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ABSTRACT

Topics in structured host-antagonist interactions

by

Maria Annichia Riolo

Co-chairs: Charles Doering and Pejman Rohani

In many complex systems, simple parts interact to produce the large scale pat-

terns we observe. The structure of these interactions can have a dramatic effect on

the behavior of the system, and many systems which have simple dynamics under

the assumption of well-mixed interactions display vastly different behaviors when

embedded on a discrete network or a continuous space.

Often, the desynchronization of local dynamics, natural delays of information

transfer, and higher dimensionality of the structured system can result in extending

the duration of transient dynamics, enabling the stable persistence of heterogeneous

solutions, and rendering optimal control challenging. This dissertation explores these

phenomena in the context of the dynamics and control infectious diseases and agricul-

tural pests. In particular, I focus on using compartmental models to investigate the

effects of age-structured social mixing in the transmission of pertussis and spatially

structured mixing and resource heterogeneity in plant-herbivore-parasitoid interac-

tions.

In chapter II, I investigated the potential of age-structure in social contacts to

x



explain the resurgence of pertussis in highly vaccinated populations. and found that

strong age-assortative mixing and a past history of vaccination coverage insufficient

for eradication were sufficient to generate a slow resurgence in older age-groups.

In chapter III, I searched for efficient age-targeted booster vaccination strategies

using a genetic algorithm, under several simulated modes of vaccine failure. and

found that the type of booster schedules most successful in reducing disease strongly

depended on the mechanisms of failure.

With an eye to finer scale targeting of vaccination, I derived and presented a

multi-way spectral graph partitioning algorithm in chapter IV.

In chapter V, I investigated the effects of spatial variation in plant quality on

populations of herbivore hosts and their parasitoids, finding that variation in plant

quality occurring at a fine spatial scale decreased overall herbivore populations.

Finally, I explored the relationship between patterns of dispersal and abundance

of a population in a one-dimensional space reproduces locally according to the logistic

map and disperses with a Gaussian kernel and derived the conditions under which I

expect certain classes of behavior to be stable.
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CHAPTER I

Introduction

In many complex systems, simple parts interact to produce the large scale pat-

terns we observe. The structure of these interactions can have a dramatic effect on

the dynamics of the system. In this dissertation, I focus on the role of structured

interactions in host-parasitoid and host-pathogen interactions.

In the first two chapters of this dissertation, we investigated the resurgence of

pertussis in the context of age-structured social contacts. Pertussis incidence has

been rising in some countries, including the UK, despite sustained high vaccine cover-

age. We questioned whether it is possible to explain the resurgence without recourse

to complex hypotheses about pathogen evolution, subclinical infections, or trends in

surveillance efficiency. In particular, we investigated the possibility that the resur-

gence is a consequence of the legacy of incomplete pediatric immunization, in concert

with cohort structure and age-dependent transmission. We constructed a model of

pertussis transmission in England and Wales based on data on age-specific contact

rates and historical vaccine coverage estimates. We evaluated the agreement between

model-predicted and observed patterns of age-specific pertussis incidence under a va-

riety of assumptions regarding the duration of immunity. Under the assumption that

infection-derived immunity is complete and lifelong, and regardless of the duration of

vaccine-induced immunity, the model consistently predicts a resurgence of pertussis
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incidence comparable to that which has been observed. Interestingly, no resurgence

is predicted when infection- and vaccine-derived immunities wane at the same rate.

These results were qualitatively insensitive to rates of primary vaccine failure. We

conclude that the alarming resurgence of pertussis among adults and adolescents in

Britain and elsewhere may simply be a legacy of historically inadequate coverage em-

ploying imperfect vaccines. Indeed, we argue that the absence of resurgence at this

late date would be more surprising. Our analysis shows that careful accounting for

age dependence in contact rates and susceptibility is prerequisite to the identification

of which features of pertussis epidemiology want additional explanation.

Although the mechanisms behind the resurgence of pertussis remain an ongo-

ing point of contention, many countries have nevertheless recommended additional

booster vaccinations against pertussis, the timing and number of which vary widely.

In the second chapter of this dissertation, we investigated the optimal scheduling of

booster vaccinations for the control of a resurgence of a vaccine preventable disease

in a population with age-structured social mixing. We explored several scenarios un-

der which infant vaccination alone might fail to eradicate a disease. In each case,

we used a genetic algorithm to search for efficient booster vaccination strategies. We

found that which booster schedules most successfully controlled transmission strongly

depended on why the disease had persisted even with routine infant vaccination, sug-

gesting that booster vaccination schedules are most effective when tailored to the

problem at hand and that that misidentifying the causes of pertussis resurgences may

be costly.

The problem of optimally targeted vaccination is closely related to that of graph

partitioning. One can think of a vaccine that provides sterilizing immunity (prevent-

ing both symptomatic disease and transmission) as removing susceptible individuals

from the network of risky contacts. While a randomized mass vaccination reduces

transmission among unvaccinated individuals by lowering the average number of sus-
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ceptible contacts they have, targeted vaccination program, such as the age-targeted

vaccination strategies in chapter III, aims to exploit the structure of the contact net-

work in deciding which individuals to remove to most effectively interrupt the spread

of disease. Reducing the connectivity of a network by targeted removal of nodes is a

task very similar in spirit to traditional graph partitioning problems.

However, even finding a bisection of a network by removing the minimum possible

number of edges is an NP-hard problem. While there are many well-established graph

partitioning algorithms that give good results in practice, multi-way partitioning al-

gorithms are typically presented without derivation and proved to perform well. One

downside to this approach is that the derivation of an algorithm can often provide

insights into why it works, or even into the underlying behavior of the system at

hand. In chapter IV of this dissertation, we derived a multi-way spectral partitioning

algorithm for minimum-cut graph partitioning from first principals. We found that

the resulting algorithm is a new one, though it shares some similarities with other

multi-way spectral partitioning algorithm, and that our algorithm reduces to Fiedler’s

Laplacian spectral bisection algorithm in the case of division into two equally sized

groups. Finally, we demonstrated that our algorithm performs comparably well to

the k-means algorithm in some benchmark cases.

In the final two chapters of this dissertation, I consider the role of spatial struc-

ture and spatial heterogeneity in shaping population dynamics. Spatial variation in

ecological systems can arise both as a consequence of variation in the quality and

availability of resources and as an emergent property of spatially structured interac-

tions. In the context of host-parasitoid interactions, spatial structure in interactions

has long been of interest as a mechanism for promoting stable coexistence of hosts

and parasitoids. Insect parasitoids, whose larvae develop in or on a single host and

kill or sterilize it in the process, are a large, diverse group of insects that have been

frequently employed in the biological control of agricultural pests and invasive insect
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herbivores. Though spatially explicit models of host-parasitoid have been studied

for decades, this research has focused almost exclusively on homogeneous landscapes,

where each location is identical in resources and connectivity. In contrast, there is

substantial evidence from field studies of natural and managed systems that spatial

variation in resource quality can impact the control of herbivores by their natural

enemies.

In order to investigate the effects of spatial heterogeneity in resource quality on

the large-scale patterns of herbivore and parasitoid populations, we added local vari-

ation in herbivore fecundity to a spatially explicit model of host-parasitoid dynamics.

We found that small variation in plant quality at a fine spatial scale decreased overall

herbivore populations, as parasitoid populations on low-quality plants were subsi-

dized by high-quality neighbors. On landscapes with large, homogeneous regions of

high- and low-quality plants, herbivore populations increased with variation in plant

quality. Overall, our results demonstrate that local variation in resource quality

profoundly influences global population dynamics. In particular, fine-scale variation

in plant quality enhanced biological control of herbivores by parasitoids, suggesting

that adding plant genetic variation back into agroecosystems might increase rates of

parasitism on pest insects.

We also observed differences in the spatial structure of host and parasitoid popu-

lation dynamics based on the spatial arrangement of high and low quality plants. In

landscapes with large blocks of homogeneous plants, the population dynamics in each

homogeneous block reflected the local plant quality. However, the spatial population

dynamics on a landscape with fine-scale variation in plant quality more resembled

those at the average plant quality, with traveling waves of hosts and parasitoids

“overrunning” the spatial variation in plant quality.

To investigate more generally the role of spatial scale in the dynamics of dispersing

populations, we consider the toy model of a population that reproduces and diffuses

4



according to a simple integrodifference equation, with reproduction occurring locally

according to the logistic map and dispersal using a Gaussian kernel. Using analyti-

cal and simulation methods, we discovered conditions under which certain forms of

spatially heterogeneous population distributions are stabilized. Even in parameter

regimes where a well–mixed population would exhibit chaotic dynamics, we found

that different dispersal parameters could lead to a range of spatially and temporally

periodic patterns in population density. However, we also find that dispersal limits

the extent to which variation in population density can be maintained at high spatial

frequencies, and derive a constraint on the power spectrum of the spatially varying

population density at any given time.

Chapter II of this dissertation has been published in full (along with Appendix

A) as Riolo, M. A., A. A. King, and P. Rohani. 2013. Can vaccine legacy explain the

british pertussis resurgence? Vaccine 31:5903–5908. A version of chapter IV has been

published as Riolo, M. A., and M. E. J. Newman. 2012. First-principles multiway

spectral partitioning of graphs. CoRR abs/1209.5969
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CHAPTER II

Can vaccine legacy explain the British pertussis

resurgence?

2.1 Introduction

Pertussis resurgence in some highly-developed countries has caused a good deal

of alarm. In the United Kingdom, the unexpectedly large outbreak of 2012 — re-

sponsible for thirteen infant deaths — has prompted consideration of new prevention

measures, including vaccination of pregnant women and a booster dose for adolescents.

(United Kingdom. Health Protection Agency., 2012a,b; Gulland, 2012) Figure 2.1 de-

picts annual pertussis incidence against the background of vaccine uptake in England

and Wales.(United Kingdom. Health Protection Agency., 2008, 2012b) Since 2000,

a gradual increase in incidence among adults has been apparent. More recently, a

sharp rise in incidence among infants and toddlers has become evident. This pattern

of increasing incidence, especially among adults and adolescents, has emerged over

the past two decades in a number of countries where pertussis had been considered

under control. (Celentano et al., 2005; Güriş et al., 1999; Skowronski et al., 2002;

Quinn and McIntyre, 2007; Crowcroft and Pebody, 2006; Tan et al., 2005; Wood and

MacIntyre, 2008)

A variety of candidate mechanisms have been proposed to explain this phenomenon.
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Figure 2.1:
Incidence of pertussis in England and Wales over time based on total notifications
(panel A, solid line) and lab confirmed cases by age (panel B). (United Kingdom.
Health Protection Agency., 2013, 2012b) Incidences are plotted on a square root scale
for clarity. Estimated vaccine uptake for each birth year is plotted in panel A (dashed
line).(United Kingdom. Health Protection Agency., 2008) Although the national im-
munization program began in 1957, uptake data is unavailable between 1957 and 1966.
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Chief among these are the vaccine-driven evolution of Bordetella pertussis (the main

aetiological agent),(Mooi et al., 2001) improved surveillance, (Cherry, 2003) changes

in diagnostic tests,(Cherry, 2012) cessation of natural immune boosting, (Águas, 2006;

Lavine et al., 2011) and the switch from whole-cell to acellular vaccines,(Shapiro,

2012) with concomitant changes in the nature and duration of protection.(Cherry,

2012; Shapiro, 2012) Less attention has focused on the long-term consequences of

inadequate coverage with an imperfect vaccine. Though effective vaccines have been

widely used in the England & Wales since 1957, their efficacy has never been perfect

and vaccine coverage has only exceeded 90% since the 1990s. As we show here, the

gradual accumulation of a population of individuals who have avoided both infec-

tion and vaccination — and thus have escaped receiving protection — sets the stage

for a resurgence, even in the absence of the aforementioned complexities. Focusing

squarely on the recent pertussis epidemiology in England and Wales, we developed a

transmission model to determine the extent to which observed patterns of incidence

are a predictable consequence of this legacy of imperfect vaccination.

2.2 Methods

We constructed an age-stratified compartmental model of pertussis transmission

dynamics. Individuals are categorised by yearly age groups up to seventy five, with

an additional category for infants under five months of age (i.e. too young to have

received at least two doses of pertussis vaccine under the pre-1990 vaccine schedule

in the UK). For convenience, these age categories are labeled with indices starting

from zero, so that N0 designates the number of 0–5 month olds, N1 is the number of

6 month–1 year olds, N2 is the number of 1–2 year olds, and so on up to N75. The

total population is designated by N with no subscript.

All ages except for 0–5 mo olds are tracked as yearly cohorts, the cutoff occurring

at the start of each school year. Newborns are assumed to age continuously at rate

8



a = 12
5

yr−1, corresponding to the assumption that a newborn spends on average 5 mo

in the 0–5 mo age category. Susceptible newborns aging at time t have probability

u(t) e of being protected by vaccination, where u(t) is the vaccine uptake at time t

and e is the vaccine efficacy.

The stochastic model is initialized with conditions from the pre-vaccine era and

proceeds by updating the numbers of individuals in each age category who are sus-

ceptible, latently infected, infectious, recovered, or vaccinated, respectively. Those in

the recovered and vaccinated classes are protected from infection for a period, the du-

ration of which is a random variable, as we detail below. The dynamics of susceptible

(Si), exposed (Ei), infectious (Ii), recovered (Ri and R′i), and vaccinated (Vi and V ′i )

individuals in age group i are given by:

dSi
dt

= wV V
′
i + wRR

′
i − λi(t)Si +

(bN − aS0)δi,0 + a(1− eu(t))S0δi,1 (2.1)

dEi
dt

= λi(t)Si − γEi + aE0(δi,1 − δi,0) (2.2)

dIi
dt

= γEi − rIi + aI0(δi,1 − δi,0) (2.3)

dRi

dt
= rIi − wRRi + aR0(δi,1 − δi,0) (2.4)

dR′i
dt

= wRRi − wRR′i + aR′0(δi,1 − δi,0) (2.5)

dVi
dt

= eu(t)aS0δi,1 − wV Vi + aV0(δi,1 − δi,0) (2.6)

dV ′i
dt

= wV Vi − wV V ′i + aV ′0(δi,1 − δi,0) (2.7)

where δi,j is the Kronecker delta, which is one if i and j are equal and zero otherwise.

Age group i gains susceptible members through immune waning and, in the first

two age categories, births and the ageing of susceptible newborns, respectively. The

birth rate b = 1
75

yr−1 is chosen to keep the population steady given the 75 year

9



lifespan. Individuals leave the susceptible category by becoming exposed or, in the

infant category, aging.

The force of infection acting on age group i at time t is

λi(t) = qΣkFhk(t)chk
Ĩk

Ñk

where chk is the average rate (in contacts per year) at which an individual who is 5h–

(5h+ 5) years old makes contact with 5k–(5k + 5) year olds and q is the probability

of infection given exposure. The number of infected individuals and total individuals

in the kth five-year age block are denoted by

Ĩk = Σ5k<i≤5k+5 Ii and Ñk = Σ5k<i≤5k+5 Ni

with I0 and N0 included in the calculation of Ĩ0 and Ñ0, respectively.

Values of cij and q were adopted from an earlier study. (Rohani et al., 2010) In par-

ticular, rates of daily contacts cij were obtained from the POLYMOD study,(Mossong

et al., 2008) (see Figures A.1D and 2.2A) and q was fixed at 4% as in Ref. Rohani

et al., 2010, leading to a prevaccine era mean age of first infection consistent with

historical estimates (Fig. 2.2B). The necessary steps for obtaining contact rates cij

from the data are described in detail in Section A.1 of the supplementary material.

To capture the strong seasonality in children’s social contacts,(Eames et al., 2012)

we incorperated an age-dependent seasonal forcing term Fhk(t) based on school hol-

idays. For 0 < h < 3 or 0 < k < 3 (i.e. when either party is 5–15 years old),

F (t) = κ(1 ± 0.2), with + when school is in session and − during school holidays.

Because there are more school days than holidays, we use the normalization constant

κ to ensure that F (t) has a mean of 1.0 over the whole year. The school holidays used

in our simulations were July 19 – September 8, October 28 – November 3, December

21 – January 10, and April 10 – 25. If neither party is 5–15 years old, Fhk(t) = 1,

10



leaving the contact rate unaltered year round.

Beginning in 1957, we assume that infants are vaccinated at six months of age.

From 1966, we used available estimates of vaccine uptake for the UK (Figure 1A).(United

Kingdom. Health Protection Agency., 2008; Rohani et al., 2000) Uptake data for the

period prior to 1966 are unavailable; we assumed uptake ramped up linearly from

1957 to 1966. The results presented in the main text assume a value of 60% cover-

age in 1957. We explored other values; our results are qualitatively unaffected (see

appendix S2). In the absence of a serological marker for protection, the efficacy of

pertussis vaccines and the durations of infection- and vaccine-derived immunity are

highly uncertain. (Mills et al., 1998; Wendelboe et al., 2005) The results presented

in the main text assume a vaccine efficacy of 85%, biologically plausible for both the

acellular and whole cell vaccines, (Greco et al., 1996) though other efficacies produced

qualitatively similar results (see appendix S3). In further tests of the robustness of

our results, we similarly varied our assumptions regarding human lifespan and the

shape of the contact matrix (see appendix S1 and S6).

In our simulations, individuals exposed to pertussis become infectious after an

average of 8 days (γ = 365
8

yr−1) and the infectious period lasts 15 days on average

(r = 365
15

yr−1), again as in the model of (Rohani et al., 2010).

We model two stages of resistence, Ri and R′i, so that the duration of immu-

nity is gamma distributed with shape parameter two. The waning rate is given

by wR = 2.0
dR

yr−1 where dR denotes the mean duration of infection derived immu-

nity. Like infection derived immunity, the duration of vaccine derived immunity is

gamma distributed with shape parameter two. In simulations with lifelong natural

(or vaccine–derived) immunity, wR (or wV ) is set to zero. We varied the assumed

durations of vaccine- and infectionderived immunity, respectively, between lifelong

immunity and durations gamma-distributed with means of 70, 40, and 10 years (see

Table 2.1).
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Mean Duration
of Immunity

Probability of remain-
ing immune after 10
years

Probability of remain-
ing immune after 25
years

Probability of remain-
ing immune after 50
years

70 years 0.97 0.84 0.58
40 years 0.91 0.64 0.29
10 years 0.41 0.04 0.0005

Table 2.1: Biological interpretation of average immune durations.

For the initial conditions of our simulations, we used the population at the end of

the 150th year of a run with lifelong immunity, no vaccination, and a total population

of approximately sixty-three million individuals. All simulations were run for 250

years, with vaccination beginning in the 157th year. At the end of each year, for

each age category we recorded the population, number of susceptibles, number of

successful vaccinations, and number of cases. The pre-vaccine behavior among runs

with the same duration of natural immunity was very consistent (see Figure 2.3 and

Figure S7).

Because of the computational cost of using Gillespie’s direct algorithm with so

many age-categories, we use a multinomial τ–leaping method,(Pettrgrew and Resat,

2007) in which we move forward by a fixed time step τ and determine the set of

events that occurred during that time step. All simulations presented in this paper

use τ = 1
365

yr.

At each step, we consider all the ways an individual can leave each category as a

set of competing events. For a sufficiently small time step τ , we can approximate an

individual’s probability of leaving a category as the total rate at which individuals

leave multiplied by the length of the time step. For example, susceptible newborns

leave the category by aging at rate a or by becoming exposed at rate λi(t), so each

of the S0 susceptible newborns has probability (a + λ0(t))τ of leaving the category.

We determine the total number who leave the category drawing from a binomial

distribution, X ∼ B(S0, p0) in our example. The expected fraction of these individuals

leaving via each event is proportional to that event’s rate. Continuing our example,

12



the X individuals leaving the susceptible newborn category are aging with probability

a
a+λ0(t)

and have been exposed with probability λ0(t)
a+λ0(t)

, so we draw the numbers of

aging and exposure events (Xa, XE) from a multinomial distribution with X trials

and probabilities ( a
a+λ0(t)

, λ0(t)
a+λ0(t)

). For aging infants, we perform one more binomial

draw with probability eu(t) to determine how many aging infants are successfully

vaccinated.

