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ABSTRACT

With increasing fidelity and efficiency of numerical simulations, it becomes possi-

ble to rely on computational simulations and optimization to achieve a better aircraft

design. One of the most computationally intensive disciplines is the aircraft exter-

nal aerodynamic design. Computational fluid dynamics based on Reynold-averaged

Navier–Stokes equations is necessary to accurately resolve the flow field in order to

achieve a practical design. High-fidelity CFD poses difficulties to numerical opti-

mization due to its high computational cost, especially when large number of shape

design variables are used. This thesis presents an approach to compute the gradi-

ents of Reynold-averaged Navier–Stokes equation equations with a Spalart–Allmaras

turbulence model using a combination of the adjoint method and automatic differen-

tiation algorithms, for use in gradient-based aerodynamic shape optimization. The

resulting gradients are accurate, robust, and efficient. A novel multilevel optimization

approach is developed to reduce the computational cost by 84.5%.

With this state-of-the-art Reynolds-averaged Navier–Stokes adjoint and aerody-

namic shape optimization framework, we performed three high-fidelity aerodynamic

design optimization studies in this thesis. The wing of a Boeing 777-sized aircraft

is optimized for single and multiple flight conditions. The drag coefficient is mini-

mized with respect to 720 shape design variables, subject to lift, pitching moment,

and geometric constraints, using grids with up to 28.8 M cells. Drag coefficient of

the optimized design was reduced by 8.5% relative to the initial design. In addition,

the multi-modality of this aerodynamic shape optimization problem is examined by

starting optimizations from randomly generated initial geometries. All optimal wings

had similar airfoil shapes, with a mean difference of 1.2 in. The variation of the merit

function between the multiple local optima confirms that these points are indeed local

minima, and indicate that the design space consists of a convex bowl with a small flat

bottom that is multimodal. The second application is to optimize the aerodynamics

of a near-term aircraft retrofit modification: a wing with morphing trailing edge. A

xxii



total of 407 trailing edge optimizations with different Mach numbers, altitudes, and

weights, were performed to span the entire cruise flight envelope. A drag reduction

in the order of 1% is achieved for on-design conditions, and reductions up to 5% were

achieved for off-design conditions. Finally, we extend the aerodynamic shape opti-

mization studies to design an unconventional configuration, the blended-wing-body

aircraft. The RANS adjoint and high-fidelity aerodynamic shape optimization frame-

work allowed us to examine the trade-offs between drag coefficient, trim, and static

margin of the blended-wing-body configuration. The best compromise between per-

formance and stability was achieved by enforcing a small static margin that can be

tolerated in a commercial airplane (1%) and including the center of gravity position

as a design variable. This resulted in a trimmed configuration that exhibits a nearly

elliptical lift distribution and the lowest drag among the trimmed stable designs. This

was achieved by a combination of optimized washout and reflex airfoils.
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CHAPTER 1

Introduction

1.1 Motivation

Recent advances in high performance computing have enabled the deployment

of full-scale physics-based numerical simulations and optimization in academia and

industry. Computational fluid dynamics (CFD) tools and numerical optimization

techniques have been widely adopted to shorten the design cycle times and to explore

the design space more effectively. High-fidelity methods enable engineers to perform

detailed designs earlier in the design process, allowing them to better understand the

design trade-offs and make more informed decisions. In addition, advances in sensi-

tivity analysis via the adjoint method [2] has dramatically improved the effectiveness

and computational time of aerodynamic shape optimization. However, due to the

complexity of the CFD solvers, deployment of adjoint method in Reynolds-averaged

Navier–Stokes (RANS) solvers remains a challenging task.

To date, there are only very few examples of solving aerodynamic design problems

using a robust and efficient aerodynamic shape optimization algorithm. Therefore,

the first goal of this thesis is to develop an efficient aerodynamic shape optimiza-

tion framework using the adjoint method that enables us to perform high-fidelity

large-scale aerodynamic design optimization of aircraft configurations. The second

goal is to use this framework to explore a variety of aerodynamic designs, includ-

ing a current-generation transonic wing, a near-term improvement in the form of a

morphing trailing edge wing, and a next-generation blended-wing-body configuration.

1.1.1 Efficient Adjoint Implementation using Automatic Differentiation

There are two types of adjoint approaches: continuous and discrete. In the con-

tinuous approach, the adjoint method is directly applied to the governing differential
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equations. Partial derivatives of the objectives and residuals with respect to state

variables and design variables are combined via the adjoint variables. The govern-

ing equations and the adjoint equation along with the boundary conditions are then

discretized to obtain numerical solutions. Several authors have demonstrated aero-

dynamic shape optimization with the continuous adjoint approach [3, 4, 5]. For the

discrete adjoint approach, the adjoint method is applied to the set of discretized flow

governing equations instead. The gradient produced by the discrete adjoint is exact

in the discrete sense and can thus be verified with great precision using the complex-

step method [6]. The discrete adjoint approach is also widely used in aerodynamic

shape optimization [7, 8, 9, 10, 11, 12, 13, 14]. A comparison between the discrete and

continuous adjoint is studied in [15]. Implementation of either continuous or discrete

adjoint methods in a complex CFD code remains a challenging and time-consuming

task. Derivatives involved in the adjoint formulation for the RANS equations are

often difficult to derive and require the manipulation of the governing equations. One

way to tackle this difficulty is to use automatic differentiation (AD), either by differ-

entiating the entire code [16, 17], or by selectively differentiating the code to compute

the partial derivatives required by the adjoint method [18].

In Chapter 2 to 4 of this thesis, we present an efficient adjoint implementation

that extensively uses the automatic differentiation to compute the partial derivative

terms for a discrete adjoint of the RANS equations. Simplifications, such as ne-

glecting the turbulent contributions (often called frozen-turbulence), can be made

in the formulation. With the automatic differentiation approach, the one-equation

Spalart–Allmaras (SA) turbulence model [19] is also differentiated without extensive

additional effort. Therefore, an exact linearization to the main flow solution can be

achieved. With this implementation, the door to high-fidelity aerodynamic design

optimization of aircraft configurations has been opened.

1.1.2 Aerodynamic Shape Optimization of a Transonic Wing

The design of transonic transport aircraft wings is particularly important because

of the large number of such aircraft operating on a daily basis, and because small

changes in the wing shape may have a large impact on fuel burn. This directly affects

both the airlines’ cash operating cost and the emission of green-house gases.

Advances in high-performance computing hardware and algorithms have enabled

the ever-increasing fidelity of computational fluid dynamics (CFD) models used for

evaluating aircraft performance. As the computational time for a given CFD model

reduces, it becomes feasible to use it together with numerical optimization to per-
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form aircraft design. While there are various possible optimization techniques, the

use of gradient-based algorithms together with an adjoint method that computes the

required gradients efficiently has been proven to be particularly effective. Such op-

timizations typically require a total time equivalent to O(102) CFD simulations to

obtain optimal designs. This enables wing designers to shorten design cycle times

and thus explore the design space more effectively. They can also obtain detailed

designs earlier in the design process, allowing them to better understand the design

trade-offs and to make more informed design decisions.

Aerodynamic shape optimization can be dated back to the 16th century, when

Newton [20] used calculus of variations to minimize the fluid drag of a body of rev-

olution with respect to the body’s shape. Although there were many significant

developments in optimization theory after that, it was only in the 1960s that both

the theory and the computer hardware became advanced enough to make numerical

optimization a viable tool for everyday applications. The application of gradient-

based optimization to aerodynamic shape optimization was pioneered in the 1970s.

The aerodynamic analysis at the time was a full-potential small perturbation inviscid

model, and gradients were computed using finite differences. Hicks et al. [21] first

tackled airfoil design optimization problems. Hicks and Henne [22] then used a three-

dimensional solver to optimize a wing with respect to 11 design variables representing

both airfoil shape and the twist distribution.

Because small local changes in wing shape have a large effect on performance,

wing design optimization is especially effective with a large number of shape vari-

ables. As the number of design variables increases, the cost of computing gradients

with finite-differences becomes prohibitive. The development of the adjoint method

addressed this issue, enabling the computation of gradients at a cost independent

of the number of design variables. For a review of methods for computing aerody-

namic shape derivatives, including the adjoint method, see Peter and Dwight [23].

For a generalization of the adjoint method and its connection to other methods for

computing derivatives, see Martins and Hwang [24].

Pironneau [25] pioneered the adjoint approach by deriving the adjoint of the Stokes

equations and the incompressible Euler equations [26] to optimize airfoil profiles.

Jameson [2] extended the adjoint method to handle inviscid compressible flows, mak-

ing it suitable for the design of transonic airfoils. Since then, adjoint implementations

for the compressible Euler equations have been used by various researchers to per-

form aerodynamic shape optimization. Reuther et al. [3, 4], for example, performed

the aerodynamic shape optimization of complete aircraft configurations. The devel-
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opment of more robust CFD mesh deformations has made it possible to widen the

range of the design parameters and study, for example, nonplanar geometries [10, 11].

Hazra et al. [27] developed a simultaneous pseudo-timestepping in which stationary

states are obtained by solving the non-stationary system of equations representing the

state, costate and design equations and successfully applied to optimize an RAE2822

airfoil.

The aerodynamic design of transonic wings requires a model that can represent

the shock-wave boundary layer interaction, since there is a strong nonlinear coupling

between airfoil shape, wave drag, and viscous effects. Therefore, using a model that

relies solely on the Euler equations is insufficient and can even be misleading [28].

Fortunately, the adjoint method has been extended to the compressible Navier–

Stokes equations with turbulence models, enabling us to tackle practical aerodynamic

design problems. Jameson et al. [29] optimized a wing-body configuration modeled

with the compressible Navier–Stokes equations using a continuous adjoint approach.

They used a 590k-cell mesh and achieved a shock-free solution at Mach 0.86. Anderson

and Bonhaus [30] optimized airfoil shapes using a discrete adjoint that included the

linearization of the Spalart–Allmaras turbulence model. Nielsen and Anderson [31]

further extended the approach to the three-dimensional Reynolds-averaged Navier–

Stokes equations. They achieved an 8% drag reduction for the ONERA M6 wing

with thickness and camber design variables at two chordwise locations. Brezillon and

Dwight [32, 33] optimized the DLR-F6 wing-body configuration using a RANS solver

and a discrete adjoint, achieving a 10-count drag reduction by varying 96 design

variables. The adjoint approach has also been applied to supersonic flow, such as the

sonic boom reduction [34, 35].

The efforts mentioned above use aerodynamic shape optimization frameworks

combining different CFD solvers, adjoint implementations, optimizers, and geome-

try parameterizations, all applied to different design optimization problems. Thus,

we need a set of benchmark cases for aerodynamic design optimization, following

a similar model to that of the Drag Prediction Workshop [36, 37, 38]. To address

this issue, a few researchers formed the Aerodynamic Design Optimization Discussion

Group (ADODG) and developed four benchmark problems to test aerodynamic opti-

mization methods. These problems range from the optimization of a two-dimensional

airfoil using the Euler equations to three-dimensional shape optimization using the

RANS equations.

In Chapter 7, we address the lack of benchmarks in aerodynamic design optimiza-

tion by presenting a comprehensive set of results for what is currently the most com-
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putationally intensive benchmark problem among the test cases: the lift-constrained

drag minimization of the NASA Common Research Model (CRM) wing with a RANS

model. In addition, we study the effect of the grid size, the number of shape design

variables, and their distributions. We also demonstrate the robustness of our aero-

dynamic shape optimization framework by starting the optimization from a random

perturbation of the CRM wing geometry.

1.1.3 Aerodynamic Design Optimization of a Morphing Trailing Edge

Wing

Looking beyond the current-generation aircraft wing, one of the fuel-burn reduc-

tion strategies that is starting to be used on modern jetliners, such as the Boeing

787, is the use of cruise flaps: A small amount of trailing edge flap and aileron droop

is used to optimize the aerodynamic performance at different cruise conditions. The

trailing edge devices can alter the spanloads over the course of a flight to reduce drag;

however, cruise flaps have limited degrees-of-freedom that may impact the optimal

performance. Morphing trailing edge devices, such as those developed by FlexSys,

could address this issue. The FlexSys FlexFoil allows independent changes of camber

and flap angles at each spanwise location using a smooth morphing surface with no

gaps [39, 40]. The morphing trailing edge (TE) has a high technology readiness level

and could be retrofited onto existing aircraft to reduce the drag as much as possible

for each flight condition.

Previous studies on morphing trailing edges have focused on the design of the

morphing mechanisms, actuators, and structure [39, 40, 41]. In previous aerodynamic

studies of the morphing trailing edge, only low-fidelity methods were used [42, 43].

However, small geometry changes, such as the cruise flap extension, require high-

fidelity simulations to fully quantify the tradeoff between induced drag and other

sources of drag. Therefore, we use a high-fidelity aerodynamic model based on the

Reynolds-averaged Navier–Stokes (RANS) equations to examine this tradeoff. The

boundary layer is well-resolved and a Spalart–Allmaras turbulence model is used.

Determining the optimal trailing edge shape at each spanwise location for each

flight condition is a challenging design task. In this thesis, we use the aerodynamic

design optimization framework to explore the optimal design of the morphing trail

edge wing. We use a gradient-based numerical optimization algorithm together with

an efficient adjoint implementation [28] to optimize the morphing for the different

flight conditions. A database of optimal morphing shapes at different flight conditions

is generated using a total of 407 aerodynamic shape optimizations. Once the database
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is generated, we can compute the required optimal morphing shapes and related

fuel burn reductions for each mission. For comparison purposes, we also perform

optimizations with full morphing wings to quantify the theoretical minimal drag for

each condition.

1.1.4 Aerodynamic Design Optimization of a Blended-Wing-Body Air-

craft

In this thesis, we further extend the aerodynamic optimization studies to a next-

generation aircraft. Unconventional aircraft configurations, such as the blended-wing-

body (BWB), have the potential to significantly reduce emissions and noise of future

large transport aircraft [44]. BWB configuration, also known as the hybrid-wing

body (HWB), is characterized by an airfoil-shaped centerbody that integrates pay-

load, propulsion, and control surfaces. Compared to the classic tube-and-wing config-

uration, the BWB has superior aerodynamic performance [44, 45, 46]: the reduction

in the wetted area substantially reduces the skin friction drag, the all-lifting design

reduces the wing loading and improves the spanwise lift distribution, the smooth

blended wing-centerbody intersection reduces the interference drag, and the area-

ruled shape of the BWB reduces the wave drag at high transonic speed. The center-

body provides a substantial portion of the total lift, thus reducing the wing loading.

The low wing loading ensures excellent low-speed flight characteristics as well, making

heavy high-lift mechanisms, such as double-slotted flaps, redundant. Cross-sectional

area of the BWB is similar to that of the Sears–Haack body, which results in lower

wave drag at transonic speeds, according to Whitcomb’s area rule [47]. However, the

design of BWB configuration introduces new challenges.

The main problem is that since the BWB does not have a horizontal tail, the

pressure distributions over the centerbody and wings must be carefully designed to

maintain trim and the desired static margin. The thick airfoil shape of the centerbody

also makes it a challenge for the BWB to achieve low drag while generating sufficient

lift at a reasonable deck angle. Thus, there are critical trade-offs between aerodynamic

performance, trim, and stability.

Several authors have investigated the design optimization of the BWB configura-

tion. Liebeck [48, 44] and Wakayama [49, 50] presented the multidisciplinary design

optimization (MDO) of the Boeing BWB-450. They used a vortex-lattice model

and monocoque beam analysis, and they also considered the trim and stability of

the BWB. Qin et al. [46, 51] performed an aerodynamic optimization of the Eu-

ropean MOB BWB geometry, including inverse design and 3D shape optimization
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with a trim constraint. They optimized the design in 3D using Euler-based com-

putational fluid dynamics (CFD). Peigin and Epstein [52] used a genetic algorithm

and reduced-order methods to perform a multipoint drag minimization of the BWB

with 93 design variables. They used a full Navier–Stokes analysis with reduced-order

methods. Kuntawala et al. [53, 54] studied BWB planform and shape drag minimiza-

tion using Euler CFD with an adjoint implementation. Meheut et al. [55] performed

a shape optimization of the AVECA flying wing planform subject to a low-speed

takeoff rotational constraint. They optimized a total of 151 design variables, and

they used CFD with a frozen-turbulence (Reynolds-averaged Navier–Stokes) RANS

adjoint to compute the gradient. Mader and Martins [56] studied the Euler-based

shape optimization of a flying wing considering trim, bending moment constraints,

and both static and dynamic stability constraints. Using a minimum induced-drag

planform as a reference, they studied the effect of the various constraints on the op-

timal designs. Their results showed that at subsonic and moderate transonic speeds,

the static constraints can be satisfied with airfoil shape variables alone using a reflex

airfoil. However, at high transonic speeds, or when considering dynamic stability

constraints, the optimal designs required sweep, twist, and airfoil shape variables to

minimize the drag while satisfying the constraints. Lyu and Martins [13] investi-

gated the BWB shape optimization with bending moment, trim, and static margin

constraints using Euler CFD, including planform optimization. They followed this

with a similar study that used a RANS solver [14], which provided the basis for the

present study. Reist and Zingg [57] studied the aerodynamic shape optimization of a

short-range regional BWB with Euler CFD.

What is missing is a comprehensive and systematic study of a BWB configura-

tion that investigates the design trade-offs between aerodynamic performance, trim,

stability, as well as structural considerations, with appropriate fidelity. In this case,

the appropriate fidelity is RANS CFD. While Euler-based optimization can provide

design insights, the resulting optimal shapes are significantly different from those ob-

tained with RANS, and Euler-optimized shapes tend to exhibit non-physical features,

such as a sharp pressure recovery near the trailing edge [28].

Using the optimization framework presented in this thesis, we develop a methodol-

ogy for the aerodynamic design of BWB configurations that performs optimal trade-

offs between the performance and constraints mentioned above, and examines the

impact of each constraint on optimal designs. We investigate the design trade-offs

by performing a series of aerodynamic shape and planform optimization studies that

examine the impact of the design variables and constraints. We explore the effect of
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the trim constraint, required static margin, and CG location on the BWB optimal

shape. We also investigate the impact of multi-point design optimization.

1.2 Thesis Objectives

The objective of this thesis is to develop a robust and efficient high-fidelity aerody-

namic shape optimization framework based on the Reynold-averaged Navier–Stokes

equations for solving large-scale aerodynamic design optimization problems. The

following tasks are addressed in this thesis.

• Develop an efficient gradient calculation to the RANS equations using the ad-

joint method and automatic differentiation.

• Verify the aerodynamic and geometry derivatives using the complex-step method.

• Investigate the computational cost of RANS adjoint and frozen-turbulence ad-

joint.

• Compare the optimum of Euler-based and RANS-based aerodynamic shape

optimization.

• Compare the computational cost of aerodynamic shape optimization using gradient-

based and gradient-free optimizers.

• Develop an acceleration technique to improve the efficiency of aerodynamic

shape optimization.

• Improve the aerodynamic performance of a transonic wing using aerodynamic

shape optimization.

• Investigate the local and global optimum in aerodynamic shape optimization.

• Demonstrate the robustness of the aerodynamic shape optimization framework

by performing an optimization with randomly generated initial designs.

• Quantify the aerodynamic benefit and obtain the optimal shape of an adaptive

trailing edge wing using aerodynamic shape optimization.

• Systematically investigate the aerodynamic design optimization of a blended-

wing-body aircraft.

• Investigate the trade-off between aerodynamics and stability of blended-wing-

body aircraft.
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1.3 Thesis Outline

Chapter 3:  
Development of  
RANS Adjoint

Chapter 4:  
Adjoint Verifications

Chapter 5:  
Optimizer Study

Chapter 6:  
Acceleration Methods

Chapter 7:  
Transonic Wing Design

Chapter 8:  
Morphing Trailing Edge 

Wing

Chapter 9:  
Blended-Wing-Body 

Aircraft Design

Chapter 2: 
Aerodynamic Shape 

Optimization Framework

Applications

Development

Methodology

Figure 1.1: This thesis addresses both methodology and applications of aerodynamic
shape optimization.

The outline of this thesis is shown in Figure 1.1. This thesis contributes to the state

of art of high-fidelity aerodynamic design optimization. Both methodology (shown

in blue and yellow) and applications (shown in green) are addressed in the thesis.

The aerodynamic shape optimization framework is discussed in Chapter 2. This

chapter gives an overview of each component in this framework, including geometry

parametrization, mesh perturbation method, and the optimization algorithms. Chap-

ter 3 describes the RANS adjoint implementation using automatic differentiation, and

the coloring technique to improve the efficiency of the adjoint. The verification of the

aerodynamic and geometric adjoint derivatives using the complex-step is shown in

Chapter 4. In this chapter, we also investigate the differences in optimized design

and computational cost between Euler-based and RANS-based aerodynamic shape

optimization. Once the framework is implemented, we performed a study to compare

the gradient-based and gradient-free optimizers. In Chapter 6, we present acceleration

techniques to improve the efficiency of aerodynamic design optimization.

The following chapters focus on the applications of high-fidelity aerodynamic de-

sign optimization. We begin with applying aerodynamic shape optimization to a

transonic wing of a current-generation aircraft in Chapter 7. We use this case to

investigate the effect of number of design variables and multi-modality of the prob-

lem. We also compare the differences in optimized designs using a single-point and
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a multi-point objective function. Once we established this baseline optimization, we

further apply the aerodynamic shape optimization to an adaptive morphing trailing

edge wing in Chapter 8 to obtain the optimal morphing shape at each flight condi-

tion. In addition, we evaluate the drag reduction benefit of the morphing trailing edge

wing by comparing that to a non-morphing and a full-morphing wing. Finally, we

systematically investigate the aerodynamic design optimization of an unconventional

aircraft configuration, the blended-wing-body aircraft in Chapter 9. We examine the

trade-offs between aerodynamics, CG location, airfoil and planform shape, and the

stability of the aircraft. The conclusions are summarized in Chapter 10.
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CHAPTER 2

Aerodynamic Design Optimization Framework

This chapter describes the numerical tools and methods that are used in this thesis.

These tools are components of the MDO for Aircraft Configurations with High fidelity

(MACH) framewwork [58, 59, 60], which has been developed over the last decade by

the MDOlab at the University of Michigan. MACH can perform the simultaneous

optimization of aerodynamic shape and structural sizing variables considering aeroe-

lastic deflections; however, in this thesis we focus solely on the aerodynamic shape

optimization.

2.1 Geometric Parametrization

The representation of geometry for aerodynamics requires a complete and water-

tight description of the Outer Mold Line (OML). The geometries in aerodynamic

shape optimization problems are often complex. An exact surface parametrization,

such as B-spline surface patches, can result in large number of control points for

a complex geometry in order to accurately resolve the geometry. For aerodynamic

shape optimization, the initial geometry is usually provided. The optimization only

needs to modify the initial geometry to achieve a better objective. There is no need to

regenerate the geometry at each iteration. Therefore, we use a geometric parametriza-

tion method that only modifies existing geometries, which improves the efficiency of

the optimization. A survey of shape parameterization techniques for high-fidelity

multidisciplinary shape optimization can be found in [61].

We choose to use a free form deformation (FFD) approach to parametrize the

geometry. The geometric parametrization in this framework was developed by Ken-

way [62]. The FFD volume parametrizes the geometry changes rather than the geom-

etry itself, resulting in a more efficient and compact set of geometry design variables,

thus making it easier to handle complex geometric manipulations. Any geometry
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may be embedded inside the volume by performing a Newton search to map the

parameter space to physical space. All the geometric changes are performed on the

outer boundary of the FFD volume. Any modification of this outer boundary can

be used to indirectly modify the embedded objects. The key assumption of the FFD

approach is that the geometry has constant topology throughout the optimization

process, which is usually the case for wing design. In addition, since FFD volumes

are tri-variate B-spline volumes, the sensitivity information of any point inside the

volume can be easily computed. By moving a set of control points together, large

geometric variations such as span and sweep can be produced. The control points can

also be moved individually to produce airfoil shape changes. Another less technical

way to understand FFD approach is to imagine the FFD volume as a block of jello.

If you push the outside of the jello, the inside of the jello will change its shape as

well. Figure 2.1 shows the FFD volume and geometric control points for a blended-

wing-body aircraft. This optimization formulation will be discussed in more detail in

Chapter 9.

The FFD approach can be extended to include nested FFD volumes. Those sub-

FFD can be used to provide additional degrees of freedom to perform local shape

changes. In the BWB example, we use nested FFD to simulate control surfaces

movement on the rear centerbody, which are analogous to elevators on a conventional

configuration. The result is a sub-FFD that is embedded in the main FFD. Any

changes in the main FFD are propagated to the sub-FFD. The sub-FFD is set to rotate

about the hinge line of the control surface. When the sub-FFD rotates, the embedded

geometry changes the local shape accordingly. Because of the constant topology

assumption of the FFD approach, and the limitation of the mesh perturbation, the

surface has to be continuous around the control surfaces, eliminating the elevator gap.

Therefore, when the control surfaces deflect, there is a transition region between the

control surface and the centerbody, similar to those studied in a continuous morphing

wing [40]. Figure 2.2 shows the sub-FFD volume and the geometry, with a trim

control surface deflection of 25 degrees.

2.2 Mesh Perturbation

Since FFD volumes modify the geometry during the optimization, we must perturb

the mesh for the CFD analysis to solve for the modified geometry. The mesh pertur-

bation scheme used in this work is a hybridization of algebraic and linear elasticity

methods developed by Kenway [62]. The idea behind the hybrid warping scheme is to
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Figure 2.1: FFD volume (black) and control surface sub-FFD volume (red) with their
respective control points

apply a linear-elasticity-based warping scheme to a coarse approximation of the mesh

to account for large, low-frequency perturbations, and to use the algebraic warping

approach to attenuate small, high-frequency perturbations. The goal is to compute a

high-quality perturbed mesh similar to that obtained using a linear elasticity scheme

but at a much lower computational cost.

The algebraic mesh perturbation used here is an algebraic transfinite interpolation

(TFI) [63]. Linear blending functions and linear interpolation are used. The linear

elasticity method is based on a linear-spring analogy [64]. Each edge of the grid is

considered as a linear spring with a stiffness inversely proportional to its length. A

linear system is formed to describe the displacement of the coarsened mesh nodes.

The displacement at the surface is prescribed from the design variables. The mesh

nodes at the symmetry plane are constrained to remain on that plane. Finally, the

nodes at the far field are constrained to be fixed. This hybrid mesh perturbation

method is robust and efficient for the applications in this thesis. More detail of the
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Figure 2.2: Sub-FFD volume and control points for a trim control surface deflection
of 25 degrees

mesh perturbation method can be found in [62].

