
PHARMACODYNAMICS AND 
DRUG ACTION 

Topographic electroencephalogram of 
propofol-induced conscious sedation 

Objectives: To determine the effects of increasing doses of propofol that induce conscious sedation on the 
topographic electroencephalogram (EEG) of human volunteers and to test the hypothesis that more 
frontal brain areas are affected by low doses of propofol. 
Methods: The scalp EEG was recorded monopolarly from 16 different sites based on the lo-20 Interna- 
tional System. Microcomputer-based hardware and RHYTHM 7.1 software were used to obtain quan- 
titative power frequency topographic EEG data. A total of 10 normal adult volunteers were given incre- 
mental doses of propofol targeted to plasma concentrations of 0 to 1200 &ml. 
Results: Sedative concentrations of propofol produced a dramatic increase in beta,, an increase in alpha, 
and beta,, and an increase in delta activity at the largest concentration, with almost no change in theta 
activity. The increase in beta, activity had a linear correlation with plasma propofol levels (r = 0.9). 
Topographic mapping indicated that beta, activation was primarily in the frontal and central regions, 
with focal changes more in the left hemisphere. 
Conclzlsions: Topographic brain EEG mapping techniques indicate that frontal brain beta, EEG activity 
may be useful as an objective brain index of propofol conscious sedation. (CLIN PHARMA COL THER 

1995;58:666-74.) 

Takuzo Kishimoto, MD,” Chitoshi Kadoya, MD,b Robert Sneyd, MD,’ 
Satwant K. Samra, MD, and Edward F. Domino, MD Ann Arbor, Mich. 

This study describes the actions of increasing seda- 
tive doses of propofol on the topographic electroen- 
cephalogram (EEG) with use of power-frequency 
spectral analysis. It is preceded by a complementary 
report that covers additional clinical pharmacologic 
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findings.‘,’ The research question to be answered was 
whether multichannel EEG recordings would reveal 
that frontal brain areas are more affected during 
propofol-induced conscious sedation in humans, and 
whether there is a correlation with plasma propofol 
levels. If there is a correlation, what is the mean effec- 
tive plasma concentration (EC,,) for the EEG changes 
observed? The results of this study indicate that fron- 
tal and central brain cortical areas are more responsive 
to low doses of propofol in humans and may be useful 
for monitoring the sedation status of patients. 

METHODS 
Subjects. This study was approved by the Commit- 

tee to Review Clinical Research and Investigation In- 
volving Human Beings (University of Michigan Medi- 
cal School, Ann Arbor, Mich.). Ten healthy, drug-free, 
paid adult volunteers (seven men and three women; 
age (mean + SEM), 25.4 + 3.3 years; weight, 74.9 2 
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5.0 kg) were recruited by local advertisement. All sub- 
jects were in good health (American Society of Anes- 
thesiologists physical status class I). Nine subjects 
were right-handed and one was born with left-hand 
dominance and forced to convert to right-hand pre- 
ferred usage. All subjects gave written informed con- 
sent. Each subject abstained from caffeine, alcohol, 
and nicotine on the day of the study and was asked to 
abstain from eating or drinking for 6 hours before- 
hand. They were also asked not to use any psychoac- 
tive drugs for several weeks before the study. No urine 
tests were performed to confirm compliance, but the 
subjects assured us that they did comply. After attach- 
ment of the scalp EEG and electrocardiogram (ECG; 
lead II) electrodes, each subject rested in the supine 
position for placement of venous cannulas and was 
asked to relax with his or her eyes closed for the du- 
ration of the study and during subsequent partial re- 
covery. The subjects did not go to sleep. 

