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ABSTRACT

Estimating Treatment Effects and Identifying Optimal Treatment Regimes to
Prolong Patient Survival

by

Jincheng Shen

Co-Chairs: Professor Jeremy M. G. Taylor and Assistant Professor Lu Wang

Motivated by an observational prostate cancer recurrence study, we investigate the

effect of treatment on survival outcome. For studies such as these, it is important

to properly handle the confounding effects, especially from longitudinal covariates.

In addition, baseline covariates may also reflect the heterogeneity of the population

in responding to the treatment. It is possible to recognize these differences and cus-

tomize the treatment strategy accordingly.

In the first project, we formulate a generalized accelerated failure time (AFT) model

to describe the treatment effect and the model includes a longitudinal covariate as

a functional predictor, whose coefficient is a time-varying nonparametric function.

We propose a spline-based sieve estimation for the time-varying coefficient of the

functional predictor, and maximize the likelihood in the sieve space where we ap-

proximate the functional predictor and nonparametric coefficient using a B-spline

basis. Under certain regularity conditions, the proposed estimator is consistent and

semi-parametrically efficient. Simulation studies are conducted to demonstrate the

xi



potential use of the proposed method to estimate the effect of a treatment assigned

at baseline under various time-dependent confounding mechanisms.

We further consider the interaction between treatment and other covariates, and

explore the heterogeneity of the treatment effect and approaches to personalize the

treatment assignment to optimize the survival outcome. In the second project, using

the causal inference framework, we consider the counterfactual outcome as if every

patient follows a given treatment regimen and develop a method to identify the opti-

mal dynamic treatment regime from observational longitudinal data. We propose to

use Random Forest to model the regime adherence of each subject, and use inverse

probability weights to adjust for non-adherence to obtain the regime specific survival

distribution. The proposed estimator is consistent, and its finite sample performance

is assessed through simulation studies.

In the third project, we consider the optimal treatment regime based on available

baseline covariates in a target population. The available data to estimate the optimal

regime is an observational study that includes these and some additional baseline

covariates. Instead of optimizing over a pre-defined class of regimes as in Project

2, we consider a more general class of candidate regimes through flexible models of

the outcomes. We propose to use Random Survival Forest plus an inverse probabil-

ity weighted bootstrap to estimate the causal outcomes while marginalizing over the

covariates that may not be of primary interest. By comparing the restricted mean

survival times, the optimal regime can be estimated for the target population. We

evaluate the performance of the proposed method through simulation studies, and

demonstrate its advantage compared to some traditional approaches.

xii



CHAPTER I

Introduction

Prostate cancer is the most commonly diagnosed cancers among American men

(Siegel et al., 2013). Often, after initial treatment, patients diagnosed with clini-

cally localized prostate cancer are actively monitored for elevated and/or rising levels

of prostate-specific antigen (PSA). The typical pattern of PSA after initial radia-

tion therapy is well known and associated with some of the pre-treatment variables

(Proust-Lima et al., 2008). It decreases in everyone for about a year and then may

never show a subsequent increase; if it does rise, it increases approximately expo-

nentially with time. Figure 1.1 shows a typical trajectory of log(PSA+0.1). Rising

values of PSA are indicative of an increased risk for the clinical recurrence of prostate

cancer (Zagars and von Eschenbach, 1993). In these cases, patients sometimes re-

ceive additional new treatment (called salvage therapy) in order to prevent or delay

recurrence. Figure 1.2 shows the four types of possible sequences of salvage therapy

and recurrence. One such salvage therapy treatment is androgen deprivation therapy

(ADT). Although salvage ADT is generally thought to be beneficial in delaying the

recurrence of prostate cancer, the magnitude of this benefit is not well quantified.

Complicated confounding is involved between the salvage treatment which is given by

indication, and the time to recurrence, which is a survival type of outcome. Elevated
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and/or rising PSA levels are a risk factor for recurrence of prostate cancer but are

also a predictor of treatment by salvage ADT (SADT), thus PSA and slope of PSA

are (time-dependent) confounders in the relation between salvage ADT and prostate

cancer recurrence. In general, this type of a relation between a time-dependent con-

founder and a time-varying treatment is typically present whenever there is “treat-

ment by indication” (Robins , 1989a). Correctly estimating the effect of the time-

dependent salvage treatment and the impact from the longitudinal covariates is of

great importance for clinical practice. Along this line, Kennedy et al. (2010) focused

on a multi-center prostate cancer recurrence study with prostate cancer patients who

were initially treated with external beam radiation therapy (EBRT). Patients came

from four cohorts: University of Michigan (Michigan, U.S.A.), Radiation Therapy On-

cology Group, Peter MacCallum Cancer Centre (Melbourne, Australia), and William

Beaumont Hospital (Michigan, U.S.A.). Patients were closely monitored for possible

recurrence. Their PSA values were recorded at regular visits along with other clinical

characteristics. Salvage ADT treatment was given to some of the patients to reduce

the risk of cancer recurrence. More details of the dataset can be found in Chapter III

or Proust-Lima et al. (2008); Kennedy et al. (2010). Kennedy et al. (2010) proposed

two methods to estimate the treatment effect conditional on the other covariates, es-

pecially the time-dependent PSA. Two-stage method fits the longitudinal model for

PSA in the first step and then estimates the treatment effect from a Cox model. The

other method, so-called Sequential Stratification, constructs time-dependent stratum

for each patient undergoing SADT to mimic a sequence of conditionally randomized

SADT assignments. A stratified Cox model is fitted to obtain the estimation of the

treatment effect. Taylor et al. (2013) further evaluated the performance of these

methods and compared them with marginal structural models (MSMs) under inverse

probability weighting (IPW) through series of simulation studies. The relationship

between the subject specific treatment effect and the marginal treatment effect was

2



also investigated.

In Chapter II, we investigate the potential impact of PSA history on the current

risk of recurrence. We consider a situation with a time-dependent covariate (such as

PSA) and a time-independent covariate of interest, which could be treatment group

indicator, while the PSA is considered as a potential predictor. The Cox proportional

hazard model is the most frequently used and well-recognized approach in modeling

time to event outcomes. The Cox model can incorporate both time-independent and

time-dependent covariates. However, its proportional hazard assumption may limit

its application in some situations. The accelerated failure time (AFT) model is an

appealing alternative that can naturally incorporate the continuous impact of time

dependent predictors. Furthermore, the coefficient for the time-independent covari-

ate in an AFT model is quantified in a straightforward way. For example, hormone

therapy is often thought of as delaying the prostate cancer recurrence by stretching

the time scale with a multiplying factor. If we consider the baseline covariate to be an

indicator of assigning patients to either hormone therapy or control group, then the

AFT model will provide the desired summary measure for the treatment effect, and

it can also handle the entire PSA history in a natural way. Thus we consider an AFT

model where the coefficients for the time-dependent covariates may be time-varying.

To obtain an unbiased estimator for the coefficients for the baseline covariates (e.g.

the treatment effect for hormone therapy), we propose a spline-based efficient estima-

tion procedure, and maximize the likelihood in the sieve space where we approximate

the functional predictor and nonparametric coefficient using a B-spline basis. Asymp-

totic properties of the proposed estimator are developed. We derive the convergence

rate for the sieve estimator of the nonparametric coefficient of the functional predic-

tor, and establish
√
n-consistency of the regression coefficients of the parametric part,

such as the treatment effect.
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However, in practice the therapy may not be given at baseline, and it may be of

more interest to know what would be the best time to initiate hormone therapy

based on the patient’s specific clinical history, so that therapy can be tailored for

each patient. For example, guidelines such as “give SADT when PSA first goes above

4 ng/ml if age is less than 75” would be very useful to physicians and health care

providers in the management of prostate cancer recurrence. The major challenges to

provide such detailed guidelines are (i) it is very expensive to run a randomized trial

to cover all possible treatment plans of interest; (ii) in observational studies, it is a

problem on how to use the data efficiently as the “optimal treatment regime” would

only have been followed by a very small subgroup of the whole dataset; (iii) in order

to compare the treatment effect between groups with different treatment regimes in

observational data, we need to correctly account for the artificial treatment effect,

which arise, for example, because groups of patients with lower PSA levels tends to

have delayed recurrences even without treatment.

Thus, in Chapter III, we investigate this question of identifying the optimal dy-

namic treatment regime from observational data employing techniques from causal

inference. We extend the marginal structural model method to estimate the survival

distribution for different counterfactual treatment regimes. The challenges come from

the weight estimation which are derived from the model for the observed treatment

assignment mechanism. These weights are needed at multiple time points for each

patient in the marginal structural model methodology. Logistic models which are lin-

ear in the covariates X are frequently employed for this purpose (Hernán et al., 2006;

Zhang et al., 2013). This may not always provide a satisfactory approximation as the

underlying treatment mechanism varies from case to case, and a more sophisticated

dependency may exist between the actual treatment assignment and the covariates.

We propose to use Random Forests to model the treatment assignment mechanism

4



and estimate the time-dependent weights. The restricted mean survival time (RMST)

is also employed to enable the comparison among various regimes and serves as the

objective function in the optimization process.

Another issue in personalizing the treatment regime relates to the modeling of the out-

comes. Identifying the optimal regime always involves some maximization/minimization

of some summary statistics of the outcome. The optimization thus depends on the

model assumption for the outcome, which is equivalent to performing the optimiza-

tion within a pre-specified class of regimes. It is important that the outcome model

matches the truth, or there could be bias for the final regime that is identified. For

example, consider a randomized trial with a scalar covariate X ∼ Uniform(−1, 1),

and A is the treatment indicator which takes value 1 if the patient is assigned to

treatment group and 0 for being assigned to the control group, with P (A = 1) = 0.5.

Consider a proportional hazard model for the outcome of the following form:

λ(t) = λ0 exp

(
ax2 − ax+

1

4
a

)
= λ0 exp

{
a

(
x− 1

2

)2
}

with baseline hazard λ0 = 0.2. If we do not consider censoring, then the true optimal

regime will be gopt
0 (X) ≡ 0, i.e. always not giving treatment. However, if we fit the

survival time with a Cox model using the following structure:

λ(t) = λ0(t) exp (β1x+ β2a+ β3ax)

= λ0(t) exp {β1x+ (β2 + β3x) a} ,

and consider treatment regimes in the form of G = {g(X) = I(β2 +β3X < 0), β2, β3 ∈

R}, for −1 ≤ X ≤ 1. It is easy to see that gopt ∈ G, however, as we generate data

5



for a cohort of n = 1000 patients with 1000 replicates, we get the average estimates

from Cox model as β̂2 = 0.53 and β̂3 = −1.00, the estimated optimal regime would

be ĝopt(X) = I(0.53−1.00X < 0) = I(X > 0.53), which is clearly different than gopt.

Thus, even if the true optimal regime is in the considered regime space, the algorithm

may pick a different one when the regime space under consideration mismatches the

structure of the true outcome model. One possible solution here is to assume a

model with enough flexibility, and then apply machine learning techniques to provide

promising alternatives for this purpose. In Chapter IV, we propose to employ the

Random Survival Forest (RSF) method to tackle this issue. As the treatment model

is not the major concern in this case, we consider the situation where all the covariates

W = (XT ,ZT ) are measured at baseline (pretreatment), and the treatment A is also

assigned at baseline. Again, we consider the scenario of observational data, where W

is associated with both the treatment and the survival outcome. Although X and

Z may be highly correlated, the availability of Z is not guaranteed in the general

population due to various reasons, so the optimal regime of interest need to be a

series of generalizable treatment rules and need to be based on X only. We propose

to use inverse probability weighting technique to account for the possible selection

bias. By conducting a weighted bootstrap with Random Survival Forest, we are able

to correctly model the counterfactual survival outcomes using observational data and

identify the optimal treatment regime as the one which maximizes the restricted

mean counterfactual survival time. We conclude the dissertation in Chapter V with

a discussion of future work and related open problems.
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Figure 1.1: Typical log(PSA) Patterns

Figure 1.2: Structure of Longitudinal, Treatment, and Recurrence Data.
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CHAPTER II

Efficient Estimation of the Treatment Effect Under

the Impact of the Entire PSA History

The accelerated failure time (AFT) model is an approach that can be used to

assess the continuous impact of time-dependent predictors in time-to-event analyses,

where the effect of a baseline covariate can be quantified in a straightforward way. For

example, the AFT model with an indicator of hormone therapy provides the desired

summary measure for the treatment effect, which is often thought of as delaying

prostate cancer recurrence by stretching the time scale with a multiplying factor. In

this chapter, we consider an AFT model with both time-dependent covariates X(t)

and time-independent covariates Z. This model can handle the entire history of a

longitudinal variable PSA as a functional predictor, and the coefficients for X(t) in

our model are allowed to vary with time as well. We propose a spline-based sieve

estimation of the time-varying coefficient of the functional predictor, and maximize

the likelihood in the sieve space where we approximate the functional predictor and

nonparametric coefficient using B-spline basis. The proposed estimator is proved to

be asymptotically consistent, and the regression coefficients of the parametric part,

such as treatment effect, is shown to be
√
n-consistent.
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2.1 Introduction

In cancer research, it is often of primary interest to understand the association

between a risk factor or a certain treatment with the patients’ survival outcome. In

many situations one big challenge is how to correctly adjust for the time-varying

confounding variables. For example, in prostate cancer, PSA is a very important

time-varying biomarker for disease progression, and is believed to be highly associ-

ated with the hazard of cancer recurrence. One would expect such a biomarker to

have a continuous impact over the course of disease development, because as the

disease progress to a different point, PSA may indicate a different level of cancer

recurrence risk. In fact, the whole history of PSA plays an important prognostic role

besides the point-wise health status of a prostate cancer patient. For instance, it is

likely that two patients with different PSA trajectories respond very differently to

the same therapy, even though their current PSA values are the same. Therefore,

how to adjust for the longitudinal confounding effect of the whole PSA trajectory or

PSA changes while evaluating the association of other baseline covariates, such as the

treatment effect of hormone therapy on patient recurrence risk becomes complicated.

In this chapter, we are proposing a semiparametric modeling approach to allow for

more flexibility.

Statistical tools have been developed to study the cumulative effects of longitudi-

nal factors, especially for studies with continuous or categorical outcomes (Xia and

Tong , 2006; Kong , 2010). When the outcome is a time to event, the proportional

hazards model (Cox , 1972, 1975) is the most frequently used approach in practice,

due to the availability of efficient estimation procedures that are implemented in all

statistical software packages. However, in order to obtain valid statistical inferences,

these models require the proportional hazard assumption, which is quite strong for

many practical applications and can be easily violated when there are continuous im-

9



pacts from time-varying predictors. Although the proportional hazard model can be

extended by incorporating time-varying coefficients (Murphy and Sen, 1991), the sta-

tistical inference involves histogram-sieve estimation on the partial likelihood. Chen

and Zhou (2007) proposed a local partial likelihood approach to directly estimate

the relative risk function. The time-varying proportional hazard ratio assumption

may not have a straightforward interpretation. On the other hand, the accelerated

failure time (AFT) model (Kalbfleisch and Prentice, 2011), which directly relates the

monotonically transformed survival time to the covariates of interests, is “in many

ways more appealing because of its quite direct physical interpretation” (Reid , 1994)

and thus frequently serves as an attractive alternative to the Cox proportional haz-

ards model. Suppose the covariate vector is W , then a common AFT model for the

survival outcome T takes the log-linear form

log T = −W Tγ + ε (2.1)

where ε is measurement error, which is assumed to have a particular distribution

independent of W . As in the cancer example, where T is the recurrence free survival

time and one dimensional W is the treatment, then γ, the treatment effect estimated

from model (2.1), would have a more straightforward interpretation as a multiplica-

tive factor to accelerate or decelerate the disease course to cancer recurrence.

There has been a plethora of literature on both theoretical development and ap-

plications of AFT models. Log-normal model is one of the most popular parametric

AFT models and has been used in a wide range of applications (Royston, 2001; Long-

ford , 2009; Köhler and Kowalski , 2012; Chapman et al., 2013). To relax the fully

parametric restriction, semi-parametric AFT models has also been intensively stud-

ied. Prentice (1978) proposed the rank estimator for the baseline hazard function
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based on the well-known weighted log-rank statistics, and soon after that, Buckley

and James (1979) introduced a modified version of least-squares estimator to account

for the censoring. Following this initial work, extensive theoretical development and

extensions have been done (Ritov , 1990; Tsiatis , 1990; Lai and Ying , 1991; Ying ,

1993; Jin et al., 2003, 2006). Ritov and Wellner (1988) derived the semiparametric

efficient score functions for the slope parameters in the linear regression model, which

involves the derivative of the baseline hazard function (i.e., density of ε). Zhang et al.

(2009) proposed to use monotone B-spline when there is interval censoring, and Ding

and Nan (2011) employed a spline-based method when the parameters are bundled

together. Zeng and Lin (2007) considered a more general setting, where W could

be time-dependent, and proposed a kernel smoothing based efficient estimation pro-

cedure, but they restrict the effect of W to be constant, and the kernel smoothing

procedure may not be straightforward to implement in biomedical studies. In prac-

tice, it may be more realistic to assume that the impact of a time-dependent covariate

also varies with time. In this chapter, we consider a more general setting where W is

a vector which contains both time-dependent covariates X(t) and time-independent

covariates Z, and the coefficients for X(t) could also vary with time. Specifically, we

consider the following model

eε =

T∫
0

exp{X(u)β(u) +Zγ}du (2.2)

where ε is the error term similar as in model (2.1). Unlike Zeng and Lin (2007),

our model specification in (2.2) allows the impact of PSA to vary over time, which

represent a more realistic situation. For example, it is possible that the patient’s

PSA history within the last year would have more impact on his current health sta-

tus than his PSA levels three years ago. In model (2.2), we also consider a baseline

covariate, for example, the hormone therapy which is assigned to the patient at time
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zero. We assume a parametric baseline hazard using a lognormal distribution. We

propose a new approach by directly maximizing the log likelihood function in a sieve

space, where the time-varying coefficients are approximated by B-splines. A resam-

pling procedure is developed for the variance estimation. In addition, we investigate

the asymptotic consistency and efficiency of the proposed estimators using empirical

process theory.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the

notation and specify the structure for our AFT model. In Section 2.3 we propose

the sieve estimator for both the time-varying and fixed coefficients. We investigate

the asymptotic properties of our new estimators in Section 2.4, followed by compre-

hensive simulation studies presented in Section 2.5. Finally, we conclude with a brief

discussion and propose some potential extensions in Section 2.6. Technical details are

included in Section 2.7.

2.2 Notation and Model Specification

We consider a cohort of n patients. For patient i, let Ti denote the failure time

and Ci denote the censoring time for subject i, where i = 1, · · · , n. Define Yi =

min(Ti, Ci) and ∆i = I(Ti ≤ Ci). We assume that Ci is independent of Ti, conditional

on covariates W i = {X i(·),Zi}, To make the presentation easier, without loss of

generality, we only consider the case when both X i(·) and Zi are one-dimensional,

throughout denoted as Xi(·) and Zi respectively. Then the likelihood for a single

observation of (Y,∆,W ) of model (2.2) is

LY,∆,W (y, δ,w) = λT |W (y))δ exp{−ΛT |W (y)}H(y, δ,w),
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where λT |W (t) and ΛT |W (t) denote the conditional hazard and cumulative hazard

functions of T given and W . H(y, δ,w) includes both the conditional distribution

of C given W = (X(·), Z) and the marginal distribution of X and Z. We assume

that H is free of λ, β and γ, so we ignore H from the likelihood function. We further

assume a lognormal distribution with εi ∼ N(0, σ2). The log-likelihood for single

observation (Y,∆,W ) becomes:

l(β, γ, σ) =∆{β(Y )X(Y )} −∆R(Y ; β)−∆ log σ

+ ∆ log φ

(
R(Y ; β) + γZ

σ

)
+ (1−∆) log Φ

(
−R(Y ; β) + γZ

σ

)
,

where Φ(·) and φ(·) are the cdf and pdf of the standard normal distribution, and

R(Y ; β) = log
∫ Y

0
eβ(u)X(u)du. Notice that the way we set up model (2.2) makes the

current hazard depends on the current value of X(·), but also the history of X(·) up

to the current time, i.e.