2.3 CFD Solver

We use the Stanford University multiblock (SUmb) [65] flow solver. SUmb is

a finite-volume, cell-centered multiblock solver for the compressible Euler, laminar

Navier–Stokes, and RANS equations (steady, unsteady, and time-periodic). It pro-

vides options for a variety of turbulence models with one, two, or four equations

and options for adaptive wall functions. In this thesis, we focus on solving the RANS

equation with the Spalart-Allmaras turbulence model. The Jameson–Schmidt–Turkel

(JST) scheme [66] augmented with artificial dissipation is used for the spatial discriti-

zation. The main flow is solved using an explicit multi-stage Runge–Kutta method

along with a geometric multi-grid scheme. A segregated Spalart–Allmaras (SA) turbu-

lence equation is iterated with the diagonally dominant alternating direction implicit

(DDADI) method. An automatic differentiation adjoint for the Euler and RANS

equations was developed to compute the gradients [18, 28]. The adjoint implemen-

tation supports both the full-turbulence and frozen-turbulence modes. The adjoint

equations are solved with preconditioned GMRES [67] using PETSc [68, 69, 70]. More

detail of the adjoint is discussed in Chapter 3.
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2.4 Optimization Algorithms

Because of the high computational cost of CFD solutions, it is critical to choose

an efficient optimization algorithm that requires a reasonably low number of function

calls. Gradient-free methods, such as genetic algorithms, have a higher probability

of getting close to the global minimum for cases with multiple local minima. How-

ever, slow convergence and the large number of function calls make gradient-free

aerodynamic shape optimization infeasible with the current computational resources,

especially for large numbers of design variables. Therefore, for most of the optimiza-

tion in this thesis, we use a gradient-based optimizer combined with adjoint gradient

evaluations to solve the problem efficiently. More detail of the optimizer studies are

discussed in Chapter 5.

2.4.1 SNOPT

We use SNOPT (sparse nonlinear optimizer) [71] through the Python interface

pyOpt [72] for most of the optimization is this thesis. SNOPT is a gradient-based

optimizer that implements a sequential quadratic programming method; it is capable

of solving large-scale nonlinear optimization problems with thousands of constraints

and design variables. SNOPT uses a smooth augmented Lagrangian merit function,

and the Hessian of the Lagrangian is approximated using a limited-memory quasi-

Newton method.

For comparison purpose, a number of other gradient-based and gradient-free op-

timizers are also used in this thesis. Those optimizers are described below.

2.4.2 SLSQP

SLSQP is a sequential least squares programming algorithm [73] that evolved

from the least squares solver of Lawson and Hanson [74]. The optimizer uses a quasi-

Newton Hessian approximation and an L1-test function in the line search algorithm.

Kraft [75] also applied this method to aerodynamic and robotic trajectory optimiza-

tion.

2.4.3 PSQP

PSQP is a preconditioned SQP method with a BFGS variable metric update. It

can handle large scale problems with nonlinear constraints.
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2.4.4 IPOPT

IPOPT implements a primal-dual interior-point algorithm with a filter line search

method [76]. The barrier problem is solved using a damped Newton’s method. The

line search method includes a second order correction.

2.4.5 CONMIN

CONMIN solves linear or nonlinear optimization problems using the method of

feasible directions [77]. It minimizes the objective function until it reaches an infea-

sible region. The optimization then continues by following the constraint boundaries

in a descent direction.

2.4.6 GCMMA

GCMMA is a modified version of the method of moving asymptotes, designed for

nonlinear programming and structural optimization [78]. It solves a strictly convex

approximating sub-problem at each iteration. GCMMA guarantees convergence to a

local minimum from any feasible starting point.

2.4.7 ALPSO

ALPSO is a parallel augmented Lagrange multiplier particle swarm optimization

(PSO) solver written in Python [79]. This method takes advantage of PSO methods,

which can solve non-smooth objective functions and is more likely to find the global

minimum. Augmented Lagrange multipliers are used to handle constraints. ALPSO

can be used for nonlinear, non-differentiable, and non-convex problems. Perez and

Behdinan [80] applied this method to a non-convex, constrained structural prob-

lem. Other applications include aerostructural optimization of nonplanar lifting sur-

faces [81] and aeroservoelastic design optimization of a flexible wing [82].

2.4.8 NSGA2

NSGA2 is a non-dominant sorting based multi-objective evolutionary algorithm [83].

The optimizer enforces constraints by tournament selection. It can solve non-smooth

and non-convex multi-objective functions and tends to approach the global minimum.
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CHAPTER 3

Adjoint Method Based on

Reynolds-Averaged Navier–Stokes Equations

This chapter presents an approach for the rapid implementation of an adjoint

solver for the Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras

turbulence model. This work is based on a previous paper presented by the au-

thor [28]. Automatic differentiation is used to construct the partial derivatives re-

quired in the adjoint formulation. The resulting adjoint implementation is compu-

tationally efficient and highly accurate. The assembly of each partial derivative in

the adjoint formulation is discussed. In addition, a coloring acceleration technique is

presented to improve the adjoint efficiency.

To develop the RANS adjoint, it is necessary to have a thorough understanding

of the governing equations and the flow solvers, such as the size of stencils, the vector

of state variables, the call sequences, etc. In this section, we discuss the backgrounds,

methods, and tools that are involved in the formulation and implementation of the

RANS adjoint.

3.1 Flow Governing Equations

The RANS equations are a set of conservation laws that relate mass, momentum,

and energy in a control volume. To simplify the expressions, the RANS equations,

(3.1) are demonstrated in 2 dimensions.

∂w

∂t
+

1

A

∮
Fi · n̂dl −

1

A

∮
Fv · n̂dl = 0 (3.1)

The state variable w, inviscid flux Fi and viscous flux Fv are defined as follows.
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w =


ρ

ρu1

ρu2

ρE

 (3.2) Fi1 =


ρu1

ρu21 + p

ρu1u2

(E + p)u1

 (3.3) Fv1 =


0

τ11

τ12

u1τ11 + u2τ12 − q1

 (3.4)

The shear stress and heat flux depends on both the laminar viscosity µ and the

turbulent eddy viscosity µt, where

τ11 = (µ+ µt)
M∞
Re

2

3
(2u1 − u2), (3.5)

q1 = − M∞
Re(γ − 1)

(
µ

Pr
+

µt

Prt
)
∂a2

∂x1
. (3.6)

The laminar viscosity is determined by Sutherland’s law. The turbulent eddy

viscosity can be updated with turbulence models. In this thesis, we use SA turbulence

model and it is solved in a segregated fashion to update the turbulent eddy viscosity.

When solving for the main flow variables at each iteration, the turbulence variables

are frozen, and vice versa.

3.2 RANS Automatic Differentiation Adjoint

High fidelity aerodynamic shape optimization with large number of design vari-

ables requires an efficient gradient calculation. Traditional methods, such as finite-

difference, are straightforward to implement, but are inefficient for large-scale opti-

mization problems and are subject to subtractive cancellation error. The complex-

step method alleviates the errors resulting from subtractive cancellation and can

provide machine-accurate gradients, but similar to finite differencing, is inefficient

for large number of design variables. The total number of function evaluation scales

with the number of the design variables. Thus, for optimization problems with large

number of design variables, the cost of one complete derivative computation can be

on the order of hundreds or thousands flow solutions, which is generally prohibitive

when using high-fidelity models. For the adjoint method, the cost of the derivative

computations is nearly independent of the number of design variables and scales only

with the number of functions of interest, which is generally much smaller than the

number of design variables.
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3.2.1 Adjoint Formulation

For a CFD solver, the discrete adjoint equations can be expressed as,[
∂R
∂w

]T
Ψ = − ∂I

∂w
, (3.7)

where R is the residual of the computation, w is the state variables, I is the function

of interest, and Ψ is the adjoint vector. We can see that the adjoint equations do not

involve the design variable x. For each function of interest, the adjoint vector only

needs to be computed once, and it is valid for all design variables. Once the adjoint

vector is computed, the total derivatives can be obtained using the total derivative

equation,
dI

dx
=
∂I

∂x
− ∂I

∂w

[
∂R
∂w

]−1
∂R
∂x

=
∂I

∂x
+ ΨT ∂R

∂x
. (3.8)

Partial derivatives in the equations represent an explicit dependence that do not

require convergence of the residual. In the case of CFD, by using the adjoint method,

the cost of the total derivatives of any number of design variables can be on the

order of or less than the cost of one single CFD solution. Large-scale engineering

optimization problems can be solved within a reasonable time only with efficient

gradient calculation.

3.2.2 Automatic Differentiation Adjoint

With the adjoint formulation, there is still one challenge — computing the par-

tial derivatives efficiently. One can näıvely use finite difference or complex-step to

compute these partial derivatives. However, the prohibitive computational cost from

using those methods would completely defeat the purpose of the adjoint method. The

partial derivatives can also be derived analytically by hand, but such derivation is

non-trivial for a complex CFD solver and typically requires a lengthy development

time for the adjoint.

In order to counter those disadvantages, Mader and Martins [18] proposed the

ADjoint approach. The main idea is to utilize automatic differentiation techniques

to compute partial derivative terms for the adjoint method. The automatic differ-

entiation approach, also known as computational differentiation or algorithmic dif-

ferentiation, relies on a tool to perform source code transformation on the original

solver to create the capability of computing derivatives. This method is based on a

systematic application of the chain rule to each line of the source code. There are two
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modes in automatic differentiation: forward mode and reverse mode. The forward

mode propagates the derivatives along the execution path of the original code. The

reverse mode first follows that execution path and in the store-all approach stores all

the intermediate variables. The source code is then re-run in the reverse execution

order and the stored intermediate variables are used in the linearization of each line

of code.

We use the following example to demonstrate the underlining methodology of

forward and reverse mode automatic differentiation,

f(x1, x2) = x1x2 + sin(x1). (3.9)

This function can be written as the sequence of elementary operations on the inter-

mediate variables qi resulting in the following sequence,

q1 = x1

q2 = x2

q3 = q1q2

q4 = sin(q1)

q5 = q3 + q4

(3.10)

This sequence is then used to compute the derivative of Equation (3.9).

Forward Mode Forward mode AD is simpler and more intuitive of the two ap-

proaches. In Equation (3.9), assuming that x1 and x2 are independent inputs, the

rules of differentiation are applied to the sequence in Equation (3.10) as follows.

∆q1 = ∆x1

∆q2 = ∆x2

∆q3 = ∆q1q2 + q1∆q2

∆q4 = cos(q1)∆q1

∆q5 = ∆q3 + ∆q4

(3.11)

Once the sequence and its corresponding gradients for the function in Equation (3.9)

are known, x1 and x2 can be seeded to determine the gradient of the function. Since

x1 and x2 are assumed to be independent inputs, seeding each input independently

means to set the variation to one while the other remains zero such that ∆x1 = [1, 0]
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and ∆x2 = [0, 1]. Forward mode AD sweeps over the computations in Equation (3.11)

twice, once for each input, and adds the separate derivative evaluations as follows.

∆f(x1, x2) = [fx1 , fx2 ]

= ∆q5x1 + ∆q5x2

= (∆q3x1 + ∆q4x1) + (∆q3x2 + ∆q4x2)

= ((1)q2 + q1(0) + cos(q1)(1)) + ((0)q2 + q1(1) + cos(q1)(0))

= q2 + cos(q1) + q1

= x1 + x2 + cos(x1)

(3.12)

This is the expected derivative for the original function in Equation (3.9), and can be

written in a more general format by considering the general sequence q = (q1, ..., qn).

Considering m input variables and p output variables, the sequence becomes q =

(q1, ...qm, qm−p+1, ..., qn). For i > m, each qi must have a dependence on some member

of the sequence prior to i. If k < i, the entry qi of the sequence must depend explicitly

on qk. The forward mode can then be written as the chain rule summation as shown

in [84],

∆qi =
∑ ∂qi

∂qk
∆qk, (3.13)

where i = m+1, ..., n and k < i. The forward mode AD evaluates the gradients of the

intermediate variables first such that ∆q1, ...,∆qi−1 are known prior to the evaluation

of ∆qi. It is easy to see that the forward mode builds up the derivative information

as it progresses forward through the algorithm, producing the derivative information

for all of output variables with respect to a single seeded input variable.

Reverse Mode The reverse mode, though less intuitive, is dependent only on the

number of outputs. With reference to the previous example, it is easier to understand

reverse mode AD by examining the partial derivatives of f . Consider the following,

∂q5
∂q1

=
∂q5
∂q1

∂q1
∂q1

+
∂q5
∂q2

∂q2
∂q1

+
∂q5
∂q3

∂q3
∂q1

+
∂q5
∂q4

∂q4
∂q1

, (3.14)

where q5 represents the single output f . The reverse mode first runs a forward

sweep to determine all of the intermediate values in the sequence. Then, starting

with a single output variable, (q5 in this case), the AD tool steps backwards through

the algorithm to compute the derivatives in reverse order. The example, and the

implementation of the sequence in Equation (3.14), produces the following final result.
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∂q5
∂q5

= 1

∂q5
∂q4

= 1

∂q5
∂q3

= 1

∂q5
∂q2

=
∂q5
∂q3

∂q3
∂q2

= (1)(q1)

∂q5
∂q1

=
∂q5
∂q3

∂q3
∂q1

+
∂q5
∂q4

∂q4
∂q1

= (1)(q2) + (1)(cos(q1)

(3.15)

where we have,
∂q5
∂q1

=
∂f

∂x1
= x2 + cos(x1)

∂q5
∂q2

=
∂f

∂x2
= x1.

(3.16)

The advantage here is that only a single reverse sweep is required to evaluate

the derivatives with respect to both x1 and x2. Should there be a greater number

of inputs, which is typical in an aerodynamic shape optimization problem, a single

forward sweep to accumulate the code list as well as a single reverse mode sweep is

all that would be necessary to calculate the sensitivities for a single output.

The disadvantage of the reverse mode is that the implementation is more compli-

cated than the forward mode. The reverse mode was used in the original development

of the ADjoint method and so is used as a benchmarking tool in the development of

the forward mode Adjoint method. To avoid the high computational costs associ-

ated with using the forward mode of AD, a coloring method is used to accelerate the

computation.

For the adjoint equations (3.7) and (3.8), the partial derivatives ∂R/∂w, ∂I/∂w,

∂I/∂x, and ∂R/∂x are computed with forward automatic differentiation. The fol-

lowing sections explain the implementation of each of the partial derivatives in detail.

There are various automatic differentiation tools available including ADIC [85], AD-

IFOR [86], FADBAD++ [87], OpenAD/F [88], and TAPENADE [89]. The work

presented in this thesis uses TAPENADE to perform the task. TAPENADE is an

automatic differentiation engine developed by the Tropics team at Institut National

de Recherche en Informatique et Automatique and supports both forward and reverse

modes.
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3.3 Computation of ∂R/∂w and ∂I/∂w

To compute ∂R/∂w, there are three flux calculations involved: inviscid fluxes,

artificial dissipation fluxes, and viscous fluxes. For Euler equations, the combined

stencil is the current cell and the 12 adjacent cells in each of the three dimensions —

a total of 13 cells, as shown in Figure 3.1(a). The laminar and RANS equations have

much larger stencils due to the nodal averaging procedure used in the viscous fluxes.

The RANS stencil is a dense 3x3x3 block around the center cell plus additional 6

adjacent cells in each direction, as shown in Figure 3.1(b). The size and the shape

of the stencil is important for the coloring acceleration techniques, which is discussed

further in Section 3.6. For RANS equations, the state vector w contains the five

main flow state variables and one turbulence variable for the one-equation SA model.

Therefore, the residual computation for the SA equation also needs to be included in

the automatic differentiation. The contribution of the turbulence to the main flow

residual is included via the turbulence variable. The frozen-turbulence assumption

can be made by neglecting the turbulence contribution to the main flow. Since ∂R/∂w
is a square matrix, in principle both forward and reverse modes would require similar

number of function calls to form the matrix. However, forward mode is more intuitive

and has lower overhead cost and for forming ∂R/∂w, the forward mode is faster than

the reverse mode in practice. ∂R/∂w is stored in transpose form in a block compressed

sparse row matrix format.

Special care must be taken for the computation of ∂I/∂w with forward mode AD.

If the routine to compute I, which we will assume consists of integrated forces or

moments on wall boundary, is simply included with the residual evaluation, all cells

near the surface that influence the force evaluation on the wall would have to be

perturbed independently and the advantage of the graph coloring approach described

in Section 3.6 would be nullified.

To enable the evaluation of ∂I/∂w simultaneously with ∂R/∂w it is necessary

to evaluate individual forces and moments at each cell, not just the overall sum.

Stencils for individual force and moment computations are compact. For both Euler

and RANS cases this force stencil is smaller than the corresponding residual stencil.

For the linear pressure extrapolation wall boundary condition, the Euler force stencil

has only two cells: the cell on the surface and the cell above. The RANS force stencil

consists of a 3x3 patch on the surface and one layer above, with a total of 18 cells.

Both Euler and RANS force stencil can be packed inside the respective flux Jacobian

stencils. Once the individual forces are resolved, their contribution to the chosen
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Figure 3.1: Euler and RANS flux Jacobian stencil

objective, I, is evaluated and the correct contribution can be added to ∂I/∂w.

3.4 Computation of ∂R/∂x and ∂I/∂x

The calculations of ∂R/∂x and ∂I/∂x depend on the design variables. For aerody-

namic shape optimization, we are generally interested in geometric design variables,

such as airfoil profile, wing twists, etc, and flow condition design variables, such as

Mach number, angle of attack, side-slip angle etc. The partials that involve flow

design variables are relatively straight-forward. Each flow design variables are seeded

and forward mode AD is used to obtain the residual and objective partial derivatives.

No coloring scheme is necessary, since only one pass of the residual routine is needed

for each flow design variables.

The partial derivatives for the geometric design variables require careful imple-

mentation. In an effort to modularize codes, SUmb does not require the specific

information about the geometric design variables. Instead, we calculate ∂R/∂xpt and

∂I/∂xpt, where xpt includes all the nodes in the CFD mesh. We use a separate util-

ity to perform the mesh deformation sensitivity calculation [62] and manipulation

of the surface geometry. The surface geometry is manipulated using the free-form

deformation (FFD) approach. The spatial derivatives are then transformed into the
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Figure 3.2: Euler spatial stencil: 32 cells

derivatives with respect to the control points of the FFD volume.

To compute ∂R/∂xpt and ∂I/∂xpt, we again use forward mode AD. The choice of

forward mode may not be obvious here. The benefit of using forward mode AD is that

the same SUmb residual routine can be used in both state and spatial derivatives,

resulting a much less demanding implementation and fewer modifications. Similar

to the state partial derivatives, both ∂R/∂xpt and ∂I/∂xpt can be computed at the

same time. The center of the stencils for the spatial derivatives is a node instead

a cell. Figure 3.2 shows the Euler ∂R/∂xpt stencil, with a total of 32 cells. The

corresponding RANS stencil is a dense 4x4x4 block containing 64 cells. The Euler

stencil for ∂I/∂xpt is a 4x4 surface patch, while the RANS one includes one addition

layer above. As we can see, both spatial force derivatives can also be fitted inside the

spatial residual stencils.

3.5 Adjoint Solution Method

We use a preconditioned GMRES [67] algorithm in PETSc (Portable, Extensible

Toolkit for Scientific Computation) [68, 69, 70] to solve the adjoint system. PETSc

is a suite of data structures and routines for the scalable parallel solution of scientific

applications modeled by partial differential equations. The system is preconditioned

with restrictive additive Schwartz method and incomplete LU (ILU) factorization on

each sub-domain. We found that GMRES with approximate preconditioner produced

using a first-order approximation is very effective with Euler adjoint. The RANS ad-

joint, especially without the frozen-turbulence assumption, is considerably more stiff

than the Euler adjoint with the problem more prominent at high Reynolds number.

A stronger preconditioner, such as full ∂R/∂w Jacobian as preconditioner, may be
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necessary.

3.6 Coloring Acceleration Techniques

As previously noted, a näıve approach for computing ∂R/∂w and ∂R/∂x would

require a total of Nstate + 3×Nnodes evaluations, where Nstate and Nnodes are the total

number of cells and nodes respectively. In this approach each column (or row of the

transposed Jacobian) is computed one at a time. If we however, exploit the sparsity

structure of ∂R/∂w and ∂R/∂x, it is possible to fully populate the Jacobians with far

fewer function evaluations. The general idea is to determine groups of independent

columns of the Jacobian. A group of columns is considered independent if no row

contains more than one nonzero entry. This allows a group of independent columns

to be evaluated simultaneously. The process of determining which columns are inde-

pendent is known as graph coloring. The determination of an optimal (smallest) set

of colors for a general graph is quite challenging. For unstructured grids, a greedy

coloring scheme can be used resulting is a satisfactory number of colors[90].

For structured grids with regular repeating stencils, the graph coloring problem is

substantially simpler [91]. Consider the 13-cell stencil for the Euler residual evaluation

shown in Figure 3.1(a). It is clear at least 13 colors will be required. Determining

the optimum graph coloring for this case is equivalent to finding a three dimensional

packing sequence that minimizes the unused space between stencils. Fortunately, for

this stencil, a perfect packing sequence is possible and precisely 13 colors are required.

A three-dimensional view of the stencil packing is shown in Figure 3.3. For the 33 cell

RANS stencil, it is not possible to perfectly pack the stencils. We have, however, found

a coloring scheme that requires only 35 colors, shown in Figure 3.4. To assign the

coloring number mathematically to each cell, simple formula can be derived using the

remainder function mod(m,n). m is a function determined by the numbered stencil

and n is the total number of colors required to populate the matrix. Equations (3.17)

through (3.19) show the coloring function for the Euler and RANS stencils. These

optimal graph colorings reduce the number of forward mode AD perturbations to a

fixed constant, independent of the mesh size.

CEuler, state(i, j, k) = mod (i+ 3j + 4k, 13) (3.17)

CEuler, spatial(i, j, k) = mod (i+ 7j + 27k, 38) (3.18)
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CRANS, state(i, j, k) = mod (i+ 19j + 11k, 35) (3.19)

I

J

K

Figure 3.3: Euler state coloring patterns with 13 colors

I

J

K

Figure 3.4: Euler spatial coloring patterns with 38 colors

I

J K

Figure 3.5: RANS state coloring patterns with 35 colors
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CHAPTER 4

Verifications of Flow Solutions and Derivatives

In this chapter, the RANS adjoint discussed previously is verified with complex-

step method using a flow over a bump case. We further verify the derivatives and

demonstrate the aerodynamic shape optimization capability by performing a standard

optimization test case: aerodynamic shape optimization of an ONERA M6 wing. The

results are compared with Euler-based aerodynamic shape optimization and previous

work. Finally, the effects of the frozen-turbulence assumption on the accuracy and

computational cost are assessed. This work is based on a previous paper presented

by the author. [28]

4.1 Verifications of Flow Solutions and Derivatives

A flow over a bump case is chosen as the test case to verify Euler, Laminar NS,

and RANS adjoint solutions. The computational mesh for the test case used is shown

in Figure 4.1. It is a single block mesh with 3,072 cells. The side walls of the channel

use symmetry boundary conditions. The inflow and outflow faces and the upper wall

are set to far-field conditions. The bottom wall is deformed with a sinusoidal bump

to create a reasonable variation in the flow, which has solid wall boundary condition.

Both the flow solution and the adjoint solutions are converged to a tolerance of

O(10−12). We verify the adjoint accuracy with complex-step derivative approach

given by: [6],
dF

dx
=
Im[F (x+ ih)]

h
, (4.1)

where h is the complex step length. An imaginary step of 10−40i is chosen as the

perturbation.

Euler, Laminar NS, and RANS with both frozen-turbulence and full-turbulence

are benchmarked against the complex step method. We choose Mach number 0.8
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Figure 4.1: Volume mesh for bump verification case

Figure 4.2: Cp distribution of the RANS solution
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Derivatives Complex-Step Adjoint Difference
dCD/dM 0.652989053 0.652989064 1.5E-8
dCL/dM 1.678545380 1.678545372 4.9E-9
dCD/dx 0.152323769 0.152323071 9.6E-8
dCL/dx 0.011324974 0.011324975 4.6E-6

Table 4.1: Accuracy validations of the Euler adjoint

Derivatives Complex-Step Adjoint Difference
dCD/dM 0.655985401 0.655985467 1.0E-7
dCL/dM 1.819804777 1.819804889 6.1E-8
dCD/dx 0.011845928 0.011845836 7.7E-6
dCL/dx 0.145307150 0.145312443 3.6E-5

Table 4.2: Accuracy validations of the Laminar NS adjoint

and Reynolds number 10 million for the flow condition. Figure 4.2 shows the Cp

distribution of the RANS solution. Two objective functions, CD and CL, are used

for verification. For the design variables, we choose Mach number to verify the aero-

dynamic derivatives and a point on the surface to verify the spatial derivatives. The

results are summarized in Table 4.1 to Table 4.4.

We can see that the resulting derivatives match with complex-step solutions. The

full-turbulence aerodynamic derivatives matches significantly better than the frozen-

turbulence ones. Due to the complexity of the wall distance function in SA turbulence

model, the wall distance computation is not linearized and is assumed constant in the

turbulence model to simplify the automatic differentiation. Therefore, we see that

the spatial derivatives have less accuracy than the aerodynamics derivatives for the

full-turbulence adjoint.

4.2 Aerodynamic Shape Optimization of an ONERA M6 Wing

To demonstrate the effectiveness of the RANS adjoint formulation for aerodynamic

shape optimization, an example of lift constrained drag minimization of a transonic

Derivatives Complex-Step Frozen-Turbulence Adjoint Difference
dCD/dM 0.673453841 0.673684112 3.4E-4
dCL/dM 1.767928150 1.772398147 2.5E-3
dCD/dx 0.009952556 0.009952686 1.3E-5
dCL/dx 0.129946365 0.130232663 2.2E-3

Table 4.3: Accuracy validations of the frozen-turbulence adjoint
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Derivatives Complex-Step Full-Turbulence Adjoint Difference
dCD/dM 0.673453841 0.673453842 1.1E-9
dCL/dM 1.767928150 1.767928153 1.4E-9
dCD/dx 0.009952556 0.009949493 3.1E-4
dCL/dx 0.129946365 0.129890985 4.2E-4

Table 4.4: Accuracy validations of the full-turbulence adjoint

wing is presented. The particular test considered is the well-studied ONERA M6

wing [92]. This geometry has been studied by numerous authors [93, 94, 95, 96, 97,

10, 12] due to the simple, well defined geometry and the availability of experimental

data.

The optimization problem considered is described below:

minimize
x

CD(x)

subject to CL ≥ C∗L

V ≥ V0

ti ≥ 1, i = 1, . . . , 21.

The objective is to reduce the drag coefficient while maintaining a specified lift

coefficient, C∗L = 0.271. The lift coefficient is based on a reference area of 0.75296 m2.

Additional geometric constraints in the form of volume and thickness constraints are

also used and are described in section 4.2.2.

