
Great Lakes Center for 
Truck and Transit Research 

Characterization of Road-Edge 
Markings in Support of ~ o a &  
Departure Prevention Systems 

I Research h$iii,,, 

Gregory E. Johnson 
University of Michigan 

Transportation Research Instikte 
Ann Arbor, MI 48 109 

Karl C. Kluge 
University of Michigan 
Ann Arbor, MI 48 109 

Robert D. Ervin 
Transportation Research Institute 

University of Michigan 
Ann Arbor, MI 48 109 

October, 1995 

Michigan Technological University * University of Michigan a Wayne State University 



Characterization of Road Edge Markings in 
Support of Road-Departure Prevention 

1 5 .  

I i t 4  
Technical Report Documentatioa -----. Page 

Systems 8. Perfomlng OrganlaAon w r t  NO. 
7. Aulhor(8) 

G E. Johnson, K. C. Kluge, R. D. Ervin 

1. Report No. 

GLCTTR 67/95-01 

I 

9. Perfwrnlng Organlmtlon Name and Addma8 I 10. work unit NO. (TRAIS) 

University of Michigan Transportation Research Institiute 11. Con-wQnntNo. 

2901 Baxter Road 
Ann Arbor, MI 48 109-2 150 

2. Government A c ~ l o n  No. 

112. Sponrorlng A w t y  Name end A d d w  I I 

3. Raclpknt'r ~ o g  NP. 

88u35 L - 

4. Title and SubtHo 5. Report D l e  

Supported by a grant from the U.S. Department of 
Transportation, University Transportation Centers Program 

'reat Lakes Center for Truck and ITS Research Center of Excellence 
Transit Research 
201 UMTRI Building 

University of Michigan 
AM Arbor, MI 48 109 

2901 Baxter Road 
lnc! 

The visual properties of painted lane markings were characterized through a field 
measurement exercise using a specialized trailer apparatus. The class of markings 
examined consisted of the continuous white stripe defining the boundary between the 
right lane and the shoulder of the road. Stripe width, reflectance, and contrast with 
lane and shoulder regions were quantified for over 6000 video images taken along a 
600 mile sample of Michigan highways. Data indicate that slightly less than 82 
percent of the stripes surveyed had widths in the range of 8 to 15 cm., with wider 
stripes outside this range being more common than narrower stripes. Stripe reflectance 
exhibited a bimodal distribution with primary modes around 28 percent and 60 percent 
reflectance values. Application of the data set to an existing 
road-follower algorithm is discussed. 

Final Report 
14. Sponsoring ~goncy cede 

17. Key WOW 

1 Transpodation I 

18. Dlrtrlbullon SMIment 

I 

19. ~.curtty cbmn. (of thle nport) 

None 

21. NO. of PI* 

32 
20. security CWH. (of thle page) 

None 

22. P~IW 

None 



Contents 

1.0 Introduction ............................................................................. 1 

2.0 Instrumented Platform ........................................... ........... 2 
............................................... 2.1 Mechanical Description 2 . . 2.2 Illurnnation ................ ..... ............................................... 4 

............................ ......... 3.0 Data Collection ......................... 4 

4.0 Data Processing ........................................................................ 6 
..................................................... 4.1 Detection Algorithm 6 

4.2 Intensity Calibration ........................................................ 8 
4.3 Geometric Calibration ................................................... 11 

5.0 Results . & Discussion ........................................................... 14 
......................................................... 5.1 1 -D Distributions 17 

5.2 2-D Distributions ............................................................ 20 

6.0 Conclusions .......................................................................... 21 

7.0 References .............................................................................. 22 

8.0 Appendix .............................................. ,, ....................... .. A1 



1.0 INTRODUCTION 

Many electronic systems to prevent road-departure, facilitate the lane-keeping task, or 

otherwise support a control functionality based on lateral placement require that road- 

edges be continuously sensed by some type of imaging technology [1,2-8,9-18,21-251. 

Even though many systems in this class rely on charge-coupled device (CCD) imaging 

technology and the reflective properties of the contrasting lane marker, little work has 

been done to inventory real roads so as to meaningfully characterize visible road-edge 

markings as they actually exist. This project was a field measurement exercise by which 

image-based data were collected and processed to describe the qualities of retroreflective 

road-edge markings as found on Michigan roads. These characterizations of stripe 

reflectances, contrast, and physical dimensions are based on a modest sample of interstate 

highways within the state. 

Current system designs for road departure warning and intervention functions have 

relied primarily on CCD cameras and ambient illumination to sense the retroreflective 

paint stripes. Subsequent image processing using a variety of processors with a wide 

range of capabilities yields an estimate of the roadway geometry ahead. The quality of the 

estimate is a combination of the sensor quality, illumination, stripe quality, road surface 

covering, and degree of sophistication of the processing algorithm. The stripe quality is 

one aspect that has a direct bearing on detectability and is the primary subject of this 

investigation. Other factors, such as illumination and environmental elements were held 

fixed or characterized where possible. 

The project's three objectives reveal the pragmatic focus on the characteristics of 

actual in-service highway lane markings. These were: 

to assemble a trailer-mounted instrumentation system with which to collect data on 
those properties of road-edge markings that are pertinent to the performance of 
roadway imaging systems based on the visible spectrum; 

to collect such data on a statistically meaningful sample of Michigan highways; 

to process the data and produce distributions'in a manner that gives guidance for the 
development of road-imaging systems. 

