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ABSTRACT

Guided Wave Propagation and Damage Interaction in

Isotropic and Composite Structures

by

Matthew Bridger Obenchain

Chair: Professor Carlos E. S. Cesnik

Guided wave structural health monitoring methods offer many of the capabilities

needed to move from a schedule-based maintenance paradigm to a more cost-effective

condition-based system. This dissertation explores several key aspects of guided wave

propagation and damage interaction in both isotropic and composite structures. First, a

reliable method of computing displacement time histories from guided wave excitation is

presented. This formulation, based on the Global Matrix Method, is directly applicable to

composite laminates. It improves upon previous methods that were unable to properly sep-

arate inbound and outbound wave solutions. Second, a comprehensive wave propagation

simulation tool is presented that combines the best features of the Global Matrix Method

and the recently developed local interaction simulation approach (LISA). This LISA hybrid

model accurately captures guided wave generation from both piezoceramic and piezocom-

posite actuators. Wave propagation results from the new model compare favorably with

semi-analytical models for both isotropic plates and composite laminates. Following that,

the dissertation describes the application of the LISA hybrid model to examine guided

xviii



wave interaction with holes in plate structures. Simulations are used to analyze the in-

fluence of various damage parameters, such as hole radius and depth, and the results are

compared with experimental measurements. The effect of hole orientation relative to fiber

direction in composite laminates is also explored. Subsequently, the dissertation examines

guided wave interaction with low-velocity impact damage in composite laminates. Diag-

nostic imagery of laboratory-produced impact damage is presented to help characterize the

size, shape, and composition of the damage. Experimental results from guided wave in-

terrogation of the damage region are also presented. Together, these are used to evaluate

various methods to model the impact damage in LISA. Finally, this dissertation introduces

a damage characterization tool based on the matching pursuit method. The new algorithm

uses a library of LISA simulations that capture the effects of various damage sizes and lo-

cations. The ability of the algorithm to locate damage is demonstrated in both 1-D and 2-D

scenarios.
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CHAPTER 1

Introduction and Literature Review

This chapter introduces the field of guided wave structural health monitoring (SHM). It

begins with a brief overview of the different philosophies that have guided the design and

sustainment of aerospace structures. The field of SHM is introduced in this context and its

potential benefits are considered. The fundamentals of guided waves for isotropic structures

are briefly reviewed to provide background. A literature review is included to present the

state of the art in guided wave SHM for isotropic and composite structures. Finally, an

outline of this dissertation is presented.

1.1 Introduction and Motivation

From the days of the Wright brothers, ensuring the structural integrity of aerospace struc-

tures has been a top priority. From that time until the WWII years, this was primarily

achieved in the design process. Stress analysis and preservation of sufficient factors of

safety were the primary methods by which aircraft were deemed safe to operate. Struc-

tural inadequacies found during operation and testing were corrected as needed. As years

passed, factor of safety margins dropped as higher performance aircraft were constructed

with less well-defined materials, but this paradigm proved successful for decades [1].

In the 1950s, civil and military attention to the dangers of fatigue damage skyrock-

eted. High-profile fatigue failures of the de Haviland Comet and the USAF B-47 as well as
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numerous other incidents helped to advance new design practices based on safe-life or fail-

safe philosophies. In safe-life designs, component fatigue lives were calculated/estimated

and components were replaced before the safe life was reached. In fail-safe designs, even-

tual component failure was assumed, and designs included redundancies and mitigation

factors to reduce the effect of these failures. During the next few years, advancements in

the field of fracture mechanics allowed engineers to better understand the behavior of fa-

tigue cracks. Testing methodologies also improved, which provided better awareness about

potential locations for fatigue problems. Full-scale fatigue testing of aircraft became more

common as designers tried to more accurately make safe-life predictions at the component

and system levels. The practice of inspecting in-service airframes for fatigue damage also

increased as fatigue problems were detected in various aircraft.

The next major evolution in design and maintenance philosophies was accelerated in

1969 with the crash of a USAF F-111 after only 107 flight hours [2]. Investigation of

the incident revealed that a flaw in the swing-wing pivot assembly had not been detected

during post-manufacturing inspections, and a crack originating from this flaw resulted in

catastrophic failure of the airframe [3]. This incident reinforced growing knowledge that

safe-life predictions could not be trusted if components had pre-existing damage. This

ushered in a new philosophy known as damage-tolerant design. The underlying assumption

in damage-tolerant design is that flaws and damage will always be present in an aircraft

structure, and the aircraft should be treated as if it was initially flawed. The linchpin to

damage tolerance is the ability to detect damage before it reaches a critical size so the

affected component or system can be replaced before catastrophic failure. The need for

reliable inspections has driven the advancement of numerous non-destructive inspection

(NDI) and non-destructive testing (NDT) techniques such as ultrasonic inspection, eddy

current testing, dye penetrant application, and others.

Several factors have complicated the task of detecting damage in aircraft using

schedule-based inspection routines. First, modern inventories have a large number of aging
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aircraft which must be kept in an acceptable state of readiness [4]. Analysis of predicted

load spectra and better fracture mechanics capabilities have allowed for the design of ap-

propriate inspection strategies that identify fatigue-critical locations and target inspections

to specific times in the aircraft flight history, but these decisions often have occurred in

the design phase or early in the life cycle of an aircraft type. More recent incidents have

increased public awareness of the advanced age of many in-service airplanes [5]. The Dan

Air 707 crash in 1977 highlighted the need to augment original inspections with supple-

mentary inspections [2]. The 1988 Aloha Airlines 737 accident brought renewed focus

on the interplay between environmental effects, changes from predicted usage history, and

maintenance shortfalls in aging aircraft. The 1989 United Airlines DC-10 crash in Sioux

City resulted from a metallurgical defect in a fan disc that was not detected [5]. Events like

these have demanded that inspections be conducted more often and more thoroughly.

A second and related challenge is the significant cost involved with conducting inspec-

tions. As much as 60 percent of the total life-cycle cost of a system is used for sustain-

ment [6], and a large portion of that cost can be attributed to inspection requirements. The

current practice of time-based NDI inspections leaves much to be desired in this regard.

Some large aircraft can have as many as 22,000 critical fastener holes in the lower wing

alone [4], and each of these must be inspected. Aside from direct monetary costs, the

opportunity cost incurred when taking an aircraft out of service can bear huge burdens in

terms of lost revenue for airlines and lower mission capability rates for military units.

Finally, the increased use of advanced materials is changing the playing field for those

working to preserve the integrity of aircraft over their entire life cycle. While fatigue crack

behavior is relatively well understood for metals, knowledge of composite damage is much

less mature. Composite damage can take multiple forms, and the damage is often dis-

tributed in nature. New aircraft are using ever-increasing amounts of fiber-reinforced com-

posites to reduce weight and gain improved structural properties, and one of the most dif-

ficult problems to overcome during the certification process is to guarantee the structural
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integrity of the large composite structures over the 30 years lifespan of the airframe. De-

tection of damage and prediction of its propagation behavior continue to be major research

challenges.

The above factors are leading many in the aerospace industry to push for a move towards

condition-based maintenance. While most of the current inspection regimes used to detect

damage in modern aerospace structures are time-based, the DoD intends to migrate to a

process that initiates maintenance based on the current condition of the system instead of

a schedule [6]. To support this goal, the Air Force Office of Scientific Research has noted

that advances in science and technology are needed to reduce the burden of detecting and

identifying structural damage, reduce downtime, and increase availability of the aircraft

fleet [4]. At the forefront of this technology push is the growing field of structural health

monitoring.

1.2 Structural Health Monitoring

The role of an SHM system is to provide a real-time assessment of the condition of the

vehicle, building, or system [6]. While many of the tools of SHM are derivatives of the

techniques of NDI/NDT [5], SHM can be differentiated from traditional NDI/NDT in that it

involves the integration of sensors into structural components, which allows for continuous

monitoring of the structure [7]. A suitable SHM system for aerospace structures would

ideally answer four questions:

• Does damage exist?

• Where is the damage?

• What type of damage is present?

• How severe is the damage?

Adoption of SHM technologies has the potential to provide numerous benefits. SHM

can allow for current time-based maintenance practices to evolve into more cost effective
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condition-based practices [8]. Because the sensors used for SHM are permanently attached

to the structure, interrogation can be performed in an on-demand basis without moving the

structure to a different location where lengthy manual inspections are conducted. This will

likely result in increased aircraft availability, and it also has the potential to greatly reduce

total life-cycle ownership costs. Additionally, SHM has the potential to allow companies

in the airframe, jet engines, and large equipment businesses to move to a leasing model by

extending the maintenance cycles, keeping equipment in the field longer, and determining

the amount of life used up during lease time [8]. It is also likely that confidence levels in

operating structures will increase because of new safeguards against unpredictable system

failure, particularly for aging structures [9].

1.3 Guided Wave Structural Health Monitoring

SHM schemes can be classified as active or passive. Passive schemes continuously observe

the structure and include methods such as acoustic emission and strain/load monitoring.

While passive SHM schemes have definite advantages in certain applications, significant

drawbacks include the high sensor density required and the need to continuously operate.

On the other hand, active SHM schemes excite the structure in a prescribed manner when

required. Active SHM methods are of greater interest due to their ability to perform on-

demand interrogation of a structure while the structure is still in service [10].

Among active schemes, guided wave SHM has emerged as one of the most promising

techniques. Guided waves are elastic waves that are guided by the finite dimensions of

the structure in which they exist. For most aerospace SHM applications, the most relevant

guided waves are ultrasonic Lamb waves, which are guided by the two parallel surfaces

of a plate-like structure. The use of ultrasonic waves for inspections is well-established in

the NDI/NDT community where they are usually generated using hand-held transducers

during scheduled maintenance/inspections [9]. In these applications, the waves are nor-
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mally generated in the thickness dimension of the structure in order to examine a particular

location. For guided wave SHM, on the other hand, the Lamb waves are generated using

actuators that are permanently attached to the structure. The waves propagate along the lat-

eral dimensions of the structure, which allows for simultaneous inspection of a large region

rather than one specific site.

1.4 Lamb Wave Fundamentals

For isotropic materials, pure analytical solutions exist for various types of guided wave

propagation. Numerous textbooks such as those by Achenbach [11], Graff [12], Auld [13],

and Rose [14] contain detailed descriptions of these formulations. As shown in these refer-

ences, several types of guided waves have been characterized. Rayleigh waves [15] prop-

agate along free surfaces in elastic media. Other guided waves, such as Stoneley [16] and

Love [17] waves, exist at material interfaces. The guided waves most relevant to aerospace

applications are those that propagate between the free surfaces of a plate-like structure,

which were proposed by Horace Lamb [18] in 1917 and bear his name, even though he

never experimentally produced them. Most recent sources have credited Worlton [19] as

the first person to definitively state the potential of using guided waves for non-destructive

inspection purposes.

This section presents the general principles governing free Lamb wave propagation.

The results of this derivation illustrate important principles that explain wave propagation

in isotropic structures and can be expanded to also describe wave behavior in more compli-

cated laminated plates. A schematic of the plate structure used in the derivation is shown

in Fig. 1.1.
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Figure 1.1: Plate structure used in Lamb wave derivation.

The starting point for the derivation is Navier’s equation, which is the equilibrium equa-

tion for isotropic materials cast in terms of displacements:

(λ+µ)∇∇u +µ∇2u = ρü (1.1)

In Eq. 1.1, λ and µ are the Lamé constants for the material, ρ is the density, and u is the

displacement vector. At this point, it is advantageous to use the Helmholtz decomposition

to break the displacement field into the sum of the gradient of a scalar, φ, and the curl of a

zero-divergence vector, H:

u = ∇φ+∇×H and ∇.H = 0 (1.2)

Substitution of the new displacement field expression into Navier’s equation results in the

formation of two separate differential equations which must be satisfied to produce equi-

librium:

∇2φ =
φ̈

c2
P

(1.3)

∇2H =
Ḧ
c2

S

(1.4)
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The first of these equations represents the propagation of longitudinal waves in the medium.

The second equation represents the three equations governing shear waves in the three

vector directions. The cP and cS terms are the bulk velocities of the longitudinal and shear

wave components, which can be defined as:

cP =
√

(λ+ 2µ)/ρ (1.5)

cS =
√
µ/ρ (1.6)

It is common to consider only the plane strain case, which describes the behavior of the

longitudinal (P) and shear-vertical (SV) components of the Lamb waves. For this case,

only the scalar and H3 component of the vector are non-zero, and time-harmonic plane

wave solutions with frequency ω are assumed for these two quantities:

φ = f (x2)ei(ξx1−ωt)

H3 = h3(x2)ei(ξx1−ωt)
(1.7)

The ξ term in Eq. 1.7 is known as the wavenumber, which is a function of the frequency ω

and the phase velocity of the wave, cPH:

ξ =
ω

cPH
(1.8)

Consideration of solutions of these forms results in the following equations,

d2 f
dx2

2

+α2 f = 0 (1.9)

d2h3

dx2
2

+β2h3 = 0 (1.10)
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where the coefficients α and β depend on the frequency, applicable wave velocity, and

wavenumber:

α2 =
ω2

c2
P

− ξ2 (1.11)

β2 =
ω2

c2
S

− ξ2 (1.12)

The solutions of Eqs. 1.9 and 1.10 are of the form,

f (x2) = Asinαx2 + Bcosαx2 (1.13)

h3(x2) = C sinβx2 + Dcosβx2 (1.14)

where A, B, C, and D are displacement amplitude constants. In order to determine the

values for these constants, the appropriate boundary conditions must be applied. For Lamb

waves, traction-free conditions are assumed for the two parallel surfaces of the plate, which

has a thickness of 2b:

σ21 = σ22 = 0 at x2 = ±b (1.15)

The applicable stresses can be represented in terms of displacements as:

σ22 = (λ+ 2µ)∇2φ−2µ

∂2φ

∂x2
1

+
∂2H3

∂x1∂x2

 (1.16)

σ21 = µ

2 ∂2φ

∂x1∂x2
+
∂2H3

∂x2
2

−
∂2H3

∂x2
1

 (1.17)

Substitution of the solutions in Eqs. 1.13 and 1.14 into the boundary conditions in Eq. 1.15

yields two matrix equations that describe the wave propagation of the anti-symmetric and

symmetric portions of the Lamb wave, respectively. From these two equations, it is clear

that admissible wave solutions are only produced when the wavenumber ξ forces the deter-
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minant of the coefficient matrix to have a zero value.

 −(ξ2−β2) sinαb −2iξβsinβb

2iξαcosαb (ξ2−β2)cosβb


 A

D

 =

 0

0

 −(ξ2−β2)cosαb 2iξβcosβb

−2iξαsinαb (ξ2−β2) sinβb


 B

C

 =

 0

0


(1.18)

With this fact in mind, it is possible to rewrite Eq. 1.18 in the following form, which is

commonly known as the Rayleigh-Lamb frequency equation for the plate:

tanβb
tanαb

=

 −4αβξ2

(ξ2−β2)2

±1

(1.19)

The exponent in Eq. 1.19 takes a positive value when considering symmetric waves and a

negative value when considering anti-symmetric waves.

Examination of this equation helps to illustrate two important properties of Lamb

waves: they are multimodal and dispersive. It is immediately seen that for each value

of the exponent, multiple solutions exist. These solutions are often represented in graphical

form using a phase velocity dispersion curve, illustrated in Fig. 1.2 for aluminum. For any

frequency, one or more values of the phase velocity result in wavenumbers that satisfy the

Rayleigh-Lamb frequency equation. At low frequencies, only the fundamental modes, A0

and S 0, exist. At higher frequencies, an increasing number of modes are possible, such as

the A1 and S 1 modes shown in the upper right corner of Fig. 1.2. The slope of the curve

describes how dispersive a particular mode is in a given frequency range, and extremely

dispersive modes can prove to be troublesome for practical applications.

1.5 Literature Review

This section provides an overview of previous work relevant to the scope of this disser-

tation. While guided wave SHM is a relatively recent area of interest, it has its roots in
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Figure 1.2: Phase velocity dispersion curve for aluminum.

a considerable amount of research from the NDI/NDT community. A thorough review

of guided wave SHM was presented by Raghavan and Cesnik [9], and that work can be

referenced for numerous resources beyond those contained in this chapter.

1.5.1 Actuator and Sensor Design

In traditional NDI/NDT applications using guided waves, the waves have been generated

and sensed using a wide variety of external transducers such as wedge transducers [20],

comb transducers [21], and electromagnetic acoustic transducers (EMAT) [22–24]. How-

ever, many of these are quite large, and the need to integrate SHM actuators and sensors

with the existing structure of the system makes these devices impractical. Some researchers

have used fiber optic sensors such as fiber Bragg gratings (FBG) [25, 26], which have the

potential to act as both load monitors and guided wave sensors. Others have considered

magnetostrictive transducers [27, 28].

Piezoelectric materials have been the most popular and most widely researched alter-

natives. They offer the ability to generate guided waves with small, lightweight, and un-

obtrusive actuators that can be permanently attached to a structure. Piezoelectric wafer
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actuators have been widely used due to their simplicity and relatively low cost. One can-

didate material for these wafers is polyvinylidene flouride (PVDF), which is a polymer

film. Researchers such as Monkhouse et al. [29] have applied backing layers with elec-

trode patterns to the film to produce flexible transducers. Piezoceramic wafers constructed

with lead zirconium titanate (PZT) have been more attractive. Crawley and De Luis [30]

noted the potential to use piezoceramic wafers as part of an intelligent structure, and Keil-

ers and Chang [31] were early proponents of using piezoceramic wafers to detect damage

in composite structures. Giurgiutiu and Zagrai [32], Kessler et al. [33], and Diaz-Valdés

and Soutis [34] made notable early contributions to the use of these materials in SHM

applications.

Efforts to improve the performance and utility of piezoelectric actuators in general have

resulted in a number of more advanced actuator designs broadly categorized as anisotropic

piezocomposite transducers. Unlike PZT wafers which are very brittle, these transducers

are very flexible and conformable to the curved surfaces often found in aerospace struc-

tures. Bent and Hagood [35] developed the active fiber composite (AFC), which uses ex-

truded piezoceramic fibers that are embedded in an epoxy resin. Interdigitated electrode

patterns provide the necessary electric field for the piezoelectric effect to be present. Wilkie

and High [36] developed the macro-fiber composite (MFC) actuator, which is very similar

to the AFC except the piezoelectric material is now cut from a wafer using a dicing saw.

Based on these fundamentals, Salas and Cesnik [37, 38] have developed the Composite

Long-range Variable-direction Emitting Radar (CLoVER) specifically for SHM applica-

tions. The CLoVER is composed of a series of wedge-shaped sectors that can be individ-

ually excited to provide directional interrogation and/or sensing of a structure while also

providing 360-degree coverage. Senesi and Ruzzene [39,40] have developed the Frequency

Selective Acoustic Transducer (FSAT), which arranges the piezoelectric material in a spiral

pattern. When used as a sensor, this device produces a signal with the dominant frequency
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component dependent on the direction of the incoming waves. It can also be used as a

directional guided wave generator.

1.5.2 Analytical and Semi-analytical Approaches to Solve the Guided

Wave Equations

Early work considering actuator design was accompanied by numerous studies on how to

describe the propagating waves. Because SHM applications use structurally-integrated ac-

tuators to generate guided waves in the structure of interest, there is a need to not only

describe free propagation, but also to represent wave generation. Analytical solutions for

guided wave generation are possible for isotropic media. Viktorov [41] developed 2-D

models for Lamb wave propagation in isotropic plates. Santosa and Pao [42] solved for the

transient response of a thick, infinite plate to a point force using a normal mode expansion

method. Several studies used reduced-order plate theories to develop simplified wave prop-

agation solutions. Lin and Yuan [43] modeled waves originating from surface-mounted

piezoceramic discs on an infinite plate. They used Mindlin plate theory and considered

both transverse shear and rotary inertia effects. Rose and Wang [44] also used Mindlin

plate theory to develop solutions for point forces and moments, which were then combined

to form solutions for circular and rectangular piezo actuators.

More recently, Giurgiutiu [45] presented 2-D analytical solutions for the displacement

response of an isotropic plate to excitation from semi-infinite piezoceramic wafers. He

extended his analysis to consider how best to tune the excitation for maximum amplitude

response. Raghavan and Cesnik [46] subsequently developed analytical solutions based

on 3-D elasticity theory for arbitrarily-shaped, finite-dimension actuators. They also pro-

vided solutions for the particular cases of rectangular, ring, and circular piezoceramic wafer

actuators. They used contour integration and the residue theorem to handle the complex

integrals contained in the formulations.
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As composite materials gained popularity, more attention was focused on how to de-

scribe guided wave generation and propagation in laminated structures. As was the case

for isotropic materials, most of the theoretical approaches for guided wave propagation in

composites were initially limited to 2-D representations or reduced plate theories. Ditri

and Rose [47] used a normal mode expansion technique to model excitation of anisotropic

layers based on a 2-D elasticity model. Datta et al. [48] used approximate plate theories to

avoid the complexity of equations resulting from the full 3-D theory of elasticity. Moulin

et al. [49] used a coupled model based on finite element analysis and normal mode ex-

pansion to simulate piezo-actuated guided wave propagation in composites. Velichko and

Wilcox [50] developed another method that uses dispersion relationships and mode shapes

obtained from 2-D analysis to model displacements from finite-sized transducers.

Matrix approaches have been the most successful in moving towards complete 3-D the-

oretical modeling of guided waves in composite laminates. Lowe [51] provided a thorough

overview of both the Transfer Matrix and Global Matrix methods. The Transfer Matrix ap-

proach was developed by Thomson [52] and Haskell [53] as a method to characterize wave

propagation in layered media. Nayfeh [54] later expanded the Transfer Matrix to com-

posite laminates by allowing for anisotropic lamina in the formulation. Bottai et al. [55]

have used Nayfeh’s formulation of the Transfer Matrix methodology to obtain dispersion

curves in support of analytical and experimental studies. Mienczakowski et al. [56] used the

Transfer Matrix approach to model composite panels and showed favorable comparisons

with experimental results for displacement time history.

The Global Matrix Method was introduced by Knopoff [57] to overcome instabilities

in the Transfer Matrix approach for laminates with large frequency-thickness products.

Mal [58] and Lih and Mal [59] used the Global Matrix Method as the basis for a formula-

tion to consider forced guided wave excitation from finite-dimensional sources. They used

a numerical scheme to handle the Fourier spatial inversions resulting from the formulation.

Mal and Banerjee [60] and Banerjee et al. [61] proposed a semi-analytical solution for the
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evaluation of the spatial inversion integrals using the residue theorem in one direction and

numerical integration in the other. More recently, Raghavan and Cesnik [62] outlined a

framework to determine the displacements resulting from finite-dimensional piezoelectric

actuators attached to the surface of a composite laminate. They adapted the Global Ma-

trix formulation of Lih and Mal [59] and introduced a distinct inversion method using the

residue theorem.

1.5.3 Numerical Approaches

Although theoretical models are capable of characterizing the guided wave propagation

in an infinite medium, they often become intractable when modeling complex-geometry

structures because of the interface conditions and the need to account for the shape and re-

flections in the formulation. Researchers have turned to numerical simulations to facilitate

the modeling of waves, which can better deal with complex structural systems, interfaces,

and damage [63]. Lee and Staszewski [64] provided a good review of the many different

numerical techniques used to model guided waves. Among the more popular choices have

been the finite difference method, the finite element method, the boundary element method,

and the spectral element method.

The finite difference method [65] has been used for decades to model bulk wave prop-

agation and more recently guided waves. Virieux [66] used the finite difference method to

model wave propagation in heterogeneous media, specifically for seismology applications.

Yamawaki and Saito [67] developed a finite difference-based scheme to model ultrasonic

wave propagation that was applicable to both isotropic and anisotropic materials.

The finite element method [68] has been by far the most popular technique for numer-

ical guided wave modeling. Talbot and Przemieniecki [69] presented an early study using

finite elements where they introduced new elements to aid in analyzing the dispersion be-

havior of guided waves in wave guides of arbitrary cross section. Alleyne [70] presented

guidelines on the number of elements required based on the minimum wavelength present.
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Many other studies have employed the finite element method, and some will be covered

later in this review.

The spectral element method [71,72] is a more recent development where functions are

approximated using sums of trigonometric or polynomial functions, which can be differ-

entiated exactly. Ostachowicz and Krawczuk [73] used spectral elements to model crack

detection in a cantilever rod. Zak et al. [74] demonstrated the spectral element method

for use in modeling wave propagation in pristine composite plates using elements based

on Legendre polynomials, and they later used the method to consider damaged aluminum

components [75]. Kim et al. [76] developed a coupled model for piezoelectric generation

and sensing of guided waves using the spectral element method.

The boundary element method [77] has been the subject of several recent studies due to

its reduced computational requirements. In this method, only the boundaries of the struc-

ture are discretized. Surface integrals replace volume integrals, resulting in considerably

smaller systems of equations. Cho and Rose [78] used the boundary element method to

study mode conversion of Lamb waves from a free edge. Zou et al. [79] used a dual bound-

ary element approach to model wave propagation and interaction with a surface crack in an

aluminum specimen.

While these numerical techniques for modeling wave propagation have been success-

ful, many have proved to be high in computational cost [9]. The local interaction simu-

lation approach (LISA), originally developed by Delsanto et al. [80–82], has emerged as

an efficient numerical option for modeling guided waves. This method is based on a set

of iterative equations for unit cells that discretize the structure, and it uses a sharp inter-

face model to handle material discontinuities and layer interfaces. Recent implementations

of this method have shown good results. Lee and Staszewski [64, 83–85] used LISA to

model guided wave propagation in pristine and damaged aluminum plates, focusing on 2-

D models. Sinor [86] presented a thorough derivation of the LISA iterative equations for

orthotropic lamina in principal directions which allowed for variable discretization in the
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three dimensions. Sundararaman and Adams [63] used LISA to model damage in isotropic

and orthotropic plates and later investigated the effects of grid size [87]. Nadella and

Cesnik [88–90] extended LISA to laminates containing transversely isotropic lamina in

non-principal directions and developed a fully-coupled LISA formulation that captures the

electromechanical effects of piezoelectric actuators and sensors [91]. Their work has pre-

viously demonstrated LISA’s usefulness in modeling a variety of composite configurations

including unidirectional, cross-ply, and quasi-isotropic laminates.

1.5.4 Guided Wave Interaction with Damage

The previous work developing reliable analytical and numerical tools has allowed for nu-

merous studies intended to characterize the interaction of guided waves with damage. This

section of the literature review highlights a representative cross-section of those works.

Damage studies considering both isotropic and composite structures are included.

1.5.4.1 Holes and Notches

Many of the early efforts considering guided wave interaction with damage focused on

simple forms of damage such as holes and notches. These features are straight-forward to

model, and they can be incorporated into experimental studies with little complexity.

Research in this area began with isotropic materials. Alleyne and Cawley [92] inves-

tigated the use of Lamb waves to detect notches in metal plates. Finite element modeling

was used to consider the S 0, A0, and A1 Lamb modes interacting with notches of various

depths. Experiments were also conducted to validate the finite element models. Ghosh

et al. [93] experimentally investigated hole damage in steel and aluminum plates. They

considered holes oriented both transverse and parallel to the plates’ free surfaces, and they

concluded Lamb waves were more sensitive to the holes drilled parallel to the plate surface.

A few notable studies focused on incorporating damage effects into various plate the-

ories. McKeon and Hinders [94] used Mindlin plate theory while modeling the hole as
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a point source to capture the scattering effects of the damage. Fromme and Sayir [95]

compared classical plate theory, Mindlin plate theory, and experimental results for the scat-

tering effects of a through hole. They also examined the scattering effects of a line of

holes. Grahn [96] developed models based on 3-D elasticity and low-order plate theo-

ries to describe partial-thickness holes, but these models were only applicable to very low

frequencies.

One of the major tasks for these early studies was to prove damage could be reliably de-

tected. Several researches considered the use of sensor arrays to increase the capabilities of

the guided wave methods. Among these were Giurgiutiu [97], who experimentally demon-

strated detection of a crack originating from a rivet in an aluminum plate using a pulse-echo

configuration and array approaches. Yu and Giurgiutiu [98] later presented results using a

2-D array of piezoelectric wafer active sensors to detect damage in an isotropic plate. They

demonstrated the ability of 2-D arrays to offer improved results over 1-D arrays. They

considered multiple array configurations and experimentally demonstrated the ability of a

rectangular array to locate both a crack and a pin-hole in an aluminum plate.

Along with holes and notches, other authors began to examine how stiffness changes at

various locations in their models affected guided wave propagation. Basri and Chiu [99]

used the finite element method to explore the effect of stiffness changes and notches in

isotropic and orthotropic structures. They used 2-D and 3-D analyses to examine wave

propagation in both the wavenumber-frequency domain and the wavenumber-time domain.

They determined that the S 0 mode was more sensitive to small notch depths than the A0

mode for isotropic beams. Sundararaman and Adams [63] used LISA to model damage in

isotropic plates. Damages such as holes and cracks were simulated as local changes in ma-

terial density and/or stiffness. They investigated models with single and multiple damage

and conducted several parametric studies involving various sizes of holes and notches and

various magnitudes of material property changes.
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More recently, studies have begun to consider the presence of holes in composite lami-

nates. Giurgiutiu and Bottai [100] presented experimental results using piezoelectric wafer

active sensors to detect hole damage in composite specimens. They were able to detect

holes in both unidirectional composite strips and a quasi-isotropic plate using sensors in

the pitch-catch configuration. Ng and Veidt [101] considered the use of a transducer net-

work to sequentially scan a composite laminate. Hole damage was simulated in a finite

element model, and a damage localization image was constructed using the information

from the four transducer elements. An experimental study involving bonded masses was

used to confirm the ability of the approach to reliably locate damage features. Veidt and

Ng [102] studied guided wave scattering due to through-holes in unidirectional, cross-ply,

and quasi-isotropic laminates. They used both finite element models and experimental mea-

surements to characterize the azimuthal scattering from the holes, and they investigated the

influence of stacking sequence on the guided wave response.

1.5.4.2 Delamination in Composite Laminates

The increasing focus on composite materials has inspired many researchers to shift their

focus from holes and notches to damage types more typical of composite structures, such as

delaminations. Some of these efforts have considered the effect of the through-thickness lo-

cation of the delamination. One of the earliest examples came from Guo and Cawley [103],

who examined the effect of delamination on the propagation of the S 0 Lamb mode using

the finite element method and experiments. A 2-D plane strain model was used for the nu-

merical analysis. Experimental delaminations were produced by spraying release agent on

the interface between appropriate layers during layup. Numerical and experimental results

showed that at interface locations where the S 0 mode shape produced zero shear stress, it

was insensitive to the delamination defect. Li et al. [104] used the spectral element model

to analyze the effect of a square delamination contained at various interface locations in

composite laminates. Their simulations demonstrated that the A0 mode was more sensitive
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to the delamination than the S 0 mode. They also showed that mid-plane delaminations

were not detectable with the S 0 mode.

