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Abstract 

Genetic association studies using sequencing, dense-array genotyping, or sequencing-based 

imputation provide the means to identify low-frequency and rare variants associated with 

diseases and traits, but analysis of these variants presents new statistical challenges.  Single 

marker tests (e.g. logistic and linear regression), and methods to combine information 

across studies (e.g. joint and meta-analysis) may be poorly calibrated and/or of low power.  

The calibration and power of aggregation tests, where multiple rare variants are analyzed 

jointly, have not been evaluated for variants on the X chromosome.  In my dissertation, I 

address three topics: 

First, for case-control studies, I evaluate the calibration and power of four logistic 

regression tests in joint and meta-analysis for low-frequency and rare variants and 

demonstrate that:  (a) for joint analysis, the Firth bias-corrected test is best (e.g. most 

powerful among well-calibrated tests); (b) for meta-analysis of balanced studies (equal 

numbers of cases and controls), the score test is best, but is less powerful than Firth test-

based joint analysis; and (c) for meta-analysis of sufficiently unbalanced studies, all four 

tests can be anti-conservative, particularly the score test. 

Second, for quantitative trait (QT) studies, I evaluate the calibration and power of linear 

regression in joint and meta-analysis and demonstrate for normally distributed QTs that: 

joint and sample-size weighted meta-analysis are equally well-calibrated and powerful for 

variants with expected minor allele count E[MAC]≥10; inverse-variance weighted meta-

analysis is slightly anti-conservative for small-sized studies.  For non-normally distributed 

QTs, joint and meta-analysis is equally anti-conservative for low-frequency and rare 

variants.  Inverse-normal transformation of the QT remedies this problem, but 

transforming QTs of any distribution reduces power.
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Third, for case-control and QT studies, I evaluate the calibration and power of three 

aggregation tests for the X chromosome: burden, SKAT, and SKAT-O.  For case-control 

studies, tests are relatively well-calibrated across all simulation scenarios.  Power is usually 

slightly increased when the coding scheme for male genotypes matches the underlying 

model, but power loss is small when the model is misspecified.  Differences in male:female 

ratio in cases and controls have little effect on power.  For QTs, calibration and power 

results are very similar to those for binary traits. 
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Chapter 1:  Introduction 

Many human diseases and biological traits can be hereditary in nature [Gottlieb and Root, 

1968; Kaprio et al., 1992; Silventoinen et al., 2003], but their genetic mechanisms are not 

fully understood.  In genome-wide association studies (GWAS), we aim to identify genetic 

variants that cause differences in biological traits or disease risk.  While many associated 

variants identified by GWAS are not causal, associated variants help localize genes or 

genomic regions that may harbor the true causal variants.  Through fine-mapping and 

functional studies, we hope to identify the true causal variants, and better understand the 

biological mechanisms underlying human diseases and traits [Shea et al., 2011; Kulzer et 

al., 2014]. 

Genotype array-based common-variant GWAS have identified thousands of genetic variants 

associated with hundreds of different traits [Hindorff et al., 2012].  Investigators typically 

use case-control studies to detect disease-associated and cohort studies to detect 

quantitative trait (QT)-associated variants.  We also often analyze QTs collected from case-

control studies to identify variants associated with these QTs. To increase power to detect 

novel variants with small effect sizes in GWAS, investigators often combine samples across 

multiple association studies, typically using meta-analysis of summary-level association 

results [Scott et al., 2007], and less frequently, joint analysis of the combined individual-

level data [Schizophrenia Psychiatric Genome-Wide Association Study Consortium, 2011]. 

Although early genotyping arrays can only assay hundreds of thousands of common 

variants per individual, these variants are sufficient to tag a large proportion of the 

common variation in the population [International HapMap Consortium, 2005].  Since 

studies use different genotype arrays, only the small subset of overlapping variants can be 

meta-analyzed together directly.  Genotype imputation using early reference panels (such 

as HapMap haplotypes [International HapMap Consortium, 2005]) fills in missing common 
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genotypes with high accuracy, and allows the meta-analysis of the same dense set of 

genetic markers across all available samples [Marchini et al., 2007; Li et al., 2010]. 

Nearly all associated variants identified by GWAS are common [Hindorff et al., 2012].  

Tagging single nucleotide polymorphisms (SNPs) on early genotype arrays, combined with 

genotype imputation, accurately captures a large proportion of common variation, but 

could not reliably tag low-frequency (0.005 < minor allele frequency [MAF] ≤ 0.05) and 

rare (MAF ≤ 0.005) variants [Zeggini et al., 2005].  Most low-frequency and rare variants 

are inaccurately imputed, because they are poorly tagged, and difficult to phase [Asimit and 

Zeggini, 2012].  For many traits, the associated common variants have small effect sizes and 

only account for a small fraction of the total genetic variability [Maher, 2008; Manolio et al., 

2009].  Low-frequency and rare variants may have larger effect sizes to explain a portion of 

this "missing heritability", leading to new insights on the genetic architecture of different 

traits [Cirulli and Goldstein, 2010]. 

Next generation sequencing has great promise to evaluate the impact of low-frequency and 

rare variants on human diseases and traits.  As sequencing costs decrease and accuracy 

increases, many sequencing-based association study designs are now being undertaken.  

Sequencing of hundreds to a few thousand study samples can allow investigators to 

evaluate the impact of low-frequency variation on traits, although sequencing costs remain 

prohibitive for larger sample sizes.  Investigators can also leverage existing GWAS cohorts 

by imputation using dense, sequencing-based reference panels, such as those from the 

1000 Genomes Project [The 1000 Genomes Project Consortium, 2010] or the Genetics of 

Type 2 Diabetes (GoT2D) study.  Finally, specialized low-cost genotyping arrays, such as 

the Exome Chip [2013], and Metabochip [Voight et al., 2012], facilitate analysis of specific 

genomic regions in tens of thousands of individuals. 

New statistical challenges emerge for the analysis of low-frequency and rare variants.  For 

both binary and quantitative traits (QT), for common variants, Single marker tests (e.g. 

logistic and linear regression) are well-calibrated and powerful, and meta-analysis has 

comparable power to joint analysis [Lin and Zeng, 2010].  These methods can still be used 

to analyze low-frequency variants (0.005< MAF ≤0.05) given sufficiently large sample sizes, 
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but specific tests in joint or meta-analysis may have poor calibration and/or low power for 

analysis of low-frequency variants.  For example, the logistic regression Wald test can be 

extremely conservative when analyzing low-frequency variants in case-control studies 

[Xing et al., 2012].  For analysis of low-frequency variants, the calibration and power of 

logistic regression tests for case-control studies, and linear regression for quantitative 

traits (QT) studies in joint and meta-analysis, has not been fully investigated.  Further, 

combining data across multiple studies to increase power is critical to detect both common 

and low-frequency variant associations.  For both binary and quantitative traits, meta-

analysis has comparable power to joint analysis for common variants [Lin and Zeng, 2010], 

but this is not necessarily true for low-frequency variants.  Hence, we need a careful 

comparison of different association tests in both joint and meta-analysis for low-frequency 

variants. 

For rare variants (MAF ≤ 0.005), single marker tests can have (very) low power unless 

sample sizes are very large.  Furthermore, for case-control studies, variants with fewer 

than a minimum number of minor allele counts [MAC] can never attain the typical GWAS 

significance threshold (α = 5×10-8), used to account for multiple testing of approximately 

one million independent markers in the human genome [Risch and Merikangas, 1996; 

Dudbridge and Gusnanto, 2008].  For example, in a balanced study with equal number of 

cases and controls (Ncases = Ncontrols = 1,000) and no additional covariates, a variant must 

have MAC ≥ 26 to have the possibility to attain a Fisher's Exact Test (FET) p-value  <  

5×10-8; this remains true for all balanced studies with larger sample sizes (Ncases = Ncontrols > 

1,000).  For QTs, individual rare variants can be significantly associated at α = 5×10-8 if 

individuals carrying the rare allele also have QT values in the tails of the phenotypic 

distribution.  Nonetheless, the utility of single marker tests is diminished for both binary 

and quantitative trait studies when the variants of interest are rare in frequency. 

In comparison, aggregation tests, where multiple markers in a region are jointly analyzed, 

can be more powerful for analyzing rare variants than single marker tests [Li and Leal, 

2008].  In addition, we can evaluate the significance of aggregation tests at a less stringent 

threshold, typically α = 2.5×10-6 to account for testing approximately 20,000 genes in the 

human genome, compared to α = 5×10-8 for testing single markers genome-wide.  While 



 

 
 4 

there are a multitude of published aggregation tests, most tests can be classified into two 

broad categories: (1) burden tests, and (2) dispersion tests.  Burden tests assume that 

causal variants have similar effect sizes and measure the association between the 

(weighted) sum of the rare alleles in a region with the disease or QT; examples include the 

Combined Multivariate and Collapsing (CMC) test [Li and Leal, 2008] and Weighted Sum 

Statistic (WSS) [Madsen and Browning, 2009].  Dispersion tests assume a distribution of 

effect sizes and measure deviations from the expected distribution; examples include the 

Sequence Kernel Association Test (SKAT) [Wu et al., 2011] and C-alpha [Neale et al., 2011] 

test.  Each class of tests is most powerful for genomic regions with different underlying 

genetic architectures [Wu et al., 2011; Lee et al., 2012].  For example, burden tests are most 

powerful when there are many causal variants with the same direction of effect in the 

genomic region, while dispersion tests are most powerful when causal variants have 

opposite directions of effect.  Since the underlying genetic architecture is generally 

unknown, Lee et al. [2012] proposed the optimal unified association test (SKAT-O) to 

combine the strengths of burden and dispersion tests, and showed that SKAT-O is generally 

powerful across different genetic architectures. 

These aggregation tests were developed to analyze rare variants on the autosomal 

chromosomes.  Analysis of rare variants on the X chromosome requires proper treatment 

of diploid female and haploid male subjects.  For example, while we typically code variant 

genotypes for females as the number of minor alleles g = {0,1,2}, there are at least two 

possible coding schemes for male genotypes.  If the variant is in a locus with X-inactivation 

[Lyon, 1961], one copy of the female allele is inactivated so one copy of the male allele 

might be considered equivalent to two copies of the female allele; we might choose to code 

male genotypes as g = {0,2}.  However, if the variant is in a locus without X-inactivation, we 

might choose to code male genotypes as g = {0,1}.  Hence, we need specialized analysis 

methods to analyze X chromosomal data, but existing methods focus on single marker 

analysis, and are not powerful for rare variants [Zheng et al., 2007; Clayton, 2008].  To my 

knowledge, there are no aggregation association tests developed for analyzing rare 

variants on the X chromosome. Hence, we need to evaluate the applicability of existing 
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aggregation tests for analyzing the X chromosome for two different coding schemes for 

male genotypes. 