λT |W (t|w) = λT |X(t),Z(t|x(t), z)

= φ

(
r(t; β) + γz

σ

)
/

{
σer(t;β)+γz · Φ

(
r(t; β) + γz

σ

)}
,

for t ∈ (0,∞), where x(t) = {x(u) : 0 < u ≤ t} is the observed history for X(·) up to

time t, r(t; β) = log
∫ t

0
eβ(u)x(u)du is the realization of R(t; β) which depends on x(t).

2.3 The Estimating Procedure

2.3.1 Spline Based Estimation

In order to perform estimation, we propose to use the spline-base sieve maximum

likelihood estimation for Model (2.2). Spline techniques have been extensively used as

an effective tool for dimension reduction in nonparametric estimation. Stone (1985,

1986) has proved in theory that a smooth unknown function can be well approximated
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using a spline. Some further convergence results of spline-based sieve estimates have

been developed by Shen and Wong (1994). Under the regularity conditions (C1)-

(C3) stated in Section 2.4, let (0, a] be an interval of interest, where 0 < a <∞. Let

0 < t1 < · · · < tKn < tKn+1 = b be a partition of (0, a] withKn subintervals I0 = (0, t1)

and Ij = [tj, tj+1), j = 1, · · · , Kn − 1 and IKn = [tKn , tKn+1], with Kn = O(nν) and

max1≤j≤Kn+1 |tj − tj−1| = O(n−ν) for some positive number ν ∈ (0, 1/2). Denote

the set of partition points by TKn = {t1, · · · , tKn}. Following Schumaker (1981),

Definition 4.1, let Sn(TKn , Kn, p) be the space of polynomial splines of order p ≥ 1

consisting of function s satisfying (i) the restriction of s to Ij is a polynomial of order

p (or equivalently, of degree p − 1) for p ≤ Kn; (ii) for p ≥ 2 and 0 ≤ p′ ≤ p − 2, s

is p′ times continuously differentiable on [a, b]. According to Schumaker (Schumaker

(1981), Corollary 4.10), there exists a set of B-spline basis functions {Bj, 1 ≤ j ≤ qn}

with qn = Kn + p such that for any s ∈ Sn(TKn , Kn, p), we can write

s(t) =

qn∑
j=1

ωjBj(t), (2.3)

where following Shen and Wong (1994) we require maxj=1,··· ,qn |ωj| ≤ cn and cn is

allowed to grow with n slowly enough. Let ω = {ω1, · · · , ωqn} be the collection of all

the coefficients in the representation (2.3). Under suitable smoothness assumptions,

the true parameter β0(·) can be well approximated by some function in Sn(TKn , Kn, p).

2.3.2 Likelihood Approximation

Our goal is to seek a member of Sn(TKn , Kn, p) together with a value of γ ∈ Γ and

a value of σ ∈ Σ that maximizes the log likelihood function. Specifically, let (γ̂n, σ̂n)

be the value that maximizes

ln(ω, γ, σ) = n−1

n∑
i=1

[
∆i

{
qn∑
j=1

ωjBj(Yi)Xi(Yi) + γZi

}
+ ∆i log λ(eQ

∗
i (ω,γ))− Λ(eQ

∗
i (ω,γ))

]
,
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where

Q∗i (ω, γ) = log

Yi∫
0

exp

{
qn∑
j=1

ωjBj(Yi)Xi(Yi) + γZi

}
du,

and σ is a parameter in λ(·) and Λ(·). This then becomes a sieve maximum likelihood

estimation problem where the unknown function in the log likelihood is approximated

by a linear span of some known basis functions to form a sieve log likelihood. Following

Geman and Hwang (1982), we can maximize the sieve log likelihood with respect to

the unknown coefficients in the linear span to obtain a sieve maximum likelihood

estimator. This will significantly reduces the dimensionality of the maximization

since the number of basis functions needed to approximate the unknown function

grows at a much slower rate as the sample size increases. Here the maximization can

be solved by standard methods for the accelerated failure time model with parametric

baseline hazards. We use R function aftreg() from eha package to fit for (γ̂n, σ̂n) and

ω̂. Then the time-varying coefficient can be estimated as β̂(t) =
∑qn

j=1 ω̂jBj(t).

2.4 Asymptotic Theory

In this section, we investigate the asymptotic properties of the proposed estimator.

To obtain the consistency of γ̂n and β̂(t), and the asymptotic normality result for γ̂n,

we need to impose the following regularity conditions:

(C1) Xi(t) is bounded for t ∈ R+, i.e. ∀t, ∃C s.t. P(‖Xi(t)‖ ≤ C) = 1;

(C2) σ ∈ Σ, where Σ is a compact subset of R+. We assume there exists a small

κ > 0, s.t. σ > κ;

(C3) γ ∈ Γ, where Γ is a compact subset of R−. We assume there exist a large

M > 0, s.t. −M < γ ≤ 0;

(C4) ∀t, ∃C s.t. P(0 ≤ ‖β(t)Xi(t)‖ ≤ C) = 1;

(C5) Let B denote the collection of bounded functions β on (0, a] with bounded

derivatives β(j), j = 1, · · · , k, and we assume that the kth derivative β(k) satisfies the
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following Lipschitz continuity condition:

∣∣β(k)(s)− β(k)(t)
∣∣ ≤ L |s− t|m for s, t ∈ (0, a]

where k is a positive integer and m ∈ (0, 1] such that p = k + m ≥ 3, and L <∞ is

an unknown constant. The true weight β0 ∈ Bp.

Condition (C1)-(C4) are common regularity assumptions that have been imposed

in the literature for similar problems (Zhang et al., 2009), while conditions (C5) is

assumed here to provide desirable controls of the spline approximation error rates of

the first and second derivatives of β0. We can see in the following theorems that these

conditions are sufficient to guarantee our estimator θ̂n = (β̂n, γ̂n, σ̂n) to be asymptotic

consistent.

Theorem 2.1. Let Kn = O(nν), where ν satisfies the restriction 1
2(1+p)

< ν < 1
2p

with p being the smoothness parameter defined in Condition (C5). Suppose Condition

(C1)-(C5) hold and the failure time T follows Model (2.2), then

d(θ̂n,θ0) = Op

[
n−min{pν,(1−ν)/2}] ,

where θ = {β(·), γ, σ} is the vector of parameters, d(θ1,θ2) = {||β2 − β1||2Y + |γ2 −

γ1|2 + |σ2 − σ1|2}1/2 and we define ‖β2 − β1‖Y =
∫ Y

0
|β2(u)− β1(u)| du.

Theorem 2.1 establishes the consistency of our proposed estimators. But β̂n(·) con-

verges to the true β0(·) in a slower rate compared to γ̂n and σ̂n. With a non-parametric

estimator β̂n(·), one would be interested to see whether that will affect the parametric

convergence rate of γ̂n. In Theorem 2.2, we show the asymptotic normality for our
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proposed estimator γ̂n, and also develop the estimation efficiency bound.

Theorem 2.2. Under Model (2.2), the efficient score function of estimating γ is:

l̇∗γ(β, γ, σ) =

∫ Y
0
{Z − h∗(u)X(u)}eβ(u)X(u)du∫ Y

0
eβ(u)X(u)du

× 1

σ

{
∆
φ(1)({R(Y ; β0) + γZ} /σ)

φ({R(Y ; β0) + γZ} /σ)
− (1−∆)

φ({R(Y ; β0) + γZ} /σ)

1− Φ({R(Y ; β0) + γZ} /σ)

}
,

with h∗(u) =
EỸ ,∆̃,W̃ {Z̃X̃(Ỹ )|R̃ = log

∫ t
0
eβ(u)X(u)du, ∆̃ = 1}

EỸ ,∆̃,W̃ {X̃2(Ỹ )|R̃ = log
∫ t

0
eβ(u)X(u)du, ∆̃ = 1}

Notice here φ(1)(·) is the first derivative of φ(·). Suppose that the conditions in

Theorem 2.1 hold and I(γ0) = E
{
l∗γ0(Y,∆, Z)⊗2

}
is nonsingular, we have

√
n(γ̂n − γ0)

d−→ N(0, I−1(γ0))

Theorem 2.2 shows that as n → ∞, if we properly control the increasing rate of

Kn, our proposed estimator for γ0, γ̂n, can achieve the
√
n-consistency. In fact, the

proposed estimating procedure can provide efficient estimation of γ0, which means the

asymptotic variance of γ̂n achieves the efficiency bound under Model (2.2), I−1(γ0) =[
E
{
l∗γ0(Y,∆,W )⊗2

}]−1
. More detials of the proof of these theorems are given in the

Appendix, as well as the development of the efficient score function to estimate γ.

2.5 Simulation Study

Simulation studies are carried out to evaluate the finite sample performance of the

proposed method. Data are generated as follows: for each subject, we independently

17



generate (Yi,∆i, Xi(·), Zi), where the treatment-free longitudinal covariate

Xi(t) = (α0 + ai0) + (α1 + ai1)t, (2.4)

(α0, α1) are fixed effect parameters, and (ai0, ai1) are subject-specific random effects.

We assume the longitudinal covariate (e.g.,PSA in the case of prostate cancer) is lin-

ear over time, and the random effects (ai0, ai1) ∼ MVN(0,Σ).

The time-independent covariate Zi is generated from Zi ∼ Bernoulli(p). Given the

trajectory of Xi(t) and Zi, we generate the survival time according to a log-normal

distribution

eεi =

Ti∫
0

exp [β(u)Xi(u) + γZi] du, (2.5)

where εi ∼ N(0, σ2), γ is the treatment effect, the true values of these parameters

are as following:

α0 = −0.5, α1 = −0.3,Σ =

1.0 0.5

0.5 0.25

 , γ = −2.0.

β(t) is the weight for Xi(t), for t ∈ [0, K], where K is the longest follow-up time under

investigation and we consider three different scenarios with different β(t) functions:

(I) β(t) = 0.6 ·g(t/K) where g(x) is the density function of Beta(3,3) distribution, i.e.

g ∼ Beta(3, 3). This reflects the situation where the weight β(t) is symmetric over

t = K/2 and the X(t)’s at the middle time range (round t = K/2) has the biggest

impact. Here, we choose K = 35, 15 to generate the case of 15% and 25% censoring,

respectively.

(II) β(t) = 0.6·g(t/K) where g(x) is the density function of Beta(2,4) distribution, i.e.

g ∼ Beta(2, 4). This is a situation where the X(t)’s at earlier time have bigger impact
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to the survival outcome then the ones at later time. Again we choose K = 35, 15

respectively to generate 15% and 25% censoring.

(III) β(t) = 0.4 · g(t/K) where we choose g(x) = sin{(2x + 1)π}. This is a situation

where the impact of X(t)’s are negative (reducing the hazard) at earlier time and

positive (increasing the hazard) at later time. Here we choose K = 8, 7 respectively

to generate 15% and 25% censoring.

We only consider administrative censoring at C = K, then the observed survival

outcome can be generated as Yi = Ti ∧ C and ∆i = I(Ti > C). In each scenario, K

is chosen such that about 15% censoring will be generated.

To set up the spline, we need to choose a set of knots. These can be viewed as

parameters that have to be estimated according to a goodness-of-fit criterion, e.g.

the Akaike information criterion (AIC) (McCullagh and Nelder , 1989). Several meth-

ods have been described in the literature and are in general referred to as adaptive

knot selection (Hastie and Tibshirani , 1990; Friedman, 1991). Here we use a simple

approach to choose knots at the corresponding quantiles of the covariate. Three dif-

ferent numbers of interior knots for the B-splines are tried, which are 2, 3 and 4. The

results are quite similar and we present the results for the case with 2 interior knots.

For all scenarios, we simulate 150 datasets each with 500 subjects, and we use boot-

strap with B = 100 for each dataset to estimate the variances. We choose to use cubic

B-splines to approximate the log hazard function. From Table 2.1, which summarizes

the results on the estimation of the treatment effect, we can see that the estimates

for γ from all scenarios are close to the truth (γ0 = −2.0), while the situations with

lower censoring rates tend to have smaller bias. And the coverage rates are close to

95%. As the coverage rates are calculated from bootstrap resampling, it is possible
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that larger B for bootstrap could further improve the coverage rates (to be more close

to 95%). From Figure 2.1 and Figure 2.2, we can also see that the estimated β̂(t)’s

(solid red lines) are close to the true curves (dash line in blue), and the true curves are

within the 95% confidence intervals calculated from the bootstrap sampling (dotted

lines in green).

Table 2.1: The estimation for the time-independent coefficient γ: the estimation γ̂n
under different setting of true β0(t) are listed here (true γ0 = −2.0). For
Scenario I, the true β0(t) has a symmetric shape (∼ Beta(3, 3)) over the
time range considered, in Scenario II β0(t) has the shape of Beta(2, 4),
and in Scenario III, β0(t) has the shape of a sin function (∼ sin(2πt/K)).
The mean estimation is average over the 150 replicates, while the empirical
standard error is the estimate of the variance from the bootstrap procedure
(B = 100), averaged over the 150 replicates. The mean bias is the averaged
bias for the point estimation, and the coverage rate is also calculated from
the bootstrap results in each replicate and average over the 150 rounds.

censoring Shape of β(t) Mean Est. bsSE Mean Bias Coverage %
Scenario I -1.939 0.164 0.061 92.0

15% Scenario II -1.885 0.188 0.115 93.3
Scenario III -1.927 0.182 0.073 96.0
Scenario I -1.926 0.186 0.074 91.0

25% Scenario II -1.867 0.200 0.133 92.5
Scenario III -1.925 0.188 0.075 93.6

Note: bsSE is the mean of the bootstrapped standard errors, Coverage is the

coverage probability of the 95% confidence interval.

2.6 Discussion

In this Chapter, we propose an AFT model to account for possible cumulative

effect of the time-dependent covariates X(t). We assume a rather general form of the

model to allow β(t), the coefficients of X(t), to be time-varying. too. The estimat-

ing procedure is statistically efficient and computationally feasible. In this chapter,

we assume a parametric distribution for the error term in model (2.2). Instead of a

lognormal distribution, there are several other parametric distribution models that
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Figure 2.1: Estimated Time-Varying Coefficient for X(t) for 15% censoring cases.
Three scenarios are plotted here, where the upper left panel is for Scenario
I, where the true β0(t) has a symmetric shape (∼ Beta(3, 3)) over the
time range considered, the upper right panel is for Scenario II, where the
earlier X(t) values have more impacts (∼ Beta(2, 4)), and the lower left
panel is for Scenario III, where X(t) values have a positive effect (increase
hazard) at beginning and negative effect (reduce hazard) at later time
(∼ sin(2πt/K)). In all cases, the dashed line in blue is the truth β0(t).
the solid line in red is the estimation averaged over 150 datasets, and the
dotted lines in green show the averaged the 95% confidence interval which
come from the bootstrap procedure.
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Figure 2.2: Estimated Time-Varying Coefficient for X(t) for 25% censoring cases.
Similar as in Figure 2.1 Scenario I - III are plotted. In all cases, the
dashed line in blue is the truth β0(t). the solid line in red is the esti-
mation averaged over 150 datasets, and the dotted lines in green show
the averaged the 95% confidence interval which come from the bootstrap
procedure.
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are frequently used in survival analysis. For example, under certain circumstances,

a Weibull distribution or log-logistic model are preferred (Kalbfleisch and Prentice,

2011). It is straightforward to extend the proposed estimation procedure to models

with other parametric distribution assumptions. Furthermore, the baseline cumu-

lative hazard function Λ0(t) can also be estimated non-parametrically. However, it

would be challenging both theoretically and numerically to accommodate two non-

parametric terms in the same model.

In model (2.2), we have both time-dependent and fixed effects, in practice, it al-

lows the more complicated association between the survival time and time-dependent

variable. However, one need to be cautious in interpreting γ and β(t). For example,

if X(t) is the PSA measured over time, and Z is some treatment decision made at

baseline, then γ would have the interpretation of a treatment effect, given the same

trajectory of X(t), the treatment will prolong the survival time multiplicatively by a

factor of e−γ. The interpretation for β(t) would be even harder, especially for practi-

tioners who are used to deal with the hazard ratios in Cox proportional hazard model.

AFT model do provide a more attractive alternative in a lot of cases, for example,

in some scenarios, when the outcome is data with censoring, like measurement with

lower detect boundary, the outcomes will be censored on the left as they are under

certain threshold that the equipment can detect, then the hazard function may not

have very good practical meaning, while the interpretation of coefficients in AFT

model may be more preferred.

In the model setting, we assume that β(t) is only indexed by t. Suppose we are

now looking at time τ , it is more realistic to assume that the effect of PSA (X(t),

t ∈ [0, τ ]) on the current hazard λ(τ) not only depends on t, but also depends on

τ , i.e. β(t, τ). An explanation is that the magnitude of the effect of X(t) on λ(τ)

23



depends on t, and also how close this t is to the point τ . For example, we would

expect the PSA value at 2 years to have more impact on the hazard at 3 year than

on the hazard at 10 year. This would require splines in two-dimensions and becomes

harder to study its properties.

In this chapter, we consider the case where the indicator for treatment is time-

independent. In many biomedical studies, it is common to that the treatment initia-

tion time for subject i, denoted as Si is also random. So another extension of possible

interest is that we allow the treatment indicator to be a time-dependent covariate,

so we would have two time-dependent covariates, one with time varying coefficient

and one with a time-independent coefficient. For this we would consider the following

model

eεi =

Ti∫
0

exp{β(u)Xi(u) + γZi(u)}du

where Zi(u) is a step function that jumps from 0 to 1 at u = Si.

2.7 Appendix: Proof of the Technical Results

2.7.1 The Derivatives

In order to work on the asymptotic properties, first, we derive the form of the

first and second derivatives of the log likelihood function. As mentioned above, the

log likelihood for a single observation is:

l(β, γ, σ) =∆{β(Y )X(Y )} −∆R(Y ; β)−∆ log σ

+ ∆ log φ

(
R(Y ; β) + γZ

σ

)
+ (1−∆) log Φ

(
−R(Y ; β) + γZ

σ

)

For any fixed β(·) ∈ Ω, let {β(η)(·) : η in a neighborhood of 0 ∈ R} be a smooth

curve in Ω running through β(·) at η = 0, i.e., β(η)(·)|η=0 = β(·). and
∂β(η)
∂η
|η=0 = h.
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Furthermore, we write

R = R(Y, β) = log

Y∫
0

eβ(u)X(u)du

R1 = log

Y∫
0

h(u)X(u)eβ(u)X(u)du

R2 = log

Y∫
0

h1(u)h2(u)X2(u)eβ(u)X(u)du

and

1− Φ = Φ(−(R + γZ)/σ)

φ = φ((R + γZ)/σ) = φ(−(R + γZ)/σ)

φ(1) = φ(1)((R + γZ)/σ)

φ(2) = φ(2)((R + γZ)/σ)

then we can write out the derivatives as

l̇1(β, γ, σ)[h] = ∆h(Y )X(Y )−∆
eR1

eR
+

∆

σ

φ(1)

φ

eR1

eR
− (1−∆)

σ

φ

(1− Φ)

eR1

eR

l̇2(β, γ, σ) =
∆Z

σ

φ(1)

φ
− (1−∆)Z

σ

φ

(1− Φ)

l̇3(β, γ, σ) = −∆

σ
− ∆(R + γZ)

σ2

φ(1)

φ
− (1−∆)(R + γZ)

σ2

φ

1− Φ
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The second derivatives are:

l̈11(β, γ, σ)[h1, h2] =−∆
eR2

eR
+ ∆

e2R1

e2R
+

∆

σ2

e2R1

e2R

φ(2)

φ
+

∆

σ

eR2

eR
φ(1)

φ
− ∆

σ2

e2R1

e2R

(
φ(1)

φ

)2

− ∆

σ

e2R1

e2R

φ(1)

φ
− (1−∆)

σ2

e2R1

e2R

φ(1)

(1− Φ)
− (1−∆)

σ

eR2

eR
φ

(1− Φ)

− (1−∆)

σ2

e2R1

e2R

(
φ

(1− Φ)

)2

+
(1−∆)

σ

e2R1

e2R

φ

(1− Φ)

l̈22(β, γ, σ) =
∆Z2

σ2

φ(2)

φ
− ∆Z2

σ2

(
φ(1)

φ

)2

− (1−∆)Z2

σ2

φ(1)

1− Φ
− (1−∆)Z2

σ2

(
φ

1− Φ

)2

l̈33(β, γ, σ) =
∆

σ2
+

∆(R + γZ)2

σ4

φ(2)

φ
+

2∆(R + γZ)

σ3

φ(1)

φ
− ∆(R + γZ)2

σ4

(
φ(1)

φ

)2

+
(1−∆)(R + γZ)2

σ4

φ(1)

1− Φ
+

2(1−∆)(R + γZ)

σ3

φ

1− Φ

+
(1−∆)(R + γZ)2

σ4

(
φ

1− Φ

)2
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l̈12(β, γ, σ)[h] =
∆Z

σ2

eR1

eR
φ(2)

φ
− ∆Z

σ2

eR1

eR

(
φ(1)

φ

)2

− (1−∆)Z

σ2

eR1

eR
φ(1)

1− Φ

− (1−∆)Z

σ2

eR1

eR

(
φ

1− Φ

)2

l̈13(β, γ, σ)[h] =− ∆(R + γZ)

σ3

eR1

eR
φ(2)

φ
− ∆

σ2

eR1

eR
φ(1)

φ
+

∆(R + γZ)

σ3

eR1

eR

(
φ(1)

φ

)2

+
(1−∆)(R + γZ)

σ3

eR1

eR
φ(1)

1− Φ
+

(1−∆)

σ2

eR1

eR
φ

1− Φ

+
(1−∆)(R + γZ)

σ3

eR1

eR

(
φ

1− Φ

)2

l̈23(β, γ, σ) =− ∆Z(R + γZ)

σ3

φ(2)

φ
− ∆Z

σ2

φ(1)

φ
+

∆Z(R + γZ)

σ3

(
φ(1)

φ

)2

+
(1−∆)Z(R + γZ)

σ3

φ(1)

1− Φ
+

(1−∆)Z

σ2

φ

1− Φ

+
(1−∆)Z(R + γZ)

σ3

(
φ

1− Φ

)2

2.7.2 Outline of the Proofs

In the section, we provide some details on the theorems. The following conditions

are sufficient to guarantee the forthcoming properties.

