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ABSTRACT 
 

Covalent post translational modifications of histone proteins are an important 

mechanism of epigenetic gene regulation that modulate chromatin structure. 

Methylation of histone lysine residues is one of several chemical marks that establish 

the “histone code” essential for proper temporal and spatial expression of gene 

programs required for cell fate determination in development. Dysregulation of histone 

methylation contributes to the development of numerous human diseases, particularly 

cancer. The sole histone H3 lysine 79 (H3K79) methyltransferase, DOT1L, is required 

for leukemogenic transformation in a subset of leukemias bearing translocations of the 

MLL gene. Human leukemias carrying MLL gene rearrangements aberrantly recruit 

DOT1L to leukemogenic genes leading to increased H3K79 methylation and their 

transcriptional activation. There are also reports that DOT1L plays a role in Wnt 

signaling, a pathway frequently dysregulated in colon cancer. Small molecule inhibitors 

of DOT1L are highly sought for the development of therapeutics in leukemia and as 

chemical tools to probe the role of DOT1L in other human diseases. We applied several 

approaches for the identification of DOT1L inhibitors, virtual screening, de novo design, 

and biochemical screening. Here we present the biochemical, biophysical, and cellular 

characterization of different classes of DOT1L inhibitors. Several S-adenosylmethionine 

(SAM) analogues have been identified as DOT1L inhibitors by virtual screening and we 

developed a novel pathway for synthesis of additional 5’ modified adenosine analogues. 

Additionally, we identified UMD-7, which inhibits H3K79 methylation by a unique 

mechanism of histone binding and phenocopies genetic loss of DOT1L. Employing a 

chemical biology approach the requirement for H3K79 methylation in Wnt signaling was 

investigated by inhibiting DOT1L with EPZ004777, a selective and potent SAM 

competitive inhibitor. Our findings indicate that H3K79 methylation is not essential for 

maintenance or activation of Wnt pathway target gene expression in colon cancer cell  

xv 



lines. Furthermore, H3K79 methylation is not elevated in human colon carcinoma 

samples in comparison with normal colon tissue. Therefore, our findings indicate that 

inhibition of DOT1L histone methyltransferase activity is likely not a viable therapeutic 

strategy in colon cancer. 
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CHAPTER 1 

INTRODUCTION 

1.1 Epigenetics 

 

1.1.1 Histone modifications: an epigenetic mechanism of gene regulation 

 

Although the cells in our bodies contain the same genetic information in our genome, 

different cell types selectively express specific genes in a tightly regulated spatial and 

temporal manner throughout development. One important mechanism regulating this 

process is the compaction of DNA into the structure of chromatin. In eukaryotic cells, 

DNA is packaged into chromatin through interactions with histones proteins(1). A 

nucleosome, the basic unit of chromatin structure, is formed by 146 base pairs of DNA 

wound around an octamer of histone proteins consisting of two units of each histone 

H2A, H2B, H3, and H4 (2). Nucleosomes can further compact and supercoil to form 

transcriptionally inactive heterochromatin, or remain in an accessible open euchromatin 

structure (3). This process is coordinated by numerous post translational modifications 

of histone proteins such as methylation, acetylation, and ubiquitination of lysine 

residues, methylation of arginine residues, and phosphorylation of serine, threonine, or 

tyrosine residues(4).  

 

The covalent modification of histone proteins constitutes a dynamic and heritable 

mechanism of gene regulation beyond the genomic information within DNA and is 

collectively referred to as the “histone code” (5).   Deposition, recognition, and removal 

of covalent posttranslational modifications of histones are processes regulated by 

different classes of enzymes thought of as writers, readers, and erasers of the histone 
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code (Table 1) (6). Several examples of “writers” are histone methyltransferases that 

carry out methylation of histone arginine and lysine residues, acetylation of lysine 

residues by histone acetyltransferases, and phosphorylation of serine, threonine, or 

tyrosine residues are carried out by various kinases (7). Histone “reader” enzymes 

recognize covalent modifications of histones and recruit additional proteins such as 

transcription factors or other chromatin modifying enzymes as effectors to carry out the 

downstream biological function. Bromodomain, tudor domain, and chromodomain 

containing proteins recognize acetylated and methylated lysine residues while PHD 

containing proteins are a large family that recognize diverse substrates (6). Removal of 

histone marks are carried out by several different enzyme families such as the removal 

of acetylation by histone deacetylases and removal of methylation by histone 

demethylases.  

 

The coordinated spatial and temporal expression of genes regulated by epigenetic 

modifications is essential for normal development and cell fate determination in the 

development of organisms. Histone modification plasticity allows cells to respond to 

environmental cues and thus rapidly adapt gene expression programs to reprogram 

cellular phenotypes. However, hijacking of these processes leading to dysregulated 

histone modification patterns is also central to the development of numerous human 

diseases including cancer, inflammation, and metabolic diseases (6).  

 

1.1.2 Histone methyltransferases 

 

Methylation of histone residues plays a key role in regulating gene transcription 

programs (8). The family of enzymes responsible for histone methylation is collectively 

known as histone methyltransferases (HMTases). Both arginine and lysine residues of 

histones can be methylated and are carried out by separate classes of enzymes known 

as protein arginine methyltransferases (PRMTs) or lysine methyltransferases (KMTs).  

PRMTs are Class I methyltransferases containing a seven-stranded β-sheet structure 

(9). They are capable of symmetrical or asymmetrical methylation of arginine residues 

depending on whether single methyl groups are added to each terminal guanidino 
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Writers 

Class Targets Example proteins 

Histone acetyltransferases lysine residues 
TIP60, P300/ CREB-binding protein (CBP), 
MOF complex 

Histone methyltransferases lysine and arginine residues 

mixed lineage leukemia (MLL), disruptor 
of telomeric silencing (DOT1L), G9A, 
EZH2, SUV39H1, protein arginine 
methyltransferases (PRMTs) 

Histone ubiquitylase lysine residues RNF20, RING1B, 2A-HUB 

Erasers 

Class Targets Example proteins 

Histone deacetylases acetylated lysine residues Histone deacetylases (HDACs) 

Histone demethylases 
methylated lysine and arginine 
residues 

Jumonji family or lysine specific 
demethylases (LSD1/2) 

Histone deubiquitylase ubiquitinated lysine residues USP22, 2A-DUB 

Readers 

Class Recognition motif Example proteins 

Bromodomain containing 
proteins histone acetylation 

Bromodomain-containing  proteins (BRD), 
brahma-related gene 1 (BRD1) 

Tudor domain containing 
proteins 

di and trimethylated lysine and 
dimethylated arginine 

survival motor neuron (SMN), JMJD2, 
PHF20, 53, BP1 

MBT domain containing 
proteins mono and dimethylated lysine 

Malignant brain tumor domain 1 
(MBTD1), LIN-61 

Chromodomain containing 
proteins trimethylated lysine 

Chromodomain protein 1 (Chd1), 
SUV29H1, MYST1, Tip60 

PHD domain containing 
proteins 

diverse substrates (methylated 
arginine, methylated lysine, and 
acetylated lysine), unmethylated 
lysine residues 

mixed lineage leukemia (MLL), inhibitor 
of growth (ING2), Pygopus homolog 1 
(Pygo1), DNA methyltransferase 2 
(DNMT3) 

 

nitrogen atom, symmetrically, or if two methyl groups are added to a single  terminal 

guanidino nitrogen atom, asymmetrically. 

 

Table 1.  Histone code writers, readers, and erasers. Classification of proteins and 
protein families involved in deposition, removal, and recognition of histone 
modifications. 

 

Most lysine methyltransferases are Class II methyltransferases and contain a SuVar3-9, 

Enhancer of zeste, Trithorax (SET) domain (10). They are capable of adding one, two, 

or three methyl groups to the terminal ε-amino group of lysine residues resulting in 

mono, di, or trimethylation of lysine (Figure 1.1.1). Only one lysine methyltransferase 

has been identified that does not belong to the SET domain family of KMTs, known as 
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disruptor of telomeric silencing 1 like (DOT1L) which carries out mono, di, and 

trimethylation of histone H3 lysine 79 (H3K79) (11). All histone methyltransferase 

enzymes utilize the small molecule cofactor S-adenosylmethionine (SAM) as a methyl 

donor (Fig. 1.1.1) (12). Methylation of lysine residues can be carried out in either a 

processive mechanism, in which the methyltransferase adds methyl groups to the same 

lysine residue consecutively without dissociation from the substrate or by a distributive 

mechanism in which the methyltransferase dissociates from the substrate after each 

transfer of a methyl group. 

 

 

 

Figure 1.1.1 Mechanism of histone lysine methylation. Transfer of a methyl group 
from S-adenosylmethionine (SAM) to the ε-amine of histone lysine residues catalyzed 
by the enzymatic activity of histone methyltransferases.  
 

Methylation of different lysine residues results in either repression or activation of 

associated genes. For instance, histone H3 lysine 9 (H3K9), H3 lysine 27 (H3K27), and 

H4 lysine 20 (H4K20) are associated with repression of gene transcription and histone 

H3 lysine 4 (H3K4), H3 lysine 36 (H3K36), and H3 lysine 79 (H3K79) methylation are 

associated with transcriptional activation (13).  

 

However, methylation events on individual lysine residues are not solely responsible for 

establishing the transcriptional status of an individual gene. The combination of various 
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histone modifications and the protein complexes recruited by such modifications alter 

the physical chromatin structure leading to a specific transcriptional outcome. Numerous 

histone modifications within a portion of the genome create a multi-component context 

resulting in activation or repression of chromatin-mediated transcription. Furthermore, 

the complex pattern of histone modifications is a dynamic process involving co-

regulation of adjacent marks in a process known as “histone crosstalk” (14). For 

example, methylation of histone H3K79 is enhanced in the presence of ubiquitinated 

histone H2B (15, 16). In additional to H3K79 methylation, H3K4 trimethylation is 

enhanced by monoubiquitination of H2B, however this methylation can be blocked if the 

adjacent H3 arginine 2 (H3R2) is previously methylated (14). As a result of the critical 

roles histone methyltransferases play in regulating gene transcription in normal 

development and tissue homeostasis, dysregulation of their functions are implicated in 

numerous human diseases such as cancer (6, 13). Therefore, the identification and 

biological characterization of histone methyltransferase enzymes is of significant 

interest. 

 

1.2 DOT1L Histone Methyltransferase 

 

1.2.1 Discovery of DOT1L 

 

The disruptor of telomeric silencing 1 (DOT1) gene was identified in a yeast genetic 

screen in which overexpression of the gene reduced silencing at telomeres and other 

repressed genes (17). The function of the encoded protein, DOT1p was unknown for 

several years until it was demonstrated that Dot1p is a histone methyltransferase that 

methylates histone H3 lysine 79 (H3K79) (11, 18, 19). The function of DOT1 is 

conserved from yeast to humans thus, the human homolog DOT1L has the same 

histone methyltransferase enzymatic activity and carries out mono, di, and 

trimethylation of H3K79 (20). DOT1 appears to be the only enzyme responsible for 

methylation of H3K79 as knockout in yeast and mice results in complete loss of H3K79 

methylation (18, 21-23). 
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1.2.2 Biochemical characterization of DOT1L 

 

DOT1L is a distributive enzyme that catalyzes a SN2 mediated transfer of a methyl 

group from SAM to the ε-amino group of H3K79 on the nucleosome core introducing 

mono, di, or trimethylation (24). DOT1L is a unique histone methyltransferase due to the 

fact that its substrate H3K79 is in the globular domain of histone H3 as opposed to the 

flexible N-terminal tail where most other lysine methylation is found. Interestingly, this 

results in exclusive substrate specificity and DOT1L only methylates H3K79 in the 

context of a nucleosome substrate or a milieu of core histones but is inactive against a 

recombinant H3 substrate, H3/H4 tetramer, or peptide substrate. This is likely due the 

requirement of additional interactions with the surface of the nucleosome for proper 

substrate recognition. It has been shown that an acidic patch of H4 is necessary for 

DOT1L HMTase activity (25, 26) and interaction with H2B lysine 120 (H2BK120) 

ubiquitination greatly promotes H3K79 methylation (15, 16, 27).  

 

1.2.3 Biological functions of DOT1L 

 

The initially identified function of H3K79 methylation in yeast, disrupting telomeric 

silencing, is attributed to the alteration of Sir protein localization along chromosomes 

(18). Loss of DOT1p was also shown to be required for “pachytene checkpoint” mitotic 

cell cycle arrest in yeast (28). To further assess the role of H3K79 methylation in higher 

eukaryotes, chromatin immunoprecipitation (ChIP) coupled with gene micro-array 

analysis of 5,000 genes in Drosophila demonstrated that H3K79 methylation correlates 

with active gene transcription (29). This observation was confirmed for several genes in 

human cells (30, 31) and demonstrated that H3K79 methylation is positively associated 

with transcriptional activation in several human cell lines over a large population of 

genes (32, 33). Recently, it has been shown that the Tudor domain contain protein 

survival motor neuron (SMN) recognizes H3K79 mono and dimethylation but the 

mechanism of how SMN regulates downstream processes remains an active area of 

investigation (34). Interestingly, no histone demethylase of H3K79 has been discovered 
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at this point, but it is speculated that there is an active eraser of this mark and is being 

sought.   

 

DOT1L exists in numerous multi-protein complexes and is associated with 

transcriptional elongation as part of the ENL-associated proteins (EAP) complex (35). 

Coimmunoprecipitation of the Eleven Nineteen Leukemia (ENL) protein revealed that 

DOT1L interacts directly with ENL and was co-purified with p-TEFb (CDK9, CYCT, 

HSP70). Knockdown of ENL protein resulted in a partial loss of global H3K79 

methylation indicating that DOT1L H3K79 methylation activity in cells is regulated in part 

by the context of multi-protein complexes. In addition, knockdown of ENL resulted in 

reduced levels of H3K79 methylation at the Hoxa9 gene, which is an important 

homeobox transcription factor, resulting in reduced expression demonstrating that ENL 

is required to properly recruit DOT1L to genes in order to carry out H3K79 methylation 

and regulate the transcriptional activation (35). Further studies suggested that ENL has 

a dual role in regulating gene transcription by sequentially recruiting a higher order 

protein complex, termed AEP, containing AF5q31, AF4, and p-TEFb and forming a 

separate secondary complex with DOT1L (Figure 1.2.1) (36). This study suggested a 

model in which AEP is important for sustained expression of target genes whereas 

recruitment of DOT1L plays a role in the maintenance of transcriptional memory (36). 

 

 

Figure 1.2.1. ENL/ DOT1L complex and alternate AEP complex. (Modified from 
Yokoyama, A. et al. Cell, 2010)  
 

H3K79 methylation has numerous important functions under normal biological 

conditions. DOT1L is involved in double strand break repair in yeast to higher 
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eukaryotes (37-40). Loss of DOT1L in avian DT40 cells results in defects of DNA 

damage response through loss of recruitment of the tudor domain tumor suppressor 

protein 53BP1 to damaged chromatin (38). Furthermore, loss of DOT1L results in 

defects in cell cycle regulation and in murine model bone marrow cells, conditional loss 

of DOT1L leads to cell cycle arrest at G1/S phase and accumulation of G0/G1 cells with 

loss of S and G2/M phase cells (21, 22, 28, 41). In embryonic stem cells lacking DOT1L 

induction of differentiation results in arrest in G2/M phase, aneuploidy and proliferating 

arrest indicating that DOT1L is required for proper regulation of gene transcription in the 

early stages of embryonic stem cell differentiation (42). DOT1L is also involved in 

mediating sodium (Na+) uptake in epithelial cells in response to aldosterone via 

regulation of the epithelial Na+ channel (ENaC) gene via H3K79 methylation of the gene 

promoter (43-47). Additionally, DOT1L has a role in cardiac function by regulating 

expression of the Dystrophin (Dmd) gene required for stabilization of the dystrophin-

glycoprotein complex important for cardiomyocyte viability. Cardiac specific loss of 

DOT1L results in cardiomyocyte cell death, heart chamber dilation, and systolic 

dysfunction phenotypes (48). As previously mentioned, DOT1L is associated with 

numerous multi-protein complexes; along with the interacting partner AF9, DOT1L 

methylation of H3K79 is also important for proper neuronal development through 

regulation of the TBR1 protein (49). 

 

Due to the role of DOT1L in these numerous essential functions, it is not surprising that 

it is essential for embryonic development and DOT1L null mice die between 9.5-13.5 

days post coitum (21, 50). Defects in yolk sac angiogenesis is suspected as the major 

cause for embryonic lethality. Cardiac dilation is thought to be a secondary effect of yolk 

sac defects and early lethality made it difficult to distinguish affects on erythropoiesis. 

Embryonic stem cells derived from DOT1L mutant blastocysts display aneuploidy, 

telomere elongation, and proliferation defects as a result of deficient heterochromatin 

establishment at centromeres and telomeres (21). Furthermore, defects in 

erythropoiesis were observed with deficient erythroid development, G0/G1 

accumulation, and increased apoptosis demonstrating an important role for DOT1L in 

prenatal hematopoiesis (50).  
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Due to embryonic lethality and the need to understand the biological function of DOT1L 

in mammals, especially its role in MLL-fusion protein mediated leukemogenesis, several 

conditional DOT1L deletion models were generated (22, 23). Chang and colleagues 

generated mice with a Cre-excisable floxed exon 5 in the Dot1l gene (Dot1l fl/fl) 

generating a truncated non-functional protein (1-87 aa of the 1,543 wild type aa). Using 

hematopoietic progenitor cells isolated from Dot1l fl/fl mice, they demonstrated that 

numerous leukemogenic MLL-fusion proteins require DOT1L for their transformation 

capability. Jo and colleagues were the first to investigate the conditional knockout of 

DOT1L in a postnatal setting and demonstrated that systemic loss of DOT1L did not 

produce toxicity for 7-8 weeks. Mice with floxed Dot1l at 6-10 week old were injected 

with tamoxifen to induce CreER excision of DOT1L and showed complete loss of 

H3K79 methylation in bone marrow cells and other tissue. Mice lacking DOT1L became 

moribund and developed pancytopenia 8-12 weeks after tamoxifen injection. These 

findings and evaluation of hematopoietic stem cells (HSCs) by cell surface marker 

staining and flow cytometry demonstrated that DOT1L is required to maintain steady-

state hematopoiesis. Furthermore, this mouse model provided a system in which the 

role of DOT1L in leukemia could be investigated. Bone marrow cells derived from 

conditional DOT1L knockout mice were used to investigate the requirement for DOT1L 

in MLL-fusion mediated leukemogenesis (22).  

 

1.2.4 DOT1L and Mixed lineage leukemia (MLL) translocation induced leukemias 

 

Chromosomal translocations of the mixed lineage leukemia gene located at 

chromosome 11q23 result in acute myeloid leukemia (AML) and acute lymphoblastic 

leukemias (ALL) or biphenotypic mixed lineage leukemias (MLL) (51).  Leukemias 

bearing rearrangements of the MLL gene are aggressive and have poor prognosis (52) 

and are found in >70% of infant leukemias with either AML or ALL phenotypes and 10% 

of adult AMLs (53).  

The MLL gene is normally expressed as a large multidomain protein with histone H3K4 

trimethylation activity and is associated with transcriptional activation of target genes 
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(54). The most common result of translocations of the MLL-gene is the fusion of the N-

terminal portion of the MLL protein to one of more than 60 fusion partners. However, 

several rearrangement partners are most common and MLL-AF4 resulting from the 

t(4;11)(q21;q23) rearrangement, MLL-AF9 resulting from the t(9;11)(p22;q23) 

rearrangement, MLL-ENL resulting from t(11;19)(q23;p13.3) rearrangement, MLL-AF10 

resulting from t(10;11)(p12;q23) rearrangement, and MLL-AF6 resulting from 

t(6;11)(q27;q23) rearrangement account for around 80% of the MLL rearrangements 

observed in leukemias (Figure 1.2.2) (53). 

 

 

 

Figure 1.2.2 Distribution of MLL rearrangement partners in pediatric and adult 
ALL and AML. The fusion partners resulting from MLL-rearrangements are 
predominantly AF4, AF9, ENL, and AF10 in pediatric ALL and AML. AF4 is the primary 
fusion partner in adult ALL and AF9 and ENL predominate in adult AML. (Krivstsov, 
A.V., and Armstrong, S.A. Nature Reviews, 2007) 
 

MLL typically exists in large multiprotein complexes containing WDR5, Ash2L, and 

RBP5 which make up the core complex (55). It associates with numerous other 

chromatin modifying proteins such as the H4K16 acetyltransferase MOF complex (56) 

and CBP/p300 (57) for full transcriptional activation of target genes. However these 

interactions are mediated by the c-terminal portion of MLL which is lost in MLL-fusion 

proteins. There are a number of additional interaction sites in the N-terminal portion of 

MLL which are maintained in MLL-fusion proteins and are key mediators of MLL-

rearrangement induced leukemias. The N-terminal 40 amino acids of MLL mediate an 

important interaction with menin and this interaction has been shown to be necessary 
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for MLL induced leukemogenesis (58, 59). This interaction also requires a third binding 

partner LEDGF for optimal transformation capabilities (60). Additionally, interaction with 

the polymerase associated factor complex (PAFc) is mediated by upstream regions of 

MLL that are maintained in MLL-fusion proteins and is required for optimal expression of 

MLL target genes such as Hoxa9 and is required for MLL-AF9 leukemogenesis (61). 

Interestingly, the wild-type allele of MLL is also recruited by menin to Hox genes and is 

required for MLL-AF9 transformation although the mechanism of cooperation between 

MLL-fusion proteins and wild-type MLL is not well understood (62). 

 

1.2.5 Mechanism of DOT1L mediated MLL-transformation 

 

In addition to the protein interactions that are maintained in the formation of MLL-fusion 

proteins, the most common MLL-fusion partners form a new interaction through the N-

terminal fusion partners with the histone methyltransferase DOT1L (Figure 1.2.3). The 

common MLL-fusion protein AF10 first implicated DOT1L in leukemogenesis by when 

they were identified as interacting partners in a yeast two hybrid screening. The 

interaction was subsequently confirmed in mammalian cells and shown to be mediated 

by an octapeptide motif and leucine zipper (OM-LZ) in AF10 (31). The ability of the 

MLL-AF10 fusion protein to transform bone marrow was recapitulated by direct fusion of 

the N-terminal third of DOT1L to MLL and this effect was abrogated by an enzymatically 

inactivating mutation of DOT1L. Furthermore, MLL-AF10 was shown to increase H3K79 

methylation at the MLL-target gene Hoxa9 and to increase expression of this critical 

mediator of leukemogenesis (31). To demonstrate the requirement for DOT1L in the 

transformation of MLL-fusion protein mediated leukemias, hematopoietic cells from a 

conditional knockout model of DOT1L were transformed with several MLL-fusion protein 

or the non-MLL oncogenes E2a-Pbx1 and DOT1L expression was abolished by 

introduction of retroviral transduction of Cre recombinase. MLL-AF9 transformed bone 

marrow requires the presence of DOT1L for colony forming ability in methylcellulose. 

DOT1L excision resulted in decreased expression of Hoxa9 and resulted in apoptosis of 

MLL-AF9 transformed cells but no E2a-Pbx1 transformed cells (23). Furthermore, 
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conditional knockout of DOT1L abrogated the ability of MLL-AF9 transformed murine 

bone marrow to induce leukemia in a lethally irradiated recipient mouse (63, 64).  

 

Several other common fusion partners resulting from MLL chromosomal translocations 

have also been shown to exist in multi protein complexes with DOT1L MLL-AF4 (65) or 

directly interact with DOT1L such as MLL-ENL (35) and require the histone 

methyltransferase for leukemogenic transformation. The requirement for DOT1L in MLL-

AF9 induced leukemogenic transformation requires both the enzymatic activity of 

DOT1L and maintenance of the direct interaction between DOT1L and MLL-AF9. 

Disruption of either the enzymatic activity by introduction of a catalytically inactive 

DOT1L mutant (RCR mutant) or disruption of the interaction between DOT1L and MLL-

AF9 by deleting 10 amino acids (mDOT1L 863-872) prevents the transformation of 

murine bone marrow as assessed by methylcellulose colony forming ability (66).   MLL-

AF4 transformation of murine bone marrow cells produces a pre-B cell ALL phenotype 

and contains elevated levels of H3K79 methylation at Hoxa9 and increased expression 

of Hoxa9 compared with normal B-cell precursor cells (67). MLL-ENL transformed 

murine bone marrow cells were shown to depend specifically on the interaction of MLL-

ENL with DOT1L. Loss of DOT1L interaction by a three amino acid deletion in the C-

terminus of ENL prevented the expression of the MLL-target genes Hoxa7, Hoxa9, and 

Meis1 (35).  

 

 

Figure 1.2.3 Schematic of MLL-fusion protein recruitment of DOT1L. (Modified from 
Krivstsov, A.V., and Armstrong, S.A. Nature Reviews, 2007) 
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Interestingly, other MLL-fusion proteins that have not been shown to directly interact 

with DOT1L, MLL-GAS7 and MLL-AFX, were hindered by loss of DOT1L but not E2a-

Pbx1 (23). The MLL- fusion protein MLL-AF6 was also shown to depend on DOT1L for 

transformation despite, lack of evidence for a direct interaction between MLL-AF6 and 

DOT1L. However MLL-AF6 transformed hematopoietic cells demonstrate high levels of 

H3K79 methylation at MLL-target genes. Upon conditional deletion of DOT1L the level 

of H3K79 methylation and expression of several MLL-target genes are reduced for 

Hoxa7, Hoxa9, and Hoxa10 (68). 