The imaging and processing effort yielded several distributions of properties 

describing the sampled stripes. The information can be used to test limits of current 

algorithms or designs, or to provide a basis for investigating the state of technology 

required to be consistent with the current state of striping. 



The rest of the document is as follows. Section 2 presents the instrumented platform 

and discusses the various aspects of its design. Section 3 covers data collection including 

a discussion of the scope of data included in the study. In section 4, we present the data 

processing steps, including data calibration, used to produce the results presented in 

section 5. Conclusions are stated in section 6. 

2.0 INSTRUMENTED PLATFORM 

2 .1  Mechanical description 

The trailer was designed around a utility trailer kit. The axle assembly and 

surrounding frame structure were slightly modified to allow for an enclosed observation 

cell and a rear platform for generators. Photo 2.1.1 shows the trailer mounted behind a 

tow vehicle. 

Photo 2.1.1. Lane Marker Characterization Trailer with tow vehicle 

The length of the trailer was determined by the need to obtain a relatively long 

illumination space and a shallow angle of view. TGS was intended to provide diffuse 

ambient illumination, and allow to the imaging of the stripe at roughly the same viewing 

angle that would be used by a low- or mid-mounted camera on a passenger vehicle or 

truck. The use of an enclosure also eliminates shadows on the portion of the road being 

imaged, and provides control over the illumination. The scene captured by the test 

platform is shown in photo 2.1.2 below. 



Shown in Photo 2.1.1, the large box section of the trailer contains the observation cell 

- a cavity that is open only on the bottom for viewing the road markings under conditions 

of controlled illumination. The trailer is comprised of tubular steel and a riveted 

aluminum skin that forms a shroud to block ambient illumination. The entire underside of 

the shrouded observation cell has no lateral cross members and thus provides unobscured 

sensing of the roadway below, as seen in Photo 2.1.2. The interior of the trailer is painted 

white to aid reflection of the light sources, which are mounted at the top of the trailer. 

Stiff brushes and a rubber flap extend downward from each trailer side to make contact 

with the roadway. This provides better screening of the observation cavity from exterior 

illumination. Two generators are mounted on the rear of the platform, providing AC 
power for the onboard systems. 

Photo 2.1.2. Image as seen with the trailer - example data 

The imaging system installed consisted of a Phillips monochrome CCD module with 

a 12.5rnm Computar f1.8 manual focus/iris lens. The camera had electronically adjustable 

gain, black level (offset), and shutter speeds. The speed of the shutter was fixed to 11250 

seconds, and the gaintoffset output adjusted for maximum dynamic range of the 



calibration card with respect to the lighting system installed. These parameters, as well as 

the iris and focus, were held fixed for the duration of data collection. 

2 .2  Illumination 

A broad spectrum diffuse source was desired for good approximation of a constant 

ambient illumination. Although fluorescent lamps provide efficient, fixed spectrum 

illumination, they exhibit fast reaction times such that their intensity can vary greatly 

with the power delivered. This output fluctuation (present in everyday use, but unnoticed 

at 6OHz by the human eye) creates problems when using modest shutter rates with CCD 
cameras. An incandescent light source also receives alternating current for power, but has 

a much larger thermal mass and a longer reaction time. Thus, changes in current delivered 

to an incandescent lamp are effectively low-pass filtered by the filament's reaction time 

and a much more continuous illumination level is provided. 

Reaction time became an issue in our choice of illumination sources because we 

chose a fast electronic shutter speed. Recording images at the industry video standard of 

29.97 frameslsec while illuminating the scene with lights powered from a 60Hz AC 
supply, the varying phase relationship causes each frame to be snapped on a different 

portion of the AC sine wave, resulting in large changes in illumination if fluorescent 

lamps are used. The use of incandescent lights was an efficient solution to the 

illumination problem. 

3.0 D A T A  COLLECTION 

In this study the scope of data was limited to a representative sample of Michigan 

highways. Analog image data were collected using the instrumented platform described 

above. The data from the camera were recorded using a high quality VCR on 112" VHS 
format video tapes. A 'valid-data' signal was also recorded on one of the audio tracks in 

the form of a sine-wave, as well as the SMPTE (Society of Motion Picture and Television 

Engineers) time code standard. 

The 'valid-data' signal consisted of a 200mV, 650Hz sine wave, which was recorded 

onto the audio track of the video tape. The frequency was the desired vehicle speed 

multiplied by 10, in mph (i.e. 650Hz = 65mph, 550Hz = 55mph). The signal was 'on' or 

being recorded when the trailer was positioned over a region of roadway such that the 



paint stripe should be visible and detectable within the observation cell. Cases in which 

the 'valid' signal was off (nothing recorded on the sound track, but video still being 

recorded) include portions of the roadway environment not covered by the scope of the 

study, such as entrance and exit ramps, construction zones, and temporarily marked 

regions. Also, regions in which the driver was not able to keep the trailer over the road 

edge stripe due to road debris or obstacles were marked as invalid data. 

