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APPENDIX A 

Modified-to-Scaled Ground Motion Characteristic Ratios versus Spectral Mismatch 

Metrics for Different Period Ranges 
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Figure A.1. Modified-to-scaled peak ground velocity (PGV) ratios of the motions in scenario I 
plotted against normalized error for the different period ranges for all target spectra and scaling 

factors. 
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Figure A.2. Modified-to-scaled peak ground velocity (PGV) ratios of the motions in scenario I 
plotted against the tanh validation metric for the different period ranges for all target spectra and 

scaling factors. 
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Figure A.3. Modified-to-scaled peak ground velocity (PGV) ratios of the motions in scenario I 
plotted against the inverse modified root mean squared error for the different period ranges for 

all target spectra and scaling factors. 
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Figure A.4. Modified-to-scaled peak ground velocity (PGV) ratios of the motions in scenario I 
plotted against the complementary error function metric (ERFCM) for the different period ranges 

for all target spectra and scaling factors. 
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Figure A.5. Modified-to-scaled peak ground displacement (PGD) ratios of the motions in 
scenario I plotted against normalized error for the different period ranges for all target spectra 

and scaling factors. 
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Figure A.6. Modified-to-scaled peak ground displacement (PGD) ratios of the motions in 
scenario I plotted against the tanh validation metric for the different period ranges for all target 

spectra and scaling factors. 
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Figure A.7. Modified-to-scaled peak ground displacement (PGD) ratios of the motions in 
scenario I plotted against the inverse modified root mean squared error for the different period 

ranges for all target spectra and scaling factors. 
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Figure A.8. Modified-to-scaled peak ground displacement (PGD) ratios of the motions in 
scenario I plotted against the complementary error function metric (ERFCM) for the different 

period ranges for all target spectra and scaling factors. 
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Figure A.9. Modified-to-scaled Arias intensity (Ia) ratios of the motions in scenario I plotted 
against normalized error for the different period ranges for all target spectra and scaling factors. 
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Figure A.10. Modified-to-scaled Arias intensity (Ia) ratios of the motions in scenario I plotted 
against the tanh validation metric for the different period ranges for all target spectra and scaling 

factors. 
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Figure A.11. Modified-to-scaled Arias intensity (Ia) ratios of the motions in scenario I plotted 
against the inverse modified root mean squared error for the different period ranges for all target 

spectra and scaling factors. 
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Figure A.12. Modified-to-scaled Arias intensity (Ia) ratios of the motions in scenario I plotted 
against the complementary error function metric (ERFCM) for the different period ranges for all 

target spectra and scaling factors. 
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Figure A.13. Modified-to-scaled cumulative absolute velocity (CAV) ratios of the motions in 
scenario I plotted against normalized error for the different period ranges for all target spectra 

and scaling factors. 
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Figure A.14. Modified-to-scaled cumulative absolute velocity (CAV) ratios of the motions in 
scenario I plotted against the tanh validation metric for the different period ranges for all target 

spectra and scaling factors. 
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Figure A.15. Modified-to-scaled cumulative absolute velocity (CAV) ratios of the motions in 
scenario I plotted against the inverse modified root mean squared error for the different period 

ranges for all target spectra and scaling factors. 
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Figure A.16. Modified-to-scaled cumulative absolute velocity (CAV) ratios of the motions in 
scenario I plotted against the complementary error function metric (ERFCM) for the different 

period ranges for all target spectra and scaling factors. 
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Figure A.17. Modified-to-scaled significant duration (D5-95) ratios of the motions in scenario I 
plotted against normalized error for the different period ranges for all target spectra and scaling 

factors. 
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Figure A.18. Modified-to-scaled significant duration (D5-95) ratios of the motions in scenario I 
plotted against the tanh validation metric for the different period ranges for all target spectra and 

scaling factors. 
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Figure A.19. Modified-to-scaled significant duration (D5-95) ratios of the motions in scenario I 
plotted against the inverse modified root mean squared error for the different period ranges for 

all target spectra and scaling factors. 
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Figure A.20. Modified-to-scaled significant duration (D5-95) ratios of the motions in scenario I 
plotted against the complementary error function metric (ERFCM) for the different period ranges 

for all target spectra and scaling factors. 
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Figure A.21. Modified-to-scaled mean period (Tm) ratios of the motions in scenario I plotted 
against normalized error for the different period ranges for all target spectra and scaling factors. 
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Figure A.22. Modified-to-scaled mean period (Tm) ratios of the motions in scenario I plotted 
against the tanh validation metric for the different period ranges for all target spectra and scaling 

factors. 
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Figure A.23. Modified-to-scaled mean period (Tm) ratios of the motions in scenario I plotted 
against the inverse modified root mean squared error for the different period ranges for all target 

spectra and scaling factors. 
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Figure A.24. Modified-to-scaled mean period (Tm) ratios of the motions in scenario I plotted 
against the complementary error function metric (ERFCM) for the different period ranges for all 

target spectra and scaling factors. 
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APPENDIX B 

Residuals for Final Regression Equations versus Earthquake Parameters 

 

 
 

Figure B.1. Residuals of the motions in scenarios I and II for the regression equations developed 
for peak ground velocity plotted against moment magnitude, source-to-site hypocentral distance, 

and scaling factor and corresponding best-fit lines. 
 

 
 

Figure B.2. Residuals of the motions in scenarios I and II for the regression equations developed 
for peak ground displacement plotted against moment magnitude, source-to-site hypocentral 

distance, and scaling factor and corresponding best-fit lines. 
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Figure B.3. Residuals of the motions in scenarios I and II for the regression equations developed 
for Arias intensity plotted against moment magnitude, source-to-site hypocentral distance, and 

scaling factor and corresponding best-fit lines. 
 

 
 

Figure B.4. Residuals of the motions in scenarios I and II for the regression equations developed 
for cumulative absolute velocity plotted against moment magnitude, source-to-site hypocentral 

distance, and scaling factor and corresponding best-fit lines. 
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Figure B.5. Residuals of the motions in scenarios I and II for the regression equations developed 
for significant duration plotted against moment magnitude, source-to-site hypocentral distance, 

and scaling factor and corresponding best-fit lines. 
 

 
 

Figure B.6. Residuals of the motions in scenarios I and II for the regression equations developed 
for mean period plotted against moment magnitude, source-to-site hypocentral distance, and 

scaling factor and corresponding best-fit lines. 
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APPENDIX C 

Goodness-of-Fit Values of Time Histories for Different Metrics versus Spectral Mismatch 