Topographic EEG recordings. Details of the EEG 
techniques used are described elsewhere.*,’ In brief, a 
total of 16 cortical recording sites were used for mo- 
nopolar recordings linked to A,-A, as the reference 
lead per the IO-20 International System.4 An electrode 
cap (Electrode Cap International, Eaton, Ohio) was 
placed on the subject’s head with Grass electrode paste 
(Astro-Med, Inc., West Warwick, R.1.) applied to each 
electrode. Electrode impedances were always below 10 
kR and usually below 5 kS1. The EEG records taken 
from F,, F,, T3, T,, T5, T,, F,, , F,,, F3, F4, C3, C,, P3, P,, 
O,, and 0, were recorded on channels 1 to 16 of a Grass 
electroencephalograph model 8-24D (Astro-Med, Inc.). 
The ECG was recorded on channel 17. Filter settings 
were 60 Hz for notch filter, on; 1 Hz for high-pass fil- 
ter; and 35 Hz for low-pass filter. Paper recordings were 
kept and simultaneous computerized records were made 
with use of the software package RHYTHM 7.1 (Stel- 
late Systems, Westmount, Quebec, Canada) on a per- 
sonal computer (Zenith 386/25, Zenith Data Systems, 
Denver, Colo.). Frequency bands were defined as fol- 
lows: delta, 1 to 3.75 Hz; theta, 4 to 7.5 Hz; alpha,, 7.75 
to 10 Hz; alpha,, 10.25 to 12.5 Hz; beta,, 12.75 to 20 
Hz; and beta,, 20.25 to 30 Hz. 

Data analysis. Computer analysis of the electro- 
physiologic data was completed offline by the soft- 
ware package RHYTHM 7.1 on a Zenith computer. To 
reject EEG artifacts, each %-minute recording of the 
EEG was carefully inspected and segments of EEG 
free from obvious artifacts were accepted in blocks of 
2 seconds. As many artifact-free segments as possible 
were collected and submitted to the quantitative analy- 
sis. This included most of the EEG data, including all 

of the variability normally observed with resting, 
eyes-closed recordings. The subjects did not go to 
sleep, so there was no confounding of the EEG data 
between conscious sedation and stages of sleep. The 
EEG was digitalized at a sampling rate of every %LX 
second and subjected to fast Fourier transformation 
(FFT) into 0.25 Hz bins, creating power spectra up to 
30 Hz, including delta through beta, bands for each 
monopolar scalp recording. Further, the area under the 
power-frequency plot within a boundary of each fre- 
quency band (as the power integrated over each fre- 
quency band) was also computed for each lead. This 
value is proportional to the mean multiplied by the 
band width and was adopted to represent the EEG ac- 
tivity of each respective frequency band. 

The data from all 16 channels were averaged for 
each epoch to describe the gross effects of propofol on 
EEG total power for each frequency band. The data 
for each individual subject were normalized and then 
averaged across the subjects at each experimental con- 
dition. Significance of the data was evaluated with use 
of the Student paired I test. 

To describe the difference in EEG activity between 
the left and right hemispheres after propofol infusion, 
beta, activities at each experimental condition were 
computed for each individual scalp lead and then av- 
eraged for 10 subjects. Further, the increase in beta, 
activity from the control level was also calculated for 
each individual scalp lead and averaged for IO sub- 
jects at each condition. 

Topographic maps, which show the spatial distribu- 
tion of the power integrated over each frequency band, 
were created by transforming the EEG activity into 
color gradients on respective cortical brain regions 
with use of RHYTHM 7.1 software. A four nearest- 
neighbor algorithm (quadratic interpolation) is used in 
RHYTHM 7.1 software to compute interpolation. The 
topographic mappings were printed with a Hewlett- 
Packard PaintJet color graphic printer (model 3630A; 
Hewlett-Packard Co., San Diego, Calif.). 

The EEG values, as a function of plasma propofol 
concentrations, were fitted (when possible) to logistic 
data with use of the InPlot computer package (Graph- 
Pad, San Diego, Calif.). 