(C1) Xi(t) is bounded for t ∈ R+, i.e. ∀t, ∃C s.t. P(||Xi(t)|| ≤ C) = 1

(C2) γ ∈ Γ, σ ∈ Σ, where Γ is a compact subset of R, and Σ is a compact subset

of R+.

(C3) β(·) ≥ 0, ∀t ∈ R+.

(C4) ∀t, ∃C s.t. P(0 ≤ ||β(t)Xi(t)|| ≤ C) = 1

(C5) Let B denote the collection of bounded functions β on (0, a] with bounded

derivatives β(j), j = 1, · · · , k, and the kth derivative β(k) satisfies the following Lips-
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chitz continuity condition:

∣∣β(k)(s)− β(k)(t)
∣∣ ≤ L |s− t|m for s, t ∈ (0, a]

We have θ = (β, γ, σ)T , β ∈ B, γ ∈ Γ and σ ∈ Σ, Let Θ = Ω×Γ×Σ be the parameter

space of θ. We define a distance between θ1,θ2 ∈ Θ by

d(θ1,θ2) = {||β2 − β1||2 + |γ2 − γ1|2 + |σ2 − σ2|2}1/2

where | · | is the Euclidean distance and ‖ · ‖ is some norm. Let Θn be the sieve

parameter space, a sequence of increasing subsets of the parameter space growing

dense in Θ as n→∞.

2.7.2.1 Proof of Theorem 2.1

For Theorem 2.1, in order to give the convergence rate for θ̂n, we first prove

the asymptotic consistency, i.e. : d(θ̂n,θ0) −→ 0. Let M(θ) = Pl(θ;Y,∆,W ) and

Mn(θ) = Pnl(θ;Y,∆,W ). Hence Mn(θ)−M(θ) = (Pn−P )l(θ;Y,∆,W ). According

to Theorem 5.7 in van der Vaart (1998), this would be equivalent to check the following

the conditions:

(A1) Let L1 = {l(θ;Y,∆,W ) : θ ∈ Θn} then the c-bracketing number for L1

with L1(P )-norm is bounded by some C(1/ε)n
a

thus L1 is Glivenko-Cantelli and

supθ∈Θn
|Mn(θ) −M(θ)| →p 0

(A2) M(θ0)−M(θ) ≥ 0

(A3) For β0 ∈ B, there exists a β0,n ∈ Bn of order m ≥ p + 2 such that ‖β0,n −
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β0‖∞ ≤ Cq−pn = O(n−pν) then let θ0,n = (β0,n, γ0, σ0) then we can have

Mn(θ̂n)−M(θ0) = Mn(θ̂n)−Mn(θ0,n) + Mn(θ0,n)−M(θ0)

≥ Pn{l(θ0,n;Y,∆,W )− l(θ0;Y,∆,W )}

≥ −op(1)

thus Cd2(θ0,θ0,n)→ 0

(A4) Furthermore we want

Mn(θ̂n)−M(θ0) ≥(Pn − P ){l(β0,n, γ0, σ0;Y,∆,W )− l(β0, γ0, σ0;Y,∆,W )}

+ P{l(β0,n, γ0, σ0;Y,∆,W )− l(β0, γ0, σ0;Y,∆,W )}

=−Op(n
−2pν)

=−Op

(
n−min(pν,(1−ν)/2)

)
Proof of (A1)

Let L1 = {l(θ;Y,∆,W ) : θ ∈ Θn}. by the calculation of Shen and Wong (1994),

page 597, ∀ε > 0, there exists a set of brackets
{[
βLj , β

U
j

]
: j = 1, 2, · · · , [(1/ε)C1qn ]

}
such that for any β ∈ Bn, one has βLj (u) ≤ β(u) ≤ βUj (u) for some 1 ≤ j ≤ [(1/ε)C1qn ]

and all u ∈ [0, b], and P |βUj (Y,∆,W )− βUj (Y,∆,W )| ≤ ε. Since Γ ∈ R is compact,

Γ can be covered by [C2/ε] balls with radius ε; that is, for any γ ∈ Γ, there exists

an 1 ≤ s1 ≤ [C2/ε] such that |γ − γs1| ≤ ε. Similarly, for any σ ∈ Σ, there exists an

1 ≤ s2 ≤ [C3/ε] such that |σ − σs2| ≤ ε. Then ∀l(β, γ, σ;Y,∆,W ) ∈ L1, ∃s1, s2, j,
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s.t. l ∈ [lLs1,s2,j(Y,∆,W ), lUs1,s2,j(Y,∆,W )], for any sample point (Y,∆,W ), where

lLs1,s2,j(Y,∆,W ) =∆i

{
βLj (Yi)Xi(Yi) + (γs1 − ε)Zi

}
−∆i log

Yi∫
0

eβ
U
j (u)Xi(u)du− (γs1 + ε)Zi −∆i log(σ2

s2
+ ε)

+ ∆i log φ

(
log
∫ Yi

0
eβ

L
j (u)Xi(u)du+ (γs1 − ε)Zi

σ2
s2

+ ε

)

+ (1−∆i) log Φ

(
−

log
∫ Yi

0
eβ

U
j (u)Xi(u)du+ (γs1 + ε)Zi

σ2
s2
− ε

)

lUs1,s2,j(Y,∆,W ) =∆i{βUj (Yi)Xi(Yi) + (γs1 + ε)Zi}

−∆i log

Yi∫
0

eω
L
j (u)Xi(u)du− (γs1 − ε)Zi −∆i log(σ2

s2
− ε)

+ ∆i log φ

(
log
∫ Yi

0
eβ

U
j (u)Xi(u)du+ (γs1 + ε)Zi

σ2
s2
− ε

)

+ (1−∆i) log Φ

(
−

log
∫ Yi

0
eβ

L
j (u)Xi(u)du+ (γs1 − ε)Zi

σ2
s2

+ ε

)

By Taylor expansion and some calculation, we have for all s1, s2, s3 and i

P (|(lUs1,s2,s3,i − l
L
s1,s2,s3,i

)(Y,∆,W )|) ≤ C ′1ε

thus the c-bracketing number for L1 = {l(θ;Y,∆,W ) : θ ∈ Θn} with L1(P )-norm is

bounded by C(1/ε)C1qn+3, so L1 is Glivenko-Cantelli, supθ∈Θn |Mn(θ)−M(θ)| →p 0

Proof of (A2)

Since Pl(β, γ, σ) is maximized at (β0, γ0, σ0), so its derivatives at (β0, γ0, σ0) are equal
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to 0. so by Taylor expansion,

M(θ0)−M(θ) =Pl(θ0;Y,∆,W )− Pl(θ;Y,∆,W )

=
1

2
P
{
l̈11(θ0)[β − β0, β − β0] + l̈22(θ0)(γ − γ0)2 + l̈33(θ0)(σ − σ0)2

+2l̈12(θ0)(γ − γ0)[β − β0] + 2l̈13(θ0)(σ − σ0)[β − β0]

+2l̈23(θ0)(γ − γ0)(σ − σ0)
}

+ o
(
d2(θ,θ0)

)
=A+ o

(
d2(θ,θ0)

)
Before we proceed to find the upper bound for A, first, by Cauchy-Schwarz Inequality,

we have

Y∫
0

[{β(u)− β0(u)}X(u)]2 · exp {β0(u)X(u)} du

≤
Y∫

0

[{β(u)− β0(u)}X(u)]2 du ·
Y∫

0

exp {β0(u)X(u)} du

.eR
Y∫

0

[{β(u)− β0(u)}X(u)]2 du

.eR‖β − β0‖2
Y

where . denotes that the left-hand side is bounded above by a constant times the

right-hand side, similarly,

Y∫
0

{β(u)− β0(u)}X(u) · exp {β0(u)X(u)} du

≤
Y∫

0

{β(u)− β0(u)}X(u)du ·
Y∫

0

exp {β0(u)X(u)} du

.eR‖β − β0‖Y
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then we have 0 ≤ eR2 . eR · ‖β − β0‖2
Y and 0 ≤ (eR1)2 . (eR)2 · ‖β − β0‖2

Y thus

l̈11(β0, γ0, σ0)[β − β0, β − β0] =−∆
eR2

eR
+ ∆

e2R1

e2R
+

∆

σ2
0

e2R1

e2R

φ(2)

φ
+

∆

σ0

eR2

eR
φ(1)

φ

− ∆

σ2
0

e2R1

e2R

(
φ(1)

φ

)2

− ∆

σ0

e2R1

e2R

φ(1)

φ
− (1−∆)

σ2
0

e2R1

e2R

φ(1)

(1− Φ)

− (1−∆)

σ0

eR2

eR
φ

(1− Φ)
− (1−∆)

σ2
0

e2R1

e2R

(
φ

1− Φ

)2

+
(1−∆)

σ0

e2R1

e2R

φ

(1− Φ)

.

{
∆

σ2
0

·
∣∣φ(2)

∣∣
φ

+
∆

σ0

·
2
∣∣φ(1)

∣∣
φ

+
(1−∆)

σ2
0

∣∣φ(1)
∣∣

1− Φ

+
(1−∆)

σ0

|φ|
1− Φ

}
· ‖β − β0‖2

Y

similarly, we can have

l̈12(β0, γ0, σ
2
0)[β − β0] = l̈21(β0, γ0, σ

2
0)[β − β0]

=
∆Z

σ2
0

eR1

eR
φ(2)

φ
− ∆Z

σ2
0

eR1

eR

(
φ(1)

φ

)2

− (1−∆)Z

σ2
0

eR1

eR
φ(1)

1− Φ
− (1−∆)Z

σ2
0

eR1

eR

(
φ

1− Φ

)2

.

{
∆

σ3
0

∣∣φ(2)
∣∣

φ
+

∆

σ2
0

(φ(1))2

φ2
+

(1−∆)

σ2
0

∣∣φ(1)
∣∣

1− Φ

}
|Z| · ‖β − β0‖Y
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l̈13(β0, γ0, σ
2
0)[β − β0] = l̈31(β0, γ0, σ

2
0)[β − β0]

=− ∆(R + γ0Z)

σ3
0

eR1

eR
φ(2)

φ
− ∆

σ2
0

eR1

eR
φ(1)

φ
+

∆(R + γ0Z)

σ3
0

eR1

eR

(
φ(1)

φ

)2

+
(1−∆)(R + γ0Z)

σ3
0

eR1

eR
φ(1)

1− Φ
+

(1−∆)

σ2
0

eR1

eR
φ

1− Φ
+

(1−∆)(R + γ0Z)

σ3
0

eR1

eR

(
φ

1− Φ

)2

.

{
∆

σ3
0

∣∣φ(2)
∣∣

φ
|R|+ ∆

σ3
0

∣∣φ(2)
∣∣

φ
|γ0| |Z|+

∆

σ2
0

∣∣φ(1)
∣∣

φ
+

∆

σ3
0

(φ(1))2

φ2
|R|+ ∆

σ3
0

(φ(1))2

φ2
|γ0| |Z|

+
(1−∆)

∣∣φ(1)
∣∣

σ3
0(1− Φ)

|R|+
(1−∆)

∣∣φ(1)
∣∣

σ3
0(1− Φ)

|γ0| |Z|+
(1−∆)

σ2
0

φ

1− Φ
+

(1−∆)

σ3
0

φ2

(1− Φ)2
|R|

+
(1−∆)

σ3
0

φ2

(1− Φ)2
|γ0| |Z|

}
· ‖β − β0‖Y
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Thus, we can calculate the following quantity

D1 =l̈11(θ0)[β − β0, β − β0] + l̈22(θ0)(γ − γ0)2 + l̈33(θ0)(σ − σ0)2

+ 2l̈12(θ0)[β − β0](γ − γ0) + 2l̈13(θ0)[β − β0](σ − σ0) + 2l̈23(θ0)(γ − γ0)(σ − σ0)

.

{
∆

σ2
0

·
∣∣φ(2)

∣∣
φ

+
∆

σ0

·
2
∣∣φ(1)

∣∣
φ

+ ∆ +
(1−∆)

σ2
0

∣∣φ(1)
∣∣

1− Φ
+

(1−∆)

σ0

|φ|
1− Φ

}

· ‖β − β0‖2
Y +

{
∆Z2

σ2
0

φ(2)

φ
− ∆Z2

σ2
0

(
φ(1)

φ

)2

− (1−∆)Z2

σ2
0

φ(1)

1− Φ

−(1−∆)Z2

σ2
0

(
φ

1− Φ

)2
}
· (γ − γ0)2 +

{
∆

σ2
0

+
∆(R + γ0Z)2

σ4
0

φ(2)

φ
+

2∆(R + γ0Z)

σ3
0

φ(1)

φ

− ∆(R + γ0Z)2

σ4
0

(
φ(1)

φ

)2

+
(1−∆)(R + γ0Z)2

σ4
0

φ(1)

1− Φ
+

2(1−∆)(R + γ0Z)

σ3
0

φ

1− Φ

+
(1−∆)(R + γ0Z)2

σ4
0

(
φ

1− Φ

)2
}
· (σ − σ0)2 + 2

{
∆

σ3
0

∣∣φ(2)
∣∣

φ
+

∆

σ2
0

(φ(1))2

φ2

+
(1−∆)

σ2
0

∣∣φ(1)
∣∣

1− Φ

}
· ‖β − β0‖Y (γ − γ0) + 2

{
∆

σ3
0

∣∣φ(2)
∣∣

φ
|R|+ ∆

σ3
0

∣∣φ(2)
∣∣

φ
|γ0| |Z|

+
∆

σ2
0

∣∣φ(1)
∣∣

φ
+

∆

σ3
0

(φ(1))2

φ2
|R|+ ∆

σ3
0

(φ(1))2

φ2
|γ0| |Z|+

(1−∆)
∣∣φ(1)

∣∣
σ3

0(1− Φ)
|R|+

(1−∆)
∣∣φ(1)

∣∣
σ3

0(1− Φ)
|γ0| |Z|

+
(1−∆)

σ2
0

φ

1− Φ
+

(1−∆)

σ3
0

φ2

(1− Φ)2
|R|+ (1−∆)

σ3
0

φ2

(1− Φ)2
|γ0| |Z|

}
· ‖β − β0‖Y (σ − σ0)

+ 2

{
−∆Z(R + γ0Z)

σ3
0

φ(2)

φ
− ∆Z

σ2
0

φ(1)

φ
+

∆Z(R + γ0Z)

σ3
0

(
φ(1)

φ

)2

+
(1−∆)Z(R + γ0Z)

σ3
0

φ(1)

1− Φ
+

(1−∆)Z

σ2
0

φ

1− Φ
+

(1−∆)Z(R + γ0Z)

σ3
0

(
φ

1− Φ

)2
}

· (γ − γ0)(σ − σ0)

=∆N1 + (1−∆)N2
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where we denote

N1 =

{
1

σ2
0

·
∣∣φ(2)

∣∣
φ

+
1

σ0

·
2
∣∣φ(1)

∣∣
φ

+ 1

}
· ‖β − β0‖2

Y +

{
Z2

σ2
0

φ(2)

φ
− Z2

σ2
0

(
φ(1)

φ

)2
}
· (γ − γ0)2

+

{
1

σ2
0

+
(R + γ0Z)2

σ4
0

φ(2)

φ
+

2(R + γ0Z)

σ3
0

φ(1)

φ
− (R + γ0Z)2

σ4
0

(
φ(1)

φ

)2
}
· (σ − σ0)2

+ 2

{
1

σ3
0

∣∣φ(2)
∣∣

φ
+

1

σ2
0

(φ(1))2

φ2

}
· ‖β − β0‖Y (γ − γ0) + 2

{
1

σ3
0

∣∣φ(2)
∣∣

φ
|R|+ 1

σ3
0

∣∣φ(2)
∣∣

φ
|γ0| |Z|

+
1

σ2
0

∣∣φ(1)
∣∣

φ
+

1

σ3
0

(φ(1))2

φ2
|R|+ 1

σ3
0

(φ(1))2

φ2
|γ0| |Z|

}
· ‖β − β0‖Y (σ − σ0)

+ 2

{
−Z(R + γ0Z)

σ3
0

φ(2)

φ
− Z

σ2
0

φ(1)

φ
+
Z(R + γ0Z)

σ3
0

(
φ(1)

φ

)2
}

(γ − γ0)(σ − σ0)

After some calculation and by CauchySchwarz inequality, we have

N1 .C1 ‖β − β0‖2
Y + C2(γ − γ0)2 + C3(σ − σ0)2

. ‖β − β0‖2
Y + (γ − γ0)2 + (σ − σ0)2

where C1, C2 and C3 are constant with respect to θ = (β(·), γ, σ). Similarly, we can

have

N2 =

{
1

σ2
0

∣∣φ(1)
∣∣

1− Φ
+

1

σ0

|φ|
1− Φ

}
· ‖β − β0‖2

Y +

{
−Z

2

σ2
0

φ(1)

1− Φ
− Z2

σ2
0

(
φ

1− Φ

)2
}
· (γ − γ0)2

+

{
(R + γ0Z)2

σ4
0

φ(1)

1− Φ
+

2(R + γ0Z)

σ3
0

φ

1− Φ
+

(R + γ0Z)2

σ4
0

(
φ

1− Φ

)2
}
· (σ − σ0)2

+ 2
1

σ2
0

∣∣φ(1)
∣∣

1− Φ
· ‖β − β0‖Y (γ − γ0) + 2

{ ∣∣φ(1)
∣∣

σ3
0(1− Φ)

|R|+
∣∣φ(1)

∣∣
σ3

0(1− Φ)
|γ0| |Z|

+
1

σ2
0

φ

1− Φ
+

1

σ3
0

φ2

(1− Φ)2
|R|+ 1

σ3
0

φ2

(1− Φ)2
|γ0| |Z|

}
· ‖β − β0‖Y (σ − σ0)

+ 2

{
Z(R + γ0Z)

σ3
0

φ(1)

1− Φ
+
Z

σ2
0

φ

1− Φ
+
Z(R + γ0Z)

σ3
0

(
φ

1− Φ

)2
}
· (γ − γ0)(σ − σ0)

. ‖β − β0‖2
Y + (γ − γ0)2 + (σ − σ0)2
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Thus

D1 .∆N1 + (1−∆)N2

. ‖β − β0‖2
Y + (γ − γ0)2 + (σ − σ0)2

=d2(θ,θ0),

we can then have A = 1
2
P{D1} ≤ Cd2(θ,θ0) with some C for which is bounded.

