PII-17

ELEVATED ORAL CLEARANCE OF VERAPAMIL IN CYP3A5 EXPRESSERS. <u>Y. Jin, MD</u>, Y. Wang, PhD, M. A. Hamman, MS, R. Marunde, BS, Z. Hu, MD, PhD, J. Hilligoss, S. D. Hall, PhD, Indiana University, Indianapolis, IN.

BACKGROUND/AIMS: Verapamil, a CYP3A4 substrate and inhibitor *in vivo*, is a more potent mechanistic inhibitor of CYP3A4 than CYP3A5 *in vitro*. We hypothesized that the clearance of verapamil would be different in subjects genetically capable of expressing CYP3A5 compared to non-expressers.

METHODS: Twenty healthy subjects with predetermined CYP3A5 genotype were recruited. CYP3A5 *3, *6 and *7 genotypes were determined with real-time PCR. After an outpatient course of verapamil 240 mg per day for 7 days, verapamil pharmacokinetics were determined on days 8 and 9. Serum concentrations of R- and S-verapamil and R- and S-norverapamil were determined with by chiral LC/MS. Verapamil pharmacokinetics parameters were derived from non-compartmental analysis (WinNonlin). Differences in the pharmacokinetic parameters among subjects with different CYP3A5 genotypes were tested with Student's *t* tests (SPSS v12).

RESULTS: CYP3A5 expressers (subjects with at least one *1 allele) had a statistically higher orally clearance for R and S verapamil (table 1). There is a trend towards lower R- and S- verapamil Cmax in subjects who were CYP3A5 expressers. CYP3A5 genotype did not influence the R to S verapamil AUC ratio.

CONCLUSIONS: CYP3A5 expressers may experience diminished pharmacological effect of verapamil due to a greater steadystate oral clearance in this group.

	Expressers $(N = 10)$	Non-expressors (N=10)	P Value
R-verapamil			
Cmax (ng/ml)	155.3 ± 28.7	282.5 ± 54.3	0.053
Cl/F (L/hour)	172.1 ± 27.8	94.3 ± 12.4	0.02
S-verapamil			
Cmax (ng/ml)	32.2 ± 6.9	67.2 ± 16.1	0.061
Cl/F (L/hour)	925.1 ± 162.7	473.7 ± 81.5	0.02
AUC ratio			
R/S Verapamil	5.3 ± 0.3	4.7 ± 0.3	0.21

PII-18

ESTROGEN RECEPTOR GENOTYPES ARE ASSOCIATED WITH RESPONSE OF SERUM CHOLESTEROL TO TAMOX-IFEN TREATMENT. <u>N. I. Ntukidem, MD</u>, L. Li, PhD, M. I. Rehman, MD, T. C. Skaar, PhD, Y. Jin, MD, Z. Desta, PhD, A. M. Storniolo, MD, V. Stearns, MD, D. F. Hayes, MD, D. A. Flockhart, MD, PhD, Indiana University, University of Michigan, Indianapolis, IN.

BACKGROUND: Breast cancer and non-tumoral responses during tamoxifen treatment are variable; and this variability may be genetic.

METHODS: We prospectively followed 185 breast cancer patients on tamoxifen therapy. Serum lipid analyses were performed in Clinical Laboratories at baseline and after 4 months of treatment. Genetic variants in the estrogen receptors α [rs#2234693, (PvuII) and rs#9340799 (Xbal)] and β [rs#1256049 (ESR2-01) and rs#4986938(ESR-02)] were analyzed.

RESULTS: Tamoxifen significantly lowered cholesterol (-24.2 mg/dl) and LDL (-26.9mg/dl) compared to baseline. Women with the ER PvuII CC allele had a 2-fold greater decrease in total cholesterol when compared to women with CT/TT alleles (P=0.01). The premenopausal women with the AA/AG alleles of ER α XbaI had lower baseline total (204 vs. 244 mg/dl; P=0.012,) and LDL cholesterol (116 vs.150mg/d; p=0.01) compared to women with the GG alleles. There was no association between baseline cholesterol and the XbaI polymorphism in postmenopausal women. In a multivariate analysis, grouping the subjects according to their combined ER α and ER β genotypes, the subgroup with ER α PvuII CC and any ESR2-02 allele combination had the greatest reduction in total cholesterol women with ER α CT/TT and any ESR2-02 (P=0.0032).

CONCLUSIONS: Estrogen receptor genotypes are associated with baseline cholesterol and the response of serum cholesterol to tamoxifen treatment in breast cancer.