 

In addition to the numerous findings demonstrating the importance of DOT1L in MLL-

fusion protein mediated leukemogenesis, these findings are also relevant in human 

patient populations demonstrated in human patient samples of MLL-rearranged ALLs 

where there exists a distinct H3K79 methylation profile from normal hematopoietic 

progenitor cells or other ALLs with germline MLL. The aberrant H3K79 methylation 

profile in MLL-rearranged ALLs also correlated with increased gene expression, 

especially for the Hoxa cluster of genes. (69) 

 

In summary these studies demonstrate that MLL-fusion proteins recruit DOT1L to MLL-

target genes where it carries out its enzymatic function of H3K79 methylation. Aberrant 

methylation leads to increased expression of genes such as Hoxa9 and Meis1 which 

are critical transcription factors driving leukemogenic transformation(70). Loss of DOT1L 

results in decreased H3K79 methylation and reduced expression of MLL-target genes 

inhibiting leukemogenic transformation (23, 31, 63, 64, 68, 71). Several MLL-fusion 

proteins that have not been shown to directly interact with DOT1L also appear to 

depend on the histone methyltransferase for leukemogenic transformation although the 

mechanism is not understood (23). Based on this model, DOT1L is an attractive 

therapeutic target for the treatment of leukemias bearing translocations of MLL.  
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1.2.6 Inhibiting DOT1L as a therapeutic approach in MLL 

DOT1L is a well validated therapeutic target in MLL based on numerous studies 

demonstrating that several of the most common MLL-fusion proteins require DOT1L for 

leukemogenic transformation potential. Due to the nature of DOT1L’s mechanistic role 

in MLL, there are several possible approaches for targeting DOT1L. First, as an 

enzyme, DOT1L has the classically exploited features of successful drug development 

strategies such as the well defined small molecule binding pocket for the cofactor SAM. 

DOT1L also has a defined substrate lysine binding channel which leaves open the 

possibility of substrate competitive inhibitors or even allosteric inhibitors. Besides 

enzymatic function, the requirement for DOT1L recruitment by MLL-fusion proteins 

allows for targeting the protein-protein interactions between DOT1L and the multi-

protein complex binding partners.  

 

Before the development of selective inhibitors of DOT1L, it was known that S-

adenosylhomocysteine (SAH; Figure 1.2.4), the demethylated reaction product of 

DOT1L enzymatic activity, could non-specifically inhibit DOT1L. However many 

enzymes utilize the SAM cofactor and are similarly inhibited by SAH, furthermore, this 

compound is quickly metabolized and does not off any potential for examining the 

biological effects of DOT1L inhibition. The first specific inhibitor of DOT1L, EPZ004777 

(Figure 1.2.4), was reported by Epizyme in 2011 and demonstrated exquisite potency 

and selectivity with IC50 = 0.4 + 0.1 nM and >1,000 fold selectivity for DOT1L over other 

HMTs (72). EPZ004777 is an analog of SAM and binds to the SAM binding site. It 

contains an initially unexpected chemical feature, a large tert-butyl phenyl group at the 

end of the molecule occupied by the amino acid tail portion of SAM (Figure 1.2.4). The 

binding of this unexpected feature was shown to induce a large conformational change 

of DOT1L and opened a large hydrophobic portion of DOT1L that is not exploited by 

SAM (73, 74).  

Subsequently, several mechanism based inhibitors which covalently bind to DOT1L 

were reported, the most potent of which having IC50 = 38 nM (Song-1; Figure 1.2.4) 

(75). These structures are also SAM analogs and maintain the amino acid moiety of the 
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molecule and demonstrate that substitution of the N6 of the adenine can induce 

selective binding to DOT1L over other methyltransferases (75). The same group 

followed up this report with an eloquent structure activity relationship (SAR) study of 

reversible SAM analog inhibitors that revealed a number of less potent DOT1L inhibitors 

and resulted in the most potent compound being very similar to EPZ004777 with one 

carbon to nitrogen substitution at position 7 of the adenosine ring with equivalent 

potency Ki = 0.46 nM (Song-2; Figure 1.2.4) (76).  

 

A modified version of this compound was then reported with a cyclopentane 

replacement of the ribose portion of the molecule which resulted in decreased potency 

Ki = 1.1 nM (Song-3; Figure 1.2.4) but improved metabolic stability in a liver microsome 

assay(77). Additional efforts to improve cellular stability and activity resulted in an 

additional EPZ004777 analog that was brominated at the 7 position of the adenine ring, 

SGC0946 (Figure 1.2.4), resulting in similar in vitro potency IC50 = 0.3 + 0.1 nM but a 

10-fold improvement in the IC50 of cellular H3K79Me2 (73). The demonstration that a 

single halogen substitution can improve potency and selectivity was further confirmed in 

a report demonstrating the addition of bromine to the 7 position of adenine of SAH 

resulted in 10-fold increase in potency resulting in a bromo-deaza-SAH compounds with 

IC50 = 77 nM (78). Lastly, structure guided optimization of EPZ004777 resulted in the 

most developed DOT1L inhibitor to date, EPZ-5676 with Ki = 0.08 + 0.03 nM (79).  

 

1.2.7 Biological characterization of SAM competitive DOT1L inhibitors 

 

The potential of DOT1L as a therapeutic target in MLL has been verified by utilizing 

these potent and selective inhibitors as chemical tools to demonstrate selective killing of 

MLL-AF6 (68), MLL-AF9 (72), and MLL-AF10 (71) transformed bone marrow cells by 

EPZ004777. In MLL-AF6 transformed murine bone marrow cells EPZ004777 inhibition 

of H3K79 methylation results in decreased expression of MLL-target genes Hoxa9, 

Hoxa10, and Meis1 and reduces proliferation by inducing apoptosis and cell cycle arrest 

in G0/G1 (68). Similar results were observed in MLL-AF9 and MLL-AF10 transformed 

bone marrow cells with the additional characterization of differentiation induction (71, 
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72). It is interesting to note that the cellular activity of EPZ004777 requires a long time 

course for treatment and no changes in cellular proliferation were observed until after 

day 7 (72). A survival advantage was demonstrated by EPZ004777 treatment 

administered by continuous IV infusion in an in vivo model of MLL, however the modest 

affect was attributed to low levels of circulating EPZ004777 (72). 

 

 

 

Figure 1.2.4 Chemical structures and in vitro inhibition potency of DOT1L inhibitors.  

 

The second generation Epizyme DOT1L inhibitor, EPZ-5676, demonstrated improved 

biochemical and cellular characteristics with Ki = 0.08 nM compared with 0.3 nM for 

EPZ004777 (79). This also resulted in significant improvement in cellular assays 

compared to EPZ004777, giving a 43 fold improvement in IC50 for inhibition of MV4-11 

human leukemia cell line harboring an MLL-AF4 fusion protein (79). Therefore, the 

therapeutic potential of EPZ-5676 was tested in vivo using a xenograft model of MV4-

11. Based on low bioavailability of EPZ-5676 and rapid clearance of compound upon 
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intraperitoneal (IP) injection, a continuous intravenous (IV) injection regimen was used 

for administration of EPZ-5676 to maintain plasma levels of the compound above the 

concentration required to block in vitro proliferation of MV4-11 cells. A dose of 70 mg/kg 

showed complete regression of established subcutaneous MV4-11 tumors and a 

medium dose of 35 mg/kg caused tumor stasis upon 21 days of treatment with eventual 

resumption of growth after 7 days of ending the treatment. These doses were well 

tolerated over the 21 day treatment period and no weight loss was observed. 

Mechanistically, the effects of EPZ-5676 were confirmed by reduced H3K79 methylation 

in the bone marrow of rats in the treatment groups and reduced Hoxa9 and Meis1 

expression in the tumors of EPZ-5676 treated mice (79). Furthermore, a panel of human 

leukemia cell lines was tested to measure the efficacy of cellular proliferation inhibition 

by EPZ-5676. Human leukemia cell lines containing MLL-AF4 translocations (RS4;11, 

SEM, and MV4-11), MLL-AF9 translocations (MOLM-13 and NOMO-1), and MLL-ENL 

translocations (KOPN-8) were more sensitive to DOT1L inhibition, giving IC50 values 

three fold lower, than non-MLL rearrangement cell lines (HL60, JURKAT, 697, KASUMI-

1, and REH) (79). These studies indicate that DOT1L inhibition is an effective 

therapeutic strategy for MLL-rearranged leukemias in vivo and that there is no overt 

toxicity observed upon DOT1L inhibition over several weeks. 

 

Based on the efficacy and safety observed in rodents, human Phase I clinical trials of 

EPZ-5676 were initiated in September 2012 and as of December 2013 the dose 

escalation stage of the trial was completed and is now in an expansion phase enrolling 

patients with leukemias involving MLL-translocations. It is noteworthy that despite 

improvement of pharmacokinetic properties compared to EPZ004777, EPZ-5676 is 

being administered by continuous IV infusion, indicating there is still a need to improve 

the properties of this compound. 

1.2.8 Targeting the recruitment of DOT1L in MLL-translocation leukemias 

DOT1L is a component of several multiprotein complexes ENL associated protein (EAP) 

(35), and AF4 and ENL family proteins (AEP) (36), and DOT1L complex (DotCom) (80). 
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The primary mediators of DOT1L recruitment to these complexes are several proteins 

that are predominant MLL-fusion protein partners, AF9, AF10, and ENL.  

DOT1L mediated leukemogenic transformation by MLL-fusion proteins is not only 

dependent on the enzymatic activity of DOT1L but also upon the recruitment of DOT1L 

to MLL target genes. A defined region of 10 amino acids in DOT1L (amino acids 863-

872 in mouse DOT1L) has been identified in the Nikolovska-Coleska laboratory to be 

essential for the interaction with AF9 and ENL (66). The colony forming ability of murine 

bone marrow cells from the DOT1L conditional knockout mice (22), transformed with 

MLL-AF9, is inhibited upon tamoxifen inducible Cre excision of DOT1L. Reintroduction 

of wild type DOT1L restores the colony formation ability of the MLL-AF9 oncogene 

confirms previous studies that MLL-AF9 requires DOT1L for leukemogenic 

transformation. Importantly, deletion of the 10 amino acids from the c-terminus of 

DOT1L (mDOT1L 863-872 aa), which abrogates the interaction with MLL-AF9, failed to 

rescue the transformation potential of MLL-AF9, similar to the enzymatically inactive 

DOT1L mutant (RCR mutation) (66). This study demonstrates that the direct interaction 

of DOT1L with MLL-AF9 is required for the leukemogenic transformation capabilities of 

MLL-AF9 and therefore targeting this interaction may be a viable therapeutic strategy 

for treatment of MLL-rearrangement leukemias bearing MLL-fusion proteins that recruit 

DOT1L.  

In a reciprocal approach, it was shown that the MLL-ENL fusion protein also depended 

on the specific interaction with DOT1L for the transformation capability of this MLL-

fusion protein. Rather than disrupting the interaction between MLL-ENL by deleting 

portions of DOT1L, Mueller and colleagues performed triplet alanine scanning 

mutagenesis on the c-terminus of ENL which was known to mediate the interaction with 

DOT1L. In two mutants with three alanine mutations in the c-terminus of MLL-ENL, one 

specifically disrupted the ability of MLL-ENL to bind to DOT1L as demonstrated by yeast 

two-hybrid assay. This MLL-ENL fusion protein lacking DOT1L binding was not able to 

transform murine bone marrow cells in comparison to wild type MLL-ENL or a triple 

alanine MLL-ENL mutant that maintained binding to DOT1L. Furthermore the 

transformation capability was directly correlated with the extent of MLL-target gene 



19 
 

expression. The MLL-ENL mutant that does not bind to DOT1L failed to upregulate the 

critical MLL-target genes Hoxa7, Hoxa9, and Meis1 (35). Together, these studies 

confirm that DOT1L mediates the leukemogenic potential of certain MLL-fusion proteins 

by direct interaction of the c-terminal portion of AF9/ENL with a small specific amino 

acid sequence of DOT1L. It is highly likely that additional MLL-fusion proteins that have 

been shown to interact with DOT1L and require the histone methyltransferase for 

transformation are also dependent on the recruitment of DOT1L to MLL-target genes 

such as MLL-AF4, MLL-AF6, and MLL-AF10.  

The protein-protein interaction between DOT1L and MLL-fusion proteins is an attractive 

therapeutic target due to the small size of the interaction domain of DOT1L and the 

potential for very specific targeting. Previously protein-protein interactions were viewed 

as undruggable due to the large surface area and hydrophobic nature of the interaction 

between some proteins. However, several examples exist for the successful targeting of 

protein-protein interactions that involve the binding of a small peptide segment of one 

protein to a definable peptide binding cleft of an interacting partner such as the pro-

apoptotic protein MCL-1 interaction with BH3 proteins (81) and the SMAC/XIAP 

interaction (82). Therefore, the identification of a 10 amino acid fragment of DOT1L 

which mediates the interaction with AF9 supports the possibility for identifying small 

molecules which may be able to inhibit this interaction. Further structural studies of the 

interaction between DOT1L and the AF9 or ENL c-terminus will greatly aid in this 

undertaking.  

As a therapeutic approach, targeting the protein-protein interaction of DOT1L and MLL-

fusion proteins as opposed to the enzymatic activity of DOT1L may offer greater cellular 

specificity. Due to the role of DOT1L in normal development and maintenance of proper 

hematopoiesis (22, 50), targeting enzymatic activity of DOT1L H3K79 methylation may 

have potential side effects. Specifically targeting the interaction of DOTL1 with MLL-

fusion proteins may produce fewer side effects since it will only effect H3K79 

methylation at the MLL-target genes influencing only the cell population reliant on 

DOT1L for transformation, the leukemic cell population, while leaving H3K79 

methylation in tact in other tissues and cell populations.  Although overt toxicity has not 
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been observed with current DOT1L HMTase inhibitors and they are well tolerated in 

mice for several months, the long term effects remain unknown. Thus, there is a need to 

investigate the normal physiological role of DOT1L in numerous multiprotein complexes 

outside the context of MLL-fusion proteins. Therefore, the development of small 

molecule inhibitors of the protein-protein interaction between DOT1L and MLL-fusion 

proteins is highly desirable for its potential therapeutic value and as a chemical probe to 

further investigate the role of DOT1L in normal physiology.  

1.3 Epigenetics and Wnt signaling 

 

1.3.1 Wnt signaling functions and cancer 

 

Wnt signaling is an essential mediator of development, proliferation, and tissue 

homeostasis (83). Misregulation of this pathway occurs frequently in human cancers 

especially colon cancer(84). Canonical Wnt signaling is regulated by constitutive 

degradation of the key mediator of the Wnt signaling pathway β-catenin. The destruction 

complex consisting of adenomatous polyposis coli (APC), Axin, and the kinases CKI 

and GSK3 phosphorylate newly synthesized β-catenin leading to subsequent 

ubiquitination and degradation. Upon induction of Wnt signaling by binding of a Wnt 

ligand to its cognate receptors LRP5/6 and Frizzled, components of the destruction 

complex are sequestered and β-catenin accumulates. The stabilization of β-catenin 

leads to binding with the TCF/LEF transcription factors at Wnt pathway target genes. 

This complex recruits other factors such as chromatin modifying and chromatin 

remodeling enzymes as well as transcriptional machinery to induce transcription of Wnt 

pathway target genes (Figure 1.3.1) (84).  
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Figure 1.3.1 Schematic of canonical Wnt signaling pathway. Modified from Reya, 
T., and Clevers, H. Nature, 2005. 
 

The Wnt signaling pathway regulates numerous processes involved in the progression 

of cancer such as tumor growth, senescence, cell death, differentiation, and metastasis. 

Inactivating mutations of the APC protein dysregulate the destruction complex function 

and lead to aberrant stabilization of β-catenin. Alternatively, mutations of β-catenin 

which truncate or mutate the protein such that phosphorylation can no longer occur also 

result in stabilization and accumulation of β-catenin resulting in loss of regulation of the 

signaling pathway and constitutive activation of Wnt pathway target genes. These 

process are well characterized in adenomatous polyposis of the colon which can 

progress to colorectal carcinomas upon KRAS activating mutations or P53 inactivating 

mutations(84) (85). Furthermore mutations of proteins in the Wnt signaling pathway are 

associated with many other forms of cancer including breast, lung, prostate, skin, and 

ovarian.(85)  

 

Wnt signaling also plays a role in various types of leukemia(84). It is well established 

that Wnt signaling is involved in the normal physiological process of regulating 

hematopoietic stem cell self renewal (86). The Wnt pathway has been shown to be 
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required for stem cell maintenance in AML (87) and is predictive of poor prognosis (88). 

Interestingly, β-catenin was shown to be required for AML development induced by the 

oncogenes MLL-AF9, which also requires DOT1L, but not the Hoxa9/Meis1 

transcription factors (87). MLL-AF9 induces the activation of β-catenin signaling 

however it was not investigated whether the interaction with DOT1L is involved in the 

activation of β-catenin.  Alternatively, it appears that coordinating signaling pathways 

are responsible for the upregulation of β-catenin observed in MLL-AF9 induced 

leukemia. The G-protein coupled receptor Lgr4, a component of the R-spondin (Rspo) 

signaling pathway (89) and GPR84 (Dietrich, P. et al ASH 2013) are implicated as key 

mediators of MLL-AF9 induced β-catenin activation in AML. 

 

1.3.2 Wnt signaling and chromatin modifications 

 

Nuclear β-catenin requires a number of collaborator proteins to carry out its 

transcriptional activation of Wnt pathway target genes in the nucleus. Modification of 

chromatin through recruitment of chromatin modifying enzymes is one important 

mechanism β-catenin uses to regulate gene transcription. The histone 

acetyltransferase, CBP, and the histone H3 lysine 4 (H3K4) tri-methylation MLL1 and 

MLL2 chromatin-modifying complexes are recruited to Wnt pathway target genes by β-

catenin (90). Recruitment of MLL1 and MLL2 leads to increased H3K4 trimethylation at 

the Wnt pathway target gene c-MYC (91). In addition to interaction and recruitment of 

histone methyltransferases, β-catenin has also been shown to interact with the histone 

acetyltransferase complex, TRRAP/TIP60 (91). These findings are significant because 

they allude to the possibility that many different chromatin modifying enzymes may be 

involved in the regulation of Wnt signaling and could serve as potential new therapeutic 

targets for Wnt signaling in cancer.  

1.3.3 DOT1L as a potential transcriptional co-activator of Wnt signaling 

 

In addition to other chromatin modifying enzymes, DOT1L was recently implicated in 

Wnt signaling when a campaign to identify DOT1L interacting proteins identified 
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components of the Wnt signaling pathway in the DOT1L complex (DotCom) (80). The 

central mediator of Wnt signaling, β-catenin, as well as  TRRAP, a component of 

chromatin modifying multiprotein complexes, and Skp1, a component of the SCF E3 

ubiquitin ligase complex, were identified as novel interacting proteins with DOT1L. To 

investigate the role of DOT1L in Wnt signaling in living organisms, Drosophila was used 

as a model organism with the homologs Wingless (Wg) signaling pathway. Tissue 

specific knockdown of DOT1L in wing imaginal discs of Drosophila using RNAi resulted 

in decreased expression of the high threshold Wg target gene Senseless but not 

Distalless (Dll) or Vestigial (Vg) Wg target genes. Several other Wg target genes frizzled 

3 (dfz3), CG5895, CG6234, Notum, and Homothorax (hth) were downregulated in flies 

with a hypomorphic dDot1l allele and in RNAi line with DOT1L knockdown in wing discs. 

Furthermore, these affects were linked to H3K79 trimethylation which was selectively 

reduced compared to mono and dimethylation in the absence of H2BK120 ubiquitination 

in Bre1 flies by reduction of CG6234 and Notum in the absence of H2B ubiquitination 

and reduced H3K79 trimethylation (80). 

 

These findings were extended by Mahmoudi and colleagues who demonstrated that 

DOT1L is recruited to the Wnt target genes AXIN2 and ZCCHC12 in a β-catenin 

dependent manner in human cells (92). The interaction between DOT1L and β-catenin 

was shown to be mediated by the known DOT1L interacting partner AF10/MLLT10. It 

was also demonstrated in a zebrafish Wnt-responsive GFP reporter system (TOPflash) 

that morpholino depletion of DOT1L reduced the expression of GFP. In zebrafish with a 

model of Wnt overstimulation by disrupting the function of the Wnt signaling mediator, 

APC, there is failure to express the differentiation marker intestinal fatty acid binding 

protein (i-fabp). Consistent with a role in Wnt signaling, morpholino depletion of DOT1L 

rescued the phenotype and restored i-fabp expression. In the intestinal epithelium of 

zebrafish, morpholino depletion of DOT1L resulted in reduced proliferation, disrupted 

villi formation, and reduced the expression of the Wnt target gene Axin2 (92).  
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In human cells, knockdown of DOT1L in articular chondrocytes reduced chondrogenesis 

which depends on Wnt signaling and a DOT1L polymorphism was identified that is 

associated with joint space width and reduced risk for osteoarthritis (93).  

 

Although these studies implicated DOT1L in Wnt signaling, none of these studies were 

carried out in native mammalian tissue, thus Ho and colleagues sought to further probe 

the role of DOT1L in Wnt signaling and its role in intestinal homeostasis (94). In the 

intestinal epithelium, one subset of intestinal stem cells (ISCs) that depend on Wnt 

signaling are the crypt basal columnar cells (CBCs) which express the cell surface 

marker protein LGR5. They function to repopulate the adjacent villi and are the origin 

cells of colorectal cancer. Using this population of LGR5+ cells compared with adjacent 

villi enterocytes, it was observed the H3K79 dimethylation (H3K79Me2) levels 

correlated with levels of gene expression, thus highly expressed genes had greater 

H3K79Me2 which was consistent with previous findings in mammalian cells (29, 41). 

For some specific Wnt target genes, such as Lgr5 and Ephb3 their expression is higher 

in Wnt stimulated tissue, CBCs, than in villi and there is greater H3K79Me2 at these 

genes. However, the well characterized Wnt target gene Axin2 is more highly expressed 

in CBCs than in villi but has equivalent H3K79Me2 across the gene in both cell 

populations indicating that the relationship between expression levels and H3K79 

methylation is not strict (94). This result is reminiscent of the observations in Drosophila 

that RNAi knockdown of DOT1L in the wing imaginal disc affected the expression of 

certain Wg target genes but not all (80).  

 

To understand whether H3K79Me2 was specifically associated with Wnt pathway gene 

expression or more broadly coupled to transcriptional activation, H3K79Me2 levels were 

compared across 207 Wnt pathway target genes and 10 sets of 207 non-Wnt 

responsive genes with similar expression levels based on microarray data. It was 

observed that H3K79Me2 was consistently distributed across all sets of 207 genes with 

similar expression levels and not specifically associated with the Wnt target genes, 

suggesting that H3K79Me2 is associated with gene expression levels and is not Wnt-

pathway specific. Furthermore, among 55 Wnt pathway target genes that are highly 
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expressed in LGR5+ cells relative to villi cells some were more highly marked with 

H3K79Me2 but others were not. This analysis provided a broader view of Wnt pathway 

target gene expression and H3K79Me2 in mammalian cells and suggested that 

H3K79Me2 is not required for regulating the expression levels of Wnt responsive genes. 

In addition a number of well characterized Wnt target genes were shown to have 

increased expression in the intestinal epithelium of mice with a conditional knockout of 

DOT1L specifically in the epithelium. It was also shown that other histone lysine 

methylation marks are not altered and it is unlikely that there is upregulation of any 

compensatory epigenetic mechanism (94).  

 

Upon investigation of the affect of ISC specific knockout and full intestinal epithelium 

knockout of DOT1L, it was revealed that despite increased levels of apoptosis, there 

were no gross morphological or functional defects of intestinal epithelium with up to 4 

months of complete absence of H3K79 methylation (94). This was consistent with the 

observation that the murine conditional knockout of DOT1L throughout the whole animal 

displayed no defects in the intestinal epithelium upon substantial time in the absence of 

H3K79 methylation (22). Taken together the in vivo findings in mammalian intestinal 

epithelium, where the role of Wnt signaling is well established, contradict the apparent 

role of DOT1L in Wnt signaling from data in mammalian cell lines, flies, and zebrafish. 

Each of these approaches has advantages and limitations; however they all consistently 

utilizing genetic approaches to reduce the expression of the full length DOT1L protein. 

Despite this, each study focuses on the function of H3K79 methylation but does not 

address the possibility of other functions of DOT1L in these contexts although it is well 

established that DOT1L exists in several multi-protein complexes. Further studies are 

required to decouple the reduction of DOT1L protein expression and loss of H3K79 

methylation activity. Chemical biology approaches using small molecules to specifically 

inhibit the H3K79 methyltransferase activity of DOT1L are a valuable tool to address 

this issue and probe the role of H3K79 methylation specifically.  
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1.4 Summary and goals 

Based on this evidence reported in the literature, it is clear that DOT1L is an important 

biological molecule, playing critical roles in normal development, homeostasis, and 

disease. Numerous MLL-translocation leukemias rely on recruitment of DOT1L and 

H3K79 methylation activity. Therefore, we endeavored to discover novel small molecule 

inhibitors of DOT1L histone methyltransferase activity. In the following chapters we 

present several approaches to achieve this goal and the identification of DOT1L 

inhibitors. Furthermore, we utilized a potent and selective small molecule inhibitor of 

DOT1L to probe the biological function of H3K79 methylation in Wnt signaling to 

address the potential of DOT1L as a therapeutic target in colon cancer.  
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CHAPTER 2 

Identification and biological characterization of DOT1L inhibitors 

2.1 Introduction 

Based on the important role for DOT1L in MLL-rearranged leukemias, there is 

significant interest in the development of small molecule inhibitors of DOT1L histone 

methyltransferase (HMTase) activity. Numerous methods have been employed for the 

successful identification of small molecule inhibitors of enzymes including biochemical 

screening, virtual screening, de novo design, and combinations of these approaches. 

2.1.1 Biochemical screening 

In order to maximize our chances of identifying small molecule inhibitors of DOT1L we 

employed a biochemical approach for the screening of chemical libraries. The 

advantage of this approach is that it is not mechanism biased and allows for the 

potential identification of SAM competitive, substrate competitive or allosteric inhibitors. 

Additionally, we explore a variety of chemical space in order to identify novel scaffolds 

that are not based on adenosine structures as are current DOT1L inhibitors.  

There are many types of biochemical assays to measure enzyme functions and some of 

the most highly utilized are fluorescence polarization (FP), enzyme linked 

immunosorbent assays (ELISA), or fluorescence resonance energy transfer assays 

(FRET). All of these platforms were considered for the development of DOT1L HMTase 

assay. However, DOT1L poses a challenging target due to the fact that it does not a 

methylate a peptide substrate mimicking H3K79 region of H3 as many other HMTases 

are able to methylate peptide substrates mimicking the region of histone around their 

respective target. DOT1L also does not methylate recombinant H3 or H3/H4 tetramer 
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alone but requires all core histones H2A, H2B, H3, and H4 and has maximal activity 

against nucleosomes (1-3). 

We also considered utilizing a general methyltransferase activity assays that measure 

the production of SAH from the turnover of SAM in methyltransferase reactions. 