Data collection progressed on a 15-minute cycle. Each consisted of a seven minute 

session of driving with the trailer on the stripe, followed by eight minutes of driving 

normally, without collecting data. This fairly lax duty cycle was selected in order to 

minimize the fatigue on a test driver. Several short trials around the Ann Arbor region 

were conducted early in the study to test equipment and procedures. Sample data were 

also processed to exercise the processing software. 

Figure 3.1. Michigan map indicating highways surveyed 

For collection of the data presented in this report, two distinct routes covering more 

than 600 miles were driven in the summer of 1995; The route is indicated in figure 3.1 

and includes a small stretch of US-23N, I-96W, I-196S, I-94E, and the lower portion of I- 

75, both North and South bound sides. 



4.0 DATA PROCESSING 

Data were digitized from the analog video tapes using the built-in frame grabber on a 

Macintosh Quadra 840AV. The frame grabber's parameters, such as bit depth and image 

quality, were held constant for all images. The digitization involved an automated 

sampling procedure in which the computer controlled data tape playback, sample 

selection (via monitoring the 'valid-data' signal on audio inputs), and provided a nominal 

2Hz sampling interval. Over 6000 digitized images and the subsequent SMPTE address 

for each image were saved to disk. Note that the analog video tape is still the original 

medium and remains valid for redigitizing at any interval or digitizer settings. Since 

intensity calibration is also stored on the video tracks, it is possible to compensate for 

small degrees of tape degradation or drift in the video deck's analog components. 

4 .1  Detection Algorithm 

Given the large volume of images to be processed, it was necessary to develop an 
automated technique to locate the edges of the painted stripe in the images digitized from 

the video tapes. Four features of the task drove the design of the computer vision 

algorithm to do the detection: 

1) The algorithm needed to be robust. It needed to be able to find stripes that were 
very worn or otherwise degraded. 

2) The algorithm should not use a strong model of the stripe appearance. Since part of 
the project goal was to characterize all actual stripes encountered - the good, the 
bad, and the ugly - the algorithm needed to be able to detect a broad variety of 
faint, overpainted, wide, and narrow stripes. 

3) The algorithm did not need to run in real time. Since the data analysis is done off- 
line in the lab, processing times of several seconds per image were acceptable. 

4) The use of the enclosure and the limited area imaged created a situation where the 
image intensity distribution should be essentially bimodal, with peaks 
corresponding to the average road and stripe pixel intensities. 

Given these constraints, an algorithm was chosen based on the use of intensity 

histograms to select a threshold value that divides the image pixels into "stripe" and 

"background." The stages of the image processing are illustrated in Figure 4.1.1. 



Figure 4.1.1. stages of image processing 

The upper left quadrant shows the raw image with boundary and segmentation lines 

drawn on it. Since the location of the enclosure walls is constant from image to image, 

the image processing ignores the region that corresponds to the front and sides of the 

enclosure. The boundaries of the area ignored at the top and sides are drawn in white. 

. The rest of the image is used to compute a histogram - a curve that shows the 

number of pixels (vertical axis) that have a given image intensity value (horizontal axis). 

The histogram for this image is shown in the upper right quadrant of the figure. This 
histogram is used to identify the "best" intensity threshold to use to separate the pixels 

into "stripe" and "background." The heuristics used were inspired by techniques such as 

P O I  
1) Local maxima ("peaks") and minima ("valleys") are located in the histogram. 



2) Each possible triple combination of a peak, a valley to the right of the peak, and 
another peak to the right of the valley is examined. 

3) A triple is rejected if 

a) placing the threshold at the valley would result in the stripe containing more 
than 50 percent or less than 5 percent of the image area; or 

b) the peak to the right of the valley is larger than the peak to the left of valley; or 

c) there is a higher peak between the valley and the left peak; or 

d) there is a higher peak between the valley and the right peak. 

4) Among triples that aren't eliminated in step 3, the one with the largest difference 
between the height of the right peak and the valley is selected. The intensity 
threshold is placed at the level corresponding to the valley of the best peak-valley- 
peak triple. In Figure 4.1.1, the threshold selected is indicated by the vertical line 
drawn in the histogram in the upper right quadrant. 

Once the image has been threshold, lines are fit to the edges of the stripe. The fast 

step of this part of the algorithm locates the left- and right-most above-threshold pixels in 

each row of the image. These are shown in the lower left quadrant of the figure. Straight 

lines are fit to the left and right edge points subject to the constraint that the lines 

converge on the row in the image plane corresponding to the horizon (in this case, 

approximately 106 rows above the top of the camera field of view). The lower right 

quadrant of figure 4.1.1 shows threshold image, with the estimated stripe edges drawn in 

white. Once the stripe edges have been located, the stripe and road statistics for the 

image can be computed. The Intelligent Vehicles '95 Symposium paper appended to the 

report gives details of the evaluation of the accuracy of the program in locating stripe 

edges in an initial 615 image data set. 

4 .2  Intensity Calibration 

Since the illumination was not precisely controlled (due to power and phase 

differences, broken light bulbs, dirt accumulation on lens, etc.) the ability to calibrate 

each image individually was desired. A gray scale calibration card was mounted at the 

front of the trailer shroud to provide a fixed-intensity reference for calibrating the images, 

visible at the top center of photo 2.1.2. The cal-card is shown below in photo 4.2.1. 