Proof of (A3)

Mn(θ̂n)−Mn(θ0) = Mn(θ̂n)−Mn(θ0.n) + Mn(θ0,n)−Mn(θ0)

≥ Pnl(θ0,n;Y,∆,W )− Pnl(θ0;Y,∆,W )

= (Pn − P ) {l(θ0,n;Y,∆,W )− l(θ0;Y,∆,W )}+ M(θ0,n)−M(θ0)

Define L2 = {l(β, γ0, σ0)− l(β0, γ0, σ0) : β ∈ Bn, and ‖β − β0‖ ≤ Cn−pν} with the

ε-bracketing number associated L2(P )-norm bounded by (1/ε)Cqn . Thus L2 is P-

Donsker. So

P {l(β, γ0, σ0;Y,∆,W )− l(β0, γ0, σ0;Y,∆,W )}2 → 0 as n→∞

Hence (Pn − P ) {l(θ0,n;Y,∆,W )− l(θ0;Y,∆,W )} = op
(
n−1/2

)
, by the relationship

between P-Donsker and asymptotic equicontinuity (van der Vaart and Wellner (1996)

Corollary 2.3.12). By the Dominated Convergence Theorem, M(θ0,n) − M(θ0) >

−o(1) as n→∞. Therefore,

Mn(θ̂n)−M(θ0) ≥ op(n
−1/2)− o(1) = −op(1)
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Combine (A1) - (A3), we have the consistency result, i.e. d(θ̂n − θ0) → 0 in proba-

bility. And Condition (A4) further gives the convergence rate.

Proof of (A4)

Here, we need to verify the conditions of Theorem 3.2.5 of van der Vaart and Wellner

(1996) in order to derive the convergence rate. We have

Mn(θ̂n)−Mn(θ0) ≤ I1,n + I2,n

where I1,n = (Pn − P ){l(β0,n, γ0, σ0;Y,∆,W ) − l(β0, γ0, σ0;Y,∆,W )} and I2,n =

P{l(β0,n, γ0, σ0;Y,∆,W )− l(β0, γ0, σ0;Y,∆,W )}. By Taylor expansion, we have

I1,n = (Pn − P )
{
l̇2(β̃, γ0, σ0;Y,∆,W )(β0,n − β0)

}
= n−pν+ε(Pn − P )

{
l̇2(β̃, γ0, σ0;Y,∆,W )

β0,n − β0

n−pν+ε

}

for any 0 < ε < 1/2− pν. Because ‖β0,n− β0‖∞ = O(n−pν) and l̇2(β̃, γ0, σ0;Y,∆,W )

is uniformly bounded due to Conditions (C1) - (C5), we can easily obtain that

P

{
l̇2(β̃, γ0, σ0;Y,∆,W )

β0,n − β0

n−pν+ε

}2

→ 0

Due to L2 being P-Donsker, using Corollary 2.3.12 of van der Vaart and Well-

ner (1996) again, we can conclude that (Pn − P )
{
l̇2(β̃, γ0, σ0;Y,∆,W )β0,n−β0

n−pν+ε

}
=

op(n
−1/2). Hence I1,n = op(n

−pν+ε−1/2) = op(n
−2pν).

Similarly, by Taylor expansion, we can argue that M(θ0)−M(θ0,n) ≤ C‖β0,n−β0‖2 =

O(n−2pν), which implies that I2,n = M(θ0,n)−M(θ0) ≥ −O(n−2pν). Thus we conclude

that

Mn(θ̂n)−Mn(θ0) ≥ −Op(n
−2pν) = Op(n

−2 min(pν,(1−ν)/2))
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Let L3(η) = {l(θ) − l(θ0) : β ∈ Bn and d(θ,θ0) ≤ η}. Using the same argument

as that in the proof of consistency, we obtain that the logarithm of the ε-bracketing

number of L3(η), logN[]{ε,L3(η), L2(P )} is bounded by Cqn log(η/ε). This leads to

J[]{ε,L3(η), L2(P )} =

η∫
0

√
1 + logN[]{ε,L3(η), L2(P )}dε ≤ Cq1/2

n η

Because Condition (C1) and (C3) guarantee the uniform boundedness of l(θ), using

Theorem 3.4.1 of van der Vaart and Wellner (1996), the key function βn(η) in The-

orem 3.2.5 of van der Vaart and Wellner (1996) is given by βn(η) = q
1/2
n η + qn/n

1/2.

Note that

n2pνβn(1/npν) = npνnν/2 + n2pνnν + n2pνnν/n1/2 = n1/2
{
npν−(1−ν)/2 + n2pν−(1−ν)

}
Therefore, if pν ≤ (1−ν)/2, n2pνβn(1/npν) ≤ n1/2. This implies that if we choose rn =

nmin(pν,(1−ν)/2), it follows that r2
nβn(1/rn) ≤ n1/2 and Mn(θ̂n)−Mn(θ0) ≥ −Op(r

−2
n ).

Hence d(θ̂n,θ0) = Op(r
−1
n ) = Op

[
n−min{pν,(1−ν)/2}].

2.7.2.2 Proof of Theorem 2.2

For Theorem 2.2, given the efficient score for γ in the censored linear model derived

as follows:

l̇∗γ(θ) =

[
Z −

EỸ ,∆̃,W̃ {Z̃X̃(Ỹ )|R̃ = log
∫ t

0
eβ0(u)X(u)du, ∆̃ = 1}

EỸ ,∆̃,W̃ {X̃2(Ỹ )|R̃ = log
∫ t

0
eβ0(u)X(u)du, ∆̃ = 1}

]

× 1

σ

{
∆
φ′({R(Y ; β0) + γZ} /σ)

φ({R(Y ; β0) + γZ} /σ)
− (1−∆)

φ(−{R(Y ; β0) + γZ} /σ)

Φ(−{R(Y ; β0) + γZ} /σ)

}

where R(s; β0) = log
∫ s

0
exp{β0(u)X(u)}du. Suppose that the conditions in Theorem

1 hold and I(θ0) = EY,∆,W

{
l̇∗γ(θ0)⊗2

}
is nonsingular, then in order to derive the
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asymptotic normality for γ̂, we need to verify the conditions of the general theorem

given in Appendix B of Zhang et al. (2009) (simplified version of the general theorem

given in Huang et al. (1996)).

(B1) Pnl̇γ(θ̂n;Y,∆,W ) = op
(
n−1/2

)
and Pnl̇β(θ̂n;Y,∆,W )(ξ0) = op

(
n−1/2

)
(B2) (Pn − P )

{
l∗γ(θ̂n;Y,∆,W )− l∗γ(θ0;Y,∆,W )

}
= op(n

−1/2)

(B3) P
{
l∗γ(θ̂n;Y,∆,W )− l∗γ(θ0;Y,∆,W )

}
= −I(θ0)(γ̂n − γ0) + op(|γ̂n − γ0|) +

op
(
n−1/2

)
For Condition (B1), we only need to verify that Pnl̇β(θ̂n)(ξ0) = op

(
n−1/2

)
, since

Pnl̇γ(θ̂n) ≡ 0. Because ξ0 has a bounded derivative, it is also a function with bounded

variation. Then it can be easily shown using the argument in Billingsley (1986), that

there exist a ξ0,n ∈ Sn(Dn, Kn,m) such that ‖ξ0,n − ξ0‖ = O(q−1
n ) = O(n−ν) and

Pnl̇β(θ̂n)(ξ0,n) = 0. Therefore we can write Pnl̇β(θ̂n)(ξ0) = I3,n + I4,n, where

I3,n = (Pn − P ) l̇β(θ̂n)(ξ0 − ξ0,n)

I4,n = P
{
l̇β(θ̂n)(ξ0 − ξ0,n)− l̇β(θ0)(ξ0 − ξ0,n)

}

Let L4 =
{
l̇β(θ)(ξ0 − ξ) : θ ∈ Θn, ξ ∈ Sn(Dn, Kn,m) and ‖ξ0 − ξ‖ ≤ n−ν

}
. It can

be similarly argued that the ε-bracketing number associated with L2(P )-norm is

bounded by C3(1/ε)d+C4qn which leads L4 being a P-Donsker due to Theorem 19.5

of van der Vaart (1998). Furthermore, for any r(θ, ξ;x) ∈ L4, Pr2 → 0 as n → ∞.

Hence I3,n = op(n
−1/2) by Corollary 2.3.12 of van der Vaart and Wellner (1996). By

Cauchy-Schwatz inequality and regularity conditions, it can be easily shown that

I4,n ≤ Cd(θ̂,θ0)‖ξ0 − ξ0,n‖ =Op

(
n−min(nu,(1−ν)/2)n−ν

)
=Op

(
n−min(ν(p+1),(1+ν)/2)

)
=op(n

−1/2)
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So (B1) holds.

Condition (B2) holds by similarly verifying that the class L5(η) =
{
l∗β(θ)− l∗β(θ0) :

θ ∈ Θn and d(θ,θ0) ≤ η} is P-Donsker and for any r(θ) ∈ L5(η), Pr2 → 0 as η → 0.

Condition (B3) can be easily established using Taylor expansion and the conver-

gence rate derived in Theorem 2.1.

2.7.3 The Efficient Score Functions

In this section, we study the semiparametric efficiency bound of the proposed

estimator for finite dimensional parameter γ. The semiparametric efficient score for

γ of a single observation can be written as

l̇∗γ(θ0) = l̇γ(θ0)− l̇β(θ0)(h∗)

where

h∗(t) =
EỸ ,∆̃,W̃

[
Z̃X̃(Ỹ )|R̃0 = log

∫ t
0
eβ0(u)X(u)du, ∆̃ = 1

]
EỸ ,∆̃,W̃

[
X̃(Ỹ )X̃(Ỹ )|R̃0 = log

∫ t
0
eβ0(u)X(u)du, ∆̃ = 1

]
To see this more clearly, we only need to proof that for the submodel β(t) + ηh∗(t)

with the direction h∗ ∈ H, the following equation will be held ∀h ∈ H:

EY,∆,W

[{
l̇γ(θ0)− l̇β(θ0)(h∗)

}
l̇β(θ0)(h)

]
= 0 (2.6)
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From the form of score functions, we have

l̇γ(θ0)− l̇β(θ0)(h∗)

=
∆Z

σ0

φ
(1)
0

φ0

− (1−∆)Z

σ0

φ0

(1− Φ0)
+ ∆Z −∆

∫ Y
0
Zeβ0(u)X(u)du∫ Y

0
eβ0(u)X(u)du

−∆h∗(Y )X(Y ) + ∆

∫ Y
0
h∗(u)X(u)eβ0(u)X(u)du∫ Y

0
eβ0(u)X(u)du

− ∆

σ0

φ
(1)
0

φ0

∫ Y
0
h∗(u)X(u)eβ0(u)X(u)du∫ Y

0
eβ0(u)X(u)du

+
(1−∆)

σ0

φ0

(1− Φ0)

∫ Y
0
h∗(u)X(u)eβ0(u)X(u)du∫ Y

0
eβ0(u)X(u)du

=∆{Z − h∗(Y )X(Y )}

+

∫ Y
0
{Z − h∗(u)X(u)}eβ0(u)X(u)du∫ Y

0
eβ0(u)X(u)du

×

{
−∆ +

∆

σ0

φ
(1)
0

φ0

− (1−∆)

σ0

φ0

(1− Φ0)

}

where Φ0 = Φ
(
R0+γ0Z

σ0

)
, φ0 = φ

(
R0+γ0Z

σ0

)
and φ

(1)
0 = φ(1)

(
R0+γ0Z

σ0

)
, with R0 =

log
∫ Y

0
eβ0(u)X(u)du. Notice that

EY,∆,W {Z − h∗(t)X(t)}

=E

E
Z − h∗(t)X(t)|R0 = log

t∫
0

eβ0(u)X(u)du,∆ = 1




=E

E
Z − EỸ ,∆̃,W̃

[
Z̃X̃(t)|R̃0 = log

∫ t
0
eβ0(u)X(u)du, ∆̃ = 1

]
EỸ ,∆̃,W̃

[
X̃(t)X̃(t)|R̃0 = log

∫ t
0
eβ0(u)X(u)du, ∆̃ = 1

]X(t)

|R0 = log

t∫
0

eβ0(u)X(u)du,∆ = 1




=0

Equation (2.6) then follows.
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CHAPTER III

Estimation of the Optimal Dynamic Treatment

Regime from Observational Data Using Flexible

Weighting Models

For many chronic diseases, a patient usually has to undergo multiple stages of

treatment. Therefore, the goal of identifying the optimal dynamic treatment regime

is very appealing as it allows a patient to receive the most appropriate treatment

and dose assignment based on his/her evolving history of disease status, treatment,

and other time-dependent clinical covariates. The challenge is to find the best regime

amongst a set of defined regimes from observational data, in which the actual regime

being followed by each subject is not well characterized. Inverse probability weighting

(IPW) based estimators are used in the estimation of causal parameters as an efficient

way to utilize information from an observational study. In this chapter, we focus on

the case where 1) the outcome is time-to-event, and 2) some of the covariates are

time-varying, and possibly follow a complicated pattern. We consider a class of

dynamic treatment regimes that are fully determined by the longitudinal covariates.

A novel Random Forest based IPW scheme is proposed to adjust for the complexity

in the mechanism of adherence to the regime of interest. The optimal regime is then

identified as the one with the largest restricted mean survival time. The performance
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of the proposed method is assessed through simulation studies, which are designed to

mimic the study of salvage treatment in the management of recurrent prostate cancer.

The proposed method can efficiently accommodate complex and possibly unknown

treatment/adherence mechanisms, and it is robust to cases where the proportional

hazard assumption is violated. We apply the method to a longitudinal prostate cancer

study.

3.1 Introduction

Prostate cancer is the most commonly diagnosed cancer among American men.

After initial treatment, patients with clinically localized prostate cancer are actively

monitored for possible cancer recurrence. Levels of prostate-specific antigen (PSA)

are repeatedly measured, and a dramatic rise of this prognostic marker is considered

as an indicator for increased risk of clinical cancer recurrence (Zagars and von Es-

chenbach, 1993). Salvage androgen deprivation therapy (SADT) would be applied as

an effective way to reduce the recurrence rate in these situations. Clinically, ”when to

start SADT” is usually determined by the physician’s own experience and personal

judgment. However, the current biological understanding of the effect of SADT is not

sufficient to determine the optimal time to start because early initiation of SADT has

both risks and benefits. If SADT is given too early when PSA values are still low, it

is wasted during the time when the patient is at low risk while later on the beneficial

effect wears off as the patient develops resistance. On the other hand if the patient

waits to start SADT until PSA is very high, it becomes less effective because the can-

cer is already well established and may have already spread to other sites by that time.

In this chapter, we try to address the above question and make recommendations

on when would be the optimal time to start SADT in terms of prolonging patient’s

cancer recurrence free survival using flexible weighting models based on the longi-
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tudinally collected observational data. This can be framed as a dynamic treatment

regime (DTR) (Murphy , 2003; Robins , 2004), in which dose or treatment is continu-

ously modified according to a patient’s current history and disease status. Identifying

such optimal dynamic decision rules offers an effective vehicle for personalized man-

agement of chronic diseases, for which a patient typically has to be treated at multiple

stages. DTRs help physicians to adapt the type, dosage, and timing of the treatment

at each stage to the evolving disease status, treatment and clinical history, and thus

provide better care by tailoring the treatment individually based on clinical evidence

(Wagner et al., 2001).

In recent years, a large literature has been developed on both designs and analytic

tools for DTRs. Although data from sequential multiple assignment randomized trials

(SMARTs) are desirable (Murphy , 2005), observational studies are the most common

source of data for complex disease studies, and a great deal of effort in statistical

research has concentrated on how to make best use of observational data to construct

DTRs (Wang et al., 2012). Careful thoughts and assumptions are required to make

valid causal inference, especially on how the observational data may restrict the set

of DTRs that can be assessed, which are called the feasible (Robins , 1994) or vi-

able (Wang et al., 2012) DTRs. Murphy (2003) and Robins (2004) generalized the

G-estimation method of structural nested models (Robins , 1986, 1989b, 1997, 2002)

for optimal treatment regime estimation and this approach is efficient when all mod-

els are correctly specified. Q- and A-learning (Watkins and Dayan, 1992; Robins ,

2004; Murphy , 2005) provides a powerful solution especially when the decision rules

depend on multiple covariates. However, the computational burden would increase

as the number of decision-making stages increases. For survival outcomes, treatment

decisions are essentially made on a continuous time base. In these situations, methods

based on inverse probability weighting (IPW) are easier to conduct and provide cer-
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tain robustness against model mis-specifications (Hernán et al., 2006; Robins et al.,

2008; Orellana et al., 2010a,b). But the validity of these approaches still rely on

expert knowledge to comprehensively understand the treatment assignment mech-

anism. This is challenging in our prostate cancer example, because the treatment

assignment in this observational study is not completely understood, and the typical

proportional hazard assumption is likely to be violated as well when comparing dif-

ferent regimes. Therefore, we propose a method which incorporates flexible modeling

to account for the unknown and potentially complicated treatment assignment mech-

anism. Our method does not require model assumptions for the recurrence hazard

either and can estimate the optimal DTR even when the hazards are not proportional.

Specifically, our proposed method starts with a class of pre-specified viable dynamic

treatment regimes, and evaluates them based on observational data with a time to

event outcome, while imposing minimal assumptions on the structure of the models.

We proceed by artificially censoring subjects when they become noncompliant with a

defined regime under investigation. This censoring potentially induces a bias which

we correct by using a modified version of Inverse Probability of Censoring Weighting

(IPCW) (Robins , 1993). We focus on the survival distribution as the target quantity

of interest and use a weighted version of Nelson Aalen estimator with a flexible data

driven weighting scheme to (1) accurately estimate the survival distribution under

a pre-defined dynamic treatment regime of interest; and (2) compare the survival

distribution under different viable dynamic treatment regimes.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the

notation under the framework of causal inference, and define the dynamic treatment

regimes of interest. In Section 3.3, we establish our method of the weighted Nelson

Aalen estimator and show asymptotic properties of the estimator. In Section 3.4,
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we demonstrate the validity of the proposed method through a simulation study, fol-

lowed by an application illustration in Section 3.5 by applying the proposed method

to a prostate cancer recurrence dataset with the goal of comparing several clinically

meaningful SADT regimens. Finally, we conclude with a discussion in Section 3.6,

some technical details are summarized in Section 3.7.

3.2 Notation and Dynamic Treatment Regimes

Suppose that there are N patients in a clinical trial or an observational study,

each of whom was observed at baseline t0 = 0, and longitudinally at regular inter-

vals t1, t2, · · · , tk, · · · until the end of K time intervals tK (study end) or until the

event of interest (e.g. cancer recurrence or death in our motivating example) occurs,

whichever is earlier. To simplify the problem, we assume that there is no censoring

(e.g. possible loss to follow-up) other than the administrative censoring at time tK .

Before having the event or dropping out, patients will come to the clinic once during

each of the K intervals and have their time dependent covariates (e.g., the PSA level)

measured. Treatment decisions, i.e. whether to start SADT, were made soon after

each clinic visit and at no other time. Assume that the subjects in the cohort are

a random sample from a large population of interest. For patient i at time tk, with

i = 1, · · · , N and k = 0, · · · , K, let Lik denote the time dependent covariates ob-

served at the kth clinic visit. When k = 0, we follow the convention in the literature

and use Li0 to denote all the baseline covariates. Let Rik denote a binary indicator

for event occurrence. Rik takes the value 1 if the patient has experienced the event

of interest by time tk and 0 otherwise. Let Aik denote the kth-specific treatment

prescription which we assume takes values in a finite set Ak = {0, 1}. Since our main

interest is when would be the optimal timing to start the treatment, we assume that

the patient will stay on the treatment once it is initiated. That is, the treatment can

only go from 0 to 1, but not 1 to 0.
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For a given subject i at time tk, k < K (if no event observed before the kth

visit), the observational data would be Aik and Oik = (Lik, Rik). For simplic-

ity, we will suppress the subject index i in the future when no confusion exists,

and use overbars to denote the history of the variable up to the indexed time.