Several studies have considered the effect of the delamination size on the success of

damage detection. Hu et al. [105] considered a laminated beam using the S 0 Lamb mode.

Experimental results allowed detection of delaminations with a length above a certain

threshold. Results from an intact beam were compared with results from a delaminated

beam. The authors noted that using a higher frequency would allow for smaller delamina-

tions to be detected. Ip and Mai [106] considered detection of through-width delaminations

in Kevlar-epoxy composite beams. Delaminations were introduced by including Teflon film

between the 4th and 5th layers of the 6-ply laminate. Three damaged configurations were

tested along with one pristine sample, and the authors quantified the effect of delamination

length on location error. A 3-D case was considered by Ng and Veidt [107], who studied

the directionality of the Lamb waves scattered from a circular delamination in a quasi-

isotropic laminate. A laser vibrometer was used to record out-of-plane displacement along

a circle surrounding the delamination. Experimental results were used to validate a 3-D

finite element model, and the model was used to investigate the dependence of the scatter-

ing on delamination size and through-thickness location. The results indicated that as the

delamination diameter increases relative to the wavelength of the A0 mode, the scattering

of the Lamb wave favors forward scattering in the direction of wave propagation over back

scattering towards the actuator.

Other related works have illustrated how delaminations affect the speed, frequency, and

modal characteristics of the guided waves. Toyama et al. [108] examined the changes in

Lamb wave velocity in the presence of both transverse cracking damage and delamination.

Both glass-fiber and carbon-fiber reinforced cross-ply specimens were studied in their ex-

periments. Delaminations were created by including Teflon sheets between the outer and

inner layers of the specimen. Duflo et al. [109] considered the attenuation of the Lamb

waves in the frequency spectrum due to mode conversion. They constructed a compos-
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ite plate with simulated defects by including various materials to prevent complete curing.

They used laser vibrometry to examine wave propagation generated with a wedge trans-

ducer, and they were able to evaluate the size of the delaminations. Ramadas et al. [110]

described mode conversion found due to a delamination. The A0 mode partially converted

into an S 0 mode in sublayers above and below the delamination. Both finite element models

and experiments were used to characterize the effect. Subsequently [111], they expanded

on this work and demonstrated the presence of turning modes when a delamination was

located asymmetrically in the thickness direction. These modes transfer from one sublayer

to the other at the endpoint of the delamination.

1.5.4.3 Impact Damage in Composite Laminates

Along with delamination, the presence of impact damage has been of particular interest

among SHM reseachers. The majority of these studies have been experimental in nature.

Kaczmarek [112] investigated impact damage in quasi-isotropic carbon-epoxy laminates

using the A0 mode. Impact damage was produced using static indentation to create multiple

delaminations. The authors demonstrated the attenuation effects of the delaminated region,

and they showed a region of geometric shadow behind the damage region. Their results

indicated the damage acted as a soft scattering center that resulted in an increase in received

energy in directions away from the propagation direction of the actuation signal. Schubert

et al. [113] used 3-D vibrometry to observe Lamb wave interaction with damage from a

7-J impact in a quasi-isotropic plate. They built a difference signal from the out-of-plane

displacement data. From the difference data they were able to identify strong interaction

between the A0 mode and the impact damaged area as well as mode conversion of the S 0

mode to an A0 mode. Giurgiutiu and Bottai [100] experimentally detected impact damage

in a quasi-isotropic plate using both the pulse-echo and pitch-catch configurations, and they

found the A0 mode was superior to the S 0 mode in detecting the damaged regions.
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A few studies have used impact damage to demonstrate detection algorithms using var-

ious sensing techniques. Soma Sekhar et al. [114] used drop-weight impacts to create a

damaged plate in order to demonstrate the concept of tomography, where the Lamb wave

signals from a series of sensors placed around the perimeter of the plate are used to image

the condition of the plate. Reynolds et al. [115] developed a procedure to utilize multiple

sensor-actuator pairs to detect impact damage in a cross-ply laminate. Each pair was used

to create an ellipse of possible damage locations based on the time of flight of a guided

wave interacting with the damage site. Multiple ellipse maps were correlated to locate

the damage site. Sohn et al. [116] conducted laser vibrometry experiments with an im-

pact damaged composite plate and were able to demonstrate damage detection through a

new image processing algorithm. Additionally, they showed the ability to locate disbond

damage in an aircraft wing section.

In comparison to the number of experimental studies concerning impact damage, fewer

researchers have attempted to create numerical models that represent the impact damage.

Diamanti et al. [117] used a linear array of transmitters to generate guided waves in a dam-

aged quasi-isotropic composite plate. Damage was initiated by including a Teflon disc in

the mid-plane of the laminate. Subsequently, drop-weight impacts were conducted at the

damage location at various energy levels. A finite element model was used to simulate the

experiments, and damage was simulated by reducing the elastic properties in a region at

the center of the plate by 50%. Rogge and Leckey [118] used finite elements to simulate

guided wave interaction with disbond damage resulting from an impact. The damage was

simulated as a cylindrical void with a finite thickness. Experimental results were obtained

for comparison using a laser vibrometer. Pavelko et al. [119] used a 2-D finite element

model to simulate Lamb wave interaction with low-velocity impact damage in a carbon

fiber reinforced laminate. The impact damage was modeled as a single delamination, and

the authors noted the reflections obtained from the delamination had a very small ampli-

tude. Singh et al. [120] used the finite element method to study the effect of simulated
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impact damage in a carbon fiber reinforced laminate. The impact damage was simulated

as an inverted cone region of 80% reduced stiffness. The interaction of the A0 mode was

studied, and the out-of-plane displacement behavior of points at a given radius from the

defect area was observed. They showed the scattering behavior in directions toward the

guided wave source did not change much relative to the damage region size, but it did

change shape significantly in directions opposite the source.

1.5.4.4 Damage in Built-up Composite Structures

Recently, there has been increased attention to guided wave propagation and damage inter-

action in more complex composite structures, and several numerical and experimental stud-

ies have emerged. Among these, Balasubramaniam et al. [121] experimentally character-

ized the propagation of Lamb waves in T-joint structures composed of glass fiber reinforced

sublayers. They considered the effect of interface delaminations at the joint. Lamboul et

al. [122] conducted an experimental study of impacted sandwich plates. They produced

energy maps from laser vibrometry data, and from these maps they were able to determine

the location of the damaged area and its extents. Liu and Chattopadhyay [123] also studied

impact damage of a sandwich composite UAV wing, and they used their results to vali-

date a signal processing algorithm. They used two MFC sensors to record guided wave

signals after each of 10 successive impact events, which were confined to a small region.

They demonstrated how successive low-velocity impacts can lead to catastrophic structural

failure. Finally, Ajith and Goapalakrishnan [124] used the spectral element method to sim-

ulate guided wave interaction with skin-stiffener debonding, and showed good agreement

between their model and 2-D finite element results.

1.5.5 Time-Frequency Analysis of Guided Wave Signals

The methods used to analyze guided wave signals and derive useful information comprise a

significant field of research. These procedures are first intended to identify signal features
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due to damage present in the structure. Subsequently, the identified signal features are

used to locate and characterize the damage. Staszewski and Worden [125] provided a

comprehensive review of the numerous dimensions of signal processing used for damage

detection. One of the most prominent categories of processing procedures for guided wave

signals is time-frequency analysis. These methods are used to describe how the frequency

content of signals change over the time history of the signals, and the information provided

can offer insight needed to distinguish and characterize different damage signal features.

In many cases, the product of these methods is a time-frequency representation, which is a

2-D plot showing the frequency content with respect to time. Several methods have been

used in previous studies to produce these images.

Niethammer et al. [126] provided a good overview of many time-frequency meth-

ods. The short-time Fourier transform divides a time-history signal into small overlapping

pieces, and then each of the pieces is windowed. The Fourier transform of each win-

dowed piece is taken to produce an energy density with respect to frequency and time,

which is called a spectrogram. A closely related method is the Wigner-Ville distribution,

which provides a measure of the signal’s local time-frequency energy. The major draw-

back of the Wigner-Ville distribution is the presence of interference terms which must be

removed through a smoothing procedure. This smoothing procedure unfortunately results

in a smearing effect that reduces the ability to exactly locate certain signal features.

Wavelet methods have seen increased use in the analysis of guided wave signals, and

they involve the decomposition of a signal into packets based on some type of basis.

Wavelet transforms can be categorized as either continuous wavelet transforms or discrete

wavelet transforms. Several different bases of wavelets have been used in the literature,

but the Morlet (Gabor) and Daubechies wavelets have been the most popular for guided

wave decomposition [9]. Kim and Kim [127] used the continuous wavelet transform to an-

alyze dispersive waves and demonstrated the superiority of the method over the short-time

Fourier transform. More recently, Okabe et al. [128] used the continuous wavelet trans-
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form to examine signals from a composite beam containing a delamination. The transform

results were used to discern between delaminations of different lengths. Sohn et al. [129]

used the Morlet wavelet to analyze guided wave signals from a damaged composite plate

instrumented with an array of sensors.

Mallat and Zhang [130] introduced the matching pursuit approach, which decomposes

a signal into a combination of waveforms from a pre-defined dictionary. This approach uses

an iterative process to select the best matching waveforms. They proposed using a library of

Gaussian-modulated time-frequency functions, called atoms, as candidate waveforms. The

atoms in this library had a stationary time-frequency behavior, which means the frequency

at which the maximum energy occurs does not change with time. Zhang et al. [131] used

matching pursuit to de-noise signals. Hong et al. [132] used this type of dictionary in their

studies, and they were able to successfully capture very small reflections from a crack in a

rod. Das et al. [133] combined matching pursuits with a Monte Carlo method to reduce the

size of the dictionary and rapidly decompose a signal. Vizzini and Chattopadhyay [134]

used matching pursuit to characterize signals in a delaminated composite panel, and they

were able to detect the damage features for a variety of temperatures ranging from 20 °C to

80 °C. The major drawback to the originally-proposed dictionary is that it does not capture

dispersive signals well, which have non-stationary time-frequency behaviors. Gribonval

[135] introduced an alternative dictionary based on Gaussian-modulated chirplet atoms,

which have a linear time-frequency behavior. Raghavan and Cesnik [136] developed a

chirplet matching pursuit approach, and they were able to successfully resolve overlapping,

multimodal guided wave signals from damage in aluminum plates.

1.5.6 Assessment of the State of the Art in Guided Wave SHM

Based on this literature review, four key areas have been identified where this dissertation

can advance current capabilities:
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• Guided Wave Generation in LISA: Currently, a need exists to improve the method

by which guided waves are generated in the simulations to ensure they accurately

model the effects of various actuators.

• Damage Modeling in LISA: While some preliminary studies exist, considerable

work is still needed to fully validate LISA’s ability to capture the effects of guided

wave interaction with damage. Proper modeling strategies need to be identified for

various types of damage expected in structures of interest.

• Guided Wave Damage Characterization: The SHM community is still at the be-

ginning stages of understanding how various damage types effect guided wave prop-

agation, especially in composite structures. More information is needed to help dif-

ferentiate between damage of different types, shapes, and sizes.

• Matching Pursuit: The matching pursuit method has shown great promise as a way

to identify important features of guided wave signals. Opportunity exists to combine

the power of matching pursuit with LISA simulation capabilities to produce a model-

based framework for locating and classifying damage.

1.6 Dissertation Overview

The remainer of this dissertation is organized as follows:

• Chapter 2 focuses on the Global Matrix Method for modeling guided wave propa-

gation in laminated plates. The theoretical development of this model is thoroughly

explained, and shortcomings of previous employments of this method are noted. A

new method is presented that produces accurate time histories of the displacements

that result from excitation using finite dimension actuators. The method is demon-

strated for both piezoceramic wafer actuators and CLoVER.

• Chapter 3 introduces the LISA hybrid method, which utilizes the Global Matrix

Method to model an actuator and uses LISA to describe the wave propagation in
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a finite plate. Background on the development of LISA is provided, and the pro-

cess for deriving the iterative equations is summarized. The advantages of the new

method are explained in comparison with previous methods of representing guided

wave actuation mechanisms. Results for circular, square, and CLoVER actuators are

presented and compared with Global Matrix results to demonstrate the success of the

new method.

• Chapter 4 considers guided wave interaction with holes in isotropic and composite

plates. A series of simulations using the LISA hybrid method are used to charac-

terize the effect of this type of damage in plate structures. Both through-thickness

and half-depth holes are considered. The effect of hole size and location on guided

wave propagation are also explored. Experimental data are presented to validate the

simulation results for both the isotropic and composite cases.

• Chapter 5 presents another set of damage interaction studies for impact-damaged

composite plates. Diagnostic results are presented to examine the damage features

resulting from laboratory-produced low-velocity impact. Experimental results are

then presented to characterize the effect of low-velocity impact on guided wave prop-

agation. These results are used as the basis for evaluating impact damage modeling

techniques in LISA.

• Chapter 6 introduces a matching pursuit method which uses a library of LISA simu-

lation results to locate and classify damage regions found using guided wave signals.

Results for a 1-D scenario are presented for through-thickness hole damage in both

isotropic and composite plates, and the new algorithm’s ability to locate damage and

identify its size is demonstrated. The algorithm is also demonstrated in a 2-D sce-

nario for a composite laminate, successful hole damage location results are shown.

• Chapter 7 concludes the dissertation with a summary of the key contributions of this

dissertation. It also offers several recommendations for future study.
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CHAPTER 2

Global Matrix Method

While no closed form solution exists for Lamb wave propagation in composite laminates,

the matrix approaches have been very successful in moving towards complete 3-D theoret-

ical modeling of guided waves. The objective of this chapter is to introduce an improved

methodology to fully develop the displacement time histories resulting from the Global

Matrix Method. First, the chapter reviews the fundamentals of the Global Matrix Method

and the general process for obtaining the displacement time history. The axisymmetric

case involving actuation from a piezoelectric disc bonded to a plate with isotropic layers is

considered to illustrate the presence of inbound and outbound waves in the general solu-

tion, and previous solution techniques are reviewed. The general solution for transversely

isotropic lamina is described next, and the new solution process is explained. Results from

the improved solution are compared with those from a previous solution as well as an exact

isotropic formulation for both circular and square actuators. Finally, results for a cross-ply

laminate are verified using experimental results to reinforce the utility of the new approach.

2.1 Global Matrix Formulation

The Global Matrix Method used in this work is largely adapted from the work of Lih

and Mal [59] and Raghavan and Cesnik [62]. The first step in this method is to describe

the wave propagation in an individual lamina. The starting point for the analysis is the

28



displacement form of the equilibrium equation for a transversely isotropic bulk medium,

∇S∇T u = ρü (2.1)

where S is the material stiffness matrix, u is the displacement vector, and ρ is the material

density. Harmonic excitation of the medium at frequency ω is assumed, which produces a

wave field of the form,

u = Ce−i(ξ1x1+ξ2x2+ζx3−ωt) (2.2)

where C is a vector of displacement amplitude constants. In-plane wavenumbers are rep-

resented as ξ1 and ξ2, while through-thickness wavenumbers are represented as ζ. Based

on this assumed solution, the equilibrium equation can be reformed into the Christoffel

equation:
S 11ξ

2
1 + S 55(ξ2

2 + ζ2) (S 12 + S 55)ξ1ξ2 (S 12 + S 55)ξ1ζ

(S 12 + S 55)ξ1ξ2 S 55ξ
2
1 + S 22ξ

2
2 + S 44ζ

2 (S 23 + S 44)ξ2ζ

(S 12 + S 55)ξ1ζ (S 23 + S 44)ξ2ζ S 55ξ
2
1 + S 44ξ

2
2 + S 22ζ

2




u1

u2

u3

 = ρω2


u1

u2

u3


(2.3)

In the Christoffel equation, the S ij terms are components of the material stiffness matrix

for a transversely isotropic lamina. For a given frequency and fixed values of the in-plane

wavenumbers, this equation admits six possible values for the through-thickness wavenum-

ber, ±ζi, where i =1 to 3. The general solution for the displacement vector can then be

expressed as,

u = (Cu
1e1eiζ1x3 +Cu

2e2eiζ2x3 +Cu
3e3eiζ3x3 +

Cd
1e4e−iζ1x3 +Cd

2e5e−iζ2x3 +Cd
3e6e−iζ3x3)e−i(ξ1x1+ξ2x2−ωt) (2.4)

where Cu
i and Cd

i are displacement amplitude constants associated with upward and down-

ward traveling waves, respectively. The eigenvectors for the displacement field correspond

to the ej variables.
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Having determined a solution for the displacement in a single lamina, the next step is

to account for the multilayer structure of the plate. A 2-D Fourier transform is used to

move from the spatial domain to the wavenumber domain, and another Fourier transform is

used to move from the time domain to the frequency domain. Coordinate transformations

are used to convert local in-plane wavenumbers to global in-plane wavenumbers in polar

coordinates. Subsequently, the Global Matrix is formed by enforcing displacement and

stress continuity at the layer interfaces of the laminate. It is convenient to represent the

stress and displacement quantities for a single lamina m in vector form as,

 Lm 0

0 Lm


 Qm

11 Qm
12

Qm
21 Qm

22


 Em

u 0

0 Em
d


 Cm

u

Cm
d

 = QmCm (2.5)

where Lm is the transformation matrix corresponding to the orientation of the mth lamina.

The Qm
ij terms represent submatrices containing the stress and displacement eigenvectors

in the local coordinate system. The contents of these submatrices can be found in detail in

Appendix A. The E terms are the exponentials from Eq. 2.4. The displacements and the

three stresses contained in this vector are assumed to be continuous at the lamina interface

between the bottom of lamina m and the top of lamina m + 1,

Qm
BottomCm = Qm+1

TopCm+1 (2.6)

where Fig. 2.1 shows the layer numbering scheme used in this formulation. The interface

between lamina m and lamina m + 1 can be represented as:

[
Qm

Bottom −Qm+1
Top

]  Cm

Cm+1

 =

 0

0

 (2.7)

Applying this relationship to each interface results in the formation of the banded

Global Matrix, which completely represents the laminated plate structure. The Global
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Figure 2.1: Schematic of laminated plate structure numbering scheme.

Matrix will have size 6N ×6N, where N is the number of layers in the plate. When actua-

tors are present on the top or bottom surface of the plate, these can be added to the forcing

vector to form a complete system of equations,

Q̂1
+ 0 · · ·

Q1
− Q2

+ 0 · · ·

. . .

· · · 0 Qm−1
− Qm

+ 0 · · ·

· · · 0 Qm
− Qm+1

+ 0 · · ·

. . .

· · · 0 QN−1
− QN

+

· · · 0 Q̂N
−





C1

C2

...

CN



=



F

0

...

0



(2.8)

where Q− and Q+ represent the eigenvector submatrices calculated at the bottom and top

of the applicable layer, respectively. The Q̂ terms represent eigenvector submatrices con-

taining only the stress eigenvectors needed to define the traction conditions on the top and

bottom surfaces of the laminate.

Admissible in-plane wavenumbers are those that result in the determinant of the Global

Matrix having a zero value. These wavenumbers can be used to calculate the admissible
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phase velocities and to form dispersion curves for the plate. On the other hand, a com-

plete solution of Eq. 2.8 is needed to determine the displacement solution for the plate.

Determination of the Cu
i and Cd

i constants requires the forcing vector for the actuator to be

represented in terms of a 2-D spatial Fourier transform. Any actuator can be modeled us-

ing this approach as long as the tractions it produces can be represented in the wavenumber

domain. Previous works have demonstrated the use of rectangular, ring, and circular actu-

ators [62, 137]. Cramer’s rule provides a convenient way to determine the constant values

once the forcing vector is in wavenumber space.

Once the constants for each lamina are determined, it is possible to determine the dis-

placements at any point on the plate. Most implementations of this method have only

allowed for determination of the out-of-plane displacement component at the top surface

of the plate. This implementation extends the method to calculate all three displacement

components at any through-thickness location on the plate. The displacement vector at a

given point is represented in the wavenumber and frequency domain as,

U(K1,K2,X3,ω) =

[
Qm

11 Qm
12

]  Eu 0

0 Ed


 Cm

u

Cm
d

 (2.9)

where K1 and K2 are the in-plane components of the global wavenumber, X3 is the through-

thickness location of the point of interest in global coordinates, ω is the frequency, and Qm
11

and Qm
12 are the displacement eigenvectors for the lamina containing the point of interest.

The C constants used in the calculation also correspond the lamina containing the point of

interest.

The matrix of exponentials in Eq. 2.9 must be calculated based on the through-thickness

location of the point of interest. This matrix is in terms of the applicable lamina’s local

coordinate system and is given by:
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 Eu 0

0 Ed

 =



eiζ1x3 0 0 0 0 0

0 eiζ2x3 0 0 0 0

0 0 eiζ3x3 0 0 0

0 0 0 e−iζ1x3 0 0

0 0 0 0 e−iζ2x3 0

0 0 0 0 0 e−iζ3x3



(2.10)

Once the individual matrices in Eq. 2.9 are calculated, they can be multiplied to de-

termine the value of the displacement vector at the given wavenumber, through-thickness

location, and frequency. It can be shown that this results in an expression for displacement

component i of the form,

Ui(K1,K2,X3,ω) =
Ψi(K,Γ,X3,ω)

∆(K,Γ,ω)
(2.11)

where the ∆ term represents the determinant of the Global Matrix. The Ψi term is a function

of the global radial wavenumber K, the global azimuthal wavenumber Γ, and the constants

associated with the layer of interest.

In order to determine the values of the displacement component in the spatial and time

domains, a series of inverse transformations is necessary. First, a 2-D inverse Fourier trans-

form is used to move from the wavenumber domain to the spatial domain. The inversion

formula in polar coordinates is given by:

ui(r, θ,X3,ω) =
1

4π2

∞∫
0

2π∫
0

Ψi(K,Γ,X3,ω)
∆(K,Γ,ω)

e−iKr cos(θ−Γ)KdΓdK (2.12)

In Eq. 2.12, the integrand is singular at wavenumber values that set the determinant of the

Global Matrix to zero. These are exactly the values of the propagating wavenumbers for

the plate. Previous works [61, 62, 137] have shown the employment of the residue formula

to perform the complex integration needed to overcome this difficulty and complete the in-
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version. Residue calculus is used in this work as well, and for the form of the displacement

formula in Eq. 2.12, the applicable formula [138] is:

∞∫
0

IdK = πi
∑

K̂

Res(I(K̂)) (2.13)

Application of the residue formula in Eq. 2.13 produces an inversion formula containing

only one integral, which is more easily handled via numerical integration:

ui(r, θ,X3,ω) =
∑

K̂

i
4π

2π∫
0

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

K̂e−iK̂r cos(θ−Γ)dΓ (2.14)

In Eq. 2.13 and Eq. 2.14, the K̂ values correspond to those radial wavenumbers that produce

a zero determinant. The ∆′ term is the derivative of the Global Matrix determinant with

respect to the global radial wavenumber. The result of the 2-D inversion is the displacement

harmonic for the given spatial location and frequency.

Finally, an inverse Fourier transform is used to move from the frequency domain to

the time domain. The nature of the actuation must be considered during this step. In this

work, a Hann-modulated toneburst signal with a given center frequency is used to excite

the plate. An example with a 75 KHz center frequency is shown in Fig. 2.2. To determine

the frequency spectrum of the displacement at a given point, the Fourier transform of the

actuation signal is multiplied by the displacement harmonic at each frequency. The inverse

transform then produces the displacement time history at the point of interest.

In practice, this formulation was implemented with a series of FORTRAN and MAT-

LAB codes. A detailed description of the construction of each of those programs and an

explanation of how they work together is included in Appendix C.
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Figure 2.2: Actuation signal time history and frequency content for a Hann-modulated
toneburst with 75 kHz center frequency.

2.2 Axisymmetric Solution for Isotropic Lamina

It is instructive to first consider the case of a circular actuator mounted on the surface of

a plate consisting of isotropic layers, which allows for an axisymmetric solution. For a

circular actuator, the transformed forcing vector has previously [137] been shown to be,

F1 = −iτ0RJ1(KR)cosΓ

F2 = −iτ0RJ1(KR) sinΓ

(2.15)

where τ0 is an amplitude constant for the stress transferred to the plate, R is the radius of

the actuator, and J1 represents the first-order Bessel function of the first kind.

Using the process previously outlined, it can be shown that this forcing vector will

produce an expression for the displacement in the plate of the form:

ui(r, θ,X3,ω) =
τ0

4π2

∞∫
0

2π∫
0

Ψi(K,Γ,X3,ω)
∆(K,Γ,ω)

e−iKr cos(θ−Γ)KdΓdK (2.16)

Because the host plate is isotropic and the circular actuator provides axisymmetric actua-

tion, many of the terms do not vary with respect to the azimuthal wavenumber. These can
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be moved outside the inner integral:

ui(r, θ,X3,ω) =
τ0

4π2

∞∫
0

Ψi(K,X3,ω)
∆(K,ω)

K

2π∫
0

e−iKr cos(θ−Γ)dΓdK (2.17)

Conveniently, the inner integral is an integral representation of a zero-order Bessel function

of the first kind, i.e.,

J0(Kr) =
1

2π

2π∫
0

e−iKr cos(θ−Γ)dΓ (2.18)

and Eq. 2.17 can be rewritten with only one integral with respect to the global radial

wavenumber:

ui(r, θ,X3,ω) =
τ0

2π

∞∫
0

Ψi(K,X3,ω)
∆(K,ω)

KJ0(Kr)dK (2.19)

Application of the residue theorem produces the following formula for the displacement

harmonic for a given frequency and position:

ui(r, θ,X3,ω) =
∑

K̂

iτ0

2
Ψi(K̂,X3,ω)

∆′(K̂,ω)
K̂J0(K̂r) (2.20)

The final step needed to produce the time history for a given point on the plate is to trans-

form the displacement from the frequency domain to the time domain.

The plots in Fig. 2.3 show the time histories for the out-of-plane displacements of three

points on the surface of a 1.5 mm plate consisting of six 0.25 mm aluminum laminae with

the properties given in Table 2.1. The points are located 40, 60, and 80 mm from the center

of the circular actuator. The Global Matrix results are plotted with an exact solution for

an isotropic plate developed by Raghavan and Cesnik [46]. These results should match for

the case under consideration. Additionally, the actuation signal used to drive the circular

actuator is shown. The results show the Global Matrix solution does not start at zero dis-

placement as it should. A closer look at the Global Matrix results shows that at all spatial

locations, the signal is actually mirrored about the time corresponding to half of the actu-
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Figure 2.3: Out-of-plane displacement time histories for total axisymmetric solution at 40,
60, and 80 mm locations. Results are for a circular actuator on an aluminum laminate.
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Table 2.1: Aluminum material properties

Property E ν ρ

Value 70 GPa 0.3 2700 kg/m3

ation time span. The source of this mirroring effect can be understood by considering that

Eq. 2.20 admits a solution to the wave equation composed of the superposition of an in-

ward propagating wave and an outward propagating wave. The outward propagating wave

is the desired solution. The inward wave, while an admissible mathematical solution to the

equation, does not satisfy the physical nature of the scenario and should be disregarded.

For this axisymmetric case, correcting for the presence of the inward wave is relatively

straight-forward, as shown previously [139]. The Bessel function can be rewritten as the

sum of two Hankel functions:

ui(r, θ,X3,ω) =
∑

K̂

iτ0

4
Ψi(K̂,X3,ω)

∆′(K̂,ω)
K̂

(
H(1)

0 (K̂r) + H(2)
0 (K̂r)

)
(2.21)

The following asymptotic expressions apply to the Hankel functions:

lim
Kr→∞

H(1)
0 (Kr) =

√
2
πKr

ei(Kr− π4 ) (2.22)

lim
Kr→∞

H(2)
0 (Kr) =

√
2
πKr

e−i(Kr− π4 ) (2.23)

The Hankel function of the first type corresponds to an inward propagating wave, and can

be excluded on physical grounds. This yields a displacement solution,

ui(r, θ,X3,ω) =
∑

K̂

iτ0

4
Ψi(K̂,X3,ω)

∆′(K̂,ω)
K̂H(2)

0 (K̂r) (2.24)

which closely matches the exact solution, as shown in Fig. 2.4.
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Figure 2.4: Out-of-plane displacement time histories for outward axisymmetric solution at
40, 60, and 80 mm locations. Results are for a circular actuator on an aluminum laminate.
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2.3 Anisotropic Plate Displacement Solution

For the more general case where the individual layers may be transversely isotropic and

oriented in various directions, axisymmetry no longer applies. Simplification of Eq. 2.16 is

not possible. However, the residue formula can still be applied to the unsimplified equation

to produce a displacement solution. This yields a displacement in the frequency domain:

ui(r, θ,X3,ω) =
∑

K̂

τ0

4π

2π∫
0

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

K̂e−iK̂r cos(θ−Γ)dΓ (2.25)

If numerical integration is applied to complete the 2-D inverse transform and the displace-

ments are then transformed to the time domain, the time histories in Fig. 2.5 result for the

aluminum laminate previously considered. These are identical to those found in Fig. 2.3,

which is not surprising, since Eq. 2.25 inherently retains both the inward and outward wave

solutions considered in the axisymmetric case. Another method is needed to separate the

two parts of the solution and retain only the outward solution.

2.3.1 Previous Solution Method

In order to avoid the presence of the inward wave, Raghavan and Cesnik [62] proposed a

method that recasts the inversion formula by changing the limits of integration found in

Eq. 2.16, resulting in:

ui(r, θ,X3,ω) =
τ0

4π2

θ+ π
2∫

θ− π2

∞∫
−∞

Ψi(K,Γ,X3,ω)
∆(K,Γ,ω)

e−iKr cos(θ−Γ)KdΓdK (2.26)

By changing the limits of integration, the coefficient of K in the complex exponential re-

mains positive over the entire domain of integration. This step is intended to eliminate

inward propagating waves from the subsequent wave solutions. As before, the residue for-
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Figure 2.5: Out-of-plane displacement time histories for the total anisotropic solution for a
circular actuator on an aluminum laminate at 40, 60, and 80 mm locations.
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mula is used to simplify the 2-D inversion process, yielding a summation equation with

only one integral:

ui(r, θ,X3,ω) =
∑

K̂

τ0

2π

θ+ π
2∫

θ− π2

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

e−iK̂r cos(θ−Γ)K̂dΓ (2.27)

In the original implementation of this method, the results were examined in both the

frequency and time domains. The harmonic results were able to correctly predict energy

steering phenomena in unidirectional composite plates. Time domain results in the form

of field plots also showed good agreement with finite element results when examined at

specific points in time.