4.2.1 Verification and Grid Refinement Study

Before optimizations were carried out, a grid refinement study and comparison

with experimental data was made. The external flow condition for the experimental

data and subsequent optimizations is:

M = 0.8395 Re = 11.72× 106 α = 3.06◦ (4.2)

A sequence of 4 uniformly refined grids, labeled L1 through L4, were generated

with grid sizes ranging from 129 thousand cells to over 66 million cells. The grids

are generated using an in-house 3D hyperbolic mesh generator. The L2, L3 and L4

grids are all computed directly from their respective surface meshes while the L1 grid

is obtained from the L2 grid by removing every other mesh node. An additional

algebraic C-O topology Euler mesh was also generated for the purposes of comparing

optimization results obtained with Euler and RANS analysis methods. The Euler
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grid has approximately the same number of cells as the L2 RANS mesh to facilitate

comparison between the computational cost for roughly equivalent Euler and RANS

optimizations. A description of all grids used in this work is given in Table 4.5. For

all grids the far-field surface is located approximately 100 Mean Aerodynamic Chords

away from the body.

Grid Cells Surface Cells Off-wall Cells Off-wall Spacing y+max

RANS L1 129 024 4 032 32 3.0× 10−6 1.50
RANS L2 1 032 192 16 128 64 1.5× 10−6 0.67
RANS L3 8 257 536 54 512 128 0.75× 10−6 0.35
RANS L4 66 060 288 258 048 256 0.375× 10−6 0.18

Euler 1 044 480 18 432 40 3.0× 10−4 –

Table 4.5: ONERA M6 wing mesh sizes

The comparison of the experimental data with each of the four RANS grids is given

in Figure 4.3. Overall, the flow solver has fairly accurately predicted the coefficient

of pressure at each span-wise section. As expected, the finer grid resolutions do a

better job of resolving both the location and strength of the shocks, although there is

little discernible difference between the L3 and L4 grids. We believe the discrepancy

between the computed and experimental data near the root can be attributed to wind

tunnel effects and the splitter plate used in the physical setup that are not modeled

computationally. A second discrepancy appears at the 2z/b = 0.90 section where it is

clear the position of the leading edge shock is displaced rearward as compared with

the experimental data. This computational behavior is however, consistent with other

results obtained on highly refined grids [98]. A possible explanation is due to small

aeroelastic deformation of the physical model which not present in the computational

model.

Additionally, an angle of attack sweep from 0◦ to 5◦ was run for each grid level to

generate drag polars at the design Mach number of M = 0.8395. The polar is shown

in Figure 4.4(a). It is clear that the coarsest grid, L1, is not sufficiently resolved for

accurate drag prediction. Conversely, the L3 and L4 grids are nearly indistinguishable

from each other except at the higher lift coefficients. While the discrepancy between

the L2 and L4 grids is clearly visible it is fairly small and this level of refinement

offers significantly computational savings compared to the L3 and L4 grids for the

purposes of optimization.

Drag convergence curves for various angles of attack are given in Figure 4.4(b).

The x-axis scale is given in terms of the Grid Factor which is defined as N
−2/3
cell .

In general, the total drag coefficient decreases with increasing grid size. However,
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Figure 4.3: Cp contours for each grid refinement level compared with experimental
data
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between the L3 and L4 grids at higher angles of attack, the trend reverses and the

larger grids see a slight increase in drag. The root cause of this behavior is not known

and warrants further investigation.

4.2.2 Geometric Parametrization, Constraints and Grid Movement

The geometric manipulation of the initial geometry is carried out using the Free

Form Deformation (FFD) volume approach [62]. The design variables, x, are used

to perturb the control points on a 3-dimensional parametric B-spline volume which

in turn, perturbs the coordinates of the CFD surface mesh embedded parametrically

inside. The design variable vector consists of 6 twist values that twist each of the

six span-wise planes of control points, and 144 shape variables. Each shape variable

perturbs individual coordinates of the FFD in the y direction. Note that since the

root twist is allowed to vary, angle of attack is not a variable and the optimizations

are carried out a fixed angle of attack of 3.06◦.

To ensure a well-posed optimization problem, several additional geometric con-

straints are also employed. The internal volume of the wing is constrained to be

greater than or equal to its initial value. A total of 21 thickness constraints are used;

10 distributed along the 15% chord line, 10 distributed along the 99% chord line and

a single additional constraint near the mid-chord position at the wingtip. The lead-

ing edge constraints prevent a sharp leading edge from forming and the trailing edge

constraints prevent a reduction in the thickness of the trailing edge.

A view of the initial wing geometry, the FFD volume box and the thickness

constraints are given in Figure 4.5. Note that the distribution of control points

on the FFD are not uniform in the chord-wise direction. This clustering around the

leading edge was used to ensure the optimizer is given sufficient geometric freedom to

eliminate the leading edge shock present on the baseline design. Further, the blunt

trailing edge of physical model is retained for the RANS simulations. A sharp trailing

edge modification is used for the Euler grid.

The grids are deformed using a hybrid linear-elasticity algebraic mesh deformation

algorithm previously developed by the Kenway [62] as described in Chapter 2. The

mesh sensitivities required for the ψT ∂A
∂x

computation are computed using Reverse

Mode AD and a mesh adjoint equation.

A view of the surface mesh, symmetry plane and flow solution for the Euler and

RANS grids are given in Figure 4.6.
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Figure 4.5: FFD control points (blue spheres) and thickness constraints (red lines).

4.2.3 Optimization Algorithm

Due to high computational cost of the CFD solver, it is critical to choose an

efficient optimization algorithm that requires a reasonably low number of function

calls. Gradient-free methods, such as genetic algorithms, have a higher probability of

getting close to the global minimum for cases with multiple local minima. However,

slow convergence and large number of function calls would make gradient-free aero-

dynamic shape optimization infeasible with current computational resources. There-

fore, we use gradient-based optimizers combined with adjoint gradient evaluations to

achieve an efficient optimization process. For large number of design variables, the

use of gradient-based optimizers is advantageous. We use a Python-based optimiza-

tion package, pyOpt [72], to interface with CFD and adjoint solvers. We choose a

gradient-based optimization algorithm, Sparse Nonlinear OPTimizer (SNOPT) [71],

as the optimizer. SNOPT is a sequential quadratic programming (SQP) method, de-

signed for large-scale nonlinear optimization problems with thousands of constraints

and design variables. It uses a smooth augmented Lagrangian merit function and

the Hessian of the Lagrangian is approximated using a limited-memory quasi-Newton

method.

4.2.4 Computational Resources

The three optimizations are performed on a massively parallel supercomputer.

Different processor counts are chosen for the Euler and RANS optimizations in an
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(a) Euler grid

(b) RANS grid

Figure 4.6: Computational grids used for Euler and RANS analysis. Cp contours are
shown for M = 0.8395 and α = 3.06◦.
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effort to keep the wall time of each optimization within a one day turn-around. Due

to the lower computational and memory requirements for the Euler analysis, this

optimization uses 32 processors while the two RANS optimizations use 88 processors.

4.2.5 Optimization Results

Three optimizations are considered: a RANS optimization employing the frozen

turbulence assumption for the adjoint, a RANS optimization with the turbulence

model linearization and an Euler optimization. An effort is made to compare the

computational cost and accuracy of these differing approaches.

Firstly, we examine the convergence history of the optimizations, given in Fig-

ure 4.7. All optimization are converged to an optimality tolerance of 1 × 10−4 and

take approximately 112 major iterations to reach this level of convergence.

Qualitatively, the merit function convergence for each optimization is similar:

There is a very rapid decrease in CD at the beginning of the optimization followed

by much slower decreases as the optimization progresses. The first phase of the

optimization involves the weakening of the two upper surface shocks. Referring to

Figure 4.8(a), by the 10th iteration, the shocks have been entirely smoothed due to

shape changes and this is responsible for the majority of the drag reduction. The

second phase involves minor adjustments to the shape and modifications to the twist

distribution. During this phase, an increase skin friction drag is traded for lower pres-

sure and an overall decrease in the objective function. It is clear from Figure 4.8(b),

that the majority of the wing twist present in the optimized design is added towards

the end of the optimization, which is use primarily to reduce the induced drag of the

wing.

We now examine the cross sectional Cp contours of each of the three optimized

designs. The same six span-wise locations as used in the experimental verification are

reused. Figure 4.9 shows the contours for the baseline design, the frozen turbulence

RANS optimization and the full RANS optimization. Figure 4.10 shows the baseline

design, the optimized design and the optimized Euler design analyzed using RANS

analysis. For this last case, the geometric design variables from the Euler optimization

were used to perturb the L2 RANS grid and then obtain a solution at C∗L.

Generally, the Cp contours for the two RANS optimization are similar. However,

there are some slight differences, with the full RANS design resulting in somewhat

smoother Cp contours. The largest discrepancy is observed on the lower surface near

the leading edge.

A breakdown of the pressure and skin friction drag components is given in Ta-
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Figure 4.9: Cp contours for RANS optimized designs.
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Figure 4.10: Cp contours for Euler optimized design.
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ble 4.6. In addition to the drag from the optimization (Optimized (L2)), we also

analyze the baseline design and optimized design using the L3 grid. The goal is to

verify that the gains made during the optimization are realized on the finer grid. This

is indeed the case; The total drag reduction on the L3 grid is nearly identical to that

on the L2 grid, justifying our choice of the L2 grid for optimization. For comparison,

we also analyze the Euler design using the L2 RANS grid. The FFD approach greatly

facilities this exercise since the geometric design variables operate independently of

the underlying mesh or surface topologies. Interestingly, the Euler optimized design

shows remarkably good RANS performance, with the total drag coefficient only 3.7

counts higher than the RANS optimized design. Nevertheless, it worthwhile noting

that this drag level was obtained by the RANS optimization after only 20 iterations,

and corresponds to the initial optimization phase described previously. Most of the

improvements small detailed shape and twist changes in the Euler optimization are

evidently not realized in the viscous flow case.

Geometry CL CDtotal
∆CDtotal

CDpressure ∆CDpressure CDfriction
∆CDfriction

Baseline (L2) 0.2710 0.01725 – 0.01199 – 0.00526 –
Optimized (L2) 0.2710 0.01400 −0.00325 0.00847 −0.00343 0.00553 0.00027

Euler Design (L2) 0.2710 0.01437 −0.00288 0.00875 −0.00324 0.00561 0.00035

Baseline (L3) 0.2710 0.01687 – 0.01158 – 0.00529 –
Optimized (L3) 0.2710 0.01364 −0.00323 0.00816 −0.00342 0.00548 0.00019

Table 4.6: Drag break down for baseline and optimized designs on two mesh levels

A timing beak-down of the various components of each optimization is given in

Table 4.7. The Miscellaneous category accounts for the time required for initial setup

time, I/O, geometric manipulation, total sensitivity calculations and the optimization

algorithm. Since the Euler optimization used few processors, the Processor Hours

row indicates the true computational cost of the respective optimization. While, the

full RANS simulation converges to a slightly better optimum in the same number

iterations, the computation cost of the full RANS optimization is significantly more.

Referring to Table 4.7, the main increase in cost for the full RANS simulation is the

increased cost of residual assembly due to the extra state to be perturbed and the

additional cost of solving the adjoint system. The increase in the adjoint solving cost

is twofold: The matrix-vector products and preconditioner application is more costly

due to the larger number of non-zeros (a factor of (6/5)2 = 1.44) and the systems

require more GMRES iterations for convergence. This results in the Full RANS
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optimization requiring approximately 70% more CPU time that the frozen-turbulence

assumption optimization. For the remainder of this section, for comparison, purposes

we use the frozen turbulence optimization results.
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We compared our optimization results with previous optimization studies of the

ONERA M6 wing, summarized in Table 4.8. We obtained a large drag reduction of

19.1%. Present work used a relatively large grid size and comparatively large number

of design variables. Due to the clustering of shape design variables near the leading

edge, the optimization was able to completely eliminate the leading edge shock.

The Cp contours for both the Euler and RANS optimized designs are shown in

Figure 4.12. We can see that both Euler and RANS achieved a shock-free solution.

The Euler optimized design has a rapid pressure recovery near the TE. The RANS

optimized solution, however, has parallel pressure contour lines with nearly constant

spacing, indicating a gradual increase of pressure.

We also investigated the drag divergence at different CL. Figure 4.13 shows the

drag divergence plot for three different CL values. Both Euler and RANS optimized

design reduced drag over the entire Mach range and the divergence Mach number are

increased at all CL values as compared to the baseline design. The drag coefficient

remains nearly constant up to the divergence Mach numbers. At higher CL, we see

a drag pocket at the optimized Mach number for Euler solution. However, the drag

dip on the RANS design is not significant. The effect could be due to the relatively

low CL. The drag dip at the optimized Mach number may become more prominent

at higher loadings.

The baseline designs have lift distributions that are already reasonably close to

elliptic. Both Euler and RANS optimized designs result in lift distributions that are

very close to the optimum elliptical distribution, as shown in Figure 4.14. As a result,

lift-induced drags were decreased, contributing to the pressure drag reduction shown

in Table 4.6. The shift in lift distributions were obtained by the change in twist

distributions shown in Figure 4.15. We also see that the Euler optimization tends to

change t/c more significantly than the RANS optimization.

4.3 Conclusions

In this chapter, we verified the aerodynamic and geometric derivatives computed

with adjoint method against complex-step method using a flow over a bump test

case. The derivative computations are accurate, robust and efficient. The aerody-

namic gradients differ by O (10−9), and the spatial gradients differ by O (10−4) when

compared with the complex-step method. A RANS aerodynamic shape optimization

of the ONERA M6 wing is presented as a preliminary test case. The results are

compared with a design obtained by a comparable Euler optimization. We achieved
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(a) Euler optimization

(b) RANS optimization

Figure 4.12: Cp contours for baseline and optimized designs for Euler and RANS

a drag reduction of 19% as compared the baseline wing. The shocks on the upper

surface was completely eliminated and the optimized design improved the drag coeffi-

cient at all flight Mach numbers. The drag divergence Mach number of the optimized

design is also increased. For the ONERA M6 optimization problem considered, the

full RANS adjoint formulation resulted in a slightly better optimized design, but the

optimization was 70% more costly than the frozen turbulence formulation. With this

verification of the aerodynamic shape optimization framework, we are now ready to

tackle practical aerodynamic design optimization problems in the following chapters.
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Figure 4.13: Drag divergence curves for three fixed lift coefficients.
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CHAPTER 5

Gradient-Based and Gradient-Free Optimization

Aerodynamic design optimization requires large computational resources, since

each design evaluation requires the solution of a system of partial differential equa-

tions in a three dimensional domain. Thus, the choice of optimization algorithm

is critical, as it directly affects the number of required design evaluations to reach

the optimum design. To help designers make an informed choice, we benchmark

several optimization algorithms in this thesis, including gradient-based and gradient-

free methods using three test problems of increasing difficulty: a multi-dimensional

Rosenbrock function, a RANS-based aerodynamic twist optimization problem and an

aerodynamic shape optimization problem. The majority of the gradient-based op-

timizers successfully solved all three test problems, while the gradient-free methods

require two to three orders of magnitude more computational effort when compared

to the gradient-based methods. Thus, gradient-based algorithms are the only viable

option for solving large-scale aerodynamic design optimization problems.

The optimization can be performed with gradient-based or gradient-free methods.

Gradient-based methods are best when an efficient gradient evaluation is available.

The computational expense of evaluating the gradient using finite difference or com-

plex step methods [6] is prohibitive for aerodynamic shape optimization with respect

to hundreds of variables. The adjoint method, however, can provide accurate and

efficient gradient evaluations [2, 28], and adjoint-based aerodynamic shape optimiza-

tion has been widely used [29, 11, 100, 101, 102]. Gradient-free methods are generally

simpler to implement, and claim to find the global optimum, but the computational

cost is higher. In this chapter, we investigate the local optima in aerodynamic shape

optimization of a transonic wing. In addition, we also compare the optimization

algorithms using this benchmark.

The aerodynamic shape optimization has been well-studied using various ap-

proaches. Sasaki et al. [103] applied an adaptive range multiobjective genetic al-
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gorithm (ARMOGA) to aerodynamic wing design. A four-objective optimization

of wing shape and planform were presented using 72 design variables, subject to

thickness and planform shape constraints. Moigne and Qin [96] studied aerodynamic

shape optimization based on a discrete adjoint of a Reynolds-averaged Navier–Stokes

(RANS) solver. A variable-fidelity optimization method combining low- and high-

fidelity models was used. The optimization reduced 23% drag on a RAE2822 airfoil

and 15% on a ONERA M6 wing. Their results showed that using a variable-fidelity

method that performs most of the optimization on a low-fidelity, low-cost model

(Euler equations on a coarse grid) reduces the overall computing time.

Lyu et al. [101] presented the results of lift-constrained drag minimization of the

AIAA Aerodynamic Design Optimization Discussion Group (ADODG) Common Re-

search Model wing using a RANS solver. A 8.5% drag reduction was achieved using a

multilevel optimization approach. The same optimization was also performed start-

ing from a randomly generated initial design, and closely spaced local optima were

observed.

Several authors compared the performance of different optimization methods. Fos-

ter and Dulikravich [104] compared a hybrid gradient method and a hybrid genetic

algorithm for a three dimensional aerodynamic lifting body design. Zingg et al. [105]

performed a comparison of genetic algorithm and gradient methods in aerodynamics

airfoil optimization. Genetic algorithm required 5–200 times more function evalua-

tions than gradient-based methods with adjoint sensitivity. They suggested genetic

algorithm was more suited for preliminary design with low-fidelity models. Gradient-

based optimizers may be more appropriate for detailed designs with high-fidelity

models. Obayashi and Tsukahara [106] compared a gradient-based method with sim-

ulated annealing, and a genetic algorithm on an airfoil lift maximization problem.

The genetic algorithm required the highest number of function evaluation. However,

the genetic algorithm achieved the best design compared to the other two methods.

Frank and Shubin [107] compared one-dimensional duct flow optimization with finite-

difference gradients, optimization with analytic gradients, and an all-at once method

where the flow and design variables are simultaneously altered. They concluded that

the optimization with analytic gradients was the best approach that can be retrofitted

to most existing codes.

In this chapter, we extend the previous studies of optimizer comparison and local

optima using high-fidelity aerodynamic shape optimization. We compare several op-

timization algorithms including 6 gradient-based methods—SNOPT, PSQP, SLSQP,

IPOPT, CONMIN, GCMMA—and 2 gradient-free methods—ALPSO, NSGA2. We
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test those optimizers using a multi-dimensional Rosenbrock function, a wing twist

optimization problem, and a wing shape optimization problem. The strengths and

weaknesses of each method are discussed. This work is based on a previous paper

presented by the author. [108]

5.1 Multi-dimensional Rosenbrock Function

To examine the effectiveness of the optimizers listed above, we first minimize a

multi-dimensional Rosenbrock function [109]. In addition, a nonlinear constraint is

added to the formulation, and the complete problem is:

minimize
n−1∑
i=1

100 (xi+1 − x2i )2 + (xi − 1)2

with respect to x ∈ Rn

subject to
∑̂n−1

i=1
(1.1− (xi − 2)3 − xi+1) ≥ 0

The constraint is always active at the optimum. For a two-dimensional problem,

the feasible optimum is at [1.2402, 1.5385] with an objective value of 0.0577244. The

optimizations are started from xi = 4, and the design variables are bounded so that

they remain in the interval [−5.12, 5.12].

We set the options for each optimizer based on our best knowledge. For example,

we use a swarm size of 8 and a maximum outer iteration of 4000 for ALPSO. We use a

population size of 24 and 200 generations for NSGA2. We terminate all optimizations

with 10−6 relative tolerance of 3 consecutive iterations and 10−6 feasibility tolerance.

In this study, we investigate the computational cost and effect of increasing number

of design variables. In addition, we compare results found using finite-difference

gradients with those found using analytical derivatives.

Figure 5.1 shows the optimization path taken by each optimizer. Gradient-based

methods follow through the Rosenbrock valley and converge toward the optimum.

Gradient-free methods converge their population toward the optimum in a more

scattered way. The convergence history of selected optimizers of the two dimen-

sional Rosenbrock function is plotted in Figure 5.2. For gradient-free methods, only

the best point is plotted for each iteration or generation. Most of the gradient-based

optimizers converge to a tolerance of 10−5 within 150 iterations, while ALPSO con-

verges to the same tolerance using 3, 368 iterations and NSGA2 can not converge to

the same tolerance before we terminate the computation. NSGA2 terminates when
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the maximum number of generation (200) is reached. SLSQP is the fastest, with 34

function evaluations.
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Figure 5.1: Optimization paths for the constrained 2D Rosenbrock function

To visualize the effect of increasing the dimensionality of the problem, we also

plot the number of function evaluations required to converge the optimization for

an increasing number of design variables. As shown in Figure 5.3, the gradient-

free methods tend to have quadratic or cubic growth of function evaluations with

increasing dimensionality, while the gradient-based methods follow a linear trend.

The difference between gradient-based methods with finite-difference gradients and

gradient-based methods with analytical gradients is significant, motivating the use of

the adjoint method in aerodynamic shape optimization that we discuss later.

To investigate the local minima, we remove the constraint. Then, two minima

(one local and one global) occur for higher dimensions [110]. The local minimum is at
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[−1, 1, 1, . . .], and the global minimum is at [1, 1, 1, . . .]. We start the optimization at

[−0.8, 0.8, 0.8, . . .], which is relatively close to the local minimum at [−1, 1, 1, . . .]. All

optimizers were able to converge to the global minimum for 2 and 4 design variables.

However, for 8 design variables or more, gradient-based methods converge to the

local minimum, while the gradient-free methods find the global minimum, as shown

in Figure 5.4.

In this study, we compare the optimizers using a multi-dimensional Rosenbrock

function. Gradient-free methods take 2 to 4 orders of magnitude more function evalu-

ations to converge the optimization than most gradient-based methods. NSGA2 can-

not achieve the required accuracy within 200 generations. The gradient-free methods

have a higher probability of converging to a point near a global optimum. However,

it requires high number of function evaluations with large number of design variables,

making it infeasible for large-scale aerodynamic shape optimization. Thus, gradient-

based methods with efficient gradient computations are a better choice for large-scale
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optimizations.

5.2 Aerodynamic Twist Optimization

In this study, the objective is to perform a lift-constrained drag minimization of

the Common Research Model (CRM) wing [36, 37, 38]. The flow is solved using

RANS equations. The adjont method is used to solve the gradients including the

linearization of the turbulence model. The baseline geometry is the same as the one

used by Lyu et al. [101]. The specifications are given by the Aerodynamic Design

Optimization Discussion Group. The mesh is generated using an O-grid topology,

extruded to a farfield at a distance equal to 25 times the wing span. Grid size and

y+ are listed in Table 5.1. We use level 3 and level 2 grids in this study.

For this problem, we use 8 wing twist design variables to provide a reasonable

run time to compare gradient-based and gradient-free optimizers. A lift coefficient
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Grid level Grid size y+

L2 450, 560 2.213
L3 56, 320 8.4086

Table 5.1: Grid size used in aerodynamic twist optimization

constraint of CL = 0.5 is imposed. The initial wing has zero twist. The coarse L3

grid is used. We also perform the optimization on the L2 grid using gradient-based

methods.

The optimized twist, lift and pressure distributions using each optimizer and the

L3 grid are shown in Figure 5.5. All optimizers except NSGA2 converge to the same

drag value. The difference is within 0.1 of a drag count, and the twist distributions
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are nearly identical.

Figure 5.5: Aerodynamic twist optimization comparison on the L3 grid

The gradient-free optimizers take 3 orders of magnitude more iterations than the

gradient-based optimizers. We compare the computational cost of the optimizers in

Table 5.2. The relative convergence tolerances for gradient-based methods are 10−5 for

the objective, and 10−4 for the constraints. The corresponding values for the ALPSO

optimizer are 10−2 for the objective and 10−3 for the constraints. For this case,

SLSQP, PSQP and IPOPT perform well. CONMIN is slower and did not achieve the

required tolerance. For non-gradient methods, ALPSO performs better than NSGA2,

as it takes half of the time of NSGA2, and converges to a better design. ALPSO

converges to the same optimum as the gradient-based methods, while the optimum

obtained by NSGA2 is 0.8 drag count higher with a different twist distribution.

The convergence history of the optimization is shown in Figure 5.6 and 5.7. Since

the number of function evaluation for the gradient-based methods are two orders of
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Optimizer Iteration numbers Proc hours

SNOPT 27 5.81
SLSQP 14 2.56
PSQP 17 3.70

IPOPT 13 2.69
CONMIN 230 33.61
GCMMA 37 4.57

ALPSO 8129 1695.72
NSGA2 12757 2744.16

Table 5.2: Computational cost comparison of the twist optimization for the L3 grid

magnitude lower than gradient-free methods, we plot the convergence of the gradient-

based methods and the gradient-free methods separately. For gradient-based meth-

ods, we plot the value of objective function with respect to the number of function

evaluations. For the gradient-free methods, only the best point of each iteration or

generation is plotted.

After performing the comparison for the L3 grid, the same optimization is verified

using the finer L2 grid. Figure 5.8 shows the optimized results of the gradient-based

optimizers using the L2 grid. The L2 optimization is too costly to be implemented

with gradient-free methods. Using only twist design variables, the shock on the

wing can not be completely removed. The drag is reduced by 29 counts. Similarly,

the difference in drag between the optimizers is within 0.1 count. Thus, it seems

as if the twist optimization problem has only one optimum. The lift distributions of

optimized design using L2 and L3 grids are shown in Figure 5.9. The difference in grid

resolutions results in a difference in the optimized twist distribution. The optimized

design increases lift at the root and reduces lift at the tip, thus moving towards an

elliptical lift distribution. However, since the optimizers minimize the total drag with

only 8 twist design variables, the optimal trade-off between induced drag with wave

and viscous drag is not obvious, resulting in a non-elliptical lift distribution.

In this study, we examined a twist design problem. We used 8 design variables

subject to a lift constraint. We compared the optimized results using different opti-

mizers on two grid levels. All optimizers converged to a similar optimum. A single

global minimum is observed. The gradient-based methods converged significantly

faster than the gradient-free methods.
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Figure 5.8: Aerodynamic twist optimization comparison for the L2 grid

5.3 Aerodynamic Shape Optimization

In this study, we use the same geometry as the twist optimization case discussed

above. Instead of using just 8 twist design variables, a total of 192 shape design

variables are considered. As in the previous case, the angle-of-attack is also allowed

to vary, and we perform drag minimization subject to a lift constraint of CL = 0.5.

The wing thickness is constrained from reducing relative to the initial geometry by

imposing 750 thickness constraints. In addition, a volume constraint is imposed to

ensure that the internal volume does not decrease beyond the baseline volume. This

problem requires significantly more computational resources than the previous case.

We perform the shape optimization using 4 different gradient-based optimizers on

the L2 grid. The convergence tolerance is 10−6 for the objective and 10−4 for the

constraints.