Photo 4.2.1. enlarged view of intensity calibration card in trailer 

The card contains 20 squares, each of a known reflectance. Considering that the CCD 
camera's input intensity is raised to a power (y) by the output circuitry, a relatively simple 

relationship can be drawn [19]: 

%ref1 = al*(Ihy) + a0 (eqn 4.2.1) 

where 'I' is the image intensity gray scale. 

It is known that the luminance of an object depends on the object's surface properties, 

as well as on the source intensity and location. The relationship is shown below 

I = (%refl) * cos (angle to light source) (eqn 4.2.2) 

Thus the design of the trailer illumination, while approximating ambient, presented a 

serious anomaly in that the source location(s) cannot be discounted since their location 

and interaction affect the intensity distribution. In fact, plots of intensities in figure 4.2.1 

along longitudinal axes of the image indicate a parabolic curvature of intensity, whereas 

the intended condition was that of a diffuse, uniformly-distributed illumination. 

While the simple relationship in eqn. 4.2.1 permits a relative calibration to the 

grayscale intensity card, the true road and marker albedo values cannot be derived. 

Breakage of individual bulbs and varying intensity prohibits a static correction as 

indicated via eqn 4.2.2, and dynamic correction was beyond the scope of this work. A 

more robust and diffuse illumination design may alleviate some of these drawbacks. 



longitudinal coordinate (units of image pixel number) 

Figure 4.2.1. plots of intensity vs longitudinal coordinate 
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Figure 4.2.2. regression example of cal-card reflectances vs albedo values 

Coefficients a0 and a1 in eqn. 4.2.1 were derived for individual images using the 

calibration card present in each image. The brightest square was automatically located, 

and the card's intensities between this square and that observed at a fixed distance to the 

right were taken as the cal reference. This was corrected for gamma and saturated values. 

Then a least-squares fit between the gamma-corrected gray scale values and the known 

card reflectances provided the calibration coefficients. An example fit is shown in figure 

4.2.2. 

4.3 Geometric  Calibration 

Geometric calibration of pixel locations to the roadway coordinates follows typical 

image coordinate conversion techniques [2,13,14]. First the camerallens combination is 

calibrated to yield a factor relating width of pixels in the image to the angle subtended by 

the pixel. Pixels in the sensor are rectangular, and vertical and horizontal calibrations for 

the angles are different (note that figure 4.3.1 details only the lateral orientation). 



I I 
image object 

Can define Now, 
y = Ny cwy, where: taney = Ny cwy / efl, and can define 

Ny is #pixels in 'y', and 
a cat factor cfy I cwy / eft, or 

CW). is width of pixel (in cm) 8y = atan( Ny cfy ) 

Similarly for x, cfx I cwx / efl and 
€Ix = atan( Nx cfx ) 

Calibration factors were emperically determined to be: 

cfx = 1.30344e-3 
cfy = 1.30733e-3 units of llpix 

Figure 4.3.1. camera / lens calibration 

Now the orientation of the sensor can be considered. It is assumed that there is a static 

depression angle (pitch) but no roll in the sensor. Since the camera is mounted on a 

suspended platform and used over rough surfaces the orientation will change to some 

extent. Nevertheless the scope of the study did not include direct measurement of pitch 

angles - believed to vary less than one degree. The coordinate system in figure 4.3.2 is 

Cartesian in the road plane, using standard sign notation with 0,O located directly beneath 

the camera. 



The geometric calibration is a relationship between the pixewens geometry and the camera location and orientation. Using 
the calibration factors, any pixel location in the image (Nx, Ny) can be transformed to a cameracentered coordinate 
system projected onto the roadway (Xc,Yc). 

I X - Calibration (longitudinal) Y - Calibration (lateral) I 

combining 1, 2, & 3 combining 1.2, & 3 
Xc = Htan( atan(WH) - Ox ) Yc = sqrt( (XCn2 + HA2) 1(1 + dy"2 ' NxA2) ) ' ( Ny'cfy ) 

Figure 4.3.2. geometric calibration 



5.0 RESULTS & DISCUSSION 

Over 6000 images were digitized from the video tapes recorded during the trips 

described in Section 3.0. A video image consists of twofields. The even numbered rows 

of the image make up one of the fields, the odd numbered rows make up the other. The 

fields are recorded 1160th of a second apart. At 60 mph, this corresponds to a distance of 

almost 1.5 feet traveled between the two fields that make up an image. As a result, each 

field is processed separately, resulting in over 12,000 data points. 

Once the stripe edges were located in an image using the techniques described in 

section 4.1, the following statistics were computed: 

- stripe width in cm. 

- mean stripe reflectance 

- mean lane reflectance 

- mean shoulder reflectance 

- mean road (lane + shoulder) reflectance 

- standard deviation of stripe reflectance 

- standard deviation of lane reflectance 

- standard deviation of shoulder reflectance 

- standard deviation of road reflectance 

One of the local feature detection algorithms used to detect white stripes in the YARF 
road follower [13] illustrates the potential utility of this data. The processing stages of the 

feature detection are illustrated in Figure 5.0.1. The detection algorithm looks for the 

white stripe by averaging the image intensity along the expected direction of the stripe, 

and running a simple one-dimensional edge detector over the averaged signal. The stripe 

detector looks for a pair of edges with opposite contrast separated by the expected stripe 

width. 
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Figure 5.0.1. diagram of YARF's detection scheme, illustrating the similarity concept 
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The location of the stripe edges is detected by cross correlation of 1-D signal (the 

averaged image region in figure 5.0.1) with a simple 1-D edge filter. The filter uses a 

mask with a left negative half and right positive half. The width of the mask is equal to 

the expected width of the stripe. The weights used are +1 and -1 to allow fast cross 

correlation. The cross correlation value is normalized by dividing the raw value by half 

the width of the mask, producing a value that represents the intensity contrast at a given' 

pixel. 