However, these assays have serious drawbacks for the purpose of screening 

campaigns. In particular they utilize several additional enzyme coupled reactions in the 

assay to produce a colormetric, luminescent, or fluorescent signal. Therefore 

compounds that may inhibit these enzymes as opposed to the target methyltransferase 

can be identified in the screening leading to many false positive hits. Furthermore, 

colormetric, luminescent, and fluorescent assay readouts can be influenced by 

compounds that are colored, autofluorescent, or fluorescent quenchers. 

Based on these considerations, we sought to develop a DOT1L HMTase assay with 

minimal reaction components, which is amenable to core histone or nucleosome 

substrate, and has a readout that is not influenced by colored or fluorescent 

compounds. Therefore we chose a gold standard, tritium radiolabeling assay format. 

This assay is based on the mechanism of DOT1L activity and utilizes a 3H-methyl-S-

adenosylmethionine (3H-SAM) as the source of radioisotope. In the presence of DOT1L 

enzymatic activity the 3H-methyl group is transferred from 3H-SAM to the amine of lysine 

79 on histone H3 in the context of either core histones or nucleosomes. The reaction 

mixture is transferred to P81 filter paper which binds histones based on ionic 

interactions and unreacted 3H-SAM is washed away, leaving only radioactivity 

transferred to H3K79 by DOT1L on the filter paper which is measured by liquid 

scintillation counting. DOT1L is responsible for mono, di, and tri methylation of H3K79, 

therefore this assay does not distinguish between different methylation states but 

measures the total amount of 3H-Methyl group transferred to H3K79. 

For the purposes of screening chemical libraries, the DOT1L 3H-methyltransferase 

assay was modified to a 96-well plate format. The HMTase reaction is the same 

however there difference is that it is carried out in the wells of a 96-well filter plate with a 

permeable glass frit filter at the bottom of each well. Upon completion of the HMTase 

reaction the core histone substrate is precipitated with 50% cold trichlroroacetic acid 
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(TCA). The liquid reaction mixture is then removed by vacuum filtration through the 

glass filter at the bottom of the wells and the precipitated histones remain in the well, 

captured by the filter. Unreacted 3H-SAM is washed away with 25% cold TCA and the 

remaining radioactivity results from 3H-methyl groups transferred to H3K79 of the core 

histones (Figure 2.1.1). Radioactivity is then measure directly in the plate by scintillation 

counting. 

 

Figure 2.1.1 Schematic of 96-well plate DOT1L HMTase assay. In each well of the 
96-well plate, core histones were combined with DOT1L and 3H-SAM. The Histones 
were precipitated and captured on the glass filter at the bottom of the well by vacuum 
filtration. After washing to remove unreacted 3H-SAM, only radioactivity transferred to 
core histones remains in the well and is measured by scintillation counting directly in the 
96-well plate. 

2.1.2 Virtual screening 

Although biochemical screening has many advantages and allows us to directly assess 

the inhibition potential of compounds, there are limitations for the number of compounds 

that can be tested due to availability of libraries and cost. Therefore, we applied virtual 

screening, a computational technique used in drug discovery for identifying novel 

compounds with structural diversity that bind to a particular biological target.  It involves 

in silico assessment of large libraries of chemical structures mainly using two different 

methods: ligand based (LBVS) and structure-based virtual screening (SBVS). There 

have been a mounting number of success stories reported by use of SBVS among 

which docking-based virtual screening (DBVS) is arguably the most widely applied one 

in practice.(4-6) 

To take advantage of the available crystal structure of DOT1L (1-416) in complex with 

SAM (PDB 1NW3) (7) which offered in-depth structural details of the SAM binding site 

as well as the interactions between SAM and DOT1L, we applied DBVS for identifying 
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novel chemical scaffolds as potential DOT1L inhibitors. In 2011, the first DOT1L 

inhibitor, EPZ004777, and its selective activity against MLL-rearranged leukemia was 

reported.(8) To understand the interactions of this ligand on a structural level and 

incorporate those findings in our screening strategy, we modeled the complex structure 

between EPZ004777 and DOT1L and used it in the virtual screening together with the 

SAM-bound structure. Beside the experimentally solved or computationally modeled 

target structure, the compound library used for screening is the second important input 

of virtual screening.(9) To maximize the chance of discovering hits, libraries with 

structural diversity may be desired. However, focused libraries may be designed that 

contain chemical motifs known to interact with an individual target or a family of related 

targets, such as ATP analogues to target kinases (10). Thus, in our study we 

interrogated a focused small molecule library containing 1,200 nucleoside analogues 

that were designed as a nucleoside antibiotic-like library wherein the 5’-position was 

substituted to block normal nucleoside phosphorylation and metabolic incorporation. In 

fact, a subset of this library contained specific 5’-amine linkages that are ideal for 

mimicking SAM. Each compound in the library was virtually docked into both the 

experimental crystal structure and the modeled DOT1L:EPZ004777 complex structure 

and computationally models of the ligand–target interaction were obtained based on the 

optimal complementarity, steric, and physicochemical properties. Using different scoring 

functions the fitness between the docked compound and the target was evaluated, and 

after visual inspection the top-ranked compounds were selected for further biochemical 

and biological characterization.  

2.1.3 Biochemical, biophysical, and biological characterization of identified hit 

compounds 

Screening of compounds leads to numerous false positive hits, many of which are 

aggregators or promiscuous inhibitors (11). In order to identify and validate true hits and 

select potential  lead compounds for future development, rigorous evaluation by 

secondary assays is essential for any successful screening campaign (12). We employ 

a traditional enzymatic kinetics analysis of inhibitors to assess the mechanism of action 

for each compound. We next subject potential inhibitors to several biophysical methods 
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to analyze and confirm direct binding to the target protein DOT1L. Each method has 

advantages and drawbacks, therefore it is important to be aware of the extent that each 

assay can be applied to compounds with different intrinsic chemical properties. A 

thermal stability shift (ThermoFluor) assay is used to assess ligand dependent thermal 

stabilization of DOT1L, indicative of binding. The advantages of this method are that it 

does not require labeling of investigated protein and represents a mix and measure 

assay format. However the disadvantage of this method is that fluorescent compounds 

can interfere with the assay readout and cannot be assessed by this method (13). 

Saturation transfer difference nuclear magnetic resonance (STD NMR) experiments are 

also used to assess direct binding of small-molecules to protein targets. One advantage 

of this method is that it can be used in a competitive format allowing interrogation of the 

binding site of an inhibitor. For example, if the compounds bind to the same site as co-

factor SAM, upon addition of excess SAM or its analogue SAH, displacement of a SAM 

competitive small molecule results in loss of STD NMR signal and provides evidence 

that the compound binds to the SAM binding site. However, not all compounds are 

soluble enough to provide quality 1H NMR spectra in buffer and cannot be assessed by 

this method. Biolayer interferometry assays can also be applied using the ForteBio 

OctetRED system in which biosensors are immobilized with a protein that is being  

tested, for example DOT1L, and immersed in solutions of potential inhibitors to 

determine direct binding (14). The benefit of this method is that it can provide 

quantitative measurements of binding constants. Some compounds are not amenable to 

this assay due to solubility issues and non-specific binding to control biosensors. 

Additionally, compounds with color that absorb visible light can be assessed by 

measurement of the absorbance spectrum of the compound in the presence of a 

binding partner (15). This method provides a rapid and simple qualitative assessment of 

binding but is only amenable to compounds that absorb light in the visible spectrum.  

After biochemical and biophysical assessment of compounds, the cellular activity of 

potential DOT1L inhibitors is characterized to determine the suitability of compounds as 

potential chemical tools as well as leads for further development. One of the most 

important readouts of cellular activity is the selective inhibition of H3K79 methylation in 

cells. Histones are extracted from treated cells and analyzed for H3K79 methylation and 
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additional histone methylation marks by western blot to determine if compounds are 

able to penetrate cells and inhibit DOT1L function. Assessment of selectivity is 

important to ensure that the compounds are specific and not disrupting histone 

methylation by a non-specific mechanism. Cell growth inhibition is also important to 

assess the selectivity of DOT1L inhibition by compounds and to ensure they are not 

generally toxic. For this purpose, we measure cell growth in a panel of human leukemia 

cell lines that harbor either MLL-translocation oncogenes, and should be sensitive to 

DOT1L inhibition (KOPN-8, THP-1, MV4-11, and U937), or other oncogenes that do not 

depend on DOT1L for growth (Kasumi-1 and K562). However, cultured human cancer 

cell lines have many dysregulated pathways; therefore several murine model cell lines 

are employed. Established cell lines from murine bone marrow transformed with either 

MLL-AF9, and depend on DOT1L, or E2A-HLF, and do not depend on DOT1L are used 

to measure the selectivity of cell growth inhibition by potential DOT1L inhibitors (16). 

Additional cellular effects on cell cycle, apoptosis, differentiation, and gene expression 

are assessed to examine the influence of compounds on cells in order to determine if 

the phenotypes are consistent with genetic loss of DOT1L, and to further confirm that 

compound inhibits endogenous cellular DOT1L.  

2.2 Results 

2.2.1 Development of a DOT1L 3H-methyltransferase assay 

Each of the approaches for identification of DOT1L inhibitors requires a robust in vitro 

biochemical assay to validate and characterize inhibitors identified through the various 

screening approaches. Therefore, our first goal was to establish and optimize an 

HMTase assay for DOT1L. Based on the unique requirement of a nucleosome or core 

histone substrate for DOT1L HMTase activity many of the fluorescence based assays 

using peptide substrates could not be applied to this system. Additional enzyme coupled 

assays have numerous shortcomings discussed previously; therefore we developed a 

radiolabeling 3H-methyltransferase assay that is a gold standard utilized by others for 

similar purposes (8). Recombinant DOT1L with N-terminal six histidine repeat (His-6) 

and GST tag was expressed in E. coli and purified by nickel affinity chromatography. 

Upon purification of DOT1L solely by nickel column, DNA fragments were also co-
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purified, as detected by a high 260/280 absorbance ratio. Further purification by size 

exclusion and cation exchange chromatography resulted in pure DOT1L protein. Core 

histones extracted from calf thymus were ultimately chosen as the assay substrate 

because DOT1L demonstrated good enzymatic activity towards the substrate and it was 

available commercially at low cost. The assay conditions were optimized by determining 

the Km for the substrate, 0.09 + 0.02 ug/uL, and SAM, 110.7 + 29.4 nM. The conditions 

chosen for compound screening were near or below the Km for both the substrate 

(0.037 ug/uL) and SAM (125 nM) to unbias the assay towards the mechanism of 

inhibitors identified in screening.  The buffer conditions were briefly optimized starting 

from a commonly used reported HMTase buffer (2) with the addition of 0.01% Triton x-

100 to limit the number of false positive aggregator compounds identified in chemical 

library screening. The assay was initially carried out in microcentrifuge tubes and 3H-

methyltransfer was measured by filter binding and liquid scintillation counting in vials. In 

order to make the assay amenable for screening compound libraries we adapted it to a 

96-well plate format using MultiScreen filter plates (MilliPore) which allowed us to carry 

out the HMTase reaction and measure radioactivity transferred directly in the plate (17). 

The DOT1L HMTase assay was validated using the non-specific methyltransferase 

inhibitor SAH and provided IC50 = 1.6 + 0.4 µM in a similar range with other reports (18). 

Upon optimization and validation of the DOT1L HMTase assay it was utilized to verify 

the in vitro DOT1L inhibition potency of compounds identified by virtual screening and 

de novo design approaches and for biochemical screening of chemical libraries.  

 2.2.2 Virtual screening of a nucleoside focused library  

To take advantage of the available crystal structure of the DOT1L catalytic domain (1-

416) in complex with SAM which offered in-depth structural details of the SAM binding 

site as well as the interactions between SAM and DOT1L, we applied DBVS for 

identifying novel chemical scaffolds as potential DOT1L inhibitors. In 2011, the first 

DOT1L inhibitor, EPZ004777, was reported demonstrating selective activity against 

MLL-rearranged leukemia (8). To understand the interactions of this ligand on a 

structural level and incorporate those findings in our screening strategy, we modeled the 

complex structure between EPZ004777 and DOT1L and used it in the virtual screening 
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together with the SAM-bound structure. The compound library used for screening is the 

other important input together with the experimentally solved or computationally 

modeled target structure (9). To maximize the chance of discovering hits, libraries with 

structural diversity are desired. However, focused libraries may be designed that 

contain chemical motifs known to interact with an individual target or a family of related 

targets, such as ATP analogues to target kinases (10). Thus, in our study we 

interrogated a focused small molecule library containing 1,200 nucleoside analogues 

that were designed as a nucleoside antibiotic-like library wherein the 5’-position was 

substituted to block normal nucleoside phosphorylation and metabolic incorporation. 

Importantly, a subset of this library contained specific 5’-amine linkages that are ideal 

for mimicking SAM. Each compound in the library was virtually docked into both the 

experimental crystal structure and the modeled DOT1L:EPZ004777 complex structure 

and computationally models of the ligand–target interaction were obtained based on the 

optimal complementarity, steric, and physicochemical properties. Using different scoring 

functions the fitness between the docked compound and the target was evaluated, and 

after visual inspection the top-ranked compounds were selected for further biochemical 

and biological characterization as DOT1L inhibitors. Here is presented an 

implementation of DBVS workflow strategy to analyze a focused nucleoside library, 

followed by biological validation of identified and selected hits. Several adenosine 

analogues with novel scaffolds were successfully identified for further development as 

DOT1L inhibitors. The process for virtual screening in this study is shown in Figure 

2.2.1.   

Towards our goal of identifying novel inhibitors of DOT1L we first utilized the only 

available X-ray crystal structure of DOT1L in complex with SAM (PDB ID: 1NW3) (19). 

While our work was in progress, a potent and selective DOT1L inhibitor, EPZ004777, 

was reported (8). This compound is a SAM analogue containing a structurally 

unexpected urea-linked para-tert-butylphenyl hydrophobic tail, showing high potency (Ki 

value of 0.3 nM) (8). Structural data of EPZ004777 binding to DOT1L was not available 

at the time of our study and we performed modeling studies to predict the binding model 

of EPZ004777 to the SAM-binding pocket of DOT1L (PDB:1NW3).  
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Figure 2.2.1 Schematic of the virtual and biochemical screening strategy for the 
identification of DOT1L inhibitors. A focused library of  1,200 nucleoside derived 
compounds was virtually screened by docking compounds into the structure of DOT1L 
with SAM (1NW3) or a modified structure of DOT1L derived from modeling of 
EPZ004777 into the SAM binding site of DOT1L (modified 1NW3). 210 (199 from 
DOT1L:SAM, 95 from DOT1L:EPZ004777 simulated complex, among them, 84 overlap) 
selected compounds were screened for in vitro inhibition of DOT1L and hits were tested 
for binding to DOT1L and cellular inhibition of H3K79 methylation. 

However, using DOT1L/SAM complex structure failed to identify a ligand confirmation 

that could accommodate the bulky hydrophobic substituent within the enclosed amino-

acid binding pocket.After analyzing the binding site, we inferred that the bulky 

hydrophobic tert-butylphenyl group may occupy an unopened sub-pocket towards the 

substrate-binding site while the remaining part interacts with DOT1L similar to SAM. 

Based on this idea, first a compound derived from EPZ004777 without the tert-

butylphenyl group was docked into the active site and the best scored docking pose 

was very similar to the binding pose of SAM. We then manually built in the tert-

butylphenyl group into the docked molecule, and identified several hydrophobic 

residues with strong van der Waals conflicts with the hydrophobic group, in particular 

Thr 139, Val 144, Met 147, Val 169 and Phe 239 (Figure 2.2.2a). After a minimization 
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and 2ns molecular dynamics simulation using AMBER (version 11.0), van der Waals 

conflicts between the para-tert-butylphenyl group and the surrounding residues were 

resolved. Redocking of EPZ004777 into this simulated complex, the result showed that 

the docking pose is very reasonable: the adenosine part has same interactions as SAM; 

the urea group has three hydrogen bonds with Asp 161 and Thr 139; and the para-tert-

butylphenyl group inserts an open cavity and has strong hydrophobic interactions with 

the surrounding residues Leu 143, Val 144, Met 147, Phe 239, Val 267 and Tyr 312. 

Based on the simulation results, we predicted that the bulky hydrophobic group para-

tert-butylphenyl group can induce conformational changes and the opening of the 

hydrophobic cavity which is not present in the DOT1L:SAM complex and probably is the 

major factor for having high binding affinity and inhibition of DOT1L enzyme activity. 

Thus, this model DOT1L:EPZ004777 complex structure was also used for the virtual 

screening along with the DOT1L:SAM complex in order to identify compounds with 

diverse chemical scaffold and binding interactions.  After the virtual screening was 

performed, the three-dimensional structure of the DOT1L bound to EPZ004777 was 

reported (20). This structure reveals remodeling of the catalytic site and uncovered 

novel and unexpected conformational variability of the cofactor-binding site that can 

accommodate compounds significantly larger and more hydrophobic than SAM. 

Importantly, after the superimposing of the reported crystal structure (PDB: ID 4EKI) 

and our modeled and simulated DOT1L:EPZ004777 complex (Figure 2.2.2b), the 

RMSD of the α carbon of the two proteins is 1.741 Å and the RMSD of the heavy atoms 

of the two ligands is 1.188 Å, indicating similar confirmation and accuracy of our 

predicted model, used for the virtual screening approach.  
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Figure 2.2.2 DOT1L:EPZ004777 model complex. (a) A molecule which does not have 
the tert-butylphenyl group of EPZ004777 was docked into the active site of 1NW3. The 
tert-butylphenyl group was manually incorporated to the docking pose, indicating there 
are very sharp Van der Waals conflictions between this group and the surrounding 
residues of Thr 139, Val 144, Met 147, Val 169 and Phe 239. (b) Superimposing of the 
crystal structure of 4EKI (gold) and the simulated DOT1L:EPZ004777 complex (green).  

The compounds contained in a focused library of 1,200 nucleoside analogues, were 

prepared for docking using LigPrep 2.5 module of Schrodinger and then docked to the 

active sites of both used complex structures od DOT1L, the crystal structure with SAM 

and modeled structure with EPZ004777 inhibitor,  using Glide 5.9. In the first step 

standard precision (SP) docking was used, where an extensive sampling using Monte 

Carlo procedure was carried out. From here, only top 50% (600 compounds from each 

used complex structure) of all the good scoring state was retained and passed on to the 
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next stage in which extra precision (XP) docking was performed. XP docking does a 

more extensive sampling and uses anchor-and-grow strategy to weed out false 

positives. XP docking employs a more stringent scoring function than the SP 

Glidescore, which includes terms for hydrophobic enclosure and desolvation penalties 

(21). Top 50% having good XP Gscore values were selected for visual inspection of 

binding pattern and the final subset of compounds for biological characterization were 

selected. 

 

The selection criterion were that at least one docking pose of each compound has 

similar interactions as SAM or EPZ004777 with the protein, i.e., the nucleoside part of 

each compound should form hydrogen bonds and π-π stack interactions as the 

adenosine portion of SAM. The compounds which contained a hydrophobic tail that 

could insert into the induced open hydrophobic cavity of DOT1L were given priority 

since the binding affinity of EPZ004777 is much higher than SAM.  In this way, 199 

compounds were selected from the DOT1L:SAM complex (1NW3) and 95 compounds 

were selected from the modeled DOT1L:EPZ004777 complex. 84 compounds 

overlapped from the two complexes resulting in total 210 compounds that were selected 

for biochemical validation of DOT1L inhibition activity.  

 

To verify the in vitro DOT1L inhibition potency of in silico virtual screening hits we tested 

compounds for inhibition of DOT1L HMTase activity using a radio-isotope labeling 

histone methyltransferase assay. The assay utilizes 3H-methyl-SAM as the methyl 

donor in the HMTase reaction of GST-DOT1L incubated with core histone substrate. Of 

the 210 compounds initially screened at a single concentration of 100 μM with core 

histone substrate of the HMTase reaction, we identified 25 compounds that provided 

inhibition of 25% or greater. The relatively high concentration of compound and low 

inhibition cutoff were selected in order to identify compounds with even weak inhibition 

of DOT1L in order to improve the likelihood of developing a preliminary SAR from the 

small library and to identify inhibitors with novel chemical scaffolds for development as 

future lead compounds. A follow up dose response screening of compounds using a 

more physiologically relevant nucleosome substrate resulted in the identification of 
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seven compounds with DOT1L inhibition potency of IC50 = 32-168 µM (Figure 2.2.3). All 

these seven compounds have a hydrophobic tail and were come from the virtual 

screening employing the DOT1L:EPZ004777 complex, demonstrating the advantage of 

utilizing the generated model of DOT1L:EPZ004777 as opposed to using the only 

available structural information of DOT1L:SAM. Identification of this class of compounds 

is consistent with EPZ004777, demonstrating the importance of utilizing the available 

interactions in the predicted hydrophobic pocket generated in this model. 

 

 

Figure 2.2.3 DOT1L inhibitors and in vitro inhibition of DOT1L HMTase activity. (a) 
Chemical structures of DOT1L inhibitors identified by virtual screening that were 
confirmed inhibitors of DOT1L HMTase activity in vitro.  (b) Inhibition curves and IC50 

values of DOT1L inhibitors determined with 3H-methyl radiolabeling HMTase assay. 
  
The putative binding modes of the most potent DOT1L inhibitors identified 2.1 and 2.2 

(Figure 2.2.4). The adenosine parts of 2.1 and 2.2 have exact same interaction modes 

as SAM and EPZ004777: three hydrogen bonds and π-π stack interactions can be 

observed. The hydrophobic tails of the two compounds insert into the induced 

hydrophobic cavity. The difference is that these two compounds do not have hydrogen 
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bonds with Asp 161. Hydrogen bonding with this residue can be observed for both of 

SAM and EPZ004777. We may induce that this hydrogen bonding with Asp 161 is 

important for receiving high potency to inhibit DOT1L, so in the future to modify our hits 

identified here to get more potent DOT1L inhibitors, we may add groups containing 

hydrogen bond donors into the scaffolds or modify the scaffolds to make the new 

designed compounds having hydrogen bonds with this residue. Additionally, to increase 

our compounds affinity, we may connect isopropyl or similar groups to the amine of 

compounds 2.1 and 2.2 since SAR study has indicated that such groups are favorable 

to the binding to DOT1L. Compounds 2.3 – 2.7 have similar interactions as compounds 

2.1 and 2.2 having to the target of DOT1L. Since all the seven hits identified from this 

study have a hydrophobic segment in the tail parts, they could not be docked into the 

active site of the DOT1L:SAM complex, demonstrating the utility of  our strategy to 

employ a simulated binding mode of EPZ004777 to increase the likelihood of identifying 

novel DOT1L inhibitors. 

In order to verify that the identified DOT1L inhibitors bind to DOT1L as predicted, 

saturation transfer difference (STD) NMR and thermal stability shift assays were used to 

assess binding. All seven compounds that inhibit DOT1L activity showed binding to 

GST-DOT1L by STD NMR. The proton signals in the 1H NMR spectra of 2.2 were 

assigned (Figure 2.2.5a) and observed in the STD NMR spectra (Figure 2.2.5b) which 

demonstrates that 2.2  binds to DOT1L. SAH was added to the mixture of 2.2  and 

DOT1L in five-fold molar excess and additional peaks were observed in the 1H NMR 

from SAH protons (Figure 2.2.5c). In the presence of SAH, only STD NMR  signal for 

SAH was observed and the STD NMR signal from 2.2  was diminished, indicating that 

2.2  was competed off by SAH (Figure 2.2.5). This result demonstrates that 2.2 binds to 

the SAM binding site as predicted by the computational modeling. 
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Figure 2.2.4  Putative binding modes of compounds 2.1 and 2.2 to DOT1L. Glide 
XP binding pose of (a) 2.1 and (b) 2.2 to the DOT1L:EPZ004777 simulated complex. (c) 
Superimposition of docking poses of 2.1 (cyan), 2.2 (purple) to EPZ004777 (green).  
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Figure 2.2.5. DOT1L inhibitors bind to the SAM binding site. (a) Structure of 2.2  and 
1
H NMR of 200 

µM 2.2  in the presence of 5 µM GST-DOT1L. Compound protons numbered according to corresponding 
1
H NMR signal. (b) STD NMR of 200 µM 2.2 in the presence of 5 µM GST-DOT1L demonstrates binding 

of 2.2  to DOT1L. (c) 
1
H NMR of 2 mM SAH with 200 µM 2.2  in the presence of 5 µM GST-DOT1L. 

Additional peaks in spectra that do not correspond to 2.2  are from SAH. (d) STD NMR 2 mM SAH with 
200 µM 2.2  in the presence of 5 µM GST-DOT1L. Loss of STD NMR signal from 2.2  indicates that SAH 
competes with 2.2  for binding to the SAM binding site. (e) Thermal stability shift assay of 1µM GST-
DOT1L in the presence of DMSO or 100 µM DOT1L inhibitors showing increased melting temperature in 
the presence of compounds, indicating binding to DOT1L.  
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Binding of inhibitors to DOT1L was further verified by ligand dependent thermal stability 

shift assay (ThermoFluor). This assay is based on the principle that ligand binding 

stabilizes the protein resulting in increase thermal stability. All of the identified inhibitors 

bind to GST-DOT1L as indicated by strong stabilization of the protein which increases 

the melting temperature of GST-DOT1L in the presence of compounds compared with 

DMSO (Figure 2.2.5e). Together, these results indicate that the compounds identified 

as DOT1L inhibitors through virtual screening and in vitro inhibition of DOT1L HMTase 

activity indeed bind to DOT1L and are SAM competitive as predicted based on virtual 

screening. 

In order to determine if the identified in vitro inhibitors of DOT1L inhibit DOT1L in cells, 

MLL-AF9 transformed murine bone marrow cells were treated with 2.2 for 3 days and 

H3K79 methylation was analyzed by Western blot (Figure 2.2.6a). The toxicity of 

compound 2.1 prohibited the evaluation of H3K79 methylation inhibition in cells. 

Methylation of H3K79 was reduced in the presence of the DOT1L inhibitor, 2.2. H3K4, 

H3K27, and H3K36 trimethylation states were not changed in the presence of 2.2 

indicating that inhibition of HMTase activity is selective for DOT1L (Figure 2.2.6b). A 

slight decrease of H3K9 trimethylation was observed but not to the extent as H3K79 

trimethylation suggesting that there may be limited non-selective inhibition of other 

histone methyltransferases which is reasonable due to the similarity of 2.3 to SAM. 