Figure 5.10 shows the final design resulting from the use of different optimizers.

The results from the baseline wing are shown in black. More detailed comparisons for
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each optimizer are shown in Figures A.1– A.4. The drag is reduced by 4.84%, from

206.7 to 196.6 counts, which is similar to the previous result [101].

We can see that all optimizers achieve a shock-free wing with an elliptical lift

distribution. The baseline design has a strong shock, as evidenced by closely spaced

Cp contours, while the optimized designs have a parallel, equally spaced pressure

contours. The variation in CD is within 1 drag count between the various optimizers.

All optimized shapes are similar to each other, and only small difference in shape are

observed. The comparison of the computational time for various optimizers is shown

in Table 5.3. SNOPT converges the fastest among all optimizers. The optimized

results using GCMMA is 0.2 drag count higher than the others. The convergence

history is plotted in Figure 5.11.
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Figure 5.10: Aerodynamic shape optimization comparison for the L2 grid

Optimizer Function evaluations Proc hour

SNOPT 92 224.98
SLSQP 116 306.38
PSQP 221 562.60

GCMMA 298 772.60

Table 5.3: Computational cost comparison of the shape optimization for the L2 grid

5.4 Conclusions

We evaluated several optimization algorithms for three different aerodynamic

shape optimization problems. The algorithms we considered included gradient-based

methods with adjoint gradients and gradient-free methods (a particle swarm opti-

mization and a genetic algorithm). The gradient-free methods required 2 to 4 or-

ders of magnitude more iterations than gradient-based methods. We conclude that

gradient-based methods with adjoint gradients are the best choice for solving large-

scale aerodynamic design optimization problems.
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CHAPTER 6

Aerodynamic Design Optimization Acceleration

Methods

Aerodynamic shape optimization based on high-fidelity models is a computational

intensive endeavor. The majority of the computational time is spent in the flow

solver, and in the gradient calculation. In this chapter, we present two approaches

for reducing the overall computational cost of the optimization. The techniques are

tested using the Common Research Model wing benchmark defined by the Aerody-

namic Design Optimization Discussion Group (ADODG). The aerodynamic model

solves the Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras tur-

bulence model. A gradient-based optimization algorithm is used in conjunction with

an adjoint method that computes the required derivatives. The drag coefficient is

minimized subject to lift, pitching moment, and geometric constraints.

The majority of the computational time is spent in the flow solver and in the gra-

dient calculation. There are several possible ways to reduce the overall optimization

time. One way is to reduce the flow solution time. This has been extensively re-

searched by the CFD community. Commonly used methods, such as multigrid [111],

pre-conditioning [112], and variations on Newton-type methods [113, 114], can im-

prove the convergence of the solver, thus reducing the overall optimization time.

The second way to reduce the overall computational cost is to reduce the gradient

computational time, which was pioneered by Jameson [2] through the development

of adjoint method, which efficiently compute gradients with respect to large num-

bers of shape design variables. With an efficient adjoint implementation, the cost of

computing the gradient of a single function of interest with respect to hundreds or

thousands of shape design variables is roughly of the same order of the cost of one flow

solution [28]. Those methods have been successfully applied in recent aerodynamic

shape optimizations [30, 32, 33, 100, 101, 102].
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As these numerical techniques becomes mature, there is a need to research new

ways to reduce the optimization cost. In this chapter, we explore two approaches to

further improve the efficiency of aerodynamic shape optimization. The first idea is

to use Richardson’s extrapolation to approximate the flow solution and gradients of

a fine grid using the results of coarse grids. The second approach is to perform grid

sequencing at the optimization level. This is inspired by the multigrid method in

CFD. We use smaller grids to accelerate the convergence of a large grid. We perform

the optimization first on a smaller grid first until a certain level of optimality is

achieved. Then, we move on to the next grid level and use the design variables from

the previous grid level as the initial design variables. This process is repeated until the

last grid level has converged. We compare both approaches with a direct optimization

with only the fine grid. The comparison of the optimized designs, convergence and

computational cost is presented in the thesis.

This study is performed using the benchmark case for aerodynamic design op-

timization developed by the Aerodynamic Design Optimization Discussion Group

(ADODG): the lift-constrained drag minimization of the NASA Common Research

Model (CRM) wing [36, 37, 38] with a RANS model that were presented at the 2014

AIAA Science and Technology Forum and Exposition in a special session organized

by the ADODG [115, 101, 116, 117, 118]. The work in this Chapter is based on a

previous paper presented by the author. [119]

6.1 Problem Formulation

The optimization case we used in this study is to perform lift-constrained drag

minimization of the NASA CRM wing using the RANS equations. In this section, we

provide a complete description of the problem.

6.1.1 Baseline Geometry

The baseline geometry is a wing with a blunt trailing edge extracted from the

CRM wing-body geometry [37, 38]. The NASA CRM geometry was developed for

applied CFD validation studies. The CRM is representative of a contemporary tran-

sonic commercial transport, with a size similar to that of a Boeing 777. The CRM

geometry has been optimized, but several design features, such as an aggressive pres-

sure recovery in the outboard wing, were introduced into the design to make it more

interesting for research purposes and to protect intellectual property. This baseline

geometry provides a reasonable starting point for the optimization, while leaving room
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Figure 6.1: Baseline CRM wing geometry scaled by its mean aerodynamic chord.
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for further performance improvements. In addition, the CRM was designed together

with the fuselage of the full CRM configuration, so its performance is degraded when

only the wing is considered.

The geometry and specifications are given by the ADODG. The fuselage and tail

are removed from the original CRM, and the root of the remaining wing is moved to

the symmetry plane. This baseline geometry is shown in Fig. 6.1. All coordinates

are scaled by the mean aerodynamic chord (275.8 in). The resulting reference chord

is 1.0, and the half span is 3.758151. The moment reference point is at (x, y, z) =

(1.2077, 0.0, 0.007669), while the reference area is 3.407014.

6.1.2 Geometric Parametrization

We use a free-form deformation (FFD) volume approach to parametrize the wing

geometry as described in Chapter 2. Figure 6.2 shows the FFD volume and the

geometric control points used in the aerodynamic shape optimization. The shape

design variables are the displacement of all FFD control points in the vertical (z)

direction.

Figure 6.2: The shape design variables are the z-displacements of 720 FFD control
points (red spheres).

6.1.3 Mesh Convergence Study

We generate the mesh for the CRM wing using an in-house hyperbolic mesh

generator. The mesh is marched out from the surface mesh using an O-grid topology

to a farfield located at a distance of 25 times the span (about 185 mean chords).

The nominal cruise flow condition is Mach 0.85 with a Reynolds number of 5 million

based on the mean aerodynamic chord. The mesh we generated for the test case

optimization contains 3.6 million cells. Mesh size and aerodynamic coefficients under

the nominal operating condition are listed in Table 6.1.
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Mesh level Mesh size CD CL CM α

h = 0 ∞ 0.01990
L00 230, 686, 720 0.01992 0.5000 −0.1776 2.2199o

L0 28, 835, 840 0.01997 0.5000 −0.1790 2.2100o

L1 3, 604, 480 0.02017 0.5000 −0.1810 2.1837o

L2 450, 560 0.02111 0.5000 −0.1822 2.1944o

Table 6.1: Mesh convergence study for the baseline CRM wing.
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Figure 6.3: The mesh convergence study shows that the difference between the drag
values computed with the 28.8 M and the 230.7 M grids is within 1 count.

We perform a mesh convergence study to determine the resolution accuracy of

this mesh. Table 6.1 lists the drag and moment coefficients for the baseline meshes.

We also compute the zero-grid spacing drag using Richardson’s extrapolation, which

estimates the drag value as the grid spacing approaches zero [120]. The zero-grid

spacing drag coefficient is 199.0 counts for the baseline CRM wing. We can see that

the L0 mesh has sufficient accuracy: the difference in the drag coefficient for the

L0 mesh and the zero-grid spacing drag is within one drag count. The surface and

symmetry plane meshes for the L0, L1, and L2 grid levels are shown in Fig. 6.4.
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(a) L0 mesh: 28.8 M cells, 199.7 drag counts.

(b) L1 mesh: 3.6 M cells, 201.7 drag counts.

(c) L2 mesh: 450 k cells, 211.1 drag counts.

Figure 6.4: O-grids of varying sizes were generated using a hyperbolic mesh generator.
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6.1.4 Optimization Problem Formulation

The aerodynamic shape optimization seeks to minimize the drag coefficient by

varying the shape design variables subject to a lift constraint (CL = 0.5), and a

pitching moment constraint (CMy ≥ −0.17). The shape design variables are the z-

coordinate movements of 720 control points on the FFD volume (shown in Fig. 6.2)

and the angle-of-attack. The control points at the trailing edge are constrained to

avoid any movement of the trailing edge. Therefore, the twist about the trailing edge

can be implicitly altered by the optimizer using the remaining degrees of freedom.

The leading-edge control points at the wing root are also constrained to maintain a

constant incidence for the root section. There are 750 thickness constraints imposed

in a 25 chordwise and 30 spanwise grid covering the full span and from 1% to 99%

local chord. The thickness is set to be greater than 25% of the baseline thickness at

each location. Finally, the internal volume is constrained to be greater than or equal

to the baseline volume. The complete optimization problem is described in Table 6.2.
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Figure 6.5: Sensitivity study of the baseline wing shows which shape changes yield
the largest improvements.

6.1.5 Surface Sensitivity on the Baseline Geometry

To examine the potential improvements of the baseline geometry, we performed

a sensitivity analysis in [101]. The sensitivity of the drag and pitching moment with

respect to the airfoil shape is shown in Fig. 6.5 as a contour plot of the derivatives

of CD and CMy with respect to shape variations in the z direction. The regions with

the highest gradient of CD are near the shock on the upper surface and near the wing

leading edge. This indicates that leading-edge shaping and shock reduction through

local shape changes should be the major drivers in CD reduction at the beginning of

the optimization. As for CMy , the shape changes near the root and tip of the wing

are the most effective in adjusting the pitching moment. Since these sensitivity plots

are a linearization about the current design point, they provide no information about
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the constraints. Nonetheless, these sensitivity plots indicate what drives the design

at this design point.

6.2 Aerodynamic Shape Optimization Results

Three different aerodynamic shape optimization approaches are presented: direct

optimization, optimization with Richardson’s extrapolation, and optimization with a

multilevel approach. The optimized designs and the efficiency are compared in this

section.

6.2.1 Direct Aerodynamic Shape Optimization

We present the direct aerodynamic design optimization for the CRM wing bench-

mark problem (described in Table 6.2) under the nominal flight condition (Mach

0.85, Re = 5 × 106). We use the L1 grid (3.6 M cells) directly for the optimization.

This is currently the most common way to perform aerodynamic shape optimization

due to its simplicity. The optimization is computed with 64 processors. Figure 6.6

shows a detailed comparison of the baseline wing and the optimized wing using direct

optimization.

Figure 6.6: The optimized wing is shock-free and has 8.1% lower drag.
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In this figure, the baseline wing results are shown in red and the optimized wing

results are shown in blue. At the optimum, the lift coefficient target is met, and the

pitching moment is reduced to the lowest allowed value. The lift distribution of the

optimized wing is much closer to the elliptical distribution than that of the baseline,

indicating induced drag is close to the theoretical minimum. This is achieved by fine-

tuning the twist distribution and airfoil shapes. The baseline wing has a near-linear

twist distribution. The optimized design has more twist at the root and tip, and less

twist near mid-wing. The optimized thickness distribution is significantly different

from that of the baseline, since the thicknesses are allowed to decrease to 25% of the

original thickness, and there is a strong incentive to reduce the airfoil thicknesses in

order to reduce wave drag. The volume is constrained to be greater than or equal to

the baseline volume, so the optimizer drastically decreases the thickness of the airfoils

on the outboard of the wing to the lower bounds, where there is less volume to be

gained, while increasing the thickness near the root (up to 20%), where the chords are

larger and the volume-drag trade-off is more favorable. The low outboard thickness

would in practice incur a large structural weight penalty, and to trade off the reduction

in drag and increase in weight would require aerostructural optimization [59].

The baseline wing exhibits a front of closely spaced pressure contour lines spanning

a significant portion of the wing, indicating a shock. The optimized wing shows

parallel pressure contour lines with uniform spacing, indicating a shock-free solution

under the nominal flight condition. This is confirmed by the shock surface plots: we

can see that the baseline wing has a shock on the upper surface, while the optimized

wing does not show shocks under the design condition. The shock elimination can

also be seen on the airfoil Cp distributions. The sharp increase in local pressure due

to the shock becomes a gradual change from the leading edge to the trailing edge.

This optimization uses a relatively large grid size (3.6M). It took a significant

amount of computational cost: it converges after 914 optimization iterations, but

it takes 616.5 hours (26 days) on 64 processors. Therefore, the computational cost

is prohibitive for large grid size. The following two sections presented two new ap-

proaches in an effort to reduce the computational cost.

6.2.2 Aerodynamic Shape Optimization Using the Richardson’s Extrap-

olation

Richardson’s extrapolation is commonly used to determine the errors in the spa-

tial discretization in CFD [120]. The idea is to use Richardson’s extrapolation to

obtain the solution values at zero-grid spacing from a series of grids with coarser
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discretization. We first determine the order of accuracy using three solutions with a

constant grid refinement ratio r, as follows:

p = ln

(
f3 − f2
f2 − f1

)
/ ln(r) (6.1)

For a second-order CFD solver, p should be close to 2 when the grids are well

resolved. We can then compute the zero-grid spacing values using,

fh=0 = f1 +
f1 − f2
rp − 1

(6.2)

We attempted to extend this idea to aerodynamic shape optimization. Both flow

solutions and the adjoint sensitivities are evaluated on the two coarser grids. We then

use Richardson’s extrapolation to compute the zero-grid spacing objective function,

constraints, and gradient values. Since the computational cost of the two coarser

grids combined is still much lower than that of the fine grid, the total computational

cost should be reduced. However, when we implemented this approach with the

CRM wing optimization problem, the optimization was terminated due to numerical

difficulties with only 5 iterations. The drag coefficient only had negligible changes.

We found that both objective and constraints from the flow solution follows the

Richardson’s extrapolation’s assumption: the solution is globally second-order, in

addition to being locally second-order, and the solution functionals were computed

using consistent second-order methods [120]. However, the gradients do not have a

consistent order.

To further examine the gradients on different grid levels, we plot the shape gradi-

ents for each grid level, as shown in Figure 6.7.

The gradient can be affected by local phenomena such as shocks and separation,

which causes the inconsistency between the grid levels. Thus, the zero-grid spacing

gradients cannot be computed with Richardson’s extrapolation, and the optimization

cannot improve the design with incorrect gradients. We notice that the gradients

between each grid are close.

As an alternative, we perform the same direct optimization as Section 6.2.1 but

with gradients computed on coarser L2 mesh in an effect to reduce the computational

cost of the gradients. The optimization is able to converge further with the coarse

gradients. It terminated with 54 iterations due to numerical difficulties. Once it

terminated, we continue the optimization with the fine L1 grid gradients. Figure 6.8

show the optimized results.
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Figure 6.7: The grid convergence for the shape gradients at different locations on the
wing.

We observed a similar optimal shape as that in Section 6.2.1. The optimized drag

is higher by 0.5 counts. Both lift and moment constraints are met at the optimum.

The shock is also eliminated, as shown on the airfoil Cp distributions. The computa-

tional cost is reduced when compared to the direct L1 optimization. The total time

is 441.8 hours (18.4 days), resulting in a 28% reduction.

6.2.3 Aerodynamic Shape Optimization Using Multilevel Technique

In this section, we present an acceleration technique inspired by the multigrid

start-up procedure in CFD that reduced the overall computational cost of the opti-

mization effectively. Since we have improved the efficiency of our flow and adjoint

solvers significantly over the last few years [18, 28, 58], we seek new methods to further

reduce the computational cost of the aerodynamic shape optimization.

Since it is less costly to compute both the flow solution and the gradient on

a coarser grid, we perform the optimization first on the coarsest grid until a certain
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Figure 6.8: The optimization starts with the coarser L2 gradients.

Figure 6.9: Multilevel optimization with L2 and L1 grids significantly reduced com-
putational cost.
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level of optimality is achieved. Then, we move to the next grid level and start with the

optimal design variables from the coarser grid. Since the drag and lift coefficients are

generally different for each grid level, the approximate Hessian (used by the gradient-

based optimizer) must be restarted. We repeat this process until the optimization on

the finest grid has converged. Note that this procedure is different from traditional

multigrid methods, where the coarse levels are revisited via multigrid cycles.

We performed the same CRM wing optimization problem using the approach

described above. Figure 6.9 shows the comparison of the baseline and the optimized

results. The optimized design is very similar to that in the previous two sections.

The difference between the drag coefficients is within one count. There are visible

differences in the airfoils Cp distributions, as shown in Figure 6.10. This might be

caused by local minima that are close to each other, as previously observed by Lyu et

al. [115, 101]. The multilevel approach has also been successfully applied in [101].

Figure 6.10: The difference in drag coefficients is within 1 count.

The multilevel approach uses significantly less computational resources. We use

two grid levels: L2 (451 k cells) and L1 (3.6 M cells). We can see that most of the

optimization iterations are performed on the coarse grid, and as a result, the number of

the function and gradient evaluations on the successively finer grids is greatly reduced.

The optimization has 638 iterations on the L2 grid. Thanks to the optimization
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with the coarser grid, only 89 iterations are needed on the L1 grid to converge the

optimization. The optimization with multilevel approach converges in 95.4 hours (4

days) on 64 processors. Table 6.3 shows the comparison of the optimization time.

The merit function, optimality, and feasibility histories are plotted in Figure 6.11;

detailed definitions of these values can be found in the SNOPT manual [121].

Iterations Time (hr) Reduction

L1 direct 914 616.5
L1 with L2 gradients 645 441.8 −28.3%
L1 multilevel 727 95.4 −84.5%

Table 6.3: The optimization with the multilevel approach reduces computational time
by 84.5%.
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Figure 6.11: The optimization history of the three approaches.

We can see that the multilevel approach achieves the lowest computational cost

by a large margin. With the increase of the grid size, this benefit becomes even larger.

In this approach, we only performed one-way grid sequencing. Additional benefits

may be achieved with a true multigrid V- or W-cycle at the optimization level.
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6.3 Conclusions

In this chapter, we have presented a study of the CRM wing shape optimization

problem using three different optimization approaches. The optimization problem is

defined by the Aerodynamic Design Optimization Discussion Group (ADODG). The

drag coefficient is minimized for one flight condition with respect to 720 shape design

variables, subject to lift, pitching moment, and geometric constraints. We compared

direct optimization with optimization using Richardson’s extrapolation, and with op-

timization using multilevel approach. We found that the multilevel approach achieved

the lowest computational cost. The total computation time was reduced from 616.5

hours to 95.4 hours using two grid levels.

The strategies presented in this chapter open a new door to aerodynamic shape

optimization. Further development of the techniques at the optimization level, in

conjunction with MDO architectures have the potential to make future large-scale

optimization more efficient and effective.
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CHAPTER 7

Aerodynamic Design Optimization of a

Current-Generation Aircraft

Despite considerable research on aerodynamic shape optimization, there is no

standard benchmark problem allowing researchers to compare results. This chapter

addresses this issue by solving a series of aerodynamic shape optimization problems

based on the Common Research Model wing benchmark case defined by the Aero-

dynamic Design Optimization Discussion Group (ADODG) using the aerodynamic

shape optimization framework developed in this thesis. The aerodynamic model

solves the Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras tur-

bulence model. A gradient-based optimization algorithm is used in conjunction with

an adjoint method that computes the required derivatives.

The majority of the aerodynamic shape optimization problems in the literature are

solved with gradient-based optimizers [3, 4, 11, 14, 100]. High-fidelity aerodynamic

shape optimization with large number of design variables has the potential to have

multiple local minima. The problem is that due to the high number of dimensions and

the high cost of the function evaluations, the design space is impossible to visualize

fully. This makes it challenging estimate the number of local minima and to form

a complete picture of the design space. Several authors explored the multimodal-

ity in aerodynamic shape optimization with gradient-free optimization [122, 103],

and combinations of gradient-free and gradient-based optimization [123]. However,

there has been no thorough study for RANS-based three-dimensional aerodynamic

shape optimization with large numbers of shape variables. In this chapter, we also

explore multimodality by performing several shape optimizations starting from ran-

domly generated geometries. This work is based on previous papers presented by the

author [115, 101].
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7.1 Optimization Problem Formulation

The optimization problem formulation is the same as that presented in the pre-

vious chapter. The aerodynamic shape optimization seeks to minimize the drag co-

efficient by varying the shape design variables subject to a lift constraint (CL = 0.5)

and a pitching moment constraint (CMy ≥ −0.17). Shape design variables are the

z-coordinate movements of 720 control points on the FFD volume (shown in Fig. 6.2)

and the angle-of-attack. Control points at the trailing edge are constrained to avoid

any movement of the trailing edge. Therefore, the twist about the trailing edge can

be implicitly altered by the optimizer using the remaining degrees of freedom. The

leading-edge control points at the wing root are also constrained to maintain a con-

stant incidence for the root section. There are 750 thickness constraints imposed in

a 25 chordwise and 30 spanwise grid covering the full span and from 1% to 99% local

chord. The thickness is set to be greater than 25% of the baseline thickness at each

location. Finally, the internal volume is constrained to be greater than or equal to

the baseline volume. The complete optimization problem is described in Table 6.2.

7.2 Single-Point Aerodynamic Shape Optimization

In this section, we present our aerodynamic design optimization results for the

CRM wing benchmark problem (described in Table 6.2) under the nominal flight

condition (Mach 0.85, Re = 5 × 106). We use the L0 grid (28.8 M cells) for the

optimization, thanks to a multilevel optimization acceleration technique that signif-

icantly reduces the overall computational cost of the optimization. The details of

this technique are presented in Sec. 7.3. Our optimization procedure reduced the

drag from 199.7 counts to 182.8 counts, i.e., an 8.5% reduction. The correspond-

ing Richardson-extrapolated zero-grid spacing drag decreased from 199.0 counts to

181.9 counts. Given that the CRM configuration was designed by experienced aero-

dynamicists, this is a significant improvement (although they designed the wing in

the presence of the fuselage, which we are ignoring in this problem).

Figure 7.1 shows a detailed comparison of the baseline wing and the optimized

wing. In this figure, the baseline wing results are shown in red and the optimized

wing results are shown in blue. At the optimum, the lift coefficient target is met,

and the pitching moment is reduced to the lowest allowed value. The lift distribution

of the optimized wing is much closer to the elliptical distribution than that of the

baseline, indicating an induced drag that is close to the theoretical minimum for a
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Figure 7.1: The optimized wing is shock-free and has 8.5% lower drag.

planar wake. This is achieved by fine-tuning the twist distribution and airfoil shapes.

The baseline wing has a near-linear twist distribution. The optimized design has

more twist at the root and tip, and less twist near mid-wing. The overall twist angle

changed only slightly: from 8.06 to 7.43 degree. More detailed breakdowns of drag

components can be obtained using [124].

The optimized thickness distribution is significantly different from that of the

baseline, since the thicknesses are allowed to decrease to 25% of the original thickness,

and there is a strong incentive to reduce the airfoil thicknesses in order to reduce wave

drag. Volume is constrained to be greater than or equal to the baseline volume, so

the optimizer drastically decreases the thickness of the airfoils on the outboard of the

wing to the lower bounds, where there is less volume to be gained, while increasing

the thickness near the root (up to 20%), where the chords are larger and the volume-

drag trade-off is more favorable. Telidetzki et al. [117] observed similar trends in their

results. The low outboard thickness would in practice incur a large structural weight

penalty, and to trade off the reduction in drag and increase in weight would require

aerostructural optimization [59]. To obtain a more realistic design without resorting

to aerostructural optimization, in Sec. 7.6 we solve an additional optimization problem

with a stricter thickness constraint.

The baseline wing exhibits a front of closely spaced pressure contour lines spanning
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a significant portion of the wing, indicating a shock. The optimized wing shows

parallel pressure contour lines with uniform spacing, indicating a shock-free solution

under the nominal flight condition. This is confirmed by the shock surface plots: we

can see that the baseline wing has a shock on the upper surface, while the optimized

wing does not show shocks under the design condition. The shock elimination can

also be seen on the airfoil Cp distributions. The sharp increase in local pressure due

to the shock becomes a gradual change from the leading edge to the trailing edge.

Another noticeable feature in the optimized wing is the sharp leading edges in

the outboard wing sections. The optimizer exploits a weakness in the problem for-

mulation: with a single-point optimization, there is no penalty for thinning out the

leading edge. In practice, however, sharp-leading-edge airfoils experience adverse per-

formance under off-design conditions, since the flow is prone to separation at off-design

angles-of-attack. We address these issues in more detail by performing a multipoint

optimization in Sec. 7.7.

To ensure that the result of our single-point optimization has sufficient accuracy,

we conducted a grid convergence study of the optimized design. Table 7.1 summarizes

the results for each grid level. The mesh convergence plot for both the baseline and

optimized geometry meshes is shown in Fig. 6.3. The zero-grid spacing drag, which

was obtained using Richardson’s extrapolation, is also plotted in the figure. We can

see that the L0 mesh has sufficient accuracy: the difference in the drag coefficient

for the L0 mesh and the value obtained for the zero-grid spacing is within one drag

count. The variation in drag coefficient between the baseline and optimized meshes

is nearly constant for each grid level, which gives us confidence that the optimization

using the coarse meshes represent the design space trends sufficiently well. Therefore,

we perform the remaining optimization studies on the coarser mesh (L2), assuming

that we capture the correct design trends.
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7.3 Multilevel Optimization Acceleration Technique

To speed up the convergence of this optimization, we use the multilevel acceler-

ation technique that presented in the previous chapter. We used this procedure to

obtain the optimal wing presented in the previous section. We use three grid levels:

L2 (451 k cells), L1 (3.6 M cells), and L0 (28.8 M cells). The merit function, optimal-

ity, and feasibility histories are plotted in Fig. 7.2; detailed definitions of these values

can be found in the SNOPT manual [121]. We can see that most of the optimiza-

tion iterations are performed on the coarse grid, and as a result, the number of the

function and gradient evaluations on the successively finer grids is greatly reduced.

Table 7.2 summarizes the computational time spent on each grid level. Thanks to the

optimization with the coarser grids, only 18 iterations are needed on the L0 grid to

converge the optimization. However, the L0 grid requires the largest computational

effort, due to the high cost of the flow and adjoint solutions on this fine grid. Given

that the cost per optimization iteration in the L0 grid is 770 proc-hr (compared to

2.9 proc-hr for the L2 grid) it is not feasible to perform an optimization using only

the L0 grid. Assuming that the same number of iterations used for the L2 grid (638)

would be needed for the L0 grid, the computational cost would be 23 times higher

than that of the multilevel approach, which would correspond to 16 days using 1248

processors.