The algorithm then locates extrema in the output of the cross correlation with the 

edge detector filter. This results in a list of candidate edges in the signal. This set of edges 

is searched for a pair of edges that meets the following three criteria: 

- the edges have opposite contrast, with the signal brighter between the two edges, 

- the edges are separated by a distance within a specified percentage of the expected 
feature width, and 

- the absolute magnitudes of the two edges are similar (specifically, let Mp be the 
magnitude of the positive edge and let Mn be the absolute value of the magnitude of 
the negative edge - the pair is accepted if alpha < I Mp - Mn I 1 (Mp + Mn)). Mn 
will be proportional to the difference in stripe and shoulder reflectances, and Mp 
will be proportional to the difference in stripe and lane reflectances. 

The tracker indicates that the feature was absent if no pair of edges in the window 

meets these criteria. The acceptable width tolerance around the expected value and the 

alpha threshold for the edge contrast similarity measure need to be specified. The data 

collected in this study permit those values to be selected in a way which reflects the 

actual distribution of those values on a significant set of Michigan roads. 



5.1 PDFs and Cumulative P D F s  

Figure 5.1.1 shows the distribution of stripe widths derived from the collected image 

data. The mode value is near 10 cm, or approximately 4 inches. The long right tail of the 

width distribution in consistent with the overspray of stripe, which often occurs during 

stripe repainting. Permitting the width to range from 8 cm to 15 cm (inclusive) would 

capture 8 1.9 percent of the stripes encountered in the sample for this study. 

stripe width 

strip width (cm) 

cumulative strip width 

0 
0 5 10 15 20 25 30 

strip width (cm) 

Figure 5.1.1. stripe width in centimeters 



Figure 5.1.2 shows the distribution of the contrast similarity metric used. A value of 

zero indicates that the stripe has the same contrast with both the lane and the shoulder, 

with increasing values indicating decreasing similarity of contrast. Setting a threshold of 

alpha = 0.25 would capture 96.5 percent of the stripes encountered in the sample for this 

study. Thus, the false negative rate (number of stripes incorrectly not detected) can be 

controlled by setting thresholds based on .the distributions derived from the data collected 

in this study. 

contrast similarity 

1000 
c. c 
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contrast similarity 
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Figure 5.1.2. contrast similarity measure 



A distribution of reflectance values of stripes in figure 5.1.3 indicate the broad 

bimodal distribution of intensities present. The differences in lane and shoulder 

intensities are also shown. Note both positive and negative values, indicating a spectrum 

of regions where the road is brighter than the shoulder and where the opposite is true. 

Note that the highest bin in the difference measure is non-zero. This is consistent with the 

similarity metric in which the largest mode was also non-zero. 

stripe reflectance 

0 10 20 30 40 50 60 70 80 90 100 
reflectance (%) 

lane - shoulder reflectance 
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8 1000 
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Figure 5.1.3. reflectance distributions 



5.2 Two-Dimensional Distributions 

Density plots of two variables provide insight into the decision space mapped by the 

two factors. Thresholds may have certain interactions, or dependencies upon other 

variables. Following is a density plot which suggests how similarity and stripe width (two 

of YARF's threshold parameters) may interact. 

0 5 10 15 20 25 30 35 40 
strip width (cm) 

Figure 5.2.1. similarity -vs- stripe width in cm 

It can be seen from figure 5.2.1 that two independent thresholds will define a 
rectangular region ( i.e. { Ola10.25,81W115 ) ) but the highest density is defined by a 

triangular or trapezoidal region for this data set. Thus, a threshold that is a linear or higher 

order combination of width and similarity may provide fewer false alarms than a 
rectangular decision space. 



6.0 CONCLUSIONS 

This study produced an experimental test platform and a data set that characterizes 

some of the aspects of painted-stripe markings as they exist on Michigan highways. The 

sensing system consisted of active illumination sources, CCD sensors, and analog video 

recording tape. Data processing was performed on digitized images to locate lane markers 

and to quantify various properties, such as stripe width and contrast. Example results 

have been presented for the analysis of over 12000 image fields, and relationships to 

existing road follower algorithms were highlighted. 

The imaging system and data collection platform described in Sections 2-3 allowed 

for efficient data collection and processing as bounded by the scope of this project. The 

data processing techniques will correctly extract the edges of the white stripe (or 

recognize that there is no white stripe) in approximately 95 percent of images. The 

calibration between image intensity and surface reflectance was only partially completed 

due to difficulties in correcting for effects involving the illumination geometry, and 

would need additional work and possible modification of the illumination scheme. 