Furthermore, we use capital letters to refer to random variables or vectors, while

lower-case letters are used to denote the observed values of the corresponding ran-

dom variables. For example, the observational data up to time tk is denoted as

(Ak−1,Ok) = (L0, A0,L1, R1, A1,L2, R2, · · · , Ak−1,Lk, Rk) and a possible observed

treatment history up to time tk is denoted as ak = (a0, · · · , ak) ∈ A0×· · ·×Ak = Ak.

Here we consider a causal framework with treatment regime specific counterfactual

outcomes (Robins , 1986). For each patient, L0 is measured before the first treatment

decision, so it is always observed. Let LCk (ak−1) denote the counterfactual covariate

information that would be observed at time tk were the patient to receive treatment

history ak−1 regardless what treatment sequence he actually followed up to tk, and

similarly let RC
k (ak−1) denote the corresponding counterfactual event status at time

tk under treatment history ak−1. Then the counterfactual observations are denoted

as

W C =
{
L0,L

C
1 (a0), RC

1 (a0), · · · ,LCK(aK−1), RC
K(aK−1), for allaK−1 ∈ AK−1

}
Notice W C includes all the counterfactual observation up to time tK . However, in

practice, the counterfactual observation would only be meaningful up to the time of

the counterfactual event, if the counterfactual event is before tK . In fact, the pieces

after that time will never be used in the methods that we describe here and we only

include them in W C for ease of notation.
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A dynamic treatment regime g = {gk : k = 0, · · · , K − 1} is a sequential rule for

determining the next treatment prescription Ak at each time tk. The rule gk(ok) ∈ Ak

for k = 0, . . . , K − 1 may depend on part or all of the recorded health information

about the patient’s health up to and including time tk. The optimal regime would be

a regime that maximizes the expected utility function if all patients in the population

follow this rule. Note the expected utility can depend on ok as well as the regime g,

thus it provides a personalized treatment decision. For time to event outcomes, it may

be unrealistic to expect the proportional hazard assumption to hold across different

regimes, thus here we propose to use the restricted mean survival time as the utility

function. If we denote the survival time by T , then for some arbitrary time bound

Tmax, the restricted survival time is defined as min (T, Tmax), and the restricted mean

lifetime can be represented as E {min (T, Tmax)} . It can be shown that the restricted

mean survival time can be represented as the area under the survival curve up to

Tmax, µ =
∫ Tmax

0
S(t)dt. Here Tmax can be chosen as the administrative censoring

time, or longest follow-up time, in our case, tK . For our specific example, Lk = PSAk

for k = 1, 2, · · · , K, while L0 = (PSA0, V0) where V0 is the baseline covariate (e.g. T-

stage of the patient at time t0). In reality, following the initial treatment of prostate

cancer with radiation therapy, PSA will typically decrease, then either remain stable

or follow an increasing trend. A simple treatment regime could be that the patient

starts SADT the first time his PSA level is above a threshold b, after the decreasing

phase has past (practically, we require that the current PSA value to be larger than

the value at the previous visit). To formalize it, we only consider the class of regimes

G ≡
{
gb : b ∈ R

}
=
{

(gb0, · · · , gbK−1) : b ∈ R
}

where the treatment indicator at time

tk is
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gbk(O
C

k ) =


0 ifACk−1 = 0 ,PSAC

k ≤ PSAC
k−1 , or PSAC

k ≤ b.

1 ifACk−1 = 0 ,PSAC
k > PSAC

k−1 , and PSAC
k > b.

1 ifACk−1 = 1

(3.1)

In this setting, a treatment regimen gb is fully defined by cut-off value b. The

counterfactual data used in the definition of gbk in (3.1) is specific to the case where

all patients follow gb. If we denote the restricted mean lifetime under this regime gb

to be µb, the optimal regime is gopt = arg max{gb∈G} µ
b.

Definition (3.1) is based on the assumption that we observe the counterfactual data

under all regimes gb ∈ G. In practice, not all of them can be observed for each

patient, because each patient is observed to experience one and only one treatment

history. So instead of calculating µb from O
C

K(gb) as if everyone follows gb, we need

to estimate it from the observed data OK . To make this possible, we follow Orellana

et al. (2010a) and make the following standard assumptions. (i) The consistency

assumption states that Ok = OC
k (Ak−1) =

∑
ak−1∈Ak−1

OC
k (ak−1)I(Ak−1 = ak−1) for

k = 1, · · · , K; that is, a patient’s observed covariates and outcomes are the same as

the potential ones he would exhibit under the treatment history actually received. (ii)

No unmeasured confounder assumption (NUCA) implies that W C is independent of

Ak conditional on (Ok,Ak−1) for k = 1, · · · , K. (iii) The positivity assumption says

that Pr(Ak(g)|Ok(g),Ak−1(g)) ≥ ε > 0 for k = 1, · · · , K with probability 1 for an

arbitrary small positive constant ε; it basically guarantees that in the counterfactual

world where everyone follows regime g, if there were patients with history ok and

ak−1 that would be assigned to treatment ak, then, in the observational world, there

must be some patients with the same history (ok and ak−1) who are observed to take

ak. Using these assumptions, we have p
LCk (ak−1)|LCk−1(ak−2),R

C
k−1(ak−2)

(lk|lk−1, rk−1) =

pLk|Lk−1,Rk−1,Ak−1
(lk|lk−1, rk−1,ak−1) and p

RCk (ak−1)|LCk (ak−1),R
C
k−1(ak−2)

(rk|lk, rk−1) =
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pRk|Lk,Rk−1,Ak−1
(rk|lk, rk−1,ak−1), where p(·) denotes the probability function. There-

fore we are able to make inference about µb using only the observed data (AK−1,OK)

(see Section 3.7 for details of the proof).

3.3 Method

For most subjects in the observational data, we do not know if they are adhering to

a treatment regime, and if they are following a specific regime, we may not know what

that regime is, other than what can be inferred from the observed data. However,

we wish to estimate the specific survival experience that the whole cohort of subjects

would have had if they had truly been adherent to gb.

3.3.1 Inverse Probability of Adherence Weighting

We proceed by artificially censoring subjects at their first non-adherent visit. For

a specific regime gb, let Cb
k = Akg

b
k(Ok)+(1−Ak){1−gbk(Ok)} be the indicator of ad-

herence at time k = 0, · · · , K−1, which is 1 if the patient’s observed treatment status

at time k is the same as if he is following regime gb (adherent), and is 0 if the observed

and regime gb specific treatment statuses are different. The patient would follow the

regime until time k if C
b

k = 1̄, where we use overbars to represent the history of a

covariate, for example, C
b

t = {Cb
u; 0 ≤ u < t} is a subject’s adherence history up to

time t. 1̄ is a vector of 1’s the same length as C
b

k. The patient is censored at time

t = mintk{Cb
k = 0 for k = 0, · · · , K} to generate the regime gb adherence dataset, i.e.

we only consider the time period when a patient’s observed treatment is consistent

with regime gb. Notice here, for a patient who partially follows the regime of interest,

we will include him in the regime gb adherence dataset, but only up to the first time

he stops to follow the regime.

In order to correctly estimate the regime gb specific counterfactual survival function
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as well as µb, we propose to adjust for the bias induced from the artificial censoring

by weighting each subject by their Inverse Probability of Adherence Weights,

wbk =
I
(
C
b

k = 1̄
)

∏k
j=0 P

(
Cb
j = 1|Cb

j−1 = 1̄,Oj = oj

) (3.2)

Briefly, at each time point, each adherent subject is weighted by the inverse of the

probability that they remained adherent given their measured covariate history, and

thus account for themselves as well as other similar subjects who were non-adherent

and artificially censored. Because we are considering discretized visits, the probability

of adherence for a patient at time k is then calculated as the multiplication of the

conditional probabilities of adherence at each time point j (j = 0, · · · , k) given that

he remained adherent up to time j − 1. For ease of notation, we define Cb
−1 = 1 for

all patients. Following Robins (1993), in practice, we use the stabilized version of the

weights:

swbk =
k∏
j=0

P
(
Cb
j = 1|Cb

j−1 = 1̄,L0 = l0

)
P
(
Cb
j = 1|Cb

j−1 = 1̄,Oj = oj,Aj−1 = aj−1

) (3.3)

The model in the numerator includes only baseline covariates and serves to stabilize

(i.e. reduce the variability of) the weights.

3.3.2 Random Forest Regression

In order to make unbiased estimation based on these weights, it is important that

the model for adherence is correctly specified. Traditionally, the probability models

in the numerator and denominator of Equation (3.3) are estimated by fitting logistic

regression models to the pooled data from all possible pieces of person-times (Hernán

et al., 2006). In our case, the regime rules are defined based on the PSA value, and

since the PSA has a non-linear relationship with time, it would be hard to expect

that a simple logistic regression model would capture the association between adher-
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ence and covariates. We propose to use Random Forest regression to model these

probablities.

Random Forests (Breiman, 2001) is a non-parametric classification and regression

method. It employs a combination of resampling and ensembles single tree based

models to give superior performance in both classification and regression. Compared

to the parametric logistic regression, it provides more flexibility without imposing

many structure assumptions. In detail, as the number of patients at risk decreases

over time, it may not be efficient to fit separate conditional probability models at each

time point. We proceed by pooling the data of all person-time pieces together to do

the Random Forest regression, while putting in time as a covariate to account for the

fact that these conditional probabilities vary over time. The numerator and denomi-

nator in Equation (3.3) will be modeled separately. For the denominator, we first fit

model for observed treatment assignment mechanism, P
(
Ak = 1|Ak−1 = 0̄,Ok = ok

)
with all the observed data available up to the first time point when the patient is on

treatment, i.e. person-time pieces up to tm with m = max{k : Ak−1 = 0, k ≤ K}

then the target probabilities can be calculated from

P
(
Cb
k = 1|Cb

k−1 = 1̄,Ok = ok

)
=P

(
Ak = 1|Ak−1 = ak−1,Ok = ok

)
I{gbk(ok) = 1}

+ P
(
Ak = 0|Ak−1 = ak−1,Ok = ok

)
I{gbk(ok) = 0},

Since the treatment mechanism model for the observational data is the same regardless

of which regime is under investigation, this allows us to obtain the probability of

adherence for various regimes while only fitting the pooled Random Forest model

once. However, we may not be able to do the same thing for the numerator, as

it requires that this model should not be related to the time-dependent treatment
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status Aj−1. We proceed by directly fitting the model for regime specific adherence

mechanism P
(
Cb
j = 1|Cb

j−1 = 1̄,L0 = l0

)
in the adherence cohort for each regime of

interest. More discussion on this issue can be found in Section 3.6. Here, the Random

Forest modeling is done using the R function randomForest with all default settings

except for the number of trees per forest and number of variables included at each

split, which we set at ntree = 1000 and mtry = 1. The adherence probabilities are

given from the “out-of-bag” prediction.

3.3.3 Weighted Nelson Aalen Estimator

To reduce the sample selection bias due to adherence, we assign a time-dependent

weight swbik for the ith subject at time tk, while his data are compatible with regime

gb under consideration, i = 1, · · · , N . Define the weighted number of events and the

weighted number at risk at time tk as

dbk =
∑
i:Ti=tk

swbikδ
b
i and Y b

k =
∑
i:Ti≥tk

swbik

and then the formula that defines the weighted estimator for the regime gb-specific

survival function is Ŝb(t) = exp{−Λ̂b(t)}, where Λ̂b(t) =
∑

tj≤t d
b
j/Y

b
j is the cumula-

tive hazard function. The estimated restricted mean survival time for regime g can

be calculated as µ̂b =
∫ tk

0
Ŝb(t)dt. The optimal DTR is the one that maximize µ̂b,

that is ĝopt = arg maxgb∈G µ̂
b.

3.3.4 Property of the Estimator

To derive the large-sample properties of µ̂g(t), we need the following additional

regularity conditions. Specifically, we require for i = 1, · · · , N ,

(a) The observed data (Ai,K−1,Oi,K) are independent and identically distributed.

(b)
∫ τ

0
λb0(t)dt <∞ where λb0(t) is the true marginal hazard for any regime gb ∈ G.
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(c) For the true marginal survival function Sb0(t), we assume there exist continu-

ous first-order derivatives in t and bounded second partial derivatives (uniformly in

t ∈ (0, tK ]).

Along with the assumptions from Section 3.2, we can show that the proposed esti-

mator can give asymptotically consistent estimation to the counterfactual quantities

of interest. The main results are summarized in the following two theorems.

THEOREM 3.1 For any patient i = 1, · · · , n, and k = 1, · · · , K − 1, we have

P (Cb
k = 1|Cb

k−1 = 1̄,Ok = ok) = P (Ak = 1|Ak−1 = ak−1,Ok = ok)I{gbk(ok) = 1}

+ P (Ak = 0|Ak−1 = ak−1,Ok = ok)I{gbk(ok) = 0}

The proof of Theorem 3.1 is outlined in Section 3.7. It connects the treatment model

and the model for the adherence to regime gb. So the weight calculated in Section

3.3.2 can consistently estimate the weight of adherence. Instead of directly modeling

the regime specific adherence mechanism for every regime, it only requires fitting one

model for all the regimes of interest.

THEOREM 3.2. Under assumption (i) - (iii) in Section 3.2 and the regularity

conditions (a) to (c), if the time dependent weights in Equation (3.3) are consistent

estimators of the true weights, then µ̂b(t) converges almost surely and uniformly in

t ∈ (0, tK ] to µb0(t).

Theorem 3.2 assures that as long as the weights are correctly estimated, the pro-

posed weighted Nelson Aalen estimator will give a consistent estimate for the regime

specific survival function in the counterfactual world, and the estimation of the utility
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µb0 is also consistent. This establishes the consistency of the estimated optimal DTR

by maximizing µ̂b(t) among gb ∈ G.

3.4 Simulation

In order to evaluate the performance of the proposed method, we conduct simula-

tion studies where we have access to the fully adherent data for each defined regimes,

and thus we can use these simulated counterfactual data to calculate the real causal

outcome when everyone follows the defined regime as the “gold standard”, and com-

pare it to the proposed estimator. To illustrate the role of flexible modeling in the

weight estimation, we compare the proposed method with an approach where the

weights are estimated from pooled logistic regression (Hernán et al., 2006). In detail,

for the denominator of the weight in Equation (3.3), we will fit the treatment model

as

logit P
(
Ak = 1|Ak−1 = 0̄, Ōk = ōk

)
= h1(k) + β1Ok + βT2V 0

and for the numerator, we fit the regime specific adherence model as

logit P
(
Cb
j = 1|Cb

j−1 = 1̄,V 0 = v0

)
= h2(k) + βT3V 0

where we consider time-dependent intercept for both models, i.e. h1(k) and h2(k).

In the specific models below, Ok is the valure of log PSA measured at time tk, and

V 0 is the Tstage measured at baseline, in detail, we represent is as a 2-dimensional

vector V 0 = (I(Tstage = 2), I(Tstage ≥ 3))T . We use cubic spline with 2 internal

knots to estimate the intercept terms.

We consider two scenarios: (1) a simple case where the true treatment is assigned

55



according to a logistic model, and (2) a more realistic model with a more complicated

PSA model and mechanism for treatment assignment. For each scenario, we simulate

500 datasets each with 2000 subjects, respectively.

3.4.1 Scenario 1:

We first present a case with a PSA model where the logarithm of PSA is linear in

time. The treatment would be generated such that it would be in favor of the pooled

logistic model. From now on, other than the time-dependent PSA, we also consider

the baseline covariate V0 as the baseline T-stage.

3.4.1.1 Longitudinal PSA Values

Let Pi(t) denote the observed PSA value, for subject i at t ∈ (0, tK ] years after

the start of follow-up (we choose tK = 15 year). We measure PSA every year at

t = 0, 1, · · · , 15, and the observed PSA values are simulated from the following linear

mixed model:

logPi(t) = logPSAi(t) + εit = (α0 + ai0) + (α1 + ai1)t+ εit (3.4)

where (α0, α1) = (−3.0, 0.3) are fixed effect parameters, (ai0, ai1) are subject-specific

random effects. At a given time t, we assume the measurement error εit ∼ N(0, σ2)

where σ2 = 0.1, and we assume the random effects (ai0, ai1) ∼ MVN(0,Σ), where

Σ =

 1 0.5

0.5 0.25

. Here we also truncate ai1 at -0.1, such that the slope of log PSAi(t)

would not be negative, and treatment assignment according to the model below would

be clinically reasonable.

Note that, given the random effects, and in the absence of any treatment after time

t = 0, PSAi(t), which is referred to as the true PSA without treatment, is known and
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non-random. In contrast, the observed PSA value, Pi(t), are subject to measurement

error, and not observed after the earliest of salvage time or recurrence.

3.4.1.2 Different Treatment Regimes and Observed Treatment Time

For the counterfactual outcomes, we consider a finite number of dynamic SADT

treatment regimes as described in Definition (3.1). We consider 10 regimes with

{b1, b2, · · · , b10} = {−0.5, 0, · · · , 4.0}. Thus, according to subject i’s PSA trajectory,

we can calculate the regime specific time to initiate SADT as U b1
i , U

b2
i , · · · , U

b10
i for

all 10 regimes. Here we assume that the observed treatment assignment for subject

i follows one of the above 10 regimes with the threshold value B, where B follows a

discrete uniform distribution for {b1, b2, · · · , b10}. The observed treatment time for

subject i is then Ui = UB
i .

3.4.1.3 Model for Recurrence and Fully Compliant Data

For subject i with treatment initiation time Ui, we simulate recurrence times

according to a Cox model:

λi(t) = λ0 exp[θT0V 0i + θ1logPSAi(t) + θ2logPSA′i(tk) + γi(t)I(t > Ui)] (3.5)

where λ0 = 0.2, θ0 = (0.2, 0.3)T , θ1 = 0.3 and θ2 = 0. V 0i = (I(Tstagei =

2), I(Tstagei ≥ 3))T with patient i’s baseline T-stage sampled from {1, 2, 3, 4} with

probability p = (0.33, 0.59, 0.07, 0.01) (categorical distribution). The treatment effect

γi(t) =


min {[γi0 + β2(t− Ui)], 0} if γi0 < 0 and t > Ui

max {[γi0 − β2(t− Ui)], 0} if γi0 > 0 and t > Ui

0 otherwise

(3.6)
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where the initial treatment effect γi0 = β0 + β1logPSAi(Ui), with (β0, β1, β2) =

(−1.0,−0.4, 0.2). Thus, γi0 linearly depends on the logPSA value at the time of

treatment initiation, and then the magnitude of the treatment effect decays over

time, until it shrinks to zero. The survival function is

Si(t) = exp{−
t∫

0

λi(s)ds} (3.7)

and the survival time for subject i is then generated as T ∗i = S−1
i (X), where X ∼

Uniform(0, 1), then T ∗i is rounded up to the closest visit time as Ti, or censored at 15

years as the study ends. Similarly, for each regime gbj , j = 1, · · · , 10, we can calculate

the survival time T
bj
i for subject i according to the counterfactual treatment initiation

time U
bj
i .

3.4.2 Scenario 2: More Complicated PSA Trajectory and Treatment

Model

Here, we consider a more realistic PSA model, and the treatment regimes in this

scenario are also set to be more complicated to mimic clinical practice.

3.4.2.1 PSA Models

In the absence of SADT, a typical trajectory of logPSA observed clinically would

have three phases (0: post-therapy, 1: short-term evolution, 2: long-term evolution).

Following Proust-Lima et al. (2008) and Taylor et al. (2013), for subject i at t ∈ (0, tK ]

years after the initial treatment, we simulate PSA values from the following mixed

model:

logPi(t) = logPSAi(t) + εit

= (α0 + ai0) + (α11 +αT12V 0i + ai1)f(t) + (α21 +α22
TV 0i + ai2)t+ εit
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where f(t) = (1 + t)−1.5 − 1 is used to model the short-term decreasing trend of

logPSA, and t is used to model the long-term increasing trend. (α0, α11,α12, α21,α22)

are fixed effect parameters, we take α0 = 1.0, α11 = 1.5, α12 = (0.2, 0.2)T , α21 = 0.1,

and α22 = (0.2, 0.5)T . (ai0, ai1, ai2) are subject-specific random effects, and V0i is the

vector of baseline T-stage indicators as in scenario 1. At a given time t, we assume

the measurement error εit ∼ N(0, σ2) with σ2 = 0.2, and we assume the random

effects (ai0, ai1, ai2) ∼ MVN(0,Σ), where Σ =


1.0 1.0 0.15

1.0 2.6 0.45

0.15 0.45 0.5

.