However, more detailed examination of this method reveals that while it removes the

majority of the inward wave, it produces a non-physical artifact in the time history. Figure

2.6 shows the time histories for the 1.5 mm thick aluminum laminate. From these plots,

a small wave is visible between 0 and 0.4 ms that is not present in the exact solution.

Consideration of additional spatial points, such as the point 200 mm from the center of the

actuator shown in Fig. 2.7, reveals that this disturbance is present during this time period at

all points on the plate simultaneously, although it does decrease in amplitude as the distance

from the actuator increases. In many cases, this small disturbance is of little consequence.

In the far field, the artifact is well separated from the real outbound propagating wave and

can be truncated on physical grounds. For points near the actuator, such as the 40 mm case

shown here, the disturbance interferes with the real solution and this simple truncation is

not feasible.

2.3.2 Updated Solution Method

This section demonstrates a new process to complete the 2-D Fourier inversion, eliminate

the presence of the inward wave, and prevent the non-physical artifacts seen previously.

Returning to the displacement formula in Eq. 2.25 as a starting point, both the inward and
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Figure 2.6: Out-of-plane displacement time histories using the previous inversion method
for a circular actuator on an aluminum laminate at 40, 60, and 80 mm locations.
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Figure 2.7: Out-of-plane displacement time histories using the previous inversion method
for a circular actuator on an aluminum laminate at 200 mm location.

outward wave solutions are present. This solution will now be called the original signal:

uO
i (r, θ,X3,ω) =

∑
K̂

τ0

4π

2π∫
0

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

K̂e−iK̂r cos(θ−Γ)dΓ (2.28)

A two-step process is used to extract the outbound wave from the total solution. First,

a correction signal is produced using the following formula:

uC
i (r, θ,X3,ω) =

∑
K̂

τ0

4π

2π∫
0

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

K̂e−iK̂r cos(θ−Γ) cos(θ−Γ)dΓ (2.29)

As seen in Fig. 2.8, this correction signal alters the original time history signal. The sign of

the inbound portion of the wave is reversed, while the outbound wave is unchanged. Sec-

ond, the desired outbound wave is obtained by adding the original signal and the correction

signal, and then dividing the resulting signal in half:

ucorrected
i =

uO
i + uC

i

2
(2.30)
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Figure 2.9 compares the exact isotropic solution for the aluminum laminate with the Global

Matrix results using the previous and updated methods. The time history signals produced

using the updated method are a very good match to the exact solution.

2.4 Square Actuator Solution

The improved method introduced here is not restricted to circular actuators. In this sec-

tion, results are presented for a square piezo wafer actuator bonded to the surface of the

aluminum laminate. The terms of the forcing vector needed for the Global Matrix equation

have been previously presented [62] for rectangular actuators. When applied to a square

actuator, the forcing terms can be represented in the wavenumber domain as,

F1 = −4τ0 sin(K1A) sin(K2A)/iK2

F2 = −4τ0 sin(K1A) sin(K2A)/iK1

(2.31)

where A is the half length of the sides of the actuator. The different forcing vector due to

the square actuator results in a different solution for the displacement constants when the

Global Matrix equation in Eq. 2.8 is solved using Cramer’s rule. Following through with

the remainder of the process yields a displacement solution of the same form as that found

in Eq. 2.28 through Eq. 2.30.

Figure 2.10 shows the original, uncorrected, displacement time histories for the square

actuator case with an aluminum plate. The results are shown for points 40, 60, and 80 mm

from the center of the actuator, measured along the 0-degree azimuth. The presence of the

inbound portion of the solution is visible and shows the same symmetry as was seen in

the circular actuator case. Figure 2.11 shows the corrected solution along with the exact

solution from the formulation in [46], indicating a very close match.

Since the solution for the square actuator case is not axisymmetric in the near field,

results along the 15, 30, and 45-degree azimuths are also shown in Fig. 2.12 to demon-

45



0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t
 

 

GM Total
Actuation

(a) Original Signal

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

 

 

GM Corr. Signal
Actuation

(b) Correction Signal

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

 

 

Exact
GM Corrected
Actuation

(c) Final Corrected Signal

Figure 2.8: Correction procedure for displacement time history at 40 mm location. Results
are for a circular actuator on an aluminum laminate.
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Figure 2.9: Comparison of old and new inversion methods with exact solution at 40, 60,
and 80 mm locations. Results are for a circular actuator on an aluminum laminate.
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Figure 2.10: Original square actuator solution at 40, 60, and 80 mm locations for an alu-
minum laminate.
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Figure 2.11: Corrected square actuator solution at 40, 60, and 80 mm locations for an
aluminum laminate.

49



0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t
 

 

Exact
GM New Method

(a) 40 mm

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

 

 

Exact
GM New Method

(b) 60 mm

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

 

 

Exact
GM New Method

(c) 80 mm

Figure 2.12: Corrected square actuator solution at 60 mm location at 15, 30, and 45 degrees
for an aluminum laminate.
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Figure 2.13: Azimuthal angles for square actuator displacement time history comparisons.

strate the agreement between the new solution results and the exact results. The azimuthal

directions relative to the actuator shape are shown in Fig. 2.13

2.5 Results for Cross-ply Laminate

In this section, the updated solution method is used to create displacement time histories

for a cross-ply laminate with graphite-epoxy lamina. No completely analytical solutions

exist for this case, so the Global Matrix results are presented with experimental results for

verification. First, the experimental setup and procedures are explained. The experimental

and Global Matrix results are then compared to demonstrate the success of the new method.

2.5.1 Experimental Setup

The composite plate used in the experiment had a cross-ply construction ([0/90]3S ) and

was fabricated in house using the CYCOM IM7 977-3 material system with the properties

included in Table 2.2. Each lamina was 0.125 mm thick, resulting in a 1.5 mm thick plate.

The side length of the plate was 0.5 m.
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Table 2.2: CYCOM IM7 977-3 Material Properties

Property E1 E2 G12 G23 ν12 ρ

Value 147 GPa 9.8 GPa 2.35 GPa 3.3 GPa 0.405 1558 kg/m3

The guided waves were generated with a circular actuator bonded to the geometric

center of the plate. The actuator was a PZT-5A wafer with a diameter of 12.8 mm. The

actuation pulse used for the experiment was a Hann-modulated toneburst with the parame-

ters shown earlier in Fig. 2.2. To generate the toneburst signal, an Agilent 33220A function

generator was programed with the applicable parameters. This function generator was con-

nected to a Krohn-Hite 7500 amplifier, which supplied a 100X amplification to the signal.

A digital oscilloscope was used to monitor the signal before and after the amplifier to verify

the quality of the toneburst provided to the actuator.

The resulting out-of-plane behavior of the plate was measured using a Polytec PSV-

400 laser vibrometer, as shown in Fig. 2.14 (a). Reflective tape was applied to the surface

of the plate in the area around the actuator to ensure an adequate laser return reached the

(a) Laser vibrometer setup. (b) Actuator and reflective tape configuration.

Figure 2.14: Experimental setup for cross-ply wave propagation experiment.
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vibrometer for measurement. This is shown in Fig. 2.14 (b). Additionally, the locations

of the desired scan points are visible. For each of the observed points on the plate, 100

measurements were taken and averaged to reduce the effects of noise in the vibrometer

signal. The resulting time histories were recorded and saved using the Polytec software on

a connected desktop computer.

2.5.2 Comparison of Results

Due to the anisotropic nature of the cross-ply plate, it was valuable to compare results at

various azimuth angles to verify the new method captured the directional nature of wave

propagation in the plate. Figures 2.15 through 2.17 show the Global Matrix and experi-

mental results at 0, 45, and 90-degree azimuth angles. The results were normalized so the

maximum amplitude of each data set was 1 for the 0-degree, 40mm case. All other results

were normalized with respect to this scale.

In each case, the results from the updated Global Matrix Method showed good general

agreement with the experimental results. For each direction, the arrival time of the large

A0 wave packet was consistent between the experiment and the Global Matrix results at

each of the observed distances. Only a few small discrepancies were present. First, the

amplitude of the S 0 mode was higher in the experiment than in the Global Matrix results.

This was most noticeable at the 80 mm location in the 0-degree direction between 0.02

and 0.05 ms. Some additional peaks were also present in the experimental results after the

passage of the main wave packet. These were most likely a combination of noise in the

experiment along with some boundary reflections from the fast-moving S 0 mode.

Numerical comparisons of the amplitude results for each direction are shown in Ta-

bles 2.3 to 2.5. The percent difference between the maximum amplitude of the Global

Matrix and experimental results ranged from 2.5% to 41.7%, with 6 of the 8 cases having

less than 16% difference.
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Figure 2.15: Comparison of Global Matrix and experimental results for 0-degree azimuth
at 40, 60, and 80 mm locations. Results are for a circular actuator on a [0/90]3S laminate.
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Figure 2.16: Comparison of Global Matrix and experimental results for 45-degree azimuth
at 40, 60, and 80 mm locations. Results are for a circular actuator on a [0/90]3S laminate.
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Figure 2.17: Comparison of Global Matrix and experimental results for 90-degree azimuth
at 40, 60, and 80 mm locations. Results are for a circular actuator on a [0/90]3S laminate.
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Table 2.3: Amplitude results for cross-ply wave propagation in 0-degree direction.

Distance GM Experiment Difference % Difference

40 mm 1 1 0 0
60 mm 0.87 0.77 0.10 12.7
80 mm 0.80 0.69 0.11 15.4

Table 2.4: Amplitude results for cross-ply wave propagation in 45-degree direction.

Distance GM Experiment Difference % Difference

40 mm 0.44 0.67 0.23 41.7
60 mm 0.36 0.47 0.12 28.7
80 mm 0.31 0.33 0.02 6.7

Table 2.5: Amplitude results for cross-ply wave propagation in 90-degree direction.

Distance GM Experiment Difference % Difference

40 mm 0.88 1 0.12 12.8
60 mm 0.77 0.89 0.12 14.3
80 mm 0.70 0.72 0.02 2.5

The amplitude attenuation seen in the Global Matrix and experimental results showed

agreement in terms of the general trend. The attenuation for each case can be modeled as a

power law:

u = axb (2.32)

where u is the amplitude, x is the distance from the actuator, and a and b are power law

constants. The values for the a and b constants are shown in Table 2.6 for each direc-

tion. Overall, the experiment showed more attenuation as the distance from the actuator

increased. This is to be expected, since the Global Matrix Method did not take into account

material damping.
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Table 2.6: Amplitude attenuation power law constants for cross-ply wave propagation com-
parisons.

GM Experiment

0 deg a 3.31 7.56

b -0.33 -0.55

45 deg a 3.09 30.82

b -0.53 -1.03

90 deg a 3.01 7.43

b -0.33 -0.53

2.6 Summary

This chapter presented a new methodology to complete the 2-D Fourier inversion needed to

produce displacement time histories using the Global Matrix method. The need to separate

inward and outward propagating waves was demonstrated, and problems with previous

solution attempts were highlighted. The updated method produced a correction signal for

the displacement time history that was added to the original time history to eliminate the

presence of the inward wave. The success of the new procedure was demonstrated for both

circular and square actuators bonded to an aluminum laminate using comparisons with

previously published exact solutions. The reliability of the method was further proven by

comparing Global Matrix results for a cross-ply plate with those from laser vibrometry

experiments. The new method was found to produce accurate time history results that also

capture the directionality found in composite laminates.
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CHAPTER 3

LISA Hybrid Model

This chapter introduces a hybrid Global Matrix/LISA model for wave propagation in com-

posite laminates. First, a description of the architecture of the model is included, showing

how the Global Matrix Method is used in conjunction with LISA to produce a full wave

propagation model. Next, the procedure for deriving the LISA iterative equations is briefly

explained, and the methods used to model actuators in previous LISA implementations are

reviewed. Finally, results are presented to demonstrate the LISA hybrid model’s ability to

accurately represent wave propagation from circular, square, and CLoVER actuators.

3.1 LISA Hybrid Model

This section describes the overarching structure of the LISA hybrid model. While the

Global Matrix Method is well suited to capture the effects of finite-dimensional actuators,

it cannot capture damage or lateral plate boundaries. On the other hand, numerical formu-

lations can successfully model finite-dimensional plates. One such formulation is LISA.

As introduced in Chapter 1, LISA is a finite-difference-based numerical scheme which is

gaining popularity for guided wave propagation analysis. It is based on the derivation of

a set of iterative equations that can be used to calculate displacements at a series of nodes

over the course of a time-based simulation. While LISA is quite powerful, representing the

effects of surface-mounted actuators is challenging. As an alternative to using solely the

Global Matrix Method or LISA, the LISA hybrid model is introduced that leverages the

59



Figure 3.1: Schematic of displacement input field for LISA hybrid wave propagation
model.

strengths of both methods. It uses the Global Matrix approach to represent the effects of

the actuator while using LISA for the majority of the plate structure.

First, the overall LISA model is defined according to the structure of the plate, including

any material differences between layers for a laminate. As in previous LISA models, air

cells are included at the plate boundaries to allow for traction-free boundary conditions.

Next, a cut-out region around the actuator is defined as in Fig. 3.1, and the nodes within

the LISA model located on the boundary of this region are identified and tabulated. Third,

the time histories of the three displacement components resulting from the piezoelectric

actuation are calculated at each of the cut-out boundary points using the Global Matrix

Method. Because the entire time history of the displacements is calculated and stored, this

step only needs to be run once for the plate configuration used in the simulation. Finally,

the square cut-out region surrounding the actuator is segregated from the remainder of the

model, and the LISA simulation is started. At each time step in the LISA simulation, the

displacement values for the boundary nodes of this region are specified according to the

Global Matrix time history. The LISA model is run as usual to completely capture the

wave propagation behavior for the remainder of the plate.

With this architecture comes a few important limitations. Because the Global Matrix

displacements are specified at the cut-out boundary during the entire time actuation is oc-

curring, reflecting waves cannot pass through to the cut-out region. This means no sensors

can be modeled in the cut-out region. Additionally, the presence of any damage features
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present in the cut-out region cannot be accurately depicted. One other limitation comes

from the fact that the model does not directly account for the piezoelectric coupling ef-

fects in the actuator. Since the model specifies tractions and not the voltages that would be

applied to the actuator, direct displacement amplitude comparisons cannot be made with

experimental results. Only normalized comparisons are facilitated.

While the LISA hybrid model still specifies displacements, the actuation modeling

method is distinct from previous LISA implementations. Because the LISA hybrid model

uses the Global Matrix Method to capture the behavior of the actuator, it inherently assumes

the actuator imposes tractions, not displacements, on the plate surface. These tractions are

included in the solution process used to determine the displacement time histories at all

points along cut-out boundaries.

3.2 LISA Theoretical Background

The LISA formulation used in this dissertation was developed by Nadella and Cesnik [90],

and their work should be consulted for the details of the theoretical background. This sec-

tion provides a brief introduction to the steps used to derive the iterative equations needed to

implement the method. Figure 3.2 summarizes the typical process of deriving the equations

for LISA.

The starting point for the derivation is the elastodynamic equilibrium equation, which

was presented earlier in Eq. 2.1. For the purposes of the derivation, it is advantageous to

recast the equilibrium equations using Voigt notation, which results in:

3∑
m=1

6∑
η=1

S ηλum,λ = ρük (3.1)

where the k subscript takes values of 1, 2, or 3 depending on the applicable displacement

component. The S ηλ term is a component of the stiffness matrix for the material in the Voigt

system. The repeated λ indices imply summation over the range of values 1 to 6. It should

61



1. Elastodynamic equilibrium equations and 

constitutive law for orthotropic materials 

2. Voigt notation to simplify equation 

3. Customary FD transformations for second-

order spatial derivatives at a given time 

4. Homogeneous media equations for each 

lamina in the laminate 

5. Sharp Interface Model: Continuity of 

displacement and stress at interface of two 

laminae 

6. Linear combination of equations to obtain 

explicit expressions for displacement 

7. Displacement at time t+1 can be calculated 

based on displacement at times t-1 and t 

Orthotropic material in 

principal axis frame 

New stiffness matrix with 

additional coupling terms 

3D model: composite laminate 

Generic lamina having variable 

properties compared to other plies 

Variable discretization along 

different directions 

Discretization into unit cells and 

nodes 

Representation of 18 nearest 

neighbors of a node 

Similar FD transformations of 

second-order time derivatives 

Elimination of unknown terms 

0 0 0

11 12 13

0 0 0

12 22 23

0 0 0

0 13 23 33

0

44

0

55

0

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

S S S

S S S

S S S
S

S

S

S

 
 
 
 

  
 
 
 
  

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

S S S S

S S S S

S S S S
S

S S

S S

S S S S

 
 
 
 

  
 
 
 
  

In-plane rotation 

X 1 

X 2 

X 3 

Figure 3.2: Overview of LISA theoretical derivation.

be noted, however, that um,λ is the second derivative of the um displacement component with

respect to the parent indices of the Voigt index λ, not a first derivative. The transformations

to Voigt indices are found using,

(k, l)→ λ = kδkl + (1−δkl)(9− k− l) (λ = 1, ...,6)

(m,n)→ η = mδmn + (1−δmn)(9−m−n) (η = 1, ...,6)
(3.2)

where δi j is the Kronecker delta.
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Most previous implementations of LISA have assumed an orthotropic material oriented

in the principal reference frame, which has a stiffness matrix of the form:

S0 =



S 0
11 S 0

12 S 0
13 0 0 0

S 0
12 S 0

22 S 0
23 0 0 0

S 0
13 S 0

23 S 0
33 0 0 0

0 0 0 S 0
44 0 0

0 0 0 0 S 0
55 0

0 0 0 0 0 S 0
66



(3.3)

Nadella and Cesnik [90] have extended the formulation to apply to orthotropic materials

with arbitrary orientation angles, and the stiffness matrix is obtained using a standard co-

ordinate transformation:

S =



S 11 S 12 S 13 0 0 S 16

S 12 S 22 S 23 0 0 S 26

S 13 S 23 S 33 0 0 S 36

0 0 0 S 44 S 45 0

0 0 0 S 45 S 55 0

S 16 S 26 S 36 0 0 S 66



(3.4)

For homogeneous materials, Eq. 3.1 can be expanded using standard finite difference

formulas for the spatial and time derivatives. For a given point C, as shown in Fig. 3.3,

the equation can then be rearranged to calculate that point’s displacement as a function of

the displacements of its 18 neighbor points at the previous two time steps. Because the

displacement for a given point depends only on information from previous time steps, the

displacement at each point can be calculated completely independent of the other points.

This is the source of the immense potential for parallelization identified by Delsanto et

al. [80] in the original LISA formulation.
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Figure 3.3: Representation of the 18 neighbors of a generic point in LISA and the Cartesian
system used in the analysis [88].

For non-homogeneous materials, it is necessary to account for differences in mate-

rial properties in different cells. LISA accomplishes this using the sharp interface method

(SIM), in which stress and displacement continuity relationships are enforced at the bound-

aries between cells. Material properties are assumed to be constant within a cell, but they

are allowed to vary from one cell to the next. The continuity relationships required in SIM

are enforced using a series of points in addition to the 18 nearest neighbors of the point of

interest C.

Figure 3.4 (a) shows the 8 points used to enforce displacement continuity. The equilib-

rium equations for these 8 points are represented as,

3∑
m=1

6∑
η=1

S i+αδ, j+βδ,k+γδ
ηλ ui+αδ, j+βδ,k+γδ

m,λ = ρüi+αδ, j+βδ,k+γδ
k

α,β,γ = ±1, k = 1,2,3
(3.5)

where the applicable point is determined by the values of α, β, and γ. The parameter δ

is a small arbitrary distance much less than the dimensions of the cell. As in the case for

the homogeneous material, Eq. 3.5 can be expanded further using standard finite difference
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(a) Points used for displacement continuity, shown
in blue.

(b) Points used for stress continuity, shown in black.

Figure 3.4: Additional points used for SIM continuity requirements [88].

formulas for the spatial and time derivatives. These formulas can be found in Refs. [90]

and [86]. This substitution results in 24 equations with 48 independent unknowns. The

remaining equations needed to complete the full system are obtained by considering stress

continuity. Figure 3.4 (b) shows the 12 pairs of points used to enforce stress continuity.

For each of these pairs of points, three stress components can be enforced to be equal, as

represented by:

τ
i+ε, j+βδ,k+γδ
p1 = τ

1−ε, j+βδ,k+γδ
p1

τ
i+αδ, j+ε,k+γδ
p2 = τ

1+αδ, j−ε,k+γδ
p2

τ
i+αδ, j+βδ,k+ε
p3 = τ

1+αδ, j+βδ,k−ε
p3 (p = 1,2,3)

(3.6)

In Eq. 3.6, ε represents a small arbitrary distance much less than δ. While 36 total stress

continuity equations exists, only 24 are independent, and these complete the set needed to

completely solve the system.

The process of solving for the three displacement components involves linearly combin-

ing the displacement continuity equations and then using the stress equations to eliminate
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the unknown terms. Using that process, Nadella and Cesnik [90] produced the following

iterative equations which include in-plane rotation of the orthotropic lamina:

ui, j,k,t+1 = −ui, j,k,t−1 + 2ui, j,k −
2χ
8

ui, j,k
∑

α,β,γ=±1

[(
η2

xS̃ 11 +η2
y S̃ 66 +η2

z S̃ 55
)]

+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃ 11ui+α, j,k + 2η2
y S̃ 66ui, j+β,k + 2η2

z S̃ 55ui, j,k+γ
]

+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃ 12 + S̃ 66

) (
vi+α, j+β,k − vi, j,k

)]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃ 12− S̃ 66

) (
vi, j+β,k − vi+α, j,k

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃ 13 + S̃ 55

) (
wi+α, j,k+γ −wi, j,k

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃ 13− S̃ 55

) (
wi, j,k+γ −wi+α, j,k

)]
−

2χ
8

∑
α,β,γ=±1

[
αβηxηyS̃ 16

(
ui, j,k −ui+α, j+β,k

)]
−

2χ
8

vi, j,k
∑

α,β,γ=±1

[
η2

xS̃ 16 +η2
y S̃ 26

]
−
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃ 36 + S̃ 45

)
wi, j,k

]
+

2χ
8

∑
α,β,γ=±1

[
η2

xS̃ 16vi+α, j,k +η2
y S̃ 26vi, j+β,k

]
+
χ

8

∑
α,β,γ=±1

[
βγηyηzS̃ 36

(
wi, j+β,k+γ + wi, j,k+γ −wi, j+β,k

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηzS̃ 45

(
wi, j+β,k+γ −wi, j,k+γ + wi, j+β,k

)]
+

2χ
8

∑
α,β,γ=±1

η2
z S̃ 45

(
vi, j,k+γ − vi, j,k

)
(3.7)

vi, j,k,t+1 = −vi, j,k,t−1 + 2vi, j,k

−
2χ
8

vi, j,k
∑

α,β,γ=±1

[
η2

xS̃ 66 +η2
y S̃ 22 +η2

z S̃ 44
]
+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃ 66vi+α, j,k + 2η2
y S̃ 22vi, j+β,k + 2η2

z S̃ 44vi, j,k+γ
]

+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃ 12 + S̃ 66

) (
ui+α, j+β,k −ui, j,k

)]
+
χ

8

∑
α,β,γ=±1

[
αβηxηy

(
S̃ 12− S̃ 66

) (
ui+α, j,k −ui, j+β,k

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃ 23 + S̃ 44

) (
wi, j+β,k+γ −wi, j,k

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃ 23− S̃ 44

) (
wi, j,k+γ −wi, j+β,k

)]
−

2χ
8

∑
α,β,γ=±1

[
αβηxηyS̃ 26

(
vi, j,k − vi+α, j+β,k

)]
−

2χ
8

ui, j,k
∑

α,β,γ=±1

[
η2

xS̃ 16 +η2
y S̃ 26

]
+

2χ
8

∑
α,β,γ=±1

[
η2

xS̃ 16ui+α, j,k +η2
y S̃ 26ui, j+β,k

]
−
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃ 36 + S̃ 45

)
wi, j,k

]
+
χ

8

∑
α,β,γ=±1

[
αγηxηzS̃ 36

(
wi+α, j,k+γ + wi, j,k+γ −wi+α, j,k

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηzS̃ 45

(
wi+α, j,k+γ −wi, j,k+γ + wi+α, j,k

)]
+

2χ
8

∑
α,β,γ=±1

[
η2

z S̃ 45
(
ui, j,k+γ −ui, j,k

)]
(3.8)
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wi, j,k,t+1 = −wi, j,k,t−1 + 2wi, j,k −
2χ
8

wi, j,k
∑

α,β,γ=±1

[
η2

xS̃ 55 +η2
y S̃ 44 +η2

z S̃ 33
]

+
χ

8

∑
α,β,γ=±1

[
2η2

xS̃ 55wi+α, j,k + 2η2
y S̃ 44wi, j+β,k + 2η2

z S̃ 33wi, j,k+γ
]

+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃ 23 + S̃ 44

) (
vi, j+β,k+γ − vi, j,k

)]
+
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃ 23− S̃ 44

) (
vi, j+β,k − vi, j,k+γ

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃ 13 + S̃ 55

) (
ui+α, j,k+γ −ui, j,k

)]
+
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃ 13− S̃ 55

) (
ui+α, j,k −ui, j,k+γ

)]
−
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃ 36 + S̃ 45

) (
ui, j,k −ui, j+β,k+γ

)]
−
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃ 36 + S̃ 45

) (
vi, j,k − vi+α, j,k+γ

)]
−
χ

8

∑
α,β,γ=±1

[
βγηyηz

(
S̃ 36− S̃ 45

) (
ui, j,k+γ −ui, j+β,k

)]
−
χ

8

∑
α,β,γ=±1

[
αγηxηz

(
S̃ 36− S̃ 45

) (
vi, j,k+γ − vi+α, j,k

)]
+

2χ
8

∑
α,β,γ=±1

[
αβηxηyS̃ 45

(
wi+α, j+β,k −wi, j,k

)]
(3.9)

In these equations, the current time step is assumed when it is not specifically men-

tioned. Stiffness terms with a tilde, such as S̃ 11, indicate that the value of that term is

defined by the value for one of the eight surrounding cells, depending on the current value

of α,β,γ. The ηx, ηy, ηz, and χ terms characterize the spatial and time discretization used

in the model and are defined according to:

ηx = 1/∆x1

ηy = 1/∆x2

ηz = 1/∆x3

χ = ∆t2/ρ

(3.10)

In each of the LISA models used in this dissertation, the spatial and time discretizations

have been chosen to meet the Courant-Friedric-Lewy (CFL) criterion,

CFL = cmax∆t

√
1

∆x2
1

+
1

∆x2
2

+
1

∆x2
3

≤ 1 (3.11)
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which is a necessary condition for stability for FD-based numerical schemes [63]. As

defined in Eq. 3.11, the CFL number must remain less than or equal to 1, and it is dependent

on both the time step used in the model as well as the spatial discretization. The cmax term

represents the maximum propagating wave velocity in the medium.

3.3 Actuator Modeling

In most previous LISA studies, actuation was modeled by prescribing in-plane displace-

ments at surface nodes located within the profile of the actuator. Schematics of this actua-

tion method for circular PZT and CLoVER actuators are shown in Figs. 3.5 and 3.6. Two

major difficulties have emerged with actuator modeling of this type. First, as seen in the

schematics, the Cartesian grid associated with current LISA implementations does not lend

itself well to capturing the nonlinear boundaries of circular actuators or more sophisticated

actuators such as CLoVER. In many circumstances, the boundaries of the actuator are lo-

cated between nodes, and some judgment must be exercised to determine which nodes to

include in the actuator profile. The second difficulty is the need to assume values for the dis-

placements applied at the nodes contained in the actuator profile. For example, the scheme

illustrated for the circular actuator shows a linear increase in the radial displacement based

on the radial distance from the actuator center, but that assumption may not truly reflect

Figure 3.5: Original LISA actuation scheme for a circular actuator using specified in-plane
surface displacements.
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Figure 3.6: Original LISA actuation scheme for a CLoVER actuator sector using specified
in-plane surface displacements.

the displacements created by the actuator – especially for anisotropic materials. The LISA

hybrid model presented in this chapter avoids both of these difficulties. In the next section,

the effectiveness of both the previous approach and the LISA hybrid model in generating

waves from surface-mounted piezoelectric actuators is examined with respect to theoretical

results.

3.4 Comparison of Results

To evaluate the effectiveness of the LISA hybrid model in comparison with the previ-

ous LISA implementations, a series of models were evaluated for an aluminum plate,

a cross-ply plate ([0/90]3S ), a unidirectional plate ([0]12T ), and a quasi-isotropic plate

([0/30/60/− 60/− 30/90]S ). Each plate had a thickness of 1.5 mm, and the composite

plates contained 12 layers of the graphite-epoxy lamina from Table 2.2. Material proper-

ties for the aluminum plate are shown in Table 2.1. In most of the LISA models, a cell size

of 0.25 x 0.25 x 0.125 mm was used along with a time step of 10 ns. These parameters met
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the CFL criterion explained in the previous section. A brief discretization study was also

performed using coarser in-plane cell sizes, which also met the CFL criterion.

In this chapter, results for circular, CLoVER, and square actuators are presented. The

actuation was specified as a Hann-modulated toneburst with a 75-kHz center frequency,

as shown in Fig. 2.2. Traction-free boundary conditions were implemented using a layer

of air cells surrounding the plate. The initial set of LISA models for each actuator type

used the previous method of prescribed displacements to model the actuator, and these

results are henceforth referred to as the LISA original model. Subsequently, each actuator

was modeled using the LISA hybrid approach. The cut-out region was defined as a 20 by

20 mm region for the circular and square actuator models and as a 60 by 60 mm region

for the CLoVER models. All models were compared against the results from the Global

Matrix Method, since that approach was shown to produce results that agree well with

experiments. Since the displacements on the boundary of the cut-out were specified as the

Global Matrix displacements, the hybrid model exactly matched the Global Matrix results

for all points located on this boundary and within the cut-out region. If the LISA hybrid

model was successful in capturing the propagating wave, the model results also matched

the Global Matrix results at locations farther away from the actuator.

3.4.1 Circular Actuator Case

The first group of simulations considered a 6.4 mm radius circular actuator on the previ-

ously identified plates. For the aluminum plate, the time histories predicted at three differ-

ent radial distances from the center of the actuator are shown for the two LISA models as

well as the Global Matrix Method in Fig 3.7. At each of the three locations it can be seen

that the LISA original results showed some discrepancies from the baseline Global Matrix

results, but for the most part the results matched reasonably well – particularly at the 80

mm distance. The duration of the pulse in the LISA original model did seem to be shorter

than that in the Global Matrix results, as indicated by the Hilbert transform envelope in-
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Figure 3.7: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for an aluminum plate with a circular actuator. Locations 20, 50, and 80 mm from the
actuator center are shown. The Hilbert transform envelopes are included for reference.
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cluded in the figures. The LISA hybrid model, in contrast, appeared to match the Global

Matrix results almost perfectly at each of the three distances shown.