Metrics for Different Period Ranges 
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Figure C.1. Goodness-of-fit values of acceleration time histories (a(t)) of the motions in 
scenario I calculated using normalized error (NEt) plotted against spectral mismatch calculated 

using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.1. continued. 
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Figure C.2. Goodness-of-fit values of acceleration time histories (a(t)) of the motions in 
scenario I calculated using the tanh validation metric (TVMt) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.2. continued. 
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Figure C.3. Goodness-of-fit values of acceleration time histories (a(t)) of the motions in 
scenario I calculated using the inverse modified root mean squared error (imRMSEt) plotted 

against spectral mismatch calculated using normalized error (NEs), the tanh validation metric 
(TVMs), the inverse modified root mean squared error (imRMSEs), and the complementary error 

function metric (ERFCMs) for the different period ranges. 
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Figure C.3. continued. 
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Figure C.4. Goodness-of-fit values of acceleration time histories (a(t)) of the motions in 
scenario I calculated using the complementary error function metric (ERFCMt) plotted against 
spectral mismatch calculated using normalized error (NEs), the tanh validation metric (TVMs), 

the inverse modified root mean squared error (imRMSEs), and the complementary error function 
metric (ERFCMs) for the different period ranges. 
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Figure C.4. continued. 
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Figure C.5. Goodness-of-fit values of acceleration time histories (a(t)) of the motions in 
scenario I calculated using the Anderson C1 metric (AC1t) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.5. continued. 
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Figure C.6. Goodness-of-fit values of acceleration time histories (a(t)) of the motions in 
scenario I calculated using the Anderson C10 metric (AC10t) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.6. continued. 
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Figure C.7. Goodness-of-fit values of acceleration time histories (a(t)) of the motions in 
scenario I calculated using average coherence plotted against spectral mismatch calculated using 

normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.7. continued. 
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Figure C.8. Goodness-of-fit values of velocity time histories (v(t)) of the motions in scenario I 
calculated using normalized error (NEt) plotted against spectral mismatch calculated using 
normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.8. continued. 
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Figure C.9. Goodness-of-fit values of velocity time histories (v(t)) of the motions in scenario I 
calculated using the tanh validation metric (TVMt) plotted against spectral mismatch calculated 
using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 

squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 
different period ranges. 
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Figure C.9. continued. 
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Figure C.10. Goodness-of-fit values of velocity time histories (v(t)) of the motions in scenario I 
calculated using the inverse modified root mean squared error (imRMSEt) plotted against spectral 
mismatch calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse 

modified root mean squared error (imRMSEs), and the complementary error function metric 
(ERFCMs) for the different period ranges. 
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Figure C.10. continued. 
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Figure C.11. Goodness-of-fit values of velocity time histories (v(t)) of the motions in scenario I 
calculated using the complementary error function metric (ERFCMt) plotted against spectral 

mismatch calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse 
modified root mean squared error (imRMSEs), and the complementary error function metric 

(ERFCMs) for the different period ranges. 
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Figure C.11. continued. 
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Figure C.12. Goodness-of-fit values of velocity time histories (v(t)) of the motions in scenario I 
calculated using the Anderson C1 metric (AC1t) plotted against spectral mismatch calculated 

using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.12. continued. 
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Figure C.13. Goodness-of-fit values of velocity time histories (v(t)) of the motions in scenario I 
calculated using the Anderson C10 metric (AC10t) plotted against spectral mismatch calculated 
using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 

squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 
different period ranges. 
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Figure C.13. continued. 
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Figure C.14. Goodness-of-fit values of velocity time histories (v(t)) of the motions in scenario I 
calculated using average coherence plotted against spectral mismatch calculated using 

normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges.  
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Figure C.14. continued. 
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Figure C.15. Goodness-of-fit values of displacement time histories (d(t)) of the motions in 
scenario I calculated using normalized error (NEt) plotted against spectral mismatch calculated 

using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.15. continued. 
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Figure C.16. Goodness-of-fit values of displacement time histories (d(t)) of the motions in 
scenario I calculated using the tanh validation metric (TVMt) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.16. continued. 
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Figure C.17. Goodness-of-fit values of displacement time histories (d(t)) of the motions in 
scenario I calculated using the inverse modified root mean squared error (imRMSEt) plotted 

against spectral mismatch calculated using normalized error (NEs), the tanh validation metric 
(TVMs), the inverse modified root mean squared error (imRMSEs), and the complementary error 

function metric (ERFCMs) for the different period ranges. 
 



362 
 

 

 
 

Figure C.17. continued. 
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Figure C.18. Goodness-of-fit values of displacement time histories (d(t)) of the motions in 
scenario I calculated using the complementary error function metric (ERFCMt) plotted against 
spectral mismatch calculated using normalized error (NEs), the tanh validation metric (TVMs), 

the inverse modified root mean squared error (imRMSEs), and the complementary error function 
metric (ERFCMs) for the different period ranges. 
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Figure C.18. continued. 
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Figure C.19. Goodness-of-fit values of displacement time histories (d(t)) of the motions in 
scenario I calculated using the Anderson C1 metric (AC1t) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.19. continued. 
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Figure C.20. Goodness-of-fit values of displacement time histories (d(t)) of the motions in 
scenario I calculated using the Anderson C10 metric (AC10t) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.20. continued. 
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Figure C.21. Goodness-of-fit values of displacement time histories (d(t)) of the motions in 
scenario I calculated using average coherence plotted against spectral mismatch calculated using 

normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.21. continued. 
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Figure C.22. Goodness-of-fit values of Fourier amplitude spectra (FAS) of the motions in 
scenario I calculated using normalized error (NEt) plotted against spectral mismatch calculated 

using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.22. continued. 
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Figure C.23. Goodness-of-fit values of Fourier amplitude spectra (FAS) of the motions in 
scenario I calculated using the tanh validation metric (TVMt) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.23. continued. 
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Figure C.24. Goodness-of-fit values of Fourier amplitude spectra (FAS) of the motions in 
scenario I calculated using the inverse modified root mean squared error (imRMSEt) plotted 

against spectral mismatch calculated using normalized error (NEs), the tanh validation metric 
(TVMs), the inverse modified root mean squared error (imRMSEs), and the complementary error 

function metric (ERFCMs) for the different period ranges. 
 



376 
 

 

 
 

Figure C.24. continued. 
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Figure C.25. Goodness-of-fit values of Fourier amplitude spectra (FAS) of the motions in 
scenario I calculated using the complementary error function metric (ERFCMt) plotted against 
spectral mismatch calculated using normalized error (NEs), the tanh validation metric (TVMs), 

the inverse modified root mean squared error (imRMSEs), and the complementary error function 
metric (ERFCMs) for the different period ranges. 

 



378 
 

 

 
 

Figure C.25. continued. 
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Figure C.26. Goodness-of-fit values of Fourier amplitude spectra (FAS) of the motions in 
scenario I calculated using the Anderson C1 metric (AC1t) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.26. continued. 
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Figure C.27. Goodness-of-fit values of Fourier amplitude spectra (FAS) of the motions in 
scenario I calculated using the Anderson C10 metric (AC10t) plotted against spectral mismatch 

calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.27. continued. 
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Figure C.28. Goodness-of-fit values of Arias intensity buildups (Ia(t)) of the motions in scenario 
I calculated using normalized error (NEt) plotted against spectral mismatch calculated using 
normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.28. continued. 
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Figure C.29. Goodness-of-fit values of Arias intensity buildups (Ia(t)) of the motions in scenario 
I calculated using the tanh validation metric (TVMt) plotted against spectral mismatch calculated 
using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 

squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 
different period ranges. 