However the overall affect observed was most dramatic for H3K79, indicating the 

DOT1L is the primary cellular target of 2.3. Furthermore, the affect of prolonged DOT1L 

inhibition was measured of the course of 6 and 9 days (Figure 2.2.6a). During the time 

course, H3K79 dimethylation was continually decreased consistent with the notion that 

cellular turnover is required to observe the affect of DOT1L inhibition by small molecule 

inhibitors due the lack of any known H3K79 demethylases.  
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Figure 2.2.6 DOT1L inhibitors reduce cellular H3K79 methylation in a MLL-AF9 
murine model cell line. (a) H3K79 dimethyaltion inhibition by100 µM 2.2 in MLL-AF9 
murine model cells over the time course of 3, 6, and 9 days (b) Western blot analysis of 
the selectivity of H3K79 inhibition with H3K4, H3K9, H3K27, and H3K36 trimethylation 
in MLL-AF9 cells upon 3 days of DOT1L inhibition with by100 µM 2.2.  

Here, we demonstrate the utility of applying structure-based virtual screening using a 

nucleoside focused library followed by biochemical validation to identify novel inhibitors 

of the histone methyltransferase DOT1L. Virtual screening techniques which have not 

been applied to this target resulted in identification of, 210 SAM analogues as potential 

hits. Upon their biochemical testing using tritium based assay, seven compounds 

demonstrated inhibition of DOT1L HMTase activity with IC50 values from 32-168 µM. All 

of the compounds which inhibited DOT1L HMTase activity were assessed for binding to 

DOT1L by STD NMR and ThermoFluor assays and demonstrated that directly bindand 

interact with DOT1L.. Furthermore, SAH competes with 2.2 for binding to the SAM 

binding site, confirming the predicted binding mode of these compounds. 

For applying a structure-based virtual screening, in this work we utilized two different 

complex structures, crystal structure of DOT1L with SAM and modeled structure of the 

DOT1L-EPZ004777 complex. It should be pointed out that the model structure with 

EPZ004777 inhibitor leads to a considerable protein conformational changes. In 
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particular, the 4-tert-butylphenyl-substituted urea group is located in a newly formed 

pocket, which includes the amino acid binding pocket of SAM and an additional 

adjacent hydrophobic cavity. Importantly, our model structure was later confirmed with 

the solved crystal structure of the DOT1L-EPZ004777 complex was reported (20). 

Using these two structures allowed us to perform virtual screening and simultaneously 

docked the compounds from the focused library to different protein conformations and 

to identify the best combination of compound binding pose and protein conformer.  

Indeed, all validated DOT1L inhibitors were identified by using the model structure, 

which probably would be missed if only DOT1L-SAM structure was used, proving that 

the generated model structure served as an important tool for virtual screening of the 

nucleoside analog library. Thus, we demonstrate the importance of using complex 

structure of target proteins including a predicted one for which only apo-structure is 

available which will allow introducing multiple protein conformations in virtual screening 

strategy.    

 

Although the inhibitors of DOT1L identified in this study are less potent than those 

reported in the meantime, these compounds provide novel chemical moieties for further 

development of DOT1L inhibitors. Future work towards improving the potency of these 

compounds will involve utilizing the novel portions of these molecules in combination 

with the components of current potent inhibitors to derive new analogues with the 

prospect of improved potency and pharmacokinetic properties. 

Included in the 210 compounds selected for biochemical validation from the nucleoside 

focused library were several compounds that did not contain an adenosine scaffold. In 

the initial screening for HMTase inhibition most of these compounds provided no 

inhibition or very weak inhibition. In order to improve our chances of identifying novel 

scaffold, we probed even the weak inhibitors for starting scaffolds for future 

modification. Therefore, we modified our selection criteria to identify compounds that 

bind to DOT1L. Using this strategy, we screened 68 non-adenosine compounds from 

the SRI nucleoside focused library using the ligand induced thermal stability shift 

(ThermoFluor) assay. This resulted in the identification of four classes of compounds 
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that demonstrate binding to DOT1L by increasing the melting temperature in the 

ThermoFluor assay (Figure 2.2.7). 

 

Figure 2.2.7 Chemical structures of SRI non-adenosine compounds identified by 
ThermoFluor screening.  

The most potent compound of class I, SRI-26103, inhibited DOT1L with IC50 = 316 µM. 

(Fig 2.2.8). SRI-26103 demonstrated binding to DOT1L by inducing a dose dependent 

increase in thermal stability of DOT1L (Figure 2.2.9a). The binding of SI-26103 to 

DOT1L was also demonstrated by a strong STD NMR signal. Interestingly, the binding 

of SRI-26103 was not competed off by the presence of 10 fold molar excess of SAH 

(Figure 2.2.9b). This indicates that SRI-26103 may not bind at the SAM binding site 

which is contrary to the predicted binding model by which it was identified. SRI-26103 

was also shown to bind to DOT1L by OctetRED, demonstrating a Kd = 123 µM (Figure 

2.2.9c). 

 

Figure 2.2.8 Non-adenosine DOT1L inhibitor SRI-26103. (a) Chemical structure of 
SRI-26103. (b) DOT1L in vitro inhibition with core histone substrate. 
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Figure 2.2.9. SRI-26103 binds to DOT1L. (a) ThermoFluor assay (b) STD NMR of 5 
µM GST-DOT1L with 2 mM SAH (green/top), 200 uM SRI-26103 (red/middle), or 2 mM 
SAH and 200 uM SRI-26103 (blue/bottom). (c) OctetRED binding of SRI-26103 to 
DOT1L. 

From SRI inhibitor Class II, the most potent compound SRI-26124 (Figure 2.2.10a) 

inhibits DOT1L with IC50 = 330 µM (Figure 2.2.10b). SRI-26124 provides a 2oC 

stabilization of DOT1L in the ThermoFluor assay indicating that it binds to DOT1L 

(Figure 2.2.10c). Class III and class IV compounds failed to demonstrate inhibition of 

DOT1L HMTase activity in vitro despite evidence of binding by ThermoFluor. Due to the 

weak inhibition of DOT1L with IC50 > 300 µM (Figure 2.2.8b and 2.2.10b) non-

adenosine compounds class I and II were not pursued as lead compounds. 
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Figure 2.2.10 SRI-26124 inhibits DOT1L HMTase activity and binds to DOT1L. (a) 
Chemical structure of SRI-26124. (b) DOT1L in vitro inhibition with core histone 
substrate. (c) ThermoFluor assay. 

2.2.3 Biochemical screening identification of H3K79 methylation inhibitors 

Utilizing the previously described 96-well plate DOT1L HMTase assay, we screened a 

total of 5,500 compounds from the Diversity Set I and Mechanistic Set compound 

libraries from the National Cancer Institute (NCI) chemical repository (2,864 

compounds), Boston University (1,920 compounds), and University of Southern 

California (760 compounds). These libraries contain structural diversity to cover a 

variety of chemical space. We identified 61 compounds that demonstrated dose 

dependent inhibition of H3K79 methylation in a secondary dose response experiment. 

Based on the chemical structure and commercial availability of these compounds, 48 

hits and analogues were purchased from commercial sources (Figure 2.2.11). Eleven 

compounds were confirmed as inhibitors of DOT1L H3K79 methylation activity with IC50 

= 0.85- 28.1 µM, belonging in two distinct chemical classes: naphthosulfonyl class A 

(Figure 2.2.12) and naphthoquinone class B (Figure 2.2.21).    
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Figure 2.2.11 Schematic of biochemical screening of compound libraries. 

Here we present the in vitro and cellular characterization of the most potent compound 

in class A, University of Michigan Disruptor of H3K79 methylation inhibitor-7 (UMD-7).  

Additionally, UMD-1 was identified as an inactive analog with a comparable chemical 

scaffold (Figure 2.2.12) and was utilized as a control compound in subsequent 

experiments. Based on the in vitro biochemical activity of UMD-7 and the importance of 

H3K79 methylation in MLL-translocation leukemias, we sought to investigate the impact 

that chemical modulation of H3K79 methylation could have on human leukemias.  In 

order to investigate whether UMD-7 could inhibit the growth of human leukemia cells, a 

panel of leukemia cell lines was treated with UMD-7 and cell viability measured by 

WST-assay. UMD-7 selectively inhibited the growth of H3K79 methylation dependent 

cell lines, KOPN-8, MV4-11, THP-1 and U937 with IC50 = 3.5 - 9.7 µM. As expected, the 

cell lines that do not rely on DOT1L, KASUMI-1 and K562, were much less sensitive to 

UMD-7 and had IC50 = 27.2 and 25.6 µM respectively. In addition, UMD-1, a close 

analog of UMD-7 that does not inhibit DOT1L failed to effect the growth of the most 

sensitive cell line, KOPN-8 at concentrations up to 100 µM (Figure 2.2.13a). These 

results demonstrate that UMD-7 treatment leads to selective cell growth inhibition of 

human leukemia cell lines that contain fusion proteins that require H3K79 methylation to 
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mediate their leukemogenic properties. Cell growth inhibition is specific to UMD-7 and 

the analog with low in vitro potency, UMD-1, did not have the same effect on KOPN-8 

cells demonstrating that cell growth inhibition correlates with H3K79 methylation 

inhibition potency. 

 

Figure 2.2.12 H3K79 methylation inhibitors identified through biochemical 
screening. (a) Chemical structures of H3K79 methylation inhibitors. (b) Curves for 
H3K79 methylation inhibition of identified UMD compounds.  
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In order to investigate the anti-proliferative effects of UMD-7 on MLL-rearranged cell 

lines, induction of apoptosis was measured by Annexin V and propidium iodide staining 

by flow cytometry. In MLL-ENL containing KOPN-8 cells UMD-7 potently induced 

apoptosis after only 24 hr treatment whereas only a slight increase of Annexin V 

staining was observed in the AML1-ETO fusion containing Kasumi-1 cell line with UMD-

7 at concentrations up to 30 µM (Figure 2.2.13b). To investigate if H3K79 methylation 

inhibition by UMD-7 recapitulates the effect of genetic knockout of DOT1L on the cell 

cycle (16), DNA content was measured by propidium iodide staining and flow cytometry. 

UMD-7 treatment of KOPN-8 cells resulted in dose dependent G0/G1 cell cycle arrest 

which is consistent with genetic loss of DOT1L. This affect was show to be specific to 

MLL-rearranged cell lines, as no affect on cell cycle was observed in Kasumi-1 or the 

E2A-HLF containing K562 cells line. Furthermore, the inactive analog UMD-1 also failed 

to induce any changes in cell cycle in KOPN-8 cells, demonstrating that the effect was 

specific for UMD-7 inhibition of H3K79 methylation and not a general effect due to the 

chemical scaffold (Figure 2.2.13c).  

To investigate whether UMD-7 inhibition of H3K79 methylation induces differentiation, 

the monocyte differentiation marker CD11b was analyzed by flow cytometry in the MLL-

AF9 fusion protein containing promonocytic THP-1 cell line. Upon treatment with UMD-

7, expression of CD11b was induced in a dose dependent manner demonstrating that 

UMD-7 inhibition of H3K79 methylation induces differentiation (Figure 2.2.13d). 

Though the biological effects of UMD-7 on human leukemia cells lines are consistent 

with genetic loss of DOT1L, we investigated whether these effects were due to inhibition 

of H3K79 methylation. Core histone extracts were analyzed for histone H3 lysine 

modifications to determine the effect of UMD-7 on H3K79 methylation as well as 

determine the selectivity for this lysine methylation in comparison with H3K4, K9, K27, 

and K36 trimethylation. UMD-7 induced a dose and time dependent reduction in H3K79 

mono and trimethylation at 24 and 48 hr. However, H3K79Me2 was reduced at 24 hr 

but there was no effect observed at 48 hr while mono and trimethyl H3K79 were 

significantly decreased. UMD-7 displayed selective inhibition of H3K79 methylation with 

limited affect on other H3 lysine methylation levels (Figure 2.2.14a). 
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Figure 2.2.13  UMD-7 selectively induces cell growth inhibition by apoptosis, cell 
cycle arrest and differentiation in MLL-rearranged human leukemia cell lines. (a) 
Cell growth inhibition of a panel of human leukemia cell lines shows selective inhibition 
of MLL-rearranged cell lines MV4-11 (MLL-AF4), THP-1 (MLL-AF9), U937 (CALM-
AF10), and KOPN-8 (MLL-ENL) compared with non-MLL rearranged leukemia cell lines, 
KASUMI-1 (E2A-HLF), and K562 (BCR-ABL) measured by WST-assay. (b) Apoptosis 
induction by UMD-7 treatment in representative cell lines KOPN-8 and KASUMI-1 
measured by Annexin V and PI staining. (c) Cell cycle analysis of KOPN-8 cells upon 
treatment with UMD-7 and the inactive analog UMD-1 and UMD-7 treatment of non-MLL 
rearranged cell lines KASUMI-1 and K562 measured by PI incorporation. (d) 
Differentiation induction by UMD-7 treatment of the human acute monocytic leukemia 
cell line THP-1 monitored by CD11b/Mac-1 cell surface marker expression measured by 
flow cytometry. 
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H3K36 trimethylation was also slightly decreased at the highest concentration of 30 µM 

but not to the same extent as with H3K79 trimethylation which is nearly absent. We next 

evaluated whether the observed global reduction of H3K79 methylation lead to changes 

in MLL-target gene expression. Hoxa9 and Meis1 are two critical mediators of MLL-

fusion mediated leukemogenesis (22) and are hypermethylated at H3K79 in MLL-fusion 

containing leukemias (23). Expression of these MLL-fusion target genes were evaluated 

in KOPN-8 cells by qRT-PCR upon treatment with UMD-7 and a dose dependent 

decrease of both target genes was observed after only 24 hr treatment (Figure 2.2.14b).  

Furthermore, this affect was specific to these MLL-target genes as no change was 

observed in the housekeeping gene β-actin. These results suggest that the cell growth 

inhibition of human leukemia cell lines induced by UMD-7 is due to selective inhibition of 

H3K79 methylation and decreased MLL-target gene expression. 

 

Figure 2.2.14 UMD-7 selectively inhibits H3K79 methylation and downstream MLL-
target gene expression in cells. (a) Western blot analysis of H3K79 mono, di, and 
trimethylation and off target H3 lysine methylation demonstrating selective cellular 
inhibition by UMD-7 in KOPN-8 cells after 24 and 48 hr treatment. (b) mRNA levels of 
HoxA9 and Meis1 in KOPN-8 after 24 hr treatment with UMD-7 measured by qRT-PCR, 
RNA levels normalized to GAPDH.  

Due to the variable genetic changes that accumulate in cell lines cultured over long 

periods of time, we wanted to utilize a clean model system in which a single oncogene 

is responsible for the leukemic phenotype of cells. Therefore we performed colony 

forming unit (CFU) assay of murine bone marrow transformed with either MLL-AF9 or 
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E2A-HLF. Treatment with UMD-7 resulted in a reduction of colony number in MLL-AF9 

cells but not E2A-HLF (Figure 2.2.15). This is consistent with genetic studies 

demonstrating the requirement for DOT1L in MLL-AF9 transformed cells (16, 24-26). 

The selective influence of UMD-7 on MLL-AF9 transformed bone marrow supports a 

specific mechanism of cell growth inhibition as opposed to a general toxic affect. E2A-

HLF cells have been shown to grow in the absence of DOT1L and H3K79 methylation, 

thus, inhibition of H3K79 methylation with UMD-7 does not affect the growth of E2A-

HLF cells to the same extent as MLL-AF9 cells which require H3K79 methylation.  

  

Figure 2.2.15 UMD-7 selectively inhibits colony formation ability of MLL-AF9 
transformed murine model cells. (a) The number of colony formation units of MLL-
AF9 and (b) the colony morphology and INT staining are shown for MLL-AF9. (c) The 
number of colony formation units of E2A-HLF and (d) the colony morphology and INT 
staining are shown for E2A-HLF. 

Furthermore, to demonstrate that the cell growth inhibition induced by UMD-7 was 

selective for MLL-AF9 cells requirement for H3K79 methylation and to test whether 

UMD-7 showed non-selective toxicity, we tested the colony forming ability of normal 
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bone marrow cells in the presence of UMD-7. We observed that UMD-7 did not inhibit 

the ability of normal bone marrow cells to form colonies in methylcellulose soft agar 

media (Figure 2.2.16). Together, these results demonstrate that UMD-7 has low toxicity 

and selectively inhibits the cell colony forming capacity of the H3K79 methylation 

dependent MLL-AF9 oncogene. 

In order to assess the mechanism of UMD-7 mediated inhibition of MLL-AF9 murine 

model cells, the growth of MLL-AF9 and E2A-HLF cells was measured in liquid culture 

over 7 days. Consistent with the CFU assay, UMD-7 selectively inhibited the growth of 

MLL-AF9 but not E2A-HLF transformed murine bone marrow in liquid culture (Figure 

2.2.17).  

 

Figure 2.2.16 UMD-7 has low toxicity against normal bone marrow. (a) The number 
of colony formation units of normal bone marrow cells in methylcellulose media upon 
treatment with UMD-7. (b) Colony morphology and INT staining for normal bone marrow 
cells in methylcellulose media with UMD-7 treatment.  
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Due to the difference in methylation inhibition kinetics in cells, we sought to determine 

the mechanism of UMD-7 inhibition. This was achieved by measuring the initial velocity 

of the DOT1L H3K79 HMTase reaction in the presence or absence of UMD-7. Using 

Michaelis-Menten non-linear regression analysis of DOT1L kinetics, Lineweaver-Burk 

plots were generated and demonstrate that UMD-7 increases the Km of the reaction 

with respect to the substrate (Figure 2.2.18a). This is consistent with a compound which 

interferes with binding of the histones to DOT1L, requiring higher concentrations of 

substrate to achieve half the maximum reaction velocity as the concentration of the 

compound is increased. However, UMD-7 does not compete with SAM due to its 

reduction of the reaction velocity at increasing concentration but showing little affect on 

the Km with respect to SAM (Figure 2.2.18b).  Furthermore, the mechanism of UMD-7 

inhibition was investigated by analyzing how UMD-7 inhibition of H3K79 methylation 

changed in response to variation of the substrate and SAM concentrations (27). High 

concentrations of the substrate overcomes UMD-7 inhibition of H3K79 methylation 

further demonstrating that UMD-7 affects ability of substrate histones to be methylated 

until a sufficiently high concentration overcomes these effects (Figure 2.2.18C).  

Inhibition by UMD-7 is partially, but not completely, abrogated in the presence of high 

SAM concentrations (Figure 2.2.18D). These findings suggest that UMD-7 is acting 

through a non-SAM competitive mechanism.  

 

 

Figure 2.2.17 UMD-7 preferentially inhibits cell growth of DOT1L dependent 
murine model cell lines. Cell growth curves of DOT1L dependent MLL-AF9 and 
DOT1L independent E2A-HLF transformed murine model cell lines grown in liquid 
culture.  
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Figure 2.2.18 UMD-7 mechanism of inhibition. (a) Lineweaver-Burk plot of UMD-7 
inhibition of DOT1L with respect to substrate core histones. (b) Lineweaver-Burk plot of 
UMD-7 inhibition of DOT1L with respect to the small molecule cofactor SAM. (c) The 
percent inhibition of 10 µM UMD-7 with a constant concentration of 125 nM 3H-SAM and 
varying concentrations of core histones from 0.01 to 0.76 ug/uL. (d) The percent 
inhibition of 10 µM UMD-7 with a constant concentration of 0.038 ug/uL core histones 
and varying concentrations of 3H-SAM between 5.2 and 1,280 nM. 

Based on the in vitro mechanism of UMD-7 H3K79 methylation inhibition and the rapid 

effect on cellular H3K79 methylation which is inconsistent with other published DOT1L 

inhibitors, we wondered if UMD-7 is acting by through a different mechanism and 

directly binding to the substrate histones. In order to address this question, we took 

advantage of the UV-Vis absorbance of UMD-7 as demonstrated in previous reports of 

arginine methyltransferase inhibitors that bind to histones (15). We first tested whether 

the in vitro substrate core histones affected UMD-7 absorbance and found that core 

histones indeed caused a dose dependent decrease in UMD-7 absorbance (Figure 

2.2.19a). This affect was recapitulated by the presence of recombinant H3 alone (Figure 

2.2.19b). To demonstrate this effect was specific, we also titrated H3 into a solution of 

the inactive compound UMD-1 and showed that H3 had no affect on the absorbance 
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spectra of UMD-1 (Figure 2.2.19c). In fact each component of the core histones had 

some affect on the absorbance of UMD-7 at its peak absorbance of 620 nm, however 

recombinant DOT1L had no affect (Figure 2.2.19d).  

 

Figure 2.2.19 UMD-7 absorbance is diminished by core histone components but 
not DOT1L. (a)  Absorbance spectra of 100 µM UMD-7 in the presence of core 
histones.  (b) Absorbance spectra of 100 µM UMD-7 in the presence of recombinant H3. 
(c) Absorbance spectra of 100 µM UMD-1 in the presence of recombinant H3. (d) 
Quantification of 100 µM UMD-7 absorbance at 620 nm in the presence of recombinant 
core histone components or GST-DOT1L.  

In order to assess whether UMD-7 binds to the portion of H3 around H3K79, we tested 

whether a peptide mimicking this region, amino acids 61-86, of H3 affected the 

absorbance of UMD-7. We found that indeed UMD-7 absorbance is affected by peptide 

portions of H3 and that residues 61-86 had more of an impact on the spectra of UMD-7 

than a peptide of the first 20 amino acids of H3 (Figure 2.2.20). These results suggest 
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that the mechanism of UMD-7 is through binding to the core histones to prevent H3K79 

methylation and is not targeting DOT1L directly. These results demonstrate the 

identification and biological characterization of a novel H3K79 methylation inhibitor, 

UMD-7. Several napthyl-sulfo compounds were identified as inhibitors of H3K79 

methylation through biochemical screening. 

 

Figure 2.2.20 UMD-7 absorbance is diminished by a peptide mimic of histone H3 
amino acids 61-86. (a)  Absorbance spectra of 100 µM UMD-7 in the presence of a 
peptide consisting of the N-terminal tail of H3, amino acids 1-20. (b) Absorbance 
spectra of 100 µM UMD-7 in the presence of a peptide consisting of the H3 amino acids 
surrounding H3K79, amino acids 61-86. (c) Quantification of 100 µM UMD-7 
absorbance at 620 nm in the presence of either H3 peptide. 
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Intriguingly, the identified compounds demonstrated substrate competitive kinetics, 

which is unique from other currently known SAM competitive inhibitors of H3K79 

methylation which target the enzyme DOT1L. Our studies indicate that UMD-7 binds to 

the core histones substrate of DOT1L as opposed to the enzyme in a novel mechanism 

of H3K79 methylation inhibition. This mechanism is not inherent to the naphyl-sulfo core 

of the compound, as the inactive compound UMD-1 does not show changes in UV-vis 

absorbance in the presence of core histones as UMD-7.  

Human leukemias with the most common chromosomal translocation of the MLL-gene, 

require H3K79 methylation for transformation and proliferation. Importantly, UMD-7 

inhibits the growth of human leukemia cell lines with MLL-translocations but not the 

H3K79 methylation independent cell lines with unrelated oncogenes. The inactive 

analog UMD-1 does not affect the growth of the sensitive cell line KOPN-8 indicating 

that the mechanism of UMD-7 inhibition is due to H3K79 methylation inhibition.  

Furthermore, UMD-7 induces apoptosis, cell cycle arrest, and differentiation in leukemia 

cell lines with MLL-translocations. These results are consistent with genetic abrogation 

of H3K79 methylation in mouse models of conditional DOT1L deletion and other 

inhibitors of H3K79 methylation which target the histone methyltransferase activity of 

DOT1L.  

Upon investigation of the mechanism of UMD-7 induced cell growth inhibition of human 

leukemia cell lines, we demonstrated that this small molecule selectively inhibits H3K79 

methylation and has little affect on other histone lysine methylation marks. The inhibition 

of H3K79 methylation resulted in decreased expression of MLL-target genes Hoxa9 and 

Meis1. These results are consistent with the mechanism of MLL-translocation mediated 

transformation of cells. Compared with other H3K79 methylation inhibitors, UMD-7 

induces these biological responses rapidly in 24 hours, whereas EPZ004777 requires 4 

days for maximal H3K79 methylation inhibition and 6 days for maximal inhibition of 

MLL-target genes (28). It is possible that the difference in targets of the small molecules 

may be responsible for this difference, EPZ004777 targets the histone 

methyltransferase DOT1L and UMD-7 binds directly to the substrate core histones. At 

this time, the reason for differences in time required for H3K79 methylation is not clear, 
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however, the end results of apoptosis, cell cycle inhibition, and differentiation are 

consistent. 

In addition to the evidence for specific inhibition of H3K79 methylation provided by the 

analog compound UMD-1 and investigation of effects on a broad range of lysine 

methylation, murine model cell lines were used to further investigate the specificity of 

the biological effects of UMD-7. Selective growth inhibition of the MLL-AF9 transformed 

murine cell line, which requires H3K79 methylation, compared with the H3K79 

methylation independent E2A-HLF cell line supports a targeted mechanism for UMD-7. 

We demonstrate that UMD-7 disrupts H3K79 methylation at MLL-target genes and 

which are required for the MLL-translocation mechanism of cellular transformation. 

UMD-7 shows low toxicity against normal bone marrow cells and further demonstrates 

that UMD-7 is to inhibit cell growth through specific targeting of H3K79 methylation and 

is not acting through a non-specific toxicity.  

Together, these results demonstrate that inhibition of H3K79 methylation with the small 

molecule UMD-7 through a novel histone binding mechanism is specific and 

recapitulates the biological effects of genetic and chemical targeting of DOT1L. UMD-7 

provides a novel chemical scaffold for inhibition of H3K79 methylation with rapid 

inhibition of H3K79 methylation in cells. Further studies may elucidate how and where 

UMD-7 binds to histones which may provide insight into the differences in timing 

observed for histone targeting H3K79 methylation inhibition compared with DOT1L 

targeted inhibition. Therefore UMD-7 provides a novel chemical scaffold and 

mechanism for H3K79 methylation inhibition and has promising utility as a chemical tool 

to further probe the biological role of H3K79 methylation.  

