a finite state space. In periods
n 2 N, the system is observed in a state s 2 S and an action a 2 A is chosen, where |S| = S and
|A| = A are both finite. After multiple kinds of costs, c

n

(s, a) and dk
n

(s, a) for k = 1, 2, . . . ,K are
incurred where K is a finite integer, the system makes a transition to be observed in a state s0 at the
beginning of period n+1, with probability p

n

(s0|s, a). This process continues indefinitely. The costs
are assumed to be nonnegative and uniformly bounded, i .e., there exist c and dk for k = 1, 2, . . . ,K
such that 0  c

n

(s, a)  c, 0  dk
n

(s, a)  dk for n 2 N, s 2 S, a 2 A and k = 1, 2, . . . ,K. The
goal is to minimize the expected discounted “c-cost” satisfying K constraints on the expected
discounted “dk-costs” for k = 1, 2, . . . ,K, with a common discount factor 0 < ↵ < 1. A policy ⇡
is a sequence ⇡ = {⇡1,⇡2, . . .}, where ⇡

n

is a probability measure over A conditioned on the whole
history of states and actions before period n plus the current state at the beginning of period n.
Given an initial state distribution �, each policy ⇡ induces a probability measure P ⇡

�

on which the
state process {S

n

}1
n=1 and the action process {A

n

}1
n=1 are defined. The corresponding expectation

operator is denoted as E⇡

�

. Let

C(�,⇡) , E⇡

�

⇥ 1X

n=1

↵n�1c
n

(S
n

, A
n

)
⇤

Dk(�,⇡) , E⇡

�

⇥ 1X

n=1

↵n�1dk
n

(S
n

, A
n

)
⇤
for k = 1, 2, . . . ,K,

and let ⇧ , {⇡|Dk(�,⇡)  V
k

for k = 1, 2, . . . ,K}. The optimization problem at hand can be
written as

(Q) min
⇡2⇧

C(�,⇡).

It was shown that optimal policy for constrained MDP (Q) may depend on the initial state [8],
thus (Q) is formulated with a fixed initial state distribution �. This problem can be viewed as a
constrained stationary MDP with countable number of states by appending the states s 2 S with
time-indices n 2 N. For constrained stationary MDPs, it was shown in [3] that, without loss of
optimality, we can restrict attention to Markov policies. In the stationary MDP counterpart of
constrained nonstationary MDPs with finite state space, a Markov policy is also stationary because
each period-state pair is visited only once. Moreover, any stationary policy in the stationary
MDP counterpart corresponds to a Markov policy in the original constrained nonstationary MDP
with finite state space, and thus, we can restrict our attention to Markov policies for constrained
nonstationary MDPs with finite state space.
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It was proven that (Q) has an equivalent CILP formulation [2, 3], which can be written as:

(P ) min f(x) =
X

n2N

X

s2S

X

a2A
↵n�1c

n

(s, a)x
n

(s, a) (1)

s.t.
X

a2A
x1(s, a) = �(s) for s 2 S (2)

X

a2A
x
n

(s, a)�
X

s

02S

X

a2A
p
n�1(s|s0, a)xn�1(s

0, a) = 0 for n 2 N \ {1}, s 2 S (3)

X

n2N

X

s2S

X

a2A
↵n�1dk

n

(s, a)x
n

(s, a)  V
k

for k = 1, 2, . . . ,K (4)

x � 0. (5)

We call the constraints (2) and (3) the flow balance constraints. Let P be the feasible region of
(P ). (2) and (3) imply that for x 2 P,

X

s2S

X

a2A
x
n

(s, a) = 1 for n 2 N. (6)

Since x is nonnegative, we have 0  x
n

(s, a)  1 for n 2 N, s 2 S, a 2 A. Because all objective and
constraint cost functions are uniformly bounded, the infinite sums in (1) and (4) exist.

Let a hypernetwork be defined as a network in which edges can connect any number of nodes.
Then we can view (P ) as a minimum cost flow problem with constraints in a staged hypernetwork
with countably infinite number of stages and the same finite number of nodes in each stage. In the
hypernetwork, each period-state pair (n, s) corresponds to a node and each action a at node (n, s)
to a hyperarc which we denote as (n, s, a), and x

n

(s, a) is the amount of flow in the hyperarc. For
s0 2 S such that p

n

(s0|s, a) > 0, the flow from node (n, s) to node (n+ 1, s0) through the hyperarc
(n, s, a) is p

n

(s0|s, a)x
n

(s, a).

Notice that for a given policy ⇡, there may be some node (n, s) such that P ⇡

�

{S
n

= s} = 0. For
those nodes, it does not matter which actions are chosen for the purpose of solving (P ). Thus,
we do not distinguish those policies that di↵er only at those nodes with zero probability. Under
the above convention, there exists a one-to-one correspondence between the set of policies and the
set of nonnegative x satisfying the flow balance constraints. We refer to a nonnegative solution
x satisfying the flow balance constraints as a hyperarc frequency. Note that for a policy ⇡ and
the resulting hyperarc frequency x, x

n

(s, a) can be interpreted as the probability of encountering
hyperarc (n, s, a) under policy ⇡ for the given initial state distribution �. There also exists an
obvious one-to-one correspondence between P and ⇧. We refer to a (feasible) policy and the
corresponding (feasible) hyperarc frequency interchangeably.

Theorem 2.1 If (P ) is feasible, then it has an extreme point optimal solution.

Proof: It is easy to show that P is a closed and convex subset of R1. By Tychono↵’s product
theorem (see [1]) and (6), P is a subset of a compact set and thus, it is compact. Since the objective
function is continuous and convex, by Bauer’s Maximum Principle [1], (P ) has an extreme point
optimal solution. ⇤

4



3 Duality Results

In this section, we define the dual of (P ), introduce strong duality result, define complementary
slackness, and prove its relation to optimality. We define the dual of (P ) as

(D) max g(y, µ) =
X

s2S
�(s)y1(s)�

KX

k=1

V
k

µ
k

(7)

s.t. y
n

(s)�
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)� ↵n�1
KX

k=1

dk
n

(s, a)µ
k

 ↵n�1c
n

(s, a)

for n 2 N, s 2 S, a 2 A (8)

µ � 0 (9)

y 2 Y, (10)

where Y is the subspace of all sequences y , {y
n

(s)} indexed by (n, s) 2 N⇥S such that there exists
⌧
y

that satisfies |y
n

(s)|  ↵n�1⌧
y

for all (n, s) 2 N ⇥ S. This formulation is more restrictive than
the LP formulation of constrained MDPs given in [3] (Theorem 9.11) since (D) has the additional
constraint (10). However, we make the following assumption which is also known as the Slater’s
condition, and it is easy to show that under the assumption the constraint (10) does not exclude
an optimal solution of our interest. Note that this assumption is necessary only for the results in
this section.

Assumption 1 (The Slater’s condition) (P ) has a strict feasible solution, i.e., there exists a fea-
sible solution x to (P ) that satisfies all of the inequality constraints (4) strictly.

To see that adding (10) does not exclude an optimal solution, consider the CILP obtained from
(D) by removing the constraint (10). [3] shows that under the Slater’s condition, there exists µ⇤

that achieves optimality of the CILP with some y⇤ . If we fix µ = µ⇤ in (D), then it is equivalent
to the CILP formulation of an unconstrained MDP. Then, y⇤ is the cost-to-go vector of an optimal
policy of the unconstrained MDP and we can easily prove that y⇤ satisfies (10). Therefore, the
constraint (10) does not rule out the optimal solution of our interest.

Note that we can derive (D) except (10) by applying the rules obtaining dual of finite LPs to
(P ). In general, if we apply the rules to CILPs, then the “dual” may not satisfy weak duality
[17]. However, [3] showed that strong duality holds between primal and dual CILP formulation
of constrained MDPs with countably infinite number of states, which also implies strong duality
between (P ) and (D).

Theorem 3.1 (Theorem 9.11 of [3]) The optimal objective function values of (P ) and (D) coincide.