The results from the models considering the circular actuator on the three composite

plates are shown in Figs. 3.8-3.10. Each of the time histories is for a point 40 mm from

the actuator center. Results at 0, 45, and 90 degrees are presented for each plate since the

results are not axisymmetric like in the aluminum case. The ability of the LISA original

model to capture the wave propagation time histories was much worse for these models

where the group velocities and attenuation varied with azimuthal direction. For each of

the three plates, results at the three angles showed the LISA original model did not closely

match the baseline Global Matrix time history. While the arrival times of the wave packets

were roughly the same for all three models, the LISA original model showed discrepancies

in the duration, amplitude, and shape of the wave packet in comparison to the baseline

model. The LISA hybrid model again produced time histories matching closely with the

Global Matrix results.

3.4.1.1 LISA Hybrid Displacement Field

The ability of the LISA hybrid model to capture the wave propagation time histories for a

circular actuator at various points has been demonstrated. To better see the effectiveness of

the LISA hybrid model in representing the directional dependence of the wave propagation

in a composite plate, Fig. 3.11 shows field plots of the out-of-plane displacement of the

cross-ply plate. The Global Matrix and LISA hybrid results are compared at 80 µs. The

preponderance of energy propagating in the 0 and 90-degree directions was preserved well

in the new modeling approach. Figure 3.11 (c) shows the amplitude error present at each

point on the plate as a percentage of the maximum amplitude in the propagating wave. The

error was consistently less than 10% of the maximum amplitude.
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Figure 3.8: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a cross-ply plate with a circular actuator, 40 mm from the actuator center. The 0, 45,
and 90-degree directions are shown. The Hilbert transform envelopes are included for
reference.
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Figure 3.9: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a unidirectional plate with a circular actuator, 40 mm from the actuator center. The 0,
45, and 90-degree directions are shown.The Hilbert transform envelopes are included for
reference.
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Figure 3.10: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a quasi-isotropic plate with a circular actuator, 40 mm from the actuator center. The 0,
45, and 90-degree directions are shown. The Hilbert transform envelopes are included for
reference.
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(a) GM 80 µs

(b) LISA hybrid 80 µs

(c) Error as % of max amplitude

Figure 3.11: Comparison of Global Matrix and LISA hybrid results for out-of-plane dis-
placement of a cross-ply plate with a circular actuator at 80 µs.
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3.4.1.2 Effect of In-plane Discretization

Previous researchers [87] have noted the dependence of LISA results on the in-plane dis-

cretization. This dependence was also seen in the present LISA hybrid results, particularly

in the group velocity of the propagating wave. The four circular actuator models were run

with in-plane cell sizes of 1.0, 0.5, and 0.25 mm (2
3 t, 1

3 t, and 1
6 t). The through-thickness

discretization was held constant at 0.125 mm ( 1
12 t). The results indicated the group velocity

predicted by the LISA hybrid model increased as the in-plane cell size increased. This trend

was very noticeable for the aluminum plate. As shown in Fig. 3.12, the results for each of

the three discretization sizes agreed very will with the baseline model at 20 mm. However,

at more distant points the effect of the group velocity differences was more apparent. The

plot for the 80 mm location demonstrates the effect of overly coarse discretizations on the

model results.

This effect was also seen in the composite models, and not surprisingly the effect was

direction dependent. The three discretization sizes were compared for the 0, 45, and 90-

degree directions at points 70 mm from the actuator center. At this distance the group

velocity differences had time to manifest themselves. Compared to the aluminum model,

the cross-ply model shown in Fig. 3.13 and the quasi-isotropic model show in Fig. 3.15

were much less sensitive to the cell size, but the results were affected more for the 90-

degree direction than the 0-degree direction. For the unidirectional model, the directional

dependence was even more pronounced, as seen in Fig. 3.14. Here all three cell sizes

produced good results at 0 degrees, but the results for coarse discretizations worsened as

the azimuth increased from 0 to 90 degrees.

In the LISA hybrid model, as in previous LISA implementations, the group velocity

was clearly a function of not only the material properties of the structure and the azimuthal

direction, but also the discretization used in the model. Errors in the group velocity due to

the chosen discretization resulted in errors in the arrival time of the propagating wave. For

a given discretization and azimuthal direction, the group velocity error remained constant,
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Figure 3.12: Comparison of various LISA Hybrid in-plane discretizations for an aluminum
plate with a circular actuator. Locations 20, 50, and 80 mm from the actuator center are
shown. The Hilbert transform envelopes are included for reference.

78



0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t
 

 

GM
Hybrid 0.25mm
Hybrid 0.5mm
Hybrid 1.0mm

(a) 0 degrees

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

 

 

GM
Hybrid 0.25mm
Hybrid 0.5mm
Hybrid 1.0mm

(b) 45 degrees

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

 

 

GM
Hybrid 0.25mm
Hybrid 0.5mm
Hybrid 1.0mm

(c) 90 degrees

Figure 3.13: Comparison of various LISA hybrid in-plane discretizations for the cross-ply
laminate with a circular actuator at a point 70 mm away from the actuator center. The 0,
45, and 90-degree directions are shown. The Hilbert transform envelopes are included for
reference.
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Figure 3.14: Comparison of various LISA hybrid in-plane discretizations for the unidirec-
tional laminate with a circular actuator at a point 70 mm away from the actuator center. The
0, 45, and 90-degree directions are shown. The Hilbert transform envelopes are included
for reference.
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Figure 3.15: Comparison of various LISA hybrid in-plane discretizations for the quasi-
isotropic laminate with a circular actuator at a point 70 mm away from the actuator center.
The 0, 45, and 90-degree directions are shown. The Hilbert transform envelopes are in-
cluded for reference.
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as did the arrival time error of the propagating wave relative to the actual arrival time in the

baseline model.

3.4.2 CLoVER Actuator Case

The next actuator considered was the CLoVER transducer. For the models in this study,

each sector of the actuator had an inside radius of 15 mm and an outside radius of 25

mm. Each sector occupied a 45-degree azimuthal region. For the aluminum plate, the

0-degree sector was active. Figure 3.16 shows the LISA and Global Matrix displacement

time histories at points 70 mm from the center of the CLoVER profile at three different

angles. As expected, the majority of the energy propagated in the direction corresponding

to the active sector. The maximum amplitude of the 0-degree displacement was 3.85 and

13.9 times the amplitude of the 45 and 90-degree directions, respectively. For this case, the

LISA original model produced displacement histories that were slightly out of phase with

those from the Global Matrix model. Additionally, the LISA original model overpredicted

the amplitudes present in the 90-degree direction, producing a maximum amplitude three

times greater than the Global Matrix Method. These problems were not observed in the

LISA hybrid model results.

The CLoVER actuator was also modeled with the cross-ply plate, and three different

active sectors were simulated. Figures 3.17-3.19 show the results when the 0, 45, and 90-

degree sectors were simulated. Only one sector was simulated at a time, and the other

sectors were assumed to offer no contribution. Both the LISA original and LISA hybrid

models correctly showed the directionality observed when the different sectors were used,

but numerous discrepancies were seen in the LISA original results when they were closely

compared to those from the Global Matrix model. Conversely, for each of the CLoVER

sectors on the cross-ply plate, the LISA hybrid and Global Matrix results were almost

indistinguishable.
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Figure 3.16: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for an aluminum plate with a CLoVER actuator with the 0-degree sector active. The 0, 45,
and 90-degree directions are shown for points 70 mm from the actuator center. The Hilbert
transform envelopes are included for reference.
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Figure 3.17: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a cross-ply plate with a CLoVER actuator with the 0-degree sector active. The 0, 45,
and 90-degree directions are shown for points 70 mm from the actuator center. The Hilbert
transform envelopes are included for reference.

84



0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t
 

 

GM
LISA Original
LISA Hybrid

(a) 0 degrees

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

 

 

GM
LISA Original
LISA Hybrid

(b) 45 degrees

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 D
is

pl
ac

em
en

t

 

 

GM
LISA Original
LISA Hybrid

(c) 90 degrees

Figure 3.18: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a cross-ply plate with a CLoVER actuator with the 45-degree sector active. The 0, 45,
and 90-degree directions are shown for points 70 mm from the actuator center. The Hilbert
transform envelopes are included for reference.
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Figure 3.19: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a cross-ply plate with a CLoVER actuator with the 90-degree sector active. The 0, 45,
and 90-degree directions are shown for points 70 mm from the actuator center. The Hilbert
transform envelopes are included for reference.
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For the cross-ply plate with a CLoVER actuator, directional dependence in the results

was due to both the composite configuration and the shape of the actuator itself. The field

plots shown in Fig. 3.20 demonstrate the directionality in the out-of-plane displacement

field produced when three different sectors are active. The figures on the left show the

out-of-plane displacement observed 80 µs after the start of the actuation pulse using the

Global Matrix Method. The center figures show the LISA hybrid displacement field at the

same instant in time. The figures on the right show the amplitude error of the LISA hybrid

model compared to the Global Matrix results, as a percentage of the maximum amplitude

in the propagating wave. As in the case of the circular actuator, the amplitude errors in the

CLoVER results were consistently less than 10% of the maximum amplitude.

3.4.3 Square Actuator Case

Considering the previous results for the LISA original models and the actuation diagrams

in Figs. 3.5 and 3.6, it is evident the previous method of specifying in-plane displacements

on the plate surface was not very successful in representing either the circular or CLoVER

actuators. For these cases, the Cartesian nature of the LISA grid required that the model

approximate the nonlinear profile of the actuators by locating the closest nodes. There was

a clear mismatch between the nodes and the actuator boundary. In this section, results for a

10-mm square piezo actuator are presented. Unlike the previous cases, the square actuator

can be exactly matched by the LISA discretization, avoiding any discrepancies associated

with the discretization of the actuator in LISA. The next plots compare the two models and

the Global Matrix results for the four plates under consideration.

The results for the aluminum laminate with the square actuator are shown in Fig. 3.21.

As previously seen in the circular actuator case, the LISA original model produced results

matching the baseline case fairly well, but not as closely as the LISA hybrid model. Again,

the LISA original model seemed to produce improved results at distances far from the

actuator, while the LISA hybrid model was reliable at each of the distances considered.
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(a) GM 0-degree sector (b) LISA hybrid 0-degree sector (c) Error as % of max amplitude

(d) GM 45-degree sector (e) LISA hybrid 45-degree sector (f) Error as % of max amplitude

(g) GM 90-degree sector (h) LISA hybrid 90-degree sector (i) Error as % of max amplitude

Figure 3.20: Comparison of Global Matrix and LISA hybrid results for out-of-plane dis-
placement of a cross-ply plate at 80 µs with various active CLoVER sectors.

For the three composite models, shown in Figs. 3.22-3.24, the LISA hybrid model

clearly outperformed the LISA original model at all of the angles that were considered.

The results for each of the three layup sequences showed a clear mismatch between the

Global Matrix model and the LISA original model.

For this square actuator case, modeling the actuator profile in the LISA original model

was not a challenge, since the Cartesian structure of the LISA discretization fits well with

the actuator shape. However, the results showed that even with this problem not being a

factor, assuming a displacement field to represent the actuator did not produce satisfactory

results. Only for the aluminum plate did the LISA original model produce results that came
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Figure 3.21: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for an aluminum plate with a square actuator. Locations 20, 50, and 80 mm from the
actuator center are shown. The Hilbert transform envelopes are included for reference.
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Figure 3.22: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a cross-ply plate 40mm from the square actuator center. The 0, 45, and 90-degree
directions are shown. The Hilbert transform envelopes are included for reference.
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Figure 3.23: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a unidirectional plate 40mm from the square actuator center. The 0, 45, and 90-degree
directions are shown. The Hilbert transform envelopes are included for reference.
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Figure 3.24: Comparison of Global Matrix, LISA original, and LISA hybrid time histories
for a quasi-isotropic plate 40mm from the square actuator center. The 0, 45, and 90-degree
directions are shown. The Hilbert transform envelopes are included for reference.
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close to replicating the theoretical predictions. For the composite cases considered, the use

of in-plane displacements to model the actuator was not a reliable method, even when the

actuator fit well within the LISA grid scheme. Therefore, the actuator representation by

prescribing displacements in the actuator region provides an additional source of error.

3.5 Summary

This chapter introduced the LISA hybrid methodology to solve for wave generation and

propagation in isotropic and composite structures. It takes advantage of the strengths of the

Global Matrix Method and LISA. The Global Matrix Method was used to determine the ef-

fects of piezoelectric actuators mounted on the surface of a plate. The LISA formulation for

composite plates with plies in non-principal directions was used to capture the wave propa-

gation away from the actuator. The LISA hybrid model was used to produce displacement

results for an aluminum plate and three graphite-epoxy plates (cross-ply, unidirectional,

and quasi-isotropic). These results were compared with baseline results from the Global

Matrix Method. In all cases, the LISA hybrid results produced more accurate time histories

than previous LISA models, and the results matched those from the Global Matrix Method

extremely well. A brief study on the spatial discretization used in the LISA hybrid model

showed the importance of this parameter and its effect on the resulting displacement time

histories. Consistent with previous work, coarse discretizations produced artificially fast

propagating waves. Additionally, this work showed the influence of the azimuthal direc-

tion on the discretization effects. For all four models, a 1
6 t × 1

6 t × 1
12 t cell size produced

results agreeing well with the baseline model for plates of thickness t, when actuated with

a center frequency producing a frequency-thickness product of 112.5 kHz-mm.

Results from this work highlighted the importance of correctly modeling the actuator

in numerical wave propagation simulations. The inability of the LISA original model to

match the performance of the LISA hybrid model in the circular and CLoVER actuator
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cases illustrated the challenge of capturing non-rectangular actuators with the Cartesian

grid in LISA. However, the results from the square actuator case also showed that even

when the actuator geometry can be exactly captured in the Cartesian grid, the assumption

of prescribed in-plane displacements within actuator profile does not adequately describe

the behavior of the laminate. This work showed that the LISA hybrid model overcame

both of these challenges, and it was effective for both simple piezo wafer actuators and

more complex piezocomposite actuators such as CLoVER. With the LISA hybrid model

producing accurate results for the pristine plates considered in this work, the next step is to

use the model to consider various types of damage likely to be seen in aerospace structures.
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CHAPTER 4

Guided Wave Interaction with Hole Damage

This chapter considers the effects of hole damage on guided wave propagation in isotropic

and composite plates using both LISA and experimental methods. While not a typical dam-

age mode in fielded aerospace structures, holes offer a good starting point to verify LISA

can properly capture the damage difference signals needed for damage identification and

location. Guided wave generation from piezoceramic wafers is modeled using the LISA

hybrid approach. First, holes in isotropic plates are simulated to establish LISA’s ability to

capture the guided wave scattering effects of various hole sizes. Next, guided wave inter-

action with hole damage in cross-ply composite laminates is modeled. Various hole sizes

and azimuthal locations are simulated to determine the effects of varying those parameters.

For both material systems, experimental results are compared with the simulations to aid

in evaluating the LISA models.

4.1 Theoretical Formulation

4.1.1 Hole Modeling Strategy

Holes were represented in the LISA model using simulated air cells like those used at

the plate boundaries. Cells located within the radius of the chosen hole size were given

simulated air properties. Figure 4.1 shows how a hole was represented for three different

in-plane discretizations. The LISA models were based on a Cartesian discretization, and
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Figure 4.1: Damage models for a r = 2t hole for in-plane dimensions ∆x,∆y = 2t/3 (left),
t/3 (center), and t/6 (right).

the effect of this approach is evident in the figure. Models with finer in-plane cell sizes

allowed for holes with less distortion.

4.1.2 Simulated Sensor Model

The in-plane interactions of the guided waves with the damaged regions were observed

using a series of simulated sensors placed around the damage site. It has been shown (e.

g., [46]) the voltage response V of a piezoceramic wafer sensor to be proportional to the

integral of the in-plane normal strain εii within the sensor profile:

V = C
∫

S C

εiidS , (4.1)

where the C constant is a function of the sensor’s geometric, material, and piezoelectric

properties and S C is the surface area of the sensor. The simulated sensor signal used in this

dissertation was calculated by summing the in-plane normal strains for the surface nodes

located within the profile of the sensor. In this sensor modeling approach, any effects of

the mass of the sensor were assumed to be negligible.
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4.2 Holes in Isotropic Plates

The first portion of this study considered the effect of holes on guided wave propagation

in isotropic plates. Both through-thickness holes and half-depth holes were examined in a

series of LISA simulations, and experimental results were used to validate the hole model.

4.2.1 Simulation Studies

For the isotropic plate scenario considered in this work, the host structure was a 3.18 mm

thick aluminum plate with the material properties previously shown in Table 2.1. The

simulations considered a square plate with a 6.5-mm circular piezoceramic wafer actuator

bonded to the top surface at the geometric center of the plate. The plate had a side length

of 700 mm. The in-plane dimensions of the plate were chosen to minimize the interference

of boundary reflections in the wave propagation results. For this set of simulations, the

holes were placed 125 mm from the center of the actuator. A series of sensors were mod-

eled around the damage site at a distance of 50 mm from the center of the damage. The

sensors were placed at five different angles relative to the hole, as shown in Fig. 4.2. For

these models, a discretization of 0.53 mm (t/6) was used in the thickness dimension of the

plate. The in-plane discretization was set to 0.5 mm in both directions. The guided wave

fields used for the simulations were produced using a 3.5-cycle Hann-modulated toneburst

excitation with a center frequency of 75 kHz.

Prior to simulating the damage cases, a pristine plate was modeled to gather baseline

data. Subsequently, the damage simulations were run to collect data describing guided

wave interaction with the damage. Finally, the pristine and damage signals were compared

to produce difference signals showing the effect of the damage.

For the isotropic case, the primary objective of the hole simulations was to characterize

how increasing the radius of the hole affects the difference signal for both through-thickness

and half-depth holes. Four different hole sizes ranging from r = 0.75t to r = 2t were mod-
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Figure 4.2: Schematic of setup for isotropic simulations.

eled for each hole depth. Figure 4.3 shows how the out-of-plane difference signal varies

for each hole size with respect to the observation point. In this figure, the maximum value

of the out-of-plane difference signal at points 50 mm from the damage center is plotted

for each azimuthal angle relative to the damage location. The results were normalized as a

percentage of the maximum amplitude of the pristine signal that reached the damage site.

The simulation results for the through-thickness hole showed that for each of the hole

sizes, considerable energy was reflected back toward the actuator, which is represented as

the 180-degree direction in the figure. The highest difference signals, however, were found

on the back side of the damage in the 0-degree direction. As the hole radius increased, the

maximum difference amplitude in the 0-degree direction increased at a greater rate than

the amplitude in the 180-degree direction. The 45 and 315-degree directions showed the

smallest difference signal amplitudes, indicating these directions were generally the least

optimal for detecting the damage.

The results for the half-depth hole scattering patterns were significantly different from

those seen in through-thickness case. For all hole radii, almost no difference signal was

present in the 90 and 270-degree directions. In general, the difference signals reflected

back toward the actuator had a smaller amplitude than the through-thickness case. As in

the through-thickness case, the maximum difference signal amplitudes were found on the

back side of the half-depth holes. One particularly interesting result was seen for the largest
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Figure 4.3: Azimuthal variation of the out-of-plane difference signal’s maximum amplitude
for aluminum hole simulations. Results are for points 50 mm from the hole center.
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Figure 4.4: Configuration of aluminum hole experiment.

(r = 2t) hole size in the 0-degree direction. Here, the maximum amplitude of the half-depth

hole difference signal was actually higher than that found in the through-thickness hole

case.

4.2.2 Comparison with Experimental Results

An experiment was conducted to validate the isotropic simulations using the same param-

eters as those used in the LISA model. The aluminum plate was instrumented with an

actuator and sensors, shown in Fig. 4.4, and pristine data were recorded for the baseline

case. A 15 volts peak-to-peak Hann-modulated toneburst excitation was generated using

an Agilent 33220A function generator. A center frequency of 75 kHz was used like in the

simulations. The responses of the five piezoceramic sensors were recorded using an Agilent

DSO9254A digital oscilloscope. After the pristine sensor signals were recorded, an r = 1t

through-thickness hole was drilled and another set of damage signals were recorded. Dif-

ference signals were obtained by subtracting the pristine results from the damaged results

in a manner similar to that used in the simulation studies. Finally, the difference signals

were post-processed using a low-pass filter to eliminate excessive noise.

A comparison of the difference signal amplitudes recorded by the simulated and ex-

perimental sensors is shown in Fig. 4.5. Each data point shows the maximum amplitude
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Figure 4.5: Comparison of LISA and experimental results for through-thickness hole sce-
nario in an aluminum plate. Sensor difference signals are normalized as a percentage of
the maximum pristine signal amplitude at sensor 1, which corresponds to the 180-degree
direction.

of the difference signal normalized as a percentage of the maximum amplitude of the pris-

tine signal recorded with sensor 1. The data are plotted azimuthally with respect to the

sensor position, and the radial dimension indicates the normalized amplitude. A quanti-

tative comparison of the data is shown in Table 4.1. The results for sensors 1 through 4

showed close agreement, with differences ranging from 1.1% to 1.9% of the pristine sen-

sor 1 signal amplitude. In both the simulation and the experiment, the sensor 5 difference

signal showed the largest amplitude, as expected. However, the sensor 5 results showed

more variation than the others with a difference of 7.7%. The experimental difference sig-

nal at this location was larger than expected. This could be an indication that the LISA

model underpredicts the difference signal at this position, or an error introduced during the

experiment itself. Further studies would be needed to fully address this difference.
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Table 4.1: Comparison of LISA and experimental results for through-thickness hole sce-
nario in an aluminum plate. The maximum difference signal amplitude is shown as a
percentage of the pristine signal at sensor 1.

Sensor

S1 S2 S3 S4 S5

LISA % 8.9 8.2 4.6 4.4 10.2
Experiment % 10.8 6.8 5.7 5.7 17.9
Difference 1.9 1.4 1.1 1.3 7.7

Figure 4.6 shows a comparison between the time histories from the LISA simulation

and the experiment. The pristine, damaged, and difference time-history signals are shown

for three of the sensors. The signals were normalized relative to the maximum amplitude of

the pristine signal at the sensor 1 location. Sensor 1 corresponds to the 180-degree direction

relative to the damage site, and it is in the pulse-echo configuration. Sensor 5, located in the

0-degree direction, is in the pitch-catch configuration. The sensor 4 results are presented to

show the behavior of the sensor in the least optimal direction for detecting the difference

signal. For each of the sensors shown, the behavior of the pristine signals showed excellent

agreement between the simulation and the experiment. Additionally, it can be seen that for

the majority of the time history, the difference signals were much lower in amplitude than

the pristine signals.

To better see the features of the difference signals, they are shown individually in

Fig. 4.7. The simulation results clearly showed a number of notable features in the dif-

ference signals. For sensor 1, the major features of the difference signal included a small

reflection of the S 0 mode back towards the sensor followed by a much larger reflection from

the A0 mode after interacting with the damage site. In the case of the sensor 5 position, a

close examination of the pristine and damage signals for this sensor showed the large A0

pulse in the damage signal was slightly out of phase from the original pristine signal. The

major features of the difference signal can be understood as artifacts of the wave energy

slowing down as it passed around the hole. The sensor 4 difference signal had a noticeably
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(e) Experiment sensor 5
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Figure 4.6: Comparison of experimental and LISA results for r = 1t hole in an aluminum
plate.
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(d) LISA sensor 4

0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (ms)

N
or

m
al

iz
ed

 S
en

so
r 

S
ig

na
l

(e) Experiment sensor 5

0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (ms)

N
or

m
al

iz
ed

 S
en

so
r 

S
ig

na
l

(f) LISA sensor 5

Figure 4.7: Comparison of experimental and LISA difference signals for r = 1t hole in an
aluminum plate.
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smaller amplitude than the other sensors, as expected. A close examination of the signals

shows that in comparison to the simulation, the difference signals had a higher amplitude

in the experiment relative to the amplitude of the pristine signals. The experimental sensor

data showed the dominant A0 features predicted by the simulation. However, the more sub-

tle S 0 features seen in the simulation results were largely eclipsed by residual signals and

noise in the experimental results. Despite these discrepancies, it is reasonable to conclude

the LISA model can successfully capture the effects of the hole for the isotropic case.

4.3 Holes in Composite Plates

The second portion of this study focused on through-thickness and half-depth holes in com-

posite laminates. As in the isotropic study, LISA simulations were conducted to investigate

the influence of various parameters on guided wave propagation. Additionally, experiments

were performed to confirm the quality of the LISA models.

4.3.1 Simulation Studies

For the composite case, a 12-layer cross-ply ([0/90]3S ) laminate was modeled. The mate-

rial system consisted of IM7 graphite fibers with a CYCOM 977-3 matrix, and the material

properties were previously shown in Table 2.2. The cross-ply plate had a ply thickness of

0.125 mm and a total thickness of 1.5 mm. The actuator, sensor, and damage configuration

was identical to that used in the aluminum study. The side length used in this case was 500

mm, which accomplished the previously-mentioned goal of minimizing boundary effects

while also matching the dimensions of specimens used in experimental studies. The cross-

ply simulations also considered three different azimuthal locations of the hole, in which the

hole was located at 0, 45, and 90 degrees relative to the fiber orientation of the top layer, as

shown in Fig. 4.8. The thickness-direction discretization in these models was set to match

the ply thickness of the laminate, 0.125 mm. The in-plane discretization was maintained
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Figure 4.8: Schematics of simulation setup for cross-ply damage simulations.

at 0.5 mm × 0.5 mm. As in the previous section, a 75 kHz, 3.5 cycle Hann-modulated

toneburst excitation was simulated.

4.3.1.1 Hole Radius Variation

Results for the cross-ply simulations were examined based on hole radius, hole depth, and

azimuthal location. For the comparisons based on hole radius, through-thickness holes

were placed along the 0-degree azimuth. An initial observation from the simulation results

was the concentration of the difference signals in the fiber directions (0 and 90 degrees).

This concentration was especially apparent as the size of the hole increased. Figure 4.9 (a)

shows the difference signal scatter patterns for points 50 mm from the hole for three differ-

ent hole radii. The results were normalized as a percentage of the maximum amplitude of

the pristine signal when it reached the damage location. For the r = 1t hole, the energy was

primarily concentrated along the 0-180 degree line. As the radius increased, the proportion

of energy scattered in the 90-270 degree line increased. An additional finding was the in-

creasing difference signal amplitude behind the hole relative to the other directions as the

hole radius increased. This was consistent with the results from the isotropic case.
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Figure 4.9: Azimuthal variation of the out-of-plane difference signal’s maximum amplitude
for cross-ply hole simulations. Results are for points 50 mm from the hole center for
varying hole radius (a) and hole depth (b).
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4.3.1.2 Hole Depth Variation

Figure 4.9 (b) shows a comparison of the scatter patterns for a through-thickness and half-

depth hole, both with radius r = 1t. For both hole depths, the predominance of difference

signal scattering was along the fiber directions. In the half-depth hole case, the amplitudes

were decreased significantly in the 0-180 degree direction, but less so in the 90-270 degree

direction.

It is interesting to also compare the out-of-plane displacement fields for the two hole

depths. Figure 4.10 shows a series of displacement field plots, where the top plots were

taken 50 microseconds after the beginning of the actuation pulse and the bottom plots were

taken at 100 microseconds. As a reference, the top two plots show the displacement field

for the pristine case. The center row shows field plots of the out-of-plane difference signal

for the through-thickness hole case, and the scales of these plots were adjusted to better

show the results. The bottom row shows the difference signals for the half-depth hole.

The axes of each of the plots were normalized by the radius of the actuator, RO. At the

50 microsecond point in time, Fig. 4.10 (a) shows the A0 pulse had not yet arrived at the

damage location. However, Fig. 4.10 (e) shows a difference signal was already present

near the half-depth hole. This difference signal had a wavelength consistent with an A0

mode, and it can be attributed to a mode conversion of the S 0 mode to an A0 mode. For

the through-thickness hole case, this mode conversion did not occur, and no difference

signal was observed. At the 100 microsecond point in time, the A0 mode had arrived at the

damage location. The difference signal shown in Fig. 4.10 (d) shows the interaction of this

mode with the through-thickness hole. For the half-depth hole model, the unconverted A0-

A0 difference signal was present around the hole, while the mode-converted S 0-A0 signal

had almost reached the actuator location at the center of the plate.
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(a) Pristine 50µs (b) Pristine 100µs

(c) 1t Hole 50µs (d) 1t Hole 100µs

(e) 1t Half-depth Hole 50µs (f) 1t Half-depth Hole 100µs

Figure 4.10: Out-of-plane displacement fields for through and half-depth holes.
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4.3.1.3 Hole Azimuth Variation

The effect of varying the azimuthal location of the hole was evaluated next. The holes

considered for the azimuthal comparison had radius r = 2t. For this analysis, the results

were normalized in two different ways. The first method normalized the results based on

the maximum difference signal amplitude for the 0-degree hole, as shown in Fig. 4.11 (a).

This normalization scheme allowed the results to show the differences in the difference sig-

nal amplitudes based on the amount of energy that propagated from the actuator to the hole

and the amount of energy that propagated from the hole to the observed point on the plate.

Under these conditions, the amplitudes for the 45-degree hole were considerably smaller

than the holes located along fiber directions relative to the actuator. This presentation of

the difference amplitudes was the most appropriate when considering a non-directional

actuator such as the circular wafer used in the simulation. However, a second normaliza-

tion method was employed to consider the results a different way. Figure 4.11 (b) shows

the same data, but here the values were normalized with respect to the maximum ampli-

tude of the pristine signal reaching the respective damage location. The results for this

scheme showed the difference signal amplitudes relative to the amount of energy that ac-

tually reached the damage site. The drastic increase in the response for the 45-degree hole

relative to the other hole locations using this scheme reinforced previous work [38] that

recommended using directional transduction to increase guided wave amplitudes.

For the holes oriented in the 0 and 90-degree directions, the maximum difference signal

amplitude was on the backside of the hole, as expected. The maximum difference signal

for the 90-degree case was noticeably less than the 0-degree case, which can be attributed

to the direction of the fibers in the top and bottom layers of the laminate. The 45-degree

hole orientation produced a scatter pattern much different from the other two cases. In the

45-degree damage simulation, the incoming wave originated from the 225-degree direction,

and the largest difference signals were focused back toward the 180-degree direction, which
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Figure 4.11: Azimuthal variation of the out-of-plane difference signal’s maximum ampli-
tude for cross-ply hole simulations. Results are for points 50 mm from the hole center
for (a) varying hole location normalized by maximum amplitude at 0-degree location, and
(b) varying hole location normalized by max out-of-plane displacement at respective hole
location.
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Figure 4.12: Configuration of cross-ply hole experiment.

corresponded with a fiber direction in the plate. The difference signals in both the 180 and

270-degree directions were both larger than the backside (45-degree) direction.