Next, we characterized the naphthoquinone class B (DFC) compounds. We identified 

seven active inhibitors in class B with IC50 = 0.85 – 28 µM (Fig 2.2.21). Six of the 

compounds had similar potency of less than 7 µM, these compounds can be further 

subdivided into classes of acetyl or keto-phenyl substituted. These two groups display 

similar initial SAR with para substitution being most potent followed by meta and ortho 

respectively. However there is not a large difference in potency even between the most 

potent para substituted and the less potent ortho susbstituted.  Both acetyl and keto-
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phenyl substituted classes display a similar range of potency without much difference 

depending upon the substituent.  However the one compound DFC 234 which was less 

potent, having IC50 = 28 µM, is structurally distinct and has an additional fused ring 

which is clearly less favorable.  We then characterized the most potent representative 

compounds of each DFC sub-class, DFC 231 and DFC 242. 

 

Figure 2.2.21 DFC class of DOT1L inhibitors. (a) Chemical structures of DFC 
compounds (b) Inhibition curves of DOT1L in an in vitro DOT1L HMTase activity assay.  

In order to characterize the mechanism of action of these compounds, we used a 

traditional enzymatic kinetics approach. The initial velocity of the DOT1L HMTase 

reaction was measured at varying concentrations of substrate with saturating SAM 
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concentrations or varying concentrations of SAM at saturating substrate concentrations 

in the presence or absence of the DFC compounds. DFC 231and DFC 242 behaved 

very similarly in the characterization of their mechanisms of action. They displayed non-

competitive kinetics with SAM (Fig 2.2.22a and c) by decreasing the Vmax of the 

reaction while not affecting the Km. DFC 231 and DFC 242 displayed substrate 

competitive/mixed mechanism kinetics with the substrate core histones. The Km of the 

reaction was increased in each case, suggesting a substrate competitive mechanism 

(Figure 2.2.22 b and d). However the Vmax of the reaction was not unaffected as would 

be expected for a purely competitive inhibitor. The Vmax of DOT1L with respect to core 

histones was decreased in the presence of DFC compounds demonstrating that the 

mechanism of DFC compounds was not strictly competitive with substrate core histones 

and was more likely a mixed mechanism.  

 

 

Figure 2.2.22 Mechanism of action of DFC compounds. (a) DFC 231 mechanism of 
action with respect to SAM and (b) substrate. (c) DFC 242 mechanism of action with 
respect to SAM and (d) substrate. 
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We next characterized the effect of DFC compounds in cells to determine if they are 

capable of inhibiting DOT1L in cells. Therefore we treated the human leukemia cell line, 

KOPN-8, bearing the MLL-ENL translocation with DFC231, 242, and 234 for 4 days and 

measured the IC50 of cell growth inhibition. We observed that the potency of cell growth 

inhibition in KOPN-8 cells by DFC compounds followed the same trend as inhibition of 

DOT1L in vitro (Figure 2.2.23a). However the concentrations that were effective at 

inhibiting the growth of KOPN-8 cells were less than the concentrations required for in 

vitro IC50. We assessed whether the compounds were effectively inhibiting DOT1L in 

cells by measuring H3K79 methylation and saw that indeed DFC 242 inhibited H3K79 

dimethylation whereas the less effective DFC 234 compound did not effectively inhibit 

H3K79 methylation (Figure 2.2.23b). 

 

Figure 2.2.23 DFC compound inhibition of human leukemia cell line growth 
correlates with in vitro DOT1L HMTase activity. (a) Cell growth inhibition of KOPN-8 
cells, MLL-ENL translocation bearing human leukemia cell line, measured by WST-
assay after 4 days treatment with compounds. (b) Western blot analysis of H3K79 
methylation in KOPN-8 cells after 4 days treatment with compounds. 

 

 Due to the nature of immortalized human cell lines grown in cell culture long term and 

likelihood of developing secondary mutations and multiple pathway dysregulation, we 

utilized a genetically clean murine model system. Murine bone marrow cells were 

transformed with either MLL-AF9 of E2A-HLF and selected for transformation by growth 
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in liquid culture for several weeks. The transformed cell lines are useful models because 

the MLL-AF9 cell line is dependent on DOT1L and H3K79 methylation for continued 

growth whereas E2A-HLF transformed cells do not depend on DOT1L for continued 

growth. Therefore, these cell lines are useful to determine the selectivity between 

generally toxic effects of compounds and the specific effects of DOT1L inhibition. 

Both cell lines were treated with DFC compounds and cell growth measured over time. 

Similar to in human leukemia cells, we observed that DFC 231 is more potent at 

inhibiting cell growth than DFC 242, consistent with the in vitro DOT1L inhibition 

potency of the respective compounds (Figure 2.2.24a and c). When comparing between 

cell lines, DFC 231 and DFC 242 displayed similar behavior, both inhibit MLL-AF9 

(Figure 2.2.24a and c) selectively while not effecting the growth of E2A-HLF (Figure 

2.2.284 and d). At 1 µM DFC 231 affects can be seen on E2A-HLF cell growth and it is 

reasonable that most compounds will have a limited range of concentrations at which it 

will display selectivity before demonstrating general toxicity. At 0.5 and 0.25 µM DFC 

231 clearly inhibits the growth of MLL-AF9 while not affecting the growth of E2A-HLF 

cells (Figure 2.2.24a and b). DFC 242 demonstrates this same behavior with 0.5 and 1 

µM treatment (Figure 2.2.24c and d). Furthermore, we demonstrated that DFC 242 

inhibited H3K79 methylation in a time dependent manner over the time course of the 

growth experiment (Figure 2.2.24e). These results demonstrate the DFC compounds 

induce cell growth inhibition of murine model cell lines in a DOT1L dependent manner. 

The selective inhibition of MLL-AF9 over E2A-HLF and the reduction of cellular H3K79 

methylation strongly support that the mechanism of inhibiting cellular proliferation is 

based upon inhibition of DOT1L HMTase activity.  
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Figure 2.2.24 DFC compounds selectively inhibit the cell growth of murine models 
cell lines by inhibiting H3K79 methylation. (a) Cell growth of DFC 231 treated MLL-
AF9 transformed cells. (b) Cell growth of DFC 231 treated E2A-HLF transformed cells. 
(c) Cell growth of DFC 242 treated MLL-AF9 transformed cells. (d) Cell growth of DFC 
242 treated E2A-HLF transformed cells. (e) Western blot analysis of H3K79 methylation 
in MLL-AF9 cells upon treatment with DFC 242. 
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We next investigated whether DFC compounds bind directly to DOT1L using 

ThermoFluor and STD NMR. DFC 231 and 242 demonstrated binding to DOT1L by 

inducing a decrease in the thermal stability of the protein upon binding (Figure 2.2.25). 

Furthermore, STD NMR demonstrated a saturation transfer from DOT1L to DFC 231 

indicating direct binding of the compound to DOT1L (Figure 2.2.25b). However, based 

on the inhibition of cellular proliferation at concentrations below the in vitro IC50, our 

concerns for non-specific toxicity of these compounds outweighed the demonstration of 

DOT1L binding. Therefore we ceased further characterization of the DFC compounds in 

order to identify more promising hits for potential lead development. 

 

Figure 2.2.25 DFC compound binding to DOT1L. (a) ThermoFluor binding of DFC 
compounds to DOT1L. (b) 1H-NMR of 100 µM DFC 231 with 5 µM GST-DOT1L 
(red/top) and STD-NMR of 100 µM DFC 231 with 5 µM GST-DOT1L (blue/bottom). 
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2.3 Methods 

2.3.1 Molecular modeling 

The 1200 chemical structures of the focused library used in this study was downloaded 

in sdf format from the Substance database of the PubChem,(29) maintained by the NIH 

of the US government. These compounds were converted to 3D structures using the 

program of LigPrep 2.5. All parameters were set to the default values except that the 

“Ionization” was set to “Epik”. The DOT1L:SAM complex (PDB ID: 1NW3) was 

downloaded from the website of PDB. Hydrogen atoms were added, and the complex 

was energy-minimized using the OPLS-AA 2005 force field within the Protein 

Preparation Wizard of Schrödinger. 

To get a reasonable binding pose of EPZ004777 to the target of DOT1L, a molecule 

which is derived from EPZ00477 but does not have the tert-butylphenyl group was 

docked first into the active site of 1NW3. The tert-butylphenyl group was then manually 

built into the docked molecule. The artificial DOT1L:EPZ004777 complex was soaked in 

a box of TIP3P water molecules with a margin of 10 Å along each dimension. An 

appropriate number of counterions were added to neutralize the whole system. The 

gotten system was then minimized at three rounds, each of which consisted of 1000 

steps, with harmonic constraints on all non-hydrogen atoms by employing the AMBER 

(version 11.0) program. The force constant was set to 100, 10 and 0 kcal/(mol*Å2) 

respectively. The molecular dynamic simulation was started by heating the entire 

system from 0 to 300 K in 100 ps and equilibrating at 300 K for another 100 ps. A 

subsequent 2 ns production run was performed under a constant temperature of 300 K 

and a constant pressure of 1 atm. No other constraint was applied to either the protein 

or the ligand during the entire MD simulation. The final snapshot of DOT1L:EPZ004777 

complex produced from the molecular dynamic was minimized again and then used in 

the virtual screening. 

The compounds of the library were docked and scored using Glide 5.7 in standard 

precision (SP) and extra precision (XP) modes. The receptor grids were prepared with a 

20 Å side length with the centroids in the centers of SAM (1NW3) and EPZ004777 
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(simulated DOT1L:EPZ004777 complex) respectively. All Glide options were kept at 

default settings except that for Glide SP, at most 1 pose per ligand was written out; for 

Glide XP, at most 5 poses per ligand was written out for analysis. 

2.3.2 Expression and purification of recombinant DOT1L  

The catalytic domain of DOT1L (1-416) was cloned into a pMCSG vector with an N-

terminal His6 –GST tag. Transformation of His-TEV-hDot1L 1-416 aa in pET28-MHL 

(Kanamycin resistance) vector into BL21*RIL (Chloramphenecol resistance) cells was 

carried out by thawing bacterial cells stocks from -80 C on ice. Pipette 50 uL of cell 

stock with a sterile tip to an autoclaved 1.5 mL microcentrifuge tube. Add 1 uL of 

plasmid DNA to cells and incubate on ice 30 min. Heat shock cells by incubating in 42° 

C water bath for 1 min followed by incubation on ice 2 min.  Add the mixture to a warm 

LB-Kanamycin (50 ug/mL, antibiotic depends on resistance imparted by individual 

plasmid) plate and spread evenly with a sterilized tool. Allow it to sit 5 min at RT to 

absorb excess liquid. Alternatively, streak a small amount of transformed cells in 

glycerol stock on a warm LB-Kan plate with a sterile pipette tip. Incubate the plate 

upside down at 37°C for 12-16 hr. For growth and expression of protein in a 500 mL 

culture, use a sterile inoculation loop (or pipette tip), pick single colonies from the LB-

Kan agar plate to inoculate five separate 4 ml cultures of LB + Kan (50 ug/mL) + 

Chloramphenocol (34 ug/mL) in 14 ml culture tubes and grow at 37oC with shaking until 

cloudy (3.5 hr). Collect the 5 x 4 mL cultures by pipette and add to 500 mL autoclaved 

Terrific broth (TB) with Kan+Chlor added once cooled in a 2 L flask. Incubate with 

shaking at 37°C for about 3.5 hours until OD600nm = 0.6-0.8 using TB as a reference to 

blank the spectrometer at 600 nm. Transfer to 20°C shaker and allow to cool for 15-20 

min. Induce protein expression with 200 µM IPTG (100µL of 1M stock to 500 ml). Grow 

at 20°C with shaking overnight (~18hr). For purification of expressed protein, pour cells 

into large centrifuge jars and spin for 15 min x 6000rpm, pour off supernatant and keep 

the pellet on ice. Alternatively, store at -80°C and thaw on ice and skip the freeze thaw 

step. Freeze cells thoroughly in dry ice and ethanol and thaw in cold water. Mash the 

pellet around the sides of the centrifuge jar and resuspend in 40 ml Lysis Buffer (50 mM 

sodium phosphate dibasic pH 8.0, 500 mM NaCl, 1 mM PMSF, 5% Glycerol, 10 mM 
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Imidazole, 10 mM β-mercaptoethanol, 0.1% Triton X-100) with pipetting up and down 

until homogeneous. Transfer cell suspension to metal sonication cup and keep on ice. 

Sonicate 30 sec x 6 (on 30 sec/off 30 sec, constantly @ output 5) in cold room and keep 

on ice between cycles. Centrifuged at 10,000 xg for 20 min, 4oC. Suspend 2 mL of Ni-

NTA agarose beads per 500 mL culture (50% slurry in ethanol) in 30 mL PBS and 

shake on ice 5 min. Spin beads at 1500 rpm 7 min with centrifuge deceleration = 2 and 

aspirate off wash leaving beads. Add cleared cell lysate (supernatant from sonicated 

cell lysate after centrifugation) to Ni-NTA beads and rotate 1hr at 4oC. Spin the beads 

1500 rpm 7 min with centrifuge deceleration = 2 and pipette off supernatant keeping 

some for SDS-PAGE. Add 30mL wash buffer (50 mM sodium phosphate dibasic pH 8.0, 

500 mM NaCl, 5% Glycerol, 25 mM Imidazole, 10 mM β-mercaptoethanol, 0.1% Triton 

X-100) to the beads, and rotate until beads are resuspended. Spin the beads 1500 rpm 

7 min with centrifuge deceleration = 2 and pipette off supernatant keeping some for 

SDS-PAGE. Gently resuspend beads in 8 mL wash buffer with a Pasteur pipette and 

add to poly-prep column (BioRad) allowing the wash to flow through (collect some for 

SDS-PAGE). Wash the column by filling the column reservoir above the Ni-NTA packing 

with wash buffer and allow it to flow through. Once all the wash buffer has drained to the 

level of the Ni-NTA beads, add 7 mL of elution buffer (50 mM sodium phosphate dibasic 

pH 8.0, 500 mM NaCl, 5% Glycerol, 150 mM Imidazole, 10 mM β-mercaptoethanol, 

0.1% Triton X-100) containing 150 mM imidazole to elute His-Dot1L (collect this 7 mL 

separate from wash). Dilute 20 uL of each sample with 20 uL of 2X SDS-sample buffer 

and boil for 10 min at 95oC. Load 20 uL of sample on a 4-20% Tris-Glycine gel and run 

at 120V 2hr. Stain the gel with Coomassie blue and combine fractions containing 

product. Determine the concentration with Bradford protein assay with a BSA standard 

curve. Collect the elution fraction containing Dot1 and concentrate for FPLC, storage, or 

TEV cleavage. 

At this stage in the purification, DOT1L likely has DNA bound and can be checked by 

measuring the absorbance spectra and if the absorbance at 260 nm is greater than 280 

nm there is substantial DNA present. If no further purification is required then dialyze 

against 1L storage buffer (25 mM Tris pH 7.5, 100 mM NaCl, 3 mM DTT) in 10,000 

MWCO tubing that has been wet and washed, change out buffer 2 times and leave for 3 
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hr for each change. Centrifuge the protein 5,000 RPM , 10 min to remove any 

precipitate. Determine the protein concentration by OD280 and extinction coefficient 

and/or Bradford method. Add glycerol to 20% and aliquot to microcentrifuge tubes and 

store at -80oC. 

If further purification and removal of DNA is required then concentrate protein to a 

volume of 4.5 mL using the centrifuge concentrator and load on S200 column with 20 

mM Tris pH 8.0, 200 mM NaCl, 1 mM EDTA, 1 mM DTT  (7). DOT1L elutes in the void 

volume due to aggregation with DNA (later peak around expected MW is DOT1L that 

did not bind to DNA and is inactive fraction, keep some and test it). Concentrate void 

fractions collected from S200 and load on to cation exchange column (SP sepharose) 

and run a salt gradient of 0 mM to 1,000 mM NaCl. Cleaved DOT1L elutes with at a 

conductivity of 60-70 mS. Run DOT1L fraction on S200 column in 20 mM Tris pH 8.0, 

200 mM NaCl, 1 mM EDTA, 1 mM DTT. Or dialyze against 1L buffer with 3 exchanges 

overnight. Analyze fractions collected by SDS-PAGE and coomassie blue staining. Pool 

pure fractions and concentrate to around 1 mg/mL, centrifuge the protein 5,000 RPM  

10 min to remove any precipitate and measure the concentration by OD280 and 

extinction coefficient and/or Bradford method. Add glycerol to 20% and aliquot to 

microcentrifuge tubes and store at -80oC. 

2.3.3 In vitro DOT1L histone methyltransferase assay  

Enzymatic activity of DOT1L was assessed by incubating 125 nM of recombinantly 

expressed and purified GST-DOT1L in the presence of 125 nM (0.28 µCi) 3H-S-

adenosyl methionine (NET155250UC; Perkin Elmer), and 1 µg of core histones (Sigma-

Aldrich) or 0.7 µg of recombinant nucleosomes in HMTase buffer (20 mM Tris pH 7.9, 4 

mM EDTA, 1 mM DTT, 0.01% Triton X-100) at a final volume of 26.5 µL. For 

determination of inhibitor potency, compounds were added to the reaction mixture prior 

to initiation of the HMTase reaction with 3H-SAM. The HMTase reaction was allowed to 

proceed for 1 hr at room temperature and was stopped by transferring 5 µL of reaction 

mixture to P81 filter paper. After drying, filter papers were washed three times with 50 

mM NaHCO3 pH 9.0. Filter papers were then dried and radioactivity measured in vials 

with 10 mL liquid scintillation fluid on a Tri-Carb 2800 TR liquid scintillation counter 
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(Perkin Elmer). IC50 values of compounds were determined by non-linear regression 

analysis of the plotted CPM values or percent inhibition values transformed according to 

DMSO control being 0% inhibition and no DOT1L protein control being 100 % inhibition 

using Graphpad Prism 6.0 software. 

2.3.4 96-well plate in vitro DOT1L histone methyltransferase assay  

 To prepare the Millipore MultiScreen plates (Cat. No. MSHVN4B50) pre-wet the plate 

filters with addition of 50 uL of HMTase buffer (20 mM Tris pH 7.9, 4 mM EDTA, 1 mM 

DTT, 0.01% Triton X-100) to each well of the plate. Vacuum filter out buffer briefly to 

wet filters until buffer is removed (do not pull air through filter until filters are dry 

again).Blot excess droplets from bottom of filter on paper towel. To prepare the HMTase 

reaction in plate, add 20 uL of HMTase buffer to wells of pre-wet plate, add 5 uL of 

GST-DOT1L and core histone mixture to the plate (0.6625 uM GST-DOT1L for a final 

concentration of 125 nM and 0.2 ug/ul of core histones for a final amount of 1 

ug/reaction), add 0.5 uL of compound or DMSO, add 1 uL of 0.28 uCi/uL 3H-S-

adenosylmethionine (NET155250UC; Perkin Elmer; two-fold dilution from stock solution 

with HMTase buffer). Tap the plate gently to mix, cover with the plate cover and 

incubate at room temperature for 1 hr. To quench the reaction add 27 uL ice cold 50% 

TCA bringing the final concentration up to 25-30% TCA to precipitate the proteins. 

Equilibrate at 4oC for 30 min-1 hr. Place the plate on the vacuum manifold. Remove the 

cover and apply vacuum (4-8 ” Hg maximum). Wash FC plate five times with 25 uL 25% 

cold TCA turning off the vacuum after each wash during addition of next wash. To 

perform in plate liquid scintillation counting, blot the plate on a lint-free absorbent 

surface to displace any droplets formed on the underside of the plate. Remove the 

plastic underdrain from the plate and snap on the Packard TopCount Adapter (Cat. No. 

MSTPCWH50). Add 50 uL of Ultima Gold liquid scintillation cocktail to each well with a 

multichannel pipette. Seal the top of the plate with clear sealing tape (Cat. No. 

MATAHCL00). After 1 hr measure 3H-counts with a Packard TopCount instrument. 

Signal stable up to 18 hr. 
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2.3.5 Mechanism of action kinetic characterization 

Kinetic characterization of DOT1L was carried out in the presence of DMSO or varying 

concentrations of compound. With respect to the substrate, the initial reaction velocity 

was determined at different substrate concentrations (0.021 –1.36 ug/uL) in the 

presence of saturating SAM concentration (600 nM). With respect to SAM the initial 

reaction velocity was determined with varying concentrations of SAM (12.5 – 800 nM) 

with a constant saturating concentration of substrat (0.76 ug/uL). The initial velocity was 

determined by removing 5 uL aliquots from the HMTase reaction at 5, 10, and 20 min. 

Michaelis-Menten kinetics were applied to the plot of reaction velocity vs concentration 

(SAM or substrate) to determine Km and Vmax. Kinetics analysis and double reciprocal 

Lineweaver-Burk plots were generated using Graphpad Prism 6.0.  

2.3.6 UV-vis absorbance spectra measurements 

Absorbance spectra of 100 µM UMD-7 and UMD-1 were measured in 100 uL of 

HMTase buffer (20 mM Tris pH 7.9, 4 mM EDTA, 1 mM DTT, 0.01% Triton X-100) at a final 

volume of 100 uL and measured in the presence of varying concentrations of substrates or 

histone proteins. Measurements were acquired in flat-bottom clear 96 well plates (Denville 

Scientific; P9734) on a BioTek Synergy H1 hybrid plate reader. Absorbance changes were 

quantified for the individual compounds respective maximum absorbance wavelength.  

2.3.7 Saturation transfer difference NMR  

All STD NMR experiments were performed on a 600 MHz Bruker Avance III equipped 

with a CryoProbe at 25°C as previously described (30). Samples were prepared in 

HMTase buffer with 7% D2O, and 1% DMSO and contained 200 µM ligand and 5 µM 

GST-DOT1L with or without 1 mM SAH (Sigma-Aldrich). The on-resonance irradiation 

of the protein was performed using a 2s pulse train of 50ms gaussian pulses centered 

at 0 ppm and off-resonance irradiation was applied at 30 ppm as the reference. 

Experiments used 16 scans with 16 dummy scans and were processed using TOPSPIN 

2.1 (Bruker). 
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2.3.8 Thermal stability shift assay  

Thermal stability shift experiments were performed as previously described (31) using a 

Thermo Fluor 384-well plate reader (Johnson & Johnson). The melting temperature (Tm) 

of GST-DOT1L was determined by measuring the fluorescence of 1-

Anilinonaphthalene-8-Sulfonic Acid (1,8-ANS) (Cayman Chemical) upon thermal 

denaturing of DOT1L heated in a continuous gradient with 1 min incubations at 1°C 

increments. Samples contained 4 µM DOT1L, 100 µM ligand, and 100 µM 1,8-ANS in 

25 mM Tris pH 7.5, 100 mM NaCl, 3 mM DTT in a total volume of 11 µL overlaid with 2 

µL of silicone oil in  ABgene 384-well PCR microtiter plates (Thermo Scientific). 

2.3.9 Western blot analysis of H3 lysine methylation  

Murine bone marrow cells transformed with MLL-AF9 (32) were plated at 2 x 105 

cells/mL in 12 well plates and treated with compounds for 3 days. Histones were 

isolated as previously described (8). The concentration of extracted histones was 

determined using the Bradford assay (BioRad). Equal quantities of histones were 

separated on a 4-20% Tris-glycine gel (Life Technologies) and transferred to PVDF 

membrane (Thermo Scientific). Membranes were probed with primary rabbit polyclonal 

antibodies against histone H3 (ab1791), H3K79Me1 (ab2886), H3K79Me2 (ab3594), 

H3K79Me3 (ab2621), H3K4Me3 (ab8580), H3K9Me3 (ab8898), H2K27Me3 (Millipore 

ABE44), H3K36Me3 (ab9050). Membranes were subsequently probed with HRP-

conjugated goat anti rabbit secondary antibody (GenScript) and signal detected with 

Lumi-Light western blotting substrate (Roche) and exposure to autoradiography film 

(Denville). 

2.3.10 qRT-PCR analysis of gene expression 

Cells were treated as in the western blot assay and RNA was extracted using Trizol 

(Life technologies) and RNA purified using a RNeasy mini kit (Qiagen).  RNA quantity 

was normalized and reverse transcription performed with SuperScript III first strand 

synthesis kit (Life technologies). Quantitivative PCR was carried out with Power SYBR 
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green PCR master mix (Life technologies) on a 7500 RT-PCR system instrument 

(Applied Biosystems). 

2.3.11 Cell viability assay 

Human leukemia cell lines in log phase growth were diluted with media and 5,000 cells 

were added to each well of a flat bottom 96-well plate (Corning). Compound or DMSO 

was added at the indicated concentrations and cells were incubated for 4 days at 37oC. 

Viability was assessed by addition of 10 uL of the WST-assay reagent (CCK-8; Dojindo) 

and measurement of OD450 nm after 2-4 hr.  

2.3.12 Apoptosis analysis 

Human leukemia cells were plated at 5 x 105 cells/mL in 12 well plates and treated with 

UMD-7 for 24 hr. 1.5 x 105 cells were collected and centrifuged at 200xg for 5 min. The 

media was aspirated off and cells were washed with PBS and centrifuged. Cells were 

resuspended in 100 uL of BD biding buffer (BD biosciences) and 4 uL of Annexin V (BD 

biosciences) and 5 uL of propidium iodide (PI) 1 ug/uL solution (Invitrogen) was added 

to the cells. Cells were allowed to stain 5 min and diluted with an additional 100 uL BD 

binding buffer and Annexin V and PI staining was analyzed on a Becton-Dickinson LSR-

II flow cytometer. 

2.3.13 Cell cycle analysis 

Cells were treated the same as in apoptosis experiments. Collected all cells in the wells, 

centrifuged 250 xg 8 min, aspirate off media and wash with 2 mL cold PBS. Repeat 

centrifugation and aspirate wash off cells. Resusped cells in 500 uL cold PBS and add 1 

mL of cold 100% ethanol to cell suspension while gently vortexing. Incubate cells on ice 

30 min and centrifuge 400 xg 8 min, wash cells once with 2 mL PBS and resuspend in 

500 uL PBS, add RNase A to a final concentration of 100 ug/mL, add PI to a final 

concentration of 10 ug/mL. Allowed staining for 30 min and analyzed on a Becton-

Dickinson LSR-II flow cytometer. 
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2.3.14 Differentiation analysis 

THP-1 cells were plated at 5 x 105 cells/mL in 12 well plates and treated with UMD-7 for 

7 for 6 days. Cells are split and retreated with compound every 2 days. 1.5 x 105 cells 

were collected and centrifuged at 200xg for 5 min then washed with 1 mL PBS. Cells 

were resuspened in 100 uL of PBS + 0.1% FBS and 2 uL of Pacific Blue labeled CD11b 

antibody (company) was added and allowed to incubate 30 min. Cells were washed with 

1 mL PBS + 0.1% FBS and resuspended in 100 uL of BD binding buffer then Annexin V 

and PI were added and analyzed the same as in the apopstosis experiment. CD11b 

expression was analyzed for the healthy living population of cells that was Annexin V 

and PI negative.  