We now define complementary slackness of (P ) and (D) and show that feasible solutions of (P )
and (D) are optimal to their corresponding problems if and only if they satisfy the complementary
slackness. Under the Slater’s condition, [3] showed necessity of complementary slackness for opti-
mality by using the concept of occupation measure and the interpretation of constrained MDPs as
an inf-sup problem with Lagrangian multipliers. We provide an alternative proof for necessity, and
moreover, establish su�ciency of complementary slackness for optimality.

Definition 3.2 (Complementary slackness) Suppose x is feasible to (P ). Then we say that x and
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(y, µ) satisfy complementary slackness if

x
n

(s, a)
⇥
↵n�1

�
c
n

(s, a) +
KX

k=1

dk
n

(s, a)µ
k

�� y
n

(s) +
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)
⇤
= 0 for n 2 N, s 2 S, a 2 A,

(11)

µ
k

⇥
V
k

�
X

n2N

X

s2S

X

a2A
↵n�1dk

n

(s, a)x
n

(s, a)
⇤
= 0 for k = 1, 2, . . . ,K. (12)

Theorem 3.3 (Complementary slackness su�ciency) Suppose x is feasible to (P ) and satisfies
complementary slackness with some (y, µ). Then f(x) = g(y, µ). If (y, µ) is feasible to (D), then x
and (y, µ) are optimal to (P ) and (D), respectively.

Proof: From the complementary slackness condition (11), we have

↵n�1c
n

(s, a)x
n

(s, a) =
�
y
n

(s)�
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)
�
x
n

(s, a)� ↵n�1
� KX

k=1

dk
n

(s, a)µ
k

�
x
n

(s, a)

for n 2 N, s 2 S, a 2 A. By summing up both sides for n = 1, 2, . . . , N , s 2 S, a 2 A, we
obtain

NX

n=1

X

s2S

X

a2A
↵n�1x

n

(s, a)c
n

(s, a)

=
NX

n=1

X

s2S

X

a2A

�
y
n

(s)�
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)
�
x
n

(s, a)�
KX

k=1

µ
k

NX

n=1

↵n�1
X

s2S

X

a2A
dk
n

(s, a)x
n

(s, a).

(13)

We simplify the first sum of the right hand side as follows:

NX

n=1

X

s2S

X

a2A

�
y
n

(s)�
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)
�
x
n

(s, a)

=
NX

n=1

X

s2S
y
n

(s)
X

a2A
x
n

(s, a)�
NX

n=1

X

s

02S
y
n+1(s

0)
X

s2S

X

a2A
p
n

(s0|s, a)x
n

(s, a)

=
NX

n=1

X

s2S
y
n

(s)
X

a2A
x
n

(s, a)�
NX

n=1

X

s

02S
y
n+1(s

0)
X

a2A
x
n+1(s

0, a)

=
X

s2S
y1(s)

X

a2A
x1(s, a)�

X

s2S
y
N+1(s)

X

a2A
x
N+1(s, a)

=
X

s2S
�(s)y1(s)�

X

s2S
y
N+1(s)

X

a2A
x
N+1(s, a). (14)

By substituting (14) into (13), we have

NX

n=1

X

s2S

X

a2A
↵n�1c

n

(s, a)x
n

(s, a)

=
X

s2S
�(s)y1(s)�

X

s2S
y
N+1(s)

X

a2A
x
N+1(s, a)�

KX

k=1

µ
k

NX

n=1

↵n�1
X

s2S

X

a2A
dk
n

(s, a)x
n

(s, a). (15)
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The second term above goes to zero as N increases, because

�S↵N⌧
y


X

s2S
y
N+1(s)

X

a2A
x
N+1(s, a)  S↵N⌧

y

.

By the second condition (12) of complementary slackness, for k = 1, 2, . . . ,K,

µ
k

NX

n=1

↵n�1
X

s2S

X

a2A
dk
n

(s, a)x
n

(s, a) ! V
k

µ
k

as N ! 1.

Thus, taking N ! 1 on both sides of (15) gives f(x) = g(y, µ). The second statement of the
theorem follows by weak duality. ⇤

Theorem 3.4 (Complementary slackness necessity) Suppose x and (y, µ) are optimal to (P ) and
(D), respectively. Then the complementary slackness conditions hold.

Proof: We have x
n

(s, a) � 0 and ↵n�1
�
c
n

(s, a)+
P

K

k=1 d
k

n

(s, a)µ
k

� � y
n

(s)�P
s

02S p
n

(s0|s, a)y
n+1(s0)

for all n 2 N, s 2 S, a 2 A. Thus, the left hand side of the first condition (11) of complementary
slackness is nonnegative for n 2 N, s 2 S, a 2 A. By summing up the left hand side of (11) for
n = 1, 2, . . . , N , s 2 S, and a 2 A, we obtain

0 
NX

n=1

X

s2S

X

a2A
x
n

(s, a)
⇥
↵n�1

�
c
n

(s, a) +
KX

k=1

dk
n

(s, a)µ
k

�� y
n

(s) +
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)
⇤

=
NX

n=1

X

s2S

X

a2A
↵n�1c

n

(s, a)x
n

(s, a) +
KX

k=1

µ
k

NX

n=1

X

s2S

X

a2A
dk
n

(s, a)x
n

(s, a)

�
NX

n=1

X

s2S

X

a2A

⇥
y
n

(s)�
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)
⇤
x
n

(s, a)

=
NX

n=1

X

s2S

X

a2A
↵n�1c

n

(s, a)x
n

(s, a) +
KX

k=1

µ
k

NX

n=1

X

s2S

X

a2A
dk
n

(s, a)x
n

(s, a)

�
X

s2S
�(s)y1(s) +

X

s2S
y
N+1(s)

X

a2A
x
N+1(s, a)

where we used (14) to get the last equality. By taking N ! 1,

0  lim
N!1

NX

n=1

X

s2S

X

a2A
x
n

(s, a)
⇥
↵n�1

�
c
n

(s, a) +
KX

k=1

dk
n

(s, a)µ
k

�� y
n

(s) +
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)
⇤

f(x) +
KX

k=1

V
k

µ
k

�
X

s2S
�(s)y1(s) = f(x)� g(y, µ) = 0,

owing to strong duality. This shows that the sum of the left hand side of (11) equals zero. However,
we know the left hand side of (11) for n 2 N, s 2 S, a 2 A is nonnegative, and thus, each of them
equals zero. Therefore, (11) holds.
We now prove (12). We have µ

k

� 0 and

V
k

�
X

n2N

X

s2S

X

a2A
↵n�1dk

n

(s, a)x
n

(s, a)

7



for k = 1, 2, . . . ,K since x is feasible to (P ). Therefore, the left hand side of (12) is nonnegative
for k = 1, 2, . . . ,K. By summing up the left hand side of (12) for k = 1, 2, . . . ,K, we obtain

0 
KX

k=1

µ
k

⇥
V
k

�
X

n2N

X

s2S

X

a2A
↵n�1dk

n

(s, a)x
n

(s, a)
⇤

=
X

s2S
�(s)y1(s)�

X

n2N

X

s2S

X

a2A
↵n�1c

n

(s, a)x
n

(s, a)�
KX

k=1

µ
k

X

n2N

X

s2S

X

a2A
↵n�1dk

n

(s, a)x
n

(s, a)

(16)

= lim
N!1

⇥X

s2S
�(s)y1(s)�

NX

n=1

X

s2S

X

a2A
↵n�1

�
c
n

(s, a) +
KX

k=1

dk
n

(s, a)µ
k

�
x
n

(s, a)
⇤

(17)

 lim
N!1

⇥X

s2S
�(s)y1(s)�

NX

n=1

X

s2S

X

a2A

�
y
n

(s)�
X

s

02S
p
n

(s0|s, a)y
n+1(s

0)
�
x
n

(s, a)
⇤

(18)

= lim
N!1

X

s2S
y
N+1(s)

X

a2A
x
N+1(s, a) (19)

= 0

where the equality (16) is strong duality; (17) is rearrangement of sums; the inequality (18) is the
constraint (8) of (D); and (19) is due to (14). Therefore, (12) holds. Consequently, the comple-
mentary slackness is shown. ⇤

4 Splitting Randomized Policies

One of the main objectives in this paper is to study extreme points of (P ), the LP formulation of
constrained nonstationary MDPs. The definition of an extreme point of a convex set is a point
in the set that cannot be represented as a non-trivial convex combination of other points in the
set. This section presents some preliminary results in the form of two di↵erent representations
of a randomized policy as a convex combination of other policies, which will help us identify
characteristics of extreme points. (Note, however, that the results in this section are not limited
to constrained MDPs.) The first one represents a randomized policy as a convex combination of
deterministic policies, a well-known one in literature. It will be needed in Section 6 to present
a necessary and su�cient condition for a feasible solution of (P ) to be an extreme point. The
second one is needed in Section 5 to provide necessary conditions for an extreme point and has
some specific characteristics required for that purpose.

