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Transcriptional regulation of gene expression is vital for
proper control of proliferation, migration, differentiation,
and survival of developing neurons. Pitx2 encodes a
homeodomain transcription factor that is highly
expressed in the developing and adult mammalian brain.
In humans, mutations in PITX2 result in Rieger syndrome,
characterized by defects in the development of the eyes,
umbilicus, and teeth and variable abnormalities in the
brain, including hydrocephalus and cerebellar hypoplasia.
Alternative splicing of Pitx2 in the mouse results in three
isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is
expressed symmetrically along the left–right axis of the
brain throughout development. Here, we review recent
evidence for axial and brain region-specific requirements
for Pitx2 during neuronal migration and differentiation,
highlighting known isoform contributions. VC 2014 Wiley

Periodicals, Inc.
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In humans, heterozygosity for mutations in the
homeodomain transcription factor gene PITX2 results in
Rieger syndrome, characterized by ocular defects, dental
malformations/hypodontia, craniofacial abnormalities,
and failure of periumbilical involution (Semina et al.,
1996). Some individuals with Rieger syndrome have
structural brain defects that include cerebellar hypoplasia,
enlargement of the cisterna magna, and hydrocephalus,
but the underlying mechanisms contributing to these
defects are not known (Idrees et al., 2006). In humans,
PITX2 is expressed as four distinct isoforms, PITX2A,
PITX2B, PITX2C, and PITX2D, through alternative
splicing and promoter usage (Cox et al., 2002); however,
the specific expression patterns of each isoform in the
human brain have not been fully explored.

In mice, Pitx2 has a broad range of expression and is
required for development of the eyes, teeth, heart, lungs,
gut, umbilicus, and central nervous system (CNS; Ryan
et al., 1998; Gage et al., 1999; Kitamura et al., 1999; Lin
et al., 1999; Hjalt et al., 2000; Suh et al., 2002; Martin

et al., 2004). In the CNS, Pitx2 is expressed in the fore-
brain (subthalamic nucleus, mammillary region, and zona
limitans intrathalamica), midbrain (superior colliculus and
red nucleus), hindbrain (ventral rhombomere 1), and spi-
nal cord (Fig. 1; Mucchielli et al., 1997; Lindberg et al.,
1998; Martin et al., 2002; Zagoraiou et al., 2009; Waite
et al., 2011, 2012; Matsui et al., 2013). Pitx2 is expressed
in mice as three distinct isoforms, Pitx2a, Pitx2b, and
Pitx2c. In the mouse, all three isoforms are expressed in
the developing craniofacial tissue, brain, hematopoietic
stem cells in the liver, pituitary, eyes, and teeth (Gage and
Camper; 1997; Smidt et al., 2000; C. Liu et al., 2001; W.
Liu et al., 2003; Kieusseian et al., 2006; Ai et al., 2007;
Waite et al., 2013), whereas only Pitx2c is expressed in the
lateral plate mesoderm, heart, lungs, and gut (Kitamura
et al., 1999; Schweickert et al., 2000; Yu et al., 2001).

All three isoforms are present by E9.25–E9.5 in the
developing brain (Gage and Camper, 1997; Smidt et al.,
2000; C. Liu et al., 2001; W. Liu et al., 2003; Kieusseian
et al., 2006; Ai et al., 2007; Waite et al., 2011). In the
developing zebrafish brain, Pitx2c is expressed asymmetri-
cally, and Pitx2a and Pitx2b are not present (Essner et al.,
2000), suggesting that the requirements and roles for
Pitx2 isoforms are species specific.

PROLIFERATION AND MIGRATION

Pitx2 is expressed primarily in postmitotic neurons (Smidt
et al., 2000; Martin et al., 2002) and has no known role in
neural progenitor proliferation. Global and neural-specific
loss of Pitx2 results in arrested or delayed migration of
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neurons in the subthalamic nucleus and midbrain in a
cell-autonomous manner (Martin et al., 2004; Skidmore
et al., 2008; Waite et al., 2011). Effects of Pitx2 deficiency
on migration have not been observed at other axial levels,
and it is not known whether Pitx2 regulates proliferation
or neuronal migration in other brain regions.