2.3.15 Colony forming units (CFU) assay 

The soft agar colony forming units assay was carried out as previously described (16) 

with the addition of UMD-7 to the soft agar media at the indicated concentrations.  

2.3.16 Cell growth assay 

Murine bone marrow transformed with MLL-AF9 or E2A-HLF as described for the CFU 

assay (16) was grown in liquid culture media of IMDM, 15% fetal bovine serum, and 10 

ng/mL IL-3. Cells were diluted to 250,000 cells/mL and treated with UMD-7 or DMSO at 

the indicated concentrations. Cells were split and fresh media with compound was 

added every 2-3 days.  

2.3.17 OctetRED binding assay 

Biolayer interferometry assays were carried out using a ForteBio OctetRED system as 

described (33) utilizing biotinylated His-DOT1L (1-416) and MBP as a control. Protein 

was biotinylated using EZ-Link NHS-PEG4 Biotinylation Kit (Thermo Scientific; 21329) 

following manufacturer instructions, Biotin in 1:1 molar ration with the protein incubated 

on ice for 1-2 hr. Biotinylated DOT1L activity was confirmed using the standard HMTase 

assay described above then immobilized on super-streptavidin biosensors (ForteBio; 

18-5057) in binding buffer (20 mM Phosphate pH 7.4, 150 mM NaCl, 0.01% Tween20, 

0.01% BSA) at 50 ug/mL and washed three times in binding buffer. Compounds were 
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serially diluted in binding buffer and binding association and dissociation monitored by 

OctetRED for 3 min. Non-specific signal was addressed by subtraction of the MBP 

control surface and data was analyzed with OctetRED software. 

2.4 Conclusions 

Based on the importance of DOT1L as a therapeutic target in MLL-rearrangement 

leukemias, we employed several approaches for the identification of small molecule 

inhibitors of DOT1L HMTase activity. Our experience shows that numerous secondary 

biophysical and cellular assays are required to thoroughly evaluate the quality of 

screening hits as potential lead compounds. In total over 5,500 compounds were 

screened in a preliminary assay for DOT1L inhibition. Stringent criteria were established 

for the identification of quality inhibitors of DOT1L including compound binding to the 

target DOT1L evaluated by STD NMR, ThermoFluor, and OctetRED assays. 

Compounds were also required to demonstrate selective cellular inhibition of H3K79 

methylation.  

Virtual screening of a focused nucleoside library resulted in identification of several 

SAM analogues that inhibit DOT1L in vitro by binding to the SAM binding site. This lead 

to the identification of the most potent SAM competitive compounds 2.2 which 

selectively inhibits DOT1L in a MLL-AF9 murine model cell line. Two classes of DOT1L 

inhibitors were identified through biochemical screening; class A naphthosulfonyl 

compounds, including UMD-7, and class B naphthoquinones. UMD-7 is a novel inhibitor 

of H3K79 methylation that works through a unique mechanism unlike other current 

DOT1L inhibitors by binding to histone proteins resulting in rapid cellular loss of H3K79 

methylation. Furthermore, UMD-7 treatment phenocopies genetic loss of DOT1L 

resulting in apoptosis, cell cycle arrest, differentiation, and selective growth inhibition of 

MLL-rearrangement cell lines.  
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CHAPTER 3 

Design and novel synthetic pathway to S-adenosylmethionine analogues as 

DOT1L inhibitors 

3.1 Introduction 

There is significant interest in development of small molecule inhibitors of DOT1L 

histone methyltransferase activity for therapeutic intervention in MLL-translocation 

leukemias as discussed in chapter 1. In addition to biochemical screening approaches 

to identify inhibitors of DOT1L, discussed in chapter 2, here we present the de novo 

design and synthesis of small molecule DOT1L inhibitors. This approach has been 

successfully applied to numerous targets including protein kinases, RNA polymerase, 

and even protein/peptide interactions (1-3) . In the case of DOT1L, de novo design has 

the benefit of starting from a known small molecule ligand, SAM and a defined binding 

pocket, the SAM binding site.  

The crystal structure between the co-factor SAM and the catalytic domain of DOT1L 

(PDB: 1NW3) (4) provide structural insights for the interactions between them, 

permitting a rational approach to the discovery, chemical synthesis and development of 

new DOT1L inhibitors. Analysis of the crystal structure showed that the active site 

consists of the SAM binding pocket and an orthogonal lysine binding channel directed at 

the methyl group of SAM. The SAM binding pocket is wider and more hydrophobic at 

the entrance formed by Phe 223, Leu 224, Val 249, Lys 187 and Pro 133, where the 

adenine moiety binds and interacts via hydrophobic interactions and π-π stacking 

interactions between the adenine ring and Phe 223. In addition, the adenosine moiety of 

SAM forms hydrogen bonds with Asp 222, Phe 223, Lys 187 and Glu 186. The 

methionyl moiety inserts deep into the pocket, which becomes narrower toward the 

center of the protein and negatively charged, forming a network of hydrogen bond 
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contacts with several amino acid side chains, namely, Asp 161, Gln 168, Glu 186, and 

Thr 139 (4). Utilizing this information, we designed, synthesized, and biochemically 

evaluated several SAM analogues for their ability to inhibit DOT1L in vitro and inhibit 

H3K79 methylation in cellular studies. 

Our design strategy required modifications of the 5’ position of adenosine. Current 

synthetic strategies for 5’ modified adenosine analogues typically proceed via activation 

of the 5’ hydroxyl with a chlorine leaving group and subsequent displacement with a 

thiol or amine (5-7). Alkyl groups can be introduced through a 5’ thioacetic acid 

intermediate upon NaOMe hydrolysis and displacement of a bromo-alkyl group (6). 

Alternatively a 5’ amine intermediate can be accessed through conversion of the 

adenosine 5’ hydroxyl group via Mitsunobu reaction and hydrazine treatment (5). 

3.2 Results 

3.2.1 De novo design of SAM analogues as DOT1L inhibitors 

The focus of the structure-based design of novel SAM analogues was on modifying the 

homocysteine moiety through exploring the flexibility and the length of the tail as well as 

the polar amino acid moiety of SAM, since at physiological pH it is charged and might 

negatively influence the compounds bioavailability. Based on these considerations, we 

proposed the design of two SAM analogues (Figure 3.2.1). A key feature of this design 

was replacement of the sulfur linkage between the ribose and homocysteine tail with an 

amino linker in order to increase the synthetic feasibility of the designed compounds, as 

well as to establish a general synthetic route for synthesis of novel adenosine 

analogues.  

To explore the importance of the linker flexibility in the homocysteine moiety, the alkyl 

chain was substituted with a rigid phenyl ring (2, Figure 3.2.1). In addition, the methyl 

ester 3 was designed to assess the importance of hydrogen bonds formed by the 

terminal carboxylic acid of 2. Next, the amino acid tail of SAM was replaced with a 

bioisostere, -amino acetamide moiety, in an attempt to recapitulate the hydrogen 

bonding network of SAM with DOT1L (4 and 5, Figure 3.2.1). The crystal structure of 

DOT1L shows that SAM binds to the protein in a fully extended confirmation, suggesting 
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that the length of the linker is important in order for the -amino acetamide moiety to 

reach its optimal binding site in the protein. Thus, we designed compounds with 

different alkyl linkers to explore the optimum length. 

 

Figure 3.2.1 De novo design of novel DOT1L inhibitors.  

To assess the proposed designed compounds in silico, docking studies were performed 

and their binding models were generated. The docking procedure was validated by 

docking SAM which provided a consistent binding pose with the crystal structure (Figure 

3.2.2a). The predicted binding model of 2 showed that it binds in a very similar manner 

as SAM (Figure 3.2.2b). The adenine portion of 2 overlaps with SAM while maintaining 

the predicted π-π stacking interaction with Phe 223 and hydrogen bond contacts with 

Asp 222 and Lys 187. Some torsional strain shifts the ribose of 2 away from Glu 186 

and may disrupt the formation of hydrogen bonds. However, the introduction of a rigid 

linker places the amino acid tail of 2 in the same position as in SAM and maintains the 

network of hydrogen bonds deep within the binding pocket. Based on the binding model 

it is also predicted that blocking the carboxylic acid tail as a methyl ester in analogue 3 

should disrupt the hydrogen bonding network with Asn 241, Thr 139, and Gln 168,  

likely leading to lower potency. Designed compound 5 also showed similar binding pose 

as SAM (Figure 3.2.2c), but opposed to 2, the ribose portion of 5 is predicted to 

maintain hydrogen bonds with Glu 186. However, the introduced -amino acetamide 
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moiety is lacking the interaction with Gln 168 but maintain hydrogen bonds with Asp 161 

and Gly 163. Based on the results from the predicted binding models, we synthesized 

the target compounds and tested their ability to inhibit DOT1L histone methyltransferase 

activity in vitro.  

 

 

Figure 3.2.2 Validation of docking and predicted binding mode of designed 
DOT1L inhibitors. (a) Glide XP docking of SAM into 1NW3 structure. (b) 
Proposed binding mode of 2 (magenta) overlayed with SAM (green) 
demonstrating the predicted interactions with DOT1L. (c) Proposed binding mode 
of 5 (yellow) with DOT1L and predicted interactions.  

3.2.2 Synthesis of designed compounds 

Our synthetic strategy utilized a convergent approach in which a protected adenosine 

5’-carboxaldehyde (8, Figure 3.2.3) was condensed with a requisite amine side chain 

via a reductive amination. The synthesis of the carboxyaldehyde 8 provides a novel and 

efficient method to access 5’ amine linked adenosine derivatives. 

The synthesis of 8 is shown in Scheme 3.2.1. Accordingly, hexamethyldisilazane 

(HMDS) persilylation of 2',3'-(isopropylidene)adenosine , 6, followed by treatment with 

di-t-butyl dicarbonate was carried out by modification of a generalized procedure used 

to introduce N6-Boc functionality onto nucleosides (8). This gave an intermediate N6,N6-

bis(tert-butoxycarbonyl)-5’-O-(trimethylsilyl)adenosine, which was not isolated but was 

reacted directly with methanol : triethylamine (5:1) to simultaneously cleave the TMS 

ether and one of the N6-Boc groups. This provided 7 in quantitative yield with the overall 

sequence representing a much superior method to make this reported compound(9). 

Subsequent conversion of 7 to the novel 5’-carboxaldehyde 8 was then carried out by 

oxidation with Dess-Martin periodinane. This novel intermediate, 8, was used for 

synthesis of targeted designed compounds. The side chain of 2 was derived from (S)-
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(+)-phenylglycine 12 in a series of standard reactions. Nitration followed by -amine 

Boc protection was carried out by a literature procedure to provide compound 13(10). 

Methyl ester formation gave 14, which was then hydrogenated to amine 15. Reductive 

amination of aldehyde 8 with 15 then provided compound 9 in modest overall yield.   

 

 

 

Figure 3.2.3 Synthesis of de novo designed rigid DOT1L inhibitors. Reagents and 
conditions: (a) 1. HMDS, DMAP, TMSOTf; 2. Boc2O, THF; 3. 5:1 MeOH:TEA (100%, 3 
steps); (b) Dess-Martin periodinane, DCM, 0oC - rt (99%) ;  (c) 15, 1,2-DCE, 
NaBH(OAc)3 (26%); (d) LiOH, MeOH (39%); (e) aq. TFA (35% for 9); (f) hplc 
purification; (g) ref (10); (h) MeI, K2CO3, THF (65%); (i) H2, 10% Pd/C, MeOH (87%). 
See Supplemental Information for experimental details.  

HPLC analysis of this product showed a ~1:1 mixture of diastereomers, indicating that 

racemization had taken place in the earlier nitration step of building up the side chain as 

previously documented (11).  Hydrolysis of the methoxy ester with LiOH gave 10, which 

was subjected to aqueous T FA hydrolyis to simultaneously remove the Boc and 

isopropylidene protecting groups. Upon HPLC purification, the target compound 2 could 



93 
 

be separated from its 2-(R)-diastereomer 11. Alternatively, 9 was also subjected to TFA 

deprotection to provide the methyl ester 3 for testing.  

 

For target compound 5, the same general synthetic approach was utilized (Figure 

3.2.4). Amidation of 1,3-propanediamine (17) with N-Boc-glycine methylester by the 

method of Morandeau et al.(12)  gave 19 which was then coupled to aldehyde 8 under 

the same reductive amination conditions shown above.  Subsequent global hydrolysis of 

the Boc and isopropylidene protecting groups provided 5 in good overall yield.  The 

same sequence of steps was repeated on ethylenediame (16) to make target compound 

4 with the truncated linker. 

 

 

Figure 3.2.4 Synthesis of de novo designed flexible DOT1L inhibitors. Reagents 
and conditions: (a) N-(Boc)-glycine methyl ester, MeOH, 0oC – rt (50-52% yield); (b) 18 
or 19, NaBH(OAc)3, 1,2-DCE (43-48% yield); (c) aq. TFA (54-56% yield).   

3.2.3 Evaluation of in vitro DOT1L inhibition 

An in vitro DOT1L histone methyltransferase (HMTase) assay was used to evaluate the 

ability of our designed compounds to inhibit DOT1L. Using 3H-methyl-S-

adenosylmethionine (3H-SAM) as the source of radioisotopically labeled methyl donor, 

in the presence of DOT1L the 3H-methyl group is transferred from 3H-SAM to the 
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substrate H3K79 in a milieu of extracted core histones. The dose dependent curves 

together with the IC50 values are presented in Figure 3.2.5. SAH was used as a positive 

control and showed inhibition of the methyltransferase activity of DOT1L with IC50 of 1.6 

+ 0.4 µM, consistent with the reported results. Interestingly, both targeted compounds, 2 

and 5, showed significantly less potency in inhibiting the methyltransferase activity of 

DOT1L with IC50 values 270 µM and > 1,500 µM, although the predicted binding model 

showed very similar conformation as SAM with only several lost hydrogen bonds.   Of 

the two diastereomers 2 and 11, we assign 2 with the natural 2-(S)-stereochemistry in 

the side chain since it showed higher potency (270 µM vs. 1,055 µM, respectively).  As 

expected, methyl ester 3 was less potent based on the prediction that substitution of the 

carboxylic acid function of 2/11 with an ester eliminates a key hydrogen bond with 

DOT1L.  

Replacing the amino acid tail of SAM with a bioisostere, -amino acetamide moiety, 

resulted in a detrimental effect on the activity of compounds 5 and 4 with IC50 values > 

1,500 µM. In addition, the different length of the linker in these two compounds seemed 

that has no influence on their potency.  

We believe that much of the loss of potency for our inhibitors can be attributed to 

disruption of the hydrogen bond network formed with DOT1L. In addition a SAR study of 

SAM analogues published while our work was in progress confirmed that slight 

alterations of the structure of SAM can dramatically affect the ability of small molecules 

to inhibit DOT1L (6). Several classes of potent and selective inhibitors of DOT1L (13-15) 

were reported which exploit an unexpected structural flexibility to induce a 

conformational change that opens a large hydrophobic pocket next to the SAM binding 

site (16, 17).  
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Figure 3.2.5 DOT1L inhibition by designed compounds. Potency of synthesized 
inhibitors assessed by in vitro DOT1L HMTase assay.  

 

3.3 Methods 

 

3.3.1 Chemistry General Procedures 

All starting materials were obtained from commercial suppliers and were used without 

further purification. 1H NMR spectra were recorded on a Varian 400 instrument and are 

provided in Appendix 1.  Chemical shift values are recorded in  units (ppm).  Mass 

spectra were recorded on a Micromass TofSpec-2E Matrix-Assisted, Laser-Desorption, 

Time-of-Flight Mass Spectrometer in positive ESI mode unless otherwise noted.  

Analytical HPLC was run on a reverse-phase column (Restek Ultra C18, 5 µm, 150 x 

4.6mm column; flow rate of 1 mL/min using a gradient of 40 – 80% acetonitrile in water 

over 20 min). Thin-layer chromatography (TLC) was performed on silica gel GHLF 

plates (250 microns) purchased from Analtech.  Column chromatography was carried 
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out in the flash mode utilizing silica gel.  Extraction solutions were dried over MgSO4 

prior to concentration. 

3.3.2 Synthetic procedures 

tert-Butyl (9-((3aR,4R,6R,6aR)-6-(hydroxymethyl)-2,2-dimethyltetrahydrofuro[3,4-

d][1,3]dioxol-4-yl)-9H-purin-6-yl)carbamate (7)(9).  A suspension of 6 (1.54 g, 5 

mmol), hexamethyldisilazane (HMDS; 2 mL), and 4-dimethylaminopyridine (DMAP; 120 

mg) was stirred together at 25 °C in an oven-dried flask.  To this was added drop-wise 

trimethylsilyl trifluoromethanesulfonate (TMSOTf ; 20 uL), and the resultant suspension 

was heated at 75 °C for 2 h.  The mixture was concentrated to an oil that was dissolved 

in 3 mL of dry THF with gentle warming.  The solution was ice-cooled and treated with 

3.27 g (15 mmol) of  di-t-butyl dicarbonate and an additional 7 ml of THF, and allowed to 

stir at 25 °C for 4 h.  The solution was concentrated and then treated with 18 mL of 

5:1(v/v) methanol : triethylamine.  Following vigorous evolution of CO2, the solution was 

stirred at 55 °C for 16 h and then concentrated to an oil that was distributed between 

dichloromethane and water.  The dichloromethane phase was dried and concentrated to 

an oil that was purified by flash chromatography, eluting with hexanes : ethyl acetate 

(1:1).  Combined product fractions were concentrated to an oil that was pumped in 

vacuo at 60 °C to leave 7 (2.53 g; 100% yield) as a white foam:  NMR and mass spec 

data were identical to those previously reported (9). 

tert-Butyl (9-((3aR,4R,6S,6aS)-6-formyl-2,2-dimethyltetrahydrofuro[3,4-

d][1,3]dioxol-4-yl)-9H-purin-6-yl)carbamate (8).  To an ice-cooled stirred suspension 

of Dess-Martin periodinane (674 mg, 1.6 mmol) in dichloromethane (7.5 mL) was added 

7 (589 mg, 1.45 mmol) and the resultant mixture was allowed to warm to room 

temperature over 3 h. The mixture was concentrated to a white powder that was 

suspended in ethyl acetate, and the insoluble Dess-Martin reagent was removed by 

filtration. The filtrate was concentrated and additional residual amounts of Dess-Martin 

reagent were removed by the same process.  The filtrate was concentrated to leave 

fairly pure 8 (583 mg, 99% crude yield) as a solid, which was suitable for use in the next 

reaction:   1H NMR (400 MHz, CDCl3): δ 9.25 (s, 1H), 8.54 (s, 1H), 7.96 (s,1H), 6.17 (s, 
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1H), 5.49 (d, J = 6.1 Hz, 1H), 5.28 (d, J = 6.1 Hz, 1H), 4.62 (s, 1H), 1.54 (s, 3H), 1.50 (s, 

9H), 1.34 (s, 3H); MS (ESI): m/z 438.1 (M+Na)+. 

Methyl (S)-2-((tert-butoxycarbonyl)amino)-2-(3-((((3aR,4R,6R,6aR)-6-(6-((tert-

butoxycarbonyl)amino)-9H-purin-9-yl)-2,2-dimethyltetrahydrofuro[3,4-

d][1,3]dioxol-4-yl)methyl)amino)phenyl)acetate and R-diastereomer (9).  To an ice-

cold solution of 8 (370 mg, 0.91 mmol) in 1,2-dichloroethane (DCE; 2.5 mL) was added 

a solution of 15 (280 mg, 1 mmol) in 1,2-dichloroethane (2.5 mL) followed by sodium 

triacetoxyborohydride (STAB; 270 mg, 1.3 mmol). The reaction mixture was stirred 

overnight at room temperature and quenched with saturated aq. NaHCO3.  The mixture 

was diluted with water and extracted with ethyl acetate (3x).  The combined extracts 

were dried and concentrated to an oil that was purified by flash chromatography, eluting 

with hexanes : ethyl acetate (2:1) to give 9 (157 mg, 26% yield) as a ~1:1 ratio of 

diastereomers by HPLC:  1H NMR (400 MHz, CDCl3):  δ 8.84,  8.67 (s each, 0.57H & 

0.43H, H-8 of each diastereomer), 8.03 (br s, 1H), 7.97, 7.94 (s each, 0.49 & 0.51H, H-2 

of each diastereomer), 7.10 (q, J = 8.1 Hz, 1H), 6.65 (t, J = 9.0 Hz, 1H), 6.61-6.51 (m, 

2H), 6.03, 5.96 (s each, 0.44H & 0.56H, anomeric H of each diastereomer), 5.54 - 5.09 

(m, 4H), 4.60 – 4.50 (m,1H), 3.67 (s, 3H), 3.53 - 3.45 (m, 2H), 1.61 (s, 3H), 1.55 (s, 9H), 

1.42 (s, 9H), 1.36 (s, 3H);  MS (ESI): m/z 670.2 (M+1)+, 692.2 (M+Na)+. 

(S)-2-((tert-Butoxycarbonyl)amino)-2-(3-((((3aR,4R,6R,6aR)-6-(6-((tert-

butoxycarbonyl)amino)-9H-purin-9-yl)-2,2-dimethyltetrahydrofuro[3,4-

d][1,3]dioxol-4-yl)methyl)amino)phenyl)acetic acid and (R)-diastereomer (10).  To 

a stirred solution of 9 (160 mg, 0.24 mmol) in methanol (1 mL) at 0 oC was added LiOH 

(11 mg, 0.26 mmol). Cooling was removed and reaction mixture was stirred at room 

temperature overnight. TLC showed incomplete conversion with a new spot of Rf  0.4 

(2:1 ethyl acetate : methanol). Additional LiOH (11 mg) was added and stirring was 

continued for 4 h. The mixture was concentrated and the residue was distributed 

between 5% aq. acetic acid added and ethyl acetate. The combined ethyl acetate 

extracts were dried and concentrated to an oil that was purified by flash 

chromatography, eluting with ethyl acetate : methanol (9:1).  Product fractions were 
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combined and concentrated to give 10 (61 mg, 39% yield): 1H NMR (400 MHz, CDCl3): 

δ 8.66 (s, 1H), 7.98 (s, 1H), 7.11 – 6.97 (m, 1H), 6.71 - 6.45 (m, 3H), 6.03 (d, J = 4.4 Hz, 

1H), 5.91 - 5.84 (m, 1H), 5.50 - 4.99 (m, 3H), 4.57 (m, 1H), 3.40 - 3.20 (m, 2H), 1.56 (s, 

3H), 1.52 (s, 9H), 1.39 (s, 3H), 1.37 (s, 9H);  MS (ESI): m/z 656.2 (M+1)+. 

Methyl (S)-2-amino-2-(3-((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-

dihydroxytetrahydrofuran-2-yl)methyl)amino)phenyl)acetate and R-diastereomer 

(3).  To a solution of 9 (173.5 mg, 0.26 mmol) in ice-cold water (3 mL) was added 

trifluoroacetic acid (TFA; 3 mL) at 0 oC.  The mixture was stirred at room temperature 

overnight, concentrated and then diluted with aq. NaHCO3.  The mixture was extracted 

with ethyl acetate (3x), and the combined extracts were dried and concentrated to a 

residue that precipitated solids upon addition of ethyl acetate.  The solids were collected 

and washed well with hexanes. The filtrate was concentrated and processed in a similar 

fashion to provide a second crop that was combined with the first to give 3 (39 mg, 35% 

yield): 1H NMR (400 MHz, CDCl3):  δ 8.23 (s, 1H), 7.86 (s, 1H), 7.12 (t, J = 7.7 Hz, 1H),  

6.64 (d, J = 7.5 Hz, 1H), 6.56 (d, J = 10.7 Hz, 1H), 6.40 (d, J = 7.0 Hz, 1H), 6.30 (s, 1H), 

6.00 (s, 1H), 5.51 (d, J = 5.9 Hz, 1H), 5.40 (d, J = 7.0 Hz, 1H), 5.23 (d, J = 5.4 Hz, 1H), 

4.60 (m, 1H), 3.68 (s, 3H), 3.60 - 3.35 (m, 2H);  MS (ESI): m/z  430.9 (M+1)+, 452.1 

(M+Na)+. 

 (S)-2-Amino-2-(3-((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-

dihydroxytetrahydrofuran-2-yl)methyl)amino)phenyl)acetic acid (2) and (R)-

diastereomer (11).  To a solution of 10 (61 mg, 0.09 mmol) in dichloromethane (0.4 

mL) at 0 oC was added water (0.1 mL) and TFA (0.5 mL).  The mixture was stirred at 

room temperature overnight and concentrated to a residue that was dissolved in H2O : 

methanol (95:5).  The solution was then purified by reverse-phase HPLC (Restek Ultra 

C18, 5 µm, 150 x 21.2 mm column; flow rate of 10 mL/min using a gradient of 10 – 30% 

acetonitrile in water over 25 min) followed by concentration and lyophilization of 

fractions corresponding to each isomer provided purified diastereomers.   Diastereomer 

11:  1H NMR (400 MHz, DMSO-d6 + D2O):  δ 8.34 (s, 1H), 8.12 (s, 1H), 7.10 (t, J = 7.8 

Hz, 1H), 6.70 - 6.59 (m, 3H), 5.88 (d, J = 7.4 Hz, 1H), 4.99 (d, J = 11.0 Hz, 1H), 4.73 (s, 

1H), 4.65 - 4.57 (m, 1H), 4.23 – 4.17 (m, 1H), 3.26 - 3.20 (m, 2H); MS (ESI): m/z 416.2 
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(M+1)+; Diastereomer 2: 1H NMR (400 MHz, DMSO-d6): δ 8.58 (br s, 2H; exchanges 

with D2O), 8.38 (s, 1H), 8.24 (s,1H), 7.69 (br s, 2H; exchanges with D2O), 7.12 (t, J = 

7.8 Hz, 1H), 6.68 - 6.61 (m, 3H), 5.87 (d, J = 6.0 Hz,1H), 5.47 (br s, 1H; exchanges with 

D2O), 5.27(br s, 1H; exchanges with D2O), 4.88 (d, J = 18.0 Hz,1H; collapses to s with 

D2O wash), 4.77 – 4.68 (m, 1H), 4.14 (t, J = 4.3 Hz, 1H), 4.07 (d, J = 3.5 Hz, 1H), 3.32 

(d, J = 7.2 Hz, 2H; peak revealed with D2O wash); MS (ESI): m/z 416.2 (M+1)+. 