These simulations provided interesting insight into the placement of sensors in a com-

posite structure and the probability of detecting damage in various locations. Considering

holes aligned with the circular actuator along a fiber direction, aligned sensors in traditional

pulse-echo and pitch-catch configurations produced strong difference signals, with pitch-

catch sensors generally being superior. However, other directions consistently produced

drastically smaller difference signals, such as the 45 and 315-degree directions. When

the hole and actuator were not aligned along a fiber direction, the aligned sensors did not

provide the best results.

4.3.2 Comparison with Experimental Data

To validate the simulation results, an experiment was conducted using a cross-ply plate with

a r = 1t hole. The plate was fabricated in house using the aforementioned material system,

and an autoclave was used to cure the plate. The parameters of the experiment matched

the simulation case where the hole was located along the 0-degree orientation angle in the

plate, as shown in Fig. 4.12. The experimental instrumentation setup was identical to that

used for the isotropic study.
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Figure 4.13: Comparison of LISA and experimental results for through-thickness hole sce-
nario in a cross-ply laminate. Sensor difference signals are normalized as a percentage of
the maximum pristine signal amplitude at sensor 1, which corresponds to the 180-degree
direction.

Figure 4.13 compares the azimuthal behavior of the difference signals for the simula-

tions and experiment. The maximum amplitudes of the sensor difference signals are plotted

as a percentage of the maximum pristine signal amplitude at sensor 1. A quantitative sum-

mary of these results is included in Table 4.2. Consistent agreement was found for the five

sensors, with differences ranging from 0.9% to 3% of the pristine amplitude of the sensor

1 signal. The preponderance of difference signal energy along the 0-degree fiber direction

found in the experiment was well preserved by the simulation. Unlike in the aluminum

case, the difference between the experimental and LISA difference signals for sensor 5 was

not significantly higher than the other sensors.

Comparison of the time histories of the simulated and experimental sensor responses

showed similar trends in the agreement of the results. The sensor responses for sensors
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Table 4.2: Comparison of LISA and experimental results for through-thickness hole sce-
nario in a cross-ply laminate. The maximum difference signal amplitude is shown as a
percentage of the pristine signal at sensor 1.

Sensor

S1 S2 S3 S4 S5

LISA % 14.3 7.1 7.4 5.7 19.8
Experiment % 16.0 9.6 8.9 4.8 16.8
Difference 1.7 2.5 1.5 0.9 3.0

1, 3, and 5 are compared in Fig. 4.14. The experimental results for the pristine, damage,

and difference signals are on the top, while the LISA simulation results are on the bottom.

There were some amplitude differences in the pristine signals at the sensor locations, but

these can be most likely attributed to manufacturing variations in the plate. A more detailed

comparison of the difference signals is included in Fig. 4.15. Examination of the difference

signals within the context of the pristine signals explains much of the amplitude difference

between the experimental and LISA results. For the sensor 1 location, the initial S 0 portion

of the pristine signal was higher in the experiment than in the simulation, and this yielded a

higher amplitude reflection prior to the 0.1 ms point in the time history. The experimental

pristine signal at sensor 3 had higher amplitude in both the S 0 and A0 modes, and the

corresponding difference signal was also higher in amplitude than in the simulation. At

sensor 5, a slightly larger A0 mode in the simulation produced a slightly larger amplitude for

the simulated sensor signal near the 0.14 ms point in time. The majority of the data showed

good amplitude agreement during the full duration of the time history at this location.

Overall, there was excellent agreement between the simulation and the experiment for

the case considered in this study. Although some discrepancies were found, the results

were consistent enough to provide a high level of confidence in LISA’s ability to represent

guided wave interaction with this type of damage.
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(b) LISA sensor 1
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(c) Experiment sensor 3
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(d) LISA sensor 3
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(e) Experiment sensor 5
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(f) LISA sensor 5

Figure 4.14: Comparison of experimental and LISA sensor results for r = 1t hole in a
cross-ply laminate.
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(a) Experiment sensor 1
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(b) LISA sensor 1
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(c) Experiment sensor 3
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(d) LISA sensor 3
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(e) Experiment sensor 5
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(f) LISA sensor 5

Figure 4.15: Comparison of experimental and LISA sensor difference signals for r = 1t
hole in a cross-ply laminate.
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4.4 Summary

This chapter used the LISA hybrid simulation architecture to model guided wave interac-

tion with damage in isotropic and composite plates. First, a series of simulations considered

through-thickness and half-depth holes in an aluminum plate. The azimuthal behavior of

the damage difference signals was compared for holes of different radius for each hole

depth. Results showed that in general, the difference signals had higher amplitude on the

back side of the hole than on side facing the actuator, and this trend increased as the radius

of the hole increased. Experimental results confirmed that the LISA simulation success-

fully captured the guided wave scattering from the holes.

Next, holes were simulated in a cross-ply laminate. Comparisons based on hole size,

hole depth, and the azimuthal location of the hole were presented. Difference signal energy

was highly concentrated along the fiber directions. Simulations for the half-depth hole

successfully captured mode conversion effects due to partial-thickness damage. Sensors in

the pitch-catch configuration relative to the actuator and damage produced higher difference

signals when the damage was aligned with the actuator along a fiber direction. Results

from simulations where the hole was oriented in the 45-degree azimuth showed that when

the damage and actuator were not aligned with a fiber direction, sensors in the traditional

pulse-echo or pitch-catch configuration did not necessarily produce the highest difference

signals. Experimental data showed the LISA model was very successful in capturing the

major features of the damage difference signals and representing the azimuthal behavior of

the signals for the hole damage case.
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CHAPTER 5

Guided Wave Interaction with Impact Damage

This chapter considers the effects of low-velocity impact damage in composite plates. First,

a short introduction to the problem of impact damage is provided to better understand the

need to examine this damage mode. The results of diagnostic inspections are provided

to explain how impact damage typically manifests itself in laminated composite plates.

The next section provides a series of experimental results for guided wave interaction with

laboratory-produced impact damage. After analyzing guided wave behavior in the exper-

imental specimens, the remainder of the chapter focuses on determining the best ways to

model impact damage in LISA. Several candidate models are compared to determine which

approaches best match the damage signals from the experiments.

5.1 Low-velocity Impact Damage in Composite Plates

While holes are a convenient form of damage to evaluate candidate SHM tools and better

understand wave propagation, it is also necessary to understand how guided waves interact

with more realistic forms of damage likely to be found in fielded composite structures. One

of the most concerning damage modes is low-velocity impact, which may result from tool

drops during maintenance or from other foreign object impact. What makes low-velocity

impact particularly insidious is the significant internal damage it can create without pro-

ducing any visually-detectable surface damage, yielding what is known as barely visible

impact damage (BVID). In previous literature, there have been inconsistent definitions of
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Table 5.1: HEXCEL IM7 8552 Material Properties

Property E1 E2 G12 G23 ν12 ρ

Value 162 GPa 8.96 GPa 4.69 GPa 3.3 GPa 0.316 1580 kg/m3

what constitutes low and high-velocity impact, and it has been noted that impacts of dif-

ferent masses with the same kinetic energy can produce different results [140]. For the

purposes of this chapter, low-velocity impacts are broadly defined as those that create sub-

surface damage while creating little or no damage at the impacted surface of the composite

laminate.

Low-velocity impact damage is usually a combination of multiple failure modes in-

cluding delamination, fiber breakage, and matrix cracking. Previous experimental studies

have shown that low-velocity impact events produce a V-shaped damage profile, with the

apex of the V on the surface where the impact occurred [141, 142]. In order to better un-

derstand the characteristics of the impact damage in the composite laminates used in this

chapter, a series of diagnostic tests were performed. Cross-ply ([0/90]3S ) composite plate

specimens were fabricated in house using IM7 graphite fibers with a HEXCEL 8552 ma-

trix. The properties for this material system are shown in Table 5.1, and a photograph of

a representative specimen is shown in Fig. 5.1. For each of the specimens, a drop-weight

15 cm 

13 cm 

X 

Y 

impact location 

Figure 5.1: Impact specimen.
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Figure 5.2: Drop-weight impactor.

impact was applied using the impactor shown in Fig. 5.2. In this fixture, the tip of the im-

pactor was a steel ball with a 12.7-mm diameter. Desired amounts of impact energy were

applied by dropping the impactor from different heights above the surface of the specimen.

In Fig. 5.3, the front and back side of a damaged specimen are shown after a 5-J impact.

The impact resulted in a barely-visible dent on the front side of the specimen. On the back

side of the specimen, more extensive damage was visible. A long matrix crack ran along

(a) Front (impacted) side of specimen. (b) Back side of specimen

Figure 5.3: Surface features from 5-J impact.
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Figure 5.4: Impact damage specimen in CT system at the University of Texas, Arlington.

the fiber direction of the bottom lamina, and a diamond-shaped damage pattern around this

crack was also visible.

After the impact damage was created, the specimens were inspected using a North Star

Imaging X5000 Computed Tomography (CT) X-ray system at the University of Texas,

Arlington. The X-ray system had a voxel resolution of 0.37×10−3 inches (9.4×10−3 mm).

Figure 5.4 shows one of the specimens mounted in the CT system. For each specimen, a

series of cross-sectional scans were produced showing how any existing damage progresses

in different directions. The next few figures show the results for the 5-J impact specimen.

The first series of cross-sectional scans, shown in Fig. 5.5, captured the in-plane pro-

file of the damage region at various depths in the through-thickness direction. Each scan

covered a rectangular region with dimensions 28 mm × 20 mm. The scan in the upper left

corner is at the top surface of the plate, and the impact dent is clearly visible. As the scans
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Top

Bottom

Figure 5.5: In-plane views of impact damage at various depths through specimen.
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move down the left column and then down the right column, the depth gradually increases,

and the size of the damage region increases. This was the expected result based on previous

studies. In many of the scans, distinct matrix cracks running along the fiber directions were

visible, which gave the damage a rectangular profile in the center of the damaged region.

The final scan in the lower right corner showed the large matrix crack on the bottom surface

of the plate along with the diamond-shaped surface damage.

The next series of scans, shown in Fig. 5.6, represent cross sections in the X-Z plane

of the specimen. The five scans are equally spaced in the Y direction and range from ±1.8

Figure 5.6: Section views in X-Z plane.
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mm from the damage center. In this orientation, the fibers in the top and bottom lamina

are running along the length of the picture, while the fibers in the middle two lamina are

running in and out of the page. The matrix cracks are the most visible damage feature in

these images, and the inverted V pattern is very evident. In addition to the matrix cracks,

delaminations are clearly visible–especially near the damage center.

A similar series of cross-sectional scans for the Y-Z plane of the specimen is shown in

Fig. 5.7. Here, the fibers in the top and bottom lamina are running in and out of the page,

while the fibers in the middle two lamina are running along the length of the picture. These

scans are equally spaced in the X direction and range from ±1.8 mm from the damage

center. The inverted V pattern is noticeable in these images as well. The distinct matrix

cracks are in the opposite lamina from the previously shown X-Z plane scans. The long

matrix crack seen on the bottom surface of the specimen in Fig. 5.3 (b) is clearly seen in

each of the Y-Z section scans shown here. Significant delaminations are also visible, with

the largest delamination appearing between the bottom two lamina.

5.2 Experimental Characterization of Guided Wave In-

teraction with Impact Damage

A series of experiments were performed to obtain data needed to better understand how

Lamb waves interact with impact damage. For these experiments, cross-ply ([0/90]3S )

plates were fabricated using the HEXCEL IM7-8553 material system. As in the hole dam-

age experiments, damage sites in the 0, 45, and 90-degree orientation were instrumented

with five sensors around each damage location, as previously shown in Fig. 4.8. The exci-

tation parameters used for these impact damage sensor experiments were identical to those

used in the hole damage experiments.

In addition to the sensor measurements, a Polytec scanning laser vibrometer was used

to record out-of-plane motion. For the laser vibrometer measurements, the Agilent 33220A

124



function generator was used to generate the Hann-modulated toneburst at 75 kHz, this time

at 0.5 V p-p. The excitation signal was passed through a Krohn-Hite 7500 amplifier to

increase the signal to 50 V p-p. The laser vibrometer recorded the out-of-plane motion

at a series of specified scan points surrounding the damage site. Retroreflective tape was

Figure 5.7: Section views in Y-Z plane.
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Figure 5.8: Impact dent on surface of composite plate.

attached to the plate in the area surrounding the damage site to increase the strength of the

reflection back to the laser vibrometer during the experiment.

It should be noted that in these experiments, the measurements were taken on the side

of the plate where the impact occurred. In a realistic situation, it is likely the sensors will

be attached to the surface of the plate on the interior of the structure, placing them on the

side opposite the impact.

The first stage in each experiment involved collecting data for the undamaged plate.

Once the pristine data were recorded, the drop-weight impactor was used to apply an impact

to the plate. For these experiments, the 5-J impact energy resulted in barely-visible dimples

on the impacted surfaces of the plates, as seen in Fig. 5.8. Unlike in the case of the impact-

damage specimen, no damage was observed on the back side of the plates. It is likely that

the impact imparted on the plates had slightly lower energy than the specimen, resulting in

less backside damage. Even though the height used for the drop-weight procedure was the

same for both cases, it is possible that friction in the impactor resulted in a lower impact

velocity for the impact on the plates used in these experiments. Once the impacts were

applied, post-damage measurements were taken for comparison with the pristine signals

using both the sensors and the laser vibrometer. As in the hole experiment, a low-pass filter

was used during post-processing to eliminate noise in the difference signals.
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5.2.1 Sensor Results for 0-degree Damage Site

The first impact damage experiments considered damage located in the 0-degree orientation

relative to the fiber direction of the top and bottom lamina. For this case, two separate

experiments were conducted, and the results for both are included in this section. Figure 5.9

shows the sensor results for sensors 1, 2, and 3, while Fig. 5.10 shows the results for sensors

4 and 5. In these figures, the pristine, damage, and difference signals are included for each

sensor location. Each signal was normalized with respect to the maximum amplitude of

the pristine signal recorded using sensor 1. In general, the signals for each location were

quite similar between the two experiments, and notable differences in the pristine signals

arriving at each respective sensor location can largely be attributed to expected variation

between the two composite plate specimens.

Figures 5.11 and 5.12 show additional views of the difference signals obtained after

subtracting the pristine signals from the damage signals. Several notable results are worth

mentioning. The strongest difference signals were obtained using sensors 1 and 5, which

were located in the pulse-echo and pitch-catch orientations, respectively. Of these two

sensor locations, sensor 1 produced the largest signal in both of the experiments. Strong

signals were also obtained using sensor 2. The amplitudes of the sensor 1 and 2 signals

indicated that the impact damage region produced substantial reflections back toward the

actuator location at the center of the plate. As was previously seen in the hole damage

experiment, the weakest difference signals were recorded using sensor 4.
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(a) Sensor 1 Plate 1

0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1

Time (ms)

N
or

m
al

iz
ed

 S
en

so
r 

S
ig

na
l

 

 

Pristine
Impact
Difference
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(d) Sensor 2 Plate 2
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(e) Sensor 3 Plate 1
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(f) Sensor 3 Plate 2

Figure 5.9: 5-J impact damage in cross-ply laminate: sensor signals at 0-degree damage
location.
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(a) Sensor 4 Plate 1
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(c) Sensor 5 Plate 1
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Figure 5.10: 5-J impact damage in cross-ply laminate: sensor signals at 0-degree damage
location.
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(e) Sensor 3 Plate 1
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(f) Sensor 3 Plate 2

Figure 5.11: 5-J impact damage in cross-ply laminate: sensor difference signals at 0-degree
damage location.
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(c) Sensor 5 Plate 1
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(d) Sensor 5 Plate 2

Figure 5.12: 5-J impact damage in cross-ply laminate: sensor difference signals at 0-degree
damage location.
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5.2.2 Sensor Results for 45-degree Damage Site

The pristine, damage, and difference signal results for damage located at the 45-degree

location are shown in Fig. 5.13. The results were normalized with respect to the maximum

amplitude of the pristine signal at the sensor 1 location. The difference signals are also

included for each sensor in Fig. 5.14. At this damage location, the maximum amplitudes

of the difference signals obtained at sensors 1, 2, and 3 were relatively similar. The sensor

4 location recorded the smallest difference signals, while sensor 5 produced the largest

difference signals.

5.2.3 Sensor Results for 90-degree Damage Site

The sensor results for impact damage at the 90-degree site are shown in Figs. 5.15 and 5.16.

Like the 0-degree results, the largest difference signal in the 90-degree case was recorded

using sensor 1, which corresponded to the pulse-echo configuration. A large difference

signal was also observed at sensor 5. Interestingly, sensor 4 observed a difference signal

higher than that of sensors 2 and 3, unlike in the other damage cases. While it it possible

this was an effect of the different fiber orientation, it seems more likely that the impact

damage manifested itself differently in this case due to variability in the impact procedure.

Future experiments should be conducted to see if this result is repeatable or if the sensor 4

result is lower in other trials as expected.
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(c) Sensor 3
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(d) Sensor 4
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(e) Sensor 5

Figure 5.13: 5-J impact damage in cross-ply laminate: sensor signals at 45-degree damage
location on plate 2.
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(b) Sensor 2
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(c) Sensor 3
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(d) Sensor 4

0 0.05 0.1 0.15 0.2
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (ms)

N
or

m
al

iz
ed

 S
en

so
r 

S
ig

na
l

(e) Sensor 5

Figure 5.14: 5-J impact damage in cross-ply laminate: sensor difference signals at 45-
degree damage location on plate 2.
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(d) Sensor 4
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Figure 5.15: 5-J impact damage in cross-ply laminate: sensor signals at 90-degree damage
location on plate 2.
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(d) Sensor 4
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Figure 5.16: 5-J impact damage in cross-ply laminate: sensor difference signals at 90-
degree damage location on plate 2.
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5.2.4 Laser Vibrometry Results

The laser vibrometer was used to capture the out-of-plane behavior of the area surrounding

each damage site. As with the sensor measurements, laser readings were taken both before

and after the impact event to allow for a baseline subtraction technique to form a difference

signal. From a practical standpoint, obtaining reliable laser vibrometer results was much

more challenging than in the case of the PZT sensors.

During the 0-degree damage experiments, the plate was supported on two of its edges

below the laser vibrometer, as previously shown in Fig. 2.14. For the first experiment, using

plate 1, only one set of pristine data was taken before the impact, and one set of damage data

was taken after the impact. Post-processing of the data revealed a much larger difference

signal on the back side of the damage (0-degree direction) than what was expected after

considering the sensor results. In the laser vibrometer experiment, the maximum amplitude

of the difference signal was almost 40% of the pristine value in the 180-degree direction,

while the maximum amplitude was only 25% in the plate 1 sensor experiment. While these

values are not guaranteed to be equal, it was expected that they correlate better. For this

reason, more care was taken during the 0-degree experiment on plate 2. For this plate, three

sets of pristine data were taken. After each scan, the plate was moved and repositioned to

align the scan points. Once all three pristine data sets were recorded, the plate was damaged

with the 5-J impact. Three sets of damage data were collected in the same manner. After

all the data were obtained, each of the three sets of pristine data was used with each of the

three sets of damage data to obtain nine sets of difference signals for each scan point. The

maximum values of the nine difference signals at each scan point were then averaged.

For the 45 and 90-degree experiments, the plate was hung from a wall-mounted fixture

for the laser vibrometer measurements, as shown in Fig. 5.17. It was hypothesized that

hanging the plate would allow for a more repeatable placement when the plate was moved

between measurements. To further mitigate against alignment errors, four sets of measure-

ments were taken both before and after the damage was applied. After each set of pristine
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Figure 5.17: Hanging-plate setup used for laser vibrometer experiments during impact
damage study.

data was taken, the plate was moved and then hung again. After the pristine data were

recorded, the plate was damaged with the 5-J impact. The damaged data sets were then

recorded, and the plate was repositioned in between each set. When the plate was returned

to the hanging position after each scan, it was still difficult to ensure a perfect alignment of

the laser scan points from before the impact. In a similar process to the 0-degree experi-

ment, each of the four pristine data sets was used with each of the four damage data sets to

produce 16 sets of difference signals. The maximum values of the 16 difference signals at

each point were averaged to produce a final amplitude value at each point.

In each of the four experiments, the scan points were located along a circle 40 mm from

the center of the damage site. Figure 5.18 shows the azimuthal variation of the difference

signal for each damage site, where the average value of the maximum amplitude of the dif-

ference signal is plotted for each scan point location. In each plot, the 180-degree azimuth

represents the direction back towards the actuator, while the 0-degree direction is on the

back side of the damage. The data were normalized with respect to the maximum value

of the pristine signal at the scan point located in the 180-degree direction. Several notable
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(a) 0-deg Plate 1
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Figure 5.18: Azimuthal variation of out-of-plane difference signals from laser vibrometry
experiments for the three impact damage sites. Results are normalized as a percentage of
the pristine amplitude in the 180-degree direction with respect to each damage site.
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results can be seen in the figures. Even though the sensor results for the two 0-degree ex-

periments were reasonably close, the difference signal amplitudes recorded with the laser

vibrometer varied widely between the two cases. The first experiment had a maximum dif-

ference signal of nearly 40% of the pristine amplitude, while in the second experiment the

maximum amplitude was less than 15%. Another discrepancy between the two 0-degree

experiments was the direction of the maximum difference signal amplitude. In the first

experiment, the maximum amplitude was in the 0-degree direction, while in the second

experiment the 45-degree direction had the largest signals.

In the 45-degree experiment, the maximum difference signal was on the back side of

the damage. A subtle steering effect was visible where increased amplitudes were seen in

45, 135, 225, and 315-degree directions relative to the direction of the incident wave. In

general, the amplitude of the difference signals was consistent with those recorded in the

sensor data.

One unexpected result was the magnitude of the difference signals in the 90-degree

case. Whereas the sensor results predicted similar maximum amplitudes for the difference

signals at the three damage sites, the 90-degree laser vibrometer results predicted ampli-

tudes significantly larger than found in the other two damage sites.

For the three experiments using plate 2 where multiple data sets were recorded, there

was considerable variability between the calculated difference signals. Figure 5.19 shows

how the standard deviation of the difference signal amplitudes varied with the azimuth of

the scan point. The range of standard deviation values is included in Table 5.2. The amount

of variation was itself highly dependent on the azimuthal position of the observation point.

In general, the directions with the highest damage difference signals also had the highest

variation in the difference signal.

Due to the variability of the laser vibrometry results, they were not used further in

this chapter. They are included here for completeness and to show general trends only,

and further studies should be carried out to determine more reliable procedures for data
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Figure 5.19: Azimuthal variation of the standard deviation of the out-of-plane difference
signals from laser vibrometry experiments for the three impact damage sites. Results are
normalized as a percentage of the pristine amplitude in the 180-degree direction with re-
spect to each damage site.
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Table 5.2: Comparison of standard deviation values for 5-J impact damage laser vibrometry
experiments at 0, 45, and 90 degrees. SD values are reported as a percentage of the pristine
signal amplitude in the respective cases’ 0-degree azimuth.

Damage site 0 degrees 45 degrees 90 degrees

Max SD % 10.5 12.5 26.1
Min SD % 0 3.7 2.2
Average SD % 3.3 7.9 12.6

collection. Evaluations of numerical results in the remainder of the chapter were confined

to sensor measurements where the experimental data were judged to be more reliable.

5.3 Simulation of Impact Damage

Compared to holes, modeling impact damage in composites is much more difficult. The

levels of discretization in most numerical wave propagation models do not allow for small

matrix cracks and delaminations to be modeled in detail. For this reason, most studies

have used a homogenization approach, such as stiffness reduction, to account for the dam-

aged region. In most of these studies, however, the basis for the choice of homogenized

properties and the size of the modeled damage region have not been well justified. The ob-

jective of this section is to create a more data-driven impact damage model and to examine

possible strategies for representing impact damage based on their effect on guided wave

propagation.

The first task in modeling the damage was to define the size and shape of the damage

region in both the in-plane and through-thickness directions. The impact damage model

developed in this section is based on the 5-J impact case, and the diagnostic inspections in-

cluded earlier in this chapter provided a sound starting point for defining the spatial extents

of the model. It should be noted here that modeling different impact energies would require

alteration of the dimensions used in this section. Figure 5.20 illustrates how the damage

was represented in the through-thickness direction. Three damage regions were defined,
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Figure 5.20: Side view of impact damage model for a cross-ply graphite-epoxy laminate
subjected to 5-J impact.

with each region having increasing in-plane dimensions as the through-thickness distance

from the impact site increases. The angle of the damage region was chosen to closely

match the angle of the matrix cracking seen in the region below the impact site. The inner

region below the impact site contains the majority of the damage visible in the diagnostic

images. The middle and outer regions contain progressively less damage, but they still

have some combination of delamination and matrix cracking. The in-plane dimensions of

each of these regions are shown in Fig. 5.20, and the overall shape of each region is further

explained using Fig. 5.21. The inner region can be understood as a square-shaped inverted

pyramid. The choice of a square region for the inner region was largely defined by the

dominant matrix cracks running along the fiber directions on the outer boundaries of the

region. The middle and outer regions can be viewed as inverted cones. The squares and

circles shown in the figure show the extents of each region for the top and bottom surfaces

of the plate, and the through-thickness view is included to scale as a reference.

The next few sections describe various strategies for modeling the impact damage.

Damage was modeled in the 0-degree direction in each case, unless otherwise specified. In

each section, the primary method of comparing the models among themselves and compar-

ing the models to experimental results is to examine the maximum amplitude of the sensor
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Figure 5.21: Comparison of top and side views of impact damage model for a cross-ply
graphite-epoxy laminate subjected to 5-J impact.

difference signals, which have been normalized with respect to the maximum amplitude

of the pristine signal at the sensor 1 location. In each figure, these values are plotted az-

imuthally based on the sensor location. For each sensor location, two experimental values

from the two different 0-degree impact experiments are plotted.

Additionally, the maximum values of the out-of-plane difference signals from the simu-

lations are plotted as a reference on each figure. The out-of-plane data correspond to points

located 50 mm from the center of the damage region, and they were normalized with respect

to the maximum amplitude of the pristine signal for the point in the 180-degree direction.

In general, there is no guarantee that the out-of-plane difference signal amplitude, which

is a velocity-based measurement, corresponds to the sensor difference signal amplitude,

which is a strain-based measurement. However, the following figures will show a fairly
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good correlation between the two amplitudes for the simulations. Because the out-of-plane

difference signals were more easily calculated over the full azimuthal region surrounding

the damage site, the out-of-plane data give a good idea of the overall shape of the scatter

pattern in regions where sensors were not modeled.

5.3.1 Reduction of Stiffness Properties

The first set of simulations reduced each of the six elastic constants (E11, E22, E33, G12,

G13, G23) in a specified region of the damage model. Results when the inner region elas-

tic properties were reduced to a certain percentage of their original values are shown in

Fig. 5.22. The sub-figures show the effect of reducing these properties to 30%, 20%, and

10% of the original values. As the stiffnesses were reduced, the amplitude of the differ-

ence signal from sensor 5 (0-degree direction) increased considerably, and it approached

the values seen in the experiments. However, almost no reflection in the direction of the

actuator was observed in any of the models, and sensor 1 (180-degree direction) amplitude

remained far below the experimental values. Additionally, the amplitude of sensors 2 and

3 were considerably smaller than the experimental values.

A second and related set of models reduced the stiffness properties in both the inner

and middle regions surrounding the damage site. The amount of reduction was the same

for the two regions. The effects of these damage models on the guided wave propagation

are shown in Fig. 5.23. Expanding the area in which the stiffness was reduced resulted in

considerably higher difference signals for sensor 5. In fact, reducing the properties to less

than 50% of the original values resulted in difference signals that exceeded those seen in

both experiments. Although a 50% reduction in stiffness produced good results at sensors 4

and 5, the simulation did not produce high enough difference signals reflecting back toward

the actuator.

At this point in the analysis, it would have been possible to reduce the outer region

elastic properties along with the inner and middle region properties. However, it was likely
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Figure 5.22: Effect of reducing inner region stiffness properties to given percentage of
original values.

this would further increase the sensor 5 difference signals while still having little effect on

the sensor 1 signals. Perturbations of the outer region properties are addressed later in this

section, but the next step in this analysis focused on adjusting a different set of parameters.
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(b) 40%
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Figure 5.23: Effect of reducing inner and middle region stiffness properties to given per-
centage of original values.

5.3.2 Reduction of Stiffness and Density

Because stiffness reductions alone did not capture the correct scatter pattern for the dif-

ference signal energy, the next sets of models considered the effect of reducing both the

stiffness properties and the density of the damaged regions. This should not be taken as

a statement that impact damage creates a density change in the actual plate. Rather, this

technique is based on the knowledge that a density change, such as that found at the in-
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terface between the material cells and air cells at the edge of a hole, can create a strong

reflection. Considering the CT scan images previously presented, it is very likely that each

of the matrix cracks presents an interface that reflects energy back toward the direction of

an incident wave. In aggregate, the matrix cracks present in the damaged area create a

reflection similar to that of a hole. The attempt in this section was thus to create a model

that simulated the same effects as the impact damage site, even if a density change was not

strictly justifiable on physical grounds.

First, the inner region stiffnesses were reduced to 10% of the original values and the

density of the inner region was reduced to a percentage of its original value. Figure 5.24

shows the simulation data for these cases. As the density was reduced in the inner region,

the amplitude of the difference signal on the back side of the damage gradually reduced,

but the signal on the front side of the damage increased. Additionally, more difference

signal energy was seen in the transverse (90-270 degree) fiber direction with larger density

reductions. While none of the models captured the correct difference signal magnitudes, a

better combination of front and back side energy scattering was produced.

The next set of models started with both the stiffness and density properties reduced to

10% of their original values in the inner region of the model, and the stiffness properties

of the middle region were then reduced. The results shown in Fig. 5.25 show that the

difference signal reflected back to sensor 1 increased from around 5% of the pristine signal

value to nearly 10% as the stiffness values in the middle region were reduced from 100%

to 50% of their original values. In contrast, the difference signal on the back side of the

damage site at sensor 5 increased from around 5% to just over 20% of the pristine value.

The amplitude of the difference signal in the transverse fiber direction, captured by sensor

3, did not change significantly for this set of models. In the final model of the set of

simulations, shown in sub-figure (f), the sensor 4 and 5 values correspond well with the

actual values. The amplitudes of the other sensor signals were still not large enough, but

they were an improvement over the previous cases.
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Figure 5.24: Effect of reducing inner region density to given percentage of original value.
Inner region stiffness values are set to 10% of original values.
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(b) 90%
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(c) 80%
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(d) 70%
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Figure 5.25: Effect of reducing middle region stiffness to given percentage of original
value. Inner region stiffness and density values are set to 10% of original values.
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The effect of an outer region stiffness reduction was examined next. From the diag-

nostic images, it was apparent that any damage in this region was considerably lower in

severity than in the interior regions, so only small stiffness reductions were considered.