Grid level Iterations Procs Time (hr) Total proc-hr

L2 638 64 29.3 1875.2
L1 89 256 20.2 5171.2
L0 18 1248 11.1 13, 852.8

Table 7.2: The number of iterations on the L0 grid is reduced to 18.

Figure 7.3 shows the initial and optimized results at each grid level. If we examine

the results more closely, we see that the optimized results for the L2, L1, and L0

grids are all similar. This validates the underlying assumption of this method: that

a coarser grid provides a good approximation to the design space of the finer grid

when the set of design variables remains the same. Most of the computational effort

on the subsequent grid levels is spent on smoothing out the shock that reappeared

because of the finer grid spacing. This multilevel acceleration technique proved to

significantly reduce the number of iterations needed to optimize in the fine grid, and

the total computational effort was greatly reduced.
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Figure 7.2: Most of the computations are performed on the coarse grid.

Figure 7.3: The optimized results of each grid level exhibit only subtle differences.
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7.4 Aerodynamic Shape Optimization Starting from a Ran-

dom Geometry

The existence of multiple local minima in RANS-based three-dimensional aerody-

namic shape optimization with respect to large numbers of design variables has yet to

be explored. The problem is that due to the high number of dimensions, the design

space is difficult to visualize. In addition, the function evaluations are costly, making

it challenging explore the design space thoroughly and come to definitive conclusions.

We explore the multi-modality of the single-point aerodynamic shape optimization

problem described in Section 7.2, by solving separate optimizations starting from four

different geometries. The first starting geometry is the CRM wing of Sec. 7.2. The

other three starting geometries are randomly generated by applying a random per-

turbation to each design variable of the CRM wing, resulting in completely different

geometries. The volume constraint is imposed, such that the volume of the baseline

CRM wing is preserved. The initial starting points for the three random runs are

shown in Fig. 7.4. Cp distribution is shown on the surface, along with a visualization

of the shock (orange) and separation (red).

Figure 7.5 shows the optimized results from a random initial geometry. The

optimization is performed on the L2 grid. We can see that the performance of the

initial design is extremely poor. This is no surprise, since the airfoil shapes are unlike

anything one would design: they exhibit oscillations and sharp edges, resulting in a

wildly varying Cp distribution. In addition, the flow solution is probably not accurate.

In spite of these wild shapes and the inaccuracy of the flow solution, the gradients seem

to point in the right direction, since the optimizer is able to smooth out the airfoils

and achieve a shock-free wing similar to the original single-point design presented in

Sec. 7.2. All the constraints are met, and the lift distribution is close to elliptical. This

optimization demonstrates the robustness of our aerodynamic optimization approach

and showcases the power of the adjoint method.

We performed the same optimization for three random starting points and com-

pared the results against each other, as well as against the single-point optimized

wing, as shown in Fig. 7.6. Each optimized result is color-coded, and the nominal

optimized result from Sec. 7.2 is shown in black. Overall, there are only small dif-

ferences between the four designs, as evidenced by the similar Cp distributions and

cross sectional shapes. The difference in drag between all four designs is within one

drag count. However, there are still some small visible differences, indicating the

possibility that the design space is multimodal.
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Figure 7.4: The initial geometries are randomly generated from the baseline CRM
wing.

To further visualize this design space, we compute the merit function in the design

space between two optimized designs, as shown in Figure 7.7. The merit function

is a combination of the objective function and the constraints. [121] We are able to

visualize a slice of the design space by plotting the merit function along a line between

two optima. A series of wing shapes are generated by linearly varying all of the design
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Figure 7.5: The optimization manages to start from a random geometry and converge
to an optimal wing that is shock free.

Figure 7.6: All three optimizations with random starting geometries converged to
similar optima.
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variables. A CFD solution is solved for each of those designs to obtain the merit

function. As shown in this figure, the merit function does appear to have multiple

local minima, even though the values of the merit function are within one count

among those optima. In addition, we also computed the mean difference between

the design variables of each of the optimized designs as shown in Fig. 7.8. The three

optima appear to be nearly equally spaced in the design space, with a Euclidean

distance ranging from 2.72 to 3.34 in, which corresponds to only 1.2% of the mean

aerodynamic chord. Based on this data, we believe that the design space for this

aerodynamic shape optimization problem is mostly convex, but that it has a small

flat region that is multimodal. The humps and local minima could also be caused by

the constraints.

7.5 Effect of the Number of Shape Design Variables

The cost of computing gradients with an efficient adjoint implementation is nearly

independent of the number of design variables. We took advantage of this efficiency

by optimizing with respect to 720 shape design variables in the previous sections.

However, we would like to determine the trade-off between the number of design

variables and the optimal drag, and to examine the effect on the computational cost

of the optimization. Thus, in this section we examine the effect of reducing the

number of design variables. A series of new enlarged FFDs are created to ensure

proper geometry embedding for small numbers of design variables. The shape design

variables are distributed in a regular grid, where the finest grid has 15 × 48 = 720

design variables. The 15 chordwise stations correspond to 15 distinct airfoil shapes,

while the shape of each airfoil is defined by 48 control points (half of these on the

top, and the other half on the bottom).

We solve the optimization problem of Sec. 7.2 using the L2 grid with variations in

the number of defining airfoils and the number of points per airfoil. Figure 7.9 shows

the resulting optimized designs for different numbers of airfoil control points and a

fixed number of defining airfoils. Reducing the airfoil control points from 48 to 24 has

a negligible effect on the optimal shape and pressure distribution, and the optimum

drag increases by only 0.1 counts. As we further reduce the number of airfoil points

to 12 and 6, both the drag and pressure distribution show noticeable differences.

Variation in the number of defining airfoils follows a similar trend to the variation

in the number of airfoil control points, as shown in Fig. 7.10. However, the drag

penalty due to the number of airfoils is less severe than the penalty observed in the
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airfoil point reduction. Therefore, increasing the number of design variables in the

chordwise direction is more beneficial than increasing the number of defining airfoils

in the spanwise direction.

Figure 7.9: Optimized designs with varying number of airfoil control points.

We also perform the optimization with a reduced number of shape design variables

in both the chordwise and spanwise directions simultaneously, as shown in Fig. 7.11.

From this study we conclude that an adequate optimized design can be achieved with

a smaller number of design variables: with 8×24 = 192 shape variables, the difference

in the optimal drag coefficient is only 0.6 counts. Any further reduction in the number

of design variables has a much larger impact on the optimal drag.

Figure 7.12 plots the convergence history for each optimization case. When we

decrease the number of airfoil control points, the number of optimization iterations

required decreases drastically. However, the number of defining airfoils has little effect

on the optimization effort. This is in part because the adjoint computational cost

is independent of the number of design variables. In addition, the coupled effects

between design variables are much stronger between variables within an airfoil than

between variables in different airfoils.

For an optimization process in which the computational cost scales with the num-

ber of design variables, such as when the gradients are computed via finite differences,

or for gradient-free optimizers, a smaller number of design variables would signifi-
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Figure 7.10: Optimized designs with varying number of airfoil sections.

Figure 7.11: Optimized designs for varying numbers of shape design variables.

cantly impact the optimized design. For example, for 3× 6 = 18 variables, the drag

of the optimized design would increase by 5.4 counts.
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7.6 Aerodynamic Shape Optimization without Thickness Re-

duction

As seen in Sec. 7.2, the optimized wing has a thickened root airfoil and an unre-

alistically thin tip airfoil. To address this issue, we solved an optimization problem

identical to that solved in Sec. 7.2 except for modified thickness constraints: all

thicknesses must be greater than or equal to the baseline thickness (instead of being

allowed to decrease to 25% of the baseline thickness). The optimization is performed

on the L2 grid, and the results are shown in Fig. 7.13.

The results of the optimization with no thickness reduction are shown in black.

The spanwise lift and twist distributions for the two cases are similar. However, the

pressure distribution and airfoil shapes are significantly different, especially those near

the wing root and wing tip. The mean difference between the baseline and optimized

designs is only 1.1 inches. The optimized wing with no thickness reduction has five

additional drag counts when compared with the optimized wing that allowed 25%
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Figure 7.13: The drag on the optimized wing is five counts higher if no airfoil thickness
reduction is allowed.

of the baseline thickness. This aerodynamic performance penalty may be compen-

sated for by the reduction in the wing weight when structural design is considered.

A detailed aerostructural optimization would be necessary to examine the multidis-

ciplinary trade-offs involved [58, 59]. In addition, the optimization takes significantly

fewer iterations (296 iterations) as compared to the optimization in Sec. 7.2 (638

iterations). This is due to the absence of volume-thickness trade resulting from the

tighter thickness constraints.

7.7 Multipoint Aerodynamic Shape Optimization

Transport aircraft operate at multiple cruise conditions because of variability in

the flight missions and air traffic control restrictions. Single-point optimization under

the nominal cruise condition could overstate the benefit of the optimization, since the

optimization improves the on-design performance to the detriment of the off-design

performance. In Sec. 7.2, the single-point optimized wing exhibited an unrealistically

sharp leading edge in the outboard of the wing. This was caused by a combination of

the low value for the thickness constraints (25% of the baseline) and the single-point

formulation.
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A sharp leading edge is undesirable because it is prone to flow separation under

off-design conditions. We address this issue by performing a multipoint optimization.

The optimization is performed on the L2 grid. We choose five equally weighted flight

conditions with different combinations of lift coefficient and the Mach number, as

previously done by the authors [59]. The flight conditions are the nominal cruise,

±10% of cruise CL, and ±0.01 of cruise Mach, as shown in Fig. 7.14. More sophisti-

cated ways of choosing multipoint flight conditions and their associated weights can

be used, such as the automated procedure developed by Liem et al. [125] that mini-

mizes fleet-level fuel burn. The objective function is the average drag coefficient for

the five flight conditions, and the moment constraint is enforced only for the nominal

flight condition.

Flow Case CL Mach number

1 0.50 0.85
2 0.55 0.85
3 0.45 0.85
4 0.50 0.84
5 0.50 0.86

Table 7.3: The multiple flight conditions represent a five-point stencil in Mach-CL

space.

0.84 0.85 0.86

0.45

0.5

0.55

C1C4 C5

C3

C2

Mach

C
L

Figure 7.14: The multipoint optimization flight conditions represent a five-point sten-
cil in Mach-CL space.

A comparison of the single-point and multipoint optimized designs is shown in

Fig. 7.15. The single-point results are shown in blue, and the multipoint results are
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Figure 7.15: The multipoint optimized wing has a weak shock on the upper surface
for each flight condition.

shown in orange. The Cp for the multipoint optimized result corresponds to the nom-

inal condition. The multipoint sectional Cp of flight conditions 2–5 are plotted in

gray. Unlike the shock-free design obtained with single-point optimization, the mul-

tipoint optimization settled on an optimal compromise between the flight conditions,

resulting in a weak shock at all conditions. The leading edge is less sharp than that

of the single-point optimized wing. Additional flight conditions, such as a low-speed

flight condition, would be needed to further improve the leading edge. The overall

pressure distribution of the multipoint design is similar to that of the single-point

design. The twist and lift distributions are nearly identical. Most of the differences

are in the chordwise Cp distributions in the outer wing section. The drag coefficient

under the nominal condition is approximately two counts higher. However, the per-

formance under the off-design conditions is significantly improved. Similar trends

were observed in the multipoint optimization of Vassberg et al. [116].

To demonstrate the robustness of the multipoint design, we plot ML/D contours

of the baseline, single-point, and multipoint designs with respect to CL and cruise

Mach in Fig. 7.16. ML/D provides a metric for quantifying aircraft range based on

the Breguet range equation with constant thrust-specific fuel consumption. While the

thrust-specific fuel consumption is actually not constant, assuming it to be constant
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Figure 7.16: The multipoint optimized wing has better off-design performance and is
more robust to changes in flight conditions.

is acceptable when comparing performance in a limited Mach number range [126].

We add 100 drag counts to the computed drag to account for the drag due to the

fuselage, tail, and nacelles, and we get more realistic ML/D values.

The baseline maximum ML/D is at a lower Mach number and a higher CL than

that of the nominal flight condition. The single-point optimization increases the max-

imum ML/D by 4% and moves this maximum toward the nominal cruise condition.

If we examine the variation of ML/D along the CL = 0.5 line, we see that the max-

imum occurs at the nominal Mach of 0.85, which corresponds to a dip in a drag

divergence plot.

For the multipoint optimization, the optimized flight conditions are distributed
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in the Mach-CL space, resulting in a flattened ML/D variation near the maximum,

which means that we have more uniform performance for a range of flight conditions.

In aircraft design, the 99% value of the maximum ML/D contour is often used to

examine the robustness of the design [37]. The point with the highest Mach number

on that contour line corresponds to the long range cruise (LRC) point, which is the

point at which the aircraft can fly at a higher speed by incurring a 1% increase in fuel

burn [127]. In this case, we see that the 99% value of the maximum ML/D contour

of the multipoint design is larger than that of the single-point optimum, indicating a

more robust design.

The ML/Dmax of the multipoint design is slightly higher than the maximum for

the single-point design. While this seems counter-intuitive, it can be explained by the

fact that the analysis conditions do not line up with the optimized maximum location.

The optimizer has no information about the exact flight condition of the peak location,

and thus it does not directly control the value at that location. A potential remedy for

this mismatch would be the addition of two degrees of freedom to the optimization

problem: the nominal Mach number and the nominal lift coefficient. This would

allow the optimizer to track the ML/Dmax location during the optimization; upon

convergence, the objective value would reflect the maximum possible performance in

the M -CL space. Performing such an optimization, however, would require propulsion

and operating cost models, and would involve multidisciplinary trade-offs between

aerodynamics and these other disciplines [125].

7.8 Conclusions

In this chapter, we have presented an extensive study of the CRM wing shape

optimization benchmark defined by the Aerodynamic Design Optimization Discussion

Group (ADODG). The drag coefficient is minimized for one flight condition with

respect to 720 shape design variables, subject to lift, pitching moment, and geometric

constraints, using grids with up to 28.8 M cells. The drag coefficient of the optimized

design was reduced by 8.5% relative to the CRM baseline: from 199.7 counts to 182.8

counts, with a zero-grid spacing value of 181.9 counts. We implemented a multilevel

optimization procedure that significantly reduced the total computational time.

The single-point optimized design exhibits a small thickness-to-chord ratio (3.3%)

at the tip, which would incur a large structural weight penalty in a real wing. Thus,

we performed an additional optimization that did not allow for thickness reduction.

While the optimal drag increased by five counts relative to the nominal case, the
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associated reduction in structural weight would likely offset this penalty in a real

wing when considering the overall aircraft performance.

The multi-modality of the aerodynamic shape optimization problem was examined

by starting optimizations from randomly generated initial geometries. All optimal

wings had similar airfoil shapes, with an mean difference of 1.2 in. The variation of

the merit function between the multiple local optima confirm that these points are

indeed local minima, and indicate that the design space consists of a convex bowl

with a small flat bottom that is multimodal. Based on our data, the minimum drag

coefficient values were within 0.1 counts (0.05%), and the radius of this flat bottom

seems to be about 1.6 in. Given these small differences, it does not seem worthwhile

to put much effort into finding the global minimum for this problem.

We studied the effect of the design variables by varying the number of defining

airfoil sections and the number of control points for each of those sections. Reducing

the number of airfoil control points from 48 to 12 resulted in a 0.9-count drag increase.

The total number of optimization iterations also reduced with the number of airfoil

control points. The number of airfoil sections has a similar influence on the optimized

drag. However, decreasing the number of airfoil sections while keeping the number

of airfoil control points constant did not affect the overall computational cost in a

significant way. We found that the optimization with 8 airfoil sections and 24 control

points per section (192 design variables) provided the best trade-off: it increased the

optimal drag by only 0.6 counts relative to the 720-variable case (15 airfoils with 48

points each), while requiring 40% fewer optimization iterations.

Finally, we performed a multipoint optimization of the CRM wing. This resulted

in a more robust design than that of the single-point optimization, as evidenced by

the enlarged contour of the 99% maximum ML/D. We also compared the contours

of ML/D for the single-point baseline optimum and the multipoint optimum. Both

the single-point and multipoint optimizations shifted the maximum ML/D toward

the nominal flight condition.

This CRM wing aerodynamic shape optimization problem is a valuable benchmark

for the wing design optimization community, and we hope that more researchers

tackle this problem. The ADODG is also expected to expand this suite of benchmark

problems in the near future.

This aerodynamic design optimization problem is limited to a fixed wing planform,

but it is an excellent first step. To consider span and sweep, and to eliminate the

explicit thickness constraints, it is necessary to consider the trade-offs between drag

and structural weight, which has been done in an optimal way using aerostructural
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optimization [59]. To take full advantage of the optimization, we should also include

the flight conditions as design variables, but then we would have to solve an even more

complex MDO problem that considers propulsion, mission analysis, and economics.
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CHAPTER 8

Aerodynamic Design Optimization of an Adaptive

Trailing Edge Wing

Adaptive morphing trailing edge wings have the potential to reduce the fuel burn

of transport aircraft. In this chapter, we quantify the aerodynamic performance ben-

efits of a morphing trailing using aerodynamic design optimization. The aerodynamic

model solves the Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras

turbulence model. A gradient-based optimization algorithm is used in conjunction

with an adjoint method that computes the required derivatives. The baseline geome-

try is optimized using a multipoint formulation with 192 shape design variables. The

drag coefficient is minimized subject to lift, pitching moment, geometric constraints,

and a 2.5 g maneuver bending moment constraint. The trailing edge of the wing is

optimized based on the multipoint optimized wing. The trailing edge morphing is

parameterized using 90 design variables that are optimized independently for each

flight condition. A total of 407 trailing edge optimizations are performed with dif-

ferent flight conditions to span the entire flight envelope. This chapter is organized

as the follows: The trailing edge morphing optimization results are presented in Sec-

tion 8.4. Then, we discuss the full morphing wing optimizations and comparison

with morphing trailing edge in Section 8.5 and Section 8.6. We simulate a number

of flight missions and quantify the fuel burn reduction with the adaptive morphing

trailing edge in Section 8.7. This work is based on a previous paper presented by the

author. [102]

8.1 Geometric Parametrization

The FFD geometry parametrization is similar to that in previous chapters shown

in Figure 8.1. However, to simulate the trailing edge morphing, the last 5 chordwise
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control points (shown in blue), which correspond to the last 45% of the chord, can

move independently for each flight condition, thus providing sufficient degrees-of-

freedom to alter the airfoil camber and spanwise twist distribution to simulate the

morphing trailing edge similar to the FlexSys adaptive wing [40]. Because of the

constant topology assumption of the FFD approach, and due to limitations in the

mesh perturbation, the surface has to be continuous around the control surfaces,

eliminating the elevator gap. Therefore, when the control surfaces deflect, there is

a transition region between the control surface and the centerbody, similar to those

studied in a continuous morphing wing [40].

Figure 8.1: The wing shape design variables are the z-displacement of 192 FFD con-
trol points (red and blue spheres). The trailing edge morphing design
variables are only the blue control points.

8.2 Optimization Problem Formulation

All optimization cases perform lift-constrained drag minimization of the wing

using the RANS equations. The baseline geometry and mesh is the same as that in

Chapter 6 and 7. Since we need to perform hundreds of optimizations to optimize the

trailing edge for each flight conditions, we use the L2 mesh to achieve a reasonable

computational cost with sufficient accuracy. For simplicity, we only use the L2 mesh

for the studies in this chapter.

8.2.1 Objective Function

The baseline multipoint aerodynamic shape optimization seeks to minimize av-

eraged drag coefficients by varying the shape design variables subject to constraints

on the lift, pitching moment, and maneuver bending moment. The drag coefficients
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are given by the RANS solutions. Drag coefficients of 5 flight conditions are consid-

ered as shown in Table 8.1. The bending moment constraint is computed at a 2.5 g

maneuver condition (15,000 ft and Mach 0.86). The formulation is different from the

ADODG benchmark case. A similar mulitpoint optimization has been presented by

the authors [101].

Flow Case CL Mach number

1 0.50 0.85
2 0.55 0.85
3 0.45 0.85
4 0.50 0.84
5 0.50 0.86
6 2.5 g 0.86

Table 8.1: The multiple flight conditions represent a five-point stencil in Mach-CL

space and a 2.5 g maneuver case.

8.2.2 Design Variables

Before we study the trailing edge morphing, we performed a multipoint aerody-

namic shape optimization of the wing to obtain an optimized aerodynamic perfor-

mance of the wing itself. The first set of design variables consists of control points

distributed on the FFD volume. A total of 192 shape variables are distributed on the

lower and upper surfaces of the FFD volume, as shown in Fig. 6.2. The large num-

ber of shape variables provides more degrees of freedom for the optimizer to explore,

and this allows us to fine-tune the sectional airfoil shapes and the thickness-to-chord

ratios at each spanwise location. Because of the efficient adjoint implementation, the

cost of computing the shape gradients is nearly independent of the number of shape

variables [58]. The full morphing wing optimization uses the same set of shape design

variables.

For the morphing trailing edge optimization, we use a subset of the shape control

point near the TE as the design variables, as shown in blue in Figure 6.2. Only the

shape on the last 45% of the chord is allowed to change. The shape of the forward

wing remains constant.

8.2.3 Constraints

Since optimizers tend to exploit any weaknesses in numerical models and problem

formulations, an optimization problem needs to be carefully constrained in order
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to yield a physically feasible design. We performed a multipoint optimization with

6 flight conditions: 5 cruise conditions and a 2.5 g maneuver condition. Both lift

and pitching moment are constrained at the nominal flight condition (Mach 0.85,

CL = 0.5). In addition, the wing root bending moment is constrained to be less or

equal than the nominal value at the 2.5 g maneuver condition. We also implement

several geometric constraints. First, we impose constant thickness constraints from

the 1% chord at the LE to the 99% chord near the TE. A total of 750 thickness

constraints are imposed in the 25 by 30 grid. The constraints have a lower bound

of 100% of the baseline thickness and no upper bound. These constraints ensure

sufficient height in the centerbody cabin and sufficient fuel volume. The LE thickness

constraint allows for the installation of slats, and the TE thickness is limited due to

manufacturing constraints. The total volume of the wing is also constrained to meet

a fuel volume requirement. Complete optimization problem is described in Table 8.2.
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8.3 Baseline Multipoint Aerodynamic Shape Optimization

of the Wing

Before we perform any morphing trailing edge optimization, we first optimize the

wing itself using a multipoint formulation to achieve a reasonable performance that

is robust with respect to different flight conditions. In this section, we present our

aerodynamic design optimization results for the wing (described in Table 6.2) under

the 5 flight conditions and a 2.5 g maneuver condition. We use the L2 grid (450 k

cells) for the optimization. Transport aircraft operate at multiple cruise conditions

because of variability in the flight missions and air traffic control restrictions. Single-

point optimization at the nominal cruise condition could overstate the benefit of

the optimization, since the optimization improves the on-design performance to the

detriment of the off-design performance. The single-point optimization benchmark

problem developed by the ADODG resulted in an optimal wing with an unrealistically

sharp leading edge in the outboard section of the wing [101]. This was caused by a

combination of the low value for the thickness constraints (25% of the baseline) and

the single-point formulation [115, 101]. Therefore, in this study, we use multipoint

formulation and 100% thickness constraints, which we have found to result in more

realistic wings [101].

We choose five equally weighted flight conditions with different combinations of lift

coefficient and Mach number, as previously done by the authors [59, 101]. The flight

conditions are the nominal cruise, ±10% of cruise CL, and ±0.01 of cruise Mach, as

shown in Table 8.1. More sophisticated ways of choosing multipoint flight conditions

and their associated weights can be used, such as the automated procedure developed

by Liem et al. [125] that minimizes fleet-level fuel burn. The objective function is

the average drag coefficient for the five flight conditions, and the moment constraint

is enforced only for the nominal flight condition. The bending moment constraint is

enforced at the 2.5 g maneuver condition at 15,000 ft and Mach 0.86.

A comparison of the initial wing and multipoint optimized design is shown in

Figure 8.2. The baseline results are shown in red, and the multipoint results are

shown in blue. The Cp for the multipoint optimized result corresponds to the nominal

condition (Mach 0.85, CL = 0.5). We compute the shock surface from the volume

solution grid by constructing an isosurface of the normal Mach number [128]. The

shock occurs where the normal Mach number is one, i.e.,

Mn =
~u

a
· ∇p
|∇p|

= 1. (8.1)
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Figure 8.2: The multipoint optimized wing has 5.7% lower drag.

Unlike the shock-free design obtained with single-point optimization [101], the

multipoint optimization settled on an optimal compromise between the flight condi-

tions, resulting in a weak shock at all conditions. Similar trends were observed in the

multipoint optimization of Vassberg et al. [116]. Our optimization procedure reduced

the drag from 211.5 counts to 199.4 counts, i.e., an 5.7% reduction. At the optimum,

the lift coefficient target is met, and the pitching moment is reduced to the lowest al-

lowed value. The 2.5 g bending moment constraint is met. The lift distribution of the

optimized wing is much closer to the elliptical distribution than that of the baseline,

indicating an induced drag that is close to the theoretical minimum for planar wakes.

This is achieved by fine-tuning the twist distribution and airfoil shapes. The baseline

wing has a near-linear twist distribution. The optimized design has more twist at the

root and tip, and less twist near mid-wing. This multipoint optimized wing provides

a reasonable baseline geometry for the morphing trailing edge optimization.

8.4 Morphing Trailing Edge Optimization

We perform a series of RANS-based aerodynamic shape optimizations to exam-

ine the effects of trailing edge morphing. A gradient-based optimizer is used with

sensitivities computed by the adjoint method. The full turbulence adjoint used in-
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cludes the linearization of both the main flow solver and the SA turbulence model.

The optimizations are converged to an optimality tolerance of O(10−5). We use the

optimized geometry from the previous optimization in Section 8.3 as the baseline.

The shape aft of the 45% chord is free to change independently for each flight

condition. The airfoil thickness is kept constant by the thickness constraints. A to-

tal of 80 design variables are used for each optimization. The angle-of-attack is also

allowed to change during the optimization. To span the entire flight envelope, we per-

formed 407 separate optimizations at various altitudes, Mach numbers, and weights.

Each optimization required about 4 hours on 64 processors, corresponding to about

50 optimization iterations. No additional moment constraints are imposed in the op-

timization. Since the TE can be morphed at each flight condition, the 2.5 g maneuver

bending moment constraints can be satisfied using the deflected TE. Therefore, we

can check to see whether the 2.5 g bending moment constraint can be satisfied inde-

pendently from the TE optimization at cruise conditions. Figures 8.3 to 8.6 show the

trailing edge optimization results at several on- and off-design conditions. Results for

additional flight conditions are shown in Figures C.1 to C.14.

Figure 8.3: Morphing trailing edge optimization at MTOW on-design condition.