In this dissertation, I focus on three topics related to statistical methods for analyzing low-

frequency and rare variants from genetic association studies.  First, for case-control 

studies, I evaluate the calibration and power of logistic regression tests in joint and meta-

analysis for low-frequency variants [Ma et al., 2013].  Second, for QT studies, I evaluate the 

calibration and power of linear regression in joint and meta-analysis for low-frequency 

variants.  Third, for case-control and QT studies, I evaluate the calibration and power of the 

burden, SKAT, and SKAT-O aggregation tests for variants on the X chromosome. 

In Chapter 2, for case-control studies, I seek to (1) identify the association test with 

maximal power among tests with well-controlled type I error rate and (2) compare the 

relative power of joint and meta-analysis tests.  I use analytic calculation and simulation to 

compare the empirical type I error rate and power of four logistic regression-based tests:  

Wald, score, likelihood ratio, and Firth bias-corrected.  I demonstrate for low count variants 

(roughly MAC < 400, empirically determined by the simulations) that:  (1) for joint analysis, 

the Firth test has the best combination of type I error and power; (2) for meta-analysis of 

balanced studies (equal numbers of cases and controls), the score test is best, but is less 

powerful than Firth-test based joint analysis; and (3) for meta-analysis of sufficiently 

unbalanced studies, all four tests can be anti-conservative, particularly the score test.  I also 

establish MAC, rather than MAF, as the key parameter determining test calibration for joint 

and meta-analysis. 

In Chapter 3, for QT studies, I assess and compare the calibration and power of linear 

regression in joint and meta-analysis for QT association analysis across all a wide range of 

allele frequencies, but concentrate on low-frequency and rare variants, and examine the 

impact of sample size, additional covariates, and non-normally distributed QTs, and 

additional covariates.  I show that for variants of any frequency that for normally-

distributed QTs with inverse-normal transformation within study, joint analysis and 

sample-size weighted meta-analysis are equally well-calibrated and powered for variants 

with expected E[MAC] ≥ 10, but inverse-variance weighted meta-analysis is slightly anti-
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conservative for small-sized studies; joint and meta-analysis are increasingly conservative 

for E[MAC] < 10.  These results continue to hold when modeling the effects of additional 

covariates.  For non-normally distributed QTs, joint and meta-analysis can become equally 

anti-conservative for low-frequency and rare variants.  Inverse-normal transformation of 

the QT remedies this problem, but the transformation reduces power for QTs of any 

distribution.  These results continue to hold when modeling the effects of additional 

covariates.  Hence, for association analysis of variants of any frequency, given normally 

distributed QTs, I recommend either joint or meta-analysis using linear regression. 

In Chapter 4, for case-control and QT studies, I evaluate the calibration and power of three 

aggregation tests for the X chromosome: burden, SKAT, and SKAT-O.  For case-control 

studies, I show that all tests are relatively well-calibrated across all simulation scenarios.  

As expected, the power of each test depends on the underlying genetic architecture of the 

analyzed region.  Power is usually slightly increased when the coding scheme for male 

genotypes (e.g. with or without X-inactivation) matches the underlying genetic model, but 

misspecifying the coding scheme only results in small power loss.  Power only varies 

slightly between datasets with different male:female ratios in cases and controls.  For QTs, 

burden and SKAT are well-calibrated, and SKAT-O is very slightly anti-conservative; 

patterns of power are very similar to those for binary traits. 

In Chapter 5, I summarize my results, discuss efficient simulation strategies for estimating 

type I error rates at stringent thresholds, and present my ideas for future work.
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Chapter 2: Recommended joint and meta-analysis strategies for case-

control association testing of single low count variants 

Introduction 

Genome-wide association studies (GWAS) have identified thousands of common variants 

associated with hundreds of diseases and traits [Hindorff et al., 2012].  The standard GWAS 

analysis framework using asymptotic-theory tests has proven to be well-calibrated and 

powerful, given sufficiently large sample sizes.  In this context, for analysis of binary traits 

such as disease status, classical logistic regression-based Wald, score, and likelihood ratio 

tests have well-controlled type I error rates and are asymptotically equivalent [Cox and 

Hinkley, 1974].  Since individual studies often are not large enough to detect variants with 

modest genetic effects, information can be combined across multiple studies using either 

meta-analysis of study-level association results or joint analysis of the combined 

individual-level data.  For common variants, meta-analysis is widely used since there are 

fewer logistical and ethical constraints in sharing association results than sharing 

individual-level data, and since meta-analysis has near equivalent power to joint analysis 

[Lin and Zeng, 2010]. 

Sequencing-based study designs including next-generation sequencing, imputation using 

dense reference panels, and specialized genotyping arrays provide new opportunities to 

test low frequency or low count variants for disease association.  Here we operationally 

define as low count a variant with minor allele count (MAC) < 400, equivalent to minor 

allele frequency (MAF) < 0.05 for a study with N = 4000 individuals, or MAF < 0.01 for N = 

20000.  For a given study design with N > 2000, we demonstrate that MAC provides a more 

consistent and sample-size invariant measure of the genetic variant's inherent information, 

compared to MAF.  We also show that a MAC of 400 is a rough threshold separating 
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variants for which tests have relatively poor calibration (for MAC < 400) from relatively 

good calibration (for MAC > 400) for balanced and not too unbalanced studies. 

For analysis of low count variants, collapsing [Li and Leal, 2008] and burden [Madsen and 

Browning, 2009; Wu et al., 2011] tests, in which multiple markers are analyzed together, 

are often performed.  However, single marker tests remain important for variants that have 

sufficient counts.  Analysis of individual low count variants poses new challenges and 

questions.  The asymptotic assumptions for logistic regression may no longer be valid, 

resulting in either conservative or anti-conservative test behavior.  For example, the Wald 

test is extremely conservative for low count variants [Hauck and Donner, 1977; Xing et al., 

2012].  Since sequencing-based studies may discover tens of millions of mostly low count 

variants, we require even more stringent significance thresholds than for analysis of high 

count variants in GWAS, further straining asymptotic assumptions.  Little is known about 

the relative efficiency of joint and meta-analysis for low count variants. 

In this paper, we aim to identify the most powerful test(s) with well-controlled empirical 

type I error in joint and meta-analysis of binary traits for low count variants.  In situations 

where all evaluated tests are either conservative or anti-conservative, we aim to identify 

the "best" test having type I error rates nearest to but not exceeding the nominal threshold, 

and with greatest power.  To do so, we compare analytically calculated and simulation 

estimated type I error rates and power for four logistic regression tests in joint and meta-

analysis.  We evaluate these tests across a wide range of MACs at stringent significance 

thresholds in studies with varying sample size and case-control imbalance.  For low count 

variants, our results show that joint analysis using the Firth bias-corrected logistic 

regression test [Firth, 1993] is consistently best for both balanced and unbalanced studies.  

For meta-analysis of balanced studies, the logistic regression score test is best.  Comparing 

joint and meta-analysis for balanced studies, Firth test-based joint analysis is more 

powerful than score test-based meta-analysis.  For meta-analysis of substantially 

unbalanced studies, all of the tests evaluated can be anti-conservative.  We establish MAC 

as the key parameter determining test calibration. 
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Materials and Methods 

Notation 

We consider first a single case-control study with total sample size N.  For individual i, let Yi 

= 1 or Yi = 0 denote a case or control respectively, and Xi = 0, 1, 2 the number of minor 

alleles for a specific genetic variant. 

Logistic regression tests 

We consider four asymptotic tests based on the logistic regression model 

 ii XY   )]1Pr(logit[  (Equation 2.1) 

where   is the study-specific intercept and   is the genotype log odds ratio (OR).  We wish 

to test the null hypothesis of no association H0: 0 .  The Wald test statistic is 

 )ˆ(ˆ  SEW   (Equation 2.2) 

where ̂  is the maximum likelihood estimate (MLE) for   and )ˆ(SE  is its standard error.  

Given the log-likelihood ),( l , the likelihood ratio test statistic is 

 )]ˆ,ˆ()0,~([2  llLR   (Equation 2.3) 

where ~  is the restricted MLE of  under the null model, and )ˆ,ˆ(   is the MLE of ),( 

under the full model.  The score test statistic is 

 )var(  UUS   (Equation 2.4) 

where   /lU is the component of the score function corresponding to parameter   

evaluated at )0,~(),(   .  The variance of the score statistic [Cox and Hinkley, 1974] is 

 )0,~()0,~()0,~()0,~()var( 1   IIIIU   

where BAlIAB  2  is the AB component of the observed Fisher information matrix.  The 

Wald and score test statistics are evaluated relative to a standard normal distribution, the 

likelihood ratio test statistic relative to a 2
1 distribution. 
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In logistic regression models, "separation" occurs when cases and controls can be perfectly 

explained by a non-trivial linear combination of the covariates [Albert and Anderson, 

1984].  Separation occurs most often in small studies.  It can also occur in larger studies 

with categorical covariates for which some categories are rare (for example, low count 

variants), since at least one covariate category may occur only in cases or only in controls.  

In separated datasets, logistic regression produces strongly biased parameter estimates 

diverging to ±.  Firth [1993] proposed a penalized likelihood function to correct the first-

order asymptotic bias of parameter estimates which is especially relevant for separated 

datasets.  The Firth bias-corrected log-likelihood function is 

 ),(log5.0),(),(*  Ill   

where ),( I is the information matrix.  The bias-corrected likelihood ratio statistic 

described by Heinze and Schemper [2002] is 

 )]ˆ,ˆ()0,~([2 *****  llF   (Equation 2.5) 

where *~   and )ˆ,ˆ( **   are the corresponding bias-corrected MLEs for the null and full 

models (using the observed information matrix), respectively.  The bias-corrected 

likelihood ratio statistic is evaluated relative to a 2
1  distribution.  We modified Ploner's R 

implementation of the bias-corrected logistic regression test [Ploner, 2010] to increase 

computational efficiency, and included the modified implementation in the EPACTS 

software [Kang, 2012]. 