We first introduce some definitions which will be helpful in describing these representations. We
define a submodel of the MDP to be an MDP that is identical to the original one in all respects
except that the action sets are limited to B

n

(s) ⇢ A for n 2 N, s 2 S. For a given policy x, we
also define a submodel defined by x as a submodel such that B

n

(s) = {a 2 A | x
n

(s, a) > 0} for
n 2 N, s 2 S. For a submodel B, we call the number M =

P
n2N

P
s2S(|Bn

(s)|� 1) as the index of
the submodel. A randomized policy that belongs to a submodel B with index M can be interpreted
as using at most M “more” actions than a deterministic policy. Recall that in each period of the
original MDP, there are S states and each state has A action choices. Thus, in each period a policy
can use up to |S|(|A|� 1) “more” actions than a deterministic policy.

8



Definition 4.1 A randomized policy that belongs to a submodel with index M is called an M -
randomized policy. An M -randomized policy that does not belong to any submodel with index less
than M is called an exactly M -randomized policy. A randomized policy that does not belong to
any submodel with a finite index is called an 1-randomized policy.

4.1 Splitting into deterministic policies

It has been shown that for a finite positive integer M , any M -randomized policy can be represented
as a convex combination of M + 1 deterministic policies [7].

Lemma 4.2 (cf. Theorem 5.1 in [7]) For any finite positive integer M , any exactly M -randomized
policy is a convex combination of M + 1 0-randomized (i.e., deterministic) policies.

In addition, it was recently shown that for any finite positive integer M , it is possible to represent a
M -randomized policy as a convex combination of M +1 deterministic policies that can be ordered
so that each pair of consecutive policies di↵er at only one period-state pair [6]. They also provided
an e�cient algorithm to find the convex combination of deterministic policies.
Consider an exactly M -randomized policy x for a finite positive integer M . We introduce a set
⇤(x) which plays an important role in the necessary and su�cient condition for an extreme point
which will be presented in Section 6. Let B be the submodel defined by x. Since M is finite, the
number of deterministic policies in the submodel B is also finite, say N . Let x1, x2, . . . , xN be these
deterministic policies. Let

⇤(x) =

(
� 2 RN | x =

NX

i=1

�
i

xi,

NX

i=1

�
i

= 1,� � 0

)
. (20)

That is, ⇤(x) is the set of nonnegative weights by which convex combination of x1, x2, . . . , xN

becomes x.
In (20), the definition of ⇤(x) is given by an infinite number of linear equations, but in fact, we
can represent ⇤(x) by a finite number of linear equations as shown by the next theorem.

Theorem 4.3 Let x be an exactly M -randomized policy and N be the number of deterministic
policies in the submodel defined by x. Then there exists a matrix A = RM⇥N and b 2 RM such that

⇤(x) = {� 2 RN | A� = b,1T� = 1,� � 0}, and the matrix


A
1

T

�
has a full row rank.

Proof: For simplicity of illustration, we prove this theorem under an assumption that x does not
allow any node that has zero incoming flow. The presented proof can be easily extended to the
general case but it would detract us from the key idea.

Let (n1, s1), (n2, s2), . . . , (nm

, s
m

) be the period-state pairs at which x randomizes and suppose
that they are ordered so that the period index is nondecreasing. For i = 1, 2, . . . ,m, assume that
x randomizes over ai,1, ai,2, . . . , ai,li at (n

i

, s
i

). We have
P

m

i=1(li � 1) = M and
Q

m

i=1 li = N . Let
⇤0(x) = {� 2 RN | 1T� = 1,� � 0}. Since x does not randomize in periods 1 to n1 � 1, the
policies x1, x2, . . . , xN does not randomize in those periods. Consequently, for any � 2 ⇤0(x),P

N

i=1 �i

xi and x are the same in periods 1 to n1 � 1. This implies that they also have the same
flow on hyperarcs from the period-state pairs in period n1 where x does not randomize. Let
⇤1(x) = {� 2 RN | PN

i=1 x
i

n1
(s1, a1,1)�i

= x
n1(s1, a

1,1),1T� = 1,� � 0}. Then, for any � 2 ⇤1(x),P
N

i=1 �i

xi and x coincide in periods 1 to n1 � 1 and on those hyperarcs from the period-state
pairs in period n1 where x does not randomize. Moreover, in period n1, they have the same flow

9



on hyperarc (n1, s1, a
1,1). Let ⇤l1�1(x) = {� 2 RN | PN

i=1 x
i

n1
(s1, a1,j)�i

= x
n1(s1, a

1,j) for j =

1, 2, . . . , l1 � 1,1T� = 1,� � 0}. For any � 2 ⇤l1�1(x),
P

N

i=1 �i

xi and x coincide in periods
1 to n1 � 1 and on those hyperarcs from the period-state pairs in period n1 where x does not
randomize, and additionally in period n1, they have the same flow on hyperarc (n1, s1, a

1,j) for
j = 1, 2, . . . , l1 � 1. Then, they also have the same flow on hyperarc (n1, s1, a

1,l1), and thus, they
coincide on all hyperarcs from (n1, s1). Note that x randomizes over l1 actions at (n1, s1) and we
added l1 � 1 equations to obtain ⇤l1�1(x) from ⇤0(x).

We can apply the same procedure to the other period-state pairs (n2, s2), (n3, s3), . . . , (nm

, s
m

), in
the order of nondecreasing period index. Then we obtain ⇤M (x) such that for any � 2 ⇤M (x),P

N

i=1 �i

xi and x coincide in periods 1 to n
m

� 1 (which implies that they also have the same
flow on all hyperarcs from any period-state pair in period n

m

where x does not randomize), and
additionally in period n

m

, they have the same flow on all hyperarcs from any period-state pair where
x randomizes. Thus, for any � 2 ⇤M (x),

P
N

i=1 �i

xi and x coincide. We showed that ⇤M (x) ⇢ ⇤(x).
We can easily show that any � 2 ⇤(x) satisfies all of the equalities that define ⇤M (x). Therefore,
we showed ⇤M (x) = ⇤(x).

⇤M (x) has M +1 equality constraints for � and let A be the coe�cient matrix of the M equalities
added to obtain ⇤M (x) from ⇤0(x). Then, it is also easy to prove that the rows of the matrix
A
1

T

�
are linearly independent. To see this, let us introduce some notations. The determinis-

tic policies x1, x2, . . . , xN in the submodel B defined by x di↵er only at the period-state pairs
(n1, s1), (n2, s2), . . . , (nm

, s
m

) and the submodel allows only the actions ai,1, ai,2, . . . , ai,li at (n
i

, s
i

)
for i = 1, 2, . . . ,m. Then, we can naturally correspond the deterministic policies x1, x2, . . . , xN in
the submodel B to an element of