Processing time may become an issue with more advanced algorithms, or as the need 

arises for real-time processing on-board the test vehicle. Attempts to correctly locate the 

edges of the 5 percent of stripes that the current image segmentation algorithm fails on 

will require adding complexity to the image processing. 

The results presented in Section 5 are an example of the kind of analyses that can be 

performed with such a data set. Other algorithm developers will likely generate other 

decision spaces or threshold techniques, and an evaluation of the failure rate based on a 

simple distribution of example markers will provide valuable insight into performance 

and where modifications need .to be made. Many other parameters have been generated 

and can be generated, depending on the needs of the end user. 

Obviously, improvements can be made in all regions of the study, most notably in the 

illumination design and calibration technique. Expansion and improvement of the 

platforms capabilities will likely yield a more expansive data set. A longitudinal study of 

markers may indicate a "shuffling" of distributions between stages of weather, wear, and 

restriping. Thus, the distributions presented above are but a "snapshot," and will vary 

over time. 
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Abstract 

Most vision-based system for lane detection and 
tracking use painted lane markings as the visual cues 
which determine the location of the camera relative to 
the lane. Almost all of the work that has been done in 
the area of evaluating the pegformance of these sys- 
tems has focused on the accuracy of the recovered 
lane geometry. Reliability of feature detection as a 
function of intrinsic marking properties, ambient 
lighting and weather conditions, and viewing geome- 
try is an equally important aspect of algorithm pelfor- 
mance which must be explored if progress is to 
continue in this area of research. This paper reports a 
small scale effort to attack one aspect of this problem, 
the automated characterization of the intrinsic visual 
properties of white painted lane markings. Images of 
the right lane marking are taken by a camera mounted 
in an trailer enclosure towed behind a vehicle, allow- 
ing control of the lighting conditions. The intensity 
histogram of each image is examined to select a 
threshold which is used to classify each pixel as pave- 
ment or stripe. The edges of the white stripe are 
located using robust estimation and a shared vanish- 
ing point constraint. Once the stripe edges are located 
in an image, stripe properties such as width, bright- 
ness, and contrast with the pavement are calculated. 

1 Introduction 
Vision-based algorithms for lane detection and 

tracking have been an active area of research over the 
last decade (see the discussions of related work in [9] 
and [lo]). Very little work, however, has been done in 
the area of evaluating the performance of such 
algorithms. The performance evaluation work that has 
been done has focused on accuracy of recovered 

rather than reliability of feature extraction. 
This is a critical gap, as the ability to characterize the 
reliability of feature extraction in vision-based lane 
detection and tracking is critical for several reasons: 

to algorithm developers 

determining the performance limitations 
of a particular algorithm 

testing whether proposed "fixes" to 
existing known problems actually 
improve algorithm performance 
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to people making funding and deployment 
decisions: 

determining deployability of an 
algorithm 

deciding between competing algorithms 

to people maintaining highways and 
Automated Highway System (AHS) lanes: 

determining which sections of lane 
markings need repainting 

determining what conditions make use 
of an AHS lane unsafe 

Evaluation of an algorithm's performance as a 
function of environmental conditions requires the 
ability to characterize the intrinsic visual properties of 
the features being tracked by the algorithm. This work 
focuses on that aspect of performance evaluation. 
Specifically, we have constructed a hardware platform 
and algorithms which enable us to measure the 
intrinsic visual properties of painted white lane 
markings. 

The next section reviews prior work in the area 
of performance evaluation of vision-based lane 
detection and tracking. Section 3 describes the 
computer vision algorithm used to detect the white 
stripe and presents the results of experiments to 
estimate the reliability of the segmentation. Section 4 
describes the stripe properties we are currently calcu- 
lating. Section 5 describes our plan to extend this 
work into a characterization of the performance of 
some of the feature trackers used in the YARF road 
following system [lo]. 

2 Related work 
Most prior efforts to quantitatively charac- 

terize the performance of vision-based lane tracking 
techniques have focused on parameters related to road 
geometry. Pomerleau [13] [ 191 manually determined 
the location of the road center at one meter intervals 
along a 140 meter stretch of road. He then set up a 
siphon at the center of the rear of the NAVLAB 
vehicle so that it would drip water along the vehicle's 
path. He used this data to compute the mean and 
variance of the vehicle's deviation from the center of 
the road, and compared this to the mean and variance 
of the vehicle's deviation from road center when 



driven by a human driver. Behringer, et al, as part of 
the VaMoRs project [l] compared the lane-tracking 
system's estimate of road curvature with measured 
ground truth on a 450 meter test track. Morganthaler, 
et al, [ l l ]  combined road edge points determined by 
segmenting a color image with range information 
from a laser range scanner to determine ground truth 
for the road geometry in a scene, and used this as a 
basis for comparing the accuracy of the road shape 
recovered by three algorithms using different terrain 
models (flat-earth, hill-and-dale, and zero-bank). 

The data used to derive estimates of road 
geometry and vehicle location on the road derive from 
image segmentation algorithms. The reliability of 
these algorithms is therefore another key parameter in 
evaluating system performance. Kluge [lo] compared 
the performance of three local feature detection 
algorithms on the white and double yellow lines 
defining the lane edges in a set of 16 images. The 
algorithms were applied to a fixed set of rows at 
columns chosen based on curves fit to a small number 
of hand-selected points along each lane edge. 