Combining data across studies: joint and meta-analysis 

We next consider K case-control studies in which study k has sample size Nk.  In joint 

analysis, we perform association testing on the individual-level genotype and phenotype 

data from all N = ∑k Nk individuals across the K studies.  Thus, for each asymptotic test 

(Equations 2.2-2.5), we use the joint log-likelihood constructed based on all N individuals.  

To account for differences between studies in the logistic regression model (Equation 2.1), 

it is possible to include population or study-specific covariates such as study indicators or 

principal components and modify the asymptotic test statistics (Equations 2.2-2.5) 

accordingly. 
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In meta-analysis, we perform a separate association test within each study and combine 

the study-level association results (for example, using p-values and directions of effect, 

transformed into z-scores).  For each asymptotic test (Equations 2.2-2.5) for study k, we 

use the study-specific log-likelihood constructed based on the relevant Nk individuals.  We 

use sample-size weighted meta-analysis, since this requires only study-level p-values and 

direction of effect and so is applicable to all of the statistical tests we evaluated.  We assume 

fixed underlying effects rather than random effects for each study since we wish to 

maximize power for hypothesis testing, rather than focus on effect estimation. 

For study k, we determine the corresponding quantile kq  with 2
1  distribution, with upper 

tail probability equal to the association p-value, and calculate the equivalent z-score 

kk qZ  , with sign based on direction of effect.  The sample-size weighted meta-analysis 

z-score is 

  


K

k k

K

k kkSS NZNZ
11

 

where )/(4 ,0,1,0,1 kkkkk NNNNN  is the effective sample size of study k with N1,k cases and N0,k 

controls [Mantel and Haenszel, 1959; Han and Eskin, 2011]. 

Analytical calculation of type I error rate for joint analysis 

For joint analysis, we calculate type I error rates for significance levels α = 5×10-5 and 5×10-

8 by enumerating all possible MAC configurations, and summing the probabilities of 

configurations that reject H0, similar to a method described by Upton [Upton, 1982].  For 

simplicity, we assume a dominant disease model, which is a good approximation to a 

multiplicative model (on the OR scale) for low count variants, since individuals 

homozygous for the minor allele are rare.  For simulation-based estimation of type I error 

rates and power in the next section, we assume a multiplicative disease model (on the OR 

scale).  In a single study with N1 cases and N0 controls, let T1 and T0 denote the number of 

cases and controls who carry at least one copy of the minor allele.  Under the null 

hypothesis, given population MAF p and assuming Hardy-Weinberg equilibrium, T1 and T0 

have binomial distributions: 
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There are )1()1( 01  NN  possible MAC configurations, and the joint probability of each 

configuration is the product of the corresponding marginal probabilities.   

We calculate the Wald, score, likelihood ratio, and Firth bias-corrected p-values for every 

MAC configuration.  The exact type I error rate for a given test is 

   


1 0

0i 0 01 ][],Pr[
N N

j ijvaluepIjTiT   

where ],Pr[ 01 jTiT  is the probability for the (i,j)th configuration and ][  ijvaluepI  is an 

indicator whether the configuration yields significant evidence for association at level α.  

Analytical calculation allows us to determine type I error rates efficiently at stringent 

significance thresholds (α = 5×10-8) for a wide range of sample sizes and degrees of case-

control imbalance. 

Simulation-based estimation of type I error and power for joint and meta-analysis 

For meta-analysis, analytic calculation of type I error is computationally infeasible since the 

number of possible configurations across multiple studies becomes extremely large.  

Instead, we simulate datasets using R [R Development Core Team, 2012] based on the 

logistic regression model (Equation 2.1) assuming disease prevalence 10%.  Each dataset is 

simulated based on a causal variant with specified population-level MAF (and 

corresponding expected MAC) and genotype OR.  In contrast to the dominant model 

assumed in the analytical calculations, we assume the more commonly used multiplicative 

genetic model (on the OR scale) in the simulated datasets.  We verify that even for a variant 

with MAF = 0.05, type I error and power estimates for dominant (analytical) and 

multiplicative (simulated) models are nearly identical, and result in the same relative 

rankings among the tests (data not shown).  For simplicity, we did not include additional 

covariates.  We simulate full datasets with 10000/10000, 8000/12000, 5000/15000, and 

1000/19000 cases and controls, respectively.  We subdivide each full dataset into K = 10 

equal-sized sub-studies with identical case-control ratios, analyze each sub-study 

separately, and meta-analyze the sub-study association results.  We perform  up to 10 
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million simulation replicates under the null model (OR = 1) to estimate type I error rates at 

α = 5×10-4  or  5×10-5, and 10000 replicates under alternative models (OR > 1) to estimate 

power at α = 5×10-8. 

Genetics of type 2 diabetes (GoT2D) study 

To illustrate these methods, we analyze an early data-freeze subset of the whole-genome 

sequencing data from the Genetics of Type 2 Diabetes (GoT2D) study, which aims to assess 

the effect of low frequency variation on T2D risk in Northern Europeans.  Our dataset 

contains 908 individuals (499 T2D cases and 409 controls) from three contributing studies:  

(1) 195 Swedish and Botnian Finnish individuals (116 cases / 79 controls) from the 

Diabetes Genetics Initiative, (2) 575 Finnish individuals (304/271) from the Finland-

United States Investigation of NIDDM Genetics (FUSION) study, and (3) 138 British 

individuals (79/59) from the UK T2D Genetics Consortium.  We perform joint analysis on 

the combined sample and sample-size weighted meta-analysis on association results from 

each of the three contributing studies using EPACTS [Kang, 2012] for association testing 

and METAL [Willer et al., 2010] for meta-analysis.  To match simulation settings, we did not 

adjust for additional covariates in these analyses. 

Results 

Overview 

We examine empirical type I error rates and power in joint and meta-analysis for the four 

logistic regression tests across a range of MACs, sample sizes, and degrees of case-control 

imbalance.  For joint analysis, we analytically calculate empirical type I error rates for a 

nominal significance threshold of α = 5×10-8.  For sample-size weighted meta-analysis, we 

estimate type I error using simulation at a less stringent threshold (α = 5×10-4  [Figure S2.2 

only] or 5×10-5) due to computational constraints.  For both joint and meta-analysis, we 

estimate power using simulation at α = 5×10-8 over a range of effect sizes (suited to the 

variant MAC).  We seek to identify the "best" test with highest power while maintaining a 

well-controlled type I error rate.  We confirm the consistency of type I error rates for a 

variant with fixed MAC. 
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Type I error rates of joint and meta-analysis tests 

We first examine joint analysis type I error rates (α = 5×10-8) for a single balanced study 

with 10000 cases and 10000 controls (Figure 2.1A).  For high count variants (expected 

MAC > 400; MAF > 0.01 for N = 20000), we focus on type I error estimates for a variant 

with expected MAC = 2000 (MAF = 0.05); we observe that all tests are well-calibrated.  For 

low count variants (E[MAC] < 400; MAF < 0.01), joint analysis using the Firth test (red solid 

line) consistently has type I error rates nearest to while not exceeding the nominal 

threshold.  The score and Wald tests are very conservative, while the likelihood ratio test is 

slightly anti-conservative for some MACs. 

Next, we consider type I error rates (α = 5×10-5) for meta-analysis of 10 balanced sub-

studies each with 1000 cases and 1000 controls (Figure 2.1G).  For high count variants, all 

tests are again well-calibrated.  For low count variants, score test-based meta-analysis 

(blue dashed line) has type I error rates nearest to but not exceeding the nominal 

threshold.  Meta-analysis using Firth and particularly Wald test results are more 

conservative, while using likelihood ratio test results is again anti-conservative for some 

MACs.  Comparing the joint and meta-analysis tests with type I error rates nearest to but 

not exceeding the nominal threshold, the Firth test-based joint analysis (red solid line; 

Figure 2.1D) is less conservative than the score test-based meta-analysis (blue dashed line; 

Figure 2.1G).  For example, at E[MAC] = 40 (MAF = 0.001), the empirical type I error rate 

(at α = 5×10-5) for Firth test-based joint analysis (4.2×10-5) is less conservative than score 

test-based meta-analysis (2.3×10-5). 

We extend our investigation of joint analysis of unbalanced studies with 5000/15000 (1:3) 

and 1000/19000 (1:19) cases and controls, respectively (Figure 2.1B-C).  For high count 

variants, the Firth (red) and likelihood ratio (black) tests are well-calibrated, but the score 

and Wald tests can be anti-conservative given substantial case-control imbalance.  For low 

count variants, Firth test-based joint analysis has type I error rates consistently nearest to 

but not exceeding the nominal threshold.  The Wald and particularly the score test become 

extremely anti-conservative for increasingly unbalanced studies, while the likelihood ratio 

test can be slightly anti-conservative for some MACs.  We observe these trends for joint  
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Figure 2.1:  Type I error rates by minor allele count (MAC) for logistic regression 
tests in joint and meta-analysis. 

(A - C) Analytically calculated type I error rates (α = 5×10-8) for joint analysis; (D - F) 
empirical type I error rates (α = 5×10-5) for joint analysis; and (G - I) empirical type I error 
rates (α = 5×10-5) for sample-size weighted meta-analysis.  Type I error rates for joint 
analysis are estimated for studies with 10000/10000, 5000/15000, and 1000/19000 total 
cases and controls; meta-analysis is based on partitioning the full dataset into 10 equal-
sized sub-studies.  The horizontal dotted line denotes the corresponding nominal 
significance threshold.  Points in panels D - I are based on 107 simulation replicates so that 
the nominal significance threshold of 5×10-5 corresponds to 500 rejections; empirical type I 
error rates between 4.6×10-5 and 5.4 ×10-5 have 95% confidence intervals which include 
the nominal value. 
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Figure 2.2:  Type I error rates by case-control ratio for logistic regression tests in 

joint and meta-analysis. 