Q
m

i=1{1, 2, . . . , li}. That is, (p1, p2, . . . , pm) 2 Q
m

i=1{1, 2, . . . , li}
corresponds to the deterministic policy in B that chooses ai,pi at (n

i

, s
i

) for i = 1, 2, . . . ,m. Without
loss of generality, let x1, x2, . . . , xN be ordered in lexicographic order of the representation. Recall
that the columns of A correspond to the deterministic policies x1, x2, . . . , xN . Let the columns of A
be sorted so that the kth column of A corresponds to the deterministic policy xk for k = 1, 2, . . . , N .
For i = 1, 2, . . . ,m and j = 1, 2, . . . , l

i

� 1, let A
i,j

be the row of A corresponding to the equalityP
N

k=1 x
k

ni
(s

i

, ai,j)�
k

= x
ni(si, a

i,j). We also sort A
i,j

’s, the rows of A, in lexicographic order of their
subscripts. For i = 1, 2, . . . ,m and j = 1, 2, . . . , l

i

� 1, the row A
i,j

has nonzeros in those columns
that correspond to the deterministic policies choosing action ai,j at (n

i

, s
i

). Especially, the row A
i,j

has a nonzero at the column corresponding to policy (l1, l2, . . . , li�1, j, 1, 1, . . . , 1). However, this
policy chooses ak,lk at (n

k

, s
k

) for k = 1, 2, . . . , i� 1 and ai,j at (n
i

, s
i

). Then, by the construction
of A, we can easily show that all rows of A that are above the row A

i,j

have zeros at the column.
Therefore, each row of A has a nonzero in a column at which other rows above the row have zeros.
Moreover, all the rows of A have zeros at the column of policy (l1, l2, . . . , lm), and thus, the row
with ones has a nonzero in the column at which all rows of A have zeros. Therefore, we proved that

each row of


A
1

T

�
has a nonzero in a column at which any other rows above the row have zeros,

and thus, the matrix have a full row rank. ⇤

This theorem provides a way to construct ⇤(x) for a given M -randomized policy x. Define E(x)
as the subset of ⇤(x) whose elements has at most M + 1 nonzeros, then we can easily show
⇤(x) = convE(x). By Theorem 4.3, ⇤(x) is the set of feasible solutions of a standard form LP
with M + 1 constraints. Thus, E(x) contains all extreme points of ⇤(x) and therefore, we have
⇤(x) = convE(x). One can construct E(x) by finding every representation of x as a convex
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combination of M + 1 deterministic policies among x1, x2, . . . , xN , which can be done by applying
the procedure described in the proof of Theorem 5.1 in Feinberg and Shwartz [7] or by Algorithm
1 in [6] in a straightforward way.

4.2 Splitting into “less” randomized policies

In this section, we introduce another representation of a randomized policy as a convex combination
of “less” randomized policies. How to obtain the representation for a given randomized policy is
illustrated in the proofs of the three lemmas and these lemmas prove that the representation satisfies
the set of properties which will help us establish necessary conditions for an extreme point of P in
Section 5. We start with the simplest case of exactly 1-randomized policy and this is a special case
of Lemma 4.2. However, its proof introduces an important technique which is used repeatedly in
this section.

Lemma 4.4 Any exactly 1-randomized policy can be uniquely represented as a non-trivial con-
vex combination of two 0-randomized (i.e., deterministic) policies, and moreover, the weights are
positive.

Proof: Let x be an exactly 1-randomized policy. There exists a unique period-state pair (n, s) and
two actions a, b such that x

n

(s, a) = � > 0 and x
n

(s, b) = ✏ > 0 and x
n

(s, a0) = 0 for a0 2 A\{a, b}.
We show that x is a convex combination of two 0-randomized policies, denoted as w and z. To
construct them, we first define two flows, u and v. In this proof and the proofs of the following
two lemmas, the steps to define flows (which are u and v in this proof) are similar to the proof of
Theorem 4.3 of [10] and we also borrowed their notations.

In periods k = n+ 1, n+ 2, . . ., x does not randomize, thus for s0 2 S, let a
k

(s0) denote the chosen
action at (k, s0) by x, i.e., x

k

(s0, a
k

(s0)) > 0. Let S
n+1(x) = {s0 2 S | p

n�1(s0|s, a) > 0}. For k =
n+ 2, n+ 3, . . ., recursively define S

k

(x) = {s0 2 S | p
k�1(s0|s̃, ak�1(s̃)) > 0 for some s̃ 2 S

k�1(x)}.
That is, S

k

(x) is the set of states in period k that receive any portion of flow � originating in
hyperarc (n, s, a) under policy x. Let F(x) be the sub-hypernetwork formed by the node (n, s),
hyperarc (n, s, a), nodes in [1

k=n+1Sk

(x) and hyperarcs [1
k=n+1{(k, sk, ak(sk)) | s

k

2 S
k

(x)}. We
construct a flow u in F(x) recursively in the following way. Let the node (n, s) be a source of
supply 1 and all other nodes in sub-hypernetwork F

n

(x) have no supply. Set u
n

(s, a) = 1, then for
each s

n+1 2 S
n+1(x), set un+1(sn+1, an+1(sn+1)) = p

n

(s
n+1|s, a). For k = n+ 2, n+ 3, . . . and for

each s
k

2 S
k

(x), set

u
k

(s
k

, a
k

(s
k

)) =
X

sk�12Sk�1(x)

p
k�1(sk|sk�1, ak�1(sk�1))uk�1(sk�1, ak�1(sk�1)).

By construction, x
n

(s, a) = �u
n

(s, a). Note that for hyperarcs (k, s
k

, a
k

(s
k

)) in F
n

(x) \ {(n, s, a)},
u
k

(s
k

, a
k

(s
k

)) can be interpreted as the conditional probability of encountering hyperarc (k, s
k

, a
k

(s
k

))
by following policy x, given that we encountered hyperarc (n, s, a). Fix a hyperarc (k, s

k

, a
k

(s
k

))
in F

n

(x) \ {(n, s, a)}. Let A be an event of encountering the hyperarc (k, s
k

, a
k

(s
k

)) by follow-
ing the policy x and let B be an event of encountering hyperarc (n, s, a) by following policy
x. Then, P (A|B) = u

k

(s
k

, a
k

(s
k

)), P (B) = �, and P (A) = x
k

(s
k

, a
k

(s
k

)). Therefore, we have
x
k

(s
k

, a
k

(s
k

)) = P (A) � P (A \B) = P (A|B)P (B) = �u
k

(s
k

, a
k

(s
k

)).

Similarly, for k = n + 1, n + 2, . . ., let T
k

(x) ⇢ S be the set of states in period k receiving any
portion of flow ✏ in hyperarc (n, s, b) under policy x. For any t

k

2 T
k

(x), there exists a unique
action b

k

(t
k

) such that x
k

(t
k

, b
k

(t
k

)) > 0. Let G(x) be the sub-hypernetwork similarly defined
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as F(x), formed by the node (n, s), hyperarc (n, s, b), nodes in [1
k=n+1Tk(x) and hyperarcs in

[1
k=n+1{(k, tk, bk(tk)) | t

k

2 T
k

(x)}. We construct a flow v in G
n

(x) recursively in the following
way. Let the node (n, s) be a source of supply 1 and all other nodes in sub-hypernetwork G

n

(x) have
no supply. Set v

n

(s, b) = 1, then for each t
n+1 2 T

n+1(x), set vn+1(tn+1, bn+1(tn+1)) = p
n

(t
n+1|s, b).

For k = n+ 2, n+ 3, . . . and for each t
k

2 T
k

(x), set

v
k

(t
k

, b
k

(t
k

)) =
X

tk�12Tk�1(x)

p
k�1(tk|tk�1, bk�1(tk�1))vk�1(tk�1, bk�1(tk�1)). (21)

By construction, x
n

(s, b) = ✏v
n

(s, b) and by using the same interpretation as u, we obtain x
k

(t
k

, b
k

(t
k

)) �
✏v

k

(t
k

, b
k

(t
k

)) for any other hyperarc (k, t
k

, b
k

(t
k

)) in G(x).
We construct a new hyperarc frequency w as follows.

w
k

(s
k

, a
k

) =

8
>>>><

>>>>:

x
k

(s
k

, a
k

) if (k, s
k

, a
k

) not in F
n

(x) or G
n

(x)

x
k

(s
k

, a
k

)� �u
k

(s
k

, a
k

) if (k, s
k

, a
k

) in F
n

(x) \ G
n

(x)

x
k

(s
k

, a
k

) + �v
k

(s
k

, a
k

) if (k, s
k

, a
k

) in G
n

(x) \ F
n

(x)

x
k

(s
k

, a
k

) + �(v
k

(s
k

, a
k

)� u
k

(s
k

, a
k

)) if (k, s
k

, a
k

) in F
n

(x) \ G
n

(x).