GABAergic DIFFERENTIATION

In the dorsal midbrain, Pitx2 is required for the develop-
ment of GABAergic neurons via a molecular cascade that
begins with Helt, a basic helix-loop-helix (bHLH) tran-
scription factor expressed in, and required for, GABAer-
gic midbrain progenitor neuronal differentiation (Cazorla
et al., 2000; Miyoshi et al., 2004; Nakatani et al., 2004).
Helt cooperates with Ascl1 to promote GABAergic differ-
entiation, and Helt is required for expression of the tran-
scription factor Gata2 in neural progenitors as they exit
the cell cycle (Kala et al., 2009). In turn, Gata2 is required
in neuronal GABAergic precursors to promote GABAer-
gic over glutamatergic fates and for downstream Pitx2
expression. Pitx2 null mice exhibit loss of GABA in mid-

brain Pitx2-expressing neurons, suggesting that Pitx2 is
required for GABAergic differentiation of a midbrain
neuronal subpopulation (Waite et al., 2011). Finally,
Pitx2 is known to activate the Gad1 promoter (West-
moreland et al., 2001) and might therefore function as a
GABAergic terminal differentiation factor in the midbrain
Helt cascade.

Although Pitx2 appears to be required for the differ-
entiation of some GABAergic subpopulations, little is
known about human diseases resulting from GABAergic
neuron loss in these regions. Additionally, genes required
for GABAergic subpopulation differentiation, such as
Ascl1, Helt, and Gata2, are critical for mouse survival, and
detailed studies of conditional deletions are required to
determine the downstream impact of GABAergic neuro-
nal loss (Guillemot et al., 1993; Tsai et al., 1994; Guimera
et al., 2006). Mice lacking Helt die at 5 weeks old, possi-
bly as a result of neurological impairment, suggesting that
the loss of specific GABAergic subpopulations might be
fatal. Studies of fetal valproate syndrome suggest that early
loss of specific GABAergic subpopulations in the superior
colliculus might result in decreased startle responses and

Fig. 1. Pitx2 expression throughout the brain and spinal cord and effects of loss of Pitx2 on various
neuronal populations. Schematic of Pitx2 expression in coronal sections of the forebrain, midbrain,
hindbrain, and spinal cord. Left side of the coronal section represents control genotype, and right
side represents the Pitx2 null genotype. Pitx2-positive populations are color coded based on their
neurotransmitter identity. IIIv, third ventricle; Aq, aqueduct; MR, mammillary region; RN, red
nucleus; SuC, superior colliculus; STN, subthalamic nucleus.
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prepulse inhibition as well as increased sensitivity to noci-
ception (Dendrinos et al., 2011). Future studies will iden-
tify additional functional roles for specific Pitx2-
expressing GABAergic subpopulations and how they
impact behavioral and health disorders.

AXON FORMATION

In addition to its roles in neural progenitor proliferation,
differentiation, and migration, Pitx2 has been shown to
regulate axon formation of the mammillothalamic tract
(MTT), an axonal projection that is involved in self-
movement cue processing and spatial memory (Vann and
Aggleton, 2003, 2004; Kim et al., 2009; Winter et al.,
2011). Normally, the MTT is detectable in mice at E18 as
it bifurcates rostrally from the principal mammillary tract
(PMT; Valverde et al., 2000; Skidmore et al., 2012). In
Nestin-Cre Pitx2 conditional null mice, the PMT appears
normal in size and location, whereas the MTT is absent.
Because Pitx2 is highly expressed in the mammillary area
and in the cells surrounding the MTT, these data suggest
a noncell-autonomous requirement for Pitx2 in the estab-
lishment of this important neural projection (Skidmore
et al., 2012).

NEURONAL SURVIVAL AND MAINTENANCE

Pitx2 expression persists in the brain from embryonic
development through adulthood, suggesting that it might
also have important roles in neuronal maintenance or
ongoing signaling to neighboring cells, although this has
not been formally tested (Smidt et al., 2000). Pitx2 does
not appear to be required for cell survival, in that loss of
Pitx2 does not promote neuronal death (Martin et al.,
2004; Waite et al., 2011). It is not known whether Pitx2
is required for maintenance of mature neuronal identity.

SUMMARY

In the CNS, Pitx2 is expressed in distinct neuronal popu-
lations in the forebrain, midbrain, hindbrain, and spinal
cord. Pitx2 is required in an isoform-specific manner for
formation of the MTT in the forebrain and migration and
differentiation of a midbrain GABAergic subpopulation.
The specific requirements for Pitx2 in the hindbrain and
spinal cord are still being explored, but early studies point
to functions in cellular differentiation and fate establish-
ment. Further characterization of the mechanisms by
which Pitx2 functions should lead to improvements in
our understanding of axial level-specific contexts that
influence neuronal development.
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