The number of births, which don’t deplete any population categories, is deter-

mined by drawing from binomial distribution B(N, bτ), where b is the per capita

annual birth rate. Because this is a discrete stochastic model, we also include an

immigration rate of one infected individual per year, uniformly distributed among

age categories to help distinguish between stable eradication and a chance extinction

in an easily re–invaded population. Once the set of events taking place has been

determined, the whole population is updated according to those events and the time

t is incremented by τ .

2.3 Results

In Figure 2.2, we show a typical realization of the model, under the conservative

assumption that infection-derived immunity is lifelong and that vaccination protects,

on average, for 70 years (note that we did not take into account under-reporting,

thus all cases are included in model incidences). Vaccine efficacy is assumed to be

85%, consistent with estimates from Ref. Blennow et al., 1988. Aggregate annual

incidence, the estimated annual vaccine uptake and the percentage of the population

susceptible to pertussis are shown in Figure 2.2B.

Consistent with observed patterns in England & Wales, incidence in our model

declines with the onset of paediatric vaccination and rebounds during the early 1980s,

after several years of low uptake due to the mid-’70s vaccine scare, before eventually

returning to lower overall incidence and a long inter-epidemic period. Although high
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Figure 2.2:
A. Age-specific pattern of contacts per day, normalized to run between 0 (white)
and 1 (red). Infants, toddlers, and adults are involved in fewer contacts per day
than school aged children. Furthermore, most contacts are between people of similar
age (the strong, central diagonal). Of the remaining contacts, most appear to be
inter-generational (the two weaker diagonals), largely composed of household contacts
between parents and children. Panels B, C & D depict the results of a single realization
of our transmission model with lifelong vaccine-derived immunity and 85% vaccine
efficacy. B. Overall incidence (red), vaccine uptake (purple), and the overall fraction of
the population susceptible to pertussis (cyan) by year. C. Incidence (in cases/100,000)
by age during each year of a realization of the model. D. The fraction of each age
group that is susceptible to pertussis, plotted over time.

vaccine coverage is maintained, our model predicts a gradual increase in overall inci-

dence beginning in the 1990s (Fig. 2.2B). In Figure 2.2C, we dissect these incidence

data by age group, demonstrating that, as expected, in the pre-vaccine era, pertussis

was most common in young children (with a mean age at infection in our model of 5

years). This figure also shows that the onset of immunization was accompanied by

a rise in the age of cases and that, crucially, the increase in overall incidence over

the past two decades appears to be primarily among adults. From the rollout of the

national infant vaccination programme in 1957 to the present day, the mean age of

infection in our model climbed steadily, excluding the slight dip following the vaccine

scare of the mid-1970s.
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This shift in age distribution was also apparent in the immunological profile of our

simulated population (Fig 2.2D). In the pre-vaccine era, the proportion of susceptibles

among the population fell sharply with age, as expected for a childhood infection.

With the onset of paediatric vaccination, the fraction of susceptible children decreased

substantially, but those who escaped protection (either due to incomplete coverage

or primary vaccine failure) remained susceptible into adulthood. This effect is clearly

visible in Figure 2.2D as a spillover of susceptibles into older age groups over time,

with cohorts born at the start of the vaccine era on the leading edge of the wave.

Crucially, this rising incidence of pertussis in adults and adolescents occurred re-

gardless of the assumed duration of vaccine-derived immunity. We provide support

for this statement in Figure 2.3, which depicts the annual pertussis incidence in dif-

ferent age groups for varying durations of vaccine- and infection-derived immunity.

When infection-derived immunity was lifelong, an increase in incidence among ado-

lescents and adults was inevitable if vaccine-induced protection was not permanent

(Fig. 2.3D). With long-lasting vaccine-derived immunity, there was also a notable

increase in infant (<1 year old) cases (Fig. 2.3B).

2.4 Discussion

Our results suggest that rising pertussis incidence among adults and adolescents

should not be surprising. Indeed, our simulations, even with the conservative as-

sumptions of lifelong natural immunity, a 70-year mean duration of vaccine immunity

and 85% efficacy predicted a long-lasting honeymoon period (McLean and Anderson,

1988) followed by a resurgence among older age groups. This pattern is a legacy of

incomplete vaccination with an imperfect vaccine: individuals born in the vaccine

era are less likely to be infected as children and more likely to remain susceptible

as teens and adults than their pre-vaccine predecessors. Thus, during the first few

decades of vaccination, the population benefits both directly from vaccine protection
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Figure 2.3:
Pertussis incidence through time for (A) the whole population, (B) infants under 1
year old, (C) toddlers 1-4 years old, and (D) adults and adolescents over 15 years
old, plotted for model realizations assuming lifelong natural immunity. In each panel,
different coloured lines indicate predicted incidence when the duration of vaccine-
derived immunity is varied from lifelong (black) to a mean of 10 years (lightest). For
clarity, only one realization is plotted for each set of parameters, but other realizations
matched closely (see Fig. A.8). In the online supplementary materials, we present
analogous figures under alternative assumptions of the durations of vaccine-derived
and natural immunity.

of children and indirectly from herd immunity established by natural infection in the

pre-vaccine era. As cohorts of children born in the vaccine era grow up, the latter
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effect diminishes and incidence among adults inevitably rises.

In view of the considerable uncertainty surrounding the nature and duration of

acquired immunity to pertussis,(Mills, 2001) it is important to assess the robustness

of this conclusion. Accordingly, we varied model assumptions regarding the durations

of natural and vaccine-induced immunity. When these were assumed equal, there was

no resurgence. Rather, the model predicted substantially higher and steady incidence

among all age groups (Fig A.8). This prediction contradicts observation.

Our use of a model in which infection-derived immunity can be lifelong may at

first glance appear to be at odds with studies documenting reinfection.(Wendelboe

et al., 2005) However, a number of population-level studies have found that incidence

data are best explained by transmission models with long-lasting natural immunity.

(Wearing and Rohani, 2009; Broutin et al., 2010; Rohani et al., 2010) Moreover,

evidence suggesting that pertussis reinfections are frequently less transmissible than

are primary infections, (Mertsola et al., 1983; Wendelboe et al., 2007) goes some way

toward resolving the apparent discrepancy between immune durations estimated from

population-level data on the one hand and clinical studies on the other.

The demographics of our model are a rough caricature, with a constant birth rate

and type I demographics (life expectancy of seventy five years). The observed slow rise

in adult incidence driven by the aging of vaccine-era cohorts, however, is reasonably

robust: the same trends emerge under a variety of demographic assumptions (Fig.

A.10), though the cohort effects exhibited in Figure 2.3 are less sharply defined. In

addition, incorporating immigration and population expansion would enhance the

legacy effect described here. Similarly, the legacy of incomplete vaccination is still

observed when alternative contact matrix structures are assumed (Fig. A.2). However

the detailed epidemiological picture, including the shape of the population’s immunity

profile and the timing and speed of the predicted resurgence, is affected by the precise

structure of the contact network.
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These caveats notwithstanding, the principal conclusion of our accounting should

be clear. The legacies of infection and vaccination are visible in a population’s im-

munity profile for decades and leave long-lived signatures on incidence dynamics. We

submit that the recent resurgence in adult and adolescent pertussis cases may be best

understood as the end of a long honeymoon period, during which infection-derived

herd immunity and imperfect vaccine protection combined to greatly reduce incidence.

In the years to come, as the children who benefitted from infection-induced immunity

die, more effective vaccines and vaccination campaigns will likely be required if we

are to regain the upper hand on this disease.

18



CHAPTER III

Troubleshooting pertussis vaccination: one booster

schedule doesn’t fit all

Pertussis has become a major public health concern in many countries where it

was once a plausible candidate for vaccine-based elimination. Although the mech-

anisms behind these resurgences remain elusive, many countries have nevertheless

recommended additional booster vaccinations against pertussis, the timing and num-

ber of which vary widely. We searched for cost-effective booster vaccination strategies

using a genetic algorithm and found that which booster schedules most successfully

controlled pertussis transmission strongly depended on why pertussis transmission

had persisted even with routine infant vaccination. Our results suggest that booster

vaccination schedules are most effective when tailored to the problem at hand and

that that misidentifying the causes of pertussis resurgences may be costly.

Reconciling the recent resurgences of pertussis in many highly-vaccinated coun-

tries with the initial successes of routine pertussis vaccination programs and the global

heterogeneity in recent trends of pertussis incidence has proved difficult (Jackson and

Rohani, 2013), and a wide variety of competing explanations have been proposed.

There are many mechanisms which could contribute to increases in pertussis inci-

dence, including improvement in the surveillance and diagnosis of pertussis (Cherry,

2003, 2012) or reduction of the protection afforded by vaccination, whether due to
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the evolution of Bordetella pertussis (Mooi et al., 2001) or the switch from whole cell

to acellular vaccines (Shapiro, 2012). Even without any changes in the nature of per-

tussis transmission, control, or reporting, a resurgence of pertussis might be expected

in some countries, as a simple mathematical consequence of a history of insufficient

vaccination (Riolo et al., 2013).

Disentangling the many pathways to pertussis resurgence is particularly difficult

because pertussis immunity is not well-understood. With no known, reliable markers

of pertussis immunity (Farizo et al., 2014), the properties of infection- and vaccine-

derived protection against pertussis must be inferred indirectly. However, the models

of pertussis immunity that best fit individual level clinical data and population level

incidence data, respectively, are strikingly different. While the data from reinfection

studies (Jenkinson, 1988) and animal models (Warfel et al., 2014) can be explained

by a vaccine that protects against disease for a limited duration and may not pro-

tect against transmission at all, large scale pertussis incidence data are more con-

sistent with long-lasting vaccine-derived immunity and sufficiently little transmission

of pertussis among vaccinated and previously infected individuals as to confer some

protection on unvaccinated individuals via herd-immunity (Nielsen and Larsen, 1994;

Wearing and Rohani, 2009; Blackwood et al., 2013).

Despite the uncertainty surrounding the properties of pertussis vaccines, several

countries experiencing increased pertussis incidence have supplemented existing infant

vaccinations with additional booster vaccinations (Zepp et al., 2011). We investigated

which booster schedules afforded the greatest reduction in disease burden for the least

logistical and monetary cost. Because the causes of the pertussis resurgence remain

unclear, and need not be the same in every location, we consider four scenarios in

which infant vaccination alone may fail to eliminate pertussis:
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Scenario I: Insufficient vaccine coverage. Perhaps the simplest reason a disease

may persist despite infant vaccination is if too few infants are vaccinated to curtail

transmission. This scenario would describe, for example, Thailand and Italy for

several decades after the introduction of pertussis vaccines, where an increase in

vaccine coverage, such as has occurred in the past three decades in both countries,

has the potential to substantially reduced pertussis incidence. In many other regions,

low vaccine coverage is likely to remain an important factor in the persistence of

pertussis transmission. As of October 2013, WHO estimates of vaccine coverage

suggest that in 10% of countries for which vaccination data is available at most 80%

of infants receive the recommended three doses of pertussis vaccine (World Health

Organization Department of Immunization, Vaccines And Biologicals, 2013). Even

in nations with high overall vaccination rates, communities with high concentrations

of unvaccinated or undervaccinated children may be at risk of outbreaks, as seems to

be the case in some regions of the US (Omer et al., 2009).

Scenario II: Low efficacy. Primary vaccine failure, where a vaccine sometimes

fails to provide protection when administered, is another mechanism by which a

disease might persist despite infant vaccination efforts. For example, the outbreaks

of pertussis in Canada beginning in the late 1980s have largely been attributed to the

poor efficacy of the Connought Laboratories adsorbed vaccine that was used between

1985 and 1998 (Halperin et al., 1989; Ntezayabo et al., 2003). More generally, the lack

of serological measures of immunity to pertussis makes it very difficult to determine

the rates of primary vaccine failure, much less distinguish such failures in “take” from

other phenomena such as waning immunity.

Scenario III: Waning immunity. Even if vaccination is widespread and initially

efficacious, infant vaccination alone may fail to achieve elimination if vaccine derived

immunity is only temporary. Some waning of vaccine derived immunity to pertussis

21



is supported by data at both the population and individual scales, but while popu-

lation level patterns of incidence generally suggest long-lasting immunity (Wearing

and Rohani, 2009), individual level data on reinfections is better explained by a much

shorter duration of protection (Jenkinson, 1988).

Scenario IV: leaky immunity. One potential mechanism for the changing epi-

demiology of pertussis is the evolution of B. pertussis (Mooi et al., 2001). In the

case of multiple circulating strains of pertussis, for which vaccination induces at most

limited cross-immunity, the probability of developing a transmissible, symptomatic

infection after contact with an infectious individual may be reduced (but not elim-

inated) by vaccination. Such “leakiness” (Halloran et al., 1992) in vaccine derived

immunity is another mechanism with the potential to facilitate the persistence of

pertussis despite infant vaccination.

For simplicity, our current study considers only the extreme cases where one of

these problems alone is responsible for ongoing pertussis transmission. However,

finding successful, cost-effective booster schedules remains a non-trivial task. Because

the space of possible schedules is so high-dimensional and the dynamics of infectious

diseases are so nonlinear, many traditional optimization tools are ill-suited for the

problem.

Here, we use a genetic algorithm (GA) to evolve cost-effective booster schedules

by simulating the operation of natural selection on a “population” of schedules for

booster vaccination (Holland, 1992). Each strategy in the population has a geno-

type that encodes its prescribed schedule of booster vaccinations (Fig. 3.1A). The

choice of how to encode strategies can have important effects on the performance of

a genetic algorithm, affecting both linkage and epistasis between genes as well as the

topographical features of the fitness space (Davidor, 1990; Jones and Forrest, 1995).

In the current study, we encode booster schedules on a single chromosome containing
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Figure 3.1: Schematic showing the operation of the genetic algorithm on booster
strategies. Panel A illustrates a single chromosome representation of a
booster strategy, with each site on the chromosome determining the vac-
cine uptake of an age group. Panel B illustrates a recombination of two
parent schedules. Panel C illustrates a point mutation changing the sched-
uled vaccine uptake in a single age group.
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the probability of vaccination for each age cohort, to be carried out at the start of

the each school term.

To evaluate the fitness of a strategy, we simulate transmission dynamics following

the introduction of the booster schedule using an age-structured SEIR model. Indi-

viduals are born susceptible, with routine infant vaccination occurring at five months

of age. Susceptible individuals become exposed through contact with infectious indi-

viduals and, after a latent period, become infectious. After recovering, individuals are

immune to further infection. In the current study, we consider infection derived im-

munity to be lifelong, based on previous studies of pertussis in Sweden and Thailand,

which found that previously infected individuals contributed very little to transmis-

sion (Rohani et al., 2010; Blackwood et al., 2013). The number of individuals of

each age in each state (susceptible, exposed, infectious, recovered, and vaccinated) is

updated stochastically with a fixed time step of one week.

Because the past history of pertussis incidence and infant vaccination are likely

to have long-lasting effects on ongoing transmission dynamics (Riolo et al., 2013), we

simulated pre-booster conditions with the same history of vaccination and chose pa-

rameters of coverage, efficacy, duration, and leakiness to give the same overall disease

burden (measured in DALYs) in the two decades preceding the booster campaign

(Fig. 3.2A-D).

We can think of the simulated transmission dynamics under a booster schedule as

the phenotype of that strategy, with the combined cost of infections and vaccinations

incurred during the simulation determining the strategy’s fitness. We assessed the

cost of infections based on the expected disability-adjusted life-years (DALYs) lost,

calculated as the expected duration of illness plus, in the case of a death, the expected

years of life lost (average lifespan minus the age at death). For simplicity, we assume

that the costs of vaccination scale linearly with the number of doses given, rather

than considering aspects of vaccination effort which may be nonlinear.
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Figure 3.2: Pre-boosting incidence (solid red line) and infant vaccine uptake (dashed blue line)
with 70% coverage (A), 70% efficacy (B), a 45 year mean duration of immunity (C),
leaky immunity preventing 85.5% of infections (D). In each case, we simulated 100
years pre-vaccine (plotted starting at year 50). In year 100, vaccination began at 60%
of its eventual coverage level and increased linearly over 20 years.
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To generate a new population of booster schedules, parent schedules are chosen

using “tournament selection”(Goldberg and Deb, 1991), in which pairs of schedules

are selected uniformly at random with replacement to compete for the opportunity

to reproduce. In each tournament, more fit schedule has a higher probability (in the

current study, 90%) of winning. Carrying out N such tournaments, where N is the

population size (in the current study, 2000 individuals), yields a pool of N parents.

Note that while more fit strategies are likely to appear more often as parents than

less fit strategies, a strategy’s reproductive opportunities are only determined by its

rank. This has the benefit of being less sensitive to the particular fitness function

used than a selection method relying on the actual fitness values of strategies would

be.

Once N parents have been selected, these parents are divided into pairs and each

(not necessarily unique) pair of parents produces a pair of offspring. The parent

chromosomes undergo crossover at a randomly chosen point along the chromosome

(Fig. 3.1B). In each child chromosome, point mutations occur at a fixed rate µ (set

to 0.05 per site in our experiments, which yields an average of 1.25 mutations per

chromosome (Fig. 3.1C). This process leaves us with a new generation of booster

strategies, ready to be evaluated through simulation.

Visualizing the evolving population of booster schedules presents its own chal-

lenges. While an average strategy can provide a rough idea of a genetic algorithm’s

behavior, what we are often interested in is more akin to a “typical good strategy,”

particularly if our algorithm may have discovered multiple, comparably fit strate-

gies. Continuing the analogy of booster schedules as genotypes, we are interested

in something like the consensus sequence of the most successful species-like clusters

of schedules. To this end, we constructed a nearest-neighbor network of the most

successful schedules found by the GA and applied a spectral community detection

algorithm to find clusters in the network (Riolo and Newman, 2012). This allows
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us to visualize the distribution of alleles within each cluster of schedules in a more

intuitive way, such as looking at the interquartile range of booster coverage in each

age group, without losing as much information about the correlation between traits

as we would by looking at the same summary statistics over the whole population.

In all four scenarios, the GA rapidly converges on a population of booster sched-

ules with lower combined vaccination and disease costs than the initial, randomly

generated population of strategies (Fig. B.1). When vaccine coverage of infants was

insufficient (Scenario I), the successful booster schedules found by our GA had, on

average, very little vaccination in older age groups, focusing most of their vaccination

effort on young children (3.3A), which achieved more reduction of disease for less

vaccination effort than the initial random population of strategies (Fig. B.2 & B.3).

For an infant vaccination program with low coverage (Scenario II), we found five

distinct clusters of strategies, each corresponding to adding a single booster at 1, 2,

3, 4, or 5 years of age. Our results for a low efficacy vaccine were very similar (Fig.

B.4B, Fig. 3.3B), with the exception that a higher vaccination effort was necessary

to achieve the same effective coverage from the booster vaccine. In both cases, the

most effective strategies came in the form of a single pre-school booster, the timing

of which made little difference to fitness as long as it came before children entered

school, with the high contact-rates and strong age-assortative mixing that come with

it (Fig. 3.5A,B).