(22)

Since we have x
k

(s
k

, a
k

) � �u
k

(s
k

, a
k

) for hyperarcs (k, s
k

, a
k

) in F
n

(x), w is nonnegative. Note
that w is obtained from x by redirecting flow � from F

n

(x) to G
n

(x). Thus, w satisfies the flow
balance constraints and is 0-randomized.
z is constructed similarly, by redirecting flow ✏ from G

n

(x) to F
n

(x). More precisely,

z
k

(s
k

, a
k

) =

8
>>>><

>>>>:

x
k

(s
k

, a
k

) if (k, s
k

, a
k

) not in F
n

(x) or G
n

(x)

x
k

(s
k

, a
k

) + ✏u
k

(s
k

, a
k

) if (k, s
k

, a
k

) in F
n

(x) \ G
n

(x)

x
k

(s
k

, a
k

)� ✏v
k

(s
k

, a
k

) if (k, s
k

, a
k

) in G
n

(x) \ F
n

(x)

x
k

(s
k

, a
k

) + ✏(u
k

(s
k

, a
k

)� v
k

(s
k

, a
k

)) if (k, s
k

, a
k

) in F
n

(x) \ G
n

(x).

(23)

By construction, z also satisfies the flow balance constraints and are 0-randomized. Moreover,
x = �z+✏w

�+✏

, i.e., x is a non-trivial convex combination of two 0-randomized hyperarc frequencies
and the weights are uniquely determined. ⇤

In the above lemma, an exactly 1-randomized policy x is represented as a convex combination of
two 0-randomized (thus, “less” randomized) policies z and w. The properties of the representation
are that the representation of x via convex combination of z and w is unique and that the weights
are positive. Using an argument similar to the above proof, we establish a general result for a finite
positive integer M .

Lemma 4.5 For any exactly M -randomized policy x, there exist M+1 (M�1)-randomized policies
x1, x2, . . . , xM+1 such that x can be uniquely represented as a convex combination of x1, x2, . . . , xM+1,
and moreover, the weights of the representation are positive.

Proof: We use induction on M . For M = 1, Lemma 4.4 su�ces.

Suppose the statement holds for M = M 0�1. Let x be an exactly M 0-randomized policy. There are
finitely many period-state pairs at which x randomizes; among them, let (n, s) be the period-state
pair with the biggest period index (in case of tie, choose any one of them). Then, at (n, s), there exist
actions a, b1, b2, . . . , bl on which x has a positive flow, say x

n

(s, a) = � > 0 and x
n

(s, bi) = ✏
i

> 0 for
i = 1, 2, . . . , l. Let ✏ =

P
l

i=1 ✏i. We show that x is a convex combination of two (M 0�1)-randomized
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hyperarc frequencies, denoted as w and z. To define w and z, we first introduce flows u and vi for
i = 1, 2, . . . , l. Construction of flow u is exactly the same as in the proof of Lemma 4.4.

For i = 1, 2, . . . , l, define vi in the same way v was defined in the proof of Lemma 4.4 except that
the starting hyperarc is (n, s, bi). More precisely, For k = n+1, n+2, . . ., let T i

k

(x) ⇢ S be the set
of states in period k that receive any portion of flow ✏

i

originating from hyperarc (n, s, bi) under
policy x. For any t

k

2 T i

k

(x), there exists a unique action b
k

(t
k

) such that x
k

(t
k

, b
k

(t
k

)) > 0. Let
Gi(x) be the sub-hypernetwork formed by the node (n, s), hyperarc (n, s, bi), nodes in [1

k=n+1T i

k

(x)
and hyperarcs [1

k=n+1{(k, tk, bk(tk)) | tk 2 T i

k

(x)}. Construct flow vi as follows. Let the node (n, s)
have supply 1 and all other nodes in Gi(x) have 0. Set vi

n

(s, bi) = 1 and for each t
n+1 2 T i

n+1(x),
set

vi
n+1(tn+1, bn+1(tn+1)) =

lX

i=1

p
n

(t
n+1|s, bi)vn(s, bi). (24)

For k = n+ 2, n+ 3, . . . and for each t
k

2 T i

k

(x), set

vi
k

(t
k

, b
k

(t
k

)) =
X

tk�12T i
k�1(x)

p
k�1(tk|tk�1, bk�1(tk�1))v

i

k�1(tk�1, bk�1(tk�1)). (25)

Set v =
P

l

i=1 ✏iv
i. Then by using the same interpretation as in the proof of Lemma 4.4, we have

x
k

(t
k

, b
k

(t
k

)) � P
l

i=1 ✏iv
i

k

(t
k

, b
k

(t
k

)) for hyperarcs (k, t
k

, b
k

(t
k

)) in [l

i=1Gi(x).
Then, we construct flow w and z using (22) and (23), respectively. That is, w is obtained from
x by redirecting flow � from F(x) to Gi(x)’s while maintaining the original proportion of flows in
Gi(x)’s, and z is obtained from x by redirecting total flow ✏ from Gi(x)’s to F(x). By construction,
w and z are nonnegative and satisfy the flow balance constraints.

Moreover, note that except at (n, s), x does not have any randomization in either F(x) or Gi(x)
for i = 1, 2, . . . , l. Thus, w is exactly (M 0 � 1)-randomized and z is exactly (M 0 � l)-randomized.
By construction, x = �z+✏w

�+✏

, i.e., x is a convex combination of two (M 0 � 1)-randomized hyperarc
frequencies.

By the induction hypothesis, w is uniquely represented as a convex combination of M 0 (M 0 � 2)-
randomized hyperarc frequencies, say w1, w2, . . . , wM

0
with weights �1,�2, . . . ,�

M

0 and the weights
are all positive. Thus, x is a convex combination of z and w1, w2, . . . , wM

0
, i.e., M 0 + 1 M 0-

randomized policies. Now we have to show that the representation of x via convex combination of
z and w1, w2, . . . , wM

0
is unique and all of the weights are positive. Let

x = �
z

z +
M

0X

i=1

�
i

wi (26)

�
z

+
M

0X

i=1

�
i

= 1 (27)

where �
z

2 [0, 1] and �
i

2 [0, 1] for i = 1, 2, . . . ,M 0. By the definitions of w and z, and the fact
that w is a convex combination of w1, w2, . . . , wM

0
, we have z

n

(s, a) = � + ✏ > 0 and wi

n

(s, a) = 0
for i = 1, 2, . . . ,M 0. However, x

n

(s, a) = � > 0. Therefore, we should have �
z

= �

�+✏

> 0. From
(26), we obtain

M

0X

i=1

�
i

wi = x� �
z

z =
�z + ✏w

� + ✏
� �z

� + ✏
=

✏w

� + ✏
.

13



Since ✏

�+✏

> 0, by dividing the both sides by ✏

�+✏

we obtain

w =
M

0X

i=1

�0
i

wi, (28)

where �0
i

= �+✏

✏

�
i

. From (27), we also have
P

M

0

i=1 �
0
i

= 1. By the induction hypothesis, there exist
unique �0

i

’s for i = 1, 2, . . . ,M 0 that satisfy (28) and they are positive. Thus, there exist positive
and unique �

i

for i = 1, 2, . . . ,M 0 that satisfy (26) and (27) along with �
z

= �

�+✏

. Therefore, when

x is represented as a convex combination of z and w1, w2, . . . , wM

0
, all of the weights should be

positive and the weights are uniquely determined. By induction, the lemma is proven. ⇤

By the above lemma, for any finite positive integer M and any exactly M -randomized policy x, we
can find M + 1 (M � 1)-randomized policies x1, x2, . . . , xM+1 that belong to the submodel defined
by x such that we can uniquely represent x as a convex combination of x1, x2, . . . , xM+1 and the
weights of convex combination are positive. For 1-randomized policies, we prove a somewhat
extended result with the same properties.

Lemma 4.6 For any 1-randomized policy x and for any positive integer L, there exist an integer
L̄ � L and policies x1, x2, . . . , xL̄ that belong to the submodel defined by x such that x can be uniquely
represented as a convex combination of x1, x2, . . . , xL̄, and moreover, the weights are positive.