Both the inner stiffness and density were reduced to 10%, and the middle stiffness values

were reduced to 50%. Figure 5.26 shows results for the cases where the outer stiffness

values were set to 100%, 90%, and 80% of the original values. For the sensor 5 location,

even small reductions in outer region stiffness had large effects on the difference signal

amplitudes. The effect on the other sensors was minimal.

The final parameter to be examined was the value of the density in the middle region.

The starting point for these simulations was the final simulation from the previous set,

where the outer region stiffness values were reduced to 80% of the original values. In

Fig. 5.27, a few noticeable trends are present. As the middle density is reduced, the differ-

ence signal energy seems to shift where the sensor 5 amplitude decreases and the sensor 3

amplitude increases. The amplitude found at sensor 1 also increased, but not to the same

degree as sensor 3.

In order to better understand the influence of each of the parameters considered in these

simulations, a sensitivity study was conducted next where each parameter was individually

changed. The baseline case was set to a model where the inner, middle, and outer stiffness

properties were reduced to 20%, 50%, and 80% of the original values, respectively. The

inner, middle, and outer density values were set to 90%, 60%, and 20% of the original

value, respectively. Separate models were then run where each parameter was perturbed

by 10% on either side of the baseline value. In addition to the density and stiffness values,

the dimensions of the damage regions were also varied. The four dimensional parameters

that were changed were the radius of the inner region of the top surface, the radius of the

inner region at the bottom surface, the radius of the middle region at all through-thickness

locations, and the radius of the outer region at all through-thickness locations. The baseline

values for the radius of the inner region at the top and bottom surfaces of the plate were
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(b) 90%
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(c) 80%

Figure 5.26: Effect of reducing outer region stiffness to given percentage of original value.
Inner region stiffness and density values are set to 10% of original values. Middle region
stiffness values are set to 50% of original values.

0.3t and 1.0t, respectively. The baseline value for the radius of the middle region was set to

be 1.3t greater than the radius of the inner region at each through-thickness location. The

baseline value of the radius of the outer region was set to be 2.5t greater than the radius of

the inner region at each through-thickness location.
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(a) 100%
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(b) 90%

  10

  20

  30

30

210

60

240

90

270

120

300

150

330

180 0

 

 

%
− LISA Out−of−plane

LISA Sensor
Plate 1 Exp
Plate 2 Exp

(c) 80%
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(d) 70%
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(e) 60%
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(f) 50%

Figure 5.27: Effect of reducing middle region density to given percentage of original value.
Inner region stiffness and density values are set to 10% of original values. Middle region
stiffness values are set to 50% of original values. Outer region stiffness values are set to
80% of original values. 153
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Figure 5.28 shows the results of the study in graphical form. Moving from left to right

along the x-axis of each block represents a 20% increase in the value of the applicable

parameter. The y-axis shows the effect of that increase on the value of the maximum

difference signal amplitude for a given sensor. For example, the block on the top left

corner of the figure shows that an increase in the value of the stiffness in the inner region

decreases the value of the sensor 1 difference signal, while a stiffness reduction increases

the difference signal amplitude.

It should be noted that when a particular parameter was varied more than 10% on each

side of the baseline value, the value of the difference signal amplitudes did not change lin-

early. The trends in this sensitivity study thus should only be applied to small perturbations

away from the baseline case.

Using the information gained in the sensitivity study and in the previous models, nu-

merous simulations were run to capture the effects of possible combinations of parameter

changes. Figure 5.29 shows the results from the simulations that best matched the experi-

mental results. To quantify the effectiveness of the simulations, a metric was calculated for

each that took the average value of the difference between the simulated sensor amplitude

and the average amplitude of the experimental sensor reading. The numerical results are

included in Table 5.3.

Table 5.3: Selected impact damage simulation models in LISA (stiffness and density re-
ductions). Error is measured as the average value of the difference between the simulated
and experimental difference signal amplitude for the five sensors, measured as a percentage
of the pristine signal at sensor 1. Baseline dimensions were used in all models.

Stiffness % Density %

Model Outer Middle Inner Outer Middle Inner Error %

1 100 30 10 100 50 10 5.3
2 90 40 10 100 60 10 5.9
3 100 40 10 100 70 10 6.3
4 80 50 10 100 60 10 6.3
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(a) Model 1
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(b) Model 2
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(c) Model 3
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Figure 5.29: Best matching impact damage models using stiffness and density reductions.

5.3.3 Simulated Delamination with Stiffness and Density Reductions

The final group of simulations added an additional feature to the impact damage model. In

the diagnostic imagery, a large delamination was visible between the bottom two lamina

that spanned most, if not all, of the inner and middle regions of the damaged area. This

delamination was simulated here as a void region in the thickness range of the second

lamina from the bottom. The void spanned both the inner and middle damage regions, and
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Figure 5.30: Side view of impact damage model with simulated delamination. The large
delamination between the bottom two layers is circled in the top image. The location of the
void region in the model is indicated by the black rectangle.

simulated air properties were used which were identical to those used at the plate boundary.

A schematic of the impact region with the simulated delamination is shown in Fig. 5.30.

This void region was added to the models previously summarized in Table 5.3. The

results for these models are shown in Fig 5.31, and a numerical summary of the results is

presented in Table 5.4. The addition of the simulated delamination improved the quality of

the previous simulations in each of the cases, as indicated by a reduction of the error metric

Table 5.4: Selected impact damage simulation models in LISA (stiffness and density re-
ductions with simulated delamination). Error is measured as the average value of the dif-
ference between the simulated and experimental difference signal amplitude for the five
sensors, measured as a percentage of the pristine signal at sensor 1. Baseline dimensions
were used in all models.

Stiffness % Density %

Model Outer Middle Inner Outer Middle Inner Error %

1 100 30 10 100 50 10 4.3
2 90 40 10 100 60 10 5.1
3 100 40 10 100 70 10 5.3
4 80 50 10 100 60 10 5.5
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(a) Model 1

  10

  20

  30

30

210

60

240

90

270

120

300

150

330

180 0

 

 

%
− LISA Out−of−plane

LISA Sensor
Plate 1 Exp
Plate 2 Exp

(b) Model 2
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(c) Model 3
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Figure 5.31: Best matching impact damage models using simulated delamination along
with stiffness and density reductions.

previously introduced for the models. For selected Model 1, for example, the average

sensor error reduced from 5.3% to 4.3% of the pristine signal at sensor 1.
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5.3.4 Analysis of Simulation Results for Impact Damage Located at

0-degrees

The combination of simulated delamination and property reduction summarized as Model

1 in Table 5.4 was selected as the most successful model. A numerical comparison of

the sensor results for this model is included in Table 5.5. For each sensor, the maximum

amplitude of the difference signal from the simulation is shown with the average value of

the sensor signal from the two 0-degree experiments. The bottom row shows the difference

between the two results for each sensor. Sensors 3 and 5 matched the best, with errors

less than 1% of the value of the pristine sensor 1 signal. The model was least successful

matching the amplitude of sensor 2, with an error of 8.1%.

To better understand the performance of the model and the sources of some of the errors,

further comparison of the simulated and experimental time histories was conducted next.

Figure 5.32 shows a comparison of the signals from sensor 1. In general, there was good

agreement between the pristine signals from the simulation and the two experiments. The

simulation and both experimental signals showed the passage of the initial S 0 mode starting

at 0.01 ms followed by the larger A0 mode starting at 0.05 ms. The sub-figures on the right

side compare the damage difference signals between the simulation and the experiments.

These signals show that even though the best impact model was able to come close to

predicting the correct maximum amplitude, it still did not capture all of the features of the

Table 5.5: Comparison of selected LISA impact model with average experimental results
for damage at 0-degree location. The maximum difference signal amplitude is shown as a
percentage of the pristine signal at sensor 1.

Sensor

S1 S2 S3 S4 S5

LISA % 17.1 8.2 11.6 3.9 19.2
Experiment % 22.8 16.3 11.0 10.5 18.4
Difference 5.7 8.1 0.6 6.6 0.8
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(f) Plate 2 experiment difference signal

Figure 5.32: Comparison of selected LISA simulation with results from 5-J impact experi-
ments for sensor 1.
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difference signal properly. The simulated difference signal contained four major features.

First, the reflection of the unconverted S 0 mode from the damage site appeared at the sensor

at around 0.025 ms. The next feature in the time history was a reflection representing an

S 0-A0 mode conversion starting at around 0.05 ms. Third, the A0-S 0 mode conversion

appeared at the sensor near the 0.09 ms point. Finally, the unconverted A0 reflection reached

the sensor starting at around 0.12 ms. An examination of the experimental difference signal

from plate 1 showed that each of these features was present in that signal as well, but

the magnitudes were considerably different between them. In the simulation, the largest

amplitude was found in the unconverted A0 reflection. In the plate 1 experiment, the largest

amplitude came from the A0-S 0 mode conversion. In the plate 2 experiment, the four

major components of the time signal were also present. However, the largest amplitude

was generated by the S 0-A0 mode conversion. The A0-S 0 mode conversion also produced

a large amplitude.

Another interesting comparison can be made with the sensor 2 time history results,

shown in Fig. 5.33. The difference signals on the right hand side show a consistent large

amplitude section arriving at the sensor just before 0.15 ms. However, the experimental

amplitude from each experiment was significantly larger than that seen in the simulation.

This discrepancy can be partly explained by considering the pristine signals on the left side

of the figure. The simulation underpredicted the magnitude of the pristine signal reaching

sensor 2 in the experiments, and it is reasonable that the lower pristine signal resulted in a

lower amplitude reflection.

Of the five sensors, the impact damage model was most successful in capturing the

behavior of the sensor 5 signals, shown in Fig. 5.34. In both the simulation and the experi-

ments, the major feature of the difference signal was the slight delay of the unconverted A0

mode in reaching sensor 5 after passing through the damaged region.

Overall, the most notable deficiency of the impact damage model was its inability to

properly capture the amplitude of the unconverted and mode converted portions of the dif-
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(f) Plate 2 experiment difference signal

Figure 5.33: Comparison of selected LISA simulation with results from 5-J impact experi-
ments for sensor 2.
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(f) Plate 2 experiment difference signal

Figure 5.34: Comparison of selected LISA simulation with results from 5-J impact experi-
ments for sensor 5.
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ference signal that were reflected back toward the sensor 1 position. The combination of

simulated delamination and property reduction used in the model evidently did not com-

pletely capture the interaction between the incident wave and the distributed damage be-

neath the impact site. It is possible that each small matrix crack produces mode-converted

reflections that were not produced to the same level with the homogenized damage model

used here. It is also possible that the higher amplitudes of the mode conversions were due to

nonlinear effects of the delaminations that were not considered in the LISA model. Despite

this drawback, the results showed that a model of this type captured much of the guided

wave behavior. This model should be a useful starting point for future studies needing to

model composite impact damage.

5.3.5 Comparison of Experimental and Simulation Results for Dam-

age Located at 45 and 90 Degrees

The final comparisons between the simulation and experiments consider the two other dam-

age sites. Using the same Model 1 parameters for the damage as done in the previous sec-

tion, Fig. 5.35 shows the sensor results for the 45 and 90-degree damage locations. In

the 90-degree case shown on the right, there is good agreement for sensors 3 and 5, but

significant discrepancies in the amplitude of sensors 1, 2, and 4. The experiment showed a

reflection back toward sensor 1 that was almost twice as large as that predicted by the LISA

model, even with the addition of the simulated delamination.

In the 45-degree case, there was generally poor agreement between the simulation and

the experiment. With the exception of sensor 4, the maximum recorded difference signals

did not match well. The amplitude of the experimental difference signals was much higher

than that of the simulation, in general. It is possible that some manufacturing variation in

this region of the plate resulted in more severe damage during the 5-J impact. It should

also be noted that secondary impacts after the initial impact were not prevented in any of

the experiments in this study. It is possible a secondary impact created a larger damage
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area than that seen in the other experiments, which artificially increased the size of the

difference signal. A final possibility that should be considered is that the Cartesian grid

may affect the results. When the damage is located at the 45-degree site, the waves arriving

at the center of the damage in the simulation travel along the diagonals of the cells. It is

possible this changes the way the pristine waves interact with the interfaces of the damage

in the LISA model. These should be topics of future study.

5.4 Summary

This chapter presented a thorough analysis of guided wave interaction with low-velocity

impact damage in a cross-ply laminate. First, X-ray CT scans were used to characterize the

sub-surface damage present after a cross-ply graphite-epoxy laminate was subjected to a 5-J

impact. These revealed a noticeable V-shaped impact damage region containing numerous

small matrix cracks and delaminations. Next, guided-wave experiments for damage located

at 0, 45 and 90 degrees relative to the top fiber direction were presented. Sensor results

indicated large difference signal amplitudes in the 0 and 180-degree directions relative to
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Figure 5.35: Impact damage models for damage at 45 and 90 degrees.
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the direction of the incident wave. Laser vibrometry experiments were also conducted, but

the results showed large amounts of variation that need to be addressed before the technique

can be used reliably.

The final section of the chapter explained the formulation of a LISA impact damage

model. Information from the X-ray images was used to define the size of the damage

model. The effects of altering the elastic properties of the damaged region and the density

of the region were studies. It was found that solely reducing elastic properties did not

produce sufficient reflection back toward the actuator. Reducing the density in the damaged

region helped to produce damage difference signals with amplitudes closer to experimental

results for the 0-degree case. The addition of a void region simulating a large delamination

further improved the performance of the model. Comparison of sensor signals from a

selected LISA model with experimental results showed the model was able to simulate the

signals on the back side of the damage very accurately, with an error in the difference signal

amplitude of less than 5% of the average experimental value. The most notable deficiency

of the model was the predicted amplitude of the mode conversions reflected back toward

the actuator, which was smaller than those seen in the experiments.
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CHAPTER 6

Damage Location and Characterization Using

Matching Pursuit and a LISA Library

This chapter introduces a guided wave signal analysis tool based on chirplet matching

pursuit and LISA. First, the fundamentals of matching pursuit are described, and the general

process for decomposing guided wave time signals is reviewed. Next, a new algorithm is

presented that uses a library of LISA simulations to locate and characterize damage in a

host plate structure. This algorithm is then demonstrated for a 1-D scenario involving hole

damage in both aluminum plates and composite laminates. Experimental sensor results in

both material systems are used to reinforce the capability of the method. The remainder of

the chapter applies the algorithm to locate hole damage in a 2-D scenario, focusing on the

cross-ply laminate. Graphical results are presented showing the ability of the new algorithm

to predict the location of hole damage using signals from a combination of actuators and

sensors.

6.1 Theoretical Background

6.1.1 Matching Pursuit Decomposition

Matching pursuit is a process to decompose signals into a linear combination of waveforms

from a pre-defined dictionary. It was originally proposed by Mallat and Zhang [130], and
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it has shown promise in the analysis of guided wave signals. The process of decomposing

a signal using matching pursuit is iterative, and a typical iteration m involves first pro-

jecting each time-frequency atom k in the dictionary containing i atoms onto the current

residual signal Rm−1. For the first iteration, the residual signal is the original guided wave

signal. The best matching atom kim is chosen as the one which maximizes the value of the

projection,

kim = argmax
ki∈D

∣∣∣∣〈Rm−1,ki
〉∣∣∣∣ (6.1)

where the inner product is defined as:

〈 f1, f2〉 =
∫ ∞

−∞

f1(t) f2(t)dt (6.2)

Once the best atom has been identified, the next residual is calculated,

Rm = Rm−1−
〈
Rm−1,kim

〉
kim (6.3)

and the next iteration is begun. With enough iterations, a signal can be completely recon-

structed. In practice, it is often the case that only a small number of iterations are needed

to capture the important features of a guided wave signal. Noisy signals are easily cleaned

by simply stopping the process before enough iterations occur to capture the noise.

6.1.2 Choice of Waveform Dictionary

In their original paper, Mallat and Zhang proposed using a dictionary of Gaussian-

modulated time-frequency atoms defined as:

k(l,u,ω)(t) =
1
√

l
g
( t−u

l

)
eiω(t−u) (6.4)
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where u is the time center of the atom and ω is the frequency center. The parameter l

represents the dilation of the Gaussian window g, which is defined as:

g(t) = 21/4e−πt2 (6.5)

Figure 6.1 shows the behavior of a typical atom of this type. The time history is shown

on the left, and a spectrogram of the signal is shown on the right. From the spectrogram,

the stationary time-frequency behavior of the atom is apparent, as the frequency at which

the peak energy occurs for each time is equal to the center frequency of the atom. Un-

fortunately, this stationary time-frequency behavior can be problematic for guided wave

analysis, since Lamb waves are dispersive in nature.

Gribonval [135] introduced an alternative waveform dictionary based on Gaussian-

modulated chirplets. In this dictionary, an additional parameter c is introduced for the

chirp rate of the atom, and the dictionary is defined as:

k(l,u,ω,c)(t) =
1
√

l
g
( t−u

l

)
ei(ω(t−u)+ c

2 (t−u)2) (6.6)
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Figure 6.1: Stationary Gaussian-modulated atom.
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Figure 6.2: Gaussian chirplet atom.

Figure 6.2 shows the behavior of a chirplet atom. The spectrogram on the right side of this

figure shows the non-stationary time-frequency behavior. This chirplet dictionary is better

suited for guided wave analysis, since the atoms can account for the frequency dispersion

commonly found in guided wave signals. Atoms with higher chirp rates display larger

amounts of dispersion, and these atoms produce better matches to guided wave signals

containing highly dispersive modes.

6.2 Matching Pursuit Algorithm Development

The literature review in Chapter 1 highlighted several recent implementations of matching

pursuit methods. The following algorithm is based on the foundation set by Raghavan

and Cesnik [136], who introduced the idea of using chirplet matching pursuit along with a

library of candidate damage sites to locate damage in simulated or experimental signals. In

that work, the scenario assumed a collocated actuator-sensor pair attached to an isotropic

structure. Damage was assumed to act as a point scatterer, and an analytical approach was

used to develop a library of possible damage signals at known locations, time centers, and

frequency centers. The procedure introduced in this chapter improves on the previous work
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Figure 6.3: Matching pursuit algorithm flow chart.

by removing the restriction that the actuator and sensor be collocated, and it also allows for

analysis of composite laminates with no additional complexity.

A block diagram of the new algorithm is shown in Fig. 6.3. The first major step in the

process is to populate a library of possible damage signals using a series of LISA simu-

lations. This step is a major departure from previous methods, and it eliminates the need

to assume that damage sites act as point scatterers. Any damage modes that can be accu-

rately modeled in LISA can be included in the damage library. Each simulation is based on

specified parameters including damage location and size. Desired sensor locations can be

simulated in the same manner as described in Chapter 4. For each simulation, the damage

difference signals for each sensor are decomposed using chirplet matching pursuit. The

matching pursuit procedure was implemented using the LastWave 3.1 signal processing

software, which is available as freeware [143]. An example result for the matching pur-

suit decomposition is shown in Fig. 6.4, where the original sensor signal is shown along

with the first atom returned by the decomposition. For this algorithm, the time and fre-

quency centers of the matched atoms, defined as t0 and ω0 respectively, are the primary

data extracted during the decomposition process.
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Figure 6.4: First matched atom for an example damage difference signal.

Once the damage library is complete, a damage difference signal from an experiment

or simulation is collected, and it is analyzed using matching pursuit decomposition. The

time and frequency centers of the matched atom are recorded. These are passed, along with

the time and frequency centers from each simulation in the damage library, to the next step

in the process.

The next step is to determine how well each simulated damage case represents the dam-

age captured in the actual difference signal using the parameters obtained in the matching

pursuit decomposition. For each simulation, the match error is quantified using:

Match Error =

∣∣∣∣tS im
0 − tExp

0

∣∣∣∣
tExp
0

W +

∣∣∣∣ωS im
0 −ω

Exp
0

∣∣∣∣
ω

Exp
0

(1−W) (6.7)

The tExp
0 and ω

Exp
0 terms represent the time and frequency centers of the matched atom

from the actual difference signal, such as one obtained in an experiment. The tS im
0 and ωS im

0

terms are the time and frequency centers of the matched atom from the library simulation

currently under consideration. The parameter W is a weighting factor used to determine

how much to consider the difference in frequency centers relative to the difference in time

centers. It was determined that using W = 0.25 produced good results for the cases consid-
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ered in this study. Once the match error for each damage library simulation is calculated,

it is converted to a match quality, MQ, metric, i. e.,

MQ( j) = 1−
Match Error( j)

Max(Match Error)
(6.8)

where a match quality value of 1 for simulation j indicates a perfect match between the

actual difference signal and the difference signal from simulation j. The final step in the

algorithm is to compare the match quality of each possible damage simulation to determine

which one matches best. The parameters of the best matching simulation can then be

reported as the best characterization of the actual damage.

In this study, only the first matched atom from each matching pursuit decomposition

was used in the algorithm. This atom corresponded to the unconverted A0 portion of the

difference signal from each simulated sensor. This algorithm, however, can be extended to

take into account the remaining matched atoms, which would capture the unconverted S 0

mode as well as any mode conversions that are present. Including these additional matched

atoms in the match quality calculations should further improve the ability of the algorithm

to identify the simulation best matching the experimental damage.

6.3 Matching Pursuit Algorithm: 1-D Scenario

The first analyses using the matching pursuit algorithm focused on locating and charac-

terizing hole damage where the actuator, sensors, and damage were always aligned. A

schematic showing the configuration of the actuator and sensors as well as the possible

damage locations is shown in Fig. 6.5. The location of the damage in the library simu-

lations was allowed to vary along a line connecting the actuator, sensor 1, and sensor 2.

The hole location varied from 80 mm from the actuator center to 170 mm from the actua-

tor center in 5 mm increments. Additionally, the hole radius was allowed to vary at each

location. Holes in both aluminum and cross-ply plates were considered. For the isotropic
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Figure 6.5: Possible damage locations in matching pursuit damage library (1-D analysis).

case, a 700-mm square aluminum host plate with 3.18-mm thickness was modeled. For the

cross-ply case, a [0/90]3S laminate constructed with the CYCOM IM7/977-3 material sys-

tem was used as the host structure. The laminate was a 500-mm square with a thickness of

1.5 mm. Both cases modeled the guided waves generated by a 12.8-mm diameter piezoce-

ramic disc subject to a 3.5-cycle Hann-modulated toneburst with 75-kHz center frequency.

The actuator was assumed to be surface mounted at the geometric center of the plate. The

sensors were modeled as piezoceramic discs with a diameter of 7.5 mm.

6.3.1 Identification of Hole Location

In the first stage of the 1-D analysis, the library of possible damage simulations was re-

stricted to those where the through-thickness hole damage had radius r = 1t. The signals

representing the actual damage location were taken from one of the simulations, and the

algorithm was run to determine if it could identify the correct damage simulation. In these

three trial cases, the actual damage locations were at x = 100 mm, x = 125 mm, and x = 150

mm. Damage difference signals from the two sensors shown in Fig. 6.5 were used to iden-

tify the location of the actual damage. Graphical representations of the matching results for

the three simulated damage locations in the aluminum plate are shown in Fig. 6.6. In each

of the figures, the match quality of each damage library simulation is plotted with respect

to the simulated damage location. The left column shows the results of the algorithm when
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(f) Damage at x = 150 mm - Sensor 2

Figure 6.6: Matching pursuit algorithm location results for hole damage in an isotropic
plate at various damage sites (1-D analysis).
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data from sensor 1 were used to locate the hole. The right column shows the results when

the sensor 2 data were used.

For these three locations, the algorithm correctly identified the simulation correspond-

ing to the actual damage location when information from sensor 1 was used. The algorithm

was less successful in clearly identifying the correct damage location using the information

from sensor 2. Because the algorithm relies heavily on the value of the time center of the

actual and library atoms, the sensor arranged in a pulse-echo configuration relative to the

actuator and damage locations performed better than the sensor located in a pitch-catch

configuration. In the sensor 2 case, the damage difference signals reached the sensor at

nearly the same time regardless of the damage location, so there was not much differenti-

ation between the different library simulations. For sensor 1, the difference signals were

primarily reflections from the damage site, and these arrived at the sensor at different times

for each damage location.

Similar trials were conducted to determine if the algorithm could locate hole damage

in the cross-ply laminate. The actual damage locations were again set to x = 100 mm, x

= 125 mm, and x = 150 mm, and graphical results were produced to show how well each

simulation matched the actual damage case. The results are shown in Fig. 6.7. As in the

isotropic case, the matching pursuit algorithm was able to correctly identify the location

of the hole damage in each of the three trial locations using the sensor 1 data. The results

using the sensor 2 data did not provide a useful location prediction, as was previously seen.

6.3.2 Variation of Hole Size

The next phase of the 1-D analysis restricted the location of the actual damage to x = 125

mm, but the radius of the through-thickness hole was allowed to vary. For the aluminum

case, the hole radius varied from r = 0.5t to r = 2t in 0.25t increments for the damage

library simulations. The damage difference signal used as the actual result was set to the
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(a) Damage at x = 100 mm - Sensor 1
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(b) Damage at x = 100 mm - Sensor 2
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(c) Damage at x = 125 mm - Sensor 1
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(d) Damage at x = 125 mm - Sensor 2
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(e) Damage at x = 150 mm - Sensor 1
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(f) Damage at x = 150 mm - Sensor 2

Figure 6.7: Matching pursuit algorithm location results for hole damage in a cross-ply
laminate at various damage sites (1-D analysis).
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case where the damage radius was r = 0.5t, r = 1t, and r = 1.5t in three different tests of

the algorithm. The best results were again obtained using the information from sensor 1,

and the results for this sensor are shown in the left column of Fig. 6.8. In each of the three

tests, the algorithm correctly predicted the simulation that matched the actual damage size.

Results when data from sensor 2 were used are shown in the right column of Fig. 6.8. With

sensor 2 information, the algorithm correctly identified the size of the r = 0.5t and r = 1t

holes. The results were more ambiguous for the r = 1.5t case, where the simulations for

r = 1.25t and r = 1.75t were also identified as good matches.

A similar series of steps were taken to determine if the algorithm could identify the

damage size for holes in the cross-ply laminate. For the damage library simulations, the

hole radius varied from r = 0.5t to r = 3t in 0.5t increments. Three trial cases were run with

damage sizes r = 1t, r = 2t, and r = 3t. The match quality results using sensors 1 and 2 are

shown in Fig. 6.9. For the case where r = 1t, data from both sensors produced a correct

match for the hole size. This was also true for the case where r = 3t. In the case where the

hole had radius r = 2t, the sensor 2 data produced a correct match, but the sensor 1 data

predicted both the r = 1.5t and the r = 2t simulations as perfect matches.

Two observations are notable for the hole variation trials. First, unlike the hole location

trials, the sensor 2 data produced correct matches in most cases. The second observation

is that the algorithm sometimes produced ambiguous results for the size identification,

where hole sizes close to the actual size were also reported as good matches. This result

stems from the fact that for a given hole location, the damage difference signals were best

represented with atoms with the same time center but slightly different frequency centers.

In cases where ambiguous size identification results were produced, the frequency centers

of the best matched atoms for two adjacent hole sizes where nearly identical, resulting in

similar match quality results.
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(a) Damage size r = 0.5t - Sensor 1
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(b) Damage size r = 0.5t - Sensor 2
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(c) Damage size r = 1t - Sensor 1
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(d) Damage size r = 1t - Sensor 2
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(e) Damage size r = 1.5t - Sensor 1
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(f) Damage size r = 1.5t - Sensor 2

Figure 6.8: Matching pursuit algorithm size identification results for hole damage in an
isotropic plate with varying radius (1-D analysis).
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(a) Damage size r = 1t - Sensor 1
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(b) Damage size r = 1t - Sensor 2
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(c) Damage size r = 2t - Sensor 1
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(d) Damage size r = 2t - Sensor 2
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(e) Damage size r = 3t - Sensor 1
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(f) Damage size r = 3t - Sensor 2

Figure 6.9: Matching pursuit algorithm size identification results for hole damage in a
cross-ply laminate with varying radius (1-D analysis).
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6.3.3 Variation of Hole Size and Location

The third phase of the 1-D analysis considered a damage library where three possible hole

sizes existed for each possible damage location in the aluminum plate. The hole radii

r = 0.5t, r = 1t, and r = 2t were included in the library. Various combinations of hole size

and location were then assigned as the actual damage case, and the algorithm produced

graphical matching results for each case. Only the sensor 1 data were used in this phase

of the analysis. Figure 6.10 shows these results for nine simulated damage signals. In the

figures, higher predicted match qualities are represented by darker regions in the figure,

with a value of 1.0 indicating a perfect match. The actual parameters of the damage are

annotated for each case. To better understand the performance of the algorithm, numeri-

cal results were also produced to quantify how well the hole location and hole size were

identified. The predicted value for the location of the hole in each case was calculated

using a weighted average of the locations corresponding to the two best matching library

simulations:

xpredicted =

2∑
j=1

(xsim( j)) (MQ( j))

2∑
j=1

MQ( j)
(6.9)

A similar calculation was performed to calculate the predicted radius of the hole. The

results for the 9 simulations in Fig. 6.10 are shown in Table 6.1. In each case, the damage

location was identified within 5 mm of the actual location. The correct hole size was

identified in all but one trial.

6.3.4 Robustness to Noise

The previous three subsections used simulated damage difference signals to represent the

true damage, which did not contain noise expected in real-world scenarios. To demonstrate

the algorithm’s ability to deal with noisy signals, Gaussian white noise with a signal-to-

noise ratio of 175 dB was added to the damage difference signal from sensor 1 for the case
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(a) x = 100 mm, r = 0.5t
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(b) x = 100 mm, r = 1t
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(c) x = 100 mm, r = 2t
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(d) x = 125 mm, r = 0.5t
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(e) x = 125 mm, r = 1t
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(f) x = 125 mm, r = 2t
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(g) x = 150 mm, r = 0.5t
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(h) x = 150 mm, r = 1t
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(i) x = 150 mm, r = 2t

Figure 6.10: Matching pursuit algorithm damage identification results for hole damage in
an aluminum plate (1-D analysis, sensor 1 only).
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Table 6.1: Damage characterization results for 1-D matching pursuit algorithm with vari-
able hole size and hole location. All values are measured in mm.