Booster schedules for a waning vaccine (Scenario III) differ greatly from those

evolved to deal with low coverage or low efficacy (Fig. 3.3C). The most successful

schedules call for one booster in the late teens and a second booster anytime between

35 and 45 years of age (with the exception of the strategy group shown in purple

which does not include a single teenage booster but would, on average, be expected

to include one booster between the ages of 15 and 35). These differences can be

understood as a difference in the age-distribution of susceptible individuals. When
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Figure 3.3: Best booster schedules found for 70% infant coverage (A), 70% efficacy (B), a 45 year
mean duration of immunity (C), leaky immunity preventing 85.5% of infections (D).
The best 500 booster schedules found in the last algorithm generation of each scenario
are arranged into a network where each schedule is connected to the nearest 25 (under
L1 distance between genomes) strategies. The strategies are the clustered using a
spectral partitioning algorithm (cluster indicated in the figure by color). The large
plot shows the interquartile radius within each cluster of coverage at each age group
(colors in plot correspond to colors in network). The inset plot shows the fitness costs
(in DALYs) of strategies in each family, ordered from most fit (red, left) to least fit
(purple, right).

we compare booster schedules evolved for vaccines with other durations of immunity

(Fig. 3.4), we see that, although the number and timing of vaccinations depend on

the rates of waning, successful schedules maintain vaccine-derived protection in large

fraction of the population aged 5-45 years, particularly the school-aged children.
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Figure 3.4: The cumulative number of booster vaccinations received over a lifetime, plotted for
varying durations of vaccine derived immunity. In each case, the mean number of
doses is plotted for the top quartile of booster schedules in the last generation of the
genetic algorithm.

Leaky immunity (Scenario IV) presents yet another picture. The GA finds no

booster schedules that effectively reduce the disease burden (Fig. B.2D). Looking

at the nearest-neighbor network of the most successful strategies, there is no dis-

cernible community structure and the best strategies eschew booster vaccination (Fig.

3.3D). Again, the explanation lies in the patterns of susceptibility in the population.

With infant vaccination already granting leaky protection to everyone, any remaining

transmission already occurs among vaccinated individuals and cannot be disrupted by

additional booster vaccinations (Fig. 3.5D). (Results for the scenario where booster

vaccinations cause immunity to become less leaky are presented in SOM and resemble

the results for a low level of primary vaccine failure.)
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Figure 3.5: Susceptibilty by age under the most successful booster schedules for 70% infant cover-
age (A), 70% efficacy (B), a 45 year mean duration of immunity (C), leaky immunity
preventing 85.5% of infections (D), plotted during the first fifty years following the
introduction of booster vaccinations. Color intensity indicates the percentage of indi-
viduals in each age group who are susceptible at each time. In the leaky immunity
case, 14.5% of vaccinated individuals are included in this calculation.
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Our model is relatively simple and leaves out many mechanisms that may play

important roles in pertussis transmission and control, including the spatial or social

aggregation of unvaccinated individuals (Omer et al., 2009), the occurrence of asymp-

tomatic cases of pertussis (de Greeff et al., 2010), and household structure (de Greeff

et al., 2010). Perhaps equally importantly, our model does not attempt to mimic the

real vaccination history and demographics of any place, instead exploring the rela-

tively simple case of a linear increase in vaccine uptake followed by sustained, high

levels of infant vaccination.
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Figure 3.6: The disease burden (A), vaccine doses used (B), and total fitness cost (C) of applying a
boosting schedule evolved for each scenario in each other scenario. The representative
boosting schedules are constructed by taking the mean coverage at each age in the
most fit strategy families. These representative schedules (Strategy used) are applied
to each scenario (Actual scenario) and the mean fitness cost among 120 replicant runs
is plotted.

While our results do not predict the quantitative impact of any particular vaccine

schedule on any particular population, they nevertheless have implications for vaccine

policy. We find that optimal booster schedules for controlling pertussis differ greatly

for differing mechanisms of vaccine failure and that, for example, a booster vaccine

schedule optimized to compensate for primary vaccine failure may be extremely inef-

fective in controlling a pertussis resurgence caused by waning immunity and vice versa

(Fig. 3.6). Our results suggest that understanding pertussis immunity is critical to

developing cost-effective control strategies.
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CHAPTER IV

First-principles multiway spectral partitioning of

graphs

4.1 Introduction

In host-pathogen systems, the pattern of contacts between hosts can have impor-

tant consequences for disease dynamics and control (Chapter II&III, Newman, 2002).

One problem of ongoing interest is, given a network of contacts between hosts, how

to optimally target interventions against a disease (Eubank et al., 2004; Meyers et al.,

2005; Salathé et al., 2010).

Let us consider the simple, extreme case of targeted vaccination with a highly

effective vaccine against a highly transmissible disease. If we can expect each infected

node to spread the disease to all of its neighbors, then the problem is to vaccinate

individuals (i.e. remove vertices) in the network of susceptible hosts in such a way

as to partition the network into smaller groups, each isolated from the others. In

particular, for n is the total number of susceptibles and ni the number in group i, we

want to minimize the expected outbreak size

∑
i

ni
n
ni

where ni
n

is the probability that an outbreak starts in group i and ni is the number of
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individuals who will be infected if it does, subject to whatever constraints are applied

to the vaccination effort.

In the current study we will consider a related but more basic graph partitioning

problem, where one is given an undirected, unweighted graph of n vertices and asked

to divide the vertices into k nonoverlapping groups of given sizes, such that the number

of edges running between groups—the so-called cut size—is minimized. This is known

to be a computationally hard problem. Even for the simplest case where k = 2 it is

NP-hard to find the division with minimum cut size (Garey and Johnson, 1979). Good

approximations to the minimum can, however, be found using a variety of heuristic

methods, including local greedy algorithms, genetic algorithms, tabu search, and

multilevel algorithms. One particularly elegant and effective approach, which is the

subject of this paper, is spectral partitioning (Von Luxburg, 2007), which makes use

of the spectral properties of any of several matrix representations of the graph, most

commonly the graph Laplacian.

The first Laplacian spectral partitioning algorithms date back to the work of

Fiedler in the 1970s (Fiedler, 1973; Pothen et al., 1990) and were aimed at solving

the graph bisection problem, i.e., the problem of partitioning a graph into just two

parts. For this problem the underlying theory of the spectral method is well under-

stood and the algorithms work well. One calculates the eigenvector corresponding

to the second lowest eigenvalue of the graph Laplacian and then divides the graph

according to the values of the vector elements—the complete process is described in

Section 4.2. More recently, attention has turned to the general multiway partitioning

problem with arbitrary k, which is harder. One elementary approach is to repeatedly

bisect the graph into smaller and smaller parts using Fiedler’s method or one of its

variants (Simon and Teng, 1997), but this can give rise to poor solutions in some

commonly occurring situations. A better approach, and the one in widest current

use, is to construct the n× (k− 1) matrix whose columns are the eigenvectors for the
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second- to kth-lowest eigenvalues of the Laplacian (the n × n matrix containing the

degree of each vertex on the diagonal, a -1 in each position i, j where there is an edge

between vertex i and vertex j, and zeros elsewhere). The rows of this matrix define n

vectors of k − 1 elements each which are regarded as points in a (k − 1)-dimensional

space. One clusters these points into k groups using any of a variety of heuristics,

the most common being the k-means method, and the resulting clusters define the

division of the graph.

This method works well in practice, giving good results on a wide range of test

graphs, and if one is concerned only with finding an algorithm that works, one need

look no further. Formally, however, it does have some drawbacks. First, it is not a true

generalization of the method for k = 2. If one were to apply this algorithm to a k = 2

problem, one would end up performing k-means on the second eigenvector of the graph

Laplacian, which is a different procedure from the standard k = 2 algorithm. Second,

the algorithm is not normally even derived directly from the minimum-cut problem.

Instead, the algorithm is typically proposed without justification, and justified after

the fact by demonstrating that it performs well on particular partitioning tasks. This

approach is perfectly correct but somewhat unsatisfactory in that it does not give us

much understanding of why the calculation works. For that, it would be better to

derive the algorithm from first principles. The purpose of this paper is to give such

a derivation for multiway spectral partitioning. Our main goal in doing so is to gain

an understanding of why spectral partitioning works, by contrast with the traditional

presentation which demonstrates only that it does work. However, as we will see, the

algorithm that we derive in the process is different in significant ways from previous

spectral partitioning algorithms and in Section 4.4 we present results that indicate

that our algorithm can outperform more conventional approaches for certain classes

of graphs.

The previous literature on spectral partitioning is extensive—this has been an
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active area of research, especially in the last few years. There is also a large literature

on the related problem of spectral clustering of high-dimensional data sets, which can

be mapped onto a weighted partitioning problem on a complete graph using an affinity

matrix. The 1995 paper of Alpert and Yao (Alpert and Yao, 1995) provides an early

example of an explicit derivation of a general multiway partitioning algorithm. Their

algorithm is substantially different from the most commonly used variants, involving

a vector partitioning step, and also contains one arbitrary parameter which affects the

performance of the algorithm but whose optimal value is unknown. The algorithms

of Shi and Malik (Shi and Malik, 2000) and Meilă and Shi (Meilă and Shi, 1995)

are good examples of the standard multiway partitioning using k-means, although

applied to the slightly different problem of normalized-cut partitioning. A number of

subsequent papers have analyzed these algorithms or variants of them (Ng et al., 2001;

Meilă and Xu, 2003; Kannan et al., 2004; Lee et al., 2012). Summaries are given by von

Luxburg (Von Luxburg, 2007), Verma and Meilă (Verma and Meilă, 2003), and Bach

and Jordan (Bach and Jordan, 2006), although the discussions are in the language

of data clustering, not graph partitioning. Tu, Shieh, and Cheng (Tu et al., 2000)

derive a k-way partitioning algorithm based on the spectrum of the graph’s adjacency

matrix which has some features that seem in some sense analogous to those of our

graph Laplacian based algorithm, such as stretching the eigenvectors used according

to the sizes of the different groups. Perhaps the work that comes closest to our own

is that of Zhang and Jordan (Zhang et al., 2008), again on data clustering, in which

partitions are indexed using a set of (k− 1)-dimensional “margin vectors,” which are

oriented using a Procrustes technique. We also use Procrustes analysis in one version

of the method we describe, although other details of our approach are different from

the method of Zhang and Jordan.

The outline of this paper is as follows. In Section 4.2 we review the derivation

of the standard spectral bisection algorithm and then in Section 4.3 present in detail
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the generalization of that derivation to the multiway partitioning problem, leading

to an algorithm for multiway partitioning of an arbitrary undirected graph into any

number of groups of specified sizes. In Section 4.4 we give example applications of

this algorithm to a number of test graphs, and demonstrate that its performance is

similar to, or in some cases slightly better than, approaches based on k-means. In

Section 4.5 we give our conclusions and discuss directions for future research.

4.2 Spectral bisection

The term spectral bisection refers to the special case in which we partition a

graph into exactly k = 2 parts. For this case there is a well-established first-principles

derivation of the standard partitioning algorithm, which we review in this section. Our

goal in subsequent sections will be to find a generalization to the case of arbitrary k.

Suppose we are given an undirected, unweighted graph on n vertices, which we

will assume to be connected (i.e., to have only one component), and we wish to divide

its vertices into two groups which, for the sake of simplicity, we will take to be of

equal size 1
2
n (with n even). We define an index variable si for each vertex i = 1 . . . n

such that si = 1 if vertex i belongs to group 1 and si = −1 if i belongs to group 2.

We note that

1
2
(sisj + 1) =

{
1 if i and j are in the same group,

0 otherwise.
(4.1)

Thus the number of edges within groups is given by 1
2

∑
ij

1
2
(sisj + 1)Aij, where Aij

is an element of the adjacency matrix (having value 1 if there is an edge between i

and j, and zero otherwise) and the extra factor of 1
2

compensates for double counting

of vertex pairs in the sum. The total number of edges in the entire graph is 1
2

∑
ij Aij
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and hence the number of edges between groups—which is the cut size R—is given by

R = 1
2

∑
ij

Aij − 1
4

∑
ij

(sisj + 1)Aij

= 1
4

∑
ij

(1− sisj)Aij = 1
4

∑
i

di − 1
4

∑
ij

sisjAij, (4.2)

where di =
∑

j Aij is the degree of vertex i. Noting that s2
i = 1 for all i, this equation

can be rewritten as

R = 1
4

∑
ij

diδijsisj − 1
4

∑
ij

Aijsisj = 1
4

∑
ij

Lijsisj, (4.3)

where δij = 1 if i = j and 0 otherwise. Lij = diδij − Aij is the ijth element of the

graph Laplacian matrix L, which contains the degrees of vertices on the diagonal and

-1s denoting edges. Alternatively, we can write R in matrix notation as

R = 1
4
sTLs, (4.4)

where s is the n-component vector with elements si.

Our goal, for a given graph and hence for given L, is to minimize the cut size R

over possible bisections of the graph, represented by s, subject to the constraint that

the two groups are the same size, which is equivalent to saying that
∑

i si = 0 or

1T s = 0, (4.5)

where 1 is the uniform vector (1, 1, 1, . . .). (Note that, for division into two groups

of n1 and n1 vertices, respectively, this constraint would be replaced by
∑

i si =

n1−n2.) Unfortunately, as mentioned in the introduction, this is a hard computational

problem. But one can in many cases find good approximate solutions in polynomial

time by using a relaxation method. We generalize the discrete variables si = ±1 to
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s

x

Figure 4.1: The possible values of the vector s lie at the corners of a hypercube in
n-dimensional space, while the relaxed vector x can lie at any point on
the circumscribing hypersphere.

continuous real variables xi and solve the relaxed minimization with respect to the

vector x = (x1, x2, . . .) of

Rx = 1
4
xTLx, (4.6)

subject to the constraint

1Tx = 0, (4.7)

which is the equivalent of Eq. (4.5). One must however also apply an additional

constraint to prevent x from becoming zero, which is normally taken to have the

form

xTx = n. (4.8)

Choices of x satisfying this second constraint include all allowed values of the original

unrelaxed vector s, since sT s =
∑

i s
2
i =

∑
i 1 = n, but also include many other values

in addition. Geometrically, one can think of s as defining a point in an n-dimensional

space, with the allowed values si = ±1 restricting the point to fall at one of the

corners of a hypercube. The value of x falls on the circumscribing hypersphere, since

xTx =
∑

i x
2
i = n implies that x has constant length

√
n. The hypersphere coincides

with the values of s at the corners of the hypercube, but includes other values in

between as well—see Fig. 4.1.
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The relaxed problem is straightforward to solve by differentiation. We enforce the

two conditions (4.7) and (4.8) with Lagrange multipliers λ and µ so that

∂

∂xk

[∑
ij

Lijxixj − λ
∑
i

x2
i − µ

∑
i

xi

]
= 0. (4.9)

Performing the derivatives we find that 2
∑

j Lkjxj − 2λxk − µ = 0 or in matrix

notation Lx = λx + 1
2
µ1. Multiplying on the left by 1 we get 1TLx = λ1Tx + 1

2
nµ,

and employing Eq. (4.7) and noting that 1 is an eigenvector of L with eigenvalue

zero, we find that µ = 0. Thus we have

Lx = λx. (4.10)

In other words x is an eigenvector of the graph Laplacian satisfying the two conditions

(4.7) and (4.8).

Our solution is completed by noting that the cut size Rx within the relaxed ap-

proximation, evaluated at the solution of (4.10), is

Rx = 1
4
xTLx = 1

4
λxTx =

nλ

4
. (4.11)

This is minimized by choosing λ as small as possible, in other words by choosing x

to be the eigenvector corresponding to the lowest possible eigenvalue. The lowest

eigenvalue of L is always zero, with corresponding eigenvector proportional to 1, but

we cannot choose this eigenvector because it is forbidden by the condition 1Tx = 0,

which requires that the solution vector x be orthogonal to 1. (This is equivalent to

saying that we are not allowed to put all vertices in the same one group, which would

certainly ensure a small cut size, but wouldn’t give a bisection of the graph.) Our

next best choice is to choose x proportional to the eigenvector for the second-lowest

eigenvalue, the so-called Fiedler vector.
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Figure 4.2: Left: a small, computer-generated graph with two equally sized groups of
vertices. Right: the elements of the Fiedler vector—the second eigenvec-
tor of the graph Laplacian—plotted on an arbitrary scale. A division of
the vertices into two groups according to the signs of these elements (the
dashed line indicates zero) recovers the groups.
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This solves the relaxed optimization problem exactly. The final step in the process

is to “unrelax” back to the original variables si = ±1, which we do by rounding the

xi to the nearest value ±1, which means that positive values of xi are rounded to +1

and negative values to −1. Thus our final algorithm is a straightforward one: we

calculate the eigenvector of the graph Laplacian corresponding to the second-lowest

eigenvalue and then divide the vertices into two groups according to the signs of

the elements of this vector. Although the solution of the relaxed optimization is

exact, the unrelaxation process is only an approximation—there is no guarantee that

rounding to ±1 gives the correct optimum for the unrelaxed problem—and hence the

overall algorithm only gives an approximate solution to the partitioning problem. In

practice, however, it appears to work well. Figure 4.2 shows an example.

As we have described it, the algorithm above also does not guarantee that the two

final groups of vertices will be of equal size. The relaxed optimization guarantees that∑
i xi = 0 because of Eq. (4.7), but we are not guaranteed that

∑
i si = 0 after the

rounding procedure. Normally
∑

i si will be close to zero, and hence the groups will

be of nearly equal sizes, but there may be some imbalance. In typical usage, however,

this is not a problem. In many applications one is willing to put up with a small

imbalance anyway, but if one is not then a post-processing step can be performed

that moves a small number of vertices between groups in order to restore balance.

4.3 Generalization to more than two groups

Our primary purpose in this paper is to give a generalization of the derivation of

the previous section to spectral partitioning into more than two groups. The method

we present allows the groups to be of any sizes we choose—they need not be of equal

size as in our two-way example. As we will see, the algorithm we derive differs in

significant ways from previous multiway partitioning algorithms.
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4.3.1 Cut size for multiway partitioning

To generalize the spectral bisection algorithm to the case of more than two groups

we need first to find an appropriate generalization of the quantities si used in Sec-

tion 4.2 to denote membership of the different communities. For a partitioning into

k groups, we propose using (k − 1)-dimensional vectors to denote the groups, vec-

tors that in the simplest case point to the k vertices of a (k − 1)-dimensional regular

simplex.

Let us denote by wr with r = 1 . . . k a set of vectors pointing to the vertices of a

regular (k − 1)-dimensional simplex centered on the origin. For k = 3, for example,

the three vectors would point to the corners of an equilateral triangle; for k = 4 the

vectors would point to the corners of a regular tetrahedron, and so forth—see Fig. 4.3.

Such simplex vectors are not orthogonal. Rather they satisfy a relation of the form

wT
r ws = δrs −

1

k
. (4.12)

(Note that the individual vectors are normalized so that wT
r wr = 1− 1/k. One could

normalize them to have unit length, as presented in section on spectral bisection, but

subsequent formulas work out less neatly that way.)

We will use these simplex vectors as labels for the k groups in our partitioning

problem, assigning one vector to represent each of the groups. All assignments are

equivalent and any choice will work equally well. We label each vertex i with a vector

variable si equal to the simplex vector wr for the group r that it belongs to. Then

Eq. (4.12) implies that

sTi sj +
1

k
=

{
1 if i and j are in the same group,

0 otherwise,
(4.13)

which is the equivalent of Eq. (4.1) (up to the scaling of si and sj), and the derivation
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k = 2 k = 3 k = 4

Figure 4.3: As group labels we use vectors wr pointing from the center to the corners
of a regular (k − 1)-dimensional simplex. For k = 2 the simplex consists
of just two points on a line, consistent with the indices si = ±1 used in
Section 4.2. For k = 3 the simplex is an equilateral triangle; for k = 4
it is a regular tetrahedron. In higher dimensions it takes the form of the
appropriate generalization of a tetrahedron to four or more dimensions,
which would be difficult to draw on this two-dimensional page.

of the cut size follows through as before, giving

R = 1
2

∑
ij

(diδij − Aij)sTi sj = 1
2

∑
ij

Lijs
T
i sj, (4.14)

where Lij is once again an element of the graph Laplacian matrix L. Alternatively,

we can introduce an n× (k − 1) indicator matrix S̃ whose ith row is equal to si and

write the cut size in matrix notation as

R = 1
2

Tr(S̃TLS̃). (4.15)

These simplex vectors are not, however, the only possible choice for the vectors si.