 



386 
 

 

 
 

Figure C.29. continued. 
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Figure C.30. Goodness-of-fit values of Arias intensity buildups (Ia(t)) of the motions in scenario 
I calculated using the inverse modified root mean squared error (imRMSEt) plotted against 

spectral mismatch calculated using normalized error (NEs), the tanh validation metric (TVMs), 
the inverse modified root mean squared error (imRMSEs), and the complementary error function 

metric (ERFCMs) for the different period ranges. 
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Figure C.30. continued. 
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Figure C.31. Goodness-of-fit values of Arias intensity buildups (Ia(t)) of the motions in scenario 
I calculated using the complementary error function metric (ERFCMt) plotted against spectral 

mismatch calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse 
modified root mean squared error (imRMSEs), and the complementary error function metric 

(ERFCMs) for the different period ranges. 
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Figure C.31. continued. 
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Figure C.32. Goodness-of-fit values of Arias intensity buildups (Ia(t)) of the motions in scenario 
I calculated using the Anderson C1 metric (AC1t) plotted against spectral mismatch calculated 

using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.32. continued. 
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Figure C.33. Goodness-of-fit values of Arias intensity buildups (Ia(t)) of the motions in scenario 
I calculated using the Anderson C10 metric (AC10t) plotted against spectral mismatch calculated 
using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 

squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 
different period ranges. 
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Figure C.33. continued. 
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Figure C.34. Goodness-of-fit values of Arias intensity buildups (Ia(t)) of the motions in scenario 
I calculated using average coherence plotted against spectral mismatch calculated using 

normalized error (NEs), the tanh validation metric (TVMs), the inverse modified root mean 
squared error (imRMSEs), and the complementary error function metric (ERFCMs) for the 

different period ranges. 
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Figure C.34. continued. 
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Figure C.35. Overall goodness-of-fit (OGOF) values of the motions in scenario I calculated 
using the inverse modified root mean squared error (imRMSEt) plotted against spectral mismatch 
calculated using normalized error (NEs), the tanh validation metric (TVMs), the inverse modified 
root mean squared error (imRMSEs), and the complementary error function metric (ERFCMs) for 

the different period ranges. 
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Figure C.35. continued. 
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APPENDIX D 

Goodness-of-Fit Values of Time Histories for Different Metrics versus Modified-to-Scaled 

Ground Motion Characteristic Ratios 

 

 
 

Figure D.1. Goodness-of-fit values of acceleration time histories (a(t)) of the motions in 
scenario I calculated using the tanh validation metric (TVMt), the original and alternative inverse 

modified root mean squared error (imRMSEt and imRMSEt
*, respectively), and the 

complementary error function metric (ERFCMt) plotted against the modified-to-scaled peak 
ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 

Arias intensity (Ia), cumulative absolute velocity (CAV), significant duration (D5-95), and mean 
period (Tm) ratios. 
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Figure D.1. continued. 
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Figure D.1. continued. 
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Figure D.1. continued. 
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Figure D.2. Goodness-of-fit values of velocity time histories (v(t)) of the motions in scenario I 
calculated using the tanh validation metric (TVMt), the original and alternative inverse modified 
root mean squared error (imRMSEt and imRMSEt

*, respectively), and the complementary error 
function metric (ERFCMt) plotted against the modified-to-scaled peak ground acceleration 
(PGA), peak ground velocity (PGV), peak ground displacement (PGD), Arias intensity (Ia), 

cumulative absolute velocity (CAV), significant duration (D5-95), and mean period (Tm) ratios. 
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Figure D.2. continued. 
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Figure D.2. continued. 
 



406 
 

 
Figure D.2. continued. 

 

 
 

Figure D.3. Goodness-of-fit values of displacement time histories (d(t)) of the motions in 
scenario I calculated using the tanh validation metric (TVMt), the original and alternative inverse 

modified root mean squared error (imRMSEt and imRMSEt
*, respectively), and the 

complementary error function metric (ERFCMt) plotted against the modified-to-scaled peak 
ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 

Arias intensity (Ia), cumulative absolute velocity (CAV), significant duration (D5-95), and mean 
period (Tm) ratios. 
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Figure D.3. continued. 
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Figure D.3. continued. 
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Figure D.3. continued. 
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Figure D.4. Goodness-of-fit values of Fourier amplitude spectra (FAS) of the motions in 
scenario I calculated using the tanh validation metric (TVMt), the inverse modified root mean 

squared error (imRMSEt), and the complementary error function metric (ERFCMt) plotted against 
the modified-to-scaled peak ground acceleration (PGA), peak ground velocity (PGV), peak 

ground displacement (PGD), Arias intensity (Ia), cumulative absolute velocity (CAV), significant 
duration (D5-95), and mean period (Tm) ratios. 
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Figure D.4. continued. 
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Figure D.4. continued. 
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Figure D.4. continued. 
 

 
 

Figure D.5. Goodness-of-fit values of Arias intensity buildups (Ia(t)) of the motions in scenario I 
calculated using the tanh validation metric (TVMt), the inverse modified root mean squared error 

(imRMSEt), and the complementary error function metric (ERFCMt) plotted against the 
modified-to-scaled peak ground acceleration (PGA), peak ground velocity (PGV), peak ground 

displacement (PGD), Arias intensity (Ia), cumulative absolute velocity (CAV), significant 
duration (D5-95), and mean period (Tm) ratios. 
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Figure D.5. continued. 
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Figure D.5. continued. 
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Figure D.5. continued. 
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Figure D.6. Overall goodness-of-fit values (OGOF) of the motions in scenario I calculated using 
the inverse modified root mean squared error (imRMSEt) plotted against the modified-to-scaled 

peak ground acceleration (PGA), peak ground velocity (PGV), peak ground displacement (PGD), 
Arias intensity (Ia), and cumulative absolute velocity (CAV) ratios. 
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APPENDIX E 

Results for Visual Assessment 

 
Table E.1. Qualitative rankings assigned to acceleration (a(t)), velocity (v(t)), and displacement 

(d(t)) time histories of the TD- and FD-modified motions in scenario I based on the visual 
examination. 

 
  CMS MA 2% UHS 

Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

1 TD 
FD 
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4 
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5 
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3 
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3 
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1 
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1 
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1 
3 

2 TD 
FD 

1 
3 

2 
4 

2 
3 

1 
5 

2 
5 

1 
4 

1 
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3 TD 
FD 
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3 
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NA 
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NA 
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NA 
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4 TD 
FD 
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7 TD 
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8 TD 
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9 TD 
FD 

1 
2 

1 
3 

1 
3 

3 
5 

4 
3 

5 
3 

3 
5 

5 
4 

5 
4 

10 TD 
FD 

1 
4 

1 
3 

1 
4 

1 
5 

2 
3 

1 
3 

1 
4 

1 
5 

1 
3 

11 TD 
FD 

2 
3 

2 
3 

2 
2 

2 
2 

2 
3 

1 
2 

1 
3 

1 
3 

1 
2 

12 TD 
FD 

2 
3 

3 
3 

5 
3 

1 
3 

1 
3 

1 
4 

1 
3 

1 
3 

1 
4 

13 TD 
FD 

2 
2 

2 
2 

1 
1 

2 
2 

2 
2 

1 
1 

1 
1 

1 
2 

1 
2 

14 TD 
FD 

3 
3 

2 
3 

2 
4 

4 
3 

3 
3 

2 
3 

3 
3 

2 
3 

2 
4 

15 TD 
FD 

2 
3 

3 
3 

3 
4 

3 
3 

3 
3 

2 
3 

3 
3 

3 
3 

3 
3 

NA – Motion matched to this target spectrum was rejected 
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Table E.1. continued. 
 