Methyl (S)-2-((tert-butoxycarbonyl)amino)-2-(3-nitrophenyl)acetate (14) (18).  A 

stirred solution of partially racemized (S)-2-((tert-butoxycarbonyl)amino)-2-(3-

nitrophenyl)acetic acid (10) (13; 600 mg, 2.03 mmol), iodomethane (140 uL, 2.2 mmol), 

anhydrous potassium carbonate  (415 mg, 3 mmol) and THF (10 mL) was heated at 60 

oC for 18 h. The mixture was filtered and the filtrate was diluted with water and extracted 

with dichloromethane (3x).  The combined organic extracts were dried and concentrated 

to an oil that was purified by flash chromatography, eluting with hexanes : ethyl acetate 

(6:1).  Product fractions were combined and concentrated to leave 14 (409 mg, 65% 

yield):  (400 MHz, CDCl3): δ 8.23 (t, J = 2.0 Hz, 1H), 8.19 – 8.15 (m, 1H), 7.72 (d, J = 

7.7 Hz, 1H), 7.57 – 7.49 (m, 1H), 5.78 (s, 1H), 5.42 (d, J = 6.7 Hz, 1H), 3.73 (s, 3H), 

1.51 (s, 9H). 

Methyl (S)-2-(3-aminophenyl)-2-((tert-butoxycarbonyl)amino)acetate (15)(18).  A 

mixture of 14 (720 mg, 2.3 mmol), 10% Pd/C (catalytic) and methanol (35 mL) was 

hydrogenated at 50 psi at room temperature overnight. The mixture was filtered over 

Celite® and the filtrate concentrated to leave 15 (566 mg, 87% yield) as a viscous 

yellow oil: 1H NMR (400 MHz, CDCl3):  δ 7.10 (t, J = 7.8 Hz, 1H), 6.70 (dt, J = 7.7, 1.2 

Hz, 1H), 6.64 (t, J = 2.0 Hz, 1H), 6.62 – 6.59 (m, 1H), 5.46 (d, J = 7.5 Hz, 1H), 5.18 (d, J 

= 7.5 Hz, 1H), 3.69 (s, 3H), 1.41 (s, 9H). 

tert-Butyl (2-((2-aminoethyl)amino)-2-oxoethyl)carbamate (18)(12).  To 

ethylenediamine (16; 13.5 mL, 200 mmol) at 0 oC was added drop-wise a solution of  N-

Boc-glycine methyl ester (948 mg, 5 mmol) in methanol (20 mL). The reaction mixture 

was stirred at room temperature for 6 h and concentrated to an oil that was partitioned 
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between water and dichloromethane.  The combined organic extracts were dried and 

concentrated to an oil that was purified by flash chromatography eluting with ethyl 

acetate : methanol : triethylamine (50:50:1).  Product fractions were concentrated to 

give 18 (544 mg, 50% yield) as an oil: 1H NMR (400 MHz, CDCl3): δ 6.58 (br s, 1H), 

5.23 (br s, 1H), 3.77 (d, J = 5.8 Hz, 2H), 3.31 (m, 2H), 2.83 (br s, 2H), 1.44 (s, 9H), 1.26 

(s, 2H);  MS (ESI): m/z 218.2 (M+1)+.   

Tert-Butyl (2-((3-aminopropyl)amino)-2-oxoethyl)carbamate (19).  Reaction of 1,3-

propanediamine (17; 16.8 ml, 200 mmol), as described for the synthesis of 18,  gave 19 

(600 mg, 52% yield): 1H NMR (400 MHz, CDCl3): δ 7.10 (br s, 1H), 5.29 (br s, 1H), 3.74 

(d, J = 5.8 Hz, 2H), 3.35 (q, J = 6.2 Hz, 2H), 2.77 (t, J = 6.3 Hz, 2H), 1.75 – 1.60 (m, 

4H), 1.42 (s, 9H);  MS (ESI): m/z  232.1 (M+1)+, 254.1 (M+Na)+. 

Tert-Butyl (9-((3aR,4R,6R,6aR)-6-(11,11-dimethyl-6,9-dioxo-10-oxa-2,5,8-

triazadodecyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-9H-purin-6-

yl)carbamate (20).  To a solution of 8 (203 mg, 0.5 mmol) in 1,2-DCE (2 mL) at 0 oC 

was added 18 (120 mg, 0.55 mmol) dissolved in 1,2-DCE (1 mL), followed by sodium 

triacetoxyborohydride (148 mg, 0.7 mmol). The reaction mixture was stirred overnight at 

room temperature, quenched with saturated aq. NaHCO3, and distributed between 

dichloromethane and water.  The combined organic extracts were dried and 

concentrated to an oil that was purified by flash chromatography eluting with 

dichloromethane : methanol (19:1).  Product fractions were combined and concentrated 

to give 20 (130 mg, 43% yield): 1H NMR (400 MHz, CDCl3 + D2O): δ 8.72 (s, 1H), 8.13 

(s, 1H), 6.07 (s, 1H), 5.48 – 5.41 (m, 1H), 4.99 (s, 1H), 4.35 (s, 1H), 3.77 (d, J = 5.3 Hz, 

2H), 3.34 – 3.21 (m, 2H), 2.92 – 2.60 (m, 4H), 1.61 (s, 3H), 1.56 (s, 9H), 1.42 (s, 9H), 

1.39 (s, 3H). 

tert-Butyl (9-((3aR,4R,6R,6aR)-6-(12,12-dimethyl-7,10-dioxo-11-oxa-2,6,9-

triazatridecyl)-2,2-dimethyltetrahydrofuro[3,4-d][1,3]dioxol-4-yl)-9H-purin-6-

yl)carbamate (21). Reaction of 19 (127 mg, 0.55 mmol) with 8 followed by purification, 

as described for the synthesis of 20, gave 21 (153 mg, 48% yield):  1H NMR (400 MHz, 

CDCl3): δ 8.70 (s, 1H), 8.10 (s, 1H), 7.15 (d, J = 6.5 Hz, 1H), 6.09 (d, J = 2.5 Hz, 1H), 
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5.47 – 5.36 (m, 2H), 5.07 (dd, J = 6.4, 3.4 Hz, 1H), 4.50 – 4.47 (m, 1H), 3.68 (d, J = 5.8 

Hz, 2H), 3.30 (d, J = 6.2 Hz, 2H), 3.20 – 3.08 (m, 2H), 2.81 – 2.71 (m, 2H), 1.80 – 1.70 

(m, 2H), 1.60 (s, 3H), 1.55 (s, 9H), 1.42 (s, 9H), 1.37 (s, 3H). 

 

2-Amino-N-(2-((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-

dihydroxytetrahydrofuran-2-yl)methyl)amino)ethyl)acetamide (4).   To a solution of 

20 (130 mg, 0.21 mmol) in dichloromethane (0.8 mL) at 0 oC was added water (0.2 mL) 

and TFA (1.1 mL).  The mixture was stirred at room temperature overnight and 

concentrated to a residue  that was dissolved in methanol : water (5:95) and purified by 

preparative reverse-phase HPLC (Restek Ultra C18, 5 µm, 150 x 21.2 mm column; flow 

rate of 10 mL/min using an isocratic elution of 2% acetonitrile in water for 10 min) 

followed by concentration and lyophilization of fractions yielding 4 (44 mg, 56% yield):  

1H NMR (400 MHz, DMSO-d6 + D2O):  δ 8.47 (s, 1H), 8.31 (s, 1H), 5.97 (d, J = 5.4 Hz, 

1H), 4.65 (t, J = 5.0 Hz, 1H), 4.23 – 4.19 (m, 2H), 3.51 (s, 2H), 3.46 – 3.30 (m, 4H), 3.08 

– 2.99 (m, 2H); MS (ESI): m/z 367.1 (M+1)+.  

2-Amino-N-(3-((((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-

dihydroxytetrahydrofuran-2-yl)methyl)amino)propyl)acetamide (5). To a solution of 

21 (185 mg, 0.3 mmol) in dichloromethane (1.2 mL) at 0 oC was added water (0.3 mL) 

and TFA (1.5 mL).  The mixture was stirred at room temperature overnight and 

concentrated to a residue  that was dissolved in methanol : water (5:95) and purified by 

preparative reverse-phase HPLC (Restek Ultra C18, 5 µm, 150 x 21.2 mm column; flow 

rate of 10 mL/min using an isocratic elution of 2% acetonitrile in water for 10 min) 

followed by concentration and lyophilization of fractions yielding  5 (62 mg, 54% yield): 

1H NMR (400 MHz, DMSO-d6 + D2O):  δ 8.42 (s, 1H), 8.31 (s, 1H), 5.95 (d, J = 5.3 Hz, 

1H), 4.63 (t, J = 5.0 Hz, 1H), 4.25 – 4.15 (m, 2H), 3.50 (s, 2H), 3.36 (dd, J = 13.2, 9.6 

Hz, 1H), 3.24 (dd, J = 13.4, 2.8 Hz, 1H), 3.12 (t, J = 6.8 Hz, 2H), 2.90 (t, J = 7.7 Hz, 2H), 

1.79 – 1.64 (m, 2H);  MS (ESI): m/z 381.1 (M+1)+. 
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3.3.3 Molecular Modeling 

The designed compounds were converted to 3D structures using the program of 

LigPrep 2.5. All parameters were set to the default values except that the “Ionization” 

was set to “Epik”. The DOT1L:SAM complex (PDB ID: 1NW3) was energy-minimized, 

upon addition of hydrogen atoms, using the OPLS-AA 2005 force field within the Protein 

Preparation Wizard of Schrödinger. The compounds were docked and scored using 

Glide 5.7 extra precision (XP) with options kept at default settings. The receptor grids 

were prepared with a 20 Å side length with the centroids in the centers of SAM. 

3.3.4 In vitro DOT1L histone methyltransferase assay 

The evaluation of DOT1L inhibitors by in vitro histone methyltransferase assay was 

carried out as described in chapter 2. 

3.4 Conclusions 

In this chapter, we have applied de novo ligand design using the crystal structure of the 

DOT1L catalytic domain (1NW3) towards developing SAM derivatives as novel DOT1L 

inhibitors followed by biochemical evaluation of synthesized compounds. A convergent 

synthetic approach was utilized to install different moieties as bioisosteres of the 

methionine tail of SAM. Introduction of a rigid linker between adenosine and the amino 

acid tail, 2, compromised hydrogen bonding interactions between the ribose portion of 

adenosine and Glu 186, but positioned the amino acid portion of 2 in the same 

orientation as SAM. Two analogues, 5 and 4, with a flexible amide linker off the 5’-

position of adenosine and -amino acetamide tail, allowed interactions between ribose 

and Glu 186 to be maintained, but did not fully recapitulate the network of hydrogen 

bonding between amino acid tail of SAM and DOT1L. Overall, disruption of the 

hydrogen bond network between our designed small molecules and DOT1L resulted in 

a marked loss of potency for inhibition of DOT1L HMTase activity in vitro.  

Importantly, the synthetic strategy described here for the convergent synthesis of SAM 

analogues represents a novel synthetic methodology for a range of 5’-position 

adenosine modifications. This synthetic route will be useful for making related 



103 
 

compounds in which moieties off the 5’-position of adenosine (or related nucleoside 

congeners) can be easily constructed via reductive amination of a precursor 5’-

carboxaldehyde. Thus, the utility clearly extends beyond SAM analogues, as adenosine 

is a useful scaffold for the development of numerous potential classes of inhibitors.  
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CHAPTER 4 

Regulation of the Wnt Signaling Target Gene Expression by the Histone 

Methyltransferase DOT1L 

4.1 Introduction 

The “classical,” also called canonical, Wingless-type (Wnt) signaling pathway is one of 

the most relevant pathways involved in normal cell growth and differentiation (1). Some 

of the Wnt pathway antagonists are epigenetically deregulated in cancer models and 

many studies attempted to characterize the role of epigenetic alterations of the Wnt 

pathway in human cancers (2-6). Upon activation of Wnt signaling the central effector 

molecule, β-catenin, translocates to the nucleus and interacts with TCF/LEF 

transcription factors to activate the expression of Wnt-pathway target genes (7). 

Additional transcriptional coactivators are recruited by β-catenin including several 

chromatin modifying enzymes such as the histone acetyltransferases CBP/P300 and 

TRRAP/TIP60 as well as the histone methyltransferase complexes MLL1/MLL2 (8).  

In order to investigate the composition of DOT1L containing multi-protein complexes in 

MLL-translocation leukemias and to identify novel interacting partners, DOT1L was 

immunoprecipitated and interacting proteins were identified by mass spectrometry.  

These studies led to the identification of a multi-protein complex known as Dot1-

containing complex (DotCom), comprising MLL fusion partners together with known 

components of the Wnt signaling pathway, Skp1, TRRAP, and β-catenin, linked H3K79 

methylation to the Wnt signaling pathway (9). Subsequently, knockdown of Dot1 and 

Dot1-associated proteins in Drosophila decreased expression of a subset of Wingless 

target genes (9). In mouse intestinal crypts and human colon cancer cells DOT1L and a 
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known interacting partner, AF10, were identified in complex with the Tcf4 transcription 

factor, a key effector molecule for β-catenin (10). Functional studies demonstrated that 

β-catenin recruits AF10/DOT1L proteins to the regulatory regions of several Wnt target 

genes, resulting in deposition of H3K79 methylation over their coding regions. Depletion 

of AF10 in cell lines impaired DOT1L recruitment to TCF4/β-catenin target genes and 

identifies AF10 and DOT1L as essential co-activators of Wnt-dependent transcription 

(10). In a model of chondrogenesis, the inhibition of DOT1L expression by RNAi led to 

reduced expression of three Wnt-regulated genes (Tcf1, AXIN2, c-MYC) (11). While 

these studies suggest a key role for DOT1L in Wnt signaling, others have demonstrated 

that DOT1L is not required for homeostasis of the intestinal epithelium which is 

regulated through Wnt signaling. A conditional DOT1L knockout murine model 

demonstrated no gross defects of the intestinal epithelium despite the absence of 

H3K79 methylation (12). Additionally, a tissue specific genetic approach was used to 

investigate a large number of Wnt target genes in mammalian LGR5+ intestinal 

epithelial cells and demonstrated that DOT1L is not essential for activation of Wnt target 

genes or maintenance of intestinal homeostasis and function (13). 

Based on these complex findings, there is a need for further studies to elucidate the role 

of DOT1L in Wnt signaling. Of note, in all these reports, DOT1L’s biological role was 

studied by utilizing genetic approaches to knockdown DOT1L protein levels and H3K79 

methylation. However, it is not clear at this time whether previous findings of the 

functional consequences of genetic loss of DOT1L are due to disruption of DOT1L 

containing multi-protein complexes or loss of H3K79 methylation. Therefore, our 

approach to assess the role of DOT1L in Wnt signaling was to specifically inhibit 

methyltransferase activity of DOT1L using the small molecule inhibitor EPZ004777 as a 

chemical tool.  

4.2 Results 

4.2.1 DOT1L H3K79 methylation affect on canonical Wnt-pathway reporter gene 
expression 

To examine whether DOT1L mediated methylation of H3K79 is required for activation of 

canonical Wnt signaling, the TOPflash luciferase reporter assay which contains 
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TCF/LEF binding sites in a reporter plasmid and is specifically activated in response to 

Wnt pathway agonists was utilized (14) in conjunction with the control plasmid with 

mutated TCF binding sites, FOPflash. Due to the inactive basal activity of Wnt signaling 

in HEK293 cells, activation of the Wnt signaling pathway was achieved by inhibition of 

GSK3 with the small molecule SB-216763 in HEK293 cells (15). Inhibition of GSK3 

prevents phosphorylation and degradation of β-catenin, resulting in transcriptional 

activation of β-catenin/TCF targets in HEK293 cells. As was expected, the TOPflash 

expression in HEK293 cells was significantly induced upon treatment with SB-216763 

(Figure 4.2.1). To determine whether H3K79 methylation is required for the activation of 

TOPflash expression, HEK293 cells were pretreated with the DOT1L inhibitor 

EPZ004777 for four days, prior to transfection with the TOPflash reporter and activation 

with SB-216763. Cells were maintained in the presence of 3 µM EPZ004777 for the 

duration of the experiment and the inhibition of DOT1L resulted in decrease of H3K79 

methylation (Figure 4.2.1a). However, the TOPflash reporter activation was not affected 

by the loss of H3K79 methylation (Figure 4.2.1a).  

 

Figure 4.2.1 Activation of a β-catenin-TCF/LEF regulated reporter gene by SB-
216763 in HEK293 cells after inhibition of DOT1L histone methyltransferase 
activity. Relative luciferase expression ratio of TOPflash/FOPflash reporter activity and 
western blot of histone extracts from HEK293 cells after (a) four days and (b) ten days 
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treatment with 3 µM EPZ004777, followed by 24 hour Wnt-signaling pathway activation 
with 5 µM SB-216763. (*p = <0.05, n= 6, two-way ANOVA)  
 

It is known that EPZ004777 requires longer time of treatment in order to show effect 

and influence the expression of MLL target genes such as Hoxa9 and Meis1 (16). Thus, 

HEK293 cells were pretreated with EPZ004777 for ten days and as expected H3K79 

methylation was significantly reduced (Figure 4.2.1b). Nevertheless, the TOPflash 

expression was not affected (Figure 4.2.1b) consistent with the four day time point. 

These results demonstrate that expression of the TOPflash luciferase reporter does not 

require DOT1L HMTase activity or H3K79 methylation.  

4.2.2 Effects of DOT1L inhibition on activation of the endogenous Wnt target gene 
AXIN2 

To further confirm this result, the expression of the representative, well characterized, 

endogenous Wnt target gene AXIN2 was measured in HEK293 cells upon activation of 

the Wnt signaling pathway and treatment with EPZ004777. It has been reported that 

DOT1L is recruited to the AXIN2 gene upon induction of Wnt signaling in an AF10-

dependent manner resulting in increased H3K79 methylation at the gene promoter and 

transcribed gene body (10). Reports also demonstrate that AXIN2 gene expression is 

induced upon GSK3 inhibition with SB-216763 (17). Consistent with these reports, after 

treatment of HEK293 cells with GSK3 inhibitor, AXIN2 gene expression was significantly 

induced. However, loss of H3K79 methylation after treatment with EPZ004777 for two 

and seven days (Figure 4.2.2) did not affect the expression of AXIN2 (Figure 4.2.2). 

Importantly, the housekeeping control gene β-actin was the same under EPZ004777 

treatment conditions demonstrating that the activation of AXIN2 was specific to Wnt 

signaling and not a broad transcriptional change. These results are consistent with the 

observations from the TOPflash reporter assay and demonstrate that H3K79 

methylation is not required for Wnt-regulated transcription and activation of the 

representative canonical Wnt signaling target gene, AXIN2.   
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Figure 4.2.2 Expression of the endogenous Wnt target gene AXIN2 in HEK293 
cells after inhibition of DOT1L histone methyltransferase activity. Western blot of 
histone extracts and qRT-PCR analysis of gene expression normalized to GAPDH from 
HEK293 cells after (a) two days and (b) seven days treatment with EPZ004777 (10 µM 
and 3 µM, respectively) followed by 24 hours Wnt-signaling pathway activation with 10 
µM SB-216763 treatment. (* p = <0.05, n= 6, two-way ANOVA) 

 
4.2.3 Effects of DOT1L inhibition on human colon carcinoma cell lines 

Because these studies were performed in HEK293 cells which do not have 

constitutively activated Wnt signaling, we next examined two human colon 

adenocarcinoma-derived cell lines containing mutations in  β-catenin, LS174T (18), and 

APC, SW480 (14), leading to constitutive activation of the Wnt signaling pathway and 

expression of target genes. Activation of the Wnt signaling pathway is a critical event in 

the development of colon cancer, thus understanding the regulatory pathways that 

influence Wnt signaling might led to novel therapies beyond that of APC and β-catenin.  

To investigate the requirement of DOT1L HMTase activity for maintaining expression of 

endogenous Wnt target genes in these two cell lines, cells were treated with 

EPZ004777 using three different concentrations. Four days treatment of SW480 cells 

with EPZ004777 resulted in decreased H3K79 methylation (Figure 4.2.3a). TOPflash 

expression was analyzed in SW480 cells upon inhibition of DOT1L HMTase activity. 

SW480 cells have a high TOP/FOP expression ratio, as expected due to the “Wnt on” 
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state of the cells and were able to maintain similar expression of the TOPflash 

luciferase reporter even after treatment with 3 µM EPZ004777 for four days and loss of 

H3K79 methylation (Figure 4.2.3a). Quantitative RT-PCR analysis of treated cells 

revealed that selected known Wnt-dependent target genes, AXIN2, EPHB3, LGR5, 

ASCL2, and c-MYC, were present in H3K79me2-decreased cells at levels similar to or 

slightly higher than the levels in control untreated cells (Figure 4.2.3a). Inhibition of 

DOT1L HMTase activity over a longer time period of seven and ten days produced the 

same result (Figure 4.2.4). These results are consistent with the effects on TOPflash 

reporter gene expression. Importantly, the cell growth of SW480 cells was not affected 

after treatment with the DOT1L inhibitor up to ten days (Figure 4.2.5). Overall, the 

results demonstrate that DOT1L-mediated H3K79 methylation is not essential to 

maintain the expression of Wnt pathway target genes in SW480 cells.  

In LS174T cells decreased H3K79 methylation (Figure 4.2.3b), resulted in mixed dose-

dependent effects on Wnt target gene expression (Figure 4.2.3b). The well 

characterized and validated Wnt target genes, LGR5, EPHB3 and c-MYC (19-21) were 

significantly decreased by loss of H3K79 methylation. These results are consistent with 

the previous report which showed that H3K79Me2 marks on LGR5 and EPHB3 genes 

correlate with their expression (13). ASCL2 gene expression was not affected by 

EPZ004777 treatment (Figure 4.2.3b).  Surprisingly, LS174T cells with reduced H3K79 

methylation had 3-fold greater TOPflash reporter expression, consistent with the higher 

expression of the Wnt target gene AXIN2 in the presence of the DOT1L inhibitor (Figure 

4.2.3b). These results suggest that in this cell line there is not a direct correlation 

between H3K79 methylation and Wnt pathway gene activation, consistent with a prior 

study using crypt basal columnar cells (CBC) expressing the cell surface protein LGR5 

(13). This study showed that LGR5, EPBH3, and AXIN2 are highly expressed in LGR5+ 

cells compared with villi cells, but H3K79 methylation levels only correlate with 

expression of LGR5 and EPBH3, while AXIN2 expression is low in villi cells regardless 

of high H3K79 methylation levels  The treatment of LS174T cells with DOT1L inhibitor 

for four days did not affect the cell growth indicating that identified changes in the Wnt 

target genes are not essential for the cell growth and proliferation (Figure 4.2.5).  
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Figure 4.2.3 Wnt target gene expression and TCF/LEF reporter activity in human colon adenocarcinoma-
derived cell lines in the absence of DOT1L enzyme activity. Western blot of histone extracts, TOPflash TCF/LEF 
luciferase reporter assay and qRT-PCR analysis of well characterized Wnt target genes in (a) SW480 and (b) LS174T cell 
lines after four days treatment with 3 µM EPZ004777. (* p <0.05, n=4, unpaired t-test) 
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Figure 4.2.4  Wnt target gene expression is not affected by loss of H3K79 methylation in SW480 
cells over a time course. (a) qRT-PCR analysis of well characterized Wnt target genes (b) western blot 
of H3K79 dimethylation in SW480 cells upon 7 days DOT1L inhibition with EPZ004777 at indicated 
concentrations. (c) qRT-PCR analysis of well characterized Wnt target genes (d) western blot of H3K79 
dimethylation in SW480 cells upon 10 days DOT1L inhibition with EPZ004777 at indicated 
concentrations.  

 

Figure 4.2.5  Proliferation of human colon cancer cell lines is not inhibited by EPZ004777. Cell 
counts of (a) SW480 cells over at 10 day time course and (b) LS174T cells after 4 days of EPZ04777 
treatment at the indicated concentrations.  
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The results obtained using two human colorectal adenocarcinoma derived cell lines 

suggest that inhibition of DOT1L activity has cell context-dependent effects, 

demonstrating either no effect on Wnt signaling pathway as in SW480 or a differential 

effects on target genes as in LS174T cells. Furthermore, these results indicate that 

H3K79 methylation is not required for maintaining the cell growth of constitutively “Wnt 

on” human colon cancer-derived cell lines.  

4.2.4 H3K79 methylation distribution in normal and colon cancer human tissue 

In order to further assess the importance of DOT1L in colon cancer, we investigated 

whether H3K79 methylation was altered in patient samples. Using 

immunohistochemical staining to probe for H3K79 dimethylation, we observed that in 

three of four tissue samples examined, H3K79 dimethylation was similar in colon 

adenocarcinoma and adjacent normal colon tissue (Figure 4.2.6a). In one of four cases 

examined, H3K79 methylation was reduced in the adenocarcinoma tissue compared 

with normal adjacent colon. Importantly, H3K79 methylation has similar distribution in 

Wnt-active basal crypts as well as Wnt-inactive superficial crypts of normal and 

cancerous colon (Figure 4.2.6).  

  
 
Figure 4.2.6. Immunohistochemical staining of H3K79 dimethylation in (a) colon 
adenocarcinoma (left) and adjacent normal colon tissue (right); (b) Normal colonic 
mucosa at high magnification showing positive H3K79 dimethylation staining in basal 
crypts (narrow arrows) and more superficial crypts (bold arrows). 
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These results demonstrate that colon carcinomas and Wnt-active tissue do not contain 

increased H3K79 methylation compared with normal and Wnt-inactive colon tissue. This 

evidence supports our findings in human colon cancer cell lines that DOT1L is not 

required for maintenance or activation of Wnt gene expression. 

4.3 Methods 

 

4.3.1 Cell culture and compound treatment 

293, SW480, or LS174T cells were cultured in DMEM (Life Technologies), 10% fetal 

bovine serum (FBS; FisherBrand), and 1% Penicillin/Streptomycin (Life Techlonogies)  

in the presence of EPZ004777 or DMSO control and were split and replated with fresh 

media and compound every 3-4 days. 293 cells were treated with 5 or 10 µM SB-

261763 (Selleck Chemicals) for 24 hr prior to harvesting. 