Proof: Let H(x, n) , {(n, s0, a0) | x
n

(s0, a0) > 0, s0 2 S, a0 2 A}, that is, H(x, n) is the set of
hyperarcs used by x in period n. In addition, let r

n

(x) = |H(x, n)| � |S|, that is, the number of
“additional ” actions used by x compared to a deterministic policy in period n. We use induction
on L. For L = 1, we can let L̄ = L = 1 and x1 = x, then this choice satisfies the statement.

Suppose the statement holds for L = L0 � 1 � 1. Let x be an 1-randomized policy, thenP1
n

0=1 rn0(x) = 1. Let n = min{n̄ | Pn̄

n

0=1 rn0(x) � L0}. Choose a state s 2 S such that at period-
state pair (n, s), x randomizes over multiple actions, say a, b1, b2, . . . , bl. Let x

n

(s, a) = � > 0 and
x
n

(s, bi) = ✏
i

> 0 and let ✏ =
P

l

i=1 ✏i. We will represent x as a convex combination of two hyperarc
frequencies, w and z. Again, we define flows u and vi for i = 1, 2, . . . , l to construct w and z.

Fix i and we first define vi. For k = n + 1, n + 2, . . ., let T i

k

(x) ⇢ S be the set of states in period
k that receive any portion of flows ✏

i

originating in hyperarc (n, s, bi) under policy x. For any
t
k

2 T i

k

(x), let Bi

k

(t
k

) be the set of actions b
k

2 A such that x
k

(t
k

, b
k

) > 0. Let Gi(x) be the sub-
hypernetwork formed by the node (n, s), hyperarc (n, s, bi), nodes in [1

k=n+1T i

k

(x) and hyperarcs
in [1

k=n+1 [tk2T i
k (x)

Bi

k

(t
k

). For any m 2 N, t 2 S, b 2 A, let �
m

(t, b) = x
m

(t, b)/
P

b

02A x
m

(t, b0).

Then, a flow vi is defined in the following way. Let node (n, s) have supply 1 and all other nodes
in Gi(x) have supply 0. Set vi

n

(s, bi) = 1 and for each t
n+1 2 T i

n+1(x) and each b
n+1 2 Bi

n+1(tn+1),
set

vi
n+1(tn+1, bn+1) = �

n+1(tn+1, bn+1)pn(tn+1|s, bi). (29)

For k = n+ 2, n+ 3, . . . and for each t
k

2 T i

k

(x) and b
k

2 Bi

k

(t
k

), set

vi
k

(t
k

, b
k

) = �
k

(t
k

, b
k

)
X

tk�12T i
k�1(x)

X

bk�12Bi
k�1(tk�1)

p
k�1(tk|tk�1, bk�1)v

i

k�1(tk�1, bk�1). (30)

A flow u is defined similarly in the sub-hypernetwork consisting of the node (n, s), hyperarc (n, s, a)
and the part of the hypernetwork receiving any portion of the flow �.
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As in the proof of Lemma 4.5, w is obtained from x by (22), redirecting flow � from F(x) to
Gi(x)’s while maintaining the original proportion of flows in Gi(x)’s, and z is obtained from x by
(23), redirecting flow ✏ from Gi(x)’s to F(x). By construction, w and z satisfy the flow balance
constraints, and we have x = �z+✏w

�+✏

.

In the construction of w, the hyperarc (n, s, a) is the only randomization removed from x in periods
1, 2, . . . , n. Since

P
n

n

0=1 rn0(x) � 1 � L0 � 1, w is at least (L0 � 1)-randomized. We consider the
following two cases regarding the randomization of w.

If w is exactly N̄ -randomized for some finite positive integer N̄ � L0�1, then by Lemma 4.5, there
exists N̄ + 1 (N̄ � 1)-randomized policies w1, w2, . . . , wN̄+1 such that w is uniquely represented
as a convex combination of w1, w2, . . . , wN̄+1 and the weights are positive. By arguments in the
proof of Lemma 4.5, we can show that z is necessary to represent x as a convex combination of z
and w1, w2, . . . , wN̄ and the weight of z is �

�+✏

> 0. Moreover, we can also prove that all of the

N̄ + 1(� L0) policies, z and w1, w2, . . . , wN̄ are necessary to represent x as a convex combination
of them, i.e., positive weights and that the weights are uniquely determined.

If w is 1-randomized, by the induction hypothesis, there exists a positive integer N 0 � L0 � 1
and policies w1, w2, . . . , wN

0
such that w is uniquely represented as a convex combination of

w1, w2, . . . , wN

0
and the weights are positive. Similarly, we can show that all of z and w1, w2, . . . , wN

0

are necessary to represent x as a convex combination of them and the weights are uniquely deter-
mined.

Therefore, by induction, the lemma is proven. ⇤

5 Necessary Conditions for an Extreme Point

We now return to constrained MDPs. In this section we provide necessary conditions for a feasible
solution of (P ) to be an extreme point, while the next section deals with a necessary and su�cient
condition. Although many researchers have studied constrained MDPs, as far as we know, alge-
braic characterization of extreme points of CILPs that represent constrained MDPs with countably
infinite number of states was not studied before. In this section, the existence of K-randomized
optimal policy, which was also proven in [7] for a more general class of constrained MDPs, is given
as a corollary of one of the necessary conditions. By combining Lemma 4.5 and Lemma 4.6, for
any M -randomized policy x for K + 1  M  1 we can find N policies x1, x2, . . . , xN for some
finite integer N > K + 1 such that x can be uniquely represented as a convex combination of the
N policies and the weights are positive. Using this fact, we prove the following theorem. However,
note that we are using the representation in Section 4.2, thus N may not be the number of deter-
ministic policies in the submodel defined by x and x1, x2, . . . , xN belong to the submodel defined
by x but may not be deterministic.

Theorem 5.1 Any extreme point of P is K-randomized.

Proof: Let x be an extreme point of P. Suppose that x is exactly M -randomized for some
K + 1  M  1. Then by Lemma 4.5 and Lemma 4.6, there exist a positive integer N > K + 1,
policies x1, x2, . . . , xN and positive weights �1,�2, . . . ,�N

whose sum is one such that x =
P

N

i=1 �i

xi

and the weights are uniquely determined by the N policies. Note that the N policies x1, x2, . . . , xN

may not be feasible to (P ). Consider a feasibility problem (F1) finding a convex combination of
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x1, x2, . . . , xN that is feasible to (P ). That is, (F1) finds a set of nonnegative weights ⌫1, ⌫2, . . . , ⌫N
that sum up to one such that x0 =

P
N

i=1 ⌫ix
i 2 P. We can easily show that any convex combination

of hyperarc frequencies is a hyperarc frequency. Thus, in order for x0 to belong to P, it only has
to satisfy the inequality constraints (4), i.e., for k = 1, 2, . . . ,K,

V
k

�
X

n2N

X

s2S

X

a2A
↵n�1dk

n

(s, a)x0
n

(s, a) =
X

n2N

X

s2S

X

a2A
↵n�1dk

n

(s, a)
NX

i=1

⌫
i

xi
n

(s, a)

=
NX

i=1

⌫
i

X

n2N

X

s2S

X

a2A
↵n�1dk

n

(s, a)xi
n

(s, a) ,
NX

i=1

⌫
i

Dk(xi). (31)

The exchange of sums is justified because x1, x2, . . . , xN are hyperarc frequencies, so they satisfy
(6), and thus Dk(xi) exists for k = 1, 2, . . .K and i = 1, 2, . . . , N . To use matrix notation, let D =
{D

k,i

} 2 RK⇥N where D
k,i

, Dk(xi), ⌫ = (⌫1, ⌫2, . . . , ⌫N )T 2 RN , and v = (V1, V2, . . . , VK

)T 2 RK .
Then the feasibility problem (F1) is written as

(F1) min 0

T ⌫ (32)

s.t. D⌫ + t = v (33)

1

T ⌫ = 1 (34)

⌫ � 0, t � 0. (35)

(F1) is a finite LP in standard form with K + 1 equality constraints and N + K variables. Note
that ⌫ = � = (�1,�2, . . . ,�N

)T is feasible to (F1) with some slack t
�

since x is feasible to (P ), and
we know �

i

> 0 for i = 1, 2, . . . , N . Since N > K + 1, (�, t
�

) is not an extreme point of (F1).
Therefore, it is a convex combination of extreme points of (F1), say (⌫1, t1), (⌫2, t2), . . . , (⌫m, tm) for
some positive integer m. Set zj , P

N

i=1 ⌫
j

i

xi for j = 1, 2, . . . ,m. For j = 1, 2, . . . ,m, zj is feasible

to (P ) because (⌫j , tj) is feasible to (F1). Since x =
P

N

i=1 �i

xi and � is a convex combination of
⌫1, ⌫2, . . . , ⌫m, we can easily show that x is a convex combination of z1, z2, . . . , zm. To see this,
let

� =
mX

j=1

a
j

⌫j

for some a
j

2 [0, 1] for j = 1, 2, . . . ,m such that
P

m

j=1 aj = 1. Then

x =
NX

i=1

�
i

xi =
NX

i=1

mX

j=1

a
j

⌫j
i

xi =
mX

j=1

a
j

NX

i=1

⌫j
i

xi =
mX

j=1

a
j

zj .