In fact, we have a lot of latitude about our choice. The vectors can be translated,

rotated, reflected, stretched or shrunk in a variety of ways and still give a simple

expression for the cut size. If the groups into which our graph is to be partitioned are
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StretchTranslate Rotate

Figure 4.4: As labels for the groups we use vectors derived from the regular simplex
vectors of Fig. 4.3 by a uniform translation, followed by a rotation and/or
reflection, followed in turn by stretching or shrinking along each axis
independently.

of equal size, then plain simplex vectors as above are a good choice, but for unequal

groups it will be useful to consider group vectors of the more general form DQ(wr−t),

where D is a (k − 1)× (k − 1) diagonal matrix, Q is a (k − 1)× (k − 1) orthogonal

matrix, and t is an arbitrary vector. This choice takes the original simplex vectors

and does three things, as illustrated in Fig. 4.4: first it translates them an arbitrary

distance given by t, then it rotates and/or reflects them according to the orthogonal

transformation Q, and finally it shrinks (or stretches) them independently along each

axis by factors given by the diagonal elements of D. The result is that the matrix S̃

describing the division of the network into groups is transformed into a new matrix S:

S = (S̃− 1tT )QTD. (4.16)

Inverting this transformation, we get S̃ = SD−1Q+1tT and substituting this expres-

sion into Eq. (4.15), the cutsize can be written in terms of the new matrix as

R = 1
2

Tr
[
(QTD−1ST + t1T )L(SD−1Q + 1tT )

]
= 1

2
Tr(QTD−1STLSD−1Q) = 1

2
Tr(STLSD−2), (4.17)

where in the second equality we have made use of L1 = 0.
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The freedom of choice of the vector t and the matrices Q and D allows us to

simplify our problem as follows. First, we will require that ST1 = 0. Taking the

transpose of Eq. (4.16) and multiplying by 1, this implies that (S̃T − t1T )1 = 0 and

hence fixes the value of t:

t =
1

n
S̃T1 =

∑
r

nr
n

wr, (4.18)

where nr is the number of vertices in group r. The condition ST1 = 0 is the equivalent

of Eq. (4.5) in the two-group case, and, just as (4.5) does, it fixes the sizes of the

groups, since the sum
∑

r nrwr occupies a unique point in the space of the simplex

vectors for every choice of group sizes.

We would also like our matrix S to satisfy a condition equivalent to sT s = n in

the two-group case, which will take the form STS = I, where I is the identity matrix.

The freedom to choose Q and D allows us to do this. We note that

STS = DQ(S̃T − t1T )(S̃− 1tT )QTD, (4.19)

and that the central product in this expression is a (k−1)× (k−1) symmetric matrix

that expands as

(S̃T − t1T )(S̃− 1tT ) = S̃T S̃− S̃T1tT − t1T S̃ + t1T1tT

= S̃T S̃− nttT =
∑
r

nrwrw
T
r −

∑
rs

nrns
n

wrw
T
s , (4.20)

where we have used (4.18).

We perform an eigenvector decomposition of this matrix in the form U∆UT ,

where where U is an orthogonal matrix and ∆ is the diagonal matrix of eigenvalues,

which are all nonnegative since the original matrix is a perfect square. Then we let

Q = UT , D = ∆−1/2, (4.21)
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and we have

STS = DQ(S̃T − t1T )(S̃− 1tT )QTD

= ∆−1/2UTU∆UTU∆−1/2

= ∆−1/2∆∆−1/2 = I, (4.22)

as required.

To summarize, we take simplex vectors centered on the origin and transform them

according to

wr → DQ(wr − t), (4.23)

where t, Q, and D are chosen according to Eqs. (4.18) and (4.21). We use the

transformed vectors to form the rows of the matrix S, then the cut size for the

partition of the graph indicated by S is given by

R = 1
2

Tr(STLSD−2), (4.24)

while S obeys

ST1 = 0, (4.25)

and

STS = I. (4.26)

In the two-group case, where D is a scalar (since (k−1) = 1) and S is an n×1 vector

on the the corner of a hypercube, we are left with the same optimization problem as

in the traditional spectral bisection.
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Figure 4.5: The eigenvectors of the Laplacian define n points in a (k−1)-dimensional
space and we round each point to the nearest simplex vector to get
an approximate solution to the partitioning problem. The particular
graph used here was, for the purposes of illustration, deliberately created
with three groups in it of varying sizes, using a simple planted parti-
tion model (Condon and Karp, 2001) in which edges are placed between
vertices independently at random, but with higher probability between
vertices in the same group than between those in different groups.

4.3.2 Minimization of the cut size

The remaining steps in the derivation are now straightforward, following lines

closely analogous to those for the two-group case. Our goal is to minimize the cut

size (4.24) subject to the condition that the group sizes take the desired value, which is

equivalent to the constraint (4.25). Once again this is a hard computational problem,

but, by analogy with the two-group case, we can render it tractable by relaxing the

requirement that each row of S be equal to one of the discrete vectors (4.23), solving

this relaxed problem exactly, then rounding to the nearest vector again to get an

approximate solution to the original unrelaxed problem. The process is illustrated in

Fig. 4.5.

We replace S with a matrix X of continuous-valued elements to give a relaxed cut
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size

Rx = 1
2

Tr(XTLXD−2), (4.27)

where the elements of X will be allowed to take any real values subject to the con-

straint

XT1 = 0, (4.28)

equivalent to Eq. (4.25). Again, however, we also need an additional constraint,

equivalent to Eq. (4.8), to prevent all elements of X from becoming zero (which

would certainly minimize Rx, but would not give a useful partition of the graph), and

the natural choice is the generalization of (4.26):

XTX = I. (4.29)

As in the two-group case, choices of X satisfying this condition necessarily include as

a subset the original group vectors that satisfy (4.26), but also include many other

choices as well. Between them, the two conditions (4.28) and (4.29) imply that the

columns of X should be orthogonal to one another, orthogonal to the vector 1, and

normalized to have unit length. As we now show, the correct choice that satisfies

all of these conditions and minimizes Rx is to make the columns proportional to

the eigenvectors of the graph Laplacian corresponding to the second- to kth-lowest

eigenvalues.

The relaxed cut size (4.27) can be minimized, as before, by differentiating, apply-

ing the conditions (4.28) and (4.29) with Lagrange multipliers:

∂

∂Xkl

[∑
ijm

LijXimXjmD
−2
mm

−
∑
imn

λmnXimXin −
∑
im

µmXim

]
= 0, (4.30)
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so that 2
∑

j LkjXjlD
−2
ll − 2

∑
mXkmλml − µl = 0, or in matrix notation LXD−2 =

XΛ + 1
2
1µT , where Λ is a (k− 1)× (k− 1) symmetric matrix of Lagrange multipliers

and µ is a (k − 1)-dimensional vector. As before, we can multiply on the left by 1T

to show that µ = 0, and hence we find that

LX = XΛD2. (4.31)

Now, making use of the fact that XTX = I (Eq. (4.29)), we have

ΛD2 = XTXΛD2 = XTLX = D2ΛXTX = D2Λ. (4.32)

In other words, D2 and Λ commute. Since D is diagonal this impiles that Λ is also

diagonal, in which case Eq. (4.31) implies that each column of X is an eigenvector

of the graph Laplacian with the diagonal elements of ΛD2 being the eigenvalues. In

other words the eigenvalues are

λi = ΛiiD
2
ii. (4.33)

The conditions (4.28) and (4.29) tell us that the eigenvectors must be distinct (be-

cause they are orthogonal to each other), normalized to unity, and orthogonal to the

vector 1.

This still leaves us considerable latitude about which eigenvectors we use. We can

resolve the uncertainty by considering the cut size Rx, Eq. (4.27), which is given by

Rx = 1
2

Tr(XTLXD−2) = 1
2

Tr(XTXΛ) = 1
2

Tr Λ

= 1
2

∑
i

Λii = 1
2

∑
i

λi
D2
ii

. (4.34)

Our goal is to minimize this quantity and, since both D2
ii and the eigenvalues of

the Laplacian λi are nonnegative, the minimum is achieved by choosing the smallest
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allowed eigenvalues of the Laplacian. We are forbidden by Eq. (4.28) from choosing

the lowest (zero) eigenvalue, because its eigenvector is the vector 1, so our best

allowed choice is to choose the columns of X to be the eigenvectors corresponding

to the second- to kth-lowest eigenvalues of the Laplacian. Which column is which

depends on the values of the Dii. The minimum of Rx is achieved by pairing the

largest λi with the largest Dii, the second largest λi with the second largest Dii, and

so on.

This now specifies the value of the matrix X completely and hence consitutes a

complete solution of the relaxed minimization problem. The correct choice of X is

one in which the k−1 columns of the matrix are equal to the normalized eigenvectors

corresponding to the second- to kth-lowest eigenvalues of the graph Laplacian, with

the columns arranged so that their eigenvalues increase in the same order as the

diagonal elements of the matrix D.

The only remaining step in the algorithm is to reverse the relaxation, which means

rounding the rows of the matrix X to the nearest of the group vectors—see Fig. 4.5.

As in the two-group case, this introduces an approximation. Although our solution

of the relaxed problem is exact, when we round to the nearest group vector there

is no guarantee that the result will be a true minimum of the unrelaxed problem.

Furthermore, as in the two-group case, we are not guaranteed that the groups found

using this method will be of exactly the required sizes nr. The relaxed optimization

must satisfy Eq. (4.28), but the corresponding condition, Eq. (4.25), for the unrelaxed

division of the graph is normally only satisfied approximately and hence the groups

will only be approximately the correct size. As in the two-group case, however, this

is typically not a problem. Often we are content with an approximate solution to

the problem, but if not the groups can be balanced using a post-processing step.

For example, the rounding of the relaxed solution to the group vectors that preserves

precisely the desired group sizes can be calculated exactly in polynomial time using the
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so-called Hungarian algorithm (Papadimitriou and Steiglitz, 1998), or approximately

using a variety of vertex moving heuristics.

4.3.3 Practical considerations

The method described in the previous section in principle constitutes a com-

plete algorithm for the approximate spectral solution of the minimum-cut partition-

ing problem. In practice, however, there are some additional issues that arise in

implementation.

First, note that the sign of the eigenvectors of the Laplacian is arbitrary, and

hence our matrix X is only specified up to a change of sign of any column, meaning

there are 2k−1 choices of the matrix that give equally good solutions to the relaxed

optimization of the cut size. These 2k−1 solutions are reflections of one another in

the axes of the space occupied by the group vectors, and in practice the quality of

the solutions to the unrelaxed problem obtained by rounding each of these reflections

to the nearest group vector varies somewhat. If we want the best possible solution

we need to look through all 2k−1 possibilities to find which one is the best, and this

could take a long time if k is large.

A second and more serious issue arises when the group sizes are equal to one

another, or nearly equal. When the group sizes are equal the conditions ST1 = 0

and STS = I are satisfied by the original, symmetric simplex vectors of Fig. 4.3 in

any orientation. This means that the group vectors are not fully specified in this

case—their orientation is arbitrary. When rounding the rows of the matrix X to the

nearest simplex vector, therefore, an additional rotation may be required to find the

best solution.

The situation is depicted in Fig. 4.6 for the case k = 3. The rows xi are two-

dimensional vectors in this case and form a scatter of points in the plane of the plot

as shown. The points do indeed approximate reasonably well to the corners of a
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Figure 4.6: The points in this plot represent the elements of the second and third
eigenvectors of the Laplacian for a small graph of about a thousand ver-
tices. The graph used was, like that of Fig. 4.5, created using a planted
partition model, but with equally sized groups in this case. The resulting
points fall, roughly speaking, at the corners of a two-dimensional regular
simplex, i.e., an equilateral triangle. To determine the division of the
graph into groups, we need to round these points to the nearest simplex
vector, but the simplex must first be rotated to match the orientation of
the points.
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regular simplex (an equilateral triangle in this case), so in principle we should be able

to round them off and get a good solution to the partitioning problem. But we do

not know a priori what the correct orientation of the simplex is, and in this case our

first guess, as shown in the figure, is off and a rotation is required. We can rotate

either the points or the simplex, but we recommend rotating the simplex because it

requires less work.

Given an assignment of vertices to groups, we can write down the matrix S of

(unrotated) simplex vectors. If we rotate the vectors, this matrix becomes SR, where

R is a (k − 1)× (k − 1) orthogonal matrix. The sum of the squares of the Euclidean

distances from each point to the corresponding simplex vector is given by

∑
ij

[SR−X]2ij = Tr
[
(RTST −XT )(SR−X)

]
= Tr STS− 2 Tr RTSTX + Tr XTX. (4.35)

The first and last terms in this expression are independent of R and hence, for the

purposes of choosing the rotation R that minimizes the whole expression, we need only

minimize the middle term, or equivalently maximize Tr RTSTX. The maximization of

this quantity over orthogonal matrices R is a standard problem in so-called Procrustes

analysis (Gower and Dijksterhuis, 2004), which seeks to compare the shapes of objects

by optimally superimposing them (often minimizing some distance metric) under

some set of allowed transformations. It can be solved by performing a singular value

decomposition of the matrix STX (Schönemann, 1966):

STX = UΣVT , (4.36)

where Σ is the diagonal matrix of singular values and U and V are orthogonal
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matrices. Then

Tr(RTSTX) = Tr(RTUΣVT ) = Tr(VTRTUΣ)

≤ Tr Σ, (4.37)

the inequality following because VTRTU, being a product of orthogonal matrices,

is also itself orthogonal, and all elements of an orthogonal matrix are less than or

equal to 1. It is now trivial to see that the exact equality—which is, by definition,

the maximum of Tr(RTSTX) with respect to R—is achieved when RT = VUT or

equivalently when

R = UVT . (4.38)

The product UVT is the orthogonal part of the polar decomposition of STX. Calculat-

ing it in practice involves calculating first the singular value decomposition, Eq. (4.36),

and then discarding the diagonal matrix Σ. Note that STX is only a (k−1)× (k−1)

matrix (not an n × n matrix), and hence its singular value decomposition can be

calculated rapidly provided k is small, in O(k3) time.

These developments assume that we know the assignment of the vertices to the

groups. In practice, however, we don’t. (If we did, we wouldn’t need to partition the

graph in the first place.) So in the algorithm we propose we start with a random guess

at the orientation of the simplex. We round the rows of X to the simplex vectors to

determine group memberships and then rotate the simplex vectors to fit the resulting

groups according to Eq. (4.38). We repeat this procedure until the groups no longer

change. In a clear-cut case like that of Fig. 4.6, only one or two iterations would be

needed for convergence, but in more ambiguous cases we have found that as many as

half a dozen or more iterations may be necessary. Though we have not extensively

explored the conditions leading to problems with convergence, our preliminary results

suggest that convergence tends to be slower when cutting a network into many groups
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or when the best available division is not very good (e.g. cutting a network with a

natural four group division into five groups).

This algorithm works well for the case of exactly equal group sizes, while the

algorithm described in Section 4.3.2 works well for very unbalanced groups, when the

group vectors are specified completely, without need for any rotation or Procrustes

analysis. A trickier scenario is when the groups are almost but not exactly equal in

size. In such cases the algorithm of Section 4.3.2 is correct in principle, but in practice

tends not to work very well—the particular orientation of the group vectors picked

by the algorithm may not agree well with the scatter of points described by the rows

of the matrix X. In such cases, we find that an additional Procrustes step to line up

the points with the group vectors usually helps.

But this raises the question of when the groups can be considered sufficiently bal-

anced in size that a possible rotation of the group vectors may be needed. Rather

than try to answer this difficult question, we recommend simply performing a Pro-

crustes analysis and rotation for all partitioning problems, whether one is needed or

not. In practice it does not take long to do, and if it is not needed—if the points

described by the elements of X are already well lined up with the group vectors, as

they are in Fig. 4.5 for instance—then the Procrustes analysis will simply do nothing.

It will leave the group vectors unrotated (or rotate them only very slightly).

This approach has the added advantage of offering a solution to our other problem

as well, the problem of undetermined signs in the eigenvectors of the Laplacian. Since

the orthogonal matrix R in the Procrustes analysis can embody a reflection as well

as a rotation, the Procrustes analysis will also determine which reflection gives the

best fit of the group vectors to the points, so we do not require an additional step to

deal with reflections.

Since the Procrustes analysis is an iterative method we do, in practice, find that it

can converge to the wrong minimum of the mean-square distance. In the calculations
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presented in the remained of this paper, we run the analysis several times with ran-

domized starting conditions, taking the best result over all runs, in order to mitigate

this problem.

4.3.4 Summary of the algorithm and running time

Although the derivation of the previous sections is moderately lengthy, the final

algorithm is straightforward. In summary the algorithm for partitioning a given graph

into k groups of specified sizes is as follows.

1. Generate a set of vectors k pointing to the vertices of a regular simplex centered

at the origin and assign one vector as the label for each of the k groups. Any

orientation of the simplex can be used at this stage and any assignment of

vectors to groups.

2. Define t, Q, and D according to Eqs. (4.18) to (4.21), then transform the

simplex vectors according to

wr → D−1Q(wr − t). (4.39)

3. Find the second- to kth-smallest eigenvalues of the graph Laplacian, and the

corresponding normalized eigenvectors. Pair the largest of these eigenvalues

with the largest diagonal element of D, the second largest eigenvalue with the

second largest diagonal element, and so forth. Then form the matrix X, whose

columns are the eigenvectors arranged in the same order as the diagonal ele-

ments of D with which they are paired.

4. Rotate the group vectors wr into a random initial orientation.

5. Round each of the rows of X to the nearest group vector and construct the

corresponding group matrix S whose ith row is the group vector for the group
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that vertex i now belongs to.

6. Form the singular value decomposition STX = UΣVT and from it calculate

the rotation matrix R = UVT .

7. Rotate the group vectors wr → wrR.

8. Repeat from step 5 until group memberships no longer change.

Most often we are interested in sparse graphs in which the number of edges is

proportional to the number of vertices, so that the mean degree of a vertex tends to a

constant as the graph becomes large. In this situation the eigenvectors of the Lapla-

cian can be calculated using sparse iterative methods such as the Lanczos algorithm.

The Lanczos algorithm takes time O(k2n) per iteration, and although there are no

formal results for the number of iterations required for convergence, the number in

practice seems to be small. The other steps of the algorithm all also take time O(k2n)

or less, and hence the algorithm has leading-order worst-case running time O(k2n)

times the number of Lanczos iterations, making it about as good as traditional ap-

proaches based on k-means, and well suited for large graphs. (Formal results for the

number of iterations k-means takes to converge are also not available, so a precise

comparison of the complexity of the two methods is not possible.)

4.3.5 Weighted graphs and data clustering

The methods described in the previous sections can be extended in a straightfor-

ward manner to weighted graphs—graphs with edges of varying strength represented

by varying elements in the adjacency matrix. For such graphs the goal of partitioning

is to divide the vertices into groups such that the sum of the weights of the edges

running between groups is minimized. To achieve this we generalize the degree di of

vertex i in the obvious fashion di =
∑

j Aij and the elements of the Laplacian ac-

cordingly Lij = diδij −Aij. Then the cut size once again satisfies Eq. (4.15), and the
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rest of the algorithm follows as before. We have not experimented extensively with

applications to weighted graphs, but in preliminary tests the results look promising.