Experimental design. After satisfactory recording 
of the control EEG for at least 3 minutes, an intrave- 
nous infusion of propofol was given by means of a 
computerized infusion system. Four plateau plasma 
concentrations of propofol (0.3, 0.6, 0.9, and 1.2 
mg/ml), each lasting 20 minutes, were targeted to be 
infused by this system. At each plateau, EEGs were 
recorded at 5 and 15 minutes after the start of the in- 



668 Kisbimoto et al. 
CLINICAL P HARMACOLOGY & THERAPEUTICS 

DECEMBER 1995 

fusion for 2 minutes for each recording. Blood 
samples were taken immediately before the first EEG 
recording and then approximately 5 and 20 minutes 
after each step of the propofol infusion. A total of nine 
blood samples were drawn from each patient. After all 
EEG recordings and blood samples had been obtained 
at the highest concentration, the infusion was discon- 
tinued, and the subject was allowed to recover. In the 
course of the recovery, EEGs were recorded for 2 min- 
utes at about 5 or 30 minutes, or more, after cessation 
of infusion. 

Propofol in a standard emulsion formulation (1% in 
soybean oil, 100 mg/ml; 22.5 mg/ml glycerol; 12 
mg/ml purified egg lecithin with sodium hydroxide 
and sterile water adjusted to pH 7.0 to 8.5) was in- 
fused into a forearm vein by a Harvard 22 electronic 
syringe pump (Harvard Apparatus Inc., South Natick, 
Mass.). The pump was controlled by a STANPUMP* 
pharmacokinetic software and control system (Version 
10, June 1992) targeted for steady-state plasma con- 
centrations. In brief, the system uses a three-compart- 
ment kinetic model, corrected for weight and age, to 
predict plasma and “effect-site” concentrations of 
propofol. It adjusts the rate of infusion to maintain a 
preset predicted plasma or effect-site concentration. 
The STANPUMP system and its performance have al- 
ready been described.5 

A second intravenous cannula was placed in an an- 
tecubital vein of the forearm opposite that used for the 
propofol infusion. Two samples of venous blood were 
taken at each targeted plateau concentration. The first 
was sampled 5 minutes after the beginning of each 
step of the computerized infusion, and the second was 
sampled at the end of the second EEG recording for 
each step. Care was taken to clear the dead space of 
the cannula, and the sampling line was flushed with a 
heparinized 0.9% sodium chloride solution. Blood 
samples were transferred into a heparinized glass tube 
and immediately centrifuged for plasma separation. 
Plasma samples were stored on ice for a maximum of 
2 hours before freezing to -20” C. Subsequently, each 
plasma propofol concentration was assayed.6 Any re- 
maining propofol in the original stock ampule, infu- 
sion lines, and pump syringe was discarded to prevent 
bacterial growth and cross-volunteer contamination. 

RESULTS 
Global change from control: Incremental in- 

creases in plasma propofol concentrations. The ex- 

*STANF’UMP is freely available from its author, Dr. S. L. Shafer, 
Anesthesiology Service (112A). PAVAMC, 3801 Miranda Ave., 
Palo Alto, CA 94304. 

perimental design required 20-minute steps of increas- 
ing plasma propofol concentrations. Because of 
practical experimental considerations, the actual mean 
duration of individual uncomplicated steps ranged 
from 19 to 23 minutes. In a complicated case, the 
total duration of propofol infusion, including four 
steps of increasing doses, was prolonged from 4 X 
20 = 80, up to 124 minutes, to obtain satisfactory 
EEG recordings. Subjects for whom recording times 
were prolonged received larger cumulative doses of 
propofol, although the infusion rate was always held 
to the larger plasma concentration. Total doses of 
propofol ranged from 3.1 to 5.5 mg/kg body weight. 
The mean + SEM plasma propofol levels for each 
incremental step 5 minutes after the start of the 
infusion step and at the end of the infusion step were 
as follows: step 1, 146 ? 25 and 159 t 66; step 2, 
331 + 81 and 414 + 77; step 3, 679 + 148 and 
697 + 77; and step 4, 1039 2 139 and 1104 + 113 
rig/ml. 