  CMS MA 2% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

16 TD 
FD 

2 
4 

3 
4 

5 
4 

4 
5 

4 
5 

3 
4 

1 
5 

2 
4 

2 
3 

17 TD 
FD 

1 
1 

2 
2 

2 
4 

2 
3 

2 
3 

1 
2 

2 
4 

2 
3 

2 
3 

18 TD 
FD 

2 
3 

2 
3 

5 
4 

2 
4 

3 
4 

2 
4 

1 
5 

1 
5 

1 
4 

19 TD 
FD 

3 
4 

2 
4 

1 
4 

3 
3 

2 
5 

1 
4 

2 
3 

2 
5 

3 
3 

20 TD 
FD 

2 
3 

2 
3 

2 
3 

1 
2 

2 
3 

2 
3 

2 
2 

2 
3 

3 
3 

21 TD 
FD 

4 
5 

4 
5 

4 
4 

2 
4 

3 
5 

2 
4 

1 
5 

2 
4 

1 
4 

22 TD 
FD 

1 
3 

2 
4 

2 
4 

2 
2 

2 
3 

3 
3 

2 
3 

3 
3 

3 
3 

23 TD 
FD 

2 
1 

2 
4 

4 
3 

4 
3 

2 
4 

1 
4 

2 
1 

2 
3 

1 
3 

24 TD 
FD 

1 
2 

1 
2 

1 
3 

2 
2 

4 
2 

5 
2 

1 
3 

1 
2 

1 
3 

25 TD 
FD 

1 
3 

1 
3 

1 
4 

1 
3 

1 
3 

1 
3 

1 
3 

1 
3 

1 
2 

26 TD 
FD 

3 
4 

3 
3 

3 
3 

1 
3 

1 
4 

1 
3 

3 
4 

4 
4 

4 
3 

27 TD 
FD 

2 
4 

3 
3 

5 
2 

2 
4 

3 
2 

5 
2 

NA 
4 

NA 
2 

NA 
2 

28 TD 
FD 

3 
3 

2 
2 

4 
2 

2 
3 

2 
2 

2 
2 

3 
4 

2 
2 

2 
2 

29 TD 
FD 

2 
2 

3 
2 

5 
1 

2 
2 

2 
2 

4 
2 

2 
2 

2 
2 

5 
2 

30 TD 
FD 

2 
2 

3 
2 

5 
2 

1 
2 

3 
2 

4 
2 

2 
2 

3 
3 

5 
2 

31 TD 
FD 

1 
4 

3 
3 

5 
2 

1 
3 

2 
2 

4 
1 

2 
4 

3 
3 

5 
2 

32 TD 
FD 

3 
4 

3 
2 

5 
1 

2 
4 

3 
2 

5 
2 

4 
4 

3 
2 

4 
2 

33 TD 
FD 

3 
4 

4 
2 

5 
1 

3 
4 

3 
2 

5 
1 

2 
5 

3 
2 

5 
2 

34 TD 
FD 

3 
3 

3 
3 

4 
2 

2 
4 

3 
4 

5 
2 

1 
4 

2 
4 

2 
3 

35 TD 
FD 

2 
4 

2 
3 

4 
2 

1 
4 

2 
3 

3 
2 

2 
3 

1 
4 

1 
3 

NA – Motion matched to this target spectrum was rejected 
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Table E.1. continued. 
 

  CMS MA 2% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

36 TD 
FD 

4 
4 

3 
3 

4 
1 

2 
5 

2 
2 

4 
2 

3 
4 

2 
2 

4 
2 

37 TD 
FD 

3 
3 

4 
3 

5 
3 

4 
3 

5 
3 

5 
3 

3 
4 

5 
4 

5 
2 

38 TD 
FD 

3 
4 

5 
3 

5 
3 

3 
4 

3 
4 

3 
3 

3 
4 

5 
4 

5 
3 

39 TD 
FD 

3 
3 

4 
2 

5 
2 

3 
3 

5 
3 

5 
3 

1 
4 

2 
4 

4 
2 

40 TD 
FD 

1 
3 

1 
3 

1 
3 

2 
4 

1 
3 

1 
3 

4 
5 

2 
4 

2 
3 

41 TD 
FD 

4 
5 

3 
3 

5 
2 

3 
4 

3 
3 

4 
2 

1 
5 

1 
3 

1 
2 

42 TD 
FD 

3 
4 

3 
4 

4 
4 

2 
4 

3 
3 

5 
3 

4 
3 

3 
2 

5 
3 

43 TD 
FD 

3 
5 

3 
4 

4 
3 

4 
5 

2 
3 

2 
3 

4 
5 

5 
4 

5 
3 

44 TD 
FD 

3 
3 

2 
3 

3 
4 

4 
5 

2 
3 

2 
2 

3 
5 

1 
3 

1 
4 

45 TD 
FD 

3 
5 

3 
3 

3 
2 

3 
3 

5 
3 

5 
2 

1 
3 

1 
3 

1 
2 

46 TD 
FD 

3 
4 

3 
5 

2 
5 

3 
2 

4 
2 

4 
3 

1 
2 

1 
3 

1 
4 

47 TD 
FD 

NA 
2 

NA 
2 

NA 
2 

1 
2 

2 
2 

3 
2 

2 
2 

2 
2 

2 
3 

48 TD 
FD 

2 
4 

1 
4 

1 
3 

1 
2 

1 
2 

1 
2 

2 
2 

2 
2 

2 
2 

49 TD 
FD 

2 
5 

3 
4 

2 
3 

2 
2 

2 
2 

2 
2 

1 
3 

1 
2 

1 
3 

50 TD 
FD 

4 
5 

3 
4 

2 
3 

2 
3 

2 
3 

1 
2 

2 
3 

2 
3 

2 
3 

51 TD 
FD 

2 
2 

2 
2 

1 
1 

2 
5 

1 
2 

1 
1 

2 
4 

2 
2 

2 
1 

52 TD 
FD 

3 
3 

4 
4 

4 
1 

3 
5 

1 
3 

1 
1 

5 
5 

3 
3 

2 
2 

53 TD 
FD 

1 
3 

1 
3 

1 
3 

2 
4 

2 
2 

1 
1 

2 
4 

4 
3 

4 
2 

54 TD 
FD 

4 
5 

2 
3 

1 
1 

3 
4 

2 
2 

1 
1 

3 
4 

3 
3 

2 
2 

55 TD 
FD 

1 
4 

2 
5 

2 
4 

1 
4 

3 
5 

2 
4 

1 
4 

2 
5 

1 
4 

NA – Motion matched to this target spectrum was rejected 
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Table E.1. continued. 
 