One can also apply our methods to the problem of data clustering, the grouping

of points within a multidimensional data space into clusters of similar values (Verma

and Meilă, 2003; Von Luxburg, 2007). One standard approach to this problem makes

use of an affinity matrix. Suppose one has a set of n points represented by vectors ri in

a d-dimensional data space. One then defines the affinity matrix A to have elements

Aij = e−|ri−rj |
2/2σ2

, (4.40)

where σ is a free parameter chosen by the user. If σ is roughly of order the distance

between intra-cluster points, then Aij will approximately take the form of the adja-

cency matrix of a weighted graph in which vertices are connected by strong edges if

the corresponding data points are near neighbors in the data space. (For values of σ

much larger or smaller than this clustering methods based on the affinity matrix will

not work well, so some care in choosing σ is necessary to get good results. Automated

methods have been proposed for choosing a good value (Ng et al., 2001).)

Given the affinity matrix, we can now apply the method described above for

weighted graphs to this matrix and derive a clustering of the data points. We will

not pursue this idea further in the present paper, but in preliminary experiments

on standard benchmark data sets we have found that the algorithm gives results

comparable with, and in some cases better than, other simple spectral clustering

methods. However, data clustering applications present additional difficulties because

they need not have any predefined target for the number of groups or the sizes of

groups. While our algorithm often performs well under the assumption of equally

sized groups, even when the actual groups are quite unbalanced, choosing the number

of groups efficiently for large data sets remains a challenge.
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4.4 Results

Our primary purpose in this paper is to provide a first-principles derivation of a

multiway spectral partitioning algorithm. However, given that the algorithm we have

derived differs from standard algorithms, it is also of interest to examine how well it

performs in practice. In this section we give example applications of the algorithm

to graphs from a variety of sources. Our tests do not amount to an exhaustive

characterization of performance, but they give a good idea of the basic behavior of

the algorithm. Overall, we find that the algorithm has performance comparable to

that of the k-means algorithm on Laplacian eigenvectors, but there exist classes of

graphs for which our algorithm does measurably better. In particular, the algorithm

appears to perform better than some competitors in cases where the partitioning task

is particularly difficult.

While there are many sophisticated methods of k-way partitioning, including some

spectral methods (see Introduction), we use the k-means algorithm as a point of

comparison because it is a simple, commonly used method that is in many ways

similar to our algorithm. Both algorithms partition vertices according to the lowest-

lying Laplacian eigenvectors and both use alternating steps of assigning vertices to

the nearest “group center” and then adjusting the positions of the centers based on

the new assignment. However, while the group centers in the k-means algorithm are

unconstrained, our algorithm restricts their shape up to orthogonal transformations.

The simplex extension of spectral bisection’s “spins” is at the heart of our derivation

of our algorithm, so it is a useful comparison to consider k-means as a simplex-less

analogue.

As a first example, Fig. 4.7 shows the result of applying our algorithm to a

graph from the University of Florida Sparse Matrix Collection. This graph is a two-

dimensional mesh network drawn from a NASA structural engineering computation,

and is typical of finite-element meshes used in such calculations (which are a primary
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Figure 4.7: Division of a structural engineering mesh network of 15 606 vertices into
four parts—represented by the four colors—using the algorithm described
in this paper. The sizes of the parts in this case were 1548, 2745, 4979,
and 6334. The complete graph has 45 878 edges; this division cuts just
351 of them, less than 1%. Graph data courtesy of the University of
Florida Sparse Matrix Collection.

application of partitioning methods). Figure 4.7 shows a split of the graph into four

parts of widely varying sizes. The split is closely similar to that found by conventional

spectral partitioning using k-means.

Figure 4.8 shows an application to a graph representing a power grid, specifically

the Western States Power Grid, which is the network of high-voltage electricity trans-

mission lines that serves the western part of the United States (Watts and Strogatz,

1998). The figure shows the result of splitting the graph into four parts and the

split is an intuitively sensible one and again comparable to that found using more

traditional methods.

There are, however, some graphs for which our method gives results that are sig-

nificantly better than those given by previous methods, particularly when the target

group sizes are significantly unbalanced. As a controlled test of the performance of

the algorithm we have applied it to artificial graphs generated using a planted par-

tition model (Condon and Karp, 2001) (also called a stochastic block model in the
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Figure 4.8: Division into four parts of a 4941-vertex graph representing the Western
States Power Grid of the United States. The sizes of the parts were 898,
1066, 1240, and 1737. The complete graph contains 6594 edges, of which
25 are cut in this division. Graph data courtesy of Duncan Watts.

statistical literature (Snijders and Nowicki, 1997)). In this model one creates graphs

with known partitions by dividing a specified number of vertices into groups and then

placing edges within and between those groups independently with given probabili-

ties. In our tests we generated graphs of 3600 vertices with three groups. Edges were

placed between vertices with two different probabilities, one for vertices in the same

group and one for vertices in different groups, chosen so that the average degree of a

vertex remained constant at 40. We then varied the fraction of edges placed within

groups to test the performance of the algorithm.

Figure 4.9 shows the results of applying both our algorithm and a standard k-

means spectral algorithm to a large set of graphs generated using this method. We

compare the divisions found by each algorithm to the known correct divisions and

calculate the fraction of vertices classified into the correct groups as a function of the

fraction of in-group edges. When the latter fraction is large the group structure in

the network should be clear and we expect any partitioning algorithm to do a good

job of finding the best cut. As the fraction of in-group edges is lowered, however,

the task gets harder and the fraction of correct vertices declines for both algorithms,
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Figure 4.9: Fraction of vertices classified into the correct groups by a standard spec-
tral algorithm based on k-means (red circles) and by the algorithm de-
scribed in this paper (blue triangles), when applied to graphs of 3600
vertices, artificially generated using a planted partition model with three
groups. In (a) the groups are of equal sizes. In (b) the sizes are 1800,
1200, and 600. In (c) they are 2400, 900, and 300. The dashed horizontal
line in each frame represents the point at which the algorithms do no bet-
ter than chance. Each data point is an average over 500 networks and the
calculation for each network is repeated with random initial conditions as
described in the text; the results shown here are the best out of ten such
repeats.

eventually approaching the value represented by the dashed horizontal lines in the

figure, which is the point at which the classification is no better than chance—we

would expect a random division of vertices to get about this many vertices right just

by luck. (If group i occupies a fraction νi of the network, then a random division into

groups of the given sizes will on average get
∑

i ν
2
i vertices correct.)

The first panel in the figure shows results for groups of equal size and for this case

the performance of the two algorithms is similar. Both do little better than random

for low values of the fraction of in-group edges. The simplex algorithm of this paper

performs slightly better in the hard regime, but the difference is small. When the

group sizes are different, however, our algorithm outperforms the k-means algorithm,

as shown in the second and third panels. In the third panel in particular, where

the group sizes are strongly unbalanced, our algorithm performs substantially better

than k-means for all parameter values, but particularly in the hard regime where
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the fraction of in-group edges is small. In this regime the k-means algorithm does

no better than a random guess, but our simplex-based algorithm does significantly

better.

To be fair, we should also point out that there are some cases in which the k-

means algorithm outperforms the algorithm of this paper. In particular, we find

that in tests using the planted partition model with three groups of equal sizes,

but where the between-group connections are asymmetric and one pair of groups

is more weakly connected than the other two pairs, the k-means algorithm does

better in certain parameter regimes. The explanation for this phenomenon appears

to be that our algorithm has difficulty finding the best orientation of the simplex to

perform the partitioning. It is possible that one could achieve better results using a

different method for finding the orientation other than the Procrustes method used

here. The k-means partitioning algorithm, which does not use an orientation step,

has no corresponding issues.

4.5 Conclusions

In this paper, we have derived a multiway spectral partitioning algorithm from first

principles as a relaxation approximation to a well-defined minimum-cut problem. This

contrasts with more traditional presentations in which an algorithm is proposed ex

nihilo and then proved after the fact to give good results. While both approaches have

merit, ours offers an alternative viewpoint that helps explain why spectral algorithms

work—because the spectral algorithm is, in a specific sense, an approximation to the

problem of minimizing the cut size over divisions of the graph.

Our approach not only offers a new derivation, however; the end product, the

algorithm itself, is also different from previous algorithms, involving a vector repre-

sentation of the partition with the geometry of an irregular simplex. In practice, the

algorithm appears to give results that are comparable with those of similar algorithms
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and in some cases better. The algorithm is also comparably efficient to similar, simple

spectral partitioning algorithms such as k-means. For graphs of n vertices divided

into k groups, the running time is dictated by the calculation of the eigenvectors of

the graph Laplacian matrix, which for a sparse graph can be done using the Lanczos

method in time O(k2n) times the number of Lanczos iterations (which is typically

small), so overall running time is roughly linear in n for given k.

The developments described here leave some questions unanswered. In particular,

our method fixes the group sizes within the relaxed approximation to the minimization

problem, but in the true problem the sizes are only fixed approximately. A common

variant of the minimum-cut problem arises when the group sizes are not exactly equal

but are allowed to vary within certain limits. Our method could be used to tackle

this problem as well, but one would need a scheme for preventing the size variation

from passing outside the allowed bounds. These and related ideas we leave for future

work.
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CHAPTER V

Local variation in plant quality influences

large-scale population dynamics

5.1 Introduction

Spatial variation in ecological systems can arise both as a consequence of underly-

ing variation in the quality and availability of resources (Denno and McClure, 1983;

Pulliam, 1988) and as an emergent property of spatially structured trophic inter-

actions (Hassell, 2000). Although there have been many exceptions (Roughgarden,

1974; Cantrell and Cosner, 1991; Oksanen et al., 1992; Bjørnstad and Hansen, 1994;

Helms and Hunter, 2005; Holt and Barfield, 2003; Underwood, 2004), mathematical

models of spatial heterogeneity have largely focused on spatial and temporal variation

in organism abundance caused by top-down mechanisms rather than resource hetero-

geneity. For example, effects of spatially structured host-parasitoid interactions on

spatial and temporal host dynamics have been studied for some years (Hassell et al.,

1991; Comins et al., 1992). Such interactions can stabilize otherwise unstable popu-

lation systems and generate spatial patterns that include spirals and traveling waves

(Bjørnstad et al., 2002). At the same time, migration can also destabilize dynamics

which would, in isolated populations, lead to stable persistence (Reeve, 1988).

In models of this type, spatial variation in abundance emerges because global
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populations are not well-mixed; there is always some degree of asynchrony between

growth and decline in local but weakly coupled populations. These top-down mech-

anisms can induce spatial heterogeneity even among populations living in a network

of identical habitat patches.

However, in the real world, habitat patches are rarely identical. Predator-prey

interactions are superimposed upon landscapes that vary dramatically in their quality

for herbivores (Hunter and Price, 1992). For example, insect herbivore populations

are affected by very local, bottom-up forces such as the chemistry (Hunter et al., 1996)

and genotype (Underwood and Rausher, 2000; McIntyre and Whitham, 2003; Evans

et al., 2012b) of their host plants. At larger spatial scales, the local plant community

(Pimentel, 1961; Murdoch et al., 1972; Andow, 1991) and surrounding landscape

(Cappuccino et al., 1998) affect both the diversity and abundance of herbivores and

of their natural enemies (Root, 1973).

Given that both trophic interactions and underlying resource heterogeneity are

important drivers of spatial and temporal dynamics, there is growing interest in un-

derstanding how they interact to influence the dynamics of species (Hunter et al.,

1997). The impact of resource heterogeneity can depend on the scale of variation in

resource quality (Oksanen et al., 1992; Roland and Taylor, 1997; Thies et al., 2003),

and may affect population dynamics at different spatial scales (Murdoch et al., 1972).

Further, the effects of resource heterogeneity have been found to interact with the top-

down forces acting on populations both in field (Batch, 1984) and modeling studies

(Foster et al., 1992).

While linking studies of spatial variation in resource quality and trophic inter-

actions is of significant theoretical interest, such studies may also inform manage-

ment, particularly in agricultural ecosystems where pest organisms attack crops that

are planted in well defined spatial arrays (Andow, 1991). Managing the species and

genotypes of crops and their arrangements in space provide opportunities to minimize
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pest attack and maximize biological control by the natural enemies of pests (Belyea,

1923; Pimentel, 1961; Root, 1973). Intercropping, planting multiple crops together in

fields, has shown some success as a method of enhancing top-down control of insect

herbivores by their natural enemies (Bickerton, 2011; Chen et al., 2011). At larger

spatial scales, increased predation and parasitism of insect herbivores in agricultural

systems have also been associated with landscape features such as close proximity to

uncultivated land, higher proportions of non-crop area in the surrounding region, and

more diversity in nearby habitat patches (Thies and Tscharntke, 1999; Cronin and

Reeve, 2005).

In field studies, the effects of variation in plant quality on herbivore populations

depends not only on mean plant quality but on the distribution of plant qualities

(Underwood, 2004; Helms and Hunter, 2005; Underwood, 2009) as well as the spatial

arrangement of high and low quality plants (Evans et al., 2012b; Thies et al., 2003).

Consequently, we explored the effects of variability around a constant mean plant

quality on the outcome of spatially structured host-parasitoid interactions.

We modified an existing spatially-explicit model of host-parasitoid dynamics (Ro-

hani and Miramontes, 1995) to simulate host and parasitoid populations on landscapes

with different variance and spatial layout of plant quality. We aimed to determine

the extent to which a combination of local variation in resource quality and simple

parasite-host interactions can give rise to the kind of complex spatial and temporal

dynamics observed in field studies.

Specifically, we tested the following two hypotheses:

1. Mean patch hypothesis — Large scale population dynamics in landscapes of

heterogeneous plant quality differ from those in homogeneous landscapes with

the same mean plant quality.

2. Patch architecture hypothesis — Effects of variation in plant quality on dy-

namics are contingent on the arrangement of high and low quality plants in
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space.

5.2 Mathematical model and simulation methods

Our model of host-parasitoid dynamics is similar to previous models (Hassell et al.,

1991; Rohani and Miramontes, 1995) with the addition of spatial heterogeneity in

plant quality. In this framework, herbivore hosts (hereafter, “hosts”) and parasitoids

with synchronized generations grow and disperse in alternating steps according to a

coupled map lattice. Each position on the lattice represents an individual plant of

known quality for hosts. During the growth phase, populations on each plant grow

according to a simple Nicholson-Bailey model (Nicholson and Bailey, 1935). In the

absence of parasitoids, the host population grows at a fixed rate λ. Throughout our

study, we will use λ as a proxy for plant quality. Because homogeneous landscapes

where host fecundity λ = 2.0 have been studied previously (Hassell et al., 1991;

Rohani and Miramontes, 1995), we will use λ = 2.0 as the mean plant quality in our

heterogeneous fields.

For simplicity, we assume each host attacked results in an average of one adult

parasitoid in the next generation. Thus, given the densities of hosts (Ht) and para-

sitoids (Pt) during generation t, the population densities after reproduction are given

by

H ′t = λHtf(Ht, Pt) (5.1)

P ′t = Ht(1− f(Ht, Pt)) (5.2)

where f(Ht, Pt) is the fraction of hosts escaping parasitoid attack given the current

densities of hosts and parasitoids.

Our model uses a linear parasitoid functional response with attacks distributed

at random among hosts. Assuming that populations within plants are well–mixed
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and parasitoids search over some area a for hosts to oviposit in, we expect a total of

aHtPt encounters between hosts and parasitoids. With parasitoid attacks distributed

at random among hosts, the number of attacks on each host follows a Poisson dis-

tribution with mean aPt attacks per host. Thus, the expected fraction of hosts to

escape parasitism is f(Ht, Pt) = e−aPt . Because a does not qualitatively affect the

dynamics of the model, but rather acts as a scaling parameter (Hassell et al., 1991),

we arbitrarily fix a at 0.2 throughout our simulations. Given host and parasitoid

populations Ht and Pt during generation t, their populations after reproduction will

thus be given by

H ′t = λHte
−aPt (5.3)

P ′t = Ht(1− e−aPt) (5.4)

On a single plant or a small lattice of plants coupled by dispersal, these growth

dynamics result in rapidly growing oscillations of both host and parasitoid populations

(Nicholson and Bailey, 1935). However, if the size of the total arena of coupled

sites (hereafter, “landscape”) is large compared to the distance hosts and parasitoids

are able to disperse, long–term coexistence can occur (Comins et al., 1992; Hassell

et al., 1991). Our simulations all take place on 60 plant by 60 plant square lattices

(landscapes) with absorbing boundaries, which was a sufficiently large arena that

neither hosts nor parasitoids experienced global extinctions in any of our runs.

Hosts and parasitoids disperse to nearby plants with probabilities mH and mP

respectively. Previous studies have found that the spatial patterns of host and par-

asitoid populations depend on λ, mH , mP , and the size of the landscape (Comins

et al., 1992; Hassell et al., 1991). Our preliminary sensitivity analyses found that

the dispersal traits of herbivores and parasitoids strongly modulated the effects of

spatial variation in resource quality. To cope with the nonlinear, interacting effects
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of these parameters on the interplay between plant heterogeneity and host-parasitoid

interactions in the absence of an existing body of theory, we have chosen to focus

our current study on a single, biologically plausible region of parameter space, where

parasitoids disperse more frequently than their hosts (Briggs and Latto, 2000; Taylor,

1991). Our main body of results fixes mH and mP at 0.2 and 0.8, respectively, with

other values explored in our sensitivity analyses.

We set the dispersal range of both hosts and parasitoids to be their home plant

and the eight surrounding plants in the landscape, which has been the dispersal range

typically used in studies of hosts and parasitoids in homogeneous landscapes (Hassell

et al., 1991; Comins et al., 1992; Rohani and Miramontes, 1995). We denote this

neighborhood of plant i by N(i).

We model hosts as dispersing uniformly among plants in range, so that after

dispersal the host density at plant i becomes

Ht+1(i) = (1−mH)H ′t(i) +mHH(i) (5.5)

where H(i) is the mean density of hosts in the neighborhood of plant i. Instead

of diffusing uniformly like hosts, we allow parasitoids to aggregate to plants with a

higher density of hosts as modeled in Hassell and May (1973), so that the density of

parasitoids on plant i after dispersal is

Pt+1(i) = (1−mP )P ′t(i) +mPΣi∈N(j)β(j, i)P ′t(j) (5.6)

The fraction of dispersing parasitoids from plant j that land in plant i, β(j, i), is

determined by nearby host populations according to

β(j, i) = ν

(
H ′t(i)

Σk∈N(j)H
′
t(k)

)µ
(5.7)
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where ν is a normalization constant so that Σi∈N(j)β(j, i) = 1. The parameter µ

controls the strength of the aggregation, with µ = 0 resulting in uniform diffusion

like the host population, µ = 1 resulting in parasitoid dispersal proportional to the

relative host populations of nearby plants, and parasitoids increasingly ignoring all

but the most host rich plant in range as µ approaches infinity. In our main body

of simulations, µ is fixed at 1.0, so as to qualitatively approximate the preferential

dispersal of parasitoids to nearby plants with high host density as observed in the

field (Fischbein et al., 2012). Our sensitivity analyses included values of µ from 0.0

(pure diffusion) to 2.0 (strong aggregation).

Within this framework, we can model spatial variation in host plant quality by

varying the intrinsic growth rate of the local host population λ on each plant. For ex-

ample, to construct an environment with source–sink dynamics, we could give plants

in our desired source patches λ > 1 and plants in our sink patches λ ≤ 1. Hirzel et al.

(2007) explored an extreme case of a similar host-parasitoid model in which patches

were either habitable (with fixed λ > 1) or completely hostile (λ = 0) (Hirzel et al.,

2007).