Any extreme point of (F1) has at most K + 1 nonzeros. Thus ⌫1, ⌫2, . . . , ⌫m have at most K + 1
nonzeros whereas � has N > K + 1 nonzeros. Since � is the unique weight vector to represent
x via convex combination of x1, x2, . . . , xN , zj for j = 1, 2, . . . ,m are di↵erent from x. That is,
x is a convex combination of feasible solutions of (P ) that are di↵erent from x, contradicting the
assumption that x is an extreme point of P. Therefore, the theorem is proven. ⇤

Theorem 2.1 and Theorem 5.1 lead to the following corollary.

Corollary 5.2 (Q) has a K-randomized optimal policy.
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The existence of K-randomized optimal policy for constrained stationary MDPs with countably in-
finite number of states, which covers the stationary MDP counterpart of constrained nonstationary
MDPs with finite state space, was also proved in [7]. However, they used a di↵erent approach based
on vector optimization and geometry of the performance set where performance set is defined as the
set of vectors (C(�,⇡), D1(�,⇡), D2(�,⇡), . . . , DK(�,⇡)) for any ⇡ 2 ⇧. Our proof is conceptually
simpler and gives insights on geometry of the feasible region of the CILP representation of a class
of constrained MDPs with countably infinite number of states.

The next theorem shows that at an extreme point x that usesM “more” actions than a deterministic
policy at least M inequality constraints (4) are binding. To illustrate this, consider a feasible set
{(x, s) | Ax + s = b, x � 0, s � 0} of a finite LP. At an extreme point (x, s), the number of basic
variables equals the number of equality constraints. That is, in order to make one more variable
in x basic, one of the basic variables in the slack s should become nonbasic. The next theorem
extends this condition to the CILP (P ).

Theorem 5.3 For any integer M  K, at an extreme point of P that is exactly M -randomized,
at least M of the inequality constraints (4) are binding.

Proof: Let x be an extreme point of (P ) that is exactly M -randomized. Suppose that only k < M
inequalities of (4) are binding at x. Let x1, x2, . . . , xM+1 be the M +1 (M �1)-randomized policies
and � be the weight found by Lemma 4.5. Consider a feasibility problem (F2) which finds a convex
combination of x1, x2, . . . , xM+1 that is feasible to (P ). Using similar notations, (F2) is formulated
as an LP (32) through (35), but it has M + 1+K variables and K + 1 equality constraints. Since
x is feasible to (P ), � is feasible to (F2) with some slack variable t

�

. Since only k of the constraints
(4) are binding at x, the slack t

�

has K � k nonzeros. Therefore, (�, t
�

) has M + 1 + K � k
nonzeros and since k < M , we have M + 1 + K � k > K + 1. This implies that (�, t

�

) is not
an extreme point of (F2). Then, (�, t

�

) is a convex combination of extreme points of (F2), say
(⌫1, s1), (⌫2, s2), . . . , (⌫m, sm) for some positive integer m. Note that this convex combination is
not a trivial one. Also, note that slack variables are determined by the weight variables, i.e., an
equality � = ⌫

j

for some j implies (�, t
�

) = (⌫j , sj). Thus, ⌫1, ⌫2, . . . , ⌫m are di↵erent from �.

Set zj , P
N

i=1 ⌫
j

i

xi for j = 1, 2, . . . ,m. Then, by Lemma 4.5, z1, z2, . . . , zm are di↵erent from x.
Similarly to the proof of Theorem 5.1, zj for j = 1, 2, . . . ,m is feasible to (P ) and x is a convex
combination of z1, z2, . . . , zm, contradicting that x is an extreme point of P. ⇤

6 A Necessary and Su�cient Condition for an Extreme Point

From the previous section, Theorem 5.1 and Theorem 5.3 lead to the following necessary condition
for x 2 P to be an extreme point: it should be exactly M -randomized for some M  K and at least
M of the inequality constraints should be binding at x. In this section, we establish a necessary
and su�cient condition for a feasible solution to (P ) to be an extreme point. We first introduce a
definition of an extreme set [21].

Definition 6.1 A convex subset E of a convex set D is called extreme if any representation x =
�z + (1� �)w for 0 < � < 1, with z, w 2 D of a point x 2 E implies z, w 2 E.

For example, a face of a polyhedron in a finite dimensional space is an extreme set of the polyhedron.
A subset E of a convex set D is called exposed if there is a hyperplane H supporting E such that
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E = H \ D. In general, an exposed subset of a convex set is extreme but the converse may not
hold [7].
Guided by the necessary conditions from the previous section, we consider an exactlyM -randomized
feasible policy x where M  K at which M of the inequality constraints (4) are binding. Let B be
the submodel defined by x. Let N be the number of deterministic policies in the submodel B and
let x1, x2, . . . , xN be these deterministic policies. Notice that the definition of xi for i = 1, 2, . . . , N
is di↵erent from the one in Section 5. Consider a feasibility problem (G) which finds a convex
combination of x1, x2, . . . , xN that is feasible to (P ). Explicitly, (G) finds a set of nonnegative
weights ⌫1, ⌫2, . . . , ⌫N that sum up to one such that

P
N

i=1 ⌫ix
i 2 P. By using the same notations

of (F1), (G) is formulated as:

(G) min 0

T ⌫

s.t. D⌫ + t = v

1

T ⌫ = 1

⌫ � 0, t � 0.

We emphasize that unlike (F1) and (F2), (G) finds a feasible convex combination of deterministic
policies and N is the number of deterministic policies in the submodel B.
By Lemma 4.2, there exists a (possibly multiple) nonnegative weight vector � = (�1,�2, . . . ,�N

)T

that sum up to one such that x =
P

N

i=1 �i

xi. Since x is feasible to (P ), ⌫ = � is feasible to (G)
with some slack variables. We can easily prove that the slack variables depend not on the weight
� but only on the policy x itself, thus let t

x

denote the vector of slack variables corresponding to
x. Let

⇤̃(x) =
�
(�, t

x

) 2 RN ⇥ RK

+ | � 2 ⇤(x), t
x

= v �D�
 
.

Note that the last K components of elements of ⇤̃(x) (the slack part) are fixed at t
x

. Since x is
feasible to (P ), ⇤̃(x) is contained in the feasible region of (G). We state the following theorem, a
proof of which will be provided later in this section.

Theorem 6.2 A feasible exactly M -randomized policy x for some M  K at which at least M of
the inequality constraints (4) are binding is an extreme point of P if and only if ⇤̃(x) is an extreme
set of the feasible region of (G).

Theorem 5.1, Theorem 5.3, and Theorem 6.2 lead to the following corollary, a necessary and
su�cient condition for a feasible solution of (P ) to be an extreme point and the condition can be
checked using the finite LP (G).

Corollary 6.3 A feasible solution x to (P ) is an extreme point of (P ) if and only if it is an exactly
M -randomized policy for some M  K at which at least M of the inequality constraints (4) are
binding and ⇤̃(x) is an extreme set of the feasible region of (G).