  CMS MA 2% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

56 TD 
FD 

1 
3 

2 
4 

1 
3 

1 
4 

1 
4 

1 
1 

1 
4 

2 
3 

1 
1 

57 TD 
FD 

2 
3 

4 
3 

4 
3 

2 
2 

2 
2 

1 
1 

2 
2 

3 
3 

2 
2 

58 TD 
FD 

3 
3 

5 
3 

5 
3 

1 
3 

1 
3 

1 
2 

1 
3 

1 
3 

1 
3 

59 TD 
FD 

3 
4 

3 
2 

3 
2 

2 
2 

1 
2 

1 
1 

3 
3 

2 
2 

1 
2 

60 TD 
FD 

2 
5 

3 
3 

2 
3 

3 
3 

3 
3 

2 
1 

3 
3 

2 
2 

3 
2 

61 TD 
FD 

1 
1 

2 
2 

1 
1 

1 
2 

1 
2 

1 
1 

2 
2 

1 
1 

2 
2 

62 TD 
FD 

1 
2 

1 
3 

1 
4 

1 
2 

1 
3 

1 
2 

1 
2 

1 
3 

1 
4 

63 TD 
FD 

2 
3 

2 
2 

2 
2 

2 
1 

1 
1 

1 
1 

NA 
1 

NA 
1 

NA 
1 

64 TD 
FD 

1 
3 

1 
4 

1 
3 

2 
2 

4 
1 

3 
1 

1 
2 

1 
3 

1 
3 

65 TD 
FD 

4 
4 

5 
3 

5 
3 

2 
4 

2 
3 

1 
2 

1 
5 

1 
4 

1 
3 

66 TD 
FD 

2 
4 

4 
3 

4 
4 

3 
3 

4 
3 

2 
4 

2 
4 

3 
4 

3 
5 

67 TD 
FD 

1 
2 

1 
3 

1 
2 

1 
2 

1 
2 

1 
1 

1 
2 

1 
2 

1 
2 

68 TD 
FD 

1 
2 

1 
3 

1 
4 

1 
2 

1 
1 

1 
1 

2 
2 

3 
2 

2 
1 

69 TD 
FD 

2 
2 

3 
2 

4 
2 

NA 
1 

NA 
2 

NA 
2 

2 
3 

2 
2 

3 
3 

70 TD 
FD 

2 
5 

3 
4 

2 
4 

2 
4 

3 
5 

4 
4 

2 
4 

2 
5 

3 
4 

71 TD 
FD 

1 
3 

1 
5 

1 
4 

1 
4 

1 
5 

1 
4 

1 
4 

1 
5 

1 
4 

72 TD 
FD 

2 
4 

4 
5 

4 
4 

3 
5 

4 
5 

3 
4 

4 
5 

4 
5 

2 
4 

73 TD 
FD 

1 
2 

1 
3 

1 
4 

1 
3 

1 
3 

1 
4 

1 
5 

1 
4 

1 
4 

74 TD 
FD 

2 
3 

2 
4 

3 
5 

1 
2 

1 
3 

1 
3 

1 
4 

1 
5 

1 
5 

75 TD 
FD 

3 
4 

3 
3 

4 
2 

4 
3 

2 
2 

1 
1 

3 
5 

2 
2 

1 
2 

NA – Motion matched to this target spectrum was rejected 
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Table E.1. continued. 
 

  CMS MA 2% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

76 TD 
FD 

2 
3 

2 
3 

2 
2 

4 
4 

3 
2 

3 
1 

2 
3 

2 
2 

3 
2 

77 TD 
FD 

4 
3 

5 
3 

5 
2 

4 
4 

5 
3 

4 
2 

4 
5 

5 
3 

4 
3 

78 TD 
FD 

4 
4 

4 
5 

4 
3 

1 
4 

1 
5 

1 
3 

4 
4 

2 
4 

2 
3 

79 TD 
FD 

1 
5 

2 
5 

1 
4 

4 
5 

3 
5 

3 
5 

2 
5 

2 
4 

2 
4 

80 TD 
FD 

1 
5 

1 
4 

1 
3 

3 
3 

3 
4 

4 
2 

3 
5 

3 
5 

3 
4 

81 TD 
FD 

1 
3 

1 
5 

3 
5 

2 
2 

3 
2 

3 
3 

1 
2 

1 
4 

1 
5 

82 TD 
FD 

1 
3 

2 
3 

3 
2 

1 
1 

1 
2 

1 
2 

1 
2 

1 
3 

1 
2 

83 TD 
FD 

2 
2 

2 
3 

5 
3 

2 
3 

3 
3 

5 
3 

3 
4 

2 
2 

4 
4 

84 TD 
FD 

2 
2 

2 
3 

3 
4 

1 
2 

2 
2 

2 
1 

1 
4 

1 
2 

1 
3 

85 TD 
FD 

2 
3 

3 
2 

4 
3 

1 
3 

1 
2 

1 
2 

1 
3 

1 
2 

1 
2 

86 TD 
FD 

1 
2 

1 
3 

1 
3 

1 
3 

1 
3 

1 
3 

2 
2 

2 
3 

2 
4 

87 TD 
FD 

1 
3 

1 
3 

2 
3 

3 
3 

3 
3 

2 
3 

NA 
3 

NA 
3 

NA 
2 

88 TD 
FD 

3 
3 

3 
4 

2 
4 

4 
4 

4 
4 

5 
4 

4 
4 

2 
3 

3 
5 

89 TD 
FD 

3 
3 

4 
3 

4 
2 

2 
2 

2 
2 

2 
2 

3 
2 

3 
3 

2 
3 

90 TD 
FD 

3 
3 

4 
2 

4 
3 

2 
1 

2 
2 

2 
2 

1 
2 

2 
3 

1 
3 

91 TD 
FD 

4 
4 

2 
4 

2 
4 

5 
4 

4 
3 

5 
3 

4 
4 

3 
4 

3 
4 

92 TD 
FD 

4 
4 

4 
5 

3 
4 

4 
3 

3 
3 

2 
3 

1 
4 

2 
3 

1 
3 

93 TD 
FD 

NA 
3 

NA 
3 

NA 
2 

NA 
2 

NA 
3 

NA 
2 

2 
3 

3 
3 

2 
2 

94 TD 
FD 

3 
4 

5 
4 

5 
3 

1 
2 

2 
4 

2 
3 

2 
3 

4 
5 

5 
4 

95 TD 
FD 

1 
4 

1 
4 

1 
4 

1 
5 

2 
4 

1 
3 

3 
5 

4 
4 

5 
4 

NA – Motion matched to this target spectrum was rejected 
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Table E.1. continued. 
 

  CMS MA 2% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

96 TD 
FD 

1 
2 

2 
3 

4 
3 

1 
2 

2 
3 

2 
2 

3 
3 

2 
3 

2 
2 

97 TD 
FD 

1 
5 

1 
5 

1 
2 

5 
3 

5 
3 

5 
2 

5 
5 

5 
4 

5 
3 

98 TD 
FD 

3 
2 

3 
5 

1 
5 

1 
2 

3 
3 

2 
4 

4 
4 

3 
4 

3 
3 

99 TD 
FD 

1 
2 

1 
3 

1 
3 

2 
2 

1 
2 

1 
3 

1 
3 

1 
3 

1 
4 

100 TD 
FD 

2 
2 

1 
2 

2 
3 

2 
2 

1 
2 

1 
2 

1 
3 

1 
3 

1 
4 

101 TD 
FD 

4 
3 

4 
5 

5 
4 

1 
3 

2 
5 

1 
3 

3 
4 

4 
4 

3 
4 

102 TD 
FD 

3 
4 

3 
5 

3 
5 

3 
3 

3 
5 

4 
4 

1 
3 

1 
5 

1 
5 

103 TD 
FD 

1 
5 

2 
4 

2 
3 

1 
3 

1 
3 

1 
1 

1 
3 

2 
4 

1 
1 

104 TD 
FD 

1 
3 

2 
4 

1 
4 

1 
2 

1 
3 

1 
2 

3 
3 

2 
2 

2 
2 

105 TD 
FD 

3 
4 

4 
5 

3 
5 

4 
4 

4 
3 

4 
4 

4 
4 

5 
5 

5 
4 

106 TD 
FD 

1 
4 

1 
3 

1 
3 

4 
3 

3 
4 

3 
2 

3 
4 

2 
4 

2 
2 

107 TD 
FD 

1 
3 

1 
3 

1 
3 

1 
3 

1 
2 

1 
3 

1 
3 

1 
2 

1 
3 

108 TD 
FD 

1 
4 

1 
3 

1 
3 

3 
2 

2 
2 

1 
1 

1 
4 

1 
3 

1 
3 
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Table E.2. Qualitative rankings assigned to acceleration (a(t)), velocity (v(t)), and displacement 
(d(t)) time histories of the TD- and FD-modified motions in scenario II based on the visual 