(A, B) Analytically calculated type I error rates (α = 5×10-8) for joint analysis; (C, D) 

empirical type I error rates (α = 5×10-5) for joint analysis; and (E, F) empirical type I error 

rates (α = 5×10-5) for sample-size weighted meta-analysis.  Type I error rates are estimated 

for a high count (expected MAC = 2000; MAF = 0.05), and low count (E[MAC] = 40; MAF = 

0.001) variant, in studies with N = 20000 individuals and varying case-control ratios.  The 

horizontal dotted line denotes the corresponding nominal significance threshold. 
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analysis type I error rates at α = 5×10-8 across a wide range of case-control ratios for high 

count (Figure 2.2A) and low count (Figure 2.2B) variants. 

Finally, we examine type I error rates for meta-analysis of 10 unbalanced sub-studies each 

with 500/1500 (1:3) or 100/1900 (1:19) cases and controls.  For high count variants, in a 

1:3 study, all meta-analysis tests are well-calibrated (Figure 2.1H); in a 1:19 study, meta-

analysis of Firth, score, and likelihood ratio test results can be slightly anti-conservative 

(Figure 2.1I).  For low count variants, all four tests can be highly anti-conservative for 

specific combinations of allele counts and case-control ratios.  For example, at E[MAC] = 40 

(MAF = 0.001) in a 1:3 study, meta-analyses of every test except Wald are anti-

conservative; in a 1:19 study, all except the likelihood ratio test are anti-conservative.  For 

meta-analysis of studies with case-control ratios more extreme than approximately 2:3 (or 

3:2), all tests can be anti-conservative (Figure 2.2F). 

Power of joint and meta-analysis tests 

We first examine the power (α = 5×10-8) for joint and meta-analysis tests in balanced 

studies.  For high count variants (E[MAC] = 2000; MAF = 0.05), all tests have near identical 

power for both joint and meta-analysis, as expected [Lin and Zeng, 2010] (Figure 2.3A).  

For low count variants (E[MAC] = 40; MAF = 0.001), we focus on tests with type I error 

rates not exceeding the nominal threshold (Figure 2.3D).  Comparing joint and meta-

analysis, Firth test-based joint analysis (red solid line) is more powerful than score test-

based meta-analysis (blue dashed line).  Meta-analysis of Wald test results has lowest 

power among all the tests.  These results are consistent with the observation that statistical 

power often corresponds to relative conservativeness: more conservative tests usually 

have lower power. 

Next we evaluate power for joint and meta-analysis tests in unbalanced studies.  For high 

count variants, again all tests have near identical (1:3 study; Figure 2.3B) or similar (1:19 

study; Figure 2.3C) power for both joint and meta-analysis.  For low count variants, most 

power comparisons are not meaningful since all joint and meta-analysis tests except Firth 

test-based joint analysis can be anti-conservative for specific combinations of allele counts 

and case-control ratios (Figure 2.3E-F).  Nonetheless, we again observe some 
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correspondence between increased test conservativeness and reduced test power in 

unbalanced studies. 

Figure 2.3:  Simulation-based power curves for joint and meta-analysis. 

Simulated power (α = 5×10-8) in joint analysis (solid) and sample-size weighted meta-
analysis (dashed) for (A - C) a high count variant (expected MAC = 2000; MAF = 0.05); and 
(D - F) a low count variant (E[MAC] = 40; MAF = 0.001).  Power for joint analysis is 
estimated for studies with 10000/10000, 5000/15000, and 1000/19000 total cases and 
controls; meta-analysis is based on partitioning the full dataset into 10 equal-sized sub-
studies. 
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Figure 2.4:  Joint analysis type I error rates by sample size for fixed expected minor 
allele count (MAC). 

Analytically calculated joint analysis type I error rates for single balanced (case-control 
ratio 1:1), unbalanced (1:3), and very unbalanced studies (1:19) of various sample sizes.  
For each study, variant allele frequencies are selected so that variants have (A - C) expected 
MAC = 2000; (D -F) expected MAC = 400; or (G - I) expected MAC = 40.  The horizontal 
dotted line denotes the corresponding nominal significance threshold (α = 5×10-8).  Very 
conservative or anti-conservative tests with type I error rates that exceed the vertical axis 
scale are not displayed. 
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Consistent test calibration with fixed total MAC  

All of the results shown so far (Figure 2.1, 2.2, 2.3) refer to analyses with a total sample size 

of N = 20000 individuals.  Here, we examine joint analysis (Figure 2.4, S2.1; α = 5×10-8) and 

meta-analysis (Figure S2.2; α = 5×10-4) type I error rates while varying N inversely to MAF, 

so that the expected MAC remains constant.  For each case-control ratio, we observe a 

remarkable consistency of type I error rates across a broad range of sample sizes (N = 2000 

to 50000) and MAF for all four tests in both joint and meta-analysis.  The conservative or 

anti-conservative behavior of each test at a particular MAC, case-control ratio, and choice of 

joint or meta-analysis is almost invariant to N (given N > 2000).  This demonstrates that 

MAC, rather than MAF, is the better index to describe the calibration of each test. 

For the study designs we have considered, we find that MAC = 400 is a useful threshold 

separating high count and low count variants, based on our type I error results in balanced 

(1:1) and moderately unbalanced (1:3) studies.  For variants with MAC < 400, we observe 

that all joint and meta-analysis tests can have different degrees of conservative or anti-

conservative behavior (Figure 2.1).  In contrast, for variants with MAC > 400, all tests are 

generally well-calibrated (for not too imbalanced studies).  Hence, our threshold of MAC = 

400 provides an approximate, sample size invariant threshold distinguishing high and low 

count variants, and a rule-of-thumb guideline for test selection.  However, a more stringent 

MAC threshold may be needed for studies with more extreme case-control imbalance. 

Detailed comparison of the four logistic regression tests  

Our results show that the logistic regression tests, while asymptotically equivalent, are not 

equivalent when testing low count variants at stringent significance thresholds, even with 

large sample sizes.  To understand the observed patterns of type I error rate and power for 

a low count variant (expected MAC = 40), we compare joint analysis test p-values for all 

possible case-control configurations for a variant with MAC = 40 in a study of N = 20000 

individuals (Figure 2.5, upper panels).  In Figure 2.5 (lower panels), horizontal bars denote 

the rejection region for each test at a nominal significance threshold of 5×10-8, and the 

histogram displays hypergeometric probabilities for each MAC configuration.  Tests with 

rejection regions containing configurations with greater total probability have higher type I 

error rates and power (averaged across all sampled MACs). 
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Figure 2.5:  Logistic regression p-value distributions for fixed total minor allele count 
(MAC). 

For a variant with MAC = 40, the upper panels display p-values for all 41 possible allele 
configurations for each test in a single study of (A) 10000/10000, (B) 5000/15000, and (C) 
1000/19000 cases and controls, respectively.  The horizontal dotted line denotes the 
corresponding nominal significance threshold (α = 5×10-8).  The lower panels display 
horizontal bars indicating the rejection region (p-value < 5×10-8) for each test and 
hypergeometric probabilities of each allele configuration. 

 

For a balanced study, at the low and high extremes of case MAC, the likelihood ratio test 

has the most significant p-values at each MAC, followed by the Firth, score, and Wald test p-

values (Figure 2.5A, upper panel).  The rejection regions contain the most probability for 

the likelihood ratio and Firth tests, less for the score test, and none for the Wald test 

(Figure 2.5A, lower panel).  When other MACs consistent with an expected MAC of 40 are 

considered, the likelihood ratio test has the largest probability in the rejection region (data 

not shown).  Tests with the highest to lowest type I error rates (likelihood ratio, Firth, 

score, Wald) (Figure 2.1A) mirror the observed trend for the rejection regions. 
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For an unbalanced (1:19) study, in configurations with 10-25 heterozygotes in cases, we 

observe the score, Wald, Firth, and likelihood ratio tests in order of decreasing significance 

(Figure 2.5C, upper panel).  Again, this corresponds to the total configuration probability 

encompassed by the rejection regions (Figure 2.5C, lower panel), and the least to most 

conservative tests (Figure 2.1C), averaged across the sampled MACs.   

In both balanced and unbalanced studies, the Wald test has substantially less significant p-

values for configurations with zero or few alleles in either cases or controls (that is, 

(nearly) separated data), and thus has little or no power to detect the strongest 

associations.  This unfortunate property of the Wald test is exacerbated in meta-analysis 

since each contributing study has a much smaller total MAC.  As such, meta-analysis of 

Wald test results has extremely low power (green dashed line; Figure 2.3D-F) and should 

not be used.  

Figure 2.6:  Comparison of score test-based meta-analysis and Firth test-based joint 
analysis p-values in the GoT2D study. 

For different minor allele count (MAC) categories, comparison of score test-based meta-
analysis and Firth test-based joint analysis p-values. 

 

Comparison of tests in joint and meta-analysis of GoT2D data 

We analyzed preliminary low-pass sequencing data from an early data freeze of the GoT2D 

study to examine the differences between statistical tests in joint and meta-analysis.  The 
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dataset is comprised of three Northern European studies and is nearly balanced (N = 908; 

499/409 cases/controls), with an overall case-control ratio of 1.22.  We focus on the tests 

with the best combination of type I error and power in balanced studies: Firth test-based 

joint analysis and score test-based meta-analysis.  We analyzed 8.58 million variants with 

MAC ≥ 3. 

For high count variants (400 < MAC ≤ 908), score test-based meta-analysis and Firth test-

based joint analysis produce similar p-values (Figure 2.6A).  For low count variants (MAC < 

400), Firth test-based joint analysis p-values are typically more significant than score test-

based meta-analysis p-values, especially for the rarest variants (Figure 2.6B-D).  These 

patterns are consistent with our analytic and simulation-based results.  Additional 

comparisons between joint and meta-analysis test p-values can be found in supplemental 

materials (Figure S2.3, S2.4). 

Discussion 

Recommendations 

For analysis of high count variants (MAC > 400), in balanced and moderately unbalanced 

(1:3) studies, joint and meta-analysis using any of the asymptotic tests have near nominal 

type I error rates and comparable power, so either joint or meta-analysis using any of the 

asymptotic tests can be recommended.  For low count variants (MAC < 400), type I error 

rates and power can vary widely for different tests, MACs, and case-control ratios.   