3.4.2.2 Different Treatment Regimes and Observed Treatment Time

We consider 10 different regimes with {b1, b2, · · · , b10} = {−1.5,−1.0, · · · , 3.0}.

Thus, according to Definition (3.1), we can calculate the regime specific treatment

initiation times U b1
i , U

b2
i , · · · , U

b10
i . The observed data are generated similarly as in

Scenario 1, but with more possible regimes, the observed treatment assignment for

subject i follows one of 100 regimes with the threshold value B, where B follows a

discrete uniform distribution for 100 evenly gapped values {−1.95,−1.90, · · · , 3.00}.

The observed treatment time for subject i is then Ui = UB
i .

3.4.2.3 Model for Recurrence and Fully Compliant Data

We will use the same hazard model to generate the treatment with slightly different

parameter settings, i.e. for subject i with treatment initiation time Ui, the survival

time Ti will be generated from equation (3.5) (3.6) and (3.7) where λ0 = 0.15, θ0 =

(0.8, 0.9)T , θ1 = 0.1, θ2 = 0.1, β0 = 10.0, β1 = −10.0 and β2 = 0.2. Same models

are also used to define the counterfactual survival time T
bj
i for each regime gbj , j =

1, · · · , 10.

59



3.4.3 Simulation Results

Figure 3.1 shows the average Nelson Aalen survival curves in Scenario 1, where

we present one of the regimes (b10 = 2.0). As we can see without weighting, the

curve estimated from the adherent data without using weighting is biased from the

counterfactual fully adherent curve, so the weighted estimator is needed to give good

estimation for the counterfactual survival time. We can see both the pooled logis-

tic model and proposed method can effectively reduce the bias, while the proposed

method performs slightly better, we do see that the estimated curve in Figure 3.1a is

closer to the fully adherence curve. Similar results are also observed for other regimes

(data not shown).

In Scenario 2, the treatment is generated from a randomly selected regime and related

to the PSA trajectory which has a complicated shape. So it becomes difficult for the

pooled logistic method to correctly model the treatment assignment mechanism. As

shown in Figure 3.2, for regimes b4 = −1.0, the survival curve estimated by the pro-

posed method is almost the same as the counterfactual fully adherent curve, while

the curve estimated by the pooled logistic method shows notable bias to the truth.

For both scenarios, for any given b, we can calculate the true restricted mean survival

time, µg0(b) via Monte Carlo simulation with 106 replicates. Figure 3.3 gives µg0(b)

over different b for both scenarios. Figure 3.3a shows that for scenario 1, in the range

considered, µg0 is maximized at around b = −1.0 with µg0 = 7.13 year. Figure 3.3b

shows similar uni-modal relationship of µg0 and b, thus the optimal DTR would have

b = 1.5 which yields the maximum µg0 around 5.52 years.

Table 3.1 summarizes the estimated restricted mean survival time µ̂ for the regimes

of interest. In both scenarios, the proposed estimator correctly identify the optimal
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regime, and the µ̂ from the fully adherent cohort are close to µg0 in Figure 3.3. For

Scenario 1, µ̂ from the unweighted dataset shows a monotone increasing trend as

the threshold b becomes larger. Both the pooled logistic method and the proposed

method recover the uni-modal trend and identify regime 7 with b7 = 2.5 as the op-

timal one that yields the maximal µ̂. This is consistent with the results from full

adherent data. For Scenario 2, although the unweighted estimator of µ also gives a

uni-modal shape over b, it gives the optimal regime as regime 6 while the true optimal

one is regime 7. As shown in the frequency of being identified as the optimal regime,

over the 500 simulations, 99.4% of them shows regime 7 is the true optimal regime,

while only 19.6% can correctly identify the optimal regime from the unweighted data.

By employing the weights, the pooled logistic method can correctly identify regime

7 as the optimal, but the bias to the µ̂ for fully adherent data is also big. This

bias becomes much smaller for the proposed method. And comparing to the pooled

logistic method, the proposed method has much larger rate of identifying the right

regime as the optimal one (71.0% vs. 50.4%). Thus we can see introducing weights

can effectively reduce the bias when estimating the population survival outcome, and

the proposed flexible model can further help to correctly estimate the regime specific

outcomes in various scenarios.

3.5 Application to Real Prostate Cancer Data

We apply the proposed method to a multi-center prostate cancer study consisting

of 2,781 patients with clinically localized prostate cancer, all of whom were initially

treated with external beam radiation therapy (EBRT). In the dataset, PSA(ng/ml)

and T-stage were recorded prior to initial EBRT, with PSA monitored at periodic

visits throughout follow-up. A complete description of the data can be found in

Proust-Lima et al. (2008). In this analysis, we restrict attention to patients who

are being actively followed, and remove patients if the interval between adjacent PSA
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measurements is more than 2 years. That gives a cohort of 2,427 patients. The longest

follow-up time was then 15.6 years. We also use the last observation carried forward

(LOCF) method to impute the missing PSA measures. There are 10.1% of the patients

who received SADT. We consider DTRs gb as defined earlier, where b is the cut-off for

the logarithm of (PSA+0.1). We consider regimes with b ranging from 0.7 to 4.2, i.e

{0.7, 0.8, · · · , 4.2}. This is chosen following a data adaptive manner. For each regime

under investigation, there are at least 3 patients who are fully adherent to the regime

and receive SADT during the course of study. The weights are estimated using

Random Forests for the probability of treatment/adherence with input covariates

PSA, slope of PSA, baseline T-stage and time t. Figure 3.4a shows that the regime

with b = 0.9 (2.36 ng/ml PSA) is identified as gopt by the proposed method, i.e. it will

be ideal to initiate SADT for patients with increasing PSA and first time has PSA

level above 2.36 ng/ml. The corresponding estimated restricted mean survival time

under this regime is µ̂g =14.80 year. Figure 3.4b gives the weighted Nelson-Aalen

estimators for the optimal regime along with two other regimes.

3.6 Discussion

We show that the proposed method provides a powerful tool to identify the op-

timal DTR. Compared to other existing methods, our method possesses robustness

in two ways: for the adherence mechanism, the Random Forest regression allows us

to capture a large range of different treatment models, and for the survival outcome,

the non-parametric estimation also allows us to put less structure on the estimator.

Furthermore, the method is computationally feasible even for problems with rela-

tively large number of time points at which it is possible to initiate treatment. So

it is very useful in clinical studies and public health practice where the treatment or

intervention is made dynamically and needs to be optimized.

62



In this chapter, we use the inverse probability weighting to correct for the selection

bias from the observational data with arbitrary censoring. We pooled the person-time

pieces from all time points to fit the model for adherence mechanism, since in most

real applications, there may be few individuals that are observed to follow a given

regime for a long time. Thus the adherence probability model at later time points

may become very unstable due to the limited availability of data. Pooling the data

across different time points can partially account for this problem, however, the tra-

ditional pooled logistic model may not always be satisfactory. Although allowing for

a time-dependent intercept h(t), it assumes the same linear dependence to covariates

over different time points. Employing Random Forest method to the pooled sample

may be preferable in this sense, as it automatically incorporates interactions between

time and other covariates, which allows the association between adherence probability

and covariates to vary over time.

In order to make the estimates more stable, we use the stabilized version of inverse

probability weights in this chapter. However, we may need to be cautious here as

the weights are now time-dependent, it is very important for us to make sure that

the numerator for swbi (t)’s are only models of baseline covariates. Cain et al. (2010)

has shown that the stabilization procedures commonly used for static regimes are not

valid for dynamic regimes. Here, we treat the models for numerator and denomina-

tor separately, the denominator model P (Cb
t = 1|Cb

t−1 = 1̄, Ōt = ōt,At−1 = at−1)

could be vary according to the treatment history At−1, while the numerator model

P (Cb
t = 1|Cb

t−1 = 1̄,L0 = l0) and can calculated from the estimates of the treatment

model. P (At = 1|At−1 = 0̄,Ot = ot). While for the numerator, we need to fit model

for P (Ct = 1|Ct−1 = 1̄,L0 = l0), which do not restrict to person-time pieces when

At−1 = 0̄, so we choose to model the adherence Cb
t directly.
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Pooled logistic regression has been a popular approach for estimating counterfactual

outcome distributions for time to event data when using IPW methods. Previous

literature has proved the equivalence of pooled logistic models and survival models

(D’Agostino et al., 1990). However, certain assumptions need to be satisfied to vali-

date the use of the pooled logistic model. Recent development in Random Survival

Forest has allowed the model to include time-varying covariates (Bou-Hamad et al.,

2011a) , and it would be interesting to employ this idea and directly fit a survival

model in the weight estimation. Compared to the current approaches, this could

further reduce the bias, while at the same time, provide more flexibility.

In the chapter, we try to make inference on the counterfactual outcomes from ob-

servational data. In practice, the estimation may only be consistent if the three basic

assumptions for causal inference are satisfied. The consistency assumption may be

the hardest one to verify. For the no unmeasured confounders assumption, it is very

important that we include all the covariates that could possibly affect the treatment

assignment and adherence, this would require thorough understanding of the problem

and sufficient communication with the clinicians and practitioners. The positivity as-

sumption would require that every patient should have a positive probability to follow

all regimes under consideration. This is an assumption that may also be hard to verify

in practice. One issue here is the number of treatment status or adherence status will

grow exponentially as the number of stages or visits increases. Consider a study with

visits at t = 1, · · · , K, then if we want to make inference on every possible regime

in AK = {0, 1}K , is would require that for any given OK = oK , the probability

of being in any one of the 2K status be positive. In practice, this would require a

very large sample to make sure that every status would have a notable chance to be

observed. For example, in Scenario 1 of our simulation, we consider K = 15, for a

fixed OK = oK , if every status was observed at least once, this would require more
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than 3 × 104 observations. This is also a problem in designing randomized trials to

identify optimal DTR. One possible solution is to impose some dependency structure

on the time series. For example, Markov assumption could be assumed such that

the current treatment/adherence status of a patient only depends on his/her treat-

ment/adherence status at previous time point, then the space of AK would reduce to

be linear with the increase of K. Thus overall the methodology does requires large

sample sizes and considerable heterogeneity in the patterns of treatment interaction

in the observational data. Without these modeling assumptions the uncertainty in

the results could be large. Meanwhile, the proposed method could also serve as a

preliminary analysis, which can find out which regimes in AK are estimable (viable)

in the given problem, then more accurate results could be obtained from randomized

trials that are designed based on only the set of viable regimes.

3.7 Appendix

3.7.1 The distribution of counterfactual and observational data

We demonstrate how to deduce the joint distribution p
O
C
k (aK−1)

(ok) and condi-

tional distributions

p
LCk (ak−1)|LCk−1(ak−2),R

C
k−1(ak−2)

(lk|lk−1, rk−1) and p
RCk (ak−1)|LCk (ak−1),R

C
k−1(ak−2)

(rk|lk, rk−1)

for a fixed ak−1 ∈ Ak−1, k = 1, · · · , K from the distribution of the observed data.

Then under the consistency and no unmeasured confounders assumptions, the joint
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density of (W C ,AK−1) is

pWC ,AK−1
(w,aK−1) = pWC (w)pAK−1|WC (aK−1|w)

= pWC (w)pA0|WC (a0|w)
K−1∏
j=1

pAj |Aj−1,W
C (aj|aj−1,w)

= pWC (w)pA0|L0(a0|l0)
K−1∏
j=1

pAj |Aj−1,Lj ,Rj
(aj|aj−1, lj, rj)

Moreover,

pWC ,AK−1|AK−1,OK
(w,aK−1|aK−1,oK)

=
pWC ,AK−1

(w,aK−1)∫{
u:L

C
K(aK−1)=lK ,R

C
K(aK−1)=rK

} pWC ,AK−1
(u,aK−1)dvWC (u)

=
pWC (w)pA0|L0(a0|l0)

∏K−1
j=1 pAj |Aj−1,Lj ,Rj

(aj|aj−1, lj, rj)∫{
u:L

C
K(aK−1)=lK ,R

C
K(aK−1)=rK

} pWC (u)pA0|L0(a0|l0)
∏K−1

j=1 pAj |Aj−1,Lj ,Rj
(aj|aj−1, lj, rj)dvWC (u)

=
pWC (w)∫{

u:L
C
K(aK−1)=lK ,R

C
K(aK−1)=rK

} pWC (u)dvWC (u)

=p
WC |OCK(aK−1)

(w|oK)

Thus,

p
O
C
K(aK−1)

(oK) =
pWC (w)

p
WC |OCK(aK−1)

(w|oK)

=
pWC ,AK−1

(w,aK−1)

p
WC ,AK−1|AK−1,O

C
K(aK−1)

(w,aK−1|aK−1,oK)

=
pWC ,AK−1

(w,aK−1)

pA0|L0(a0|l0)
∏K−1

j=1 pAj |Aj−1,Lj ,Rj
(aj|aj−1, lj, rj)pWC ,AK−1|AK−1,O

C
K(aK−1)

(w,aK−1|aK−1,oK)

=pOK |OK−1,AK−1
(oK |oK−1,aK−1)pL0(l0)

K−1∏
j=1

pOj |Oj−1,Aj−1
(oj|oj−1,aj−1)
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LetW k =
{
L0,L

C
1 (a0), RC

1 (a0), · · · ,LCk (ak−1), RC
k (ak−1), ∀ak−1 ∈ Ak−1

}
, k = 1, · · · , K.

Using the same argument, pW k,Ak−1
(w,ak−1) = pW k

(wk)pA0|L0(a0|l0)
∏k−1

j=1 pAj |Aj−1,Oj
(aj|aj−1,oj)

and p
O
C
k (ak−1)

(ok) = pL0(l0)
∏k

j=1 pOj |Oj−1,Aj−1
(oj|oj−1,aj−1). It follows that

p
OCK(aK−1)|OCK−1(aK−2)

(oK |oK−1) =
p
O
C
K(aK−1)

(oK)

p
O
C
K−1(aK−2)

(oK−1)

=
pL0(l0)

∏k
j=1 pOj |Oj−1,Aj−1

(oj|oj−1,aj−1)

pL0(l0)
∏k−1

j=1 pOj |Oj−1,Aj−1
(oj|oj−1,aj−1)

= pOK |OK−1,AK−1
(oK |oK−1,aK−1)

Similarly, for k = 2, · · · , K,

p
OCk (ak−1)|OCk−1(ak−2)

(ok|ok−1) = pOk|Ok−1,Ak−1
(ok|ok−1,ak−1)

Furthermore, for k = 2, · · · , K

p
LCk (ak−1)|OCk−1(ak−2)

(lk|ok−1) = pLk|Ok−1,Ak−1
(Lk|ok−1,ak−1)

and

p
RCk (ak−1)|OCk−1(ak−2),Lk(ak−1)

(rk|ok−1, lk) = pRk|Ok−1,Lk,Ak−1
(rk|ok−1, lk,ak−1)

3.7.2 Proof of Theorem 3.1

For a given regime g, Ck = Akgk(Ok)+(1−Ak){1−gk(Ok)} for k = 0, · · · , K−1,

thus,
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(i) For the case that ak−1 = 0

P (Ck = 1|Ck−1 = 1̄,Ok = ok) =E
{
I(Ck = 1|Ck−1 = 1̄,Ok = ok)

}
=E

[
I
{
Akgk(Ok) + (1− Ak){1− gk(Ok) = 1|Ck−1 = 1̄,Ok = ok

}]
=E

[
I
{
Ak = 1|Ck−1 = 1̄,Ok = ok, g(ok) = 1

}]
I {g(ok) = 1}

+ E
[
I
{
Ak = 0|Ck−1 = 1̄,Ok = ok, g(ok) = 0

}]
I {g(ok) = 0}

=P
{
Ak = 1|Ak−1 = ak−1,Ok = ok

}
I {g(ok) = 1}

+ P
{
Ak = 0|Ak−1 = ak−1,Ok = ok

}
I {g(ok) = 0}

(ii) For the case that ak−1 = 1, we have P (Ck = 1|Ck−1 = 1̄,Ok = ok) = 1,

meanwhile,

P
{
Ak = 1|Ak−1 = ak−1,Ok = ok

}
I {g(ok) = 1}

+ P
{
Ak = 0|Ak−1 = ak−1,Ok = ok

}
I {g(ok) = 0}

=P
{
Ak = 1|Ak−1 = ak−1,Ok = ok

}
I {g(ok) = 1} = 1

Theorem 3.1 then follows by combining (i) and (ii).

3.7.3 Proof of Theorem 3.2

The strong consistency of µ̂g(tK) can be proved by first proving the consistency of

Λ̂g(t) for t ∈ (0, tK ]. For subject i, let Ti be the event time and Di be the censoring

time for subject i. Let Xi = min{Ti, Di} and δi = I(Ti ≥ Di). The observed event

counting process is defined as Ni(t) = δiI(Xi ≤ t), and denote the at risk indicator by

Yi(t) = I(Xi ≥ t). Let ŵi(t) and w0,i(t) be the estimated and true weight for subject
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i at time t, respectively. Then the weighted Nelson Aalen estimator is

Λ̂g(t) =
1

n

n∑
i=1

t∫
0

ŵi(s)

n−1
∑n

i=1 Yi(s)ŵi(s)
dNi(s)

Let k = maxj{tj ≤ s}, using the fact that ŵi(s) →a.s. w0,i(s) as n → ∞, and

the Strong Law of Large Numbers (SLLN), one can obtain that n−1
∑n

i=1 Yi(s)ŵi(s)

converges almost surely to

E [Yi(s)w0,i(s)] = E
{
E
[
Yi(s)w0,i(s)|Ok,Ak

]}
= E

{
E

[
Yi(s)

I(Cik = 1|Ok,Ak)

Pr(Cik = 1|Ok,Ak)
|Ok,Ak

]}
= E

{
Pr(Cik = 1|Ok = ok,Ak = ak)

Pr(Cik = 1|Ok = ok,Ak = ak)
E
[
Yi(s)|Ok = ok,Ak = ak

]}
= E

{
E
[
Y C
i (s)|OC

k (ak) = ok

]}
= E

[
Y C
i (s)

]
= Pr(DC

i > s)Sg(s)

The second last equality holds by the results in Section 3.7.1. Using similar tech-

niques, one can show that n−1
∑n

i=1 ŵi(s)dNi(s) converges almost surely to Pr(DC
i >

s)dF g(s) as n → ∞. The above listed results give Λ̂g(t)
a.s.→ Λg

0(t). Therefore, µ̂g(t)

converges to µg0(t) almost surely as n→∞ using the continuous mapping theorem.
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(a) Nelson-Aalen Estimator Using Logistic Model
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(b) Nelson-Aalen Estimator Using Proposed Method

Figure 3.1: The estimated survival curves for regime b = 2.0 in Scenario 1. In both
plots, the Nelson-Aalen estimators of the recurrence free survival are
plotted. The regime specific true curves (obtained from fully adherent
counterfactual cohort) are shown in dashed lines. The solid lines are for
the observational data (obtained by censoring subjects when they are no
longer adherent with the regime), and the dotted lines are the weighted
curves estimated by pooled logistic method (Figure 3.1(a)) or the pro-
posed method (Figure 3.1(b)). All curves are obtained by averaging over
500 simulations.
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(b) Nelson-Aalen Estimator Using Proposed Method

Figure 3.2: The Nelson-Aalen curves for regime b = −1.0 in Scenario 2. Similar as
in Figure 3.1, the regime specific true curves are shown in dashed lines.
The solid lines are for the observational data, and the dotted lines are the
curve estimated by pooled logistic method (Figure 3.2(a)) or the proposed
method (Figure 3.2(b)). All curves are obtained by averaging over 500
simulations.
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Figure 3.3: True µ under the two simulation Scenario 1 (Figure 3.3(a)) and Scenario
2 (Figure 3.3(b)). Each point in the plots above are calculated from 106

Monte Carlo samples.
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Figure 3.4: The survival estimation for the prostate cancer dataset. Panel (a) shows
the relationship between the restricted mean survival time estimated by
the proposed method µ̂ and the logPSA threshold for SADT initiation
b. Panel (b) shows the weighted Nelson Aalen curves estimated for three
regimes, which includes the estimated optimal regime b = 0.9 (solid red
line), along with two other regimes b = 0.7 (dashed blue line) and b = 2.5
(dotted green line).
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CHAPTER IV

Identifying the Optimal Regime Using Random

Survival Forest with Weighted Bootstrap

In many biomedical studies, investigating the performance of different interven-

tions is a major goal, and in many cases, survival time is the primary outcome.