examination. 
  CMS 2% UHS 10% UHS 

Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

1 TD 
FD 

2 
2 

2 
3 

1 
2 

NA 
3 

NA 
4 

NA 
2 

2 
2 

3 
4 

1 
4 

2 TD 
FD 

2 
2 

2 
2 

1 
1 

NA 
3 

NA 
3 

NA 
3 

2 
2 

2 
3 

1 
3 

3 TD 
FD 

4 
3 

4 
2 

5 
2 

5 
4 

5 
2 

5 
2 

4 
3 

5 
2 

5 
2 

4 TD 
FD 

4 
3 

5 
2 

5 
1 

4 
4 

4 
2 

5 
1 

3 
3 

4 
2 

5 
2 

5 TD 
FD 

4 
4 

3 
2 

3 
2 

3 
3 

3 
3 

3 
2 

5 
4 

4 
5 

5 
2 

6 TD 
FD 

3 
4 

3 
2 

3 
2 

3 
3 

4 
3 

4 
2 

4 
3 

5 
3 

5 
2 

7 TD 
FD 

4 
3 

4 
2 

3 
1 

4 
3 

4 
2 

5 
2 

4 
4 

3 
3 

3 
2 

8 TD 
FD 

3 
2 

5 
2 

3 
1 

2 
2 

4 
2 

5 
2 

3 
4 

4 
3 

4 
2 

9 TD 
FD 

5 
5 

5 
3 

5 
2 

3 
3 

2 
2 

2 
1 

1 
4 

1 
2 

1 
2 

10 TD 
FD 

4 
4 

2 
3 

3 
2 

3 
3 

4 
3 

5 
2 

3 
4 

3 
3 

4 
1 

11 TD 
FD 

3 
3 

3 
3 

2 
4 

3 
3 

4 
4 

5 
4 

3 
4 

3 
4 

3 
5 

12 TD 
FD 

5 
4 

3 
4 

3 
3 

1 
3 

1 
3 

1 
3 

4 
4 

5 
3 

5 
3 

13 TD 
FD 

4 
5 

4 
2 

5 
1 

3 
4 

4 
2 

5 
1 

4 
3 

4 
2 

4 
1 

14 TD 
FD 

4 
2 

5 
2 

4 
1 

3 
4 

3 
2 

5 
2 

NA 
3 

NA 
2 

NA 
1 

15 TD 
FD 

3 
2 

3 
2 

5 
3 

3 
2 

4 
3 

5 
3 

3 
2 

3 
2 

5 
2 

16 TD 
FD 

3 
2 

3 
3 

3 
3 

3 
3 

4 
3 

5 
2 

3 
3 

3 
3 

2 
3 

17 TD 
FD 

4 
3 

5 
2 

3 
1 

3 
3 

2 
2 

2 
2 

3 
4 

2 
2 

2 
2 

18 TD 
FD 

4 
2 

4 
2 

5 
2 

3 
3 

4 
2 

5 
2 

NA 
5 

NA 
2 

NA 
1 

19 TD 
FD 

NA 
2 

NA 
2 

NA 
3 

2 
4 

3 
2 

2 
2 

NA 
4 

NA 
3 

NA 
3 

20 TD 
FD 

2 
2 

3 
2 

2 
2 

3 
3 

3 
2 

4 
2 

4 
4 

3 
2 

3 
2 

NA – Motion matched to this target spectrum was rejected 
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Table E.2. continued. 
 

  CMS 2% UHS 10% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

21 TD 
FD 

4 
2 

4 
3 

5 
2 

3 
2 

3 
2 

4 
2 

4 
5 

4 
3 

4 
2 

22 TD 
FD 

5 
4 

5 
3 

5 
2 

4 
4 

5 
2 

5 
2 

4 
4 

5 
3 

5 
2 

23 TD 
FD 

5 
4 

5 
5 

5 
1 

3 
3 

1 
5 

1 
3 

4 
3 

4 
3 

5 
2 

24 TD 
FD 

5 
5 

5 
5 

2 
4 

4 
5 

5 
5 

2 
2 

5 
4 

5 
5 

5 
4 

25 TD 
FD 

2 
2 

2 
3 

1 
2 

3 
2 

2 
2 

3 
2 

4 
2 

4 
3 

5 
2 

26 TD 
FD 

5 
2 

4 
4 

4 
2 

5 
4 

5 
4 

5 
2 

4 
3 

4 
4 

4 
3 

27 TD 
FD 

3 
1 

4 
4 

3 
2 

1 
3 

1 
4 

1 
3 

4 
3 

3 
4 

3 
2 

28 TD 
FD 

3 
3 

4 
2 

4 
2 

2 
3 

3 
2 

4 
2 

4 
3 

3 
2 

4 
2 

29 TD 
FD 

4 
3 

2 
2 

1 
2 

3 
4 

2 
2 

2 
2 

3 
4 

1 
2 

1 
3 

30 TD 
FD 

1 
2 

2 
2 

1 
1 

2 
2 

3 
2 

4 
2 

3 
3 

3 
2 

4 
2 

31 TD 
FD 

3 
2 

3 
3 

3 
2 

2 
2 

2 
3 

2 
2 

4 
2 

3 
3 

3 
2 

32 TD 
FD 

3 
4 

3 
3 

3 
2 

NA 
3 

NA 
3 

NA 
2 

2 
2 

3 
4 

4 
2 

33 TD 
FD 

3 
2 

3 
2 

3 
1 

3 
2 

4 
2 

5 
1 

2 
2 

3 
3 

3 
2 

34 TD 
FD 

2 
2 

2 
3 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
3 

3 
2 

35 TD 
FD 

NA 
NA 

NA 
NA 

NA 
NA 

NA 
3 

NA 
4 

NA 
3 

3 
4 

2 
4 

1 
3 

36 TD 
FD 

2 
2 

2 
3 

1 
1 

1 
3 

1 
2 

1 
2 

2 
2 

2 
3 

1 
2 

37 TD 
FD 

4 
5 

4 
2 

4 
2 

4 
5 

3 
2 

4 
1 

5 
5 

4 
3 

4 
2 

38 TD 
FD 

4 
4 

3 
2 

5 
2 

1 
3 

2 
2 

3 
2 

4 
4 

4 
3 

4 
2 

39 TD 
FD 

1 
2 

2 
1 

1 
1 

3 
2 

3 
1 

4 
1 

3 
2 

3 
1 

4 
1 

40 TD 
FD 

1 
3 

1 
2 

1 
2 

2 
3 

1 
2 

2 
2 

3 
3 

3 
2 

4 
1 

NA – Motion matched to this target spectrum was rejected 
 



426 
 

Table E.2. continued. 
 