At on-design conditions, the drag reductions range from 1 to 2%. The optimized

TE shapes are extremely close to the initial shape. However, we see that the optimizer

is able to further smooth out the flow by introducing a slight camber at the TE. The
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Figure 8.4: Morphing trailing edge optimization at half-weight on-design condition.

Figure 8.5: Morphing trailing edge optimization at low-Mach low-altitude off-design
condition.
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Figure 8.6: Morphing trailing edge optimization at low-Mach high-altitude off-design
condition.

TE deflection is less than 1 degree (measured from LE). The shock strength is reduced,

illustrating that the transonic flow is sensitive to even slight changes in trailing edge

shape. Similar trends are observed at several different weights.

At the off-design conditions, the difference between the optimized TE shape and

the initial TE shape is more apparent. The maximum TE deflection at off-design

conditions is about 3 degrees. The drag reduction due to morphing TE is more

significant, reaching 5%. At some extreme off-design cases, the flow is separated

without a morphing TE. By optimizing the TE camber and shape, the angle-of-

attack is reduced and the flow is re-attached, significantly reducing the drag. The

2.5 g maneuver bending moment constraint is satisfied using the TE morphing. We

conclude that the drag at all flight conditions can be reduced using morphing TE,

and that the benefit of a morphing trailing edge is more significant at off-design

conditions.

8.5 Full Wing Morphing Optimization

We also performed a shape optimization assuming a fully morphing wing. While

the technology for achieving such morphing is currently not available, we are in-

terested in finding out how much the performance would increase relative to the
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morphing TE. A total of 192 design variables are used to optimize the entire wing

at each flight condition. The rest of the optimization setup is the same as that in

Section 8.4. Similarly, to span the entire flight envelope, we performed another 407

separate optimizations for different altitudes, Mach numbers, and weights. Due to the

increased design space, the computational cost of the optimization is slightly higher:

6 hours on 64 processors instead of 4 hours in the TE morphing case. Figures 8.7

and 8.8 show the full morphing wing optimization results for an on-design and an

off-design condition.

At on-design conditions, the full wing morphing designs are only marginally better

than the optimized design with morphing TE. Specifically, the drag coefficient is

decreased by about 1 count. The baseline wing is already optimized near the cruise

conditions. Additional drag reduction is difficult to achieve even with a full morphing

wing. The optimized wing shapes are very close to the initial shape. The pressure

distributions are also quite similar to that of the morphing TE optimized designs.

Therefore, we see that it is sufficient to only change the TE shape for drag reduction

purpose at on-design conditions.

At the off-design conditions, additional improvements of up to 10 drag counts are

achieved. The maximum TE deflection at off-design conditions is about 3 degrees.

The drag reduction due to morphing TE is much more significant at more than 5%.

In the flight condition shown in Figure 8.8, the flow on the initial wing is separated.

The full morphing wing still maintains a shock-free solution and near-elliptical lift

distribution even at high CL. We observe that the benefit of morphing wing can be

magnified at off-design conditions.

8.6 Comparison between Morphing Trailing Edge and Fully

Morphing Wing

To further compare the benefits of the morphing TE and the morphing wing,

we plotted the percentage drag reduction contours of each approach for the entire

flight envelope for MTOW (347,500 kg), as shown in Figure 8.9 and 8.10. The drag

reduction contours for other weights are shown in Figures C.15 to C.18. The weight

and altitude range is based on the Boeing 777-200LR operation manual for Long

Range Cruise (LRC).

The trends of both drag reduction contours are similar. The lowest drag reductions

are near the on-design conditions where the wing has been previously optimized with

a multipoint formulation. Those drag reductions are due to the additional degrees-of-
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Figure 8.7: Full wing morphing optimization at MTOW on-design condition.

Figure 8.8: Full wing morphing optimization at low-Mach high-altitude off-design
condition.
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Figure 8.12: ML/D contour of the morphing TE wing.
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Figure 8.13: ML/D contour of the full morphing wing.

freedom that allow the TE shape to change separately at each flight condition, and to

making the 2.5 g maneuver condition constraint independent through load alleviation

with the morphing TE. At the lower Mach number range, the drag reduction increases

with the altitude and Mach number. The highest drag reduction occurred at the flight

condition with high altitude and low Mach, where the lift coefficient is the highest.

For high Mach numbers above 0.85, the trend reverses due to the drag divergence.

We also plot ML/D contours of the multipoint baseline, morphing TE, and fully

morphing wing designs with respect to altitude and Mach number in Figure 8.11

to 8.13. ML/D contours for other weights are shown in Figures C.19 to C.24. ML/D

provides a metric for quantifying aircraft range based on the Breguet range equation

with constant thrust-specific fuel consumption. While the thrust-specific fuel con-

sumption is actually not constant, assuming it to be constant is acceptable when

comparing performance in a limited Mach number range [126]. We add 100 drag

counts to the computed drag to account for the drag due to the fuselage, tail, and

nacelles, and we get more realistic ML/D values. In aircraft design, the 99% value

of the maximum ML/D contour, shown in black, is often used to examine the ro-

bustness of the design [37]. The point with the highest Mach number on that contour

line corresponds to the long range cruise (LRC) point, which is the point at which
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the aircraft can fly at a higher speed by incurring a 1% increase in fuel burn [127].

The multipoint baseline maximum ML/D occurs at the nominal flight condition

(Mach 0.85, 31,000 ft altitude). Both morphing TE and morphing wing increase the

maximum ML/D. The maximum ML/D points for morphing TE and morphing

wing are at a higher altitude and higher Mach number. Since the TE shape can be

adapted for each flight condition, the drag divergence is pushed to a higher Mach

number. The 99% value of the maximum ML/D contour of the morphing designs

are also significantly enlarged, indicating a more robust design. We see that mor-

phing TE enables aircraft to fly higher and faster without a fuel burn penalty. To

more accurately capture the tradeoffs, a multidisciplinary study including low speed

aerodynamics, propulsion, and structure, would be required.

8.7 Simulating Flights with Morphing Trailing Edge

Since we have morphing trailing edge optimizations spanning the entire flight

envelope, we can create a surrogate model of optimal trailing edge shapes for different

flight conditions. This database allows us to compute the fuel burn for a series of

missions without performing any additional optimizations. Since we have a relatively

fine discretization of the flight region, we use a linear interpolation to evaluate the

performance and optimal shape between the optimized points. A thrust specific fuel

consumption (TSFC) of 0.53 lb/(lbf · h) is assumed. We also add 100 drag counts to

the computed drag to account for the drag due to the fuselage, tail, and nacelles. The

fuel burn is then integrated backwards for a given flight profile. Figure 8.14 shows a

typical flight profile for a long range flight (currently the longest non-stop commercial

flight from Dallas Fort Worth to Sydney, Australia).

Since the flight is operated in the on-design condition with step climb, the trail-

ing edge deflection is within 1 degree. The wing tip exhibits the highest amount of

deflection with -1 degree at the initial cruise to 1 degree near the end of the cruise.

We see a 0.7% fuel burn reduction using morphing TE on this flight. As pointed out

in Section 8.4, the morphing TE has higher drag reduction at off-design conditions.

Table 8.3 shows the drag reduction on a number of hypothetical flight trajectories.
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Figure 8.14: Fuel burn is reduced by 0.7% using morphing TE for DFW–SYD flight.
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We see that the morphing TE provides about 1% fuel burn reduction at cruise

condition for the simulated flights in Table 8.3. All of the simulated flights have TE

deflection within 2 degrees. Additional benefits could be realized during the climb

and descent, which is neglected in this analysis. To evaluate the climb and descent,

additional optimizations at lower speeds and lower altitudes would be needed to span

the flight envelope for climb and descent.

8.8 Conclusions

In this chapter, we presented the aerodynamic shape optimization of a Boeing

777-size wing with an adaptive morphing trailing edge. A mulitpoint optimization,

including a 2.5 g maneuver condition, was presented to provide a baseline for the TE

optimization. A total of 407 trailing edge optimizations with different Mach number,

altitude, and weight, were performed to span the entire cruise flight envelope. A drag

reduction in the order of 1% is achieved for on-design conditions, and reductions up

to 5% were achieved for off-design conditions.

We further evaluated the performance of a morphing trailing edge by comparing

its benefits with those from a full morphing wing. This is done by plotting the drag

reduction contour and the ML/D contour. The full morphing wing yielded only

marginally lower drag and a similar ML/D contour. Therefore, morphing only the

TE can achieve an aerodynamic performance similar to that of a fully morphing wing

without the drastic increase in wing morphing mechanism and weight.

Finally, we created a surrogate model of optimal trailing edge shapes to compute

cruise fuel burn for different flight missions. We observed about 1% fuel burn reduc-

tion using the morphing trailing edge. More significant fuel burn reduction could be

achieved in climb and descent segments.

From an aerodynamic perspective, an adaptive morphing trailing edge can easily

offer additional drag reduction without a complete redesign of the wing. Since this

technology has been demonstrated by FlexSys, and could be installed on conven-

tional control surfaces, we could consider retrofitting existing aircraft. To thoroughly

evaluate the benefit, a multidisciplinary study is required to examine the trade-offs

between aerodynamics, structures, and controls.
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CHAPTER 9

Aerodynamic Design Optimization of a

Blended-Wing-Body Aircraft

The blended-wing body is an aircraft configuration that has the potential to be

more efficient than conventional large transport aircraft configurations with the same

capability. However, the design of the blended-wing is challenging due to the tight

coupling between aerodynamic performance, trim, and stability. Other design chal-

lenges include the nature and number of the design variables involved, and the tran-

sonic flow conditions. With the aerodynamic shape optimization framework developed

in this thesis, we can address these issues by performing a series of aerodynamic shape

optimization studies using Reynolds-averaged Navier–Stokes computational fluid dy-

namics with a Spalart–Allmaras turbulence model. In this final chapter, we explore

the potential of applying numerical optimization to an entire unconventional aircraft

configuration.

The objective of this chapter is to develop a methodology for the aerodynamic de-

sign of BWB configurations that performs optimal trade-offs between the performance

and constraints mentioned above, and to examine the impact of each constraint on

optimal designs. We investigate the design trade-offs by performing a series of aerody-

namic shape and planform optimization studies that examine the impact of the design

variables and constraints. We explore the effect of the trim constraint, required static

margin, and CG location on the BWB optimal shape. We also investigate the im-

pact of multi-point design optimization. This work extends our preliminary studies

to multi-point RANS-based aerodynamic shape and planform optimization [14]. The

work in this chapter is based on previous papers presented by the author. [13, 14, 100]
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9.1 Geometric Parametrization

Figure 9.1 shows the FFD volume and geometric control points for the BWB

aerodynamic shape optimization. To trim the BWB configuration, we use control

surfaces on the rear centerbody, which are analogous to elevators on a conventional

configuration. A nested FFD volume is used to implement the movement of these

control surfaces, as shown in Fig. 6.2. The result is a sub-FFD that is embedded in

the main FFD. Any changes in the main FFD are propagated to the sub-FFD. The

sub-FFD is set to rotate about the hinge line of the control surface. When the sub-

FFD rotates, the embedded geometry changes the local shape accordingly. Because

of the constant topology assumption of the FFD approach, and the limitation of

the mesh perturbation, the surface has to be continuous around the control surfaces,

eliminating the elevator gap. Therefore, when the control surfaces deflect, there is

a transition region between the control surface and the centerbody, similar to those

studied in a continuous morphing wing [40]. Figure 9.2 shows the sub-FFD volume

and the geometry, with a trim control surface deflection of 25 degrees.

Figure 9.1: FFD volume (black) and control surface sub-FFD volume (red) with their
respective control points

9.2 Problem Formulation

The BWB configurations can have more significantly improved aerodynamic per-

formance than conventional configurations do. To fully realize this potential, however,
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Figure 9.2: Sub-FFD volume and control points for a trim control surface deflection
of 25 degrees

the external shape of the BWB has to be carefully designed. The primary focus of

this study is drag minimization subject to a lift constraint. Additionally, we consider

the following constraints: trim, static margin, and bending moment. In this section,

we discuss the problem setup and the optimization formulation for the aerodynamic

shape optimization of the BWB.

9.3 Initial Geometry

The initial geometry is shown in Fig. 9.3. The BWB geometry has a similar

planform shape to the first-generation Boeing BWB design with 800 passengers [44].

This geometry has a span of 280 ft and a total length of 144 ft; it is divided into

a centerbody section and an outer wing section. Based on this planform, the mean

aerodynamic chord (MAC) is 86 ft. The initial CG is at 40% MAC of the planform.

The placement of the CG is studied in Section 9.7.3.

The geometry is generated with a prescribed thickness-to-chord ratio (t/c), 18%

at the center plane and 10% at the tip, as well as prescribed leading edge (LE) and

trailing edge (TE) locations. We use the NASA SC(2)-0518 airfoil at the center plane

and the NASA SC(2)-0410 airfoil at the tip, and we quadratically interpolate the

airfoil sections in between. Table 9.1 summarizes the geometric parameters of the

baseline BWB. The reference area is the actual area of the whole planform.

9.4 Grid Convergence Study

We generate the mesh for the BWB using an in-house hyperbolic mesh generator.

The mesh is matched out from the surface mesh with an O-grid topology. The
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Figure 9.3: Geometry of the BWB with the CG location shown in red

Geometric Parameter Value

Span 280 ft
Length 144 ft
Reference area 15, 860 ft2

Mean aerodynamic chord 86 ft

Table 9.1: Geometric parameters for the BWB

nominal cruise flow condition is Mach 0.85 at 35, 000 ft, and the Reynolds number

is 100 million based on MAC. The spacing on the first layer uses a y+ of 0.5 to

adequately resolve the boundary layer. The grid is matched out to a far field that is

located at a distance of 25 times the span, with an average growth ratio of 1.2. The

grid used for the optimization has 2.92 million cells. It is generated from a surface

mesh with 120 spanwise cells and 120 chordwise cells on each surface. There are also

additional cells for the finite TE thickness and the rounded wingtip, resulting in a

total of 30, 464 surface cells. The resulting O-grid has 96 cells in the k direction.

We perform a grid convergence study to determine the resolution accuracy of

this grid. All the grids are generated using the hyperbolic mesh generator with
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a coarse or refined spacing. Figure 9.4 shows the mesh convergence plot, showing

that the result for the mesh with 2.92 million cells is within 3 drag counts of that

for the mesh with 187 million cells. We choose the former grid because it allows

a reasonable optimization run time while providing sufficient accuracy. The RANS

flow solution can be obtained within 100 minutes from a cold start with 6 orders of

residual reduction on 180 processors. Figure 9.5 shows the BWB mesh on the surface

and the symmetry plane.
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Figure 9.4: Mesh convergence plot of the initial BWB mesh at nominal cruise condi-
tion

9.5 Optimization Problem Formulation

9.5.1 Objective Function

For the optimization studies, we minimize the drag coefficient at the nominal

cruise condition, subject to a lift coefficient constraint. The drag coefficient is given

by the RANS solutions. The cruise lift coefficient is constrained to CL = 0.206. The

chosen CL is similar to that of the first-generation Boeing BWB [44], assuming a

cruise altitude of 35, 000 feet and a cruise Mach of 0.85. Since both the lift and drag

coefficients use the whole planform area as the reference area, this results in a lower

wing loading and lift coefficient.
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Figure 9.5: BWB mesh showing surface and center plane cells

9.5.2 Design Variables

The first set of design variables consists of control points distributed on the FFD

volume. A total of 240 shape variables are distributed on the lower and upper surfaces

of the FFD volume, as shown in Fig. 6.2. The large number of shape variables provides

more degrees of freedom for the optimizer to explore, and this allows us to fine-

tune the sectional airfoil shapes and the thickness-to-chord ratios at each spanwise

location. Because of the efficient adjoint implementation, the cost of computing the

shape gradients is nearly independent of the number of shape variables [58].

The next set of design variables is the spanwise twist distribution. We use ten

sectional twist design variables. The center of the twist rotation is fixed at the

reference axis, which is located at the quarter chord of each section. The twist

variables provide a way for the optimizer to minimize induced drag by controlling

the spanwise lift distribution and a way to satisfy the center plane bending moment

constraint.

We also consider planform variables, which can contribute to the reduction of wave

drag. The sweep angle, chord length, and width of the centerbody are kept constant;

only the planform variables of the outer wing are used as design variables. The

outer wing is defined as the outer 60% of the total span, where the wing-centerbody
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blending region ends. The outer wing is divided into seven sections. Each section has

an independent set of planform variables, which are the sweep angle, chord length,

and span of the section. Table 9.2 and Fig. 9.6 list the design variables. By providing

complete freedom of the outer wing, we allow the optimizer to explore the optimal

planform shape.

At the conceptual and preliminary design stages, the CG location should be op-

timized subject to trim and longitudinal stability constraints to minimize the trim

drag. Thus, we use the CG location as a design variable that is allowed to move

between 30% MAC and 50% MAC. In our case this variable represents the CG of

the centerbody and the associated systems and payload. The CG of the wings is

considered separately and is a function of the wing planform shape.

We add some auxiliary design variables to facilitate the formulation of the opti-

mization problem. The angle-of-attack variable ensures that the lift coefficient con-

straint can be satisfied. We use an individual design feasible (IDF) approach [129]

to update MAC. This requires the addition of a target variable and a compatibility

constraint. With the IDF approach, the geometry manipulation and computation of

MAC can be decoupled from the aerodynamic solver. Therefore, the sensitivity of

MAC is also decoupled from the aerodynamic solver, which significantly simplifies

the optimization problem formulation.

Design Variable Count

shape 240
twist 10
sweep 7
chord 7
span 7
angle-of-attack 1
MACt 1
Total 273

Table 9.2: Design variables for the BWB aerodynamic shape optimization

9.5.3 Constraints

Since optimizers tend to explore any weaknesses in numerical models and problem

formulations, an optimization problem needs to be carefully constrained in order to

yield a physically feasible design. We implement several geometric constraints. First,
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Figure 9.6: Shape and planform design variables

we impose thickness constraints from the 5% chord at the LE to the 95% chord near

the TE. A total of 400 thickness constraints are imposed in the 20 by 20 grid. The

constraints have a lower bound of 70% of the baseline thickness and no upper bound.

These constraints ensure sufficient height in the centerbody cabin and sufficient fuel

volume. The LE thickness constraint allows for the installation of slats, and the TE

thickness is limited due to manufacturing constraints.

The total volume of the centerbody and the wing is also constrained to meet the

volume requirements for the cabin, cargo, and systems, as well as fuel. The LE and

TE shape variables are constrained such that each pair of shape variables on the LE

and TE can move only in opposite directions with equal magnitudes, so that twist

cannot be generated with the shape design variables. Instead, twist is implemented

as a separate set of variables.

Because of the absence of a structural model, we use the bending moment at the

center plane as a surrogate for the structural weight trade-off and to prevent unreal-

istic spanwise lift distributions and wing spans. This bending moment is constrained

to be less than or equal to the baseline bending moment. The bending constraint is

necessary to capture the trade-offs between aerodynamic performance and structural

weight. However, it is possible to perform these trade-offs with more accuracy by

using high-fidelity aerostructural optimization, as done by Kenway and Martins [59].

In addition, the BWB has to be trimmed at each flight condition. Ideally, the
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aircraft is trimmed at the nominal cruise condition without requiring control surface

deflection. Therefore, we freeze the sub-FFD, which rotates the trim control surface

during the on-design optimization with the pitching moment constraint. The sub-

FFD is then used in the analysis of off-design conditions. There are several ways to

trim a flying wing: by unloading wingtip on a swept wing, by adding reflex to the

airfoils at the TE, or a combination of both of these [56]. Our optimization problem

has all the required degrees of freedom to meet the trim constraint.

Longitudinal stability is also a particularly important design consideration for the

BWB configuration. With the absence of a conventional empennage, it is not imme-

diately obvious how to best achieve a positive static margin for a BWB aircraft. The

goal is to maintain a positive static margin for all flight conditions. We constrained

the static margin to be greater than 1%. The static margin, Kn, can be calculated

as the ratio of the moment and lift derivatives [130, 131],

Kn = −CMα

CLα

. (9.1)

We calculate CMα and CLα using finite differences with an angle-of-attack step size of

0.1 deg. The static margin constraint incurs an additional computational cost. For

each iteration, one additional flow solution and two additional adjoint solutions are

required. Both the flow and adjoint solutions have to be converged more accurately

than usual to obtain an accurate static margin gradient. This is particularly impor-

tant for static margin gradients with respect to shape variables, because they have

relatively small magnitudes compared to other gradients.

Table 9.3 summarizes the constraints for the optimization problems. All con-

straints are implemented as nonlinear constraints in the SNOPT optimizer.

Constraint Count Type

Thickness 400 <
LE, TE control points 40 <
Lift coefficient 1 =
Trim 1 =
Internal volume 1 <
Static margin 1 <
MAC compatibility 1 =
Total 445

Table 9.3: Summary of the constraints used in the BWB aerodynamic shape opti-
mization
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9.6 Study 0: Baseline Optimization

To achieve a reasonable comparison for the optimization studies, we perform a

baseline optimization by minimizing drag with respect to the spanwise twist dis-

tribution subject to a lift constraint. The airfoil profiles are the same as for the

original geometry. The improved baseline has a drag 9 counts lower than that of the

untwisted baseline. Studies in Section 9.7 use this improved baseline as the initial

starting geometry for the optimization.

The improved baseline can still be improved upon, especially through changes in

the sectional airfoil shape. Sensitivity of the drag and lift with respect to the airfoil

shape can be visualized through a sensitivity contour plot, shown in Figs. 9.7 and 9.8.

Here, we plot the derivatives of CD and CL with respect to shape variations in the

y direction. The regions with the highest gradient of CD are near the shock on the

upper and lower surfaces. This indicates that shock reduction through local shape

changes is the major driver in reducing CD at the beginning of the optimization. As

for CL, a high positive gradient is observed near LE, indicating that moving in the

positive y direction increases CL. A high negative derivative is observed in the aft

of the centerbody, indicating that moving the aft portion in the negative y direction

increases CL.

In addition, the regions with high derivative values on the lower and upper surfaces

are offset longitudinally, which suggests that airfoil camber on the centerbody can

further increase CL. However, these sensitivity plots are only a linearization about

the current design point, and they provide no information about the constraints.

Nonetheless, these sensitivity plots indicate what drives the design at this design

point.

9.7 Aerodynamic Design Optimization Studies of the BWB

We perform a series of RANS-based aerodynamic shape optimizations to examine

the effects of various selections of design variables and constraints. The gradient-

based optimizer (SNOPT) is used with sensitivities computed by the adjoint method.

The full turbulence adjoint used includes the linearization of both the main flow

solver and the SA turbulence model. Optimizations are converged to an optimality

tolerance of O(10−5). By combining different sets of design variables and constraints,

we explore the trade-offs and benefits of each. The initial design point for all the

optimizations is the twist-optimized baseline described above. We then progress by
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Figure 9.7: Study 0: dCD/dy contour of the baseline BWB

Y

X

Z

dC
L
/dy: ­1.0E­06 ­6.7E­07 ­3.3E­07 2.1E­22 3.3E­07 6.7E­07 1.0E­06

lower surfaceupper surface

Figure 9.8: Study 0: dCL/dy contour of the baseline BWB

adding: airfoil shape variables (Study 1), a trim constraint (Study 2), a CG position

variable and static margin constraint (Study 3), a bending moment constraint (Study

4), and planform design variables (Study 5). Finally, we consider multi-point opti-
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mization (Study 6). This series of optimization studies allow us to examine how the

optimization problem formulation impacts the practical design optimization of the

BWB.

The optimizations are performed using the Advanced Research Computing cluster

at the University of Michigan. Each computing node in this cluster has two six-core

2.67 GHz Intel Xeon X5650 processors per node. Each node has a total of 48 GB

RAM. The cluster uses InfiniBand networking for interconnections.

9.7.1 Study 1: Shape and Twist Design Variables

In this first study, we add airfoil shape design variables to the twist variables

already considered in the baseline optimization. A total of 240 shape design variables

are used to optimize the airfoil shape. As shown in Fig. 9.6, 12 airfoil sections are

equally distributed in the spanwise direction. Each section has 10 control points on

the upper surface and 10 control points on the lower surface. The angle-of-attack

is also allowed to change during the optimization. The CG is fixed at 40% MAC.

Only lift and geometry constraints are imposed. Therefore, one flow solution and

two adjoint solutions are needed at each iteration. The optimization converged in 10

hours using 240 processors; the convergence history of the optimization is shown in

Fig. 9.9.

Without any additional constraints, we expect to see a lift distribution that is close

to elliptical, along with weakened shocks. Figure 9.10 shows the pressure distribution,

twist, sectional airfoil shape, shock surface, and lift distribution of the twist-optimized

baseline and the optimized BWB for Study 1. A hypothetical elliptical lift distribution

is shown in gray. We compute the shock surface from the volume solution grid by

constructing an iso-surface of the normal Mach number [128]. The shock occurs where

the normal Mach number is one, i.e.,

Mn =
~u

a
· ∇p
|∇p|

= 1. (9.2)

The dimensions in the figures are normalized by span, ηs = z/2b, and by chord,

ηc = x/c.

As shown in the pressure distributions, the shape design variables make a signif-

icant contribution to the minimization of the drag. The baseline BWB exhibits a

front of very closely spaced pressure contour lines spanning a significant portion of

the wing, indicating a shock. The optimized BWB shows parallel pressure contour

lines with roughly equal spacing, indicating a nearly shock-free solution at the nom-
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Figure 9.9: Study 1: relative merit function (blue) and optimality (red) history of the
optimization

inal cruise condition. This is confirmed by the shock surface plots: we can see that

the baseline BWB has a shock on the upper surface, while the optimized design has

eliminated most of the shock at the design condition. The shock elimination can also

be seen on the airfoil Cp distributions. At ηs = 0.4 and ηs = 0.9, the sharp increase

in local pressure due to the shock becomes a gradual change from the LE to the TE.

The magnitude of Cp is also lowered near the LE.

The optimized lift distribution is much closer to the optimal elliptical lift dis-

tribution. This is achieved by altering the twist distribution. The highest twist is

near the Yehudi break at ηs = 0.6, where the strong shock occurred on the baseline

BWB. The drag coefficient is decreased by 39 counts. Twist angle at this section is

increased to 5 degrees. The fact that the twist distribution has changed so much rel-

ative to a geometry that was already optimized for twist emphasizes the importance

of simultaneously optimizing the twist and the airfoil shapes.

The angle-of-attack changed slightly from −0.4 deg to −1.0 deg. Since the CG is

fixed at 40% MAC, the static margin is changed only by the shift in the aerodynamic

center. The optimized design has reduced the static margin from 10.4% to 3.7%. A

detailed study of the CG placement and static margin is presented in Section 9.7.3.