For low count variants, in balanced studies, joint analysis using the Firth test is best, and 

meta-analysis using the score test results is best, with (Firth test-based) joint analysis 

being more powerful than (score test-based) meta-analysis.  In unbalanced studies, again 

joint analysis using the Firth test is best, but for meta-analysis, all tests can be (very) anti-

conservative for many combinations of allele count and case-control ratio.  If individual-

level data are available for analysis, we recommend joint analysis using Firth bias-

corrected logistic regression in both balanced and unbalanced studies.  If not, we 

recommend meta-analysis of score test results for analysis of balanced and not-too-

unbalanced studies.  For meta-analysis of unbalanced studies with case-control ratio < 2:3 
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or > 3:2, none of the statistical tests considered can be recommended due to the inflated 

type I error rates, and the score test, in particular, is not recommended. 

Use of MAC rather than MAF in describing test calibration 

We present our recommendations using a rough MAC threshold, rather than a MAF 

threshold, since test calibration remains consistent as long as MAC is constant (given N > 

2000, a consistent analytic strategy, and uniform scaling of N across studies in meta-

analysis).  We show that MAC = 400 is a threshold below which tests may begin to deviate 

substantially from the nominal significance threshold in balanced to moderately 

unbalanced studies.  Investigators studying variants with MAC < 400 should take care in 

selecting an association test for analysis. 

This MAC threshold is reminiscent of Yates' classic guideline for expected values in 2×2 

contingency tables, which states that the χ2 approximation is sufficiently accurate if each 

expected cell count ≥ 5 [Yates, 1934].  In the context of GWAS, we require a much larger 

minimum (marginal) cell count threshold since we are testing at considerably more 

stringent significance thresholds than envisioned by Yates. 

Practical recommendations for meta-analysis 

For meta-analysis, we recommend analyzing all variants with MAC ≥ 1 within each sub-

study, since even variants with a single observed minor allele contribute to the overall 

meta-analysis.  Imposing a more stringent study-level MAC filter leads to more 

conservative and less powerful meta-analysis results (Figure S2.5). When assessing the 

performance of a given meta-analysis using Quantile-Quantile (Q-Q) plots, it may be useful 

to apply a minimum total combined MAC threshold (say MAC ≥ 15 or 20), since the rarest 

variants are unlikely to attain genome-wide significance (α < 5×10-8).  For a given fixed 

total N, we observe that meta-analysis of many small sub-studies is more conservative and 

less powerful than meta-analysis of a few larger sub-studies (Figure S2.6).  Smaller sub-

studies are more likely to be monomorphic for low count variants, and so are effectively 

removed from the meta-analysis. 

  



 

 
 25 

Study limitations and caveats 

In this paper, we did not present meta-analysis of sets of studies with varying sample sizes 

and case-control ratios, although limited simulations in such settings suggested 

conclusions consistent with those presented (data not shown).  Nor did we assess the 

effects of population stratification.  Although joint analysis can be more powerful than 

meta-analysis for low frequency variants, for a dataset comprised of divergent samples, it 

may be difficult to control for specific within-sample confounding using the same 

covariates across all studies.   

For simplicity, we did not include study covariates in the simulations described.  Limited 

simulations including covariates independent of disease status or study indicators for joint 

analysis gave results consistent with those reported for both high count and low count 

variants (data not shown).  We did explore the effect of covariate adjustment in the GoT2D 

data analysis, including age, sex, and three principal components for ancestry.  The 

comparison between Firth test-based joint analysis and score test-based meta-analysis is 

similar to those shown in Figure 2.6, but covariate adjustment results in modestly 

increased differences between the p-values.  However, for a very small number of low 

count variants, we observe large differences in p-values after adjustment for continuous 

covariates (i.e. age and principal components), especially for the score test. 

While some simulation parameters may not reflect observed parameters in real datasets, 

our goal is to explore a wide range of parameters to illustrate the conclusions.  For 

example, our very unbalanced (1:19) scenario is more imbalanced than expected under 

random sampling for the disease prevalence 10%.  However, we wanted to explore the 

effect of extreme case-control imbalance, similar to those observed for population-based 

case-control studies of type 2 diabetes such as deCODE (1:16) [Steinthorsdottir et al., 

2007].  Additional simulations demonstrate that type I error rates are consistent across 

prevalence rates of 1%, 10%, and 50% [data not shown]. 

For low count variants, we present results based on large ORs to illustrate the differences 

in power between the different joint and meta-analysis tests, and to emphasize the low 

power of Wald test-based meta-analysis even for very large ORs.  However, finding variants 
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with such large ORs is unlikely in complex diseases.  Finally, we assess meta-analysis type I 

error rates at less stringent significance thresholds (α = 5 × 10-4 and 5 × 10-5) owing to 

computational limitations; we expect results to be similar at α = 5 × 10-8. 

Alternative analysis strategies 

We explored several alternative analysis strategies for low count variants, with a particular 

focus on meta-analysis of unbalanced studies since standard methods are generally anti-

conservative.  First, we derived bias-corrected versions of the score and Wald tests; 

simulations show that these tests are also anti-conservative in meta-analysis of unbalanced 

studies (data not shown).  Second, we considered exact logistic regression [Mehta and 

Patel, 1995], which evaluates significance based on the permutation distribution of 

sufficient statistics, but it is not useful in our context since it cannot adjust for continuous 

covariates and is computationally prohibitive for large sample sizes.  Third, we evaluated 

Fisher's exact test (FET), which uses the hypergeometric distribution to test the 

significance of contingency tables (Figure S2.7, S2.8, S2.9), but since FET cannot adjust for 

covariates, it is not practical in actual data analysis.  Fourth, we investigated using linear 

regression, treating the binary phenotype as a continuous outcome; linear regression 

produces nearly identical p-values as logistic regression score test, and thus is equally anti-

conservative in unbalanced studies (data not shown). 

Fifth, we examined meta-analysis with inverse variance weights (supplemental methods in 

Appendix 2.1); simulations show that inverse-variance weighted meta-analysis of Firth or 

Wald test results in unbalanced studies are also anti-conservative (Figure S2.7, S2.8, S2.9).  

Sixth, we explored fixed effects meta-analysis with sample size weights accounting for 

allele frequency ( )1( kkk ppN  ) .  These weights do not substantially affect simulated type I 

error rates or power since the expected MAF for each sub-study is identical in our 

simulations.  If the underlying MAFs are different between studies, weights including allele 

frequency may result in higher power [Han and Eskin, 2011].  Seventh, we considered 

random effects meta-analysis [Dersimonian and Laird, 1986].  As expected, it is more 

conservative and less powerful than fixed effects meta-analysis (data not shown). 
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Eighth, we evaluated the strategy of randomly removing cases or controls from a highly 

unbalanced study to reduce the case-control imbalance.  We find that this strategy can 

substantially decrease power.  For example, in a study with 2000 cases and 18000 controls, 

randomly removing 12000 controls reduces score test-based joint analysis power for a 

variant with E[MAC] = 40 and OR = 5 from 49% in the full samples to 13% in the reduced 

sample.   

Finally, we developed a "screen and permute" strategy in which we analyze all variants 

using a liberal test (for example, the likelihood ratio test), and perform case-control 

permutations of the strongest associated variants to compute empirical p-values.  However, 

sample-size weighted meta-analysis of permuted p-values in unbalanced studies remains 

anti-conservative, even though study-level permuted p-values are conservative.  In theory, 

permutation testing should always be well-calibrated, but this proposed strategy applies 

permutation only within individual studies.  For each variant, the ideal permutation-based 

meta-analysis method is to compute millions of permutation p-values for each of the K 

studies, calculate the null distribution of meta-analysis p-values, and compare the observed 

meta-analysis p-value against this null distribution.  While this strategy should work, it is 

practically infeasible since we would need to share millions of permuted p-values for each 

screened variant in every study. 

Summary 

In this study, we extend Lin and Zeng's [2010] evaluation of type I error and power in joint 

and meta-analysis for logistic regression tests to low count variants in balanced and 

unbalanced studies.  When testing at a combination of three extremes: low MAC, stringent 

significance thresholds, and large case-control imbalance, asymptotic assumptions for 

standard tests and aggregation methods are not valid, leading to differences in type I error 

rate and power among the tests even for large sample sizes.  For low count variants, we 

identify the Firth test as best for joint analysis in both balanced and unbalanced studies, 

and the score test as best for meta-analysis in balanced studies only.  We show that Firth 

test-based joint analysis is more powerful than score test-based meta-analysis.  We 

establish MAC as a sample-size invariant and consistent measure of test calibration and 

variant information.  For balanced and moderately unbalanced studies, MAC = 400 is a 
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practical threshold below which test calibration begins to diverge from the nominal 

significance threshold; a more stringent MAC threshold may be needed for very unbalanced 

studies.  Further investigation is needed to identify a well-calibrated and powerful test for 

meta-analysis of unbalanced studies, since all tests evaluated can be anti-conservative. 
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Appendix 

Appendix 2.1:  Inverse variance weighted meta-analysis 
Using study-level estimates of effect size and its variance, inverse variance weighted meta-

analysis estimates a pooled effect size, its standard error, and the corresponding z-score: 
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This method is only applicable for statistical tests that estimate those parameters, and so 

cannot be used for the score test or Fisher’s exact test. 
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Supplementary Figures 

Figure S2.1:  Type I error rates by fixed expected minor allele count (MAC) for 
different sample sizes. 

Analytically calculated type I error rates (α = 5×10-8) for joint analysis in: balanced studies 
(A - C), unbalanced studies (D - F), and very unbalanced studies (G - I).  Variant allele 
frequencies are selected so that the expected MAC remains constant across studies with 
total sample size N = 2000, 20000 and 50000 individuals respectively.  The horizontal 
dotted line denotes the corresponding nominal significance threshold (α = 5x10-8). 
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Figure S2.2:  Meta-analysis type I error rates by sample size for fixed expected minor 
allele count (MAC). 

Simulation-based sample-size weighted meta-analysis type I error rates (α = 5×10-4) for 
balanced (case-control ratio 1:1), unbalanced (1:3), and very unbalanced studies (1:19) 
with of various sample sizes.  For each study, variant allele frequencies are selected so that 
the expected MAC = 2000 (A - C), 400 (D - F), or 40 (G - I).  The horizontal dotted line 
denotes the corresponding nominal significance threshold (α = 5×10-4).  Very conservative 
or anti-conservative tests with type I error rates that exceed the vertical axis limits are not 
displayed. 
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Figure S2.3:  Comparison of score and Firth test association p-values in the GoT2D 
study. 

For different minor allele count (MAC) categories, comparison of score and Firth test-based 
(A-D) joint analysis p-values and (E-H) meta-analysis p-values. 