For simplicity, we will consider landscapes where half of the plants are high quality,

with host fecundity λ+, and half are low quality, with host fecundity λ−. This allows

us to vary the difference in plant quality (λ+ − λ−), while keeping the mean plant

quality λ = 1
2
(λ++λ−) fixed. Even restricting our choices to the set of landscapes with

equal numbers of high and low quality plants, we are still left with over 101080 possible

arrangements of plants.In our current study, we consider two arrangements of high and

low quality plants: a landscape where one half contains all high fecundity plants and

the other contains all low fecundity plants (hereafter, the “half-and-half landscape”),

and a landscape of high and low quality plants alternating in a checkerboard pattern

(hereafter, the “checkerboard landscape”). Figure 5.1 shows a schematic of these

landscape types.
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A

Half-and-half
landscape B

Checkerboard
landscape

Additive half-and-half
C

Additive checkerboard
D

Figure 5.1: Plants of high (dark green) and low (light green) quality arranged in (A)
a “half-and-half” landscape containing one large patch of high fecundity
plants and one large patch of low quality plants, (B) a “checkerboard”
landscape of alternating high and low quality plants, (C) an “additive”
half-and-half landscape, and (D) an “additive” checkerboard landscape,
using plants from two homogeneous landscapes (outlined by black rect-
angles).
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These two arrangements both approximate plausible agricultural landscapes, where

two crop species or genotypes are intercropped at a coarse (e.g. whole field) or fine

(e.g. within-field) spatial scale. They also represent two extremes of spatial corre-

lation in patch quality. In the half-and-half landscape, the vast majority of plants

share the same quality as all of their neighbors, with the only exceptions occurring at

the border between the high and low fecundity sides. At the opposite extreme, each

plant in the checkerboard matches only half of its neighbors in host fecundity.

In order to test the extent to which a heterogeneous landscape’s dynamics could

be captured by simply aggregating the behavior of high and low quality plants, we

constructed an “additive” base case to compare with each heterogenous landscape.

Specifically, we independently simulated population dynamics on one homogeneous,

high fecundity landscape and one homogeneous, low fecundity landscape. For the

purposes of calculating population statistics, we then treated the left half of the high

fecundity landscape and the right half of the low fecundity landscape as a single run,

giving us a time series of host and parasitoid populations in a field with the appro-

priate distribution of plant qualities but none of the connections between high and

low quality plants (see Figure 5.1C). We constructed checkerboard patterned “addi-

tive landscapes” in an analogous fashion, by first creating homogenous landscapes of

high or low quality plants, and then sampling every second plant from each of those

landscapes to give the same average plant quality (see Figure 5.1D).

We fixed mean quality λ at 2.0, and varied the difference in qualities so that λ− =

1.0, 1.05, 1.1, . . . , 1.95, 2.0 (homogeneous) for a total of 21 different levels of variation

in plant quality, but all with the same global average. For each case, we constructed

heterogeneous landscapes and associated pairs of high and low quality homogeneous

landscapes. We ran 20 replicate simulations of each, with randomly generated initial

populations, and simulated populations for 1000 generations. The initial populations

on each plant were independently drawn from uniform distributions from 50% to 150%
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of what would be (unstable) equilibrium populations of the Nicholson–Bailey equation

on that plant alone. All temporal means and variances were calculated over the last

200 generations of the run, which we found to be much longer than the dominant

periods at which populations in homogeneous landscapes oscillated. All populations

in heterogeneous landscapes persisted until the end and global extinctions of hosts or

parasitoids occurred only in homogeneous fields with λ = 1.

5.3 Results

Figure 5.2 shows snapshots of host and parasitoid density in homogeneous land-

scapes of high and low quality plants (panels A & C), a half-and-half landscape (panel

E), and a checkerboard landscape (panel H). The spatial patterns of host and para-

sitoid populations in the high and low quality regions of the half-and-half landscape

were generally similar to those in homogeneous fields of the same quality. However,

the spatial patterns in the checkerboard landscape are organized over a larger spatial

scale than the variation in plant quality, so that one traveling wave of hosts and para-

sitoids would pass through many plants of both high and low quality. This difference

in spatial population dynamics between half-and-half and checkerboard landscapes

can also be observed in the way local populations oscillate over time. While the

populations on a high quality plant in the half-and-half landscape (panel D) oscillate

with a higher frequency and amplitude than those on a low quality plant in the same

landscape (panel F), the oscillations of populations on high and low quality plants at

the same locations in a checkerboard landscape (panels G & H) are more similar in

frequency.

In additive landscapes, where high and low quality plants were not connected by

any dispersal, both host and parasitoid populations increased with increasing variance

in plant quality. However, populations in half-and-half and checkerboard landscapes

differed both from additive landscapes and from each other (Figure 5.3 A & B). Half-
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Figure 5.2: Snapshots of host and parasitoid densities in space after 1000 generations
in single realizations of (A) a homogeneous high fecundity (λ = 2.8)
landscape (C) a homogeneous low fecundity (λ = 1.2) landscape (E) a
half-and-half landscape (λ+ = 2.8, λ− = 1.2) and (H) a checkerboard
landscape (λ+ = 2.8, λ− = 1.2). Higher host densities are indicated by
more blue and higher parasitoid densities by more red (see colormap in
panel B). Local populations of hosts (in blue) and parasitoids (in red) are
plotted over the last 200 of 1000 generations on (D) a high quality plant
in the half-and-half landscape (F) a low quality plant in the half-and-half
landscape (G) a high quality plant in the checkerboard landscape and (I)
a low quality plant in the checkerboard landscape.
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and-half landscapes consistently supported slightly larger populations than did the

unconnected, additive landscapes. In contrast, herbivore populations in checkerboard

landscapes were lowest at intermediate levels of variation in plant quality. Parasitoid

populations in checkerboard landscapes, however, did not undergo a corresponding

decrease as variance in plant quality increases, but rather stayed roughly constant

until increasing along with host densities when variance in plant quality was large.

In fact, checkerboard landscapes had more parasitoids per host than other land-

scapes (Figure 5.4). While the ratio of parasitoids to hosts increased with the dif-

ference in plant quality in all landscapes, the most dramatic increase occurred in the

checkerboard landscape. The half-and-half landscape also had more parasitoids to

hosts than either additive landscape, although the difference was less extreme as long

as low quality plants could support growth in host populations (λ− > 1).

The temporal variance in population densities also differed with the spatial ar-

rangement of high and low quality plants (Figure 5.3 C & D). In all cases, the variance

in both host and parasitoid populations increased relative to the mean population as

the variance in plant quality increased. However, each type of landscape showed a

different pattern of increase. The coefficient of variation of host and parasitoid pop-

ulations (calculated by dividing the standard deviation of the population in time by

the mean population) increased gradually with variance in plant quality in half-and-

half landscapes and both arrangements of additive landscapes, though variation in

additive half-and-half landscapes was consistently lower. Meanwhile, the coefficient

of variation of populations in checkerboard landscapes only began increasing when

plants varied greatly in quality.

These differences between populations on checkerboard landscapes, on half-and-

half landscapes, and on their additive counterparts were not evenly distributed among

high and low quality plants (see Figure 5.5). As one might expect on a landscape

where every plant has some neighbors of the opposite quality and there is plenty of

76



0.0 0.5 1.0 1.5 2.0
Difference in quality (¸+¡¸¡ )

8.0

8.5

9.0

9.5

10.0

10.5
M

e
a
n
 h

o
st

 d
e
n
si

ty
A

0.0 0.5 1.0 1.5 2.0
Difference in quality (¸+¡¸¡ )

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

M
e
a
n
 p

a
ra

si
to

id
 d

e
n
si

ty

B

Half-and-half

Checkerboard

Additive halves

Additive checkerboard

0.0 0.5 1.0 1.5 2.0
Difference in quality (¸+¡¸¡ )

0.10

0.15

0.20

0.25

0.30

0.35

C
o
e
ff

ic
ie

n
t 

o
f 

v
a
ri

a
ti

o
n
 o

f 
h
o
st

 d
e
n
si

ty

C

0.0 0.5 1.0 1.5 2.0
Difference in quality (¸+¡¸¡ )

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

C
o
e
ff

ic
ie

n
t 

o
f 

v
a
ri

a
ti

o
n
 o

f 
p
a
ra

si
to

id
 d

e
n
si

ty D

Figure 5.3: Plots of (A) mean host density, (B) mean parasitoid density, (C) co-
efficient of variation (mean / standard deviation) of host density, (D)
coefficient of variation (mean / standard deviation) of parasitoid density
during the last 200 of 1000 generations plotted against the difference in
plant quality. Error bars show one standard error above and below the
mean value for twenty replicate fields.
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dispersal between high and low quality plants, high quality plants on checkerboard

landscapes had lower densities of parasitoids than high quality plants on additive

landscapes did (Figure 5.5B), while parasitoid densities were higher on low quality

plants on checkerboard landscapes than on additive landscape (Figure 5.5D). These

differences became more pronounced as the difference in host fecundity on high and

low quality plants increased. However, host populations on checkerboard landscapes

did not follow this same pattern. On low quality plants, host populations were even

lower on checkerboard landscapes than on additive landscapes, likely due to the higher

parasitoid density (Figure 5.5C). At the same time, high quality plants on checker-

board landscapes supported at most slightly larger host populations than high quality

plants on additive landscapes did (Figure 5.5A), even with their substantially lower

parasitoid densities.

Populations on half-and-half landscapes also differed from those on additive land-

scapes. On both high quality and low quality plants on half-and-half landscapes,

parasitoid populations were slightly higher than on the corresponding additive land-

scapes (Figure 5.5B & D). However, populations of hosts on high quality plants were

even higher (Figure 5.5A) and populations of hosts on low quality plants even lower

(Figure 5.5C) than on high and low quality plants, respectively, in additive land-

scapes.

In order to understand the somewhat counterintuitive behavior of the half-and-

half landscapes, we examined local populations along a transect on individual plants

from the high fecundity side of the field to the low fecundity side (Figure 5.6 A

& B). The difference between populations on the half-and-half field and those on

its non–interacting, additive counterpart seems to stem from the plants near the

boundary between high and low quality plants. The low quality plants that are

situated near high quality plants have especially low host populations while those

high quality plants, as well as those near the absorbing boundary of the landscape,
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Figure 5.5: Plots of the difference between connected and additive landscapes in the
(A) mean host density on high quality plants, (B) mean parasitoid density
on high quality plants, (C) mean host density on low quality plants, and
(D) mean parasitoid density on low quality plants during the last 200
of 1000 generations, plotted against the difference in plant quality. For
clarity, the horizontal line where the difference equals zero is plotted in
black.
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have especially high populations. When we look at the frequency at which these local

host populations oscillate, we see that the low quality border plants share the rapid

oscillations of the high fecundity region, rather than the slower, long period outbreak

cycle of the low fecundity side (Figure 5.6 C & D).

This pattern seems to be driven by fast, high density periodic traveling waves

from the high fecundity side crossing the border to the low quality side (see video

supplement C.1). At a lower per capita host fecundity, the high densities of hosts and

parasitoids are no longer sustainable, so a rapid crash occurs. Because these crashes on

the low fecundity side are driven by the same traveling waves dominating the dynamics

on the high fecundity side, they share the same periodicity. This phenomenon can be

seen in an example run in video supplement C.1).

5.4 Sensitivity

We varied the fraction of hosts and parasitoids dispersing each generation, mH =

0.1, 0.15, 0.2, 0.25.0.3 and mP = 0.7, 0.75, 0.8, 0.85, 0.9, and the aggregation of the par-

asitoids, µ = 0.0, 0.5, 1.0, 1.5, 2.0. For each set of dispersal parameters, we fixed the

mean plant quality at 2.0 and simulated 4 replicate landscapes each with checkerboard

and half-and-half arrangements at λ+−λ− = 0.0(homogeneous), 0.5, 1.0, 1.5, 2.0(source-sink).

Our results throughout this region of parameter space were qualitatively similar

(Figure 5.8 & Figure 5.7), with the exception of the case where parasitoids did not ag-

gregate to plants with more hosts (µ = 0). When parasitoids preferentially dispersed

to plants with more herbivore hosts (µ > 0), herbivore populations in checkerboard

landscapes decreased steadily (at µ = 2) or decreased and then increased as variance

in plant quality increased (Figure 5.7). In all half-and-half landscapes, herbivore

populations increased or stayed constant as variance in plant quality increased, until

decreasing sharply when the lower quality plants became unable to sustain growth in

host populations (λ− ≤ 1).
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Figure 5.6: Plots of (A) mean host density, (B) mean parasitoid density, (C) dominant
period of oscillations in host density, (D) dominant period of oscillations
in parasitoid density during the last 200 of 1000 generations at each plant
along a transect. Each line shows the average of 20 runs on identical
fields starting from random initial conditions. Line color indicates the
difference in host fecundity (λ+ − λ−) between the high and low quality
plants. The border between high quality plants to the left of the boundary
(host fecundity λ+) and low quality plants to the right of the boundary
(host fecundity λ−) is indicated with a blue, dashed line.
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Figure 5.7: Effect of variation in plant quality on mean host density explored under
varying dispersal parameters. Each line shows the mean host density
during the last 200 of 1000 generations of four replicate landscapes plotted
against the difference in plant quality. Standard error bars are omitted
for clarity. Half-and-half landscapes are represented with red triangles,
checkerboard landscapes with blue stars. The saturation of color varies
with parasitoid aggregation (µ) from purely diffusing parasitoids (white,
µ = 0) to strong aggregation (darkest color, µ = 2). The subplot column
indicates the fraction of hosts dispersing each generation (mH), subplot
row indicates the fraction of parasitoids dispersing each generation (mP ).
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Figure 5.8: Effect of variation in plant quality on the ratio of parasitoids to hosts
explored under varying dispersal parameters. Each line shows the para-
site to host ratio during the last 200 of 1000 generations of four replicate
landscapes plotted against the difference in plant quality. Standard error
bars are omitted for clarity. Half-and-half landscapes are represented with
red triangles, checkerboard landscapes with blue stars. The saturation of
color varies with parasitoid aggregation (µ) from purely diffusing para-
sitoids (white, µ = 0) to strong aggregation (darkest color, µ = 2). The
subplot column indicates the fraction of hosts dispersing each generation
(mH), subplot row indicates the fraction of parasitoids dispersing each
generation (mP ).
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When parasitoids were non-aggregating (µ = 0), checkerboard landscapes had

higher densities of herbivores than half-and-half landscapes, and the herbivore pop-

ulations in checkerboard landscapes increased rapidly with variance in plant quality

(Figure 5.7), suggesting that some degree of aggregation is necessary to produce the

suppression of host populations on low-quality plants in the checkerboard landscape

observed in Figure 5.5.

5.5 Discussion

We used a spatially explicit model of host-parasitoid dynamics to explore the

interaction between variation in resource quality and spatially structured trophic

interactions. Even in very simple landscapes, we found that local variation in resource

quality influences global population dynamics dramatically.

When either the spatial scale of variation in plant quality or the magnitude of that

variation was large, both the mean and variance of host and parasitoid populations

in heterogeneous landscapes were substantially greater than those in homogeneous

landscapes with the same mean plant quality. The ratio of parasitoids to hosts also

increased with the variance in plant qualities present in the landscape. This confirms

that the spatially structured interaction between herbivores and their natural enemies

can combine with the effects of variable plant quality to generate spatial and temporal

dynamics observed previously in field studies (Underwood, 2004; Helms and Hunter,

2005; Underwood, 2009). Moreover, field studies have found that the shape and

spatial arrangement of high quality plant patches can also affect herbivory (Evans

et al., 2012a). In our model, landscapes with different spatial arrangements of plants

also gave rise to differences in population dynamics.

Most strikingly, we found that small variations in plant quality occurring on a

small spatial scale led to decreased herbivore density. The frequent dispersal of par-

asitoids between high and low quality plants led to strong suppression of herbivore
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populations on the lower quality plants, without a corresponding increase in herbi-

vore populations on higher quality plants, an effect that Oksanen et al. (1992) found

for predator-prey interactions in habitats where the scale of heterogeneity is smaller

than the home-range of an individual predator. This enhancement of parasitism by

small-scale variation in plant quality may have particularly important consequences

for productive plant populations. Because herbivore fecundity is, in many cases, af-

fected by plant genotype (Underwood and Rausher, 2000; McIntyre and Whitham,

2003; Evans et al., 2012b), we might expect the genetic variation in natural plant pop-

ulations to lead to more local variation in plant quality and higher parasitism than

we would see in an agricultural planting of a single plant genotype. Indeed, adding

genetic variation in plant quality back into agricultural ecosystems might serve to

increase rates of parasitism on pest insects.

We see a similar effect in landscapes composed of two large, homogeneous patches

of different quality, where host populations were suppressed on low-quality plants

that were near the boundary between low- and high-quality regions, resembling the

“spillover effect” observed at crop–noncrop boundaries (Rand and Louda, 2006). In

their study of predatory coccinellid beetles in crops and grassland sites in Nebraska,

Rand and Louda found that coccinellid densities were 2.6 – 9.0 times higher in grass-

land sites in landscapes containing mostly crops than in grassland sites surrounded

by more grassland (Rand and Louda, 2006). At the same time, they found that

aphid density increased significantly when predators were excluded from experimen-

tal aphid colonies via a mesh sleeve, suggesting that the coccinellids could indeed

suppress aphid populations and that the spillover of beetles from cultivated areas

could lead to lower aphid populations in the surrounding grasslands.

The sharp delineation between high and low plant quality in our simulated land-

scapes may reasonably approximate an intercropped field, but natural systems often

contain smoother gradients in plant quality and arthropod population density over
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space (Salmore and Hunter, 2001; Pennings et al., 2007). For example, Salmore

and Hunter (2001) found that the concentration of defensive alkaloids in Sanginaria

canadensis (bloodroot) along an elevational gradient from Georgia to North Carolina

tended to decrease with elevation. Pennings et al. (2007) reported a latitudinal gra-

dient of plant palatability in their study of plant-herbivore interactions in European

salt-marshes. Leaves and plant litter from higher latitudes were more palatable than

their low-latitude congenerics to several insect species. Several of the plant taxa stud-

ied also tended to suffer more herbivory at lower latitudes than higher, suggesting

that the latitudinal gradient in plant palatability might result from differing selective

pressure from herbivory.

Such resource gradients, coupled with herbivore-natural enemy interactions, have

the potential to drive patterns in insect herbivore populations over large spatial and

temporal scales. In their investigation of the periodic traveling waves of larch bud-

moths (Zeiraphera diniana Gn.) across the European Alps, Bjørnstad et al. (2002)

simulated the populations of an herbivore host and its parasitoid along a resource

gradient. They found that, under a wide range of parameter values, the addition of a

spatial gradient in resource quality caused the emergence of periodic traveling waves

of hosts and parasitoids similar to those observed in larch budmoth populations or

to the winter moth (Operphtera brumata) outbreaks that periodically move across

Europe (Tenow et al., 2013).

The magnitude and spatial scale of variation in plant quality can depend on both

abiotic factors, such as variation in altitude and moisture, and life-history and dis-

persal traits of plants (Loveless and Hamrick, 1984). Different parasitoid species

respond to variation in host habitat quality at different spatial scales, and it is likely

that these differences stem at least in part from differences in the dispersal patterns of

the parasitoids and their hosts (Roland and Taylor, 1997). Both in models (Comins

et al., 1992; Rohani and Miramontes, 1995) and in the field (Cronin and Reeve,
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2005), dispersal of hosts and parasitoids can have strong effects on the stability and

spatiotemporal patterns of abundance. Not only do host and parasitoid dispersal

patterns have profound effects on their population dynamics, but landscape structure

and diversity has been found to affect both herbivore (Hill et al., 1996) and parasitoid

dispersal (Cronin, 2003). Further, the structure of spatial heterogeneities in resource

quality may influence the evolution of dispersal strategies, with different landscapes

selecting for different dispersal strategies (Johst et al., 2002).

In previous studies on homogeneous landscapes, the choice of dispersal parame-

ters have been found to strongly affect the stability of host-parasitoid interactions,

the efficiency of parasitoid control of hosts, and the emergent spatial patterns of

host and parasitoid populations (Hassell and May, 1973; Hassell et al., 1991; Comins

et al., 1992; Rohani and Miramontes, 1995; Bjørnstad et al., 2002; Hirzel et al., 2007).