Fig. 1 illustrates the concentration-effect relation- 
ship between the mean plasma concentration of propo- 
fol and EEG activity normalized to the control prein- 
fusion for each frequency band at the end of each 
infusion step. The vertical axis represents the mean 
from 10 subjects of the total EEG power integrated 
over each frequency band added together across all 16 
leads of the entire cortical brain area and then normal- 
ized to the control. Sedative concentrations of propo- 
fol produced a dramatic increase in total beta, activity. 
At a mean ? SEM concentration of 697 + 77 rig/ml, 
the mean total beta, activity significantly (p < 0.05, 
paired t test) increased to 340.9% + 82.0% of a con- 
trol level. Significant increases (p < 0.05 and p < 
0.01) in mean of total beta, activity were further ob- 
served at a mean f SEM propofol concentration of 
1039 & 139 and 1140 + 113 @ml. The correlation 
between the increase in plasma propofol and the in- 
crease in beta, activity was highly significant (r = 
0.9, p < 0.01). An increase in alpha, and beta, activ- 
ity and a decrease in alpha, activity were also pro- 
duced with low sedative concentrations of propofol. 
Less marked changes were observed with an increase 
in total delta activity with the largest plasma concen- 
tration of propofol. There was almost no change in to- 
tal theta activity. 

Only the beta, EEG data (Fig. 2) could be fitted to a 
general logistic concentration-response curve (rZ = 
0.997), yielding the following values (mean ? ap- 
proximate SEM): 

Maximum effect = 663% t 152% of control 

log,, (EC,,) = 2.913 t 0.117 
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Fig. 1. Concentration-effect relationships between the mean plasma concentration of propofol and 
electroencephalogram (EEG) power for each frequency band. The vertical axis represents the 
mean of the normalized total EEG activity across all 16 leads in 10 subjects. EEG activity for each 
frequency band is normalized to the preinfusion control represented as the power integrated over 
each band and then added together across all 16 electrodes sites of the whole brain. Vertical bars 

indicate +-SEM. *I, < 0.05; **p < 0.01, compared with control. 

corresponding to: 

ECS,, = 8 18 rig/ml plasma propofol 

Hill slope = 2.23 k 0.49 

The above indicated a steep concentration response 
curve which gives a slope that is not unusual for phar- 
macodynamic data.’ 

Topographic analysis: Absolute effect. Fig. 3 is a 
colored topographic map of the EEG for each fre- 
quency band obtained as the mean of the topographic 
EEG maps of all 10 subjects at each propofol concen- 
tration. During the control period, prominent alpha, 
and moderate alpha, activities were observed in the 
P,, P,, 0,, and O2 regions. Moderate to low delta ac- 
tivity in the frontal, parietal, and occipital regions, as 
well as low theta activity in the parietal and occipital 
regions, were also observed. Consistent with previous 
literature in awake normal subjects, some beta activity 
was observed before the infusion of propofol. With a 
mean 2 SEM plasma concentration of propofol of 
159 2 66 rig/ml, suppression of alpha, and alpha, ac- 
tivities were observed; no major changes were ob- 
tained in the delta, theta, or beta bands. After a mean 

? SEM concentration of propofol of 414 2 77 rig/ml, 
moderate activation of beta, activity was obtained in 
the frontal and parietal regions, whereas beta, activity 
was not affected. Alpha, power decreased markedly at 
this concentration of propofol. After a mean f SEM 
concentration of propofol of 697 ? 77 rig/ml, promi- 
nent beta, activity was observed in the F,, F,, C,, C,, 
P,, and P, regions. Delta activity was not much af- 
fected up to this concentration of propofol. Beta, ac- 
tivity in most leads in the left cortical hemisphere was 
greater than that in the right cortical hemisphere. Beta, 
activity in the F,, region at a propofol concentration 
greater than 697 -C 77 rig/ml was significantly (r, < 
0.05 and p < 0.01) greater compared with that in Fp2 
(not shown in Fig. 3). At the highest plasma concen- 
tration of propofol (1104 + 113 rig/ml), beta, activity 
further increased in the frontal and central regions, 
with a predominance on the left side. Increases in 
delta activity were seen in almost all brain areas, and 
moderate to high delta activity was seen in the F, and 
P, regions. Low to moderate beta, and alpha, activity 
was also seen at this concentration of propofol. 