  CMS 2% UHS 10% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

41 TD 
FD 

2 
2 

3 
2 

5 
1 

3 
2 

2 
2 

3 
1 

2 
2 

4 
2 

5 
1 

42 TD 
FD 

2 
2 

3 
2 

1 
1 

2 
2 

2 
2 

1 
1 

3 
2 

3 
2 

4 
2 

43 TD 
FD 

2 
4 

4 
2 

5 
1 

2 
4 

4 
2 

5 
2 

2 
4 

4 
2 

5 
1 

44 TD 
FD 

NA 
2 

NA 
2 

NA 
1 

4 
3 

4 
2 

5 
1 

2 
2 

4 
2 

4 
1 

45 TD 
FD 

1 
2 

2 
2 

3 
2 

4 
3 

3 
3 

3 
2 

2 
3 

3 
2 

4 
1 

46 TD 
FD 

2 
2 

3 
2 

2 
1 

2 
2 

3 
2 

4 
2 

1 
2 

3 
2 

3 
1 

47 TD 
FD 

2 
3 

2 
2 

2 
3 

1 
2 

1 
3 

1 
3 

3 
3 

3 
4 

5 
4 

48 TD 
FD 

3 
3 

4 
3 

5 
4 

3 
3 

4 
3 

4 
4 

3 
3 

2 
4 

2 
4 

49 TD 
FD 

3 
3 

4 
3 

2 
1 

2 
3 

2 
2 

1 
2 

1 
2 

1 
4 

1 
3 

50 TD 
FD 

2 
2 

4 
3 

2 
1 

1 
3 

2 
2 

1 
2 

1 
1 

2 
4 

1 
2 

51 TD 
FD 

3 
4 

2 
3 

3 
3 

4 
4 

5 
3 

5 
2 

4 
4 

4 
4 

5 
3 

52 TD 
FD 

4 
3 

4 
4 

4 
3 

1 
4 

1 
4 

1 
3 

1 
3 

1 
4 

1 
3 

53 TD 
FD 

4 
4 

3 
4 

1 
3 

5 
4 

5 
3 

5 
2 

4 
3 

3 
3 

4 
3 

54 TD 
FD 

4 
4 

4 
3 

2 
1 

3 
4 

4 
4 

3 
2 

3 
4 

3 
4 

2 
3 

55 TD 
FD 

3 
4 

2 
2 

2 
2 

4 
3 

5 
3 

5 
2 

3 
4 

3 
4 

3 
3 

56 TD 
FD 

1 
2 

2 
2 

1 
2 

2 
4 

2 
3 

2 
2 

1 
3 

2 
3 

2 
3 

57 TD 
FD 

3 
3 

2 
2 

2 
2 

3 
3 

1 
2 

1 
2 

4 
2 

3 
2 

2 
2 

58 TD 
FD 

4 
3 

4 
2 

3 
2 

5 
5 

4 
2 

4 
2 

3 
4 

2 
3 

1 
2 

59 TD 
FD 

2 
2 

3 
2 

3 
1 

3 
4 

3 
2 

3 
2 

3 
3 

3 
2 

3 
1 

60 TD 
FD 

1 
3 

2 
2 

2 
1 

2 
2 

3 
2 

2 
2 

2 
4 

3 
2 

4 
1 

NA – Motion matched to this target spectrum was rejected 
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Table E.2. continued. 
 

  CMS 2% UHS 10% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

61 TD 
FD 

1 
4 

1 
4 

1 
3 

NA 
3 

NA 
2 

NA 
2 

2 
3 

1 
3 

1 
4 

62 TD 
FD 

3 
3 

3 
2 

2 
2 

2 
3 

2 
2 

2 
2 

2 
2 

2 
2 

1 
2 

63 TD 
FD 

1 
2 

2 
3 

1 
1 

NA 
3 

NA 
3 

NA 
1 

NA 
2 

NA 
4 

NA 
3 

64 TD 
FD 

NA 
2 

NA 
3 

NA 
2 

NA 
3 

NA 
3 

NA 
2 

NA 
2 

NA 
2 

NA 
3 

65 TD 
FD 

4 
3 

3 
3 

3 
2 

4 
3 

5 
4 

5 
2 

5 
4 

3 
4 

2 
2 

66 TD 
FD 

3 
5 

3 
3 

3 
2 

1 
5 

1 
4 

1 
2 

5 
5 

3 
5 

2 
4 

67 TD 
FD 

4 
4 

3 
2 

2 
1 

3 
3 

3 
3 

3 
3 

4 
4 

4 
3 

3 
1 

68 TD 
FD 

4 
4 

4 
3 

1 
1 

3 
3 

3 
2 

3 
3 

2 
4 

3 
2 

2 
1 

69 TD 
FD 

2 
2 

2 
2 

2 
1 

1 
2 

1 
3 

1 
3 

5 
2 

5 
5 

5 
3 

70 TD 
FD 

1 
4 

1 
3 

1 
1 

4 
4 

4 
4 

2 
2 

4 
4 

4 
4 

5 
3 

71 TD 
FD 

1 
2 

2 
2 

3 
3 

3 
2 

3 
2 

5 
3 

2 
2 

4 
3 

3 
3 

72 TD 
FD 

3 
2 

2 
3 

1 
3 

4 
2 

3 
3 

5 
3 

4 
4 

5 
4 

5 
3 

73 TD 
FD 

3 
NA 

3 
NA 

1 
NA 

2 
3 

2 
2 

1 
1 

3 
3 

2 
3 

1 
1 

74 TD 
FD 

1 
2 

1 
1 

1 
1 

2 
3 

1 
3 

1 
1 

2 
2 

3 
3 

3 
3 

75 TD 
FD 

4 
4 

2 
3 

1 
2 

2 
4 

1 
3 

1 
2 

5 
5 

3 
4 

2 
3 

76 TD 
FD 

3 
3 

4 
2 

5 
2 

4 
2 

4 
3 

4 
2 

5 
3 

3 
3 

3 
2 

77 TD 
FD 

3 
3 

1 
2 

1 
3 

3 
3 

1 
3 

1 
2 

4 
3 

3 
3 

4 
3 

78 TD 
FD 

4 
4 

3 
2 

3 
2 

4 
3 

2 
2 

1 
1 

3 
2 

3 
2 

2 
1 

79 TD 
FD 

4 
3 

2 
3 

2 
3 

4 
4 

5 
5 

5 
3 

2 
3 

2 
4 

2 
4 

80 TD 
FD 

1 
5 

2 
4 

1 
4 

1 
5 

2 
5 

1 
4 

1 
5 

2 
5 

1 
5 

NA – Motion matched to this target spectrum was rejected 
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Table E.2. continued. 
 

  CMS 2% UHS 10% UHS 
Motion No. a(t) v(t) d(t) a(t) v(t) d(t) a(t) v(t) d(t) 