Though we have found that our main results hold for a range of parameters where

parasitoids disperse much more frequently than their hosts and parasitoids preferen-

tially dispersed to plants with higher host populations, our preliminary exploration

of a wider range of dispersal behaviors suggest that host and parasitoid populations

with different dispersal may have qualitatively different responses to environmental

heterogeneity. The interplay between host and parasitoid dispersal behaviors and

spatial variation in plant quality remains a rich avenue for future study.

Models similar to the one used here have been used to simulate a variety of pro-

cesses in homogenous landscapes. These include a wide variety of demographic pro-

cesses acting on herbivores and their parasitoids, and the attack behavior of foraging

enemies (Ruxton and Rohani, 1996; Hassell, 2000). We suggest that exploring such

interactions on landscapes that differ in resource quality for herbivores could provide

interesting insights into population dynamics of natural and agricultural systems.

For example, the combined effect of demographic stochasticity and a strong spillover

effect might make a low quality region effectively impermeable to hosts, even if a
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deterministic model allowed very small densities of hosts and parasitoids to colonize

it.

The large scale consequences of other plant quality effects on hosts and parasitoids

also remain open to exploration. For simplicity, we only modeled spatial heterogeneity

in host fecundity, but there is strong evidence to suggest that the size and growth

rate of hosts, which also vary with plant quality, can affect parasitoid reproductive

success (Hunter, 2003). Additional factors contributing to parasitoid fecundity, such

as availability of overwintering sites or alternate food sources, may also vary spatially

(Cronin and Reeve, 2005), but need not correlate with plant quality. Further, plant

quality is, in turn, influenced by host and parasitoid populations. In the short term,

damage from host herbivory may reduce plant quality for the next generation of hosts.

In the longer term, high levels of herbivory select for plants with stronger defenses

against hosts. Another potential extension of our model would be to incorporate some

of these tritrophic interactions between plants, herbivore hosts, and parasitoids.

Even without the additional complexity of these mechanisms, we find that large

scale population dynamics of hosts and parasitoids depend both on the distribution

of plant qualities and their behaviors in space. Our results suggest that fine-scale

variation in plant quality may be particularly important for supporting populations of

parasitoids and predators and that plant genetic variation in agricultural ecosystems

could be managed to enhance biological control of herbivores.
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CHAPTER VI

Diffusion induced spatial structure in the logistic

map

6.1 Introduction

The role of spatial structure in shaping populations is a topic of longstanding

interest in ecology (Huffaker, 1958; Elton, 1958; Levin, 1976; Denno and McClure,

1983; Hassell et al., 1991; Levin, 1992). The dispersal of organisms and the resulting

spatial coupling of populations can, under some circumstances, destabilize a spatially

homogeneous equilibrium population and drive the emergence of spatially structured

heterogeneity (Turing, 1952; Kot, 1989; Neubert et al., 1995; Rohani and Ruxton,

1999). Away from equilibrium, heterogeneity among coupled populations can enable

the long-term survival of populations that would not persist in isolation, whether

through desynchronization of the timing of local extinction events (Levin, 1976) or

through spatiotemporal heterogeneity in the local risk of predation or parasitism

(Huffaker, 1958; Hassell et al., 1991; Comins et al., 1992).

One important factor in the emergence and persistence of spatial heterogeneity

is the scale at which dispersal occurs. For example, Kot (1989) found that diffusion

driven instability in a simple integrodifference model of predator-prey dynamics de-

pended on the widths of the predator’s and prey’s dispersal kernels. The distance
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scales of dispersal influenced not only the occurrence of diffusion driven instability

but also the range of spatial wavelengths over which the homogeneous equilibrium

was unstable to perturbations.

However, such analytical results relating dispersal patterns to spatial heterogene-

ity in population density have been largely concerned with the stability of spatially

homogeneous equilibrium solutions, while our understanding of non-equilibrium dy-

namics comes primarily from numerical experiments. While conditions under which

the stable equilibrium of a well-mixed system becomes unstable with spatial structure

have been established in several discrete-time population models (Kot, 1989; Neubert

et al., 1995; Rohani and Ruxton, 1999), less is known about the emergence of spatial

heterogeneity when the dynamics of the well-mixed system do not tend towards a

stable fixed point.

I aim to investigate analytically the relationship between spatial scales of dispersal

and the emergence of spatial heterogeneity in the absence of a stable equilibrium of the

well-mixed system. I use a simple integrodifference model of a spatially structured

population of organisms which reproduce and disperse in different life stages (Kot

and Schaffer, 1986; Hardin et al., 1988). Such simple models of this form have been

known to exhibit a wide range of phenomena, including diffusion driven instability

and pattern formation (Kot, 1989; Andersen, 1991; Neubert et al., 1995), traveling

waves (Wang et al., 2002; Lutscher and Van Minh, 2013), and long-lasting transient

dynamics (Hastings and Higgins, 1994).

6.2 Population Model

Let Nt(x) be the density of sessile adults at position x during generation t. I

model the local density of juveniles produced as the logistic map,

g(Nt(x)) = rNt(x)(1−Nt(x)) (6.1)
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with intrinsic growth rate r. The juveniles disperse and settle in new positions, so

that

Nt+1(x) =

∫
Ω

rNt(y)(1−Nt(y))κ(x, y)dy (6.2)

where κ is a dispersal kernel. In the current study, I consider a Gaussian dispersal

kernel, so that Nt+1(x) is the result of allowing rNt(x)(1−Nt(x)) to diffuse for some

fixed time under some fixed diffusion constant.

Let us consider the diffusion operator mapping f(x) to
∫

Ω
f(y)κ(x, y)dy, in terms

of its damping effects on spatial heterogeneity. Because the dispersal kernel κ is

Gaussian, it is useful to note that

∫
Ω

cos(ωy)κ(x, y)dy = e−αω
2

cos(ωx).

where α is a dimensionless parameter depending on the width of the kernel. For

convenience, I will call the diffusion operator Dα, such that

Dα cos(ωx) = e−αω
2

cos(ωx).

This allows us to write the integrodifference equation for the next generation’s

population as

Nt+1(x) = DαrNt(x)(1−Nt(x)) (6.3)

with a single growth parameter r and a single dispersal parameter α.

6.3 Linear stability of the spatially homogeneous equilibrium

Consider a small perturbation about the spatially homogeneous equilibrium pop-

ulation,

Nt(x) = N∗ + εζt(x) (6.4)
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where N∗ = r−1
r

is the nonzero fixed point of the logistic map for r > 1, which is

stable for 1 < r < 3. By calculating the next generation’s population density

Nt+1(x) = N∗ + εr(1− 2N∗)Dαζt(x) +O(ε2) (6.5)

and noting that r(1− 2N∗) = (r − 2), one can see that

ζt+1(x) = (r − 2)Dαζt(x). (6.6)

Looking at the Fourier transform of the perturbation, one can see that

ζ̂t+1(ω) = (2− r)e−αω2

ζ̂t(ω). (6.7)

Thus the component of ζt at wavenumber ω is amplified (or damped) by a factor

of (r − 2)e−αω
2
. For 1 < r < 3, this factor is always between zero and one, so the

spatially homogeneous equilibrium N ≡ N∗ is linearly stable to perturbations in any

spatial frequency. However, for r > 3, the homogeneous equilibrium loses stability to

perturbations at wavenumbers less than

ωc =

(
log(r − 2)

α

) 1
2

,

where the growth away from the unstable equilibrium is able to overcome the damping

from diffusion.

The magnitude of amplification of linear perturbations of the spatially homo-

geneous equilibrium is plotted as a function of wavenumber in Figure 6.1 (for an

intrinsic growth rate of r = 3.2), with sample simulations of selected values of ω. One

can see that, indeed, perturbations at wavenumbers below wc (insets A, B, and C)

are initially amplified, perturbations at wavenumbers above wc (insets E and F) are
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Figure 6.1: The amplification of perturbations about the spatially homogeneous equi-
librium plotted by wavenumber. Insets A-F show the simulated popula-
tions for 100 generations starting from a small ( amplitude = 0.01r) si-
nusoidal perturbation with wavenumbers (A) 0, (B) wc

2
, (C) 3wc

4
, (D) wc,

(E) 5wc
4

, and (F) 3wc
2

(marked with red circles on the line plot). Even and
odd numbered generations are plotted in red and blue, respectively, so
that the temporal oscillations are apparent. Deeper colors indicate more
recent generations. The parameters used in the simulation were r = 3.4
(for which the logistic map has a stable 2-cycle) and ωc = 8 in a 1024 point
discretized space. Results with populations simulated in frequency space,
preserving the first 64 spatial frequencies, are qualitatively unchanged.
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rapidly damped, and a sinusoidal perturbation at wavenumber wc (inset D) more-or-

less maintains its amplitude until the population has moved some distance away from

the equilibrium.

However, spatially structured populations (such as the population in inset B) seem

to occur in an even narrower band of wavenumbers within the range of perturbations

which are initially amplified (such as in inset C). To understand why this might be,

let us examine what happens to a small sinusoidal perturbation about the spatially

homogeneous equilibrium,

N0(x) = N∗ + ε cos(ωx). (6.8)

The resulting larval density is

g(N0(x)) = N∗ + ε(2− r) cos(ωx)− ε2 cos2(ωx),

which can be written by means of the identity cos2(ωx) = 1
2
(1− cos(2ωx)) as

N1(x) = N∗ − rε2

2
+ e−ω

2αε(2− r) cos(ωx) +
rε2

2
e−4ω2α cos(2ωx). (6.9)

Written in this form, it becomes clear that neglecting the O(ε2) perturbation induced

in the mean in favor of O(e−ω
2αε) terms will only be reasonable for a narrow band of

wavenumbers (in particular, a band that grows as O
(√
− log(ε)

)
as ε shrinks).

More generally, if the population density varies periodically in space with some

period L, so that its Fouier series can be written as

Nt(x) =
∞∑

m=−∞

am(t)e
2πmi
L

x,
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then the coefficients in the next generation am(t+ 1) will have the form

am(t+ 1) = re−αm
2

(
am(t) +

∞∑
j=−∞

am−j(t)aj(t)

)
. (6.10)

Since Nt(x) is real, the coefficients am−j(t) are the complex conjugates of aj−m(t),

which are the coefficients of e
2πmi
L Nt(x). Thus, by Parseval’s theorem,

∞∑
j=−∞

am−j(t)aj(t) =
1

2πL

L∫
0

e−
2πmi
L N2

t (x)dx.

Note that, in any generation, Nt(x) is between zero and one for all x and t. It follows

that ∣∣∣ ∞∑
j=−∞

am−j(t)aj(t)
∣∣∣ ≤ 1

and therefore

|am(t+ 1)| ≤ 2re−αm
2

. (6.11)

This strongly constrains the amplitude of variation in density that can be sustained

at fine spatial scales.

6.4 Single spatial frequency approximation

With our previous results in mind, let us consider a population whose density

varies sinusoidally in space,

Nt(x) = M + A cos(ωx)

for ω > 0. The population density in the next generation will be

Nt+1(x) = rM(1−M)− r

2
A2 + e−ω

2αr(1− 2M)A cos(ωx) +O(e−4ω2α).
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Neglecting the higher frequency terms, this yields a pair of coupled difference equa-

tions for the mean density M and the coefficient A of the spatial oscillation of the

density in each generation:

Mt+1 = rMt(1−Mt)−
r

2
A2
t (6.12)

At+1 = rd(1− 2Mt)At (6.13)

where d = e−αω
2

is the damping effect of diffusion on the focal spatial frequency. One

can quickly see that d = 0 (the limit of high frequency or high α) will always yield

a spatially homogeneous population, where d = 1 (α equal to zero) corresponds to a

population with no dispersal. Further, a spatially homogeneous (A = 0) orbit that

exists for one value of d must exist for all values of d.

The extent to which the behavior of the single spatial frequency model reflects

that of of the full system will be investigated in Section 6.5. For now, let us explore

the dynamics of this simpler model.

The fixed points of this single spatial frequency system are the spatially homoge-

neous fixed points (A = 0 and M = 0 or r−1
r

) and an additional pair of fixed points

where

1 = rd(1− 2M)

and

M = rM(1−M)− r

2
A2.

Simplifying these conditions, one can see that any heterogeneous fixed points must

satisfy

M =
1

2

(
1− 1

rd

)
and

A2 = 2M
(

1− 1

r
−M

)
.
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To investigate the linear stability of these fixed points, one can calculate the

Jacobian of the system

J |(M,A) =

(
d(1− 2M) −rA

−2rdA rd(1− 2M)

)
. (6.14)

At the spatially heterogeneous fixed points, this is equal to

J =

(
1
d

−rA

−2rdA 1

)
.

Using the Jury test (Jury, 1964, 1974), all eigenvalues of J will have magnitude

less than one (i.e. the fixed point will be stable) if and only if the following three

conditions hold

1 + Tr J + det J > 0 (6.15)

1− Tr J + det J > 0 (6.16)

1− det J > 0. (6.17)

At the spatially heterogeneous fixed points,

Tr J = 1 +
1

d
,

det J =
1

r
− 2dr2A2,

and

1− Tr J + det J = −2dr2A2 < 0.

Thus, any spatially heterogeneous fixed points will violate (6.16) and are therefore

never stable.
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One can similarly look for regions of parameter space with stable 2-cycles. A

natural special case to investigate is 2-cycles of the form observed in Fig. 6.1B,

where the mean population density (M) and amplitude (|A|) of the spatial oscillations

remain fixed, but phase of the oscillation (the sign of A) alternates. In such 2-cycles,

the mean density and the amplitude at the focal spatial frequency must obey

−1 = rd(1− 2M)

A2 = 2M(1− 1

r
−M)

and the matrix relevant for linear stability would be the product of the Jacobian at

each step around the cycle,

J =

(
1
d

−rA

−2rdA 1

)(
1
d

rA

2rdA 1

)
=

(
1
d2
− 2dr2A2 1

d
rA− rA

−2rA+ 2rdA 1− 2dr2A2

)
.

Again applying the Jury test, one can find regions where these spatially structured

stable 2-cycles are stable for all growth rates high enough that homogeneous 2-cycles

exist, even for large growth rates which would generate chaotic dynamics in the

spatially homogeneous system (see Fig. 6.2).

It is natural to wonder whether similar regions of spatially structured stability

exist for cycles of other lengths. When a stable n-cycle exists in the uniform diffu-

sion, spatially homogeneous case (d = 0), spatially structured cycles with periodicities

belonging to the set of n and its factors must exist in the no-diffusion (d = 1) case,

simply by virtue of each local population following the stable n-cycle in its own phase.

In the single spatial frequency approximation, one would expect to see n such cycles

(including the homogeneous cycle), each corresponding to a different phase lag. For a

cycle N1, . . . , Nn, the no-diffusion cycle at lag ρ would have mean populations equal to

1
2
(Ni +Ni+ρ) and amplitudes equal to 1

2
(Ni −Ni+ρ) for i = 1, . . . , n. However, deter-
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Figure 6.2: Regions with the-
oretically stable
2-cycles. Red shad-
ing indicates that
our single spatial
frequency model
predicts stable
spatially structured
2-cycles with a fixed
mean and ampli-
tudes of alternating
sign. Blue indicates
regions with spa-
tially homogeneous
2-cycles.

mining the conditions for the existence and stability of analogous spatially structured

cycles in diffusion populations is more challenging. In the following section, I will

explore the bifurcation structure of both this single spatial frequency approximation

and the full spatial model numerically.

6.5 Numerical results

In order to characterize the long-term behavior at each level of growth and dif-

fusion, I simulated populations in the single spatial frequency system (Fig. 6.3) and

the full spatial system (Fig. 6.5) under a range of growth and diffusion values. For

each set of parameter values, I ran 1024 replicates with random initial conditions and

plotted the number of values of the mean population density and amplitude of spatial

oscillations in density observed after in the fairly long term (1000 generations). In the

full spatial case, the damping from diffusion d and the amplitude observed were both

defined relative to a focal wavenumber (Fig. 6.5 used focal wavenumber 1). Note that

in cases where longer term transient dynamics occur, one would expect to observe
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Figure 6.3: The number of observed values of the mean (left panel) and amplitude
(right panel) after 1000 generations in 1024 runs of the model at each
damping d, growth g value. Initial conditions were generated by choosing
M0 uniformly at random from [0, 1] and choosing A0 uniformly at random
from [−min(M0, 1−M0),min(M0, 1−M0)] to keep the population density
at each point in space in [0, 1].

more values than actually appear in the set of stable orbits.

In the single spatial frequency system (Fig. 6.3), the boundaries of the region

containing a stable spatially structured two-cycle are visible. For growth rates with

stable spatially homogeneous 2-cycles (3 < r < 1 +
√

6), both spatially homogeneous

and spatially structured 2-cycles are present when diffusion is weak enough (i.e. when

d is large enough). However, for larger growth rates where the spatially homogeneous

system displays chaotic dynamics, the spatially structured 2-cycle appears to be the

only pattern observed in the long-term for some levels of diffusion (see Fig. 6.4A for

an example).

Intriguingly, one can see a similar band of structure that appears to run from the

range of growth rates with stable homogeneous 4-cycles in the no diffusion case down

to the lower edge of the stable structured 2-cycle region as the growth rate increases.
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One might conjecture that this is an analogous band of stable spatially structured

4-cycles and, indeed, this is supported by our numerical results (see Fig. 6.4B).

While by no means identical, the bifurcation structure of the full spatial system

(plotted in Fig. 6.5) has many features in common with the single spatial frequency

approximation. In particular, there are similar regions of stable spatially heteroge-

neous 2-cycles and 4-cycles (see Fig. 6.6A&B for examples). Above the region of

stable spatially heterogeneous 2-cycles (that is, with slightly weaker diffusion), one

can see see an additional region of what seems to be stable spatially heterogeneous

4-cycles that do not occur in the single spatial frequency model (compare panel C in

Figs. 6.4&6.6).

The other regions of order visible in Fig. 6.5 that are not captured in the single

spatial frequency model appear to correspond to stable spatially heterogeneous 2-

cycles in higher wavenumbers (see Fig. 6.7). I found that populations tended to take

longer to converge to spatially heterogeneous orbits in higher wavenumbers, which

may be one reason that the ordered in parameter space corresponding to 2-cycles in

higher spatial frequencies were not as well-characterized as their wavenumber 1 coun-

terpart. Another reason may be the presence of other stable states. For example, in

the band where the single spatial frequency approximation predicts spatially struc-

tured 2-cycles with wavenumber 6, it is more common for 4-cycles with wavenumber

4 to occcur, though only after a very long transient period (see Fig. 6.8).

6.6 Discussion

I analyzed a discrete time, continuous space model of population growth, with a

spatially structured population alternating local growth according to the well-studied

logistic map and dispersal using a Gaussian kernel. This simple model produced a

wide range of behaviors at varying levels of growth and dispersal. I found that many

of these complexities were captured in a further simplified model, looking at only the
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Figure 6.4: Examples of orbits observed in the single spatial frequency model. The
points in parameter space corresponding to panels A, B, and C are labeled
in the top left panel, which is a reproduction of the left panel of Fig. 6.3.
Orbits are plotted over the last 20 generations of a 1000 generation run,
in 4 alternating colors so that the periodicity is visible.
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Figure 6.5: The number of observed values of the mean (left panel) and the ampli-
tude of the focal spatial frequency (right panel) after 1000 generations
in 1024 runs of the model at each damping d, growth g value. Initial
conditions were generated by choosing an initial sinusoidal (wavenumber
1) population, mean M0 uniformly at random from [0, 1] and amplitude
A0 uniformly at random from [−min(M0, 1 −M0),min(M0, 1 −M0)] to
keep the population density at each point in space in [0, 1]. A 1024 point
discretized space was used for these simulations.

mean population and the magnitude of spatial variation at a single focal spatial scale.