Topographic analysis: Change from baseline. Fig. 
4 illustrates the mean difference (after minus before) 
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Fig. 2. Sigmoid E,,, function plot of beta, EEG power versus venous plasma propofol concentra- 
tion. Note that the data points fit the calculated curve very well as 12 = 0.997. The plasma propo- 
fol concentration (EC,,) and Hill slope are noted. 

of the topographic mapping of the EEG of all 10 sub- 
jects. This colored map shows the spatial distribution 
of the net increase or decrease in EEG activity from 
control produced by increasing concentrations of 
propofol. The net increase in beta, power from the 
control level appears to be greater in most leads from 
the left than the right cortical hemisphere. 

Topographic analysis: Beta, power. The concentra- 
tion-effect graphs in Fig. 5 show the net increase in 
beta, activity from the control level for each indi- 
vidual scalp lead. Significant (p < 0.05) differences 
between the left and right hemispheres in the increases 
in beta, activity were seen between F,, and F,, scalp 
sites at propofol concentrations of 1104 t 113 rig/ml, 
as well as between T, and T4 leads at concentrations 
of 697 -+ 77 and 1104 I+_ 113 rig/ml. 

DISCUSSION 
The prevailing theme of this study is that venous 

plasma propofol concentrations may be correlated 
with specific regional brain EEG changes in human 
volunteers given doses that produce only conscious se- 
dation. Arterial samples were not taken because of the 
enhanced risk and greater ease of venous punctures. 
This study was not concerned with the full spectrum 
of the EEG effects of propofol. During sedation, 
propofol dramatically increases beta, EEG activity. 
Other investigators have shown that after loss of con- 
sciousness the EEG is progressively depressed in a 
concentration-dependent manner, leading to burst sup- 

pression and eventually to isoelectricity. The baseline 
EEG data in this study, obtained during the control pe- 
riod before propofol, are consistent with previous find- 
ings in the literature that normal, awake, drug-free 
subjects with their eyes closed have predominant al- 
pha,, less alpha,, and some beta, activity. After in- 
creasing small doses of propofol that produce con- 
scious sedation (but not sleep or anesthesia), 
predominant occipital alpha EEG activity is reduced 
and beta, activity is increased, especially in the mid- 
line, frontal, and central brain areas. With the largest 
subanesthetic dose of propofol used in this study, delta 
activity was also observed more in the dominant left 
hemisphere. 

It should be noted that the nonlinear performance of 
the STANPUMP algorithm in this study may be re- 
lated to the fact that the algorithm was designed to use 
anesthetic doses of propofol and was not concerned 
with doses that produce only conscious sedation. Fur- 
ther study is needed to adapt this algorithm for seda- 
tive doses of propofol. 

This study confirms previous reports8~1o that seda- 
tive concentrations of propofol produce a dramatic 
increase in beta, and a decrease in alpha activity in 
some brain areas. The increases in EEG beta activity 
at similar plasma propofol concentrations are also in 
agreement with the literature.” The latter inves- 
tigators reported that beta activation was greatest 
in scalp sites F, and C,, although the spatial distribu- 
tion of beta activation was not clarified, inasmuch 
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Fig. 3. Topographic mapping of the EEG for each frequency band obtained as the mean from all 
10 volunteers at each plasma propofol concentration. The EEG power over each frequency band 
for each respective brain region was computed and represented as a color gradient with use of 
RHYTHM 7.1 software. A four nearest-neighbor algorithm is used in RHYTHM 7.1 software to 
compute interlead interpolations (quadratic interpolation). “Mean t SEM plasma concentration of 
propofol obtained from the plasma concentrations at which the individual EEG recordings were 
undertaken. bPower integrated over each frequency band. 

as only four EEG leads-F,, C,, P,, and O,-were 
used. 