Patients with different characteristics are likely to respond differently to an interven-

tion. Thus, identifying the regime that defines who should receive which intervention

in order to provide most benefit to the whole population is often of great interest.

Recognizing treatment effect heterogeneity is essential in assigning the treatment to

patients who can really benefit from it. In this chapter, we consider data from ob-

servational studies where some of the covariates affect both the survival outcome and

the treatment assignment, while they may not all be available in the target popula-

tions. We propose to use Random Survival Forest (RSF) plus an inverse probability

weighted bootstrap to estimate the causal outcome while marginalizing over the un-

available covariates. Furthermore, by comparing the restricted mean survival times,

the optimal regime could be estimated for the target population based on the available

covariates. The proposed method (1) provides a flexible model structure to account

for the dependence of the survival outcome to the covariates, and (2) correctly esti-

mates the counterfactual outcomes for each treatment group. Simulations illustrate

that the proposed method performs reliably across a range of different scenarios.
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4.1 Introduction

It has been shown that patients can exhibit significant heterogeneity in response

to treatments in many different diseases (Ishigooka et al., 2000; Rothwell , 2005). The

emerging field of personalized medicine, which is focused on making treatment de-

cisions for an individual patient based on his/her own clinical, genomic, and other

information, has gained considerable interest, as it has the potential of maximizing

the treatment benefit for each person and hence for the whole population (Piquette-

Miller and Grant , 2007). Patients may be given a customized regime, with customized

dose or customized treatment schedule according to his/her prognostic or genomic in-

formation. The therapy may only be assigned to the patients at the dose that can

benefit that person the most, thus the optimal treatment effect could be achieved

on the population level without spending the extra resources that would be used if

everybody was treated with the same protocol.

Statistical approaches have been developed to find subgroups of patients who can

really benefit from the treatment under investigation in randomized clinical trials

(Foster et al., 2011). This task becomes more challenging when the outcome of pri-

mary interest is survival time, which may be censored (Kehl and Ulm, 2006), as is

common in phase III clinical trials. In practice, randomized trials are not always

available, thus methods to find the optimal regime from the observational data are

also needed(Qian and Murphy , 2011). In this chapter, we consider the case where the

data came from an observational study, with a censored time-to-event outcome. There

are two treatments, with treatment indicator A taking values either 0 or 1. Although

all covariates are measured at baseline (pretreatment) W = (X,Z), only a subset

of the covariates X is eligible to be candidates for constructing an optimal regime

which could be applied to other populations. The other covariates Z may also be

related to both the treatment assignment and the survival outcome. These variables
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may not be easy to obtain for the target population due to economic, logistical or

other reasons. For example, the covariate Z might measure health insurance, which

is not going to be relevant in the target population. The model of interest would

be only conditional on the covariates that are generalizable to the target population.

To enable the comparison between different treatment regimes, we adopt the causal

inference framework Rubin (1974, 1990), and the question then is how to correctly

estimate the mean for counterfactual outcomes conditional only on the covariates that

will be available. Those covariates that are not applicable to the target population

will need to be properly handled. A general approach in causal inference to adjust

for the confounding and estimate the causal effects is inverse probability weighting

(IPW), which has been widely used in survival analysis (Van der Laan and Robins ,

2003; Rotnitzky and Robins , 2005).

The optimal regime is a treatment decision rule depending on a region of the co-

variate space. One common approach in identifying the optimal regime is to propose

a linear combination of covariates, and if the linear combination is greater than a

threshold then one treatment is preferred and if the linear combination is less than

the threshold then the other treatment is preferred (Zhang et al., 2012). However, it

is very likely that the proposed space of optimal regimes does not include the truth,

and will thus lead to biased estimates. In this chapter, we propose to use a Random

Survival Forest (RSF) for the outcome model to provide the necessary flexibility in

modeling, and use inverse probability weighting to account for the confounders Z,

where the weighting is implemented using a weighted bootstrap procedure. Since we

are comparing survival outcomes under different counterfactual world, which have a

different amount of follow-up time, we propose to define the optimal regime as the

one that maximizes the restricted mean survival time. We introduce the notation

and some details of the proposed method in the next section. Section 4.3 contains
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results of simulation studies. We then conclude this chapter in Section 4.4 and some

technical details are given in Section 4.5.

4.2 Notation and Method

Consider a cohort of n patients from an observational study, let W i = (XT
i ,Z

T
i )T

denote a d-dimensional vector of baseline covariates for patient i, i = 1, · · · , n, where

X i is a d1-dimensional vector andZi is a d2-dimensional (d1+d2 = d). Ai = j, j = 0, 1

is the indicator for observed treatment status, with 1 for patients who receive the new

treatment, and 0 for patients who receive the standard treatment or no treatment.

For the outcome, let T 0
i denote the survival time if subject i did not receive the

treatment, and T 1
i denote the survival time if subject i receive the treatment. Let Ti

denote the actual survival time and Ci the censoring time, the observed outcome is

then (Yi,∆i) with Yi = min(Ti, Ci) and ∆i = I(Ti ≤ Ci). As in Chapter 3, we impose

the same three basic assumptions in causal inference:

1. Consistency assumption: Ti = AiT
1
i + (1− Ai)T 0

i ;

2. Positivity assumption: 0 < P (Ai|W i) < 1;

3. No unmeasured confounders assumption (NUCA): T ai q Ai|W i, for a = 0, 1.

Note here that we are interested in the model for T conditional on X, so the above

is a slightly stronger version of the assumptions required here. In addition, we also

require the general assumption in survival analysis that T ai q Ci|W i, for a = 0, 1,

which will guarantee that Ti q Ci|W i. Since Xi is the vector that is available for

both the observed dataset and the target population, we are interested in deducing

the optimal regime that is based only on X i, which is denoted by g(X i) and takes

the values of either 0 or 1 specifying which treatment should be taken.
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4.2.1 Random Survival Forest

Machine learning algorithms have shown great potential in treatment heterogene-

ity and estimating optimal treatment regimes (Foster et al., 2011; Zhao et al., 2012).

Although for survival variables with censoring, the Cox proportional hazard regres-

sion model and its extensions are frequently used (Cox , 1972), survival tree based

methods have also been recognized as useful because of their flexible model structure

(LeBlanc and Crowley , 1995). A tree is grown by dividing patients at each node into

two groups, where the split is chosen to maximize certain criterion which measures

the survival difference. It thus has the advantage of automatically identifying certain

type of interaction without prespecifying the form of the interaction. The application

of ensemble methods provides a simple yet ingenious solution to the instability of

tree based methods (Bou-Hamad et al., 2011b). The Random Survival Forest (RSF)

is an ensemble tree method for analysis of right-censored survival data (Ishwaran

et al., 2008), which provides a flexible model structure that allows for complicated

interactions especially between covariates and treatment.

4.2.2 Inverse Probability Weighting

We propose to fit a logistic model for the probability of a patient receiving treat-

ment

logitP (Ai = 1|Li) = η0 + η1Li,

where Li is the vector of baseline covariates that will affect the treatment assignment.

Here, Li could have overlap with W i. In our case, we assume that Zi is a subset

of Li, and Li is a subset of W i. Thus, the treatment decision for patient i in the

observational data is made based on all or part of W i, which includes all Zi and all

or part of X i. Then the estimates p̂i = P̂ (Ai = 1|Li) can be used to calculate the
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estimated weights as

ŵ1
i =

I(Ai = 1)

p̂i
and ŵ0

i =
I(Ai = 0)

1− p̂i
,

which reflects patient i’s estimated weights in the so-called treatment sample (ŵ1
i )

and control sample (ŵ0
i ), separately. Essentially, for those who are treated in the

observational data, they are weighted by 1/p̂i in the treatment sample, while weighted

by 0 in the control sample. For those who are not treated, they are weighted by 0 in

the treatment sample, while weighted by 1/(1− p̂i) in the control sample. With those

weights, we are able to create pseudo-samples that mimic the real counterfactual

world, it represent the whole population as if they were all treated in the same way,

and the models for counterfactual outcomes can thus be built from these pseudo-

samples.

4.2.3 Random Survival Forest in Weighted Bootstrap Samples

The goal is to build flexible models for the time to the event given X and A.

Random Survival Forest (RSF) is chosen here as it does not require much knowledge

about the underlying mechanism before model fitting (Ishwaran et al., 2008). We

will build separate models for the counterfactual outcomes of the treatment and of

control samples. One major challenge here is that the original algorithm of Random

Survival Forest does not consider weights for subjects, i.e. it assumes that every

subject contributes the same to the final model. In order to incorporate the weights

in the estimation procedure, we propose an additional layer of bootstrap sampling

prior to applying the Random Survival Forest method. We propose to first draw

a weighted bootstrap sample where the sampling probability for subject i is pro-

portional to its estimated treatment weight, i.e. ŵ1
i /(
∑n

j=1 ŵ
1
j ), and the Random

Survival Forest models are then built on each sample as (Yi,∆i) ∼ X i +X2
i , where
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X2
i = {X2

1i, X
2
2i, · · · } contains all the squared terms of X i. Thus for the Random

Survival Forest we allow both the covariates and their quadratic terms as inputs.

The inclusion of X2
i as covariates is not essential, but in numerical work we found

that it commonly helps to improve the performance of the proposed method. The

final prediction is then obtained by combining the predictions over all the weighted

bootstrap samples. Several methods have been proposed to combine the results of

survival trees from bootstrap samples (Hothorn et al., 2004, 2006; Ishwaran et al.,

2008). Similar approaches can be employed to combine results from multiple survival

forests, we propose to calculate the cumulative hazard function (CHF) by averaging

all the CHFs from Random Survival Forest models from each weighted bootstrap

samples. In detail, we use the R function cforest() from the party package to build

the Random Survival Forests, then the treeresponse() function is used to obtain

the survival probabilities S1(m)(t) (Kaplan-Meier estimator) for the RSF model from

weighted bootstrap sample m, m = 1, · · · , B. The number of bootstrap samples is

set at B = 100. The survival estimate for the final model is obtained by averaging the

cumulative hazard function (CHF) at the same time point over the bootstrap sample

specific forests, i.e. the final survival function for the treatment group is estimated as

Ŝ1(t) = exp{− 1

B

B∑
m=1

− log Ŝ1(m)(t)}.

The counterfactual mean model for the control group can be built in a similar way,

where the weighted bootstrap sampling is done with sampling probability proportional

to subject i’s estimated weight of being not treated, i.e. ŵ0
i /(
∑n

j=1 ŵ
0
j ). Then the

final survival function for the control group Ŝ0(t) is obtained using weighted bootstrap

samples.

Ŝ0(t) = exp{− 1

B

B∑
m=1

− log Ŝ0(m)(t)}.
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A variation of this combining step would be to pool all the terminal nodes which con-

tains subject i from all trees over all forests and all bootstrap samples, and calculate

the subject-specific final survival function from this pooled sample.

4.2.4 The Optimal Treatment Regime

To identify the optimal regime, ideally, we would like to find the regime which

gives the longest mean survival time E{T} for the population. However, due to the

censoring, we do not have that available, so we choose to compare the restricted mean

survival time µ = E{min(T, τ)} for some τ > 0, i.e. the optimal regime gopt would be

the one that gives the longest µ over the regime space G, gopt = arg maxg∈G µ
g, where

the arbitrary time τ is chosen to be the longest follow-up time. µg is the restricted

mean survival time corresponding to regime g, given by

µg = E{E{min(T g, τ)|X}} = E{E{min(g(X)T 1 + (1− g(X))T 0, τ)|X}}

= E{g(X)E{min(T 1, τ)|X}+ (1− g(X))E{min(T 0, τ)|X}}

= E{g(X)µ1(X) + (1− g(X))µ0(X)}

= E{µ0(X) + g(X)(µ1(X)− µ0(X))}

The optimal regime can then be written as gopt(X) = I(µ1(X) > µ0(X)), where

µ1(X) denotes the restricted mean survival time for the patients with X in the

counterfactual world where everyone received the treatment, and µ0(X) denotes the

restricted mean counterfactual survival time where they were all assigned to the

control group. Since we already have the estimated survival functions Ŝ1 and Ŝ0, the

estimated conditional restricted survival time for the counterfactual outcome from

the control and treatment groups can be calculated as

µ̂0(X) =

τ∫
0

Ŝ0(t)dt and µ̂1(X) =

τ∫
0

Ŝ1(t)dt.
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Only when µ̂1(X) is larger than µ̂0(X), should we assign the patient to be treated.

Otherwise, we would leave the patient alone and not treat the patient, as we would

expected mean survival to be higher in that situation. The optimal regime can then

be estimated as ĝopt(X) = I(µ̂1(X) > µ̂0(X)). Therefore, according to one patient’s

covariates X, we can customize the decision on whether this individual should be

treated or not.

4.3 Simulations

4.3.1 Other Methods

In order to assess the performance of our proposed method, we also consider three

other methods to compare. As a standard and simple method, we consider the regular

Cox model. We fit a Cox model (Yi,∆i) ∼X i+Ai+X i×Ai, and use the final model

to calculate Ŝ1
i (t) = P (Ti > t|Ai = 1,X i) and Ŝ0

i (t) = P (Ti > t|Ai = 0,X i). The

conditional restricted mean survival time and optimal regime are then calculated in

the same way as for the proposed method. Second, we consider a weighted version of

the Cox model, where we fit separate Cox models (Yi,∆i) ∼X i with weights ŵ1
i and

ŵ0
i . Furthermore, we also consider a standard Random Survival Forest procedure,

where we fit an RSF (Yi,∆i) with input covariates X i and Ai, and then calculate

Ŝ1
i (t) and Ŝ0

i (t) in a similar way as the unweighted Cox model method. If the actual

treatment group for subject i is j, then Ŝji (t) is obtained from the out-of-bag estimate

using the random forest, and Ŝ
(1−j)
i (t) is obtained by applying the random forest to

that person’s baseline covariates X i, with the opposite of the observed treatment

group indicator 1−j. Similar steps in estimating the optimal regime are then followed.
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4.3.2 Simulation Schemes

We consider a moderate dimensional X with d1 = 20 from independent N(0, 1),

and a scalar Z (d2 = 1), which is correlated with X, the treatment indicator is then

generated from a logistic model for logit(P (A = 1|X1, X2, Z)). We generate the two

counterfactual survival outcomes from lognormal distribution models of the general

form

log T 0 = α +XTβ + γZ + ε0 (4.1)

log T 1 = α +XTβ + γZ + h(X, Z) + ε1, (4.2)

where ε0 and ε1 are generated independently from N(0, σ2), and the observed survival

time is T = AT 1 + (1−A)T 0. For simplicity, we only consider uniformly distributed

censoring time C ∼ Uniform(0, τ). Thus we observe time Y = min(T,C) and the

event indicator ∆ = I(T ≤ C). The true optimal regime depends on the form of

h(X, Z).

The regime of interest is only based on X. In order to identify the true optimal

regime, we need to calculate the true model conditional on X, which is obtained by

integrating out Z from equations (4.1) and (4.2). Also notice that we compare the

restricted mean survival time, so the choice of time limit τ may also influence the

optimal regime. More details about this issue can be found in the Appendix.

4.3.3 Different Scenarios

We will set-up two sets of simulations with different optimal treatment regime

settings. In the first set of simulations, we consider the model with d = 21 baseline

covariates where X1, · · · , X20 are i.i.d. normally distributed with mean 0 and variance

1, and Z is highly correlated to X2, and generated from Z|X2 = x2 ∼ N(x2, 1). For
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treatment assignment, we consider the logistic model

logitP (A = 1) = 1.0 + 0.5X1 − 1.5X2 + Z.

We generate the counterfactual survival outcome using a linear combination of X

and Z:

log T 0
i = 0.3 + 0.5X1 + 0.5X2 + 1.1Z + εi0

log T 1
i = −0.9 + 0.3X1 + 2.5X2

1 + 1.0X2 + 0.3Z + εi1,

where εi0 and εi1 are generated from independent N(0, 1). As shown in the Appendix,

the conditional mean can be expressed as

E(log T 0
i |X1, · · · , X20) = 0.3 + 0.5X1 + 1.6X2

E(log T 1
i |X1, · · · , X20) = −0.9 + 0.3X1 + 2.5X2

1 + 1.3X2.

The optimal regime would be to give the treatment when E(T 1
i |X1, · · · , X20) >

E(T 0
i |X1, · · · , X20). Note that because the optimal is based on the expected value

of T and not the expected value of log(T ), the optimal regime is similar to but not

exactly equals to 2.5X2
1 − 0.2X1 − 0.3X2 − 1.2 > 0. We consider censoring at a fixed

time, i.e. C = τ , with two different τ values chosen to give either 20% or 45% cen-

soring.

In the second set of simulations, we consider the same distribution for X1, · · · , X20
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and Z. For the treatment assignment, we consider the logistic model

logitP (A = 1) = 0.1− 0.5X1 − 0.5X2 + 2Z.

And we generate the counterfactual outcomes as follows:

log T 0
i = 0.5− 0.2X1 + 0.3X2 + 0.5Z + εi0

log T 1
i = 0.5− 0.2X1 + 0.3X2 + 0.5Z + q(X1, X2) + εi1,

where εi0 and εi1 are generated from N(0, 4). And we choose function q(X1, X2) =

−1+2.5·I(X1 > −0.5)·I(X2 < 0.5). It can be easily seen that, the true optimal regime

(as τ →∞) is then to give treatment to patients with X1 > −0.5 and X2 < 0.5. We

generate censoring time C ∼ uniform(0, τ), two τ values are chosen to create either

20% or 45% censoring.

4.3.4 Simulation Results

For each simulation setting, we generate observational data with n = 1000 pa-

tients, with 100 replicates. First, to evaluate the estimation of the optimal regime,

we compare the estimated regimes with the true optimal regime in each dataset, and

calculate the percentage of correctly predicted treatment assignment:

Rmatch =
1

n

n∑
i=1

I(ĝ(X i) = gopt
0 (X i)),

where ĝ(·) is the optimal regime estimated by one of the methods under considera-

tion, and gopt
0 (·) is the underlying true optimal regime. For each simulated dataset,

Rmatch measures the fraction of patients where ĝ and gopt
0 agree. Table 4.1 shows the

mean and standard deviation of Rmatch. We can see that, in all the cases, RSF based
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methods tend to give more patients the “right treatment” than the Cox model based

methods. In both scenarios, the weighted methods tend to give better prediction

than the unweighted method in the same category. This provides some evidence that

the inverse probability weighting works in term of correcting the selection bias from

observational data. It is interesting that in all cases, although the model structure is

misspecified, the weighted Cox method shows slightly better prediction comparing to

the standard Cox model.

The optimal treatment regime should be able to benefit the whole population, so

we also study the performance of the estimated treatment regime from each method

through the regime g specific restricted population mean survival time:

µg = n−1

n∑
i=1

[g(X i)µ
0(X i) + {1− g(X i)}µ1(X i)].

This can be interpreted as the true population average when everybody in the cohort

follows regime g. A good regime will yield larger µg. From Table 4.2, we can see

that in all scenarios, the true optimal regime yields the largest µg, the fact that it

is bigger than the regime where everyone in the cohort is treated or everyone is not

treated, suggests that the personalized regimes do have some advantage under certain

circumstances. In both scenarios, the RSF based methods show larger µg than the

Cox model based methods, and among the RSF based methods, the proposed method

gives larger µg in all cases, suggesting that the weighted bootstrap can improve the

results for such observational studies.

In both scenarios, the true regime is based only on X1 and X2, and not the other 18

covariates. Thus we can also project the estimated optimal regime onto the (X1, X2)

plane, and look at how close the estimated optimal regime is to the truth on this
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plane. Figure 4.1 and 4.2 show the plots for the scenario 1 with 20% and 45% cen-

soring respectively, Figure 4.3 and 4.4 show the results for scenario 2 with 20% and

45% censoring respectively. In each figure, the combined results from pooling all 100

simulated datasets are plotted. We can see in both scenarios, both standard Cox

model and weighted Cox model tend to give a linear partition of the treatment deci-

sion, while for both RSF based methods, the partition looks close to the true optimal,

suggesting that the estimated treatment regimes for most of the patients are close

to their true optimal treatment assignment. For both scenarios, comparing to the

45% censoring cases, the regimes estimated from 20% censoring cases are closer to

the optimal plots, suggesting the proposed method will perform better with lower

censoring rates.