To study the effect of the twist variables, we performed a separate optimization
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Figure 9.10: Study 1: optimized pressure distribution, sectional airfoil shape, shock
surface, twist, CG, neutral point (NP), and lift distribution of Study 0
(red) and Study 1 (blue) BWB

that optimized only for the airfoil shape variables and did not include the twist design

variables. The pressure distribution and airfoil profiles were similar to those for the

case where both twist and airfoil shape were optimized. As shown in Table 9.4,

the penalty for not including the twist variables is only 1.4 counts. Note, however,

that we always start the optimization with the twist-optimized baseline geometry.

Since the total variation of the optimized twist distribution is less than 5 degrees,

the airfoil shape variables are able to get close to the overall optimum. Note that

only aerodynamic performance is considered in this study. Other considerations,

such as stall speed or wing structure, would pose additional constraints on the twist

distribution.
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Coefficient CD CL AoA

Baseline 0.01309 0.206 −0.4
Twisted Optimum 0.00920 0.206 −1.0
Fixed Twist Optimum 0.00934 0.206 −0.2

Table 9.4: Study 1: comparison of twist design variables

9.7.2 Study 2: Trim Constraint

In this study, we investigate the effect of a trim constraint with a fixed CG. The

formulation is the same as that of the previous study, with the addition of a trim

constraint. Trim drag is more of a design driver in the BWB than in conventional

tube-and-wing configurations, because elevator trim affects the flow around the BWB

centerbody. Trim is also coupled to the longitudinal stability. Figure 9.11 shows the

pressure distribution, twist, sectional airfoil shape, shock surface, and lift distribution

of the optimized BWB for Studies 1 and 2.

The overall pressure contour is similar to that of Study 1. Compared to Study 1,

the upper surface shock has increased at the optimum. However, it is still less severe

than that of the baseline. The twist angles on both the centerbody and the outer wing

are reduced. The wing has nearly zero twist for a large portion of the outer wing.

The wingtip has a negative twist of 3 degrees (washout) in order to satisfy the trim

constraint. Two design features helped satisfy the trim constraints of the optimized

BWB. The first is a reflex near the TE throughout most of the span, resulting in

a significant change to the chordwise pressure distribution. Angle-of-attack changed

from −0.4 deg to 1.6 deg. Most lift is generated at the forward section of the wing,

while the aft section has significantly less lift to trim the aircraft. Therefore, the

net lift near the tip is reduced. The second feature is the unloaded wingtip. The

optimized wingtip airfoil has washout and less lift than that of Study 1. Unloaded

wingtip on a highly swept wing acts as a horizontal tail to trim the aircraft. Because

of the trim constraint, the optimized drag coefficient is 5 counts higher than that of

the previous study. This change is primarily due to a lower span efficiency and the

reflex in the TE.

To investigate the off-design conditions, we perform a Mach sweep from 0.6 to

0.875. We use a sub-FFD to deflect the control surface near the rear centerbody to

trim the aircraft at each condition, as shown in Fig. 6.2. The results are compared

with the twist-optimized baseline design in Fig. 9.12. By comparing the trimmed

baseline and optimized designs, we see that a trimmed drag pocket is achieved in the
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Figure 9.11: Study 2: optimized pressure distribution, sectional airfoil shape, shock
surface, twist, CG, NP, and lift distribution of Study 1 (red) and Study 2
(blue) BWB

transonic region from Mach 0.80 to 0.86. The baseline design starts the drag rise near

Mach 0.80, while the optimized design significantly delays the drag rise. The drag

coefficient of the optimized design remains nearly constant up to Mach 0.86.

In addition, by comparing the trimmed and untrimmed results, we can quantify

the trim drag at each condition. Figure 9.13 shows the trim drag of the baseline and

optimized BWB. We see that the baseline design has lower trim drag at low Mach

numbers. The optimized design, however, reverses this trend, and the trim drag

reduces with increasing Mach number up to the design Mach number. Although this

is a point design, the trim drag is relatively insensitive to the Mach number around

the design point.
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9.7.3 Study 3: CG Design Variable and Static Margin Constraint

In the previous study, we examined the trim constraint with a fixed CG location.

At the conceptual design stage, the CG can often be changed by moving systems, fuel,

engines, and payload. By allowing the CG to change within a given range, we may

discover additional benefits. To investigate the effect of CG location, we performed

the same optimization as in Study 2 at various CG locations: 30%, 40%, and 50%

MAC. The results are summarized in Table 9.5.

Coefficient CD Kn AoA

30% MAC 0.01032 19.6% 3.1
40% MAC 0.00972 7.4% 1.6
50% MAC 0.00941 −1.8% 1.4

Table 9.5: Study 3: comparison of optimized aerodynamic coefficients at various CG
locations

Both the drag coefficient and the static margin are strongly affected by the CG

location. Since a lower trim moment is required for an aft CG location, the trim

constraint tends to move the CG back. We see that as the CG moves aft, the drag

coefficient decreases, and the amount of reflex and washout is reduced. As the CG

moves aft, the static margin decreases. For a flying wing, the location of the NP

coincides with the aerodynamic center. For a fixed planform, the aerodynamic center

varies only slightly with the airfoil shape variables. Therefore, the resulting static

margin of the optimized design varies nearly linearly with the CG location.

Since the CG location is limited by both the trim and static margin, the problem

formulation with CG design variables is a well-posed optimization problem. Simply

adding CG design variables alone would result in the CG being as far aft as possible.

Therefore, the CG design variable has to be added in conjunction with the static

margin constraint. We perform another optimization with the CG position as a

design variable and a static margin constraint. The CG is allowed to vary between

30% to 50% MAC. The static margin constraint has a lower bound of 1%.

This optimization problem is more computationally intensive than the previous

cases for two reasons. First, each iteration requires two flow solutions and six adjoint

solutions to obtain the static margin and its gradient. Second, the static margin

gradient is a second-order derivative, since it is the gradient of the lift and moment

coefficient gradients. Therefore, to achieve an accurate static margin gradient, both

the flow and adjoint solutions must be converged to a higher tolerance, O(10−8). Fig-
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Figure 9.14: Study 3: optimized pressure distribution, sectional airfoil shape, shock
surface, twist, CG, NP, and lift distribution of Study 2 (red) and Study 3
(blue) BWB

ure 9.14 shows the pressure distribution, twist, sectional airfoil shape, shock surface,

and lift distribution of the optimized BWB for Studies 2 and 3.

The overall pressure contours and airfoil profiles are similar to those for the optimal

shape in the previous study. At the optimum, CG moves from 40% MAC to 47%

MAC, driven by the trim constraint. Compared to Study 2, less airfoil reflex and

wingtip unloading are needed to trim the BWB, resulting in an additional reduction

of 1.7 in the drag count. The static margin is driven to the lower bound of 1%. In this

study, CG is optimized based only on the aerodynamic performance and longitudinal

stability. In reality, additional factors must be considered, such as the aircraft systems

placement and the CG movement during operation, but these are beyond the scope

of this study.
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9.7.4 Study 4: Bending Moment Constraint

During the optimization, the aerodynamic load shifts. This may result in an

increase in the structural stresses, which would impact the structural weight and

thus the overall aircraft performance. A full aerostructural optimization, such as that

presented by Kenway et al. [59], is beyond the scope of this work, but to limit the

impact of the aerodynamic optimization on the structural weight, we add a center

plane bending moment constraint [132]. This study is identical to Study 1 except

for the addition of the bending moment constraint. The bending moment is taken

about the center plane of BWB. We perform a series of optimizations with various

bending moment constraints. The bending moment is constrained to be less than

100%, 80%, or 60% of the bending moment of the twist-optimized baseline. The

results are summarized in Table 9.6.

Coefficient CD CBM AoA

100% BM 0.00961 0.131 −1.8
80% BM 0.01103 0.105 0.9
60% BM 0.01399 0.078 3.5

Table 9.6: Study 4: comparison of optimized aerodynamic coefficients at various
bending moment constraints

The addition of bending moment constraints drives the lift distribution away from

elliptical. Figure 9.15 shows the lift distributions for each value of the bending mo-

ment constraint. A hypothetical elliptical span loading with the same lift is shown

in gray. The optimization with the 100% bending moment constraint achieves a lift

distribution that is the closest to elliptical. As the bending moment constraint de-

creases, more lift is shifted inboard to achieve the same lift with a reduced bending

moment. A 20% reduction in the center plane bending moment results in a 14.2

increase in the drag count. A 40% bending moment reduction incurs a 43.8 increase

in the drag count. At the reduced bending moment, the wingtip generates negative

lift to alleviate the bending moment. Thus, we see that the impact of the bending

moment constraint on aerodynamic performance is significant. For a careful trade-off

between aerodynamics and structure, we would need to optimize both the aerody-

namic shape and the structural sizing considering both the cruise performance and

multiple load conditions [59].

142



S

0 0.2 0.4 0.6
­0.5

0

0.5

1

1.5

2

2.5

C
l
c/c

80%

100%

60%

Figure 9.15: Study 4: Spanwise lift distribution of optimized designs with various
levels of bending moment constraint

9.7.5 Study 5: Planform Design Variables

In this study, we add planform variables to the previous study, which includes

bending moment and trim constraints. The centerbody planform shape is kept con-

stant. As shown in Fig. 9.6, the outer wing is divided into seven sections. Each

section has its own twist, chord, sweep, and span design variables. The change in

the planform shape, especially the span variables, would result in a heavier structure

if no bending constraint were imposed. The center plane bending moment is con-

strained to be less than or equal to that of the twist-optimized baseline. Its CG is

fixed at 40% MAC. MAC and the reference area are recomputed at each iteration to

take the planform variations into account. The resulting optimized design is shown

in Fig. 9.16. Outline of the baseline planform is shown in red.

The sweep angles of the outer wing of the optimized planform decrease by 4

degrees. The angle-of-attack of the optimized design is 0.6 deg. Even with the

degrees of freedom provided by the multiple sweep, span, and chord of the outer

wing sections, the optimization achieves a straight LE on the wing toward the end of

the optimization. Any intermediate LE kinks during the optimization are smoothed

out toward the end. The span of the optimized BWB increases by 3%. A further

increase in the span to reduce the induced drag is constrained by the center plane

bending moment and the additional viscous drag due to the increase in the surface

area. Because of the presence of the trim constraint, the wing airfoil has reflex near
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Figure 9.16: Study 5: optimized pressure distribution, sectional airfoil shape, shock
surface, twist, CG, NP, and lift distribution of Study 2 (red) and Study 5
(blue) BWB

the TE, and the chordwise pressure distribution is similar to that of Study 2.

The planform study shows that the baseline is already relatively close to the

optimal planform shape. Even with a marginal change in the planform, the additional

degrees of freedom in the planform lead to a lower drag than that with only shape

variables. The drag reduces by an additional drag count compared to Study 2, while

satisfying the bending moment constraint.

9.7.6 Study 6: Multi-Point Optimization

Transport aircraft operate at multiple cruise conditions because of variability in

both the missions and air traffic control restrictions. Single-point optimization at

the nominal cruise condition could inflate the benefit of the optimization: it may

improve the on-design performance while reducing the performance under off-design

conditions. In this study, we investigate the impact of a multi-point optimization
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formulation on the optimized BWB design. To isolate the problem from other effects

of the constraints, we choose to extend Study 1. The only difference is that the

objective is now the average of the drag coefficients at multiple flight conditions.

The flight conditions are the nominal cruise, ±10% of cruise CL, and ±0.1 of cruise

Mach, as shown in Table 9.7. More sophisticated ways of choosing multi-point flight

conditions can be used, such as an automated selection of the points that minimize

fleet-level fuel burn [133]. Figure 9.17 shows the multi-point optimized design at

the nominal cruise condition. The multi-point optimized design is compared to the

single-point optimum of Study 1.

Flight Condition CL Mach

1 0.206 0.85
2 0.206 0.84
3 0.206 0.86
4 0.185 0.85
5 0.227 0.85

Table 9.7: Study 6: Flight conditions for the multi-point optimization

The overall pressure distribution of the multi-point design is similar to that of the

single-point design. The twist and lift distributions are nearly identical. Most of the

differences are in the chordwise Cp distributions in the outer wing section. Because of

the multi-point formulation, the nominal cruise condition has less authority over the

shape changes. The drag coefficient of the multi-point optimum is 2 counts higher

than that of the single-point optimum, and the shock surface is also larger. Since all

the flight conditions are equally weighted, the optimizer trades off the drag between

the multiple flight conditions. The angle-of-attack of the optimized design at nominal

flight condition is −0.6 deg.

To better understand the effects of multi-point optimization, we plotted theML/D

contours of the baseline, single-point, and multi-point designs with respect to CL and

cruise Mach in Figure 9.18 to 9.21. The line along which the aircraft is neutrally

stable is shown in gray. ML/D provides a metric for quantifying aircraft range based

on the Breguet range equation with constant thrust specific fuel consumption. While

the thrust specific fuel consumption is actually not constant, assuming it to be con-

stant is acceptable when comparing range performance in a limited Mach number

range [126].

The baseline maximum ML/D is at a lower Mach number and a higher CL com-

pared to the cruise flight condition. The single-point optimization significantly in-
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Figure 9.17: Study 6: optimized pressure distribution, sectional airfoil shape, shock
surface, twist, CG, NP, and lift distribution of Study 1 single-point (red)
and Study 6 multi-point (blue) optimized BWB

creases the maximum ML/D and the ML/D at the operation condition. In addition,

the maximum ML/D occurs much closer to the nominal cruise condition. The shapes

of the contours are also altered to move the maximum toward the cruise flight condi-

tion. For fixed CL = 0.206, the maximum ML/D occurs near a cruise Mach of 0.85,

which is equivalent to the drag bucket in a drag divergence plot. For the multi-point

optimization, the flight conditions for optimization are spread in the Mach, CL space,

resulting in a more flattened ML/D near the maximum. ML/D is more uniform

near the operation flight conditions. The 99% ML/D contour is also larger than that

of the single-point optimum. By examining the ML/D, we see that the CL of the

maximum ML/D is still higher than the CL in our optimization. An increase in the

CL may further improve the aerodynamic performance of the optimized BWB. The

optimum CL occurs between 0.25 and 0.27. Since the wing loading is constrained by

the low speed performance, the only viable way to increase CL for the BWB is to

increase the cruise altitude. However, additional trade-offs, such as cabin pressure
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twist-optimized baseline BWB
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Figure 9.19: Study 6: ML/D contours, 99% ML/D, and neutral stability line of
single-point optimized BWB
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Figure 9.20: Study 6: ML/D contours, 99% ML/D, and neutral stability line of
multi-point optimized BWB
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and required thrust, must be taken into consideration.

9.8 Conclusions

In this chapter, we have presented a series of RANS-based aerodynamic shape

optimization studies of a BWB configuration to understand the trade-offs between

aerodynamic performance, and constraints on trim, stability, and bending moment.

These studies also explored the effect of considering different sets of aerodynamic

shape design variables (twist, airfoil shape and planform shape) in the design opti-

mization. Table 9.8 summarizes the results of the optimization studies.

Constraints
Study CD Design Variables CG Kn Geo Lift BM Trim Kn

0 0.01309 twist 40% 10.4% • •

1 0.00932 shape 40% • •
0.00920 shape, twist 40% 3.7% • •

2 0.01032 shape, twist 30% 19.6% • • •
0.00972 shape, twist 40% 7.4% • • •
0.00941 shape, twist 50% −1.8% • • •

3 0.00955 shape, twist, CG 47% 1.0% • • • •

4 0.00961 shape, twist 40% • • 100%
0.01103 shape, twist 40% • • 80%
0.01399 shape, twist 40% • • 60%

5 0.00962 shape, twist, planform 40% 6.5% • • • •

6 0.00942 shape, twist, multi-point 40% 2.8% • •

Table 9.8: Summary of the results of BWB aerodynamic design optimization studies

The BWB configurations obtained in Studies 0 and 1 had the lowest drag coeffi-

cient, but they are impractical since they are not trimmed. The airfoil shape design

variables proved essential to the reduction of the shock on the upper surface and the

wave drag associated with it. Enforcement of the trim constraint (Study 2) caused

a 5.6% increase in drag. By moving the CG aft from 40% MAC to 50% MAC, this

drag penalty was reduced to 2.3%, but resulted in a negative static margin (−1.8%).

Study 3 provides the best compromise between performance and stability by en-

forcing a small static margin that can be tolerated in a commercial airplane (1%) and

including the CG position as a design variable. This resulted in a trimmed configu-

ration that exhibits a nearly elliptical lift distribution and the lowest drag among the
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trimmed stable designs. This was achieved by a combination of washout and reflex

airfoils determined by the optimizer to be the best.

We also investigated the optimized BWB at off-design flight conditions by ana-

lyzing it for a range of Mach numbers while enforcing trim. The optimized design

exhibited significantly lower drag over the entire transonic regime when compared to

the baseline. In the optimized design, we observed a low trim drag at high speeds

and a high trim drag at low speeds, which is the opposite of the baseline BWB trend.

In Study 5 we further explored the design space by adding wing planform design

variables to the optimization, while enforcing a center plane bending moment con-

straint. The addition of planform variables achieved an additional drag reduction.

The optimized design increased the span by 3% and reduced the sweep angle by 4

degrees. This demonstrated the benefit of simultaneously optimizing the planform

and shape, and highlighted the importance of aerostructural considerations. One of

these considerations is the structural weight increase incurred by increases in span or

sweep, which we addressed by enforcing the bending moment constraint. Since the

right value for constraint requires a full aerostructural optimization that is beyond

the scope of this thesis, we investigated the effect of varying the bending moment

constraint on the optimal designs in Study 4. The results showed that when the

bending moment constraint was reduced to 60% of the baseline value, the optimal

design exhibited negative loading at the wingtips.

Finally, we studied the effect of multi-point optimization in Study 6. This resulted

in a more robust design than that of the single-point optimization, as evidenced by

the enlarged contour of the 99% maximum ML/D. We also compared the contours

of ML/D for the twist-optimized baseline, single point optimum and multi-point

optimum. These contours showed that the maximum ML/D occurs at a lower cruise

Mach number and higher CL than the design flight conditions, indicating that the

configuration should either fly higher, or have a smaller planform area (although

the engine performance would degrade with an altitude increase, and the planform

area is probably constrained by field performance). Nevertheless, the aerodynamic

shape optimization successfully moved the ML/D peak towards the design points,

and flattened the peak in the multi-point case.

Given the results of these studies, we believe that RANS-based aerodynamic shape

optimization has become a practical aircraft design tool that is especially useful for

the design of BWB configurations. This type of optimization was enabled by the

combination of a nonlinear constrained optimizer and an efficient computation of the

gradients of the aerodynamic force coefficients with respect to hundreds of shape de-
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sign variables. In the case of the BWB in particular, the optimal combination of wing

twist, and airfoil reflex to obtain the lowest drag while satisfying trim, stability and

structural constraints is not obvious, but numerical optimization can help designers

find the best possible configuration.
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CHAPTER 10

Final Remarks

This chapter presents the overall conclusions of this thesis, main contributions,

and future research directions.

10.1 Conclusions

With recent improvements in the efficiency and fidelity of numerical simulations,

aircraft design has become increasingly reliant on computational simulations and op-

timization. One of the most computationally intensive disciplines is the aircraft exter-

nal aerodynamic design. Computational fluid dynamics based on Reynold-averaged

Navier–Stokes equations is needed to accurately resolve the flow field in order to

achieve a practical design. High-fidelity CFD poses difficulties to numerical optimiza-

tion due to its high computational cost, especially when large number of shape de-

sign variables are used. Traditional optimization techniques, such as finite-difference

derivatives, design of experiments, or evolutionary optimization methods, become less

effective or even infeasible in high-fidelity aerodynamic shape optimization.

In Chapter 5, we demonstrated that gradient-based aerodynamic shape optimiza-

tion is required in order to maintain reasonable computational cost. It is, however,

often difficult to develop an efficient gradient computation to realize the benefit of

gradient-based optimization. In Chapter 3, we presented an approach to compute

the gradients of RANS equations with an SA turbulence model, using a combination

of adjoint method and automatic differentiation algorithms. In addition, we devel-

oped a coloring acceleration technique to further improve the efficiency of gradient

computations. We verified in Chapter 4 that the resulting gradients are accurate,

robust, and efficient. We performed a RANS-based and Euler-based aerodynamic

shape optimization of the ONERA M6 test case to demonstrate the need for RANS

adjoint. We found that due to the lack of viscous effects, Euler-based optimization
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tends to converge to non-physical optima, such as a design with rapid pressure re-

covery near the trailing edge of the wing. Even though RANS-based aerodynamic

shape optimization is more computationally intensive, it achieves more practical de-

signs and the optimization itself is also more robust. We also made improvements

to the aerodynamic shape optimization framework by developing a novel multilevel

optimization approach to reduce the computational cost by 84.5% in Chapter 6.

With this state-of-the-art RANS adjoint and aerodynamic shape optimization

framework, we performed several high-fidelity aerodynamic design optimization stud-

ies in this thesis. In Chapter 7, we began by applying this aerodynamic shape opti-

mization approach to improve the wing of a current-generation aircraft with a similar

size to the Boeing 777-200, the NASA Common Research Model. The drag coefficient

is minimized for one flight condition with respect to 720 shape design variables, sub-

ject to lift, pitching moment, and geometric constraints, using grids with up to 28.8 M

cells. The drag coefficient of the optimized design was reduced by 8.5% relative to

the CRM baseline: from 199.7 counts to 182.8 counts, with a zero-grid spacing value

of 181.9 counts. We also performed a multipoint optimization of the CRM wing.

This resulted in a more robust design than that of the single-point optimization, as

evidenced by the enlarged contour of the 99% maximum ML/D. We also compared

the contours of ML/D for the single-point baseline optimum and the multipoint op-

timum. Both the single-point and multipoint optimizations shifted the maximum

ML/D toward the nominal flight condition. In addition, the multi-modality of the

aerodynamic shape optimization problem was examined by starting optimizations

from randomly generated initial geometries. All optimal wings had similar airfoil

shapes, with an mean difference of 1.2 in. The variation of the merit function be-

tween the multiple local optima confirm that these points are indeed local minima,

and indicate that the design space consists of a convex bowl with a small flat bot-

tom that is multimodal. Based on our data, the minimum drag coefficient values

were within 0.1 counts (0.05%), and the radius of this flat bottom seems to be about

1.6 in. Given these small differences, it does not seem worthwhile to put much effort

into finding the global minimum for this problem.

In Chapter 8, we extended the RANS-based aerodynamic shape optimization stud-

ies to a near-term aircraft retrofit modification, a wing with morphing trailing edge.

A multipoint optimization, including a 2.5 g maneuver condition, was presented to

provide a baseline for the TE optimization. A total of 407 trailing edge optimizations

with different Mach number, altitude, and weight values were performed, to span

the entire cruise flight envelope. A drag reduction on the order of 1% is achieved
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for on-design conditions, and reductions of up to 5% were achieved for off-design

conditions. We further evaluated the performance of a morphing trailing edge by

comparing its benefits with those from a full morphing wing. This is done by plotting

the drag reduction contour and the ML/D contour. The full morphing wing yielded

only marginally lower drag and a similar ML/D contour. Therefore, morphing only

the TE can achieve an aerodynamic performance similar to that of a fully morphing

wing, without the drastic increase in wing morphing mechanism and weight. Finally,

we created a surrogate model of optimal trailing edge shapes to compute cruise fuel

burn for different flight missions. We observed about 1% fuel burn reduction using

the morphing trailing edge. More significant fuel burn reduction could be achieved

in climb and descent segments.

We further the aerodynamic design optimization to an unconventional aircraft

configuration, the blended-wing-body aircraft, in Chapter 9. The RANS adjoint and

high-fidelity aerodynamic shape optimization framework allowed us to examine the

trade-offs between drag coefficient, trim, and static margin of the BWB configuration.

The airfoil shape design variables proved essential to the reduction of the shock on

the upper surface and the wave drag associated with it. The enforcement of the trim

constraint caused a 5.6% increase in drag. By moving the CG aft from 40% MAC

to 50% MAC, this drag penalty was reduced to 2.3%, but resulted in a negative

static margin (−1.8%). The best compromise between performance and stability was

achieved by enforcing a small static margin that can be tolerated in a commercial

airplane (1%) and including the CG position as a design variable. This resulted in a

trimmed configuration that exhibits a nearly elliptical lift distribution and the lowest

drag among the trimmed stable designs. This was achieved by a combination of

washout and reflex airfoils determined by the optimizer to be the best. Given the

results of these studies, we believe that RANS-based aerodynamic shape optimization

developed in this thesis has become a practical aircraft design tool that is especially

useful for the design of aircraft configurations. This type of optimization was enabled

by the combination of a nonlinear constrained optimizer and an efficient computation

of the gradients of the aerodynamic force coefficients with respect to hundreds of shape

design variables. We believe that the numerical optimization can help designers find

the best possible configuration.
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10.2 Thesis Contributions

The optimization approaches and results presented in this thesis represent the cur-

rent state-of-the-art in high-fidelity gradient-based aerodynamic shape optimization.

The main contributions of this thesis are as follows:

1. Developed an accurate, efficient, and robust adjoint gradient algorithm based

on Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras tur-

bulence model. Forward mode automatic differentiation is used to reduce the

development time for forming the partial derivatives in the adjoint formulation.

2. Developed coloring acceleration scheme for the RANS state and spatial Jaco-

bians to allow efficient sparse matrix evaluations.

3. Implemented the first Euler and RANS-based aerodynamic optimization com-

parison to quantify the difference in the optimized designs.

4. Benchmarked several gradient-based and gradient-free optimizers on the aero-

dynamic shape optimization problems.

5. Developed a multilevel aerodynamic shape optimization acceleration technique

to reduce the computational cost by 85%.

6. Performed RANS-based aerodynamic shape optimization of a transonic wing.

The effects of shape design variables, thickness constraints, and single versus

multi-point formulation were quantified.

7. Investigated the multi-modality of an aerodynamic shape optimization prob-

lem. Recommendation for future gradient-based aerodynamic shape optimiza-

tion was provided.

8. Developed a series of optimal trailing edge shapes for a morphing trailing edge

wing to reduce the fuel burn for an conventional aircraft. The aerodynamic

benefit of morphing wing is evaluated and quantified.

9. Performed systematic RANS-based aerodynamic design optimization studies of

the blended-wing-body aircraft. The trade-offs between aerodynamic perfor-

mance, trim, and static margin were studied. Demonstrated the effectiveness

of RANS-based aerodynamic shape optimization on an unconventional config-

uration.
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10. Implemented planform design variables, such as sweep, span, and chord, on the

blended-wing-body configuration. A planform optimization considering trim

and stability of BWB was demonstrated.

10.3 Recommendations

Throughout this thesis, several research directions have been identified to further

improve the RANS adjoint and advance the state-of-the art of high-fidelity aerody-

namic shape optimization and aircraft design.