I found that spatially heterogeneous populations with temporally periodic dynam-

ics occurred even in parameter regimes where the spatially synchronous dynamics were

chaotic. The range of spatial scales on which spatial heterogeneities could persist was

limited by dispersal. As in other reaction-diffusion systems (Turing, 1952), continu-

ous time models of density dependent populations display pattern formation at some

characteristic spatial scale that depends of dispersal parameters. Such a relationship

between spatial scales of correlated abundance and of movement has also been ob-

served in the field (Roos, 1991). In our discrete time model, I was able to quantify

the extent to which spatial variation at scales that are “too small” will be smoothed

out by dispersal (as in eq. 6.11).
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Because of the strong constraints on the amplitude of variation at fine spatial

scales, a single spatial frequency approximation was able to capture many features

of our original model for a wide range of dispersal scales. The bifurcation structure

of our full spatial model shared many recognizable structures with the single spatial

frequency model and, especially in ordered regions, often behaved similarly (Figs. 6.6

and 6.4). In the single frequency approximation, I was able to determine analyti-

cally conditions under which certain classes of periodic solution would be stable (Fig.

6.2), which were borne out in our numerical simulations (Fig. 6.3). I also observed

signatures of these regions in the full spatial model (Fig. 6.5).

When diffusion was local enough that variations at multiple spatial scales could

sustain nontrivial dynamics, on the other hand, deviation from the single spatial

frequency model became the norm. In this regime, transient population dynamics

often persisted on very long time scales (as in Fig. 6.8), as observed in Hastings and

Higgins’s study using the Ricker model (Hastings and Higgins, 1994). It is possible

that these long transient dynamics are due to the presence of multiple saddle nodes in

solution space (Cushing et al., 1998; Hanski et al., 1995). One potential direction of

future study could be to investigate the stability of the 2-periodic, spatial wavenumber

2 solutions examined in this study to perturbations at different spatial frequencies.

Even with longer-distance diffusion, there remained some differences between be-

havior of the single spatial frequency model and that of the full spatial model. For

example, compare the solutions shown in Fig. 6.4C and Fig. 6.6C, which are ob-

served at the same parameter values in the single spatial frequency approximation

and full spatial model, respectively. The potential of nonlinear interactions to sustain

high-frequency ‘harmonics’ despite the smoothing effects of diffusion has long been

recognized (Steele, 1974). In the present model, I find that such ‘harmonics,’ even at

relatively small amplitudes, are critical for the existence of certain solutions, such as

the 2-periodic solution in Fig. 6.6C, which exists in the full spatial model but not in
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the single spatial frequency approximation (see Fig. 6.4C).

The spatial scale of dispersal and the emergent patterns of population density are

tightly linked in our simple model. I find that many characteristics of the integrod-

ifference equation model can be captured by approximation the heterogeneity to a

small number of focal frequencies, and that some classes of solution can be inves-

tigated analytically in this finite approximation. This approximation breaks down

when the use of different focal frequencies predicts different solutions. I conjecture

that competition between these “overlapping” solutions at different spatial scales may

play a role in the long-lasting transient dynamics observed in this and other spatially

coupled discrete time population models.

Although several studies have found that dispersal induced instability of a homo-

geneous population at equilibrium requires the interaction of multiple species with

sufficiently different dispersal rates (Kot, 1989; Neubert et al., 1995; Rohani and Rux-

ton, 1999), I find that the same does not hold for the diffusion induced destabilization

of periodic orbits. Rather, when the well-mixed dynamics of a single population do not

tend towards a stable equilibrium point, dispersal at intermediate length scales can

lead to the emergence of a wide variety of spatially ordered population dynamics. Our

results further suggest that self-organized spatiotemporal structure in non-equilibrium

populations depends strongly on the relative scales of individual organism movement

distances and the size of the available habitat, with spatial structure breaking down

in the extreme cases of global, uniform dispersal or no dispersal, resulting in a single

well-mixed population or a collection of isolated, well-mixed populations, respectively.
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Figure 6.6: Examples of orbits observed in the full spatial model. The points in
parameter space corresponding to panels A, B, and C are labeled in the
top left panel, which is a reproduction of the left panel of Fig. 6.5. Orbits
are plotted over the last 20 generations of a 1000 generation run, in 4
alternating colors so that the periodicity is visible.
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Figure 6.7: Regions with theoretically stable 2-cycles according to the single spatial
frequency model, with example orbits in the full spatial model plotted
in panels A, B, and C. In the top left panel, color indicates the highest
wavenumber predicted to have a stable 2-cycle in the region. The damping
from diffusion d is calculated according to the wavenumber 1 oscillations.
The points in parameter space corresponding to panels A, B, and C are
labeled in the top left panel. These points have the same growth and
damping of the relevant wavenumber as point A in Figs. 6.4&6.6. The
orbits in panels A, B, and C are plotted over the last 20 generations of
1000, 10000, and 100000 runs, respectively.
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Figure 6.8: Long term dynamics in at a point in parameter space where the single
spatial frequency model would predict a stable spatially structured 2-
cycle or wavenumber 6. The top 3 panels show the local populations for
the 20 generations before generations number 1000, 10,000 and 100,000.
The bottom panel shows the mean density over time. Note that, rather
than the expected 2-cycle with wavenumber 6, the population eventually
converges to a 4-cycle with dominant spatial wavenumber 4, although this
population is not perfectly spatially periodic (compare the peaks of the
dark blue line).
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APPENDIX A

Vaccine legacy supplementary information

A.1 Contact matrix processing and alternative contact struc-

tures

We calculated the contact rates used in our model using the reported contacts

(both conversational and physical) person per day in Great Britatin in Table S8.4(a)

of Mossong et al. (2008) and the esimated population by year of age from the United

Kingdom’s 2011 census data.(Mossong et al., 2008; United Kingdom. Office for Na-

tional Statistics., 1988)

When using self-reported data on contact rates, it is often neccessary to correct

for reciprocity in reporting in order that the rates of contacts with group i reported

by group j members and vice versa predict a consistent number of contact events

between the two groups.(Wallinga et al., 2006) Let cij be the actual average number

of contacts per day that a member of group i has with members of group j and Ni

be the number of members of group i in the POLYMOD study. Then the average

number of contacts eij that occur per day between groups i and j is

eij = Nicij = Njcji = eji

111



0 20 40 60
Contact Age

0
10
20
30
40
50
60
70

R
e
p
o
rt

e
r 

A
g
e

A
Reported contacts

 per person

0 20 40 60
Contact Age

0
10
20
30
40
50
60
70

B
Reported

 total contacts

0 20 40 60
Contact Age

0
10
20
30
40
50
60
70

C
Corrected

 total contacts

0 20 40 60
Contact Age

0
10
20
30
40
50
60
70

D
Corrected contacts

 per person

0.0

0.5

1.0

Figure A.1:
Contacts between age groups. From left to right: reported per person rate of contacts,
reported rate of contact events, rate of contact events after correcting for reciprocity
in reporting, per person contact rates corrected for reciprocity. For this plot, each
matrix is normalized to have a maximum value of one.

We estimate the number of contact events between groups i and j as

eij = 1
2
(Nic̃ij +Nj c̃ji)

where c̃ij is the number of contacts per day with group j reported by members of

group i. This yields the symmetric matrix of contact events plotted in Figure 2.2A

and Figure A.1C.

From this matrix we can recover the individual contacts per day corrected for

reciprocity in reporting

cij =
eij
Ni

=
1

2
(c̃ij +

Nj

Ni

c̃ji)

This corrected contact matrix (converted to units of contacts per year) is what we

use in our simulations and is plotted in Figure A.1D.

We also carried out simulations of populations with homogeneous and proportional

mixing. When mixing is homogeneous, contacts are assumed to be completely age-

independent and the force of infection calculated using a single overall contact rate

c =
Σi,jeij
N
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In proportional mixing, an individual’s total contacts per day can vary by age but

who contacts who is random. So, for example, if 10-15 year olds were involved in one

fifth of all contact events, then one fifth of each age group’s contacts would be with

10-15 year olds.

In order to construct a contact matrix for proportional mixing, we can use our

existing contact matrix. We denote the number of contact events involving age group

i as

ei = ΣjNicij

which makes the total number of contacts

M =
1

2
Σj(ej +Njcjj)

(Since each contact involves two participants, simply adding up Σjej double–counts

contacts in which the two participants belong to different age-groups and each con-

tribute to their own ej.)

The chance that one’s partner in a contact belongs to age group j is
ej

2M
(again,

recalling that each contact involves two participants), so we can write the number of

i, j contact events predicted under proportional mixing as

e′ij = ei
ej

2M
= e′ji

and the new per capita i to j contact rate is

c′ij =
e′ij
Ni

The rates of contact events between age-groups with the full contact structure,

with homogenous mixing, and with proportional mixing are plotted in Figure A.2.

We find a similar slow resurgence under all three mixing conditions, as seen in
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Figure A.2: Per person contact rates between age groups in three mixing models: full
contact matrix (panel A), homogeneous mixing (panel B), and propor-
tional mixing (panel C). For this plot, matrices are normalized so that
the highest

Figure A.3, even though the pre-vaccine era mean age of infection is much higher

without the age-assortative mixing observed in the POLYMOD. Scaling all contact

rates by a constant in order to generate the historical pre-vaccine age of infection yields

the same qualitative pattern (see Figure A.4) Although the age-structued incidences

predicted under different contract structures vary substanitally in many respects, the

gradual increase in adult cases seems to be a relatively robust feature regardless of

the contact matrix used.

A.2 Historical Uptake Rates

From 1966 through 2008, we use the national vaccine coverage values reported by

the Health Protection Agency (HPA) in our simulations.(United Kingdom. Health

Protection Agency., 2008) However, no uptake data is available between 1957 and

1966. We examined several linear ramp ups in coverage, from coverage υ = 0.2, 0.4, 0.6

in 1957 to the 74% coverage reported in 1966, so that coverage u(t) between t = 157

(1957) and t = 166 (1966) given by

u(t) = υ +
0.74− υ

9
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Figure A.3: Single realizations under each contact structure are plotted in panels A-C
(full contact matrix), D-F (homogeneous mixing), and G-I (proportional
mixing) with 60% vaccination in 1957 and 85% vaccine efficacy. For each
realization overall incidence and incidence in individuals over 15 year old
(panels A, D, G); the incidence by age (panels B, E, H); and fraction
susceptible by age (panels C, F, I) are plotted against time.
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Figure A.4: Single realizations under each contact structure with homogeneous and
proportional contact rates have been scaled by the ratio of the overall rate
of contacts observed to the contact rate theoretically necessary to produce
a mean age of infection of 5 years in a well mixed population (given our
other model’s 15 day mean duration of infectiousness, 75 year average
lifespan, and 4% chance of transmission upon a risky contact) (Anderson
and May, 1982) are plotted as in Figure A.3. All three realizations use
values of 60% vaccination in 1957 and 85% vaccine efficacy.
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Results with these diffrent ramp-ups are plotted in Figure A.5 As one would

expect, incidences differ early in the vaccine era when incidence is declining rapidly.

Higher initial uptake values lead to a faster descent with more oscillation in incidence.

However, the gradual rise in adult and adolescent cases seems to be qualitatively

robust to the initial uptake value.

A.3 Vaccine Efficacy

Vaccine efficacy is difficult to estimate for pertussis and may vary between vac-

cines.(Mills et al., 1998) We carried out simulations with efficacies of 75%, 85%, and

95%. Results with lifelong natural immunity and varying durations of vaccine de-

rived immunity are plotted in Figure A.6. We see the gradual rise in adult cases in

all cases, except for for vaccines with 95% efficacy, where lifelong immunity resulted

in eradication. However, any waning of vaccine derived immunity again produced a

dramatic rise in adult and adolescent cases as cohorts born in the early vaccine-era

aged.

Both primary vaccine failure and waning of immunity, alone or in combination,

produce the gradual increase in adult cases in our simulation results. Figure A.7

shows the age-structured incidence rates from runs with lifelong natural immunity and

either primary vaccine failure (85% efficacy), vaccine waning (70 year mean duration),

neither, or both. With a 95% efficacious, lifelong vaccine, eradication is acheived after

about ten years of sustained, high coverage vaccination. However, in all other cases,

we see the same pattern of a long honeymoon followed by a resurgence in adolscents

and adults.
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Figure A.5: Overall (top row) and adult (bottom row) annual incidences for varying
vaccine the vaccine uptake in 1957 (column) and duration of vaccine
derived immunity (color). In all these simulatons, vaccine efficacy was
set to 85%.
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Figure A.7: Single realizations with 60% vaccination in 1957, 95% (top row) or 85%
efficacy (bottom row), and lifelong (left column) or 70 year (right column)
vaccine derived immunity. For each realization the incidence by age (top
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A.4 Additional Realizations

For clarity, Figure 2.3 was only plotted with one realization of the model. Figure

A.8 shows the same figure with the omitted 19 realizations plotted as thin, gray lines.

Although some variation is present, as one would expect with a stocastic model,

the interepidemic period and trends in incidence seem to be reasonably consistent

between runs.

A.5 Immune Boosting

There is growing interest in the possible impacts of immune boosting on pertussis

transmission dynamics. (Águas, 2006; Lavine et al., 2011) We we implemented a

version of immune boosting as modeled in Ref. (Lavine et al., 2011), in which some

fraction of contacts between infectious and immune individuals lead to a boosting

of immunity. In terms of our compartmental model, this means that individuals in

the R′i and V ′i classes move to Ri at a rate proportional to the force of infection on

age group i. We simulated transmission dynamics in cases where 2%, 4%, and 80%

of contacts between immune and infected individuals lead to boosting (equivalent

to κ = 0.5, 1, 20 in the notation of Ref. (Lavine et al., 2011) ). Three realizations

are plotted in Figure A.9. When immune boosting is common enough to generate a

realistically low pre-vaccine age of infection, we see that the same qualitative pattern

of a gradual increase in adult cases during the vaccine era, particularly emerges.

A.6 Alternative demography and distribution of immune du-

rations

In the classic SEIR model, lifespans and immunity are both exponentially dis-

tributed, while our model has fixed lifespans and gamma distributed immune dura-
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Figure A.8: Annual incidence overall, in infants, in toddlers, and in adults (top to
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Figure A.9: Single realizations of in which 2% (panels A-C), 4% (panels D-F), and
80% (panels G-I) of contacts between immune and infectious individu-
als lead to boosting of immunity. The three realizations plotted use a
70 year mean duration of natural and vaccine derived immunuity, 60%
vaccination in 1957 and 85% vaccine efficacy. For each realization the
overall incidence and incidence in individuals over 15 year old (panels A,
D, G); the incidence by age (panels B, E, H); and the fraction susceptible
by age (panels C, F, I) are plotted against time.
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tions. Both of these sets of assumptions are extreme simplifications of the biological

reality and it is worthwhile to check that our conclusions are not sensitive to modeling

assumptions about lifespan, aging, and immune waning.

We implemented an alternate model with continuous aging and death among

adults and the age structure used in Ref. (Rohani et al., 2010). This alternative

model uses the same age categories and annual aging for individuals under twenty

years old, 0–5 months old, 6 months – 1 year old, 1–2 years old, . . . , 19–20 years old,

and five year age bands with continuous aging thereafter, 20–25 years old, ... , 65–70

years old, and over 70 years old. Individuals over age twenty age at a constant rate

of 1
5

years−1 and have a constant death rate of 1
55

years−1, giving the same average

lifespan of 75 years as in our main model.

In this alternate model, we also examined the case in which the duration of immu-

nity is exponentially rather than gamma distributed by using one, rather than two,

compartments for each immune class.

The results using 85% vaccine efficacy and 60% vaccine uptake in 1957 with the

original model (A), the model with exponential lifespans and aging (B), and the model

with expoenential lifespans, aging, and immune durations (C), are plotted in Figure

A.10. The overall qualitative picture is very similar between the three models, even

though exponential aging among adults blurs the strong cohort effects seen in the

original model.
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Figure A.10: Single realizations of models A (annual aging and gamma distributed
immune durations), B (exponential ligespans and aging and gamma dis-
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against time.
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APPENDIX B

Evolving booster schedules supplementary

information

B.1 Details of fitness calculations

For simplicity, we calculated strategy fitness as a linear combination of disease

burden (measured in DALYs) and the monetary cost of vaccinations.

Although our transmission model does not account for mortality, for the purposes

of assessing costs we assume a case fatality rate of 0.2% in infants one year or younger,

of 0.04% in children 1-4 years of ageCrowcroft et al. (2003), and no mortality in older

age groups. In all age groups, we assume that both symptoms and infectiousness last,

on average, for 15 days. Thus, under our parameterization, a case in a six month old

costs 15
365

+ 0.002 ∗ 74.5 ≈ 0.19 DALYs, while a case in an adult costs only 15
365
≈ 0.041

DALYs.

Throughout the study, we used a cost of $33 per dose of vaccine and $50000 per

DALY. However, it is worth noting that in our current model changing the cost per

DALY is equivalent to changing the cost of vaccine (e.g. an assumption of $66 per

dose of vaccine and $100000 per DALY would produce identical results).
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Figure B.1: Fitness costs by algorithm generation. Density maps of the fitness costs (combined
vaccination effort and disease burden) of the 2000 strategies in each generation of the
algorithm for (A) Scenario I: 70% infant coverage, (B) Scenario II: 70% vaccine efficacy
(C) Scenario III: 45 year mean duration of vaccine derived immunity in (G,H,I), and
(D) Scenario IV: 14.5% leakiness. In each case, darker color indicates a higher density
of strategies.

B.2 Supplementary Genetic Algorithm results
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Figure B.2: Disease burden (measured in DALYs) by algorithm generation. Density maps of the
fitness costs (combined vaccination effort and disease burden) of the 2000 strategies in
each generation of the algorithm for (A) Scenario I: 70% infant coverage, (B) Scenario
II: 70% vaccine efficacy (C) Scenario III: 45 year mean duration of vaccine derived
immunity in (G,H,I), and (D) Scenario IV: 14.5% leakiness. In each case, darker color
indicates a higher density of strategies.
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Figure B.3: Doses of vaccine given per person per lifetime by algorithm generation. Density maps
of the fitness costs (combined vaccination effort and disease burden) of the 2000
strategies in each generation of the algorithm for (A) Scenario I: 70% infant coverage,
(B) Scenario II: 70% vaccine efficacy (C) Scenario III: 45 year mean duration of
vaccine derived immunity in (G,H,I), and (D) Scenario IV: 14.5% leakiness. In each
case, darker color indicates a higher density of strategies.
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Figure B.4: Mean strategy by algorithm generation. Surfaces plot showing the average schedule
during each algorithm generation (constructed by taking the mean coverage in each
age cohort) of the 2000 strategies in each generation of the algorithm for (A) Scenario
I: 70% infant coverage, (B) Scenario II: 70% vaccine efficacy (C) Scenario III: 45 year
mean duration of vaccine derived immunity in (G,H,I), and (D) Scenario IV: 14.5%
leakiness. In each case, darker color indicates a higher density of strategies.
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APPENDIX C

Host-parasitoid supplementary information

Click for video of half-and-half landscape
Figure C.1: Video of a single realization of 1000 generations of host and parasitoid

densities on a half-and-half landscape (λ+ = 2.8, λ− = 1.2). Densities
on each plant are plotted in the left panel, with higher host densities
indicated by more blue and higher parasitoid densities by more red (see
colormap in central panel. Local populations of hosts (in blue) and par-
asitoids (in red) along a transect (corresponding to row 30 of the plot at
the left) are plotted in the right panel.
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Click for video of checkerboard landscape

Figure C.2: Video of a single realization of 1000 generations of host and parasitoid
densities on a checkerboard landscape (λ+ = 2.8, λ− = 1.2). Densities
on each plant are plotted in the left panel, with higher host densities
indicated by more blue and higher parasitoid densities by more red (see
colormap in central panel. Local populations of hosts (in blue) and par-
asitoids (in red) along a transect (corresponding to row 30 of the plot at
the left) are plotted in the right panel.
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