81 TD 
FD 

1 
1 

4 
3 

1 
2 

NA 
2 

NA 
3 

NA 
2 

NA 
1 

NA 
3 

NA 
2 

82 TD 
FD 

3 
3 

3 
3 

1 
1 

NA 
3 

NA 
3 

NA 
2 

3 
3 

2 
4 

1 
1 

83 TD 
FD 

5 
4 

4 
4 

5 
1 

4 
2 

5 
3 

2 
2 

4 
3 

3 
4 

4 
3 

84 TD 
FD 

4 
3 

5 
3 

5 
1 

3 
4 

2 
3 

2 
2 

4 
5 

5 
4 

5 
3 

85 TD 
FD 

3 
3 

1 
4 

1 
3 

1 
3 

1 
3 

1 
3 

1 
3 

1 
4 

1 
5 

86 TD 
FD 

1 
2 

1 
2 

1 
3 

1 
3 

2 
2 

2 
2 

2 
3 

2 
3 

1 
3 

87 TD 
FD 

NA 
2 

NA 
3 

NA 
2 

1 
3 

2 
3 

1 
2 

2 
2 

1 
4 

1 
3 

88 TD 
FD 

NA 
2 

NA 
3 

NA 
2 

NA 
2 

NA 
3 

NA 
2 

NA 
1 

NA 
3 

NA 
2 

89 TD 
FD 

3 
4 

3 
3 

3 
3 

3 
3 

3 
3 

3 
2 

4 
5 

3 
5 

3 
3 

90 TD 
FD 

4 
4 

3 
4 

3 
3 

4 
4 

3 
3 

2 
3 

4 
5 

4 
4 

4 
3 

91 TD 
FD 

3 
2 

3 
5 

1 
1 

2 
3 

3 
3 

1 
1 

2 
1 

3 
4 

2 
3 

92 TD 
FD 

3 
2 

2 
2 

1 
1 

1 
2 

3 
3 

1 
3 

2 
2 

1 
2 

1 
1 

93 TD 
FD 

3 
3 

4 
3 

5 
4 

2 
3 

1 
3 

1 
3 

1 
4 

2 
5 

1 
5 

94 TD 
FD 

1 
4 

1 
2 

1 
2 

3 
4 

5 
4 

5 
1 

1 
5 

1 
5 

1 
4 

95 TD 
FD 

5 
3 

5 
4 

4 
3 

NA 
3 

NA 
4 

NA 
1 

5 
4 

5 
5 

5 
2 

96 TD 
FD 

3 
3 

2 
4 

1 
1 

4 
3 

3 
3 

1 
2 

4 
5 

2 
4 

1 
3 

97 TD 
FD 

4 
2 

1 
4 

1 
1 

3 
2 

3 
3 

1 
2 

4 
2 

2 
4 

1 
3 

98 TD 
FD 

NA 
1 

NA 
3 

NA 
2 

NA 
3 

NA 
2 

NA 
2 

NA 
1 

NA 
2 

NA 
3 

99 TD 
FD 

2 
2 

3 
4 

1 
1 

3 
2 

1 
2 

1 
2 

2 
2 

3 
4 

3 
3 

100 TD 
FD 

NA 
1 

NA 
3 

NA 
2 

NA 
3 

NA 
3 

NA 
2 

2 
2 

3 
3 

2 
2 

NA – Motion matched to this target spectrum was rejected 
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Figure E.1. One-page output images for motions in scenario I matched to the conditional mean 

spectrum (CMS), from motion number 1 to 108, generated by the GMM program. 
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Figure E.1. continued. 
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Figure E.2. One-page output images for motions in scenario I matched to the mean attenuation 
relationship spectrum (MA), from motion number 1 to 108, generated by the GMM program. 
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Figure E.3. One-page output images for motions in scenario I matched to the 2% uniform hazard 

spectrum (2% UHS), from motion number 1 to 108, generated by the GMM program. 
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Figure E.4. One-page output images for motions in scenario II matched to the conditional mean 

spectrum (CMS), from motion number 1 to 100, generated by the GMM program. 
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Figure E.5. One-page output images for motions in scenario II matched to the 2% uniform 

hazard spectrum (2% UHS), from motion number 1 to 100, generated by the GMM program. 
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Figure E.6. One-page output images for motions in scenario II matched to the 10% uniform 

hazard spectrum (10% UHS), from motion number 1 to 100, generated by the GMM program. 
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APPENDIX F 

Modified-to-Scaled Response Ratios for Geotechnical Dynamic Analyses versus 

Normalized Error for Different Period Ranges 
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Figure F.1. Logarithmic ratios of the modified-to-scaled cyclic stress ratios (CSR) caused by the 
motions in scenario I for different sites and depths plotted against normalized error. 
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Figure F.2. Logarithmic ratios of the modified-to-scaled cyclic stress ratios (CSR) caused by the 
motions in scenario I for different sites and depths plotted against normalized error in the short 

period range. 
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Figure F.3. Logarithmic ratios of the modified-to-scaled cyclic stress ratios (CSR) caused by the 
motions in scenario I for different sites and depths plotted against normalized error in the 

intermediate period range. 
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Figure F.4. Logarithmic ratios of the modified-to-scaled cyclic stress ratios (CSR) caused by the 
motions in scenario I for different sites and depths plotted against normalized error in the long 

period range. 
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Figure F.5. Logarithmic ratios of the modified-to-scaled maximum horizontal acceleration 
(MHA) caused by the motions in scenario I for different sites and depths plotted against 

normalized error. 
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Figure F.6. Logarithmic ratios of the modified-to-scaled maximum horizontal acceleration 
(MHA) caused by the motions in scenario I for different sites and depths plotted against 

normalized error in the short period range. 
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Figure F.7. Logarithmic ratios of the modified-to-scaled maximum horizontal acceleration 
(MHA) caused by the motions in scenario I for different sites and depths plotted against 

normalized error in the intermediate period range. 
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Figure F.8. Logarithmic ratios of the modified-to-scaled maximum horizontal acceleration 
(MHA) caused by the motions in scenario I for different sites and depths plotted against 

normalized error in the long period range. 
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Figure F.9. Logarithmic ratios of the modified-to-scaled spectral ratios for the motions in 
scenario I for different sites and depths plotted against normalized error. 
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Figure F.10. Logarithmic ratios of the modified-to-scaled spectral ratios for the motions in 
scenario I for different sites and depths plotted against normalized error in the short period range. 
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Figure F.11. Logarithmic ratios of the modified-to-scaled spectral ratios for the motions in 
scenario I for different sites and depths plotted against normalized error in the intermediate 

period range. 
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Figure F.12. Logarithmic ratios of the modified-to-scaled spectral ratios for the motions in 
scenario I for different sites and depths plotted against normalized error in the long period range. 
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Figure F.13. Logarithmic ratios of the modified-to-scaled Newmark-type slope displacements 
caused by the motions in scenario I for different sites and depths and a ky / kmax of 0.05 plotted 

against normalized error. 
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Figure F.14. Logarithmic ratios of the modified-to-scaled Newmark-type slope displacements 
caused by the motions in scenario I for different sites and depths and a ky / kmax of 0.05 plotted 

against normalized error in the short period range. 
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Figure F.15. Logarithmic ratios of the modified-to-scaled Newmark-type slope displacements 
caused by the motions in scenario I for different sites and depths and a ky / kmax of 0.05 plotted 

against normalized error in the intermediate period range. 
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Figure F.16. Logarithmic ratios of the modified-to-scaled Newmark-type slope displacements 
caused by the motions in scenario I for different sites and depths and a ky / kmax of 0.05 plotted 

against normalized error in the long period range. 
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Figure F.17. Logarithmic ratios of the modified-to-scaled Newmark-type slope displacements 
caused by the motions in scenario I for different sites and depths and a ky / kmax of 0.15 plotted 

against normalized error. 
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Figure F.18. Logarithmic ratios of the modified-to-scaled Newmark-type slope displacements 
caused by the motions in scenario I for different sites and depths and a ky / kmax of 0.15 plotted 

against normalized error in the short period range. 
 



1072 
 

 
 

Figure F.19. Logarithmic ratios of the modified-to-scaled Newmark-type slope displacements 
caused by the motions in scenario I for different sites and depths and a ky / kmax of 0.15 plotted 

against normalized error in the intermediate period range. 
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Figure F.20. Logarithmic ratios of the modified-to-scaled Newmark-type slope displacements 
caused by the motions in scenario I for different sites and depths and a ky / kmax of 0.15 plotted 

against normalized error in the long period range. 
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