1. Although the forward mode RANS adjoint presented in this thesis is compu-

tationally efficient, the memory usage can be further reduced by computing

(∂R/∂xpt)T Ψ with reverse mode automatic differentiation and storing in a

matrix-free fashion. A significant amount of memory storage can be reduced

by only storing the matrix-vector product instead of the full Jacobian. The

corresponding increase in computational time is expected to be moderate.

2. The linearization of the Spalart-Allmaras turbulence model is presented in the-

sis. However, the automatic differentiation adjoint is not limited to any specific

turbulence model. Linearizations of additional turbulence models can be imple-

mented easily. A systematic study of effects of turbulence models on optimized

designs can be beneficial to aircraft design engineers.

3. Another possible research direction is to extend the adjoint to the time domain.

An implementation of a time-dependent adjoint could open the door to unsteady

aerodynamic optimization. Related applications include the optimization of:

helicopter blades, flapping wings, noise, etc.

4. In terms of the applications of the RANS adjoint, further improvements can be

made to include more practical objectives and constraints to the optimization,

such as low-speed constraints, flutter constraints, and structural constraints.

In addition, the aerodynamic shape optimization can be extended to RANS-

based aerostructural optimization to include aeroelasticity effects rather than

optimizing a rigid wing shape.

5. Finally, the aerodynamic shape optimization framework can be used to explore

additional aircraft configurations, such as the truss-braced wing configuration,

double-bubble configuration, etc.
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APPENDIX A

Additional Data from Optimizers Comparison

Study

Figure A.1: Wing shape optimization using SNOPT
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Figure A.2: Wing shape optimization using SLSQP

Figure A.3: Wing shape optimization using PSQP
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Figure A.4: Wing shape optimization using GCMMA
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APPENDIX B

Comparison of ML/D,
√
ML/D, and aM/c L/D

In this appendix, we present the comparison of ML/D,
√
ML/D, and aM/c L/D

for the purpose comparing the performance and robustness of aircraft configurations.

B.1 Background

The Breguet range equation, shown in Equation B.1, describes the maximum

range of a long range jet aircraft operating in the stratosphere.

R =
aM

c

L

D
ln
W1

W2

(B.1)

a is the speed of the sound. M is the Mach number. c is the thrust-specific fuel

consumption rate (TSFC). W1 is the weight of the aircraft at the beginning of the

cruise, and W2 is the weight of the aircraft at the end of the cruise. The speed of

sound a in this equation is assumed to be constant, which causes the aircraft to have

a constant shallow climb for a fixed angle of attack and Mach number.

The Brequet range equation is often used to quantify the performance of an air-

craft. The initial and final weight of the aircraft is usually fixed for an aerodynamic

design problem. Therefore, we can reduce the quantity of interests to aM/c L/D.

The contribute of the engine fuel consumption can be separated by assuming

a constant thrust-specific fuel consumption for a range of Mach numbers, further

reducing the quantity of interests to ML/D. In aircraft design, the 99% value of the

maximum ML/D contour is often used to examine the robustness of the design [37].

The point with the highest Mach number on that contour line corresponds to the
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long range cruise (LRC) point, which is the point at which the aircraft can fly at a

higher speed by incurring a 1% increase in fuel burn [127].

However, the constant TSFC assumption is only accurate for a turbojet engine.

The TSFC of a high bypass ratio turbofan varies with the square root of Mach

number [126]. Therefore, if we substitute c with
√
M in the range equation, we can

simplify the quantity of interests to
√
ML/D. In this appendix, we compare ML/D,√

ML/D, and aM/c L/D using a single-point optimized wing from Chapter 7. We

add 100 drag counts to the computed drag to account for the drag due to the fuselage,

tail, and nacelles.

B.2 Comparison of ML/D,
√
ML/D, and aM/c L/D for a

Single-Point Optimized Wing

We use the results of the singe-point optimized wing design from Chapter 7 to

perform the comparison. We plot the contours of each quantify of interests for a range

of lift coefficients and Mach numbers, as shown in Figure B.1 to B.4.
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Figure B.1: The contour of ML/D

The TSFC is computed based on a genetic GE90 engine model in Numerical

Propulsion System Simulation (NPSS). We perform an inverse solve to compute the
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throttle setting for each flight conditions to match the thrust and drag coefficient.

The blank area in Figure B.3 indicates the thrust required exceeded the limitation of

the engine.

As shown in the figures, all three quantities of interests have similar trends and

contour shapes. The contour and the maximum location of the
√
ML/D is much

closer to those of the aM/c L/D. The maximum of ML/D occurs at a higher Mach

number and slightly lower CL.

To exam the comparison at the operating condition, we take a 2-dimensional slice

in the M-CL space for a constant CL = 0.5. The results are shown in Figure B.5.

Since the numerical values of each quantity are different, we normalize the lines

based on the maximum values of each quantity. We see that both
√
ML/D and

aM/c L/D have the same maximum location at Mach 0.850, which is the same as

the Mach number of the single-point optimization in Chapter 7. The maximum of

ML/D occurs at a slightly higher Mach number of 0.851. We conclude that all

three quantities of interests show similar trends in Mach-CL design space. However,√
ML/D should be used for aircraft with high bypass ratio turbofan to accurately

predict the performance.
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Figure B.5:
√
ML/D and aM/c L/D predicts the same maximum peak for CL = 0.5.
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APPENDIX C

Additional Data from Morphing Trailing Edge

Optimization Results

Figure C.1: Morphing trailing edge optimization at M = 0.85, Alt = 28,000 ft, and
W = 347,500 kg.
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Figure C.2: Morphing trailing edge optimization at M = 0.86, Alt = 25,000 ft, and
W = 347,500 kg.

Figure C.3: Morphing trailing edge optimization at M = 0.86, Alt = 33,000 ft, and
W = 347,500 kg.
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Figure C.4: Morphing trailing edge optimization at M = 0.85, Alt = 34,000 ft, and
W = 273,200 kg.

Figure C.5: Morphing trailing edge optimization at M = 0.85, Alt = 28,000 ft, and
W = 273,200 kg.
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Figure C.6: Morphing trailing edge optimization at M = 0.75, Alt = 25,000 ft, and
W = 273,200 kg.

Figure C.7: Morphing trailing edge optimization at M = 0.75, Alt = 37,000 ft, and
W = 273,200 kg.
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Figure C.8: Morphing trailing edge optimization at M = 0.86, Alt = 25,000 ft, and
W = 273,200 kg.

Figure C.9: Morphing trailing edge optimization at M = 0.86, Alt = 37,000 ft, and
W = 273,200 kg.
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Figure C.10: Morphing trailing edge optimization at M = 0.85, Alt = 39,000 ft, and
W = 198,900 kg.

Figure C.11: Morphing trailing edge optimization at M = 0.75, Alt = 25,000 ft, and
W = 198,900 kg.
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Figure C.12: Morphing trailing edge optimization at M = 0.75, Alt = 41,000 ft, and
W = 198,900 kg.

Figure C.13: Morphing trailing edge optimization at M = 0.86, Alt = 25,000 ft, and
W = 198,900 kg.
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Figure C.14: Morphing trailing edge optimization at M = 0.86, Alt = 41,000 ft, and
W = 198,900 kg.
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173



1
%

2%

2%

2
%

3%

3
%

4%

4
%

5%
8%

10%

Mach

A
lt

it
u

d
e

 (
ft

)

0.76 0.8 0.84

26000

28000

30000

32000

34000

36000

% drag reduction with morphing wing

W = 273,200 kg
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APPENDIX D

Euler-based Aerodynamic Design Optimization of

a Blended-Wing-Body Aircraft

In this appendix, we present the results of Euler-based aerodynamic design opti-

mization of the blended-wing-body aircraft.

D.1 Problem Formulation

Aerodynamic shape optimization of the BWB needs to be carefully formulated and

constrained in order to achieve a physically feasible design. The following sections

describe the objective function, design variables, and constraints.

D.1.1 Objective Function

We choose drag coefficient as the objective function for the optimization under

prescribed lift. The drag coefficient has two components: drag coefficient from the

Euler solver, and the skin friction drag coefficient. The van Driest method is used

to capture the missing skin friction drag from the Euler solver. Skin friction drag is

particularly important for trade-off between wing span and wing area.

D.1.2 Design Variables

Primary design variables are the geometric shape variables distributed on the FFD

volume. A total of 800 shape variables are scattered on the lower and upper surfaces

of the FFD volume, as shown in Figure D.1. The large number of shape variables

provides more degrees of freedom for the optimizer to explore, and to fine-tune the

sectional airfoil shape and thickness-to-chord ratio at each spanwise location. We use
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significantly more shape variables than in the previous studies in the literature. This

is made possible by the implementation of an adjoint gradient calculation. We found

that the cost of computing shape gradients is nearly independent of the number of

shape variables.

Figure D.1: The BWB mesh (left), FFD volume and 800 shape control points (right)

The next set of design variables is the spanwise twist distribution. A total of

5 section twist design variables is used. The center of twist rotation is fixed at

the reference axis, which is located at the quarter chord of each section. The twist

variables provide a convenient way for the optimizer to minimize induced drag by

adjusting the spanwise lift distribution, as well as to meet the root bending moment

constraint.

Planform variables, such as span and sweep, are also considered in the optimiza-

tion, and they contribute primarily to the reduction of induced drag and wave drag,

respectively. The span design variable stretches the FFD volume in the spanwise

direction. The sweep variable shears the FFD volume in chordwise direction. The

planform variables can only be added to the optimization together with the bend-

ing moment constraint and the skin friction estimation, since the planform variation

changes the structural weight and surface area significantly.

Auxiliary design variables are added to facilitate the formulation of the optimiza-

tion problem. The angle-of-attack variable ensures that the lift coefficient constraint

can be satisfied. We use an individual design feasible (IDF) approach to update the

reference CG location (xCG) and the mean aerodynamic chord (MAC). This requires

the addition of a target variables, xtCG and MACt. Table D.1 summarizes the design

variables.
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Design Variables Count Design Variables Count
Airfoil Shape 800 Angle-of-attack 1
Twist 5 Target CG location 1
Span 1 Target MAC 1
Sweep 1 Total 810

Table D.1: Summary of the design variables used in the BWB aerodynamic shape
optimization problem

D.1.3 Constraints

As optimizers tend to explore any weakness in the numerical models, an optimiza-

tion problem needs to be carefully constrained in order to yield a physically feasible

design. Several geometric constraints are implemented. We impose thickness con-

straints near the leading edge (LE), trailing edge (TE), mid-chord, and centerbody

to prevent the airfoil thickness from affecting low speed aerodynamic performance, to

get a reasonable structural box depth, and to prevent the violation of the manufac-

turing constraints. These constraints also ensure sufficient height in the centerbody

cabin and sufficient thickness at the LE and TE for the installation of high-lift devices

such as slats and flaps. The volume of the centerbody is also constrained to meet

the requirements for cabin and payload space. The wing volume constraints are also

imposed to ensure sufficient space for fuel. In order to avoid generating non-physical

kinked LE and TE, the shape variables located at the LE and TE are constrained

so that each pair of shape variables can move only in opposite direction with equal

magnitudes.

Due to the absence of a structural model, we use root bending moment as a sur-

rogate for the structural weight trade-offs. The root bending moment is constrained

to be equal or less than the baseline bending moment. With this constraint imposed,

the optimized spanwise lift distribution tends less outboard loading instead of the

elliptical distribution. The bending constraint is necessary to capture the trade-offs

between aerodynamic performance and structural weight.

In addition, the BWB has to be trimmed in cruise conditions without the need

to deflect its control surfaces which would result in trim drag. Therefore, a trim

constraint is added. There are several ways to trim a flying wing: by unloading wing

tips on a swept wing, by adding reflex to the airfoils at the trailing edge, and by

adding anhedral to wing tips. Our optimization problem has all the required degrees

of freedom to explore the design space except for the anhedral wing tips. In addition,

stability is a particularly important design aspect of the BWB configuration. With
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the absence of a conventional empennage, it is not immediately obvious whether a

positive static margin can be achieved on a BWB aircraft. Therefore, we constrained

the static margin to be greater than 5%. The static margin can be calculated as the

ratio of the moment and lift derivatives.

Kn = −CMα

CLα

, (D.1)

We calculate CMα and CLα using finite differences with an angle-of-attack step size of

0.1 degree. The static margin constraint incurs an additional computational cost. For

each iteration, one additional flow solution and two additional adjoint solutions are

required. Both flow and adjoint solutions have to be converged more accurately than

usual to obtain an accurate static margin gradient. This is particularly important

for static margin gradients with respect to shape variables, since they have relatively

small magnitudes compared to other gradients.

The IDF formulation requires two additional compatibility constraints for the

CG location and MAC. Table D.2 summarizes the constraints for the optimization

problem.

Constraints Count Constraints Count
Lift coefficient 1 Trim 1
Thickness 99 Static margin 1
Internal volume 99 CG compatibility 1
LE, TE control points 40 MAC compatibility 1
Total 243

Table D.2: Summary of the constraints used in the BWB aerodynamic shape opti-
mization problem

D.2 Aerodynamic Shape and Planform Optimization Results

The following sections discuss the results from performing a sequence of aerody-

namic shape and planform optimizations. The baseline BWB geometry is used as the

initial design. The optimizations are performed with an Euler solver and a friction

drag estimation, as described in Section D.1. All cases are run on high performance

computing clusters in the Center for Advanced Computing at the University of Michi-

gan. Each computing node comprises two six-core 2.67 GHz Intel Xeon X5650 pro-

cessors with 4 GB of RAM per core. All the nodes are interconnected with InfiniBand

networking. A total of four cases are presented in this section.
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• Case 1: Baseline lift-constrained drag minimization with respect to shape vari-

ables and with geometric constraints

• Case 2: Lift-constrained drag minimization with respect to shape variables,

with geometric, root bending moment, and trim constraints

• Case 3: Lift-constrained drag minimization with respect to shape and planform

variables, with geometric, root bending moment, and trim constraints

• Case 4: Lift-constrained drag minimization with respect to shape and plan-

form variables, with geometric, root bending moment, trim, and static margin

constraints

D.2.1 Case 1: baseline lift-constrained drag minimization with respect

to shape variables and with geometric constraints

In order to validate our optimization formulation, we begin with a baseline opti-

mization case with only geometric and lift constraints. The design variables are shape

variables, twist, and angle-of-attack. Without any additional constraints, we expect

to see an optimum elliptical lift distribution and weakened shocks. Since only one

flow solution and two adjoint systems need to be solved, the problem requires less

computational time than the other cases. The optimization is performed using 16

cores, and is converged in 34 hours with a total of 91 major optimization iterations.

Figure D.2 shows the pressure distribution, airfoil shape, and lift, thickness-to-chord

ratio (t/c), twist distributions of the baseline and optimized BWB configurations.

The aerodynamic coefficients of the baseline and optimized BWB are listed in Ta-

ble D.3. Figure D.3 shows the convergence history of the feasibility, optimality, and

merit function.

Coefficient Baseline Optimized Difference
CD 0.02696 0.02245 -16.7%
CL 0.440 0.440 0.0%
CMroot 0.2599 0.2731 +5.1%
CMtrim

0.1938 0.2037 +5.1%

Table D.3: Case 1: aerodynamic coefficients of the baseline and optimized BWB

The optimized BWB achieves an optimal elliptical spanwise lift distribution,

mostly by varying the sectional twist distribution. Both root and tip of the wing

are twisted down and the mid-span section is twisted up to match the elliptical lift.
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Figure D.2: Case 1: the results of the baseline lift constrained drag minimization with
shape variables and geometric constraints. Pressure contour, sectional Cp

distribution, airfoil shape, and spanwise lift, t/c, twist distributions of
the baseline design (left) and the optimized design (right) are shown.
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Figure D.3: Case 1: SNOPT optimization convergence history of the feasibility, op-
timality, and merit function

The airfoil shape of the centerbody is not significantly altered. Changes made to the

shape of the centerbody are mainly to smooth out the pressure distribution. A large

portion of lift is generated on the aft section of the centerbody because of the airfoil
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camber, resulting in a pitch down moment. The optimized BWB further increases

the pitch down moment by 5.1%, indicating the need for a trim constraint.

A strong stock can be seen at the leading edge of the upper wing section on the

baseline BWB. The shock transits into a compression wave toward the centerbody.

The shock structure on the optimized BWB is significantly different. The pressure

distribution on the upper surface is flattened compared to that of the baseline BWB.

The strong shock at the leading edge is weakened and shifted to the mid-chord,

reducing the wave drag. The drag coefficient is reduced by 45 counts or 16.7%. With

the optimal lift distribution, lift is shifted toward the wing tip. We can see that

the root bending moment increases by 5.1%, which indicates that a heavier structure

would be required. Therefore, a root bending moment constraint is necessary to

constrain the impact on structural weight.

This baseline optimization serves as a validation of the optimization formulation.

We obtain an elliptical lift distribution and reduced shock strength on the upper

surface. We can also conclude that additional constraints are needed to achieve a

practical design.

D.2.2 Case 2: lift-constrained drag minimization with respect to shape

variables, with geometric, root bending moment, and trim con-

straints

As discussed in the previous case, we need to capture the trade-offs between the

aerodynamic performance, structural weight, and trim drag. Therefore, root bending

moment and trim constraints are added. The root bending moment is constrained to

be less than or equal to the initial bending moment. Two additional adjoint systems

are needed to compute the gradient of those constraints. This optimization problem is

converged in 72 hours using 16 cores, and requires a total of 321 iterations. Figure D.4

shows the pressure distribution, airfoil shape, and lift, t/c, twist distributions of the

baseline and optimized BWB configurations. Note that for the purpose of visualize

the airfoil shape, x and y axes of the sectional airfoil plots are not of the same

scale. Therefore, the sectional twist in these plots is not to scale. The aerodynamic

coefficients of the baseline and optimized BWB are listed in Table D.4. Figure D.5

shows the convergence history of the feasibility, optimality, and merit function.

With the addition of root bending moment constraint, the optimized spanwise

lift distribution is no longer elliptical. The lift on the wing section decreases more

linearly toward the wing tip. This departure from the elliptical lift distribution limits

span efficiency and hinders improvements in induced drag. However, it benefits the
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Figure D.4: Case 2: the results of the lift constrained drag minimization with shape
variables, geometric, root bending moment, and trim constraints. Pres-
sure contour, sectional Cp distribution, airfoil shape, and spanwise lift,
t/c, twist distributions of the baseline design (left) and the optimized
design (right) are shown.

Coefficient Baseline Optimized Difference
CD 0.02696 0.02381 -11.7%
CL 0.440 0.440 0.0%
CMroot 0.2599 0.2599 0.0%
CMtrim

0.1938 0.0 -100%

Table D.4: Case 2: aerodynamic coefficients of the baseline and optimized BWB

structural weight and lateral control response for a flying wing. Two design features

that lead to satisfaction of trim constraints on a trimmed flying wing are observed

on the optimized BWB. The first is a reflex near the trailing edge of the optimized

centerbody airfoil, resulting in a significant change to the chordwise lift distribution

on the centerbody. All lift is generated at the forward section of the centerbody, while

the aft centerbody has negative lift to trim the aircraft. As a result, the net lift on the

centerbody is reduced, as shown on the lift distribution plot. The second feature is

the unloaded wing tip. The optimized wing tip airfoil has washout and less lift than

the baseline. The unloaded wing tips on a highly swept wing act as the horizontal

tail to trim the aircraft.
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Figure D.5: Case 2: SNOPT optimization convergence history of the feasibility, op-
timality, and merit function

Due to these constraints, optimized drag is reduced by 31 counts as compared to

45 counts in the previous case. This change is primarily due to a lower span efficiency

and the presence of the reflex centerbody airfoil, which causes the lift induced drag

and the trim drag to increase.

D.2.3 Case 3: lift-constrained drag minimization with respect to shape

and planform variables, with geometric, root bending moment, and

trim constraints

In this case, we seek the benefits of adding planform design variables to the opti-

mization described in Case 2. By allowing changes to the span and sweep, we provide

the optimizer with greater degrees of freedom and an efficient way of satisfying the

trim constraints and reducing wave drag. This optimization problem is converged in

95 hours with 16 cores, and requires with a total of 426 iterations. The increased

optimization time is mainly due to the increase in design space dimensionality. Fig-

ure D.6 shows the pressure distribution, airfoil shape, and lift, t/c, twist distributions

of the baseline and optimized BWB. The aerodynamic coefficients of the baseline and

optimized BWB are listed in Table D.5. Figure D.7 shows the convergence history of

the feasibility, optimality, and merit function.

The sectional pressure distribution and pressure contour are relatively similar to

those in the previous cases. The addition of planform variables does not significantly

alter the pressure distribution. The optimized BWB also has a reflex centerbody
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Figure D.6: Case 3: the results of the lift constrained drag minimization with shape
and planform variables, geometric, root bending moment, and trim con-
straints. Pressure contour, sectional Cp distribution, airfoil shape, and
spanwise lift, t/c, twist distributions of the baseline design (left) and the
optimized design (right) are shown.

Coefficient Baseline Optimized Difference
CD 0.02696 0.02338 -13.3%
CL 0.440 0.440 0.0%
CMroot 0.2599 0.2599 0.0%
CMtrim

0.1938 0.0 -100%

Table D.5: Case 3: aerodynamic coefficients of the baseline and optimized BWB

and an unloaded wing tip to trim the aircraft. The span of the optimized BWB is

approximately the same as the baseline, while the sweep angle of the wing increased

significantly. The increase in sweep angle reduces wave drag and also helps to trim the

aircraft by increasing the moment arm of the unloaded tips. The wing tip generates

a higher amount of lift compared to the previous case. The amount of centerbody

reflex is reduced. The optimizer finds that trim with sweep and twist is more effective,

which results in lower trim and induced drag. Increase in span is limited because of

the root bending moment constraint and skin friction drag penalty.
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Figure D.7: Case 3: SNOPT optimization convergence history of the feasibility, op-
timality, and merit function

D.2.4 Case 4: lift-constrained drag minimization with respect to shape

and planform variables, with geometric, root bending moment,

trim, and static margin constraints

The optimization setup for this case is similar to that of Case 3, with an exception

of an additional static margin constraint. The goal of this case is to use numerical

optimization to achieve an optimized longitudinally stable and trimmed configuration

that would be otherwise difficult to design with a trial-and-error design process. The

static margin is computed by performing finite difference of the lift and moment

coefficients. We also added the payload location as a design variable, and this is

represented by the CG location. The CG is allowed to move between 20% to 50% of

the MAC.

This optimization problem is more computationally intensive than the previous

cases for several reasons. Each iteration requires two flow solutions and six adjoint

solutions in order to obtain the static margin and its gradient. The static margin

gradient is a second order derivative, since it is the gradient of lift and moment

coefficient gradients. Therefore, in order to achieve an accurate static margin gradient,

both flow and adjoint solutions need to be converged to a higher tolerance (10−10).

Finite-differencing the lift and moment coefficients perturbs only the angle-of-attack.

If a Newton-type iteration, such as the Newton–Kylov method, is used to solve the

flow solution, the Maratos effect may cause the Newton iteration to stall. We increase

number of Runge–Kutta iteration before switching to the Newton-Krylov solver. A
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flow field solution reset is used as a fail-safe procedure if the solution stalls.

This optimization problem converged in 58 hours on 64 cores with a total of 138

iterations. Figure D.8 shows the CG and neutral point (NP) locations, pressure dis-

tribution, airfoil shape, and lift, t/c, twist distributions of the baseline and optimized

BWB configurations. The aerodynamic coefficients of the baseline and optimized

BWB are listed in Table D.6. Figure D.9 shows the convergence history of the feasi-

bility, optimality, and merit function.
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Figure D.8: Case 4: the results of the lift constrained drag minimization with shape
and planform variables, geometric, root bending moment, trim, and static
margin constraints. CG and NP locations, pressure contour, sectional Cp

distribution, airfoil shape, and spanwise lift, t/c, twist distributions of
the baseline design (left) and the optimized design (right) are shown.

Coefficient Baseline Optimized Difference
CD 0.02696 0.02339 -13.2%
CL 0.440 0.440 0.0%
CMroot 0.2599 0.2599 0.0%
CMtrim

0.1938 0.0 -100%
Kn 19.1% 5.0% /

Table D.6: Case 4: aerodynamic coefficients of the baseline and optimized BWB
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Figure D.9: Case 4: SNOPT optimization convergence history of the feasibility, op-
timality, and merit function

Both static margin and trim constraints are sensitive to the CG location. Since

a lower trim moment is required for an aft CG location, the trim constraint tends to

move the CG backward by increasing CG design variable or by increasing the sweep

angle. On the contrary, the CG location is also constrained by the static margin,

since an aft CG location decreases the static margin. For a flying wing, location of

the NP coincides with the aerodynamic center, the point about which the pitching

moment coefficient does not vary with angle-of-attack. For a fixed planform, the

aerodynamic center varies only slightly with the airfoil shape variables. The static

margin constraint is most sensitive to the sweep angle. As sweep angle increases,

both aerodynamic center and mean aerodynamic chord shift aft. However, the mean

aerodynamic chord moves at a faster rate than the aerodynamic center. Thus, the

static margin decreases for an increasing sweep. This effect can be seen from the

optimization results. The sweep angle only increases slightly as compared to the

previous case, which is constrained by the static margin. The static margin of the

BWB is reduced from 19.1% in the baseline configuration to 5.0% in the optimized

configuration. The CG moved from 25% of the MAC to 47%.

Because of the aft CG location than the previous cases, the trim constraint be-

comes less difficult to satisfy. We can see from the pressure distribution that the

amount of reflex and down twist is reduced. Only aft centerbody has a reflex shape

airfoil. The optimized BWB has better aerodynamic performance due to the relaxed

CG location. It has a drag that is 36 counts lower than the baseline.
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D.2.5 Summary of the Aerodynamic Shape and Planform Optimization

Results

The four cases of aerodynamic shape optimization demonstrates the benefits and

impacts of various design variables and constraints. As one would expect, the opti-

mized BWB has the lowest drag coefficient when only lift and geometric constraints

are enforced. However, this case also has a higher root bending moment and pitch

moment than the baseline BWB. By adding trim and root bending moment con-

straints, the optimized drag coefficient increases by 14 counts relative to Case 1. The

impact on the aerodynamic performance is mainly due to a less ideal spanwise lift

distribution and increased drag from the reflex centerbody airfoil. We further explore

the design space by adding span and sweep design variables to the optimization. The

additional degrees-of-freedom provide about 4 drag count of improvement. This re-

duction comes from a lower skin friction drag and wave drag. Finally, we add both

static margin constraint and CG design variable to the problem. We relax the CG

location to allow the optimized BWB to meet the static margin constraint without

a large impact on the aerodynamic performance. The optimized configuration has

less sweep than the previous case, which is limited by the static margin constraint.

Allowing the CG location to move improves the performance: the CG is shifted aft

to reduce the reflex on the centerbody and the downwash on the wing tip. The op-

timized BWB maintains the same drag coefficient as the case without static margin.

Table D.7 summarizes the four aerodynamic shape optimization cases.
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