 

Figure S2.4:  Comparison of joint and meta-analysis p-values in the GoT2D study. 

For different minor allele count (MAC) categories, comparison of joint and meta-analysis p-
values using the (A-D) Firth test and (E-H) score test. 
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Figure S2.5:  Score test type I error rate and power with study-level minor allele 
count (MAC) filters. 

(A) Empirical type I error rates (α = 5×10-5) for score test-based joint and sample-size 
weighted meta-analysis, with varying degrees of study-level MAC filters.  Type I error rates 
for joint analysis are estimated for studies with 10000/10000 total cases and controls; 
meta-analysis is based on partitioning the full dataset into 10 equal-sized sub-studies.  The 
horizontal dotted line denotes the corresponding nominal significance threshold.  (B - C) 
Simulated power at α = 5×10-8 for a variant with: expected MAC = 40 (MAF = 0.001); and 
E[MAC] = 20 (MAF = 0.0005), for the same study design. 
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Figure S2.6:  Score test type I error rate and power curves for meta-analysis of K = 10 
and 50 sub-studies. 

(A) Empirical type I error rates (α = 5×10-5) for score test-based joint analysis with 
10000/10000 total cases and controls (black); sample-size weighted meta-analysis with K 
= 10 sub-studies of 1000/1000 cases and controls (red); and K = 50 sub-studies of 200/200 
cases and controls (green).  (B) Simulated power (α = 5×10-8) for a variant with expected 
minor allele count = 40 (MAF = 0.001) for the same study design. 



 

 
 35 

Figure S2.7:  Type I error rates by minor allele count (MAC) for logistic regression 
tests and Fisher's exact test in joint and meta-analysis. 
(A - C) Analytically calculated type I error rates (α = 5x10-8) for joint analysis; (D - F) 
empirical type I error rates (α = 5x10-5) for joint analysis; and (G - I) empirical type I error 
rates (α = 5x10-5) for sample-size weighted (dashed) and inverse-variance weighted 
(dotted) meta-analysis.  Type I error rates for joint analysis are estimated for studies with 
10000/10000, 5000/15000 and 1000/19000 total cases and controls; meta-analysis is 
based on partitioning the full dataset into 10 equal-sized sub-studies.  The horizontal 
dotted line denotes the corresponding nominal significance threshold. 
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Figure S2.8:  Type I error rates by case-control ratio for logistic regression and 
Fisher's exact tests in joint and meta-analysis. 
(A, B) Analytically calculated type I error rates (α = 5x10-8) for joint analysis; (C, D) 
empirical type I error rates (α = 5x10-5) for joint analysis; and (E, F) empirical type I error 
rates (α = 5x10-5) for sample-size weighted (dashed) and inverse-variance weighted 
(dotted) meta-analysis.  Type I error rates are estimated for a high count (expected MAC = 
2000; MAF = 0.05), and low count (E[MAC] = 40; MAF = 0.001) variant, in studies with N = 
20000 individuals with varying case-control ratios.  The horizontal dotted line denotes the 
corresponding nominal significance threshold. 
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Figure S2.9:  Simulated power curves for joint and meta-analysis. 
Simulated power (α = 5×10-8) in joint analysis (solid), sample-size weighted (dashed) and 
inverse-variance weighted (dotted) meta-analysis for a variant with: (A - C) expected MAC 
= 2000 (MAF = 0.05); (D - F) expected MAC = 400 (MAF = 0.01); and (G - I) expected MAC = 
40 (MAF = 0.001).  Power for joint analysis is estimated for studies with 10000/10000, 
5000/15000, and 1000/19000 total cases and controls; meta-analysis is based on 
partitioning the full dataset into 10 equal-sized sub-studies. 
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Chapter 3: Near equivalent calibration and power of joint and meta-

analysis for association analysis of quantitative traits 

Introduction 

Genome-wide association studies (GWAS) have identified thousands of common genetic 

variants (minor allele frequency [MAF] ≥ 5%) associated with hundreds of human diseases 

and traits [Hindorff et al., 2012].  For association analysis of quantitative traits (QTs), 

investigators typically test each variant for association using linear regression [Diabetes 

Genetics Initiative et al., 2007].  However, individual association studies are often too small 

to detect modest genetic effects.  To combine information across multiple studies, meta-

analysis of study-level association results or joint analysis of the combined individual-level 

data can be used [Scott et al., 2007; Schizophrenia Psychiatric Genome-Wide Association 

Study Consortium, 2011].  Meta-analysis is frequently used since there are fewer logistical 

constraints in sharing summary-level data, and because meta-analysis is only slightly less 

powerful than joint analysis for association analysis of common variants [Lin and Zeng, 

2010]. 

While GWAS arrays generally have limited coverage of low-frequency variants [Zeggini et 

al., 2005],  whole-genome or whole-exome sequencing, dense-array genotyping [Voight et 

al., 2012], and imputation using sequence-based reference panels [The 1000 Genomes 

Project Consortium, 2010] provide opportunities to identify trait-associated low-frequency 

variants [Huyghe et al., 2013; Steinthorsdottir et al., 2014; Wang et al., 2014b].  For the 

analysis of low-frequency variants (MAF < 5%), single-marker tests (e.g. linear regression) 

allows detection of individual low-frequency variants with strong effect on the QT.  

However, asymptotic assumptions for joint and meta-analysis of linear regression may no 

longer hold for analysis of low-frequency variants, as shown in a similar investigation for 

logistic regression test-based joint and meta-analysis of binary traits [Ma et al., 2013].  
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Specifically, logistic regression analysis of  variants with low minor allele count [MAC] can 

be poorly calibrated, and joint analysis can be more powerful than meta-analysis in certain 

scenarios.  The calibration of linear regression and the relative power of joint and meta-

analysis has not been investigated in the context of association analysis of low-frequency 

variants. 

In this study, we evaluate the calibration and power of linear regression in joint and meta-

analysis for QT association testing.  Using simulation, we estimate type I error rates and 

power for studies of different sample sizes, for normally and non-normally distributed QTs, 

and with and without additional covariates.  For QTs inverse-normalized within study, for 

variants with expected minor allele count E[MAC] ≥ 10, we show that linear regression-

based joint and meta-analysis are near-equivalently well-calibrated and powered, but 

inverse-variance weighted meta-analysis of small-sized studies can be slightly anti-

conservative; for E[MAC] < 10, joint and meta-analysis are increasingly conservative.  For 

non-normally distributed QTs, joint and meta-analysis are equally very anti-conservative, 

but this calibration problem can be resolved by inverse-normal transformation of the QT.  

However, applying inverse-normal transformation to QTs of any distribution reduces 

power for low-frequency variants.  These results continue to hold when adjusting for 

covariates. 

Subjects and Methods 

Notation 

First, consider a single study of N individuals.  For individual i, let yi denote the QT value, Gi 

= {0,1,2} the number of minor alleles for a specific variant, and Zi = (Zi1, Zi2, …, Zic)T the 

vector of c covariates.  For simplicity, assume an additive genetic model. 

Linear regression 

We assume the linear regression model is: 

 ii
T

ii ZGy    (Equation 3.1) 

where α is the intercept, β is the regression coefficient for the genetic effect, γ is a vector of 

regression coefficients, and εi is normally distributed with mean zero, and variance σ2.  We 
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wish to test the null hypothesis of no genetic association: H0: 0 .  The usual linear 

regression partial F-test statistic is: 
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where the residual sums of squares under the null and alternative hypotheses are: 
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and )~,~(  and )ˆ,ˆ,ˆ(  are the least squares (and maximum likelihood) parameter estimates 

under the null and alternative hypotheses, respectively.  This F statistic is evaluated 

relative to the F distribution on 1 and N-c-2 degrees of freedom. 

Combining data across studies in joint and meta-analysis 

Next, consider K studies in which study k is comprised of Nk individuals.  For joint analysis, 

we analyze the individual-level genotype and phenotype data combined across all K studies 

(with N = ∑kNk  individuals) using the same linear regression partial F test (Equation 3.2).  

To account for population structure between studies, we can adjust for population-specific 

covariates, such as study indicators or principal components [Price et al., 2006], in the 

linear regression model (Equation 3.1). 

In meta-analysis, we analyze each study separately using linear regression, and combine 

study-level association results.  Two commonly used meta-analysis methods are: (1) 

sample-size weighted meta-analysis, and (2) inverse-variance weighted meta-analysis. 

The sample-size weighted meta-analysis test statistics  is: 
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where the study-specific z-score kk qZ  is calculated from the corresponding quantile kq

of the 2
1 distribution with upper tail probability equal to the association p-value, and the 

sign is based on direction of effect.   

The inverse-variance weighted meta-analysis pooled effect size, its standard error, and 

corresponding z-score are: 
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   (Equation 3.4) 

where k̂  and kV̂  are the study-specific estimates of the genetic effect regression 

coefficient and its variance. 

Simulation-based estimation of type I error and power 

We simulated QT datasets under the null and alternative hypotheses to estimate joint and 

meta-analysis type I error and power for normally and non-normally distributed QTs, with 

and without additional covariates.  For joint analysis, each dataset had N individuals in 

total; for meta-analysis, we partitioned the same dataset into K equal-sized studies with n 

individuals each (e.g. N = K×n).  We simulated a single, additive, biallelic, causal variant 

with population-level MAF p and proportion of trait variance explained 2
G .  In some 

simulations, we also included one binary covariate Z1 distributed as Bernoulli with 

probability f = 0.3 and one continuous covariate Z2 distributed as normal with mean zero 

and variance one; Z1 and Z2 have trait-variances explained 2

1Z and 2

2Z , respectively. 

We simulated the normally distributed QT yi based on the linear regression model 

(equation e.1), assuming variant effect size  )1(22 ppG   , and covariate effect sizes (if 

included) 
 )1(2

1 1
ffz  

 and 
2

2 2z 
, with normally distributed residual error with 

mean zero and variance = 222

21
1 ZZG   .  To mimic transformations used in actual data 

analysis, within each of the K studies (of size n) we first regressed out the QT-covariate 

effects (if included), and transformed the regression residuals )~~( i
T

ii Zyr    using the 

rank-based, inverse-normal transformation:  )1/()(1   nrrankt ii , where Φ-1 is the 
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inverse cumulative distribution function (CDF) of the standard normal distribution.  To 

simulate non-normally distributed QTs, we transformed the regression residuals ri to the 

target non-normally distributed QT as  )(1
ii rFs  

, where F-1 is the inverse CDF of the 

target non-normal distribution.  We explored the impact of distributions that have heavy 

tails or were skewed, and simulated t distributions on 1, 2, and 5 degrees of freedom, and 

chi-squared distributions on 1, 5, and 10 degrees of freedom. 