Trial xactual xpredicted xerror ractual rpredicted xactual

1 100 105.0 5.0 0.5 0.5 0
2 100 105.0 5.0 1.0 1.5 0.5
3 100 97.5 2.5 2.0 2.0 0
4 125 122.5 2.5 0.5 0.5 0
5 125 122.6 2.4 1.0 1.0 0
6 125 122.5 2.5 2.0 2.0 0
7 150 154.9 4.9 0.5 0.5 0
8 150 147.5 2.5 1.0 1.0 0
9 150 147.6 2.4 2.0 2.0 0

where an r = 1t hole was located at x = 125 mm. In Fig. 6.11, sub-figures (a) and (b)

show the original difference signal and the difference signal with the noise added. When

both of these difference signals were used in the matching pursuit algorithm, the resulting

matched atoms were almost identical, as shown in sub-figures (c) and (d). While the shape

of the atoms was slightly different, their time and frequency centers were almost a perfect

match. The location matching results using the original and noisy signals are included in

sub-figures (e) and (f). Although the match quality was not as strong, the correct damage

location was predicted when the noisy signal was used. Because the matching pursuit

algorithm compares the characteristics of the matched atoms and not the damage difference

signals themselves, even noisy signals can produce useful information, as long as the noise

is uncorrelated. For correlated noise, a significant loss in match quality is likely.

6.3.5 Experimental Validation

The final phase in evaluating the matching pursuit algorithm for the 1-D scenario was to

use experimental results for the actual damage difference signals. For this analysis, the

experimental data came from the hole experiments described in Chapter 4. For both the

aluminum plate and the cross-ply laminate, a through-thickness hole with radius r = 1t was
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(a) Original sensor 1 difference signal
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(b) Difference signal with added noise
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(c) First matched atom for original signal
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(d) First matched atom for noisy signal
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(e) Matching results with original signal
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(f) Matching results with noisy signal

Figure 6.11: Matching pursuit algorithm performance with a noisy sensor signal (isotropic
plate with r = 1t hole at 125 mm from the actuator center).
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located at x = 125 mm relative to the actuator center. The actuator and sensor configurations

were identical to those described in Chapter 4, but for the present analysis only the sensor

1 data were used.

The results for the aluminum plate experiment are shown in Fig. 6.12. When consid-

ering only hole location, the algorithm predicted the hole damage to be best matched with

the simulation with damage at 120 mm. When hole size was the only parameter, the correct

hole size of r = 1t was successfully predicted. Figure 6.12 (c) shows a graphical depiction
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(a) Location identification - damage at x = 125 mm
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(b) Size identification - damage size r = 1t
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(c) Combined identification

Figure 6.12: Matching pursuit algorithm characterization of experimental hole damage in
an aluminum plate. Actual damage size of r = 1t located at x = 125 mm (1-D analysis,
sensor 1 only).
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(a) Location identification - damage at x = 125 mm
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(b) Size identification - damage size r = 1t

Figure 6.13: Matching pursuit algorithm experimental damage characterization for a cross-
ply laminate (1-D analysis, sensor 1 only).

of the results obtained when using the combined library containing three possible sizes for

each location. When Eq. 6.9 was used to determine an overall location prediction based

on the two best matching simulations, the hole was predicted to be located at 122.5 mm,

which is 2.5 mm from the actual location.

Results for the cross-ply laminate are shown in Fig. 6.13. In this case, there was more

substantial error between the algorithm’s location prediction and the actual damage loca-

tion. The algorithm identified the simulations with damage at x = 100 mm and x = 105 mm

as the best matches, which was 20-25 mm from the actual damage location. An analysis

of the sensor signals from the experiment and the simulations showed that the arrival times

of the pristine signals correlated well between the experiment and the x = 125 mm damage

simulation. However, the damage difference signal in the experiment arrived sooner than

what was predicted in the simulation. It is possible that the process of drilling the hole in-

troduced some internal damage in the laminate that extended closer to the sensor, resulting

in an early arrival of the damage difference signal. For the hole size identification analysis,

the algorithm was able to successfully predict the size of the hole from the six possible

sizes in the damage library.
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6.4 Matching Pursuit Algorithm: 2-D Scenario

The next step in evaluating the matching pursuit algorithm involved extending the library

of possible damage locations to a 2-D region. This analysis concentrated on r = 1t through-

thickness hole damage in the cross-ply laminate, and proper location of the hole damage

was the primary focus. A schematic showing the location of the actuator, sensors, and

possible damage locations is included in Fig. 6.14. For this scenario, two possible actua-

tor locations were simulated. Five sensors were modeled around each actuator. For each

possible damage site, simulations were conducted when each actuator was active. Based

on the previous conclusion that sensors in the pitch-catch configuration were not optimally

placed for this matching pursuit algorithm, only the sensors immediately surrounding the

respective actuator were active during the simulations.

6.4.1 2-D Analysis Using a Single Sensor

The first stage in the 2-D analysis of the algorithm was to evaluate its location capabilities

when only data from sensor 1, resulting from A1 actuation, were used. The results for

this scenario are shown in Fig. 6.15. In each of the sub-figures, the darker areas represent

locations for which the algorithm predicted a closer match to the actual damage difference

signal. The active sensor and actuator positions are also shown on the figures. With only the

data from the single sensor, the algorithm produced mixed results. Figure 6.15 (a) shows

one of the best cases, where the damage was located at the coordinates (80, 20) with respect

to actuator A1, measured in millimeters. For this hole location, the algorithm produced a

very accurate location even with only one sensor. A moderately successful result can be

seen in Fig. 6.15 (b), which corresponds to a damage location of (120, 60) mm. Here, the

algorithm correctly predicted the simulation corresponding to the damage location as the

best match, but there were other locations that produced close matches as well. Finally,

results for damage located at (50,90) mm are included in Fig. 6.15 (c). The algorithm
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Figure 6.14: Schematic for 2-D matching pursuit analysis showing actuator positions (A1,
A2), sensor configuration (S1, S2, ..., S10), and possible locations included in damage
library.

indicated that numerous simulations were close matches to the actual damage signal, and

the locations for the damage in these simulations formed a large area. In this case, using

only one sensor did not provide satisfactory results.

A numerical comparison of these three models was obtained by calculating a predicted

location for the damage based on the 4 simulations with the highest reported match quality.

The predicted x position was calculated using:

xpredicted =

4∑
j=1

(xsim( j)) (MQ( j))

4∑
j=1

MQ( j)
(6.10)
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(a) Damage at (80, 20) mm (b) Damage at (120, 60) mm

(c) Damage at (50, 90) mm

Figure 6.15: Matching pursuit algorithm damage location results for a cross-ply laminate
using only sensor S1 (2-D scenario).

A similar equation was used to calculate the predicted y position. The results for the three

trials shown in Fig. 6.15 are included in Table 6.2.

Table 6.2: Matching pursuit algorithm damage location results for a cross-ply laminate
using only sensor S1 (2-D scenario).

Trial Actual Location (mm) Predicted Location (mm) Error (mm)

1 (80, 20) (77.5, 16.4) 4.3
2 (120, 60) (105.3, 60.7) 14.7
3 (50, 90) (79.4, 60.6) 41.5
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(a) Sensor 1 Only (b) Sensors 1 through 5

(c) Sensors 1 and 6 (d) Sensors 1 through 10

Figure 6.16: Improvement in matching pursuit algorithm location results for a cross-ply
laminate when data from multiple sensors are used (2-D scenario with hole at (50, 90)
mm).

6.4.2 Effect of Using Multiple Sensor and Actuator Locations

Because one sensor alone did not reliably locate the damage in all cases, additional sensors

were added to the algorithm to aid in locating the damage. This involved running the

matching pursuit algorithm individually for each sensor, and then averaging the results of

each of the sensors included in the analysis.

The effect of including multiple sensors in the algorithm is illustrated in Fig. 6.16 for

damage located at (50, 90) mm. The previously shown case where only sensor S1 was used

is shown again in sub-figure (a). In sub-figure (b), results are shown for the algorithm when

each of the five sensors (S1-S5) surrounding actuator A1 were used. It is evident in this
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Table 6.3: Improvement in matching pursuit algorithm location results for a cross-ply lam-
inate when data from multiple sensors are used (2-D scenario with hole at (50, 90) mm).

Case Predicted Location (mm) Error (mm)

A1/S1 (79.4, 60.6 41.5
A1/S1-S5 (77.0, 63.0) 38.2

A1/S1; A2/S6 (61.8, 78.2) 16.7
A1/S1-S5; A2/S6-S10 (54.7, 85.3) 6.6

figure that many of the incorrect damage locations have lightened in intensity, indicating

their match quality has diminished. A different approach was to include both actuators with

only one sensor associated with each, as shown in sub figure (c). In this case, actuator A1

was used with sensor S1, and actuator A2 was used with sensor S6. Even better results were

obtained when both actuators and each of their corresponding sensors were used. In sub-

figure (d), the results are for the case where sensors S1 through S5 were used for actuator

A1 excitation and sensors S6 through S10 were used for actuator A2 excitation. When

the results for all 10 sensors were averaged, an accurate location was reported without any

regions of conflicting matches. Table 6.3 shows how the predicted hole location improved

in accuracy as the number of actuators and sensors increased. It is notable that adding a

second actuator/sensor pair had a much more significant effect on location accuracy than

increasing the number of sensors used with a particular actuator from 1 to 5.

Damage location results from the analysis of four additional damage sites are included

in Fig. 6.17. All 10 sensors were used in each of these cases, and in each case the matching

pursuit algorithm was able to locate the hole damage to within 4 mm when considering the

four best-matching simulations. Numerical results are shown in Table 6.4.

6.4.3 Location of Holes Not Included in Damage Library

In each of the scenarios included to this point in the 2-D analysis, the actual damage loca-

tion corresponded to a location captured by one of the damage library simulations. Because
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(a) Damage at site (30, 50) mm (b) Damage at site (80, 20) mm

(c) Damage at site (120, 60) mm (d) Damage at site (140, 80) mm

Figure 6.17: Matching pursuit algorithm location results for a cross-ply laminate at various
damage sites when all 10 sensors are used (2-D scenario).

of this, each set of location results contained one location that was a perfect match. This

section considers a few cases where the actual damage signal comes from a hole loca-

tion not included in any of the library simulations. Ideally, the matching pursuit algorithm

Table 6.4: Matching pursuit algorithm location results for a cross-ply laminate at various
damage sites when all 10 sensors are used (2-D scenario).

Trial Actual Location (mm) Predicted Location (mm) Error (mm)

1 (30, 50) (32.4, 52.3) 3.4
2 (80, 20) (82.3, 17.2) 3.6
3 (120, 60) (119.9, 59.9) 0.2
4 (140, 80) (142.5, 77.5) 3.6
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Figure 6.18: Location of non-collocated simulated test points (TP1-TP5) for 2-D analysis.

should identify the damage library simulations that are closest to these new damage points

as the most likely matches for the damage. Figure 6.18 shows the location of the new dam-

age points. LISA simulations were run to obtain the damage difference signals for each of

the sensors for each of these damage locations. Each of these new difference signals were

then used as the actual difference signals in the algorithm. The graphical location results

for these cases are shown in Fig. 6.19, and a numerical comparison is included in Table 6.5.

For the cases considered, the location error ranged from 0.1 mm to 14.6 mm.
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(a) Damage TP1 at site (70, 0) mm (b) Damage TP2 at site (50, 20) mm

(c) Damage TP3 at site (30, 40) mm (d) Damage TP4 at site (80, 50) mm

(e) Damage TP5 at site (30, 60) mm

Figure 6.19: Matching pursuit algorithm location results for a cross-ply laminate with dam-
age at non-simulated locations (2-D scenario).
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Table 6.5: Matching pursuit algorithm location results for a cross-ply laminate with damage
at non-simulated locations (2-D scenario).

Trial Actual Location (mm) Predicted Location (mm) Error (mm)

TP1 (70, 0) (65.0, 14.6) 14.6
TP2 (50, 20) (57.4, 22.5) 7.6
TP3 (30, 40) (37.5, 32.4) 10.7
TP4 (80, 50) (80.0, 49.9) 0.1
TP5 (30, 60) (35.1, 60.0) 5.1

6.5 Summary

This chapter described a new damage characterization tool for guided wave SHM based

on matching pursuits and LISA. Results from the 1-D scenario showed the algorithm’s

ability to predict the correct location of hole damage and the correct hole size in trial cases

involving isotropic plates and cross-ply laminates. The algorithm was shown to be useful

even in the case of excessive noise, and it was able to closely identify the location of

experimental hole damage in an aluminum plate. It was determined that data from a sensor

in the pulse-echo configuration were better suited to locating damage than data from a

sensor in the pitch-catch configuration. It is expected that if both sensors are used, the

location accuracy results will fall in the middle of the two individual sensor cases, since the

data from the pitch-catch sensor will add uncertainty to the location prediction.

Demonstration of the algorithm in a 2-D scenario for a cross-ply laminate further re-

inforced its damage location capability. A sparse array of possible hole damage locations

were included in the library of damage simulations. Results showed that using information

from multiple sensors improved the location prediction, and including information from

sensors associated with multiple actuators further improved the accuracy of the prediction.

The algorithm was able to closely predict the location of simulated hole damage even when

the exact hole location was not contained in the library of possible damage sites, with lo-

cation errors ranging from 0.1 mm to 14.6 mm for the cases considered.
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CHAPTER 7

Concluding Remarks

This chapter concludes the dissertation by reviewing the important conclusions and con-

tributions. First, the dissertation is summarized and important conclusions are reiterated.

Next, the key contributions of this dissertation are highlighted. Finally, recommendations

for future work are offered.

7.1 Summary

The work contained in this dissertation included theoretical, numerical, and experimental

efforts to advance the state of the art in the field of guided wave structural health mon-

itoring. The first portion of the dissertation used the Global Matrix Method to develop

accurate wave propagation time histories. It was shown that both inward and outward

propagating waves are present in the general solution for wave propagation in laminates

with transversely isotropic lamina. Previous methods to isolate the inward wave and pro-

duce displacement time histories for the isotropic case were successful, but attempts do

do the same for cross-ply laminates left artifacts of the inward wave. An updated solution

method was presented, showing that when properly executed, the Global Matrix Method

produces very accurate displacement solutions.

The next major effort in the dissertation developed the LISA hybrid simulation frame-

work. Examination of previous LISA implementations showed that modeling actuators
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using prescribed displacement methods based on ad-hoc assumptions did not produce so-

lutions that match well with semi-analytical results. This was true even for square actuators

where representing the shape of the actuator in the Cartesian grid was not a challenge. Wave

propagation results from the LISA hybrid model matched well with theoretical results for

isotropic, unidirectional, cross-ply, and quasi-isotropic laminates. A discretization study

showed that a cell size of 1
6 t × 1

6 t × 1
12 t was sufficient, while coarser cell sizes produced

artificially fast group velocities.

The next two chapters employed the LISA hybrid model to characterize damage in

plate-like structures. First, the effect of holes on guided wave propagation was investi-

gated using both simulations and experimental results. Both isotropic plates and cross-ply

laminates were considered. For through-thickness holes in the isotropic case, the highest

damage difference signals were seen on the back side of the hole. The smallest difference

signals were present 45 degrees from that direction. For the composite case, results indi-

cated the difference signal energy followed the predominant fiber directions. Results for

damage located in the 45-degree direction relative to the top fiber direction showed that

sensors in traditional pulse-echo and pitch-catch were not necessarily in the best place to

capture the largest difference signals. The simulations also demonstrated that the LISA

model properly captured mode conversions seen frequently in damage that is not uniform

through the thickness, such as a half-depth hole.

After studying holes, the second focus of the LISA simulation studies was low-velocity

impact damage. Specimens that were damaged with a drop-weight impact device were

inspected using an X-ray CT scan, and diagnostic images of the damage showed a com-

bination of matrix cracking and delamination as the two primary damage modes. The in-

formation from these images was used to develop a model of the impact damage in LISA.

A parameter study of this LISA model showed that changing stiffness and density values

in various regions changed the behavior of the damage difference signals observed in the

model. It was also found that adding a void layer as a rough representation of a large de-
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lamination increased the accuracy of the model. Comparison of the LISA impact damage

model with experimental results showed a good overall agreement in the amplitudes of the

difference signals. An in-depth comparison of the time histories showed one major defi-

ciency of the LISA model was its inability to capture the amplitude of the A0-S 0 and S 0-A0

mode conversions that reflect back toward the actuator.

With LISA’s ability to model guided wave interactions with damage mostly demon-

strated, the model was then used as the backbone of a novel damage characterization

tool based on the matching pursuit method. The new algorithm used the matching pur-

suit method to decompose damage difference signals into a set of usable parameters. A

LISA library of damage signals was formed, and sample difference signals from simula-

tions and experiments were compared to the library to characterize the location and size of

the damage. A match quality metric based 75% on the difference in frequency centers and

25% on the difference in time centers showed good results. Studies with a 1-D scenario

showed the algorithm was successful in locating and sizing damage when using a sensor in

the pulse-echo configuration. Sensors in the pitch-catch configuration did not produce ac-

curate location results. Results of a 2-D study showed significant benefits in using multiple

actuators with several associated sensors. The 2-D algorithm closely identified the location

of simulated damage even when the exact location wasn’t captured in the damage library

7.2 Key Contributions

This dissertation included several key contributions to advance the state of the art, which

are briefly summarized below. This work:

• Formulated a new method to perform the 2-D Fourier inversions needed to calculate

displacement time histories using the Global Matrix Method. The procedure corrects

for the presence of non-physical inward propagating waves in the general solution.
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• Developed the LISA hybrid model to accurately capture actuation behavior of piezo-

electric actuators. The model correctly captures the tractions applied by surface-

mounted actuators, eliminates the need to make ad-hoc assumptions about prescribed

displacements, and eliminates difficulties involved with discretizing non-rectangular

actuators in a Cartesian grid.

• Produced the first experimentally-verified evaluation of LISA hole damage simu-

lations. Quantified the agreement between the damage difference signals recorded

by experimental and simulated sensors. Advantages and disadvantages of particular

sensor locations were highlighted.

• Developed and evaluated a LISA damage model based on experimental investigation

of laboratory-produced impact damage. Demonstrated that in numerical models, re-

duction of elastic properties alone does not accurately represent the effects of impact

damage on guided wave propagation.

• Introduced a new matching pursuit algorithm that uses a library of LISA simulations

to characterize damage. Experimentally verified the algorithm for a 1-D scenario,

and demonstrated the algorithm in a 2-D scenario using simulated damage signals.

7.3 Recommendations for Future Work

Based on the results of this dissertation, there are several key areas that warrant attention

in future research efforts.

• The time needed to run the LISA simulations that were developed and employed in

this study needs to be reduced. The LISA formulation naturally lends itself to par-

allelization, but the versions of the code used for this study only scratch the surface

of that potential. Parallel computing solutions that utilize graphics processing cards

have become increasingly popular, and applying these to make the LISA codes more
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efficient would be a wise path forward. Decreasing the time cost of the individual

simulations would allow for more comprehensive parametric studies.

• Reduced computational time would facilitate another important next step, which is

to model smaller composite damage features such as individual matrix cracks and

delaminations. Currently, the level of discretization needed to keep the simulation

size tractable prevents the formation of a fine mesh around these damage types. A

related research direction would be the formulation of a multi-scale version of LISA

that allows for regions of finer discretization in regions of simulated damage.

• Delamination was simulated in this dissertation as a void region spanning the thick-

ness of one layer. A future direction for LISA development should focus on a more

rigorous model to capture the effects of delamination. Previous finite element efforts

have developed ways to release nodes along a delaminated interface. It may be possi-

ble to use a similar technique in LISA. It may also be possible to model a delaminated

interface as a series of springs between nodes. These options should be considered.

Additionally, it is known that delaminations produce nonlinear effects, and the feasi-

bility of developing a nonlinear LISA formulation should be investigated.

• This dissertation highlighted several difficulties when using laser vibrometer exper-

iments along with a baseline subtraction method to form damage difference signals.

Future studies should develop better ways to ensure a precise alignment between

the scan points for the pristine and post-damage measurements. Different options

to support the plate should be explored. If placement of the plate cannot be done

more reliably, it may be possible to adjust the scan points themselves within the user

interface environment. The ability to use the laser vibrometer to capture out-of-plane

motion is valuable, and reducing the experimental variability in the measurements

would be an important step forward.
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• The impact damage studies in this dissertation considered only cross-ply laminates.

There are no guarantees that the impact damage features identified in the CT imagery

would appear in the same way in other laminates (uni-directional and quasi-isotropic,

for example). The LISA impact damage model developed in this dissertation should

be evaluated with other laminates, and it should be refined to better capture the dam-

age features present in those cases.

• The LISA models and experiments presented in this dissertation agreed well in many

cases. However, there were a few times where the results showed discrepancies that

do not have clear causes. In the aluminum hole experiment, the sensor 5 difference

signal was considerably higher than that predicted by the simulation. The impact

damage experiment for the 90-degree location showed a higher-than-expected differ-

ence signal amplitude at sensor 4 compared to the other sensors. Most notably, the

difference signal amplitude for the 45-degree impact damage experiment was signif-

icantly higher than in the LISA model. Additional experiments should be conducted

to determine if these anomalies can be reproduced.

• The studies in this dissertation focused on laminated composite plates, but many re-

alistic structures are based on sandwich construction with foam or honeycomb cores.

Some previous work exists that applies LISA to sandwich panels, but considerable

study is needed to refine these models. From a damage modeling standpoint, tech-

niques to capture delamination between the face sheet and core material need to be

developed for LISA.

• The matching pursuit algorithm presented in this dissertation can be advanced in a

few important ways. First, it would be advisable to continue the experimental valida-

tion of the algorithm, especially for the 2-D scenario covered in this work. Another

logical step forward is the incorporation of the CLoVER actuator into the matching

pursuit scheme. The arrangement of actuator and sensors used in the 2-D scenario
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could easily be replaced by a single CLoVER, where each sector could be used as a

sensor and actuator in a rotating manner. Finally, the algorithm should be extended

to use more than the first matched atom from each matching pursuit decomposition.

This extension should enable more accurate identification of the correct damage pa-

rameters, and it will also enable the identification of multiple damage sites affecting

an experimental difference signal.

202



APPENDIX A

Eigenvectors for Global Matrix Method

The formulation of the displacement and stress eigenvectors used in the Global Matrix

Method is included here as a reference. These eigenvectors are based on those found in

Refs. [59] and [62]. The stiffness matrix for a transversely isotropic lamina is represented

as:

S =



S 11 S 12 S 13 0 0 0

S 12 S 22 S 23 0 0 0

S 13 S 23 S 33 0 0 0

0 0 0 S 44 0 0

0 0 0 0 S 55 0

0 0 0 0 0 S 66



(A.1)

Then, the squares of the bulk wave velocities are represented as:

a1 = S 22/ρ

a2 = S 11/ρ

a3 = (S 12 + S 55)/ρ

a4 = (S 22−S 23)/2ρ = S 44/ρ

a5 = S 55/ρ

(A.2)
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As explained in Chapter 2, harmonic excitation is assumed,

u = Ce−i(ξ1x1+ξ2x2+ζx3−ωt) (A.3)

which allows for the formation of the Christoffel equation:
S 11ξ

2
1 + S 55(ξ2

2 + ζ2) (S 12 + S 55)ξ1ξ2 (S 12 + S 55)ξ1ζ

(S 12 + S 55)ξ1ξ2 S 55ξ
2
1 + S 22ξ

2
2 + S 44ζ

2 (S 23 + S 44)ξ2ζ

(S 12 + S 55)ξ1ζ (S 23 + S 44)ξ2ζ S 55ξ
2
1 + S 44ξ

2
2 + S 22ζ

2




u1

u2

u3

 = ρω2


u1

u2

u3


(A.4)

The three pairs of solutions for the through-thickness wavenumber are given by,

ζ2
1 = −ξ2

2 + b1

ζ2
2 = −ξ2

2 + b2

ζ2
3 = −ξ2

2 + (ω2−a5ξ
2
1)/a4

(A.5)

where the b1 and b2 constants are found from:

b1 = −
(
β

2α

)
−

√(
β

2α

)2
−
γ
α

b2 = −
(
β

2α

)
+

√(
β

2α

)2
−
γ
α

α = a1a5

β = (a1a2 + a2
5−a2

3)ξ2
1 −ω

2(a1 + a5)

γ = (a2ξ
2
1 −ω

2)(a5ξ
2
1 −ω

2)

(A.6)
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The displacement eigenvectors can then be formed as,

e1 =

[
iξ1q11 iξ2q21 iζ1q21

]T

e2 =

[
iξ1q12 iξ2q22 iζ2q22

]T

e3 =

[
0 iζ3 iξ2

]T

e4 =

[
iξ1q11 iξ2q21 −iζ1q21

]T

e5 =

[
iξ1q12 iξ2q22 −iζ2q22

]T

e6 =

[
0 −iζ3 iξ2

]T

(A.7)

where the qi j terms are represented as:

q11 = a3b1

q12 = a3b2

q21 = ω2−a2ξ
2
1 −a5b1

q22 = ω2−a2ξ
2
1 −a5b2

(A.8)

At this point, it is possible to form the complete displacement and stress eigenvector matri-

ces Qm
i j for each lamina using the following formulas:

Qm
11 =

[
em

1 em
2 em

3

]
Qm

12 =

[
em

4 em
5 em

6

]

Qm
21 =


−ρa5ξ1ζ1(q11 + q21) −ρa5ξ1ζ2(q12 + q22) ρa5ξ1ξ2

−2ρa4ξ2ζ1q21 −2ρa4ξ2ζ2q22 ρa4(ξ2
2 − ζ

2
3 )

µ1 µ2 2ρa4ξ2ζ3


Qm

22 =


ρa5ξ1ζ1(q11 + q21) ρa5ξ1ζ2(q12 + q22) ρa5ξ1ξ2

2ρa4ξ2ζ1q21 2ρa4ξ2ζ2q22 ρa4(ξ2
2 − ζ

2
3 )

µ1 µ2 −2ρa4ξ2ζ3



(A.9)
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with:
µ1 = ρ

[
(a5−a3)ξ2

1q11− (a1−2a4)ξ2
2q21−a1ζ

2
1q21

]
µ2 = ρ

[
(a5−a3)ξ2

1q12− (a1−2a4)ξ2
2q22−a1ζ

2
1q22

] (A.10)
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APPENDIX B

Global Matrix Forcing Terms for CLoVER

The final actuator type considered in this dissertation is the Composite Long-range

Variable-direction Emitting Radar. An example of it is shown in Fig. B.1. This actua-

tor has not previously been incorporated into the Global Matrix Method, and determination

of the transformed forcing vector needed to accomplish this is a more lengthy process.

However, a strategy for representing the tractions from a CLoVER sector was developed

by Salas and Cesnik [37] to facilitate an exact isotropic solution, and that process can be

adapted to produce the forcing terms needed for the Global Matrix Method. For a given

CLoVER sector, the components of the forcing vector can be represented as,

Figure B.1: CLoVER actuator.
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F1 =
2π∫
0

∞∫
0

[u(θ− θL)−u(θ− θR)][δ(r−RI)−δ(r−RO)]cos(θ)eiKr cos(θ−Γ)rdrdθ

F2 =
2π∫
0

∞∫
0
−[u(θ− θL)−u(θ− θR)][δ(r−RI)−δ(r−RO)] sin(θ)eiKr cos(θ−Γ)rdrdθ

(B.1)

where θL, θR represent the azimuthal boundaries of the sector of interest and RI , RO are its

radial boundaries. The u() term is the Heaviside step function and δ() is the Dirac delta

function. The integrals in Eq. B.1 do not have a closed-form solution, but it is possible to

use a Fourier series representation of the forcing terms to circumvent this difficulty:

F j =

∞∑
M=−∞

c( j)
M eiMΓ(−i)M2π[ROJM(KRO)−RI JM(KRI)] j = 1,2 (B.2)

In Eq. B.2, the cM terms are Fourier coefficients that must be calculated for each direction

and each term of the series. The formulas for these coefficients can be found in Ref. [37].

In that work, it is also noted that satisfactory results can be obtained while only including

the first 150 positive and negative terms of the Fourier series.
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APPENDIX C

Implementation of Global Matrix Method

The theoretical background for the Global Matrix Method was presented in Chapter 2. This

appendix provides some of the practical knowledge needed to develop displacement time

histories, and it includes the procedures for building the complete displacement files used

in the LISA hybrid method described in Chapter 3. A block diagram showing the data

flow between the various programs is shown in Fig. C.1. This diagram is for the case of

a circular actuator, and the process for a rectangular actuator is virtually identical. The

process for the CLoVER case is shown later in this appendix. The complete procedure

uses a combination of FORTRAN and MATLAB scripts, and each of these are explained

here.

C.1 Description of Global Matrix Input File

A single input file (GlobalMatrix InputFile.txt) is used to specify the parameters for each

of the three FORTRAN scripts used in the Global Matrix procedure. The file contains 17

entries along with one additional entry for each layer of the laminate. The contents of the

file are as follows:

• Mode: This entry specifies whether the calculations are for the A0 (value of 1) or S 0

mode (value of 2).
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PhaseVel_Refined.f90 

DispKernelGeneralized.f90 

Circle_Real_disp_kernel_A0_1dir.bin 

Circle_Imaginary_disp_kernel_A0_1dir.bin 

Circle_Real_disp_kernel_A0_2dir.bin 

Circle_Imaginary_disp_kernel_A0_2dir.bin 

Circle_Real_disp_kernel_A0_3dir.bin 

Circle_Imaginary_disp_kernel_A0_3dir.bin 

Circle_Real_disp_kernel_S0_1dir.bin 

Circle_Imaginary_disp_kernel_S0_1dir.bin 

Circle_Real_disp_kernel_S0_2dir.bin 

Circle_Imaginary_disp_kernel_S0_2dir.bin 

Circle_Real_disp_kernel_S0_3dir.bin 

Circle_Imaginary_disp_kernel_S0_3dir.bin 

PhaseVel_A0_Refined.bin 

PhaseVel_S0_Refined.bin 

PhaseVel_Coarse.f90 

GlobalMatrix_InputFile.txt 

PhaseVel_A0_Coarse.bin 

PhaseVel_S0_Coarse.bin 

Displacement_Processing_Total_Circle_360.m 

DisplacementProcessing360circle.m 

Disp1dir.bin 

Disp2dir.bin 

Disp3dir.bin 

Figure C.1: Global Matrix process for a circular actuator.
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• Actuator Type: This entry is set to 1 for a circular actuator, 2 for a rectangular actu-

ator, and 3 for a CLoVER actuator.

• Rectangular Actuator Length: This is the first of two dimensions needed if a rectan-

gular actuator is being considered. The length is measured in meters.

• Rectangular Actuator Width: Measured in meters.

• Coarse Search Parameter: This parameter is used in the coarse phase velocity calcu-

lations.

• Refined Search Parameter: This parameter is used in the refined phase velocity cal-

culations.

• Start Value: This is an initial guess for the coarse phase velocity calculations.

• E1: Elastic modulus along the fiber direction for the lamina (Pa).

• E2: Elastic modulus transverse to the fiber direction for the lamina (Pa).

• ν12: Poisson’s ratio value.

• ν23: Poisson’s ratio value.