Topographically restricted EEG profiles of many 
different pharmacologic agents have been pub- 
lished.12-‘9 A systematic comparison of the topo- 
graphic EEG effects of different sedatives has not 
been undertaken. Such studies need to be done, espe- 
cially with sedatives that have well-defined molecular 

mechanisms of action, to determine if certain topo- 
graphic EEG changes are related to specific biochemi- 
cal mechanisms or to the mental states of the subjects 
studied, irrespective of the sedative agents given. 

Although there were personal and practical reasons 
for choosing to study propofol first, from a scientific 

point of view the choice was not ideal because much 
more information is needed on its mechanism of ac- 
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Fig. 4. Difference topographic map of the mean EEG showing the net increase or decrease in EEG 
activity produced by an infusion of propofol. Each topographic map was created by subtracting the 
mean control EEG map from the mean EEG map after each experimental condition for all 10 vol- 
unteers with use of RHYTHM 7.1 software. “Increase in mean plasma concentration of propofol 
above control. bIncrease or decrease in total EEG power integrated over each frequency band. 

tion. Recent neurochemical and electrophysiologic tion has been described in association with barbitu- 
studies in vitro have shown that propofol does en- rates and benzodiazepines.‘73’g324Z25 However, a differ- 
hance the function of y-aminobutyric acid (GABA) on ence in the spatial distribution between GABA, and 
GABA, receptors. However, the binding site of benzodiazepine receptors exists in human brain.26 In 
propofol appears to be distinct from the recognition addition, heterogeneity of benzodiazepine receptors is 
sites for both benzodiazepines and barbiturates.20-23 well known.27-2g The complexity of GABA, recep- 
Many agents that have sedative and, in larger doses, tors, especially their multiple allosteric binding sites, 
anesthetic properties that act at the molecular level on suggests that clinically important sedatives may have 
GABA, receptors produce an increase in beta wave somewhat different sites of brain action. EEG studies 
activity in the EEG in small doses. Frontal beta activa- in rabbits have shown that the effects of barbiturate 
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Fig. 5. Relationship between the mean plasma concentration of propofol and the net increase in 
beta, power from the control level obtained from F,, F,, T,, T,, F,,, F,,, F,, F4, C,, C,, P,, and 
P, scalp leads. The vertical axis represents the mean increase (or decrease) in the power integrated 
over beta, from the control level for all 10 subjects. *p < 0.05, compared to the symmetrical 
corresponding electrode site on the scalp. Note that the left hemisphere shows a trend to slightly 
more beta, activity than the right hemisphere, which is also seen in Fig. 2. Ver-tical bars indicate 

and benzodiazepine ligands can be differentiated on 
the basis of their EEG features.“’ In the human brain, 
the EEG topographic distribution of induced beta 
waves may vary, depending on the different cerebral 
distributions of their allosteric sites on GABA, recep- 
tors. Of course, surface EEG electrical events do not 
provide evidence of receptor distribution and mecha- 
nism of action information. Hence, one can relate 
EEG data only to results obtained with more specific 
methods. In studies of benzodiazepines, topographic 
maps of EEG activity obtained from the left hemi- 
sphere revealed decreases in occipital alpha and pari- 
eta1 delta, together with increases in posterior frontal 
and parietal beta activity.18331 In the present study, the 
increase in beta activity was greatest in the left domi- 
nant hemisphere, although other possibilities unrelated 
to hand dominance cannot be excluded. 

The results of this study have implications for 
monitoring patients undergoing conscious sedation. 
Guidelines are currently being developed by the 

American Society of Anesthesiologists for sedation. 
Rather than use many EEG scalp electrodes as in this 
study, only a few electrodes would be needed. Techni- 
cally, it would be very simple to place scalp EEG 
leads over the more frontal regions of the brain and 
use the beta, frequency band to monitor sedation lev- 

els objectively. 

We thank Dr. Gerald Zemig for the curve fitting of the 
EEG data with use of the sigmoid E,,,,, function Hill equa- 
tion. 
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