4.3.2 β-catenin-TCF/LEF luciferase reporter (TOPflash) assay 

Upon pretreatment of cells with indicated concentrations of EPZ004777 or DMSO, cells 

were transfected with TOPflash or FOPflash reporter plasmids in conjunction with a 

renilla-luciferase reporter as a transfection control using Fugene6 (Roche) following 

manufacturer recommendations. After 24 hr 293 cells were treated with 5 µM SB-

216763 after an additional 24 hr cell lysate was collected and luciferase measured using 

the dual luciferase reporter assay (Promega).  

4.3.3 qRT-PCR analysis of gene expression 

RNA was isolated by Trizol (Invitrogen) and purified by RNeasy mini kit (Qiagen). cDNA 

was synthesized using SuperScript III first-strand synthesis (Invitrogen). qPCR analysis 

was carried out using Power SYBR green PCR master mix (Applied Biosystems) on an  

7500 RT-PCR system instrument (Applied Biosystems). 

4.3.4 Western blot analysis of H3K79 methylation 

Histones were extracted as described (16) and protein concentration was determined 

using Bradford assay (Bio-Rad) and normalized. Samples were denatured by in SDS-
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loading buffer and heating and separated on 4-20% Tris-Glycine gel (Invitrogen). 

Protein was transferred to PVDF membrane (Millipore) and probed with antibodies from 

Abcam, histone H3 (ab1791), H3K79 Me1 (ab2886), or H3K79Me2 (ab3594).  Followed 

by goat anti rabbit HRP conjugated secondary antibody (GenScript) and signal 

developed with Lumi-light western blot substrate (Roche) before exposure to 

autoradiography film (Denville). 

4.3.5 Immunohistochemical staining 

Immunohistochemical analysis of H3K79Me2 was carried out as previously described 

(12) using anti-H3K79Me2 (ab3594) rabbit polyclonal antibody 1:1,500, 30 minutes. 

4.4 Conclusion 

Utilizing a chemical biology approach enabled a novel perspective on the role of DOT1L 

in Wnt signaling by specifically inhibiting H3K79 methylation activity as opposed to 

genetic elimination of all DOT1L protein expression and function. The studies of DOT1L 

activity in human colorectal adenocarcinoma cell lines indicate that there is not a 

conserved dependence on DOT1L H3K79 methylation for expression of Wnt target 

genes or maintenance of cell growth. Taken together, these results demonstrate that 

DOT1L H3K79 methylation activity is not essential for a general mechanism of 

activation or maintenance of Wnt target gene expression. For some Wnt target genes 

such as EPHB3, LGR5 and c-MYC, DOT1L H3K79 methylation may play a role in 

sustaining gene expression. As is the case for most cellular genes with complex 

regulation by a constellation of different transcription factors and chromatin remodeling 

complexes, variation in the expression of Wnt pathway-regulated genes by DOT1L 

H3K79 methylation may reflect effects on other proteins and pathways in cultured 

human cancer cell lines, indicating cell context-dependent mechanism. For example it is 

known that C-MYC gene is also regulated by p53 (22), the transciption factor NFAT1 

(23), and AKT kinase (24). Thus, the effects seen on some Wnt target genes upon 

DOT1L H3K79 methylation inhibition in the LS174T cell line may reflect the broader role 

of DOT1L in transcriptional regulation as opposed to a specific role for DOT1L function 

as a cofactor in Wnt pathway-dependent transcriptional regulation. Furthermore, the 



116 
 

TOPflash reporter system does not require H3K79 methylation for activation or 

maintnance of a TCF/LEF reporter activity. 

In conclusion, DOT1L is an important general regulator of transcriptional activation 

through H3K79 methylation but is not essential for Wnt pathway target genes. Thus, the 

use of a potent and selective DOT1L inhibitor as a targeted therapy for treatment of 

patients with MLL rearrangement leukemia would seem to pose little risk for disruption 

of Wnt signaling in intestinal homeostasis or potential side effects in intestinal tissues. 

Furthermore, the results demonstrate that TCF/β-catenin target genes do not require 

H3K79 methylation for continued expression and H3K79 methylation is not dysregulated 

in human colorectal cancer samples. As such, DOT1L would not seem to represent a 

good candidate for therapeutic intervention in colon cancer.  
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CHAPTER 5 

5.1 Conclusions and future directions 

The histone methyltransferase DOT1L plays a critical role in leukemias bearing 

translocations of the MLL gene. Inhibiting the histone H3 lysine 79 (H3K79) 

methyltransferase activity of DOT1L represents an attractive therapeutic strategy for the 

treatment of ALL and AML leukemias resulting from MLL-rearrangements. Furthermore, 

DOT1L has been implicated as a possible transcriptional coactivator of TCF/β-catenin in 

Wnt signaling. However, the role of DOT1L HMTase activity has not been fully 

addressed by present studies utilizing genetic approaches. Herein we have presented 

several approaches for the identification and biological characterization of novel DOT1L 

inhibitors and utilized a potent and selective small molecule as a chemical tool to probe 

the function of DOT1L HMTase activity in Wnt signaling.  

5.1.1 Inhibitors of H3K79 methylation identified through biochemical screening  

In chapter one, we disclosed several inhibitors of H3K79 methylation. The most potent 

of which, UMD-7, was identified through biochemical screening. Through secondary 

validation studies we demonstrated that UMD-7 and related sulfo-naphthyl compounds 

inhibit H3K79 methylation by binding to the substrate core histones and not the target, 

DOT1L. These compounds demonstrate rapid inhibition of H3K79 methylation within 24-

48 hr as compared to SAM analog DOT1L inhibitors (1). Furthermore, UMD-7 inhibition 

of H3K79 methylation recapitulates the cellular phenotype observed by genetic loss of 

DOT1L including induction of apoptosis, cell cycle arrest in G0/G1 phase, and induction 

of differentiation.  

Due to the novel mechanism of H3K79 methylation inhibition, UMD-7 may offer a 

unique chemical tool to study the effect of rapid loss of H3K79 methylation. Several 



120 
 

questions remain to be clarified for this class of compounds. A rigorous demonstration 

of UMD-7 binding to the biologically relevant nucleosome substrate is important to 

support binding to histones as the proposed cellular mechanism of H3K79 methylation 

inhibition. Isothermal titration calorimetry (ITC) is one biophysical method that could be 

used to verify binding of UMD-7 to nucleosomes and has been used to demonstrate 

binding of other compounds to histone H3 (2).  Determining exact binding site of UMD-7 

to core histones would facilitate the chemical optimization of these compounds and lead 

to a mechanistic understanding of its specificity for H3K79 methylation inhibition. It is 

possible that UMD-7 binds to a region of histone H3 around lysine 79 or perhaps and 

allosteric site. It is know that H2B ubitquitination (3-5) and an acidic patch of histone H4 

effect H3K79 methylation (6, 7).  

Additionally, it will be interesting to investigate how UMD-7 results in rapid H3K79 

methylation mark removal in contrast to DOT1L-binding inhibitors which require longer 

treatment. One possibility is that small molecule binding to the histones induces a 

histone turnover as a quality control mechanism. Until now, inhibitors of H3K79 

methylation acting through direct targeting of DOT1L demonstrate slow kinetics of 

H3K79 methylation inhibition. The slow loss of H3K79 methylation is attributed to 

replication dependent histone turnover (8) . However, histone turnover at specific gene 

loci is a dynamic process regulated by numerous histone chaperone proteins and 

incorporation of histone variants such as H3.3 is associated with active gene 

transcription and corresponding epigenetic marks (9).  To further probe the rapid H3K79 

methylation loss, the rate of histone turnover should be measured in the presence of 

UMD-7 in mammalian cells as demonstrated by others to investigate the incorporating 

of histone variants into chromatin (9). It is possible that binding to nucleosomes directly 

induces a replication-independent mechanism of histone turnover responsible for the 

rapid loss of H3K79 methylation. Should UMD-7 demonstrate H3K79 methylation 

inhibition regardless of replication it may provide a useful tool for investigating the role 

of H3K79 methylation in cell culture systems with little to no replication such as in 

primary cultured neurons.  In summary, UMD-7 provides a chemical tool for inhibition of 

H3K79 methylation in cells with a novel mechanism that warrants further investigation.  
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5.1.2 DOT1L inhibitors identified by virtual screening and de novo design 

DOT1L binding small molecule inhibitors of H3K79 methylation were identified through 

structure based virtual screening followed by biochemical validation discussed in 

Chapter 2. Using the reported structure of DOT1L with SAM (PB ID 1NW3) (10) and a 

modeled complex between DOT1L and EPZ004777,  virtual screening was employed 

and a nucleoside analog focused library of SAM analogues was screened. Based on the 

obtained results, 210 compounds were selected for biochemical validation as DOT1L 

inhibitors. This resulted in identification of 7 inhibitors with IC50 from 32 – 168 µM. 

Biophysical evaluation of these compounds demonstrated that they bind to DOT1L in 

the SAM binding site as predicted by computational modeling. Furthermore, the most 

potent of these compounds demonstrated selective cellular inhibition of H3K79 

methylation in a murine model cell line containing the MLL fusion protein MLL-AF9.  

To establish a robust chemical synthetic route which will allow synthesis of novel, more 

potent nucleoside analogs based on the confirmed hits, a novel synthetic pathway was 

established. For this purpose, we designed and synthesized several SAM analogues 

modified at the 5’ position of adenosine, discussed in Chapter 3.  Our designed  SAM 

analogues took advantage of the crystal structure of DOT1L with SAM (PB ID 1NW3) 

and led to introduction of a rigid linker between the ribose and the amino acid tail of 

SAM and bioisosteric replacement of the amino acid with an -amino acetamide moiety. 

Ultimately, we established a novel and convenient synthetic pathway for installing 

modifications at the 5’ adenosine or related nucleoside congeners that has utility 

beyond SAM analogues to build off of nucleoside scaffolds for numerous potential 

classes of inhibitors. However, the in vitro DOT1L inhibition potency of synthesized 

compounds was low compared to SAM which demonstrates the exquisite sensitivity of 

the SAM binding pocket to alterations in small molecule ligand structure confirmed by 

others (11).  

Future studies of the confirmed nucleoside based DOT1L inhibitors should entail 

optimization of the chemical structures for improved potency and pharmacokinetic 

properties. A great deal of progress has been made on DOT1L inhibitors during the 

course of our studies and others have reported thorough SAR of the 5’ tail modifications 
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of adenosine (11-14). However, even the most potent DOT1L inhibitor, EPZ-5676, 

suffers from poor biological stability due to the inherent metabolically labile adenosine 

based scaffold (8). Some efforts have been made to replace the ribose portion of 

DOT1L inhibitors with cyclopentane or cyclopentene derivatives with modest 

improvement in metabolic in vitro stability assays (12). Future efforts to improve DOT1L 

inhibitor stability could possibly take advantage of the optimized tail portion of SAM in 

EPZ-5676 with designed bioisosteres of the ribose and adenine moieties.  

5.1.3 Expanding therapeutic implications for DOT1L inhibitors  

In addition to chemical modifications of current inhibitors, expanding the implications for 

these compounds as therapeutics is important. Due to the early phase I success of 

DOT1L inhibitors demonstrating low toxicity, it may prove useful to test the suitability of 

DOT1L inhibitors in other forms of leukemia with MLL-translocations that do not directly 

interact with DOT1L or do not contain MLL-translocation. For instance, EPZ004777 has 

been demonstrated to be effective in inhibiting the growth of MLL-AF6 transformed 

murine cells and the AML cell line ML2, containing the MLL-AF6 fusion protein (15). The 

effectiveness of DOT1L inhibition in MLL-AF6 transformed cell lines is intriguing 

because MLL-AF6 is a cytoplasmic fusion protein and contrary to other MLL-fusion 

partners such as AF9, AF10, and ENL, AF6 has not been shown to directly interact with 

DOT1L. Other MLL-translocations resulting in internal partial tandem duplications 

(PTDs) of MLL which lead to leukemia have also been shown to be sensitive to 

inhibition of DOT1L. In human leukemia cell lines bearing MLL-PTDs, MUTZ-11 and 

EOL-1, treatment with EPZ004777 reduced cellular proliferation and lead to apoptosis 

and differentiation (16). Interestingly the downstream effects of Hoxa gene cluster 

downregulation as a result of DOT1L inhibition are similar in MLL-AF6 and MLL-PTD 

leukemias compared with MLL-translocations that directly interact with DOT1L. The 

mechanism of DOT1L recruitment and H3K79 dysregulation at Hoxa genes in these cell 

lines may be different from the C-terminal fusion protein mediated recruitment model 

proposed for other MLL-fusion proteins.  

Further studies elucidating the role for DOT1L and H3K79 methylation dysregulation in 

leukemias with MLL-translocations that do not directly interact with DOT1L would be 
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useful to predict which genetic aberrations leading to leukemia would be sensitive to 

DOT1L inhibition as a therapeutic strategy. As MLL and DOT1L both exist in multi-

protein complexes it is possible that other MLL-interacting factors such as the 

polymerase associated factor complex (PAFc) may play a role in indirectly regulating 

H3K79 methylation. Recruitment of PAFc to MLL-target genes through the N-terminal 

portion of MLL, maintained in MLL-fusion proteins and MLL-PTDs has been shown to 

promote Hox gene expression and leukemogenesis (17).  The hypothesis that PAFc 

mediated dysregulation of H3K79 methylation could be tested by investigating the 

localization of DOT1L to MLL target genes such as Hoxa genes in the presence of wild 

type or MLL-PTDs with partial deletions of PAFc or expression of dominant negative 

fragments that block PAFc recruitment to MLL-target genes. Furthermore, PAFc is 

important for regulating H2B-ubiquitination which promotes H3K79 methylation through 

histone cross talk (17). Probing the levels of H2B ubiquitination and H3K79 methylation 

at MLL-target genes upon disruption of PAFc recruitment could help to elucidate 

whether PAFc is important for mediating the sensitivity of MLL-PTD cell lines to DOT1L 

inhibition. 

Furthermore, some evidence shows that EPZ004777 has efficacy in reducing the 

proliferation of primary AML cells without any MLL translocations, but instead harboring 

mutations of the isocitrate dehydrogenase (IDH) genes IDH1 and IDH2 (18). These 

mutations lead to important epigenetic changes unrelated to histone methylation but 

rather DNA hypermethylation as a result of inhibition of TET-2 mediated 5-

hydroxymethylation (19). This process occurs as a result of mutations in IDH that 

produce the oncometabolite 2-hydroxygluterate (2-HG) which inhibits numerous 

enzymes involved in epigenetic regulation (20). Interestingly, mutations in IDH1 and 

IDH2 show dysregulation of numerous histone methylation marks, including increased 

global H3K79 methylation. The mechanism by which these mutations lead to alterations 

in H3K79 methylation and how they may regulate DOT1L is not understood and 

presents an attractive avenue for future investigation. 

Although our studies demonstrate that DOT1L is not likely a viable therapeutic target 

colon cancer, it may prove useful to investigate the targeting of DOT1L in other solid 
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tumors. Due to the diverse role of DOT1L in normal development and the availability of 

low toxicity potent and selective inhibitors, EPZ004777 and EPZ-5676 the efficacy of 

DOT1L inhibition should be investigated in numerous human malignancies. One 

possibility is to screen a diverse panel of human cancer cell lines for growth inhibition in 

the presence of DOT1L inhibitors. The National Cancer Institute (NCI) provides a panel 

of 60 human cancer cell lines for the screening of potential anticancer drugs that would 

provide and important starting point for this experiment. An additional important 

consideration for this type of study is that DOT1L inhibition shows slow growth inhibition 

kinetics in sensitive leukemia cell lines often taking seven days or more for noticeable 

effects.  

5.1.4 DOT1L in Wnt signaling 

We investigated the role of DOT1L in Wnt signaling using a chemical biology approach 

in human cell lines including two colon carcinoma cell lines with mutations in the Wnt 

signaling pathway. Our findings indicate that there is a cell context dependent effect of 

H3K79 methylation on the expression of endogenous Wnt target genes. Importantly, 

DOT1L HMTase activity is not required for activation or maintenance of expression of a 

TCF/β-catenin dependent reporter gene. These findings are in agreement with previous 

studies utilizing genetic approaches (21-23) and suggests that DOT1L is likely not a 

viable therapeutic target in colon cancer.  

Due to the importance of Wnt signaling in maintenance of leukemia stem cells (24-28), 

investigating the role of DOT1L as a transcriptional coactivator of Wnt target genes in 

the context of leukemia could provide valuable insight into the contribution of Wnt 

signaling in leukemia and broaden the scope and implications of DOT1L in leukemia. In 

order to address whether or not DOT1L is important for Wnt signaling in the context of 

leukemia, chemical and genetic approaches can be used in parallel.  

Utilizing the conditional knockout model of DOT1L (22), murine bone marrow can be 

transformed with various leukemogenic oncogenes such as MLL-AF9, Hoxa9/Meis1, 

and E2A-HLF. Upon transformation with each of these oncogenes, exogenous wild type 

DOT1L, an enzymatically inactive RCR DOT1L mutant, a ten amino acid deletion 
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(Δ10aa) DOT1L mutant, or a control vector can be introduced to replace the subsequent 

removal of endogenous DOT1L. Next, endogenous DOT1L can be knocked out upon 

treatment with 4-hydroxy tamoxifen (4-OHT) which induces the expression of Cre 

recombinase that excises the floxed DOT1L gene. Based on previous studies, the MLL-

AF9 transformed cells proliferation will be inhibited after several days of DOT1L 

knockout with vector control unless rescued by exogenous wild type DOT1L. Thus, the 

wild type DOT1L will rescue the colony forming ability and growth potential of MLL-AF9 

cells upon the excision of endogenous DOT1L. However, introducing an enzymatically 

inactive RCR mutant or a mutant with a 10 amino acid deletion (Δ10aa), mediating the 

interaction with MLL-AF9, will not rescue the colony forming abilities of MLL-AF9 

transformed bone marrow (22, 29). Hoxa9/Meis1 and E2A-HLF transformed cells will 

proliferate without the presence of endogenous DOT1L since they do not depend on 

DOT1L and the removal of endogenous DOT1L by Cre excision provides an excellent 

genetic tool to examine the effects of reintroduced DOT1L mutants.  

This system can be utilized to study the role of DOT1L in Wnt signaling in leukemic cells 

by using the MLL-AF9, Hoxa9/Meis1, and E2A-HLF transformed cells, transfecting them 

with wild type DOT1L,  enzymatically inactive RCR DOT1L mutant, or Δ10aa DOT1L 

followed by inducing knockout of endogenous DOT1L, then measuring the effects on 

Wnt target gene expression. Depending on the basal level of Wnt signaling in these 

cells, if Wnt signaling is low, exogenous Wnt ligand or chemical activators of Wnt 

signaling such as SB216763 can be added to induce activation of Wnt target genes.  

Additionally, these tools could be used to address the differences between DOT1L 

enzymatic activity and recruitment by MLL-AF9. If DOT1L enzymatic activity and 

recruitment are important for Wnt signaling, we would expect that wild type DOT1L 

would be able to facilitate active Wnt target gene expression but the RCR or Δ10aa 

DOT1L mutants would have decreased Wnt target gene expression. However, as our 

data show that enzymatic activity of DOT1L is not required for Wnt target gene 

expression it is possible that previous affects observed using genetic knockdown of 

DOT1L were mediated by recruitment or scaffolding functions mediated DOT1L. In this 
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case, if recruitment but not enzymatic activity of DOT1L is essential for Wnt target gene 

expression,  

 

Figure 5.1.1 Schematic experimental design testing the role of DOT1L in Wnt 
signaling in leukemia.  

Alternatively, a chemical biology approach can be used to inhibit DOT1L H3K79 

methylation activity in MLL-AF9, Hoxa9/Meis1, and E2A-HLF transformed murine bone 

marrow. Upon inhibition of DOT1L, analysis of Wnt target gene expression can be used 

to determine whether H3K79 methylation is required for activation or maintenance of 

Wnt target genes in hematopoietic progenitor cells. These results may either confirm the 

observations made in human colorectal cancer cell lines, or provide different results that 

could implicate a tissue specific role for DOT1L in Wnt signaling.  

5.1.5 The role of DOT1L in normal hematopoiesis 

Initially, it was demonstrated that DOT1L is required for embryonic development and 

DOT1L null mice die between 9.5-13.5 days post coitum (23, 30). DOT1L deficient mice 

suffered from anemia and defective erythroid differentiation (23). Considering the 

potential for targeting DOT1L in leukemia, there is significant interest to investigate the 

role of DOT1L in normal hematopoiesis in developed mice. Therefore, conditional 

knockout models of DOT1L were developed and demonstrated that DOT1L is essential 

for maintenance of normal adult hematopoiesis and inducible knockout lead to depletion 

of hematopoietic stem cells and various lineage progenitors (granulocyte, monocyte, 

megakaryocyte, erythrocyte, and common myeloid) resulting in severe anemia and 

hypocellularity in the bone marrow (22, 31). These two studies indicate that DOT1L 
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inhibitors may potentially have serious side effects. In contrast, a third study using 

DOT1L knockout in the hematopoietic compartment starting during embryonic 

development reported that mice display anemia with hypocellularity in the bone marrow, 

but DOT1L depletion did not cause a total loss of myeloid or lymphoid development 

(32). Additional studies which target the enzymatic activity of DOT1L by treating with 

with the small molecule inhibitor EPZ004777 for 14 days demonstrate a decrease in 

committed progenitor cells that was most apparent in common myeloid progenitors and 

megakaryocyte/erythroid common progenitors; however the hematopoietic stem cell 

population was not affected (1). All of these studies provided different conclusions which 

may be caused by the differences in experimental models or the levels of DOT1L 

deletion.  

Thus, these results prompt the need for further studies to investigate the role of DOT1L 

in normal hematopoiesis as well as different strategies to target DOT1L. One 

particularly attractive approach is the targeting of protein-protein interactions between 

DOT1L and MLL-fusion proteins such as MLL-AF9 and MLL-ENL. This approach offers 

the potential benefit of inhibiting DOT1L recruitment to MLL-target genes while allowing 

for normal H3K79 methylation regulation in hematopoietic stem cells and other cellular 

lineages. Therefore, we predicted that cells containing the MLL-fusion proteins will be 

selectively sensitive to inhibitors blocking the AF9 or ENL interaction with DOT1L. 

Although it has been shown that preventing the interaction between MLL-AF9 and 

DOT1L results in a failure in transformation capabilities of MLL-AF9 (29), it needs to be 

investigated whether disruption of the AF9 or ENL interaction affects normal 

hematopoietic stem cells and lineage progenitors.   

In order to test whether inhibiting DOT1L interaction with AF9 and ENL has less affect 

on normal hematopoiesis than inhibition of H3K79 methylation activity, exogenous 

DOT1L constructs can be introduced into bone marrow from mice with conditionally 

excisable endogenous DOT1L as previously described. The ability of reintroduced 

DOT1L constructs to recapitulate the function of endogenous DOT1L shall provide 

insight into the requirement for DOT1L interaction with AF9 and ENL in normal 

hematopoiesis. To test this, the control would be introduction of wild-type DOT1L 
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construct into bone marrow of mice with floxed DOT1L allele and induction of Cre 

expression with 4-OHT to induce excision of endogenous DOT1L. The introduced wild-

type DOT1L is predicted to function in place of lost endogenous DOT1L and upon 

transplantation of that bone marrow into lethally irradiated recipient mice, should be able 

to properly restore the hematopoietic compartment, allowing the restoration of 

hematopoietic lineages and allowing the mice to survive. This system will then allow us 

to compare the differences between reintroducing DOT1L lacking enzymatic activity 

(RCR mutant) or lacking the ten amino acid sequence of DOT1L required for interaction 

with AF9 and ENL (Δ10 aa). Based on previous studies for the requirement of DOT1L in 

maintenance of adult hematopoiesis (22, 31) we predict that the DOT1L enzymatically 

inactive construct will not be able to replace lost endogenous DOT1L and that the bone 

marrow will fail to rescue the lethally irradiated recipient mice. The critical unknown that 

this experiment seeks to address is whether or not the DOT1L mutant lacking the ability 

to interact with AF9 and ENL will be able to recapitulate the function of endogenous 

DOT1L. If this is the case and bone marrow containing DOT1L with a disrupted protein 

–protein interaction motif is able to rescue lethally irradiated recipient mice, then this will 

strongly support the idea that targeting the protein-protein interaction between DOT1L 

and AF9 or ENL is more therapeutically attractive and there is less concern for toxicity 

of normal bone marrow and disruption of hematopoietic stem cells using this targeting 

approach.  

5.1.6 Summary 

The histone H3K79 methyltransferase DOT1L is an important therapeutic target in MLL-

translocations leukemias. When this work began, there were no reported inhibitors of 

DOT1L methyltransferase activity. Here we present the identification of several classes 

of novel small molecule inhibitors of H3K79 methylation with both SAM competitive 

binding to DOT1L, 2.2, and with a unique histone binding mechanism of action UMD-7. 

While this work was in progress, several other SAM competitive inhibitors have been 

reported, of which, the most developed, EPZ-5676, has entered clinical trials. The 

DOT1L inhibitors we identified and characterized in this work contribute to the growing 

knowledge of SAM analog activity as DOT1L inhibitors. Furthermore, we present a 
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novel synthetic pathway for 5’ adenosine modifications that has utility beyond DOT1L 

inhibitors for the synthesis and modification of various nucleosides.  Our discovery of 

the histone binding UMD-7 presents a novel mechanism of H3K79 methylation inhibition 

and phenocopies genetic loss of DOT1L, therefore offering a valuable chemical tool for 

probing the biological effects of H3K79 methylation inhibition.  

Lastly, we applied a chemical biology approach to investigate the role of DOT1L in Wnt 

signaling. The specific inhibition of H3K79 methylation with a chemical tool, 

EPZ004777, represents a novel approach for elucidating the function of DOT1L in Wnt 

signaling. Previous genetic approaches resulted in apparently contradictory implications 

for the necessity of DOT1L as a transcriptional coactivator of Wnt signaling. Here we 

contributed to the field of epigenetic regulation of Wnt signaling by demonstrating that 

H3K79 methylation activity is not essential for activation of canonical Wnt-pathway 

target genes.  
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Appendix I 

 
1H NMR spectra of synthesized compounds described in chapter 3.  
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