We first illustrate the above corollary for the case of K = 1. For K = 1, the only candidates to be
considered are feasible deterministic policies and feasible exactly 1-randomized policies for which
the constraint (4) is binding. Let x be a feasible deterministic policy. Let t

x

be the slack variable
for x. Then, ⇤̃(x) = {(1, t

x

)} and (G) is formulated as

min 0

T ⌫

s.t. D(x)⌫ + t = V

⌫ = 1

⌫ � 0, t � 0,
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thus (G) has a feasible region that consists of one point, (1, t
x

). Therefore, ⇤̃(x) is an extreme
set of the feasible region of (G). Now, let x be a feasible 1-randomized policy with t

x

= 0. There
exists � 2 (0, 1) and deterministic policies x1, x2 such that x = �x1 + (1 � �)x2, and we have
⇤̃(x) = {(�, 1 � �, 0)T }. Since ⇤̃(x) is a singleton, it is an extreme set if and only if the point
(�, 1 � �, 0)T is an extreme point. Since K = 1, by dropping the constraint index k, (G) can be
written as

min 0

T ⌫

s.t. D(x1)⌫1 +D(x2)⌫2 + t = V

⌫1 + ⌫2 = 1

⌫ � 0, t � 0.

Since (�, 1 � �, 0) should be feasible to the above (G), we have either D(x1) < V < D(x2) or
D(x2) < V < D(x1) or D(x1) = D(x2) = V . The point (�, 1��, 0) is an extreme point if and only if
the corresponding basis matrix is nonsingular, which is equivalent toD(x1) 6= D(x2). Consequently,
⇤̃(x) is an extreme set of the feasible region of (G) if and only if either D(x1) < V < D(x2) or
D(x2) < V < D(x1). Therefore, according to Corollary 6.3, for K = 1, a feasible solution x of (P )
is an extreme point if and only if x is either a feasible deterministic policy or a feasible exactly
1-randomized policy such that the inequality constraint is binding at x and it is a non-trivial
convex combination of two deterministic policies x1 and x2 for which either D(x1) < V < D(x2)
or D(x2) < V < D(x1) holds.

To gain intuition, consider the intersection of a polyhedron and a halfspace in a finite dimensional
space (Figure 1). Extreme points of the intersection of the polyhedron P and the halfspace defined
by an additional constraint {x : dTx  v} are either extreme points of P that belong to the
halfspace (such as x3 in Figure 1) or points where an edge of P intersects the hyperplane defined
by the halfspace (such as x0 in Figure 1, which is a convex combination of adjacent extreme points
x1 and x2 of P ). Consider now an unconstrained MDP obtained by excluding the linear inequality
constraint (4) from (P ). A feasible solution to the unconstrained MDP is an extreme point if and
only if it is a deterministic policy (Theorem 4.3 of [10]). Then, the necessary and su�cient condition
for K = 1 shows that the characterization of extreme points of the intersection of a polyhedron
and a halfspace in finite dimensional space naturally extends to P, the intersection of the infinite
dimensional feasible region of the unconstrained MDP and the set satisfying the (linear) inequality
constraint.

Proof of Theorem 6.2: Suppose that ⇤̃(x) is not an extreme set of (G). Then there exist (�, t1)
and (⌧, t2) that are feasible to (G) such that (✓�+(1�✓)⌧, ✓t1+(1�✓)t2) 2 ⇤̃(x) for some ✓ 2 (0, 1)
but either (�, t1) /2 ⇤̃(x) or (⌧, t2) /2 ⇤̃(x). Without loss of generality, suppose (�, t1) /2 ⇤̃(x). Let
z , P

N

i=1 �ix
i and w , P

N

i=1 ⌧ix
i, then z and w are feasible to (P ). If z = x, then it implies

(�, t1) 2 ⇤̃(x) since the slack of z, t1, should equal the slack of x. Thus, z is not equal to x.
However, x =

P
N

i=1[✓�i + (1 � ✓)⌧
i

]xi = ✓z + (1 � ✓)w and we have ✓ 2 (0, 1) and z 6= x. Since �
and ⌧ are feasible to (G), z and w are feasible to (P ). Therefore, x is not an extreme point of (P ).
We showed that if x is an extreme point, then ⇤̃(x) is an extreme set of (G).

Suppose x is not an extreme point of (P ). Then there exist z and w feasible to (P ) such that
x = ✓z + (1 � ✓)w for some ✓ 2 (0, 1). Since z and w belong to the submodel defined by x, let
z =

P
N

i=1 �ix
i and w =

P
N

i=1 ⌧ix
i for nonnegative weight vectors � and ⌧ such that each of them

sums up to be one. Since z and w are feasible to (P ), � and ⌧ are feasible to (G) with slack
variables t

z

and t
w

, respectively. Since z and w are di↵erent from x, (�, t
z

) and (⌧, t
w

) are not in
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Figure 1: Extreme points for K = 1

⇤̃(x). However,

NX

i=1

[✓�
i

+ (1� ✓)⌧
i

]xi = ✓

NX

i=1

�
i

xi + (1� ✓)
NX

i=1

⌧
i

xi = ✓z + (1� ✓)w = x,

and moreover,

✓t
z

+ (1� ✓)t
w

= ✓(v �D�) + (1� ✓)(v �D⌧) = v �D(✓� + (1� ✓)⌧) = t
x

.

Therefore, (✓�+(1�✓)⌧, ✓t
z

+(1�✓)t
w

) 2 ⇤̃(x) and it is a convex combination of (�, t
z

) and (⌧, t
w

)
which are not in ⇤̃(x). That is, ⇤̃(x) is not an extreme set of the feasible region of (G). Therefore,
if ⇤̃(x) is an extreme set of (G), then x is an extreme point of (P ).

By combining the above arguments, the theorem is proven. ⇤

The next example illustrates Theorem 6.2 for a kind of 2-randomized policy where K = 2.

Example 1 Let K = 2 and consider an exactly 2-randomized policy x such that the two inequality
constraints (4) are binding at x and x randomizes only at a period-state pair (n, s) over three actions,
say a1, a2, and a3. Then in the submodel defined by x, there are three deterministic policies, say
x1, x2, x3 where xi chooses ai at (n, s) for i = 1, 2, 3. Let x =

P3
i=1 �i

xi and � has positive entries
whose sum is one. Since the two inequality constraints are binding at x, its corresponding slack
variables form a zero vector. We can check that ⇤̃(x) = {(�1,�2,�3, 0, 0)}. Then, Theorem 6.2
implies that x is an extreme point of (P ) if and only if (�1,�2,�3, 0, 0) is an extreme point of the
finite LP (G), which is equivalent to the following basis matrix being nonsingular:

D
B

=

2

4
D1(x1) D1(x2) D1(x3)
D2(x1) D2(x2) D2(x3)

1 1 1

3

5 .

We can consider xi for i = 1, 2, 3 as a vector in R1. Consider the subspace S of R1 spanned by
x1, x2, x3. We can easily show that x1, x2, x3 are linearly independent, so the dimension of S is
three. Define an isomorphism linear operator T : S ! R3 as T (⌫1x1 + ⌫2x

2 + ⌫3x
3) = (⌫1, ⌫2, ⌫3).
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Since x is a convex combination of x1, x2, x3, Tx belongs to the hyperplane ⌫1 + ⌫2 + ⌫3 = 1
in R3 which we denote by P . D1(·) is a linear functional on R1 and D1(x0) = v1 defines a
hyperplane in R1. The image of the intersection of the hyperplane and S by T can be written as
D1(⌫1x1 + ⌫2x

2 + ⌫3x
3) = D1(x1)⌫1 + D1(x2)⌫2 + D1(x3)⌫3 = v1, which also defines a plane in

R3 and we denote the plane in R3 as P 1. In the same way, we can define another plane P 2 in R3

which is the image of the intersection of the hyperplane D2(x0) = v2 and S by T . Then, we can see
that the nonsingularity of D

B

is equivalent to that the planes P , P 1, and P 2 meet at one point in
R3. However, Tx = (�1,�2,�3) is on P and x also satisfies D1(x) = v1 and D2(x) = v2. Thus,
if the planes P , P 1, and P 2 meet at one point, then Tx is the point. Therefore, the necessary and
su�cient condition given by Theorem 6.2 is equivalent to that the planes P , P 1, and P 2 meet only
at Tx.
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