None of these efforts characterized the road 
scene data in terms of physical properties of the road 
surface or ambient weather and lighting conditions. 
All except the work by Morganthaler, et al, made use 
of a limited set of ground truth data measured 
manually. A NIST report on performance evaluation 
for robotic vehicle technologies [6] suggested using a 
side-looking camera to determine lane boundary type 
and location. This information would be used to 
calculate the variance of the difference between 
vehicle offset as measured from the lane edge location 
in the side-looking camera's field of view and the 
estimate of vehicle offset provided by a lane-tracking 
system. That variance would then be correlated with 
scene characteristics such as lane boundary type and 
ambient lighting conditions (sun location, rain, 
clouds, shadows). No suggestions were given as to 
how to characterize the lane boundary or what 
specific environmental measurements to make. 

A number of computer vision systems have 
been built to characterize pavement cracking [14][7], 
but we have been unable to locate any similar work in 
the area of characterizing painted lane markings. The 
detection algorithms used in existing lane-tracking 
systems tend to be fairly strongly model-based, using 
assumptions about expected width, orientation, and 
contrast to try to reduce or eliminate false positive 
feature detections. Since the goal of the work reported 
here is to detect all kinds of stripes -- the good, the 
bad, and the ugly -- a more data-driven technique was 
chosen in order to try to capture weaker, less well- 
defined stripes. The algorithm chosen uses histogram- 
based thresholding to identify stripe pixels, followed 
by line-fitting to the edges of the stripe region to 
locate the stripe edges. The next section presents the 
segmentation algorithm in detail. 

3 Detecting stripe edges in images 
The hardware set-up used in this project is 

shown in Figure 1. A vehicle tows a trailer enclosure 
which contains lighting, a camera, and a VCR to 
record the image data. The camera produces grey- 
level images, using a shutter speed of 1 / 250th of a 
second to minimize blurring of the images. 
Processing to extract the stripe location and calculate 
stripe characteristics is done off-line in the lab. 

Figure 1: Stripe characterization hardware. 

white stripe 

The first stage in the process of characterizing 
stripe properties is to detect the stripe in the image 
returned by the camera in the trailer enclosure. The 
area imaged is fairly small, so only pavement and 
stripe are imaged (areas corresponding to the 
enclosure walls can be cropped from the images in 
software). In addition, the use of the enclosure elimi- 
nates illumination variations across the area imaged 
due to shadows. As a result of the constrained nature 
of the images a simple segmentation algorithm was 
chosen which selects an intensity threshold to split the 
image pixels into pavement (below threshold) and 
stripe (above threshold) pixels. 

The left edge of the stripe is located by finding 
the left-most stripe pixel in each row and using a 
robust estimation technique to fit a line to that set of 
points. The right edge of the stripe is similarly deter- 
mined by finding the right-most stripe pixel in each 
row and fitting a line to those points. The stripe edge 
fits are made subject to the constraint that the left and 
right stripe edges must converge at a point on the 
horizon row in the image plane, corresponding to the 
constraint that the stripe edges are parallel lines on a 
flat surface. 

The thresholding and edge fitting stages of the 
segmentation algorithm are described in more detail 
below. After these sections is a description of experi- 
mental results used to evaluate the reliability of the 
algorithm. 

vehicle 

3.1. Histogram-based threshold selection 

I- trailer enclosure 
with lighting, 

Selection of a threshold based on the charac- 
teristics of a histogram of pixel intensities is a classic 
segmentation technique in computer vision [16]. The 
type of image dealt with in this work contains a 
painted white stripe against the fairly uniform 
background of the dark pavement. As a result, the 
intensity distribution is close to a bimodal distribution 
whose peaks correspond to the average pavement and 

camera, and VCR 



stripe intensities. The valley between those peaks 
corresponds to the appropriate threshold to use to 
classify pixels as pavement or stripe. While the details 
of the implementation differ, the method used to 
select the threshold is similar in spirit to the mode 
method described in [ 16 I. 

An example is shown in Figure 2. The 
intensity histogram, shown in the upper right quadrant 
of the figure, is almost bimodal. There are two valleys 
in the histogram to the right of the selected threshold, 
but fairly simple heuristics permit the algorithm to 
select the correct valley to use. The results of the 
thresholding are shown in the lower right quadrant of 
the figure, demonstrating that the threshold selected 
does a good job separating the image into stripe and 
pavement pixels. 

original image with intensity histogram 
cropping boundaries and with threshold marked 

stripe edges drawn in white by vertical black line 

thresholded image with left-/right-most stripe stripe edges drawn in pixel in each row white 
Figure 2: Threshold selection example with 

bimodal intensity distribution. 

In some cases where the stripe is very faint or 
worn there is no distinct second peak in. the intensity 
histogram. Instead the histogram peak corresponding 
to the pavement intensities has a long right tail which 
contains the stripe intensities. In this case the appro- 
priate threshold is selected by finding the intensity 
value where the pavement peak levels out into the tail 
of the histogram curve which contains the stripe 
intensities. An example of this situation is shown in 
Figure 3. 