For joint analysis, we performed association analysis using the transformed residuals 

combined across all K studies; for meta-analysis, we combined study-level association 

results using sample-size and inverse-variance weights (equations 3, 4).  For all scenarios 

(e.g. normally and non-normally distributed QTs, with and without covariates), simulated 

datasets had N = 10,000 samples partitioned into K = 10 sub-studies.  In addition, for the 

scenario with normally distributed QTs and without covariates, we simulated datasets with 

N = 1,000 and 100,000 samples partitioned into K = 10 sub-studies, and N = 10,000 

partitioned into K = 50 sub-studies.  We performed 10 million replicates under the null 

model to evaluate type I error at significance threshold α = 5×10-5, and 10,000 replicates 

under the alternative model to evaluate power at α = 5×10-8.  Due to computational 

constraints, we are unable to evaluate type I error rates at the typical genome-wide 

significance threshold (α = 5×10-8) 

Genetics of type 2 diabetes (GoT2D) study 

To assess these methods in the context of real data, we analyzed preliminary low-pass 

sequencing data from the Genetics of Type 2 Diabetes (GoT2D) study, which aims to 

investigate the role of low-frequency variation on type 2 diabetes (T2D) risk and variability 

in related QTs.  We analyzed a subset of individuals (N = 789) with high density lipoprotein 

cholesterol (HDL) measurements from three studies: (1) 165 Swedish and Botnian Finnish 

individuals from the Diabetes Genetics Initiative (DGI); (2) 567 Finnish individuals from 

the Finland-United States Investigation of NIDDM Genetics (FUSION) study; and (3) 57 

British individuals from the Wellcome Trust Case-Control Consortium (WTCCC).  The DGI 

study was itself comprised of four sub-studies (Table 3.1).  To account for differences in 

HDL levels between sub-studies, and between T2D cases and healthy controls (Table 3.1), 

and to normalize the skewed HDL distribution, for each sub-study, in cases and controls 
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separately, we regressed HDL on age, age2, and sex, and inverse-normalized the residuals.  

We performed joint analysis on the transformed residuals for all 789 individuals, and 

sample-size and inverse-variance weighted meta-analysis on the association results from 

the three studies using EPACTS [Kang, 2012] for association testing and METAL [Willer et 

al., 2010] for meta-analysis.  We included no additional covariates except study indicators 

for joint analysis. 

Table 3.1:  Sample-sizes and untransformed HDL values for GoT2D studies and sub-
studies 

  Cases Controls 

Study Sub-study N 
Mean HDL 

(SD) 
N 

Mean HDL 
(SD) 

DGI Botnia 68 1.19 (0.29) 10 1.25 (0.34) 
Diabetes Registry 0 NA 35 3.22 (0.87) 
Helsinki Sib-pairs 0 NA 35 1.32 (0.39) 
Malmo Sib-pairs 0 NA 17 1.24 (0.43) 

FUSION FUSION 267 1.55 (0.43) 300 1.21 (0.34) 
WTCCC WTCCC 57 1.47 (0.39) 0 NA 

 

Results 

Type I error rates for joint and meta-analysis 

First, to examine the effect of rank-based inverse-normal transformation, we evaluate type 

I error rates (at α = 5×10-5) for joint and meta-analysis of QTs with inverse-normalization 

within study and normally-distributed QTs without transformation (Figure 3.1).  For 

variants with E[MAC] ≥ 10, joint and meta-analysis of QTs with inverse-normalization 

(Figure 3.1A) and without (Figure 3.1B) are both equally well-calibrated; for E[MAC] < 10, 

joint and meta-analysis is slightly more conservative for QTs with inverse-normalization 

than without.  For example, for a low-frequency variant with E[MAC] = 5 (MAF = 2.5×10-4), 

joint analysis is slightly more conservative with inverse-normal transformation (type I 

error rate = 3.4×10-5; Figure 3.1A), than without (5.0×10-5; Figure 3.1B).  The increased 

conservativeness is due to shrinkage of QT outliers towards the mean by the rank-based 

inverse-normal transformation.  Despite the increased conservativeness, investigators 

typically normalize QTs within study in real meta-analyses to account for differences in QT 



 

 
 44 

distributions between studies, and to correct for non-normally distributed QTs.  Hence, 

subsequent simulation results will be inverse-normalized within study to mimic real data 

analysis. 

Figure 3.1:  Type I error rates of inverse-normalized and normally distributed 

quantitative traits (QTs) for linear regression in joint and meta-analysis. 

Sample-size (SS) and inverse variance (IV) weighted meta-analysis for analyses of K = 10 
studies with n = 1,000 individuals each.  QTs are (A) inverse-normalized within each study, 
and (B) normally distributed (without transformation).  Joint analysis corresponds to 
analysis of the transformed or untransformed QTs combined from N = n × K individuals.  All 
points are based on 107 simulation replicates, and the error bar (in panel A) represents two 
standard deviations (SD) from the nominal significance threshold  = 5×10-5. 

 

 

 Second, we examine the effect of study-level sample size (n) and number of studies (K) on 

calibration (Figure 3.2).  For E[MAC] ≥ 10, joint analysis and sample-size weighted meta-

analysis are equally well-calibrated for all combinations of n and K considered (Figure 

3.2A-D), but inverse-variance weighted meta-analysis can be slightly anti-conservative for 

smaller-sized studies with n≤200 (Figure 3.2B-C).  For K=50 studies with n=200 individuals 

each, inverse-variance weighted meta-analysis has slightly inflated type I error rate = 

6.0×10-5 (Figure 3.2B).  This inflation occurs in meta-analysis of small-sized studies 

because we evaluate the inverse-variance weighted meta-analysis z-score ZIV (equation 4) 

against the standard normal distribution, when ZIV is actually a weighted sum of K variables 

each with tn-c-2 distributions; these effects are diminished in larger study sample-sizes since 
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the tn-c-2 distribution converges to the standard normal.  For E[MAC] < 10, joint and meta-

analysis become increasingly conservative.  These results hold true when we include 

additional covariates (Supplementary Figure S3.1). 

Figure 3.2:  Type I error rates of inverse-normalized quantitative traits (QTs) for 
linear regression in joint and meta-analysis. 
Sample-size (SS) and inverse variance (IV) weighted meta-analysis for analyses of (A) K = 
10 studies with n = 1,000 individuals each; (B) K = 50, n = 200; (C) K = 10, n = 100; and (D) 
K = 10, n = 10,000.  QTs are inverse-normalized within each study.  Joint analysis 
corresponds to analysis of the inverse-normalized QTs combined from N = n × K 
individuals.  All points are based on 107 simulation replicates, and the error bar (in panel 
A) represents two standard deviations (SD) from the nominal significance threshold  = 
5×10-5. 

 

Third, we examine the effect of non-normally distributed QTs on calibration (Figure 3.3). 

For QTs having heavy tailed (Figure 3.3A) or skewed (Figure 3.3B) distributions, joint and 

meta-analysis have near-identical, and substantially anti-conservative type I error rates at 
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low frequencies.  For a variant with E[MAC] = 5 (MAF = 2.5×10-4) and a t5-distributed QT, 

joint and meta-analysis are equally anti-conservative (type I error rates = 1.2×10-3; Figure 

3.3A).  Applying the inverse-normal transformation within each study restores accurate 

calibration for joint and meta-analysis for variants with E[MAC] ≥ 10 (Figure 3.2C), but is 

somewhat conservative for low-frequency variants with E[MAC] < 10.  Additional type I 

error results for other non-normal distributions are found in Supplemental Figure S3.2; 

results remain consistent when we include additional covariates (data not shown). 

Figure 3.3:  Type I error rates of non-normally distributed quantitative traits (QTs) 
for linear regression in joint and meta-analysis. 
Sample-size (SS) and inverse variance (IV) weighted meta-analysis for analyses of K = 10 
studies with n = 1,000 individuals each; joint analysis corresponds to analysis of N = n × K 
individuals.  Non-normally distributed QTs with (A) t distribution (df = 5), and (B) chi-
squared distribution (df = 5) are transformed from a normally distributed QT using the 
inverse cumulative distribution function of the target non-normal distribution.  For 
comparison, type I error rates are displayed for (C) inverse-normalized QTs within each 
study.  The horizontal line denotes the nominal significance threshold α = 5×10-5. 

 

Power of joint and meta-analysis 

Overall, power generally reflects the relative conservativeness of the aggregation method - 

conservative methods typically have lower power.  First, we examine the effect of QT 

inverse-normalization on power (at α = 5×10-8; Figure 3.4E-F).  For a common variant with 

E[MAC] = 1,000 (Figure 3.4E), joint and meta-analysis have near-equivalent power with 

and without inverse-normalization; for a low-frequency variant with E[MAC] = 5 (Figure 

3.4F). joint and meta-analysis have reduced power for QTs with inverse-normalization than 
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without, reflecting the increased conservativeness of inverse-normalized QTs for low-

frequency variants (Figure 3.1B). 

Second, we evaluate the effect of study sample-size (n) and number of studies (K) on power 

(Figure 3.3A-B).  For E[MAC] = 1,000 (Figure 3.4A), joint and sample-size weighted meta-

analysis have very similar power across different combinations of n and K; for small-sized 

studies (n ≤ 200), inverse-variance weighted meta-analysis is slightly more powerful, but 

increased power corresponds to the anti-conservativeness of this method (Figure 3.2B-C).  

For E[MAC] = 5 (Figure 3.4B), joint and meta-analysis have reduced power versus a 

common variant (E[MAC] = 1,000; Figure 3.4A), especially in small-sized studies.  In the 

presence of trait-associated covariates (Figure 3.4C-D), regressing the QT on the covariates 

does not alter the relative power between joint and meta-analysis, but by explaining more 

of the variation, can increase power for genetic association. 