Table 4.1: The Percentage of Subjects Who Would Be Correctly Treated With The
Optimal Regime If They Followed The Estimated Optimal Regime. The
mean and standard deviation (in parentheses) over the 100 replicates are
recorded, separately. For each setting, 4 methods are compared, Cox:
standard Cox model; wCox: Cox model with inverse probability weighting;
RSF: standard RSF model; bsRSF: proposed method. For each method,
the mean and empirical standard error of MSDs and recorded.

Cox wCox RSF bsRSF
mean % (SD %) mean % (SD %) mean % (SD %) mean % (SD %)

Scenario 1
20% censoring 49.08 (1.75) 49.87 (1.61) 70.56 (5.74) 77.38 (3.19)
45% censoring 44.73 (1.65) 46.03 (1.88) 58.74 (5.78) 63.23 (4.84)
Scenario 2
20% censoring 62.68 (4.36) 63.53 (4.60) 68.51 (3.61) 72.58 (5.41)
45% censoring 61.83 (4.35) 61.07 (5.62) 62.20 (3.93) 67.52 (4.67)

4.4 Discussion

Identifying optimal treatment regime in personalized medicine is a very attrac-

tive idea as it maximizes the treatment effect at the population level while saving
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Figure 4.1: Cumulative Plot for Estimated Treatment Regime for Scenario 1 with
20% Censoring. In each plot, the estimated optimal treatment regime is
plotted by showing the treatment assignment for all patients over the 100
replicates. The red dots are the ones should receive treatment according
to the estimated regime, and green dots are the ones who should not be
treated. The plot on top left is the true optimal regime, the middle panel
on top is the optimal regime estimated from the standard Cox model,
the top right panel is the optimal regime estimated from the weighted
Cox model, the bottom left panel is the optimal regime estimated from
the standard RSF model, the middle panel at the bottom is the optimal
regime estimated from the proposed method.
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Figure 4.2: Cumulative Plot for Estimated Treatment Regime for Scenario 1 with
45% Censoring. Similarly, the estimated optimal treatment regime is
plotted by showing the treatment assignment for all patients over the 100
replicates. The red dots are the ones should receive treatment according
to the estimated regime, and green dots are the ones who should not be
treated. The plot on top left is the true optimal regime, the middle panel
on top is the optimal regime estimated from the standard Cox model,
the top right panel is the optimal regime estimated from the weighted
Cox model, the bottom left panel is the optimal regime estimated from
the standard RSF model, the middle panel at the bottom is the optimal
regime estimated from the proposed method.
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Figure 4.3: Cumulative Plot for Estimated Treatment Regime, Scenario 2 with 20%
Censoring. Similarly, the estimated optimal treatment regime is plotted
by showing the treatment assignment for all patients over the 100 repli-
cates. The red dots are the ones should receive treatment according to the
estimated regime, and green dots are the ones who should not be treated.
The plot on top left is the true optimal regime, the middle panel on top is
the optimal regime estimated from the standard Cox model, the top right
panel is the optimal regime estimated from the weighted Cox model, the
bottom left panel is the optimal regime estimated from the standard RSF
model, the middle panel at the bottom is the optimal regime estimated
from the proposed method.
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Figure 4.4: Cumulative Plot for Estimated Treatment Regime, Scenario 2 with 45%
Censoring. Similarly, the estimated optimal treatment regime is plotted
by showing the treatment assignment for all patients over the 100 repli-
cates. The red dots are the ones should receive treatment according to the
estimated regime, and green dots are the ones who should not be treated.
The plot on top left is the true optimal regime, the middle panel on top is
the optimal regime estimated from the standard Cox model, the top right
panel is the optimal regime estimated from the weighted Cox model, the
bottom left panel is the optimal regime estimated from the standard RSF
model, the middle panel at the bottom is the optimal regime estimated
from the proposed method.
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the resources that will otherwise be allocated to patients who do not response well

to the therapy. Even for normally distributed or binary outcome models, a lot of

existing methods for estimating the optimal regime have a potential problem as the

assumption about the regime space may not match the objective for optimization,

this could lead to severe bias even if the proposed space contains the true optimal

(Qian and Murphy , 2011; Zhang et al., 2012). So it is useful to have a flexible model

that does not restrict the space in which the optimal regime can lie. Tree based

methods provide very good tools in this case as they allow a very rich model for the

interaction between treatment and other covariates. Furthermore, RSF can also con-

trol the overfitting problem through its tree building processes. Similar to Random

Forest, RSF can select the importance of the variables, which would be considered

as a good feature as an optimal treatment regime is commonly more desirable if it

requires the measurement of less baseline covariates.

In the simulation study, we consider standard and inverse probability weighted Cox

model as alternatives to the RSF based methods, and show that the RSFs give better

performance. A possible reason for the inferior performance of the Cox models is that

they assume proportional hazards and linear combination of X’s, neither of which

is true. In practice, a user may consider other formulations within the Cox model

framework, which may be a better approximation to the underlying true model, and

thus may lead to better properties. However, the selection for the right Cox model

would usually be a rather arbitrary process and require extensive experimentation and

deep understanding of the underlying mechanism. On the other hand, the nature of

RSF methods makes them adaptable to various underlying mechanisms automatically.

Here, we incorporate the inverse probability weighting into the survival modeling

via a weighted bootstrap. It enables us to use existing RSF packages to facilitate the
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implementation of the proposed method in R. An alternative would be to directly

incorporate the inverse probability weights in the tree growing processes, and build

each tree on weighted bootstrap samples to form the forest. The proposed method

has two layers of bootstrap resampling, which introduces more randomness into the

model, and thus would be expected to have better performance numerically. Mean-

while, it should be straightforward to adopt the weighted bootstrap approach to other

machine learning methods, especially for the ones where weighted versions are not

defined or developed.

One possible extension here would be to consider time-dependent covariates, and

optimize not only who to give the treatment to but also when it should be given. The

so-called dynamic treatment regime optimization has also drawn a lot of attention of

statisticians (Hernán et al., 2006; Robins et al., 2008; Orellana et al., 2010a,b; Wang

et al., 2012). Using a Random Survival Forest model with time-dependent covari-

ates would be a promising direction for the development of effective tools to identify

optimal dynamic treatment regimes from observational data.

4.5 Appendix: Some Technical Issues

4.5.1 Models Only Conditional on X

To identify the optimal regime, ideally, we would like to find the regime which

gives the longest conditional mean survival time E{T |X} for each subject. However,

due to the censoring, we choose to compare the restricted mean survival time µ =

E{min(T, τ)|X} for some τ > 0. Depend on the choice of τ , this may lead to a

slightly different conclusion than direct comparison of the conditional mean survival,

we will discuss this issue later. But the first step is to obtain the true marginal

models, which are only conditional on X. As the full model has both X and Z in it,

94



some calculation will be needed in order to marginalize over Z. In order to work out

the formula for this, here, we will start with simple model where both X and Z are

both one dimensional, consider a lognormal model

log T = β0 + β1X + β2Z + ε

where Z = ηX+ε2, X ∼ N(0, σ2
1), ε2 ∼ N(0, σ2

2), and ε ∼ N(0, σ2
0) are independently

distributed. Now the quantity of interest is the conditional restricted mean survival

µ = E{min(T, τ)|X}. As the first step we can have the conditional mean for log T as

E{log T |X = x} = β0 + (β1 + ηβ2)x

The conditional mean survival time is then

E{T |X = x} =

∫ ∫
eβ0+β1x+β2z+εfz|x(z)fε(ε)dzdε

=

∫ ∫
eβ0+(β1+ηβ2)x+β2ε2+εfε2(ε2)fε(ε)dε2dε

= eβ0+(β1+ηβ2)x

∫
eβ2ε2φ(ε2)dε2

∫
eεφ(ε)dε

where

∫
exφ(x)dx =

∫
ex

1

σ
√

2π
e−

x2

σ2 dx = e
σ2

2

∫
eβxφ(x)dx =

∫
eβx

1

σ
√

2π
e−

x2

σ2 dx =

∫
ey

1

σ
√

2π
e
− y2

β2σ2
1

β
dy = e

β2σ2

2

thus

E{T |X = x} = eβ0+(β1+ηβ2)x+ 1
2

(β2
2σ

2
2+σ2

0)

95



The restricted mean survival (conditional on W = (X,Z)T ) is:

E{min(T, τ)|X,Z} =

∞∫
0

min(t, τ)f(t)dt

=

τ∫
0

tf(t)dt+

∞∫
τ

τf(t)dt

=

τ∫
0

tf(t)dt+ τP (T > τ |X,Z)

=
(
eβ0+β1x+β2z+

1
2
σ2
0

)
Φ

(
log τ − (β0 + β1x+ β2z)− σ2

0

σ0

)
+ τΦ

(
(β0 + β1x+ β2z)− log τ

σ0

)
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Next, we can calculate the conditional restricted mean survival (only conditional on

X):

E{min(T, τ)|X = x} =

τ∫
0

tf(t)dt+

∞∫
τ

τf(t)dt

=

+∞∫
−∞

u∫
−∞

eβ0+(β1+ηβ2)x+β2ε2+εf(ε)dεf(ε2)dε2 + τ

+∞∫
−∞

∞∫
u

f(ε)dεf(ε2)dε2

=eβ0+(β1+ηβ2)x

+∞∫
−∞

eβ2ε2
u∫

−∞

eεf(ε)dεf(ε2)dε2 + τ

+∞∫
−∞

∞∫
u

f(ε)dεf(ε2)dε2

=eβ0+(β1+ηβ2)x

+∞∫
−∞

eβ2ε2e
σ20
2 Φ(

u− σ2
0

σ0

)f(ε2)dε2 + τ

+∞∫
−∞

Φ(− u

σ0

)f(ε2)dε2

=eβ0+(β1+ηβ2)x+
σ20
2

+∞∫
−∞

eβ2ε2Φ

(
log τ − β0 − (β1 + ηβ2)x− β2ε2 − σ2

0

σ0

)
fε2(ε2)dε2

+ τ

+∞∫
−∞

Φ

(
− log τ − β0 − (β1 + ηβ2)x− β2ε2

σ0

)
fε2(ε2)dε2

=eβ0+(β1+ηβ2)x+
σ20
2

+∞∫
−∞

eβ2σ2zΦ

(
log τ − β0 − (β1 + ηβ2)x− β2σ2z − σ2

0

σ0

)
φ(z)dz

+ τ

+∞∫
−∞

Φ

(
− log τ − β0 − (β1 + ηβ2)x− β2σ2z

σ0

)
φ(z)dz

where u = log τ − β0 − (β1 + ηβ2)x − β2ε2, and the integral here do not gener-

ally have a closed form, in practice, we use Gaussian quadrature based on nor-
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mal distribution to numerically get the above quantity with the aid of function

gauss.quad.prob() in the statmod package in R. The conditional restricted mean

survival is then both a function of τ and X, so we will use notation µ0(τ,X) and

µ1(τ ;X) the survival outcome of interest for treated and untreated cases separately.

To facilitate the comparison among regimes recommended by different methods, we

will also calculate the empirical mean outcome given regime g(X), that is µg(τ) =

PX [µ0(τ ;X){1− g(X)}+ µ1(τ ;X)g(X)], which is the conditional restricted mean

survival time for the targeted population when the whole population follows a given

regime g.

4.5.2 The Choice of τ

As mentioned above, µ0(τ,X) and µ1(τ ;X) will also depend on the choice of

τ , to see this clearly, consider the case where the survival outcome for treated and

untreated are

log T 0 = β0 + β1X + β2Z + ε0 and log T 1 = β0 + β1X + h(X) + β2Z + ε1

where X and Z could be multi-dimensional. Then the optimal regime to give the

longest conditional mean survival would be to give the treatment when h(X) > 0

(provided ε0 and ε1 have same distribution). However, the difference between the
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restricted mean survivals is

µ1(τ ;X)− µ0(τ ;X)

=eβ0+x(β1+ηβ2)+h(x)+
σ20
2

×
+∞∫
−∞

eβ2ε12Φ

(
log τ − β0 − (β1 + ηβ2)x− h(x)− β2ε12

σ0

)
φ(ε12)dε12

+ τ

+∞∫
−∞

Φ

(
− log τ − β0 − (β1 + ηβ2)x− h(x)− β2ε12

σ0

)
φ(ε12)dε12

− eβ0+(β1+ηβ2)x+
σ20
2

×
+∞∫
−∞

eβ2ε02Φ

(
log τ − β0 − (β1 + ηβ2)x− β2ε02

σ0

)
φ(ε02)dε02

− τ
+∞∫
−∞

Φ

(
− log τ − β0 − (β1 + ηβ2)x− β2ε02

σ0

)
φ(ε02)dε02

=A+B

with

A =eβ0+(β1+ηβ2)x+
σ20
2

+∞∫
−∞

{
eh(x)Φ

(
log τ − β0 − (β1 + ηβ2)x− h(x)− β2ε2

σ0

)

−Φ

(
log τ − β0 − (β1 + ηβ2)x− β2ε2

σ0

)}
× eβ2ε2φ(ε2)dε2

B =τ

+∞∫
−∞

{
Φ

(
− log τ − β0 − (β1 + ηβ2)x− h(x)− β2ε2

σ0

)

−Φ

(
− log τ − β0 − (β1 + ηβ2)x− β2ε2

σ0

)}
φ(ε2)dε2

we can see here, if τ → ∞, then µ1(τ ;X) = µ0(τ ;X) if and only if h(x) = 0. In

practice, people usually choose time to study end or the longest follow-up time, i.e.
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τ is always large, in such cases, approximately, the optimal regime is similar to give

the treatment when h(x) > 0.
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CHAPTER V

Discussion and Future Work

Understanding the effect of a treatment on survival time or time to a specific

event for patients is one of the central tasks in clinical and health care research.

The presence of time-varying covariates in such cases could add more complexity to

the problem. There would be both theoretical and numerical challenges to extend

existing methods into this area. Furthermore, there has been increasing interest in

investigating how the treatment interacts with other pretreatment characteristics and

thus to personalize the treatment according to these characteristics of each individual.

When the covariates are time-dependent, for example like PSA in the prostate cancer

recurrence study described in Chapter I, it is more difficult yet much more appealing

to develop a treatment regime that will make treatment decision based on the real

time monitored PSA values and optimize the outcome. In fact, the idea of tailoring

the treatment dynamically according to the time-varying covariates has a wide spec-

trum of application. For example, in treating advanced non-small cell lung cancer

(NSCLC), patients typically experience two or more lines of treatment, it would be

very useful to find the optimal dynamic treatment schedule that can improve survival

for patients (Socinski and Stinchcombe, 2007). In this dissertation, we focus on pro-

viding some insights to the current issues in this field.
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In Chapter II, we proposed an estimation procedure to efficiently estimate the co-

efficient for baseline covariates under a general form of survival problem when there

are mixed covariates (both time-dependent and time-independent). One direct appli-

cation is that this approach can be used to estimate the treatment effect on recurrence

free survival time for prostate cancer patients, when the hormone therapy is assigned

at baseline and confounding effect of PSA is cumulative over time. It is reasonable

to assume that the whole history of the time-dependent variable would impact the

risk at current time. In optimal dynamic treatment regime (DTR) identification,

the cumulative impact of the time-dependent variable may exist in both the time-

dependent treatment assignment mechanism and counterfactual survival outcomes.

Thus it may be more useful for a treatment regime to assign treatment based on the

whole trajectory of the time-dependent covariates at the current time.

Machine learning methods do not heavily rely on pre-specified assumptions about

the structure of the model, which is a desired feature when the underlying model

structure is not very well understood. Tree-based methods are increasingly popular

statistical tools since Breiman et al. (1984) introduced the classification and regres-

sion tree (CART) algorithm. The simplicity of the single tree based model gives the

prediction rules very straightforward interpretations, however, it often yields poor

prediction accuracy. The ideas of ensembles and randomization dramatically im-

prove prediction accuracy, and make the tree-based methods become more and more

popular in the research community. Among various ensemble tree-based algorithms,

Random Forest is one of the widely used approaches after Breiman (2001) introduce

its general framework. In Chapter III, we focus on employing Random Forest algo-

rithm in modeling complex treatment mechanism and further developing personalized

medicine from observational studies. We propose to model the time-dependent treat-

ment assignment by considering series of conditional probability models at each visit.
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The weights are then calculated as a cumulative product of probabilities. This is

a common approach for handling time-varying weights. Although it gains efficiency

by pooling conditional models at different time points together, it also forces these

models to have similar structure which may not be realistic. As mentioned in Chap-

ter III, we can directly model the time to treatment using tools for survival analysis,

especially Random Survival Forest will be a very attractive alternative as it does

not impose many assumptions. However, we may need to be cautious as we start to

consider treatment over continuous time, stronger assumptions may be necessary to

enable causal inference in such situations, for example, the positivity assumption. In

practice, it may also require much larger populations in order to get reasonable esti-

mation. On the other hand, it may be more straightforward to use RSF for discrete

survival time in modeling the treatment mechanism when there are limited number

of treatment stages.

In Chapter IV, we propose a modified version of Random Survival Forest method

which allows different subjects to contribute differently to the model by giving them

different weights. The weighted bootstrap procedure incorporates the inverse prob-

ability weights into the model to correct for the selection bias in the observational

data. Moreover, it also provides additional randomness to the Random Survival For-

est algorithm which is likely to improve the performance of the proposed method.

One other possible improvement may be to include higher order terms and interac-

tion terms of the covariates as input into the Random Forest procedure. Although,

in theory, Random Survival Forest can automatically model the interactions, it has

been shown in numerical work that the inclusion of extra terms like interaction or

quadratics may improve the properties of the method in some circumstances (Foster

et al., 2011). Our goal in Chapter IV is to identify the optimal regime in the case

when all covariates are measured pretreatment and at baseline, and the treatment

103



is also assigned at time zero. We focus on improving the performance of the model-

ing for the counterfactual outcomes, so we assume the true model for the treatment

mechanism is known and can be correctly modeled. However, when the treatment

mechanism is not clear, we may need to model the probability of receiving treatment

non-parametrically. Meanwhile, variable selection would also be important as the

pool of candidate predictors for the treatment probability could be very large. In

such cases, machine learning methods similar to what we proposed in Chapter III

would be useful to model the treatment. A more challenging problem would be to

extend this approach to the optimal dynamic treatment regime (DTR) identifica-

tion, where the weights are time-varying. Methods need to developed to allow each

person-time piece to contribute differently when building the Random Survival Forest.

Random Forest, Random Survival Forest and their extensions provide very useful

tools in detecting optimal DTR from observational data. Their flexible model struc-

ture is helpful in learning the treatment and survival outcome especially when the

underlying mechanisms are not well understood. Meanwhile, the built-in variable

importance measure gives us a tool for automatic variable selection. This is impor-

tant since simple regimes with less covariates are preferable in practice. However,

the original Random Survival Forest (Ishwaran et al., 2008) and most of its variants

only work for the case when the covariates are time independent. The major chal-

lenge lies in how to define splits on time-dependent covariates. One strategy that

has been implemented replaced the time-varying covariate with a low-order polyno-

mial approximation (Segal , 1992). In particular, linear summaries have been used

where each time-varying covariate is first regressed against time within individuals.

The intercept and slope for each individual are then used as covariates. This would

highly depend on that the model assumption for the regression on the longitudinal

covariate is correct, and as the regression is subject specific, it also requires that there
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are enough observations per subject to make each regression accurate. Neither of the

requirement would be easily satisfied in practice. Recently, Bou-Hamad et al. (2011a)

proposed a new random survival forest method to accommodate simultaneously time-

varying covariates and time-varying effects. Their basic idea is to handle time-varying

covariates by decomposing each subject as subject-time pieces, or as they called them

pseudo-subjects, according to the splitting rules. So one subject can be split apart

across two children nodes. More work along this line can be done for covariates in

continuous time, as well as its application in finding optimal DTRs.
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