• G12: Shear modulus value (Pa).

• Density: Density of bulk material in kg/m3.

• Thickness: Total thickness of the plate in meters.

• Angular Resolution: This sets the angular resolution of the phase velocity calcula-

tions, measured in degrees. A resolution of 0.1 degrees was used in this dissertation,

and coarser angular resolution resulted in errors in the calculated displacement time

histories.
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• Frequency Resolution: This sets the frequency resolution of the phase velocity cal-

culations, measured in kHz. A resolution of 0.1 kHz worked well in the studies

contained in this dissertation.

• Number of Layers

• Layer Orientations: Measured in degrees.

C.2 Coarse Calculation of Phase Velocities

The first major section of the Global Matrix Method involves the calculation of the ad-

missible phase velocities for the laminate. The procedure implemented in this dissertation

uses two FORTRAN scripts to do these calculations: PhaseVel Coarse.f90 and Pha-

seVel Refined.f90. The first set of calculations uses the PhaseVel Coarse.f90 source

code. Before this program is run, it must be compiled using a suitable makefile with a

FORTRAN compiler. This makefile ensures the appropriate libraries from the LAPACK

linear algebra library are included in the executable.

This coarse calculation is designed to generate an initial guess for the admissible phase

velocity for the laminate in the 0-degree direction at each desired frequency. A block

diagram of this program is shown in Fig. C.2. In this figure, the processes is shown for the

case of the A0 mode. This program must be run for both fundamental modes if both modes

are to be included in the displacement solution. The first steps in the program define each

of the variables to be used and load the needed values from the input file. An output file is

also opened to allow for data recording later in the program.

The main program contains two nested loops. It loops through a defined frequency

range, which includes the frequencies expected to be present in the excitation of the plate.

This loop progresses through the frequency range according to the frequency resolution

defined in the input file. For each frequency, the program then loops through a specified
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Input Parameters 

Open Output Files 

Loop Through Frequencies 

Loop Through Phase Velocity Range 

Form Global Matrix 

ONELAYERG 

SLICE 

Calculate GM Determinant 

PhaseVel_A0_Coarse.bin 

Move to Next Phase Velocity 

Update Phase Velocity Guess 

for Next Frequency 

Define Variables 

GlobalMatrix_InputFile.txt 

Record Velocity if Determinant = 0 

Move to Next Frequency 

Write Phase Velocity to Output File 

Figure C.2: Block diagram of coarse phase velocity program (PhaseVel Coarse.f90).
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range of possible phase velocities. This range of velocities is initially defined using the

start value and the coarse search parameter from the input file.

At each possible phase velocity, the program assembles the Global Matrix for the lam-

inate corresponding to that velocity. Two subroutines aid in this process. The ONELAY-

ERG subroutine assembles a series of submatrices that are defined using the SLICE sub-

routine. The SLICE subroutine calculates the contribution of each individual lamina to the

Global Matrix, and the ONELAYERG subroutine then arranges these into the appropriate

positions in the Global Matrix.

After the Global Matrix is formed, the next section of the program uses LU decompo-

sition to calculate the determinant of the Global Matrix. This program uses a zero-crossing

approach to determine the admissible phase velocities for the laminate. If the current phase

velocity under consideration moves the determinant from a positive value to a negative

value (or vice-versa), the program records that phase velocity as a good approximation to

the admissible phase velocity for the current frequency.

Once all applicable phase velocities have been considered at a given frequency, the

recorded value for the coarse prediction is written to the output file. This value is also set

as the initial guess for the next frequency in the loop. The program moves to the next fre-

quency and the process continues until a coarse phase velocity prediction has been obtained

for each frequency.

C.3 Refined Calculation of Phase Velocities

The second program used in the phase velocity calculations is called Pha-

seVel Refined.f90. It must be compiled using a similar makefile to the coarse pro-

gram, and it uses the same input file. A block diagram of the program is shown in

Fig. C.3 for the A0 case. The S 0 case is identical, except the PhaseVel A0 Coarse.bin

and PhaseVel A0 Refined.bin filenames change to PhaseVel S0 Coarse.bin and Pha-
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seVel S0 Refined.bin, respectively. The first section of the program defines each of the

variables and reads parameters from the input file. It then reads the phase velocities from

the coarse prediction. The output file is opened next to prepare for the refined phase veloc-

ity calculations.

The main portion of the program contains three nested loops. As in the coarse program,

it loops through the defined frequency range according to the specified frequency resolu-

tion. The refined program then loops through the entire angular range in increments as

specified by the angular resolution in the input file. For the analysis included in this disser-

tation, it was found that an angular resolution of 1 degree was too coarse, and it resulted in

inaccuracies in the displacement solutions. A resolution of 0.1 degrees was sufficient for

the analysis. At each of the angles, the program then loops through the range of possible

phase velocities.

For each frequency, the initial guess for the phase velocity in the 0-degree azimuth is

taken from the coarse phase velocity prediction. The phase velocity range is then defined

by the refined search parameter from the input file. The program runs through the phase

velocity range, builds the Global Matrix, and records the values of any determinant zero

crossings just as in the coarse program. For this program, the resolution of the phase

velocity range is significantly smaller than in the coarse program. This ensures the phase

velocity calculations achieve the needed level of accuracy. After completing these steps for

the first azimuthal angle, the program moves to the next angle. The phase velocity solution

for the first angle is written to the output file and then used as the initial guess for the next

angle.

Once the phase velocities for each azimuthal angle at the current frequency have been

determined, the program moves to the next frequency. The initial guess for next frequency

comes from the coarse phase velocity file. This process continues until refined phase ve-

locity solutions are obtained for each angle at each frequency.
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Move to Next Frequency 

Figure C.3: Block diagram of refined phase velocity program (PhaseVel Refined.f90).
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C.4 Calculation of Displacement Kernels

The third FORTRAN program used in the Global Matrix process is called Displacemen-

tKernelGeneralized.f90. The block diagram for the A0 case of this program is included

as Fig. C.4. The purpose of this program is to form the integrand contained in Eq. 2.14.

Specifically, the displacement kernel can be understood to be the fraction portion of the

integrand, which is shown in Eq. 2.11. The program begins with variable definitions and

the reading of the input file. Additionally, the refined phase velocities are read and stored

for future use.

The program loops through the frequency range for the simulation. At each frequency,

it then loops through the angular range. At each subsequent combination of angle and

frequency, the first step in the process is to specify the two in-plane traction components

that go into the forcing vector of the Global Matrix equation in Eq. 2.8. As explained in

Chapter 2, these must be represented in the wavenumber domain. Next, the Global Matrix

is formed. The admissible phase velocity for the angle/frequency combination is used in

this step. The ONELAYERG and SLICE subroutine are also called in the same manner as

in the phase velocity programs.

Once the Global Matrix is formed, the next steps in the program solve for the dis-

placement constants in Eq. 2.8. The procedure used is based on Cramer’s rule, but the

implementation in this program contains one slight difference. The denominator of the in-

tegrand in Eq. 2.12 contains the determinant of the Global Matrix, which is a direct result

of the application of Cramer’s rule. However, application of the residue formula changes

this denominator to be the derivative of the determinant with respect to the global radial

wavenumber, as shown in Eq. 2.14. To facilitate this, the program calculates this derivative

for the current angle and frequency and then moves on with Cramer’s rule. The end result

is the solution for the complete set of displacement constants.

Once the displacement constants are determined, the program performs the matrix mul-

tiplication shown in Eq. 2.9 to calculate the displacement kernel. This calculation is per-

217



Input Parameters 

Open Output Files 

Read Phase Velocities 

Loop Through Frequencies 

Loop Through Angles 

Assign Forcing Terms 

Form Global Matrix 

ONELAYERG 

SLICE 

Differentiate Global Matrix 

Calculate Displacement 

Constants Using Cramer’s Rule 

Calculate Displacement 

Kernels for Each Interface 

Circle_Real_disp_kernel_A0_1dir.bin 

Circle_Imaginary_disp_kernel_A0_1dir.bin 

Circle_Real_disp_kernel_A0_2dir.bin 

Circle_Imaginary_disp_kernel_A0_2dir.bin 

Circle_Real_disp_kernel_A0_3dir.bin 

Circle_Imaginary_disp_kernel_A0_3dir.bin 

PhaseVel_A0_Refined.bin 

Write DK Data for Current 

Angle and Frequency 

Move to Next Angle 

Move to Next Frequency 

Define Variables 

GlobalMatrix_InputFile.txt 

Figure C.4: Block diagram of displacement kernel program (DisplacementKernelGen-
eralized.f90).
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formed for each layer interface, which allows for the displacement at each of the interface

locations to be calculated later in the Global Matrix procedure. When the kernels for each

interface at the current angle and frequency are determined, they are written to the output

files. It should be noted here that the displacement kernels have complex values, and the

real and imaginary parts are separated and written to different files. The program continues

until all azimuthal angles have been considered at each frequency in the specified range.

For the case of the CLoVER actuator, a preprocessing step is needed before the dis-

placement kernel calculations can be accomplished. As explained in Chapter 2, the trac-

tion components for the CLoVER must be represented with a Fourier series solution to be

written in the wavenumber domain. These components must be calculated in a separate

MATLAB routine and then read into the displacement kernel program. Figure C.5 shows

how these steps fit into the overall Global Matrix procedure for the CLoVER case.

C.5 Inversion to Spatial and Time Domains

The displacement kernels calculated in the previous section represent the displacements of

the plate in the wavenumber and frequency domain. To build the displacement time history,

a series of Fourier inversions must now be implemented. These are accomplished using the

Displacement Processing Total Circle 360.m MATLAB script for the circular actua-

tor, and similar programs exist for the square and CLoVER actuators. The block diagram

for this script is shown in Fig. C.6. The end product of this program is the complete set of

displacement time histories needed for the LISA hybrid program.

The program starts by defining the in-plane locations of each of the boundary points for

the cut-out region in the LISA hybrid model. It then defines the parameters of the actuation

pulse used with the actuator. Next, the phase velocities and displacement kernels are read

and stored for future use. As shown in the block diagram, this program uses both the A0 and
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Figure C.5: Global Matrix process for a CLoVER actuator.
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S 0 velocities and displacement kernels to build time histories that contain the contributions

from both modes.

The remainder of the program contains two main loops. It loops through each interface

in the laminate. For each interface, it then loops through each of the specified boundary

points. For each point, the first step is to convert the Cartesian coordinates to polar co-

ordinates. Once the polar coordinates are known, it is possible to carry out the Fourier

inversion that moves the displacement information from the wavenumber domain to the

spatial domain. This portion of the program implements the updated inversion method

that was explained in Chapter 2. For the given point, the program loops over each of the

frequencies contained in the actuation profile. At each point and frequency, a MATLAB

function called DisplacementProcessing360Circle.m evaluates the inversion formulas

contained in Eqs. 2.28 and 2.29 using numerical integration. It then produces the corrected

signal in the spatial and frequency domain using Eq. 2.30. This corrected signal is known

as the displacement harmonic for the given point and frequency.

The remaining step needed to produce the displacement time history is to complete the

last Fourier transform moving the signal from the frequency domain to the time domain.

This is implemented in two steps in the program. First, the frequency content of the dis-

placement signal is obtained by multiplying each of the displacement harmonics by the

Fourier transform of the excitation signal. Then, numerical integration is used to evaluate

the Fourier inversion formula, which results in the time history signal for the given point

and interface.

This process continues until displacement time histories are known for each boundary

point at each interface. The final portion of the program arranges these time histories and

writes them to the output files so they can be read by the LISA hybrid program.
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Figure C.6: Block diagram for Fourier inversion program.
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APPENDIX D

Implementation of LISA Hybrid Program

This appendix provides an overview of the LISA hybrid code. The code is written in FOR-

TRAN 95, and the source code must be compiled using a suitable FORTRAN compiler.

The compiler must support OPENMP protocols for code parallelization. A block diagram

showing an overview of the program is included as Fig. D.1.

D.1 Initialization Steps

The various steps needed to initialize the program are depicted in Fig. D.2, and they are

described next.

D.1.1 Variable Definition

The first portion of the code defines each of the variables used in the program, which is

standard procedure in the FORTRAN language.

D.1.2 Input Parameters

The main input file for the program is LISA Input Parameters.txt. The file contains 13

input parameters for the program:
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Initialization Steps 

Grid Definition 

Actuation Definition 

Damage Definition 

Output Definition 

Material Assignment 

Iterative Equations 

Figure D.1: Block diagram of LISA hybrid program.

• Number of Layers in the Model: This includes the number of lamina in the plate

model plus an additional layer of simulated air cells on the top and bottom surfaces

of the plate.

• Air Cells in Lateral Directions: This parameter is almost always set at 2, indicating

two simulated air cells along the lateral edges of the plate model.

• Total Model Run Time: Measured in seconds.

• Time Step Size: Measured in seconds.

• Discretization in X Direction: Measured in meters.

• Discretization in Y Direction: Measured in meters.
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• Discretization in Z Direction: Measured in meters. This is the nominal through-

thickness discretization for the model. This value is only used to verify that the CFL

number is within limits. The discretization of each individual layer is taken as an

input parameter later in the grid definition stage.

• Offset Distance: This parameter is used for the LISA hybrid actuation to specify the

half-length of one of the sides of the square cut-out region surrounding the actuator.

Measured in meters.

• Actuation Profile: This variable is used for prescribed displacement actuation to

specify the actuator setup. A value of 1 is used for a top actuator only. A value

of 2 is used for top and bottom actuators with A0 actuation. A value of 3 is used for

top and bottom actuators with S 0 actuation.

• Damage Type: This parameter specifies the type of damage included in the LISA

model. It takes a value of 0 for no damage, 1 for hole damage, 2 for impact damage,

and 3 for impact damage with simulated delamination.

• Hybrid Status: This parameter determines which type of actuation is used. It takes a

value of 1 for prescribed displacement actuation and 2 for hybrid actuation.

• Center Frequency: This parameter specifies the frequency of actuation in Hz for the

prescribed displacement actuation.

• Circular Actuator Radius: This parameter specifies the radius of the circular actuator

for prescribed displacement actuation. Measured in meters.

D.1.3 Verify Time Step

Care should be taken when specifying the total model run time and the desired time step

in the input file to ensure an integer number of time steps are requested. However, the
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LISA_Input_Parameters.txt 

Variable Definition 

Input Parameters 

Verify Time Step 

Figure D.2: Block diagram of LISA hybrid initialization steps.

code includes a subroutine REF DELTA that double-checks these values and adjusts them

if needed.

D.2 Grid Definition

The next major section of the program defines the Cartesian grid used in the LISA model.

D.2.1 Read Dimensions From Input File

This section reads the layer thicknesses and discretizations from the Mate-

rial Dimensions.txt file. Each row in the input file specifies the dimensions of a layer

in the model as well as its material, orientation angle, and through-thickness discretization.

D.2.2 Define Nodal Coordinates

After reading the information for each layer, the program arranges the thickness and dis-

cretization information into a series of array variables that are used throughout the re-
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BOUNDARY_NODES 

CFLCALC 

Figure D.3: Block diagram of LISA grid definition steps.

mainder of the program. The number of nodes in each direction is calculated using the

previously read information. Next, the ELEMENTS DEF subroutine determines the coor-

dinates of each node and stores the information in an array for future reference.

D.2.3 Identify Boundary Nodes

The next portion of the program uses the BOUNDARY NODES subroutine to identify the

nodes that are on the edge of the plate model. The program marks these nodes as boundary

nodes that are to remain at a fixed position throughout the duration of the simulation.
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D.2.4 Calculate Material Properties

The MATERIAL PROPS subroutine first reads from the Material Dimensions.txt file to

determine the material and orientation angle for each of the layers in the model, including

the air layers on the top and bottom surfaces of the plate. Next, the subroutine reads material

property information from the Material List.txt file. In this file, each row corresponds to

a possible material for the model, and each column contains one of the applicable material

properties. Once all the properties are read from the file, the remainder of the subroutine

calculates the material properties for each layer based on its orientation angle and material.

D.2.5 Verify CFL Criteria

The CFLCALC subroutine is used to verify the CFL number for the model is less than one.

It uses the previously calculated material properties to calculate the maximum bulk wave

velocity for the model, and it then uses this along with the spatial discretization and time

step to calculate the CFL number.

D.3 Actuation Definition

This program supports two possible types of actuation: LISA hybrid and prescribed dis-

placements. As explained in Chapter 3, the prescribed displacements method has some

serious drawbacks, but in some cases it may be useful to use it. Based on the chosen ac-

tuation type as specified in the input file, this section of the program defines the needed

actuation properties for the simulation. For both actuation methods, the first step in this

section of the program is to specify the initial displacement for all nodes in the model to be

zero.
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Figure D.4: Block diagram of LISA actuation definition steps.

D.3.1 LISA Hybrid Actuation

D.3.1.1 Define Cut-out Region

The first step for the LISA hybrid actuation is to identify the nodes used for the cut-out

region. The ACTUATION NODES subroutine determines and tabulates the nodes located

on the cut-out boundary. These are the nodes where the Global Matrix displacement time
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histories are applied. The CUTOUT NODES subroutine identifies and tabulates the nodes

that are located inside of the cut-out boundary.

D.3.1.2 Open Displacement Files

At this point the program opens the three binary files that contain the Global Matrix dis-

placement time histories. These files specify the three displacement components for each

node on the cut-out boundary at each time step. The files remain open for the remainder of

the program, and the values are read at each time step.

D.3.1.3 Assign Displacements for Second Time Step

The displacements corresponding to the second time step are then read from the displace-

ment input file and applied to the nodes on the cut-out boundary.

D.3.2 Prescribed Displacements Actuation

D.3.2.1 Define Actuation Pulse

For the case of prescribed displacements, the EXCITIME subroutine defines the number of

time steps in the actuation pulse. Then, the PULSE subroutine is used to define the prop-

erties of the actuation pulse based on the center frequency in the input file. This subroutine

specifies the Hann-modulated toneburst signal used for the actuation in this dissertation.

D.3.2.2 Define Actuator Shape

The next portion of the code determines which nodes are included in the circular actuator

region.
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D.3.2.3 Assign Displacements for Second Time Step

The displacements for the second time step are then assigned for the actuator nodes. The

values of the excitation are scaled base on the position of the node.

D.4 Damage Definition

This section of the program reads in the parameters for the chosen damage type. Typical

input parameters include the in-plane coordinates of the damage center, the radius of the

damage, and the depth of the damage. For impact damage, the input file contains the

information needed to specify the radius of the damage at each through-thickness location.

D.5 Output Definition

D.5.1 Define Recording Locations

The LISA simulation produces four sets of displacement output files to be used for various

post-processing activities.

• Radial Displacement Traces: The simulation produces three sets of output files to

show how the out-of-plane displacement time histories change along a radial line that

extends from the actuator. The three lines are in the 0, 45, and 90-degree directions.

• Movie Data Files: A data file is produced for each component of displacement. The

displacements are recorded at a sampling of points on the top surface of the plate,

and they are recorded at specified time intervals. These files can be used to produce

animations of the displacement fields for the plate.

• Damage Area Displacements: This group of output files records the displacements

on the top surface of the plate in the region immediately surrounding the damage
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Figure D.5: Block diagram of LISA damage definition, output definition, and material
assignment sections.

location. These are useful when examining how different damage features affect the

guided wave propagation.

• Simulated Sensor Data: These output files record the in-plane displacements in five

regions of the plate corresponding to the location of the sensors.
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D.5.2 Open Output Files

After the applicable nodes are defined for each of the four output sets, the output files are

opened to prepare for data recording.

D.5.3 Record Initial Data

Based on the recording instructions, the displacements for the first two time steps are writ-

ten to the output files.

D.6 Material Assignment

Prior to starting the simulation, the materials for each of the nodes’ neighbors are identified

and tabulated. This process can be completed outside of the time-marching loop, since the

materials do not change with time. By saving a material identifier for each neighbor rather

than all the material properties themselves, considerable memory is conserved.

D.6.1 Default Material Assignment

First, the default materials are identified based on the construction of the laminate. For

each node, an 8-position array is formed to identify a material number for each neighbor

cell.

D.6.2 Update for Damage Model

Once the default materials are assigned, any necessary changes are made to account for the

chosen damage model. For hole damage, this involves changing applicable material assign-

ments to the simulated air material. For impact damage, this involves changing applicable

cells to a material assignment that reflects some type of reduced property.
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Figure D.6: Block diagram of LISA iterative equation section.

D.7 Iterative Equations

This section of the program contains iterative calculations that form the core of the LISA

simulation. It involves marching through each time step and calculating three displacement

components for each node at the current time step.
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D.7.1 Load Material Properties

For the given node, the previously formed array that identifies the neighbor cells’ materials

is used to ensure the correct material properties are used in the iterative equations.

D.7.2 Calculate Displacements for Current Node

The three iterative equations are then used with the loaded material properties to calculate

the three displacement components for the given node at the current time step. The equa-

tions also reference the displacement values for the node’s neighbor nodes at the previous

two time steps, which have been stored in memory.

D.7.3 Assign Actuation Data

After the iterative equations for each node at the current time step are complete, the ac-

tuation values are assigned for the time step. This involves referencing the displacement

input files for the LISA hybrid actuation or using the calculated excitation profile for the

prescribed displacement actuation.

D.7.4 Write Displacements to Output Files

The final step for the current time step is to write the displacement data to the output files

based on the recording instructions. Once this is complete, the program moves to the next

time step and repeats the cycle.
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APPENDIX E

Comments on 2-D Fourier Inversion

In Chapter 2, an updated method was presented to carry out the 2-D inverse Fourier trans-

form used to move from the wavenumber domain to the spatial domain during the employ-

ment of the Global Matrix Method. First, an original wave solution was developed which

contained both an inward and outward propagating wave:

uO
i (r, θ,X3,ω) =

∑
K̂

τ0

4π

2π∫
0

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

K̂e−iK̂r cos(θ−Γ)dΓ (E.1)

Subsequently, a correction signal was produced by including an additional cosine term in

the integrand of the inversion integral:

uC
i (r, θ,X3,ω) =

∑
K̂

τ0

4π

2π∫
0

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

K̂e−iK̂r cos(θ−Γ) cos(θ−Γ)dΓ (E.2)

This correction signal reversed the sign of the inward wave, as shown in Fig. E.1. When the

correction signal was added to the original signal, the inward wave was canceled, leaving

only the desired outward propagating wave:

ucorrected
i =

uO
i + uC

i

2
(E.3)
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Figure E.1: Correction procedure for displacement time history at 60 mm location. Results
are for a circular actuator on an aluminum laminate.

The purpose of this appendix is to provide some background detail on the genesis of the

cosine term added to the integrand in the correction signal.

E.1 Development of Correction Signal

The initial attempts at producing a correct displacement signal began with a previous for-

mulation that was outlined in Chapter 2. In that formulation, the limits of integration used

in Eq. E.1 were altered to ensure the coefficient of K̂ in the complex exponential remained
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Figure E.2: Displacement time histories for an aluminum laminate at 60 and 80 mm, show-
ing the artifact present in the previous solution.

positive over the entire domain of integration:

ui(r, θ,X3,ω) =
∑

K̂

τ0

2π

θ+ π
2∫

θ− π2

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

e−iK̂r cos(θ−Γ)K̂dΓ (E.4)

The goal of this formulation was to avoid integrating over azimuthal wavenumbers which

resulted in an inward propagating wave. This technique eliminated most of the inward

wave, but it left an artifact in the time history. The presence of this artifact is shown in

Fig. E.2 for points 60 and 80 mm from the actuator. Further investigation of this formu-

lation considered the results when the limits of integration were switched to include the

previously avoided azimuthal wavenumbers:

ui(r, θ,X3,ω) =
∑

K̂

τ0

2π

θ− π2∫
θ+ π

2

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

e−iK̂r cos(θ−Γ)K̂dΓ (E.5)
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Figure E.3: Inward propagating wave solution for an aluminum laminate at 40, 50, and 60
mm, showing the artifact present in the previous solution.

As expected, using these limits resulted in the inward wave instead of the outward wave.

However, the previously mentioned artifact in the time history was also present, as shown

in Fig. E.3.

Additional studies were conducted to determine the source of the artifact found in the

displacement time histories. Initially, the limits of integration were changed to determine

how they affect the presence of the artifact. Focusing on the solution defined by Eq. E.4, the

azimuthal span of the limits of integration was narrowed to determine if a smaller region
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(d) θ±30◦

Figure E.4: Displacement time histories for an aluminum laminate at 60 mm, showing the
effect of further reducing the region of integration.

of integration resulted in a signal without the displacement artifact. The results indicated

that by reducing the limits to a smaller span around the angle of interest θ, the size of the

artifact decreased. However, reducing the span of integration also resulted in the distortion

of the outward wave solution when too much of the original span was excluded. These

results are shown in Fig. E.4. It was also determined that the results of reducing the limits

of integration were not consistent as the distance from the actuator changed. For the point

60 mm from the actuator, shown in Fig. E.4 (c), integrating from θ±45◦ produced a good
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(c) 80 mm

Figure E.5: Outward propagating wave solution for an aluminum laminate at 40, 60, and
80 mm, showing the effect of reducing the region of integration to θ±45◦.

qualitative match with the exact solution. However, these limits resulted in distorted waves

at points closer and farther from the actuator, as shown in Fig. E.5.

It was hypothesized that the wavenumbers near θ ± 90◦ were the source of the dis-

placement artifact. Furthermore, it was considered that a more gradual weighting of the

azimuthal wavenumbers closer to θ may maintain the integrity of the outward solution

while still excluding the majority of the contribution from those wavenumbers creating the

artifact. Based on these possibilities, the idea of using the cosine function surfaced as an
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(c) 80 mm

Figure E.6: Outward propagating wave solution for an aluminum laminate at 40, 60, and
80 mm, showing the the effect of adding the cosine term to the inversion equation.

option. Addition of the cosine term to the outward solution as in

ui(r, θ,X3,ω) =
∑

K̂

τ0

2π

θ+ π
2∫

θ− π2

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

e−iK̂r cos(θ−Γ)K̂ cos(θ−Γ)dΓ (E.6)

successfully removed the artifact while leaving intact the outward wave solution, as shown

in Fig. E.6. When the cosine term was added to the equation for the inward solution, it

removed the artifact, as seen in Fig. E.7. However, an additional effect was also produced,
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Figure E.7: Inward propagating wave solution for an aluminum laminate at 40, 50, and 60
mm, showing the the effect of adding the cosine term to the inversion equation.

where the sign of the inward wave was flipped. This effect was easily attributable to the

fact that cosine is an even function.

For the more general solution shown at the beginning of this appendix, the artifact

in the displacement time history never appeared. However, the inclusion of the cosine

term created the reversal effect on the inward wave, which facilitated the creation of the

correction signal. Even for this case, however, the cosine did more than just reverse the

sign. If instead of using the cosine term, the sign of the integrand was reversed for values
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(b) Sign Switched

Figure E.8: Displacement time histories for an aluminum laminate at 60 mm, showing the
effect of only switching the sign of the inward wave solution.

where the coefficient of K̂ was negative, the sign change was preserved and the inward

portion of the wave was flipped. However, a new artifact was produced, which was double

the value of the artifact seen in the Eq. E.4 solution. This result is shown in Fig. E.8. Thus

even in the general case, the cosine term seems to have prevented the formation of the

displacement artifact that would otherwise have appeared.

E.2 Examination of Alternate Correction Options

Based on the results presented to this point, it is clear that the effect of the cosine term was

two-fold. For the general case with integration limits 0 to 2π, the cosine term reversed the

sign of the inward wave and prevented the appearance of a spurious displacement artifact.

Similarly, for the case where the limits of integration were reduced to half of the original

region, the cosine term both reversed the sign of the inward wave and eliminated the pres-

ence of the displacement artifact. The sign of the cosine function explains the sign reversal,

but it appears the elimination of the artifact was due to a filtering effect where the azimuthal

wavenumbers closest to the angle of interest θ were given predominance. For this reason,
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other filtering options were considered to see how that choice affected the results. A new

filtering function was introduced for the outward wave case

ui(r, θ,X3,ω) =
∑

K̂

τ0

2π

θ+ π
2∫

θ− π2

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

e−iK̂r cos(θ−Γ)K̂(F)dΓ (E.7)

where

F = 1−
∣∣∣∣∣ (θ−Γ)
π/2

∣∣∣∣∣b (E.8)

Figure E.9 shows the profiles of this filter function for various values of the filter exponent,

b. As the value of the exponent increases, the equation approaches the unfiltered case in

Eq. E.4. The time histories for a point 60 mm from the actuator are shown in Fig. E.10

for values of b less than 2 and in Fig. E.11 for values of b greater than or equal to 2. The

results show that for very small values of b, the artifact was filtered out of the solution,

but additional information needed to properly represent the outward wave was also filtered.

The results for b = 1.5 and b = 2 showed the closest match to the exact solution, and these

two cases have filter profiles closely resembling the cosine function. As the value of b

increased further, the effect of the filter decreased, and the size of the displacement artifact

increased toward the unfiltered case.

These results indicate that the cosine function produces an optimal weighting of the

azimuthal wavenumbers near the angle of interest, θ. More or less aggressive filtering

approaches do not eliminate the presence of the the displacement artifact as effectively as

the cosine approach presented in Chapter 2.

E.3 Direction for Additional Study

It remains to be shown in detail how the cosine function interacts with the exponential

term included in the inversion integral to eliminate the spurious displacement signal, and

this may be of interest in the future. For the simplified case of a circular actuator on an
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Figure E.9: Filter profiles for various filter exponent values, b. The profile of the cosine
function is shown for comparison purposes in each figure.

isotropic plate, future consideration of this issue can focus on a reduced version of the

equation. In this case, a single mode can be assumed, which eliminates the summation

with respect to the admissible radial wavenumber K̂. Furthermore, the expression

Ψi(K̂,Γ,X3,ω)
∆′(K̂,Γ,ω)

K̂ (E.9)

does not change with respect to the azimuthal wavenumber, and it can be moved out of the

integral and treated as a constant value. After a change of variables, it can be shown that the

critical aspect of calculating the displacement time history is the evaluation of the integral:

2π∫
0

e−iαcosγdγ (E.10)

where α is a constant that depends on the angular frequency, ω. Of course, for the isotropic

case, this integral can be represented as a Bessel function as shown in Chapter 2. However,

to be useful for more general cases as well, it must be remembered that this integral will be

evaluated numerically, and the Bessel function substitution will not be permissible.
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(c) b = 1
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(d) b = 1.5

Figure E.10: Outward propagating wave solution for an aluminum laminate at 60 mm,
showing the the effect of various filter exponent values, b, less than 2.
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(b) b = 10
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(c) b = 50
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(d) b = 100

Figure E.11: Outward propagating wave solution for an aluminum laminate at 60 mm,
showing the the effect of various filter exponent values, b, greater than or equal to 2.
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