3.2. Locating the stripe edges 
The previous stage of processing, thresh- 

olding, classifies each pixel in the image as pavement 
or stripe. It is still necessary to locate the lines which 
define the left and right edges of the stripe. This is 
done in two steps. Fist, the algorithms locates the 
left-most and right-most stripe pixel in each row. 
Second, a line is fit to the set of left-most stripe pixels 

Figure 3: Threshold selection example with 
long right tail rather than bimodal histogram. 

to locate the left stripe edge and a line is fit to the set 
of right-most stripe pixels to locate the right stripe 
edge. 

This line fitting is complicated by two factors. 
The first of these factors is that the thresholding 
process can incorrectly classify bright pavement 
pixels as stripe rather than pavement. The second of 
these factors is that wear may result in some pixels 
inside the stripe edges having an intensity below the 
threshold level. Two strategies are used to reduce the 
effects of these outliers on the edge fits. 

The first strategy is to reduce the number of 
degrees of freedom in the edge fits by imposing a 
constraint on the parameters of the left and right stripe 
edges. These edges are represented as lines in the 
image plane of the form column = m x row + b .  The 
area imaged under the enclosure is small, making it 
reasonable to treat the ground as a flat surface. The 
short length of stripe visible (3.56 meters) makes it 
reasonable to approximate the stripe edges as parallel 
straight lines. Given a pinhole camera model, parallel 
lines on a flat surface project into the image plane as 
lines which meet at a point on the horizon (called the 
vanishing point of the lines). If the camera is not 
rolled (i.e. the horizon is parallel to the scanlines in 
the image plane) the image coordinates can be defined 
so that the horizon row (which may be above the top 
of the actual camera field of view in the image plane) 
is row 0. Parallel lines on the ground plane will then 
have the same column intercept value b . 

The second strategy used to increase the 
robustness of the fit in the presence of outliers in the 
sets of left- and right-most pixels is to use Least 
Median of Squares (or LMS) estimation [15] to 
determine the left and right edge slopes and the shared 
vanishing point. The number of outlying points in the 
data set has to equal or exceed 50% before the param- 
eters found by LMS estimation are affected by their 
presence. 



3.3. Segmentation performance evaluation 
In order to evaluate the performance of the 

image segmentation algorithm the program was run 
on a set of 615 images and the results were hand- 
classified. Each segmentation was classified as 
Correct (stripe edges unambiguously correctly 
located; also, correct identification of images which 
didn't contain a stripe), Qualified Correct (faint paint 
adjacent to a located stripe edge makes edge local- 
ization arguable), or Failed (incorrect result due to 
incorrect choice of threshold, false positives, etc.).' 

Of the 615 images, 499 (8 1.14%) were rated as 
Correct. 87 (14.15%) were rated as Qualified Correct. 
Only 29 (4.72%) were rated as Failures. vpical 
examples of Qualified Correct results are shown in 
Figure 4. 

- - 

Figure 4': Examples of Qualified Correct mu&. 

The segmentation algorithm takes 1.4 seconds 
on a SPARC 20 (SPEC floating point rating 78.3) to 
detect the stripe edges. No effort has been made at this 
point to optimize the processing to increase the speed 
of the algorithm. Sampling fewer pixels during 
histogram construction would be the obvious way to 
reduce the processing time, but the possible effects of 
sampling fewer pixels on the reliability of threshold 
selection would have to be evaluated to insure that 
performance wasn't degraded. 

4 Characterizing visual properties 
of the white stripe 

Once the stripe edges have been detected in an 
image it is possible to compute measures which 
characterize the visual properties of the stripe. The 
current statistics we are computing are: 

stripe width in cm.; 

mean intensity of pixels inside the stripe 
edges; 

standard deviation of the intensity of pixels 
inside the stripe edges; 

mean intensity of pixels outside the stripe 
edge (i.e., pavement pixels); 

standard deviation of the intensity of 
pavement pixels; 

absolute contrast between the stripe and 
pavement (defined as the difference in 
means between the stripe pixel intensities 
and the pavement pixel intensities); and 

relative contrast between the stripe and 
pavement (defined as the difference in 
mean intensities of the stripe and pavement 
divided by the standard deviation of the 
stripe intensities). 

Currently the intensity-based statistics are 
uncalibrated. In order to capture the actual intrinsic 
physical reflectance properties of the stripe and 
pavement, the raw intensities need to be calibrated to 
absolute units [5][12]. The enclosure has a calibration 
card near the top and center of the camera's field of 
view. We are currently calibrating the camera so that 
we can use this card to convert raw intensities into 
absolute albedo values. 

Figure 5 shows three plots of stripe width vs. 
relative contrast for a set of 315 images. These images 
were taken at approximately 10 second intervals while 
the vehicle pulling the enclosure trailer drove at 
normal highway speeds (55 to 65 mph). The top graph 
shows the values for all images in the data set. This 
set of images was part of the data set used to evaluate 
the segmentation algorithm. As a result, it is possible 
to blot the same data showing only point corre- 
sponding to images whose segmentation was 
classified as Correct (middle graph). The bottom 
graph shows the data points corresponding to images 
whose segmentation was classified as Qualified 
Correct (crosses) or Failure (diamonds) (bottom 
graph). 

As can be seen from a comparison of these 
plots, Qualified Correct results often occur in images 
where the stripe is either very worn and degraded (the 
very narrow stripes) or wide and illdefined due to 
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