Third, we evaluate power for non-normally distributed QTs (Figure 3.4E-F).  For E[MAC] = 

1,000 (Figure 3.3E), QTs with heavy tailed (t5) or skewed distributions ( 2
5 ) have 

comparable power to normally distributed QTs in joint and meta-analysis.  However, for 

E[MAC] = 5 (Figure 3.4F), non-normally distributed QTs have increased power, but the 

increased power is due to the severely inflated type I error rates (Figure 3.3A-B).  Inverse-

normal transformation of the QT can recover most of the power compared to the 

untransformed QT (Figure 3.4F). 
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Figure 3.4:  Power of linear regression in joint and meta-analysis. 
(A-B) Power for normally distributed QTs (inverse-normalized within study) without 
additional covariates in joint analysis, and sample-size (SS)  and inverse-variance (IV) 
weighted meta-analysis.  The genotypic variance explained (σ2G) is varied inversely to 
sample size so that power is approximately 50% for a common variant with expected 
minor allele count = 1,000.  (C-D) Power for normally distributed QTs with binary (σ2Z1) 
and normally distributed (σ2Z2) covariate effects regressed out, and inverse-normalized 
within each study.  (E-F) Power for non-normally distributed QTs having t (df=5) and chi-
squared (df=5) distributions, and normally distributed QTs with and without inverse-
normal transformation.  Unless noted in the figure, meta-analysis corresponds to datasets 
having K = 10 studies with n = 1,000 individuals each; joint analysis corresponds to 
analysis of N = n × K individuals; and σ2G = 0.003.  Power is evaluated at nominal 
significance threshold α = 5×10-8, and each estimate is based on 104 simulation replicates.  
Error bars denote ± two standard deviations of the power estimate.  Anti-conservative tests 
are marked with an "x" symbol. 
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Figure 3.5:  Joint and meta-analysis of high density lipoprotein (HDL) in the GoT2D 
study. 
Effects of age, age2, and sex on HDL are regressed out, and regression residuals are inverse-
normalized within each in sub-study cases and controls separately.  Joint analysis is based 
on transformed residuals from N = 789 individuals; meta-analysis is based on three studies 
with n = 165/567/67 individuals respectively.  Scatterplots compare joint [JT] analysis p-
values with (A-C) sample-size [SS] weighted, and (D-F) inverse variance [IV] weighted 
meta-analysis p-values, in different minor allele count [MAC] categories.  (G-I) Quantile-
Quantile plots compare expected and observed p-value distributions. 
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Joint and meta-analysis of GoT2D HDL data 

To further examine the differences between joint and meta-analysis in real data, we tested 

for association between HDL cholesterol and 10 million variants (MAC ≥ 1) detected in  low 

pass sequencing data from the GoT2D study.  This GoT2D data subset was comprised of N = 

789 individuals from three Northern European studies: DGI, FUSION, and WTCCC with n = 

165/567/57 individuals (Table 3.1).  DGI was itself comprised of four sub-studies with n = 

17/35/35/78 individuals.  To account for differences in mean HDL levels and remedy the 

skewed HDL distribution, in cases and controls separately, we first regressed the effects of 

age, age2, and sex, then inverse-normalized the regression residuals within each sub-study.  

We performed joint analysis on all GoT2D individuals (N = 789), and performed sample-

size and inverse-variance weighted meta-analysis using association results from the three 

studies. 

For all MAC categories, joint analysis and sample-size weighted meta-analysis p-values are 

distributed symmetrically across the diagonal line (Figure 3.5A-C).  In comparison, inverse-

variance weighted meta-analysis p-values tend to be more significant than joint analysis 

(Figure 3.5D-F), and are less variable than comparing p-values between sample-size 

weighted meta-analysis and joint analysis (Figure 3.5A-C).  In the quantile-quantile (QQ) 

plots (Figure 3.5G-I), p-values from inverse-variance weighted meta-analysis are slightly 

more significant than those for joint analysis (black) and sample-size weighted meta-

analysis.  These patterns are consistent with our simulation results, joint and sample-size 

weighted meta-analysis are equally well-calibrated and powered, but inverse-variance 

meta-analysis can be slightly anti-conservative, especially for meta-analysis of smaller 

studies. 

Discussion 

For association analysis of normally distributed QTs, joint analysis and sample-size 

weighted meta-analysis are well-calibrated and equally powered for variants with E[MAC] 

≥ 10, but inverse-variance weighted meta-analysis can be slightly anti-conservative for 

small-sized studies; both joint and meta-analysis are increasingly conservative for low-

frequency variants with E[MAC] < 10.  For non-normally distributed QTs, joint and meta-
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analysis are very anti-conservative for low-frequency variants.  Rank-based inverse-normal 

transformation can be used to recover well-calibrated type I error rates, but transforming 

QTs of any distribution reduces power for low-frequency variants.  Inclusion of additional, 

independent covariates has no effect on calibration.   

We focused our investigation on the commonly-used linear regression partial F test.  This 

test is identical to the linear regression Wald and likelihood ratio tests when the trait 

variance (σ2) is unknown, and asymptotically equivalent to the score test.  Our simulation 

results demonstrate that the score test is slightly more conservative and less powerful than 

the Wald and likelihood ratio tests (data not shown). 

For a low-frequency variant with the same MAC, we find that linear regression test-based 

joint and meta-analysis of QTs  are generally better calibrated than logistic regression test-

based joint and meta-analysis of binary traits (given the same sample sizes and significance 

thresholds).  For normally-distributed QTs, we showed that joint and meta-analysis are 

slightly conservative for variants with E[MAC] < 10; for binary traits, joint and meta-

analysis may be poorly calibrated for variants with E[MAC] ≤ 400 [Ma et al., 2013].  While a 

few extreme QT values can lead to a significant association using linear regression, a 

significant logistic regression association requires a minimum number of minor alleles to 

be present, for example, MAC ≥ 26 to achieve α ≤ 5×10-8 given equal numbers of cases and 

controls and no covariates. 

For joint or meta-analysis of study data, it is critical to properly control for differences in 

QT values between studies, and remedy non-normally distributed QTs through appropriate 

transformation.  We explored an alternative way to adjust for differences in HDL levels 

between the GoT2D studies.  In the initial analysis, we only controlled for HDL differences 

between the three main studies (e.g. DGI, FUSION, and WTCCC), and did not account for 

differences within the four DGI sub-studies.  This led to HDL levels in DGI with much 

greater variance than the other studies, and the resulting joint and meta-analysis p-values 

were more discordant than expected from our simulation results. 

We presented power estimates based on nominal significance thresholds, e.g. power is the 

proportion of simulated p-values (under the alternative hypothesis) more significant than 
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the nominal significance threshold α = 5×10-8.  By leveraging our type I error rate 

simulations, we also explored power based on empirical thresholds, at a less stringent α = 

5×10-5.  For each test, the empirical threshold is the αth quantile of the 107 p-values 

simulated under the null hypothesis; empirical power is the proportion of simulated p-

values less than the empirical threshold.  Overall, empirical and nominal power estimates 

were comparable, but in scenarios where a test was very conservative or anti-conservative, 

using an empirical threshold corrected for poor test calibration.  For example, for a dataset 

having K = 10 studies with n = 1,000 individuals each, a low-frequency variant with E[MAC] 

= 10, and a skewed QT, nominal joint analysis power (= 0.63) is inflated, since joint analysis 

is anti-conservative for low-frequency variants with skewed QTs.  In comparison, the 

empirical joint analysis power is 0.50, which is the same as the power of joint analysis for 

the inverse-normalized QT.  The empirical threshold properly accounts for the test's poor 

calibration.  However, in real data analysis, empirical thresholds are rarely used, since it is 

computationally infeasible to calculate empirical thresholds for all analysis scenarios at 

stringent thresholds (α = 5×10-8). 

In this study, we did not investigate the impact of differently sized studies within the same 

meta-analysis.  Nor did we investigate the effects of population stratification.  However, 

when aggregating data across several divergent populations, we can first adjust for within-

study stratification using study specific covariates, and use meta-analysis instead of joint 

analysis, with minimal power loss. 

We focused our investigation on rank-based inverse normal transformation, and did not 

evaluate other methods to transform non-normally distributed QTs, such as taking the 

natural logarithm of the QT.  One disadvantage of inverse-normal transformation is that the 

regression parameter estimates are difficult to interpret in terms of differences in the mean 

of the QT [Buzkova, 2013].  Some studies have argued that transformations of non-normal 

QTs are not always necessary in genome-wide association studies.  Buzkova [2013] 

demonstrates for single studies that heteroscedasticity (e.g. different population subgroups 

have different phenotypic variances from each other), MAF, and sample size can be more 

important in determining good test calibration, compared to the non-normality of the QT 

(and residual errors).  Lumley et al. [2002] show that linear regression does not require the 
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assumption of normally-distributed QT for studies with greater than 100-500 individuals 

(depending on the severity of the skewness).  Beasley et al. [2009] explain that inverse-

normal transformation does not necessarily guarantee good calibration, and reduces 

power in certain scenarios.  However, in this study, we examined the impact of 

transformation in more extreme scenarios found in current genome-wide association 

studies: we examined very non-normal QTs and low-frequency variants at stringent 

significance thresholds.  Without transformation, we find that joint and meta-analysis of 

non-normal QTs can be equally anti-conservative for low-frequency variants, but inverse-

normal transformation (within study) can recover good calibration, with only minimal 

power loss. 

In practice, the availability of individual-level data across studies dictates the use of joint or 

meta-analysis in genome-wide association studies.  It is typically more difficult to share 

individual-level data between studies due to ethical requirements and studies with data 

sharing restrictions [Lin and Zeng, 2010].  We show that for analysis of (normally-

distributed) QTs, sample-size and inverse-variance weighted meta-analysis are well-

calibrated and efficient alternatives to joint analysis, for variants with E[MAC] ≥ 10.  In 

most scenarios, meta-analysis using either sample-size or inverse-variance weights are 

near-equivalent, except for analysis of small-sized studies where inverse-variance meta-

analysis can be slightly anti-conservative.  In additional simulations, we observed that 

inverse variance meta-analysis of studies with sample sizes n ≥ 500 are well-calibrated 

(data not shown).  Parameter estimates from inverse-variance weighted meta-analysis can 

be directly interpreted as differences in the mean of the QT, while sample-size weighted 

meta-analysis cannot.  Overall, we recommend meta-analysis with inverse-variance or 

sample-size weights for most scenarios. 

In summary, for study specific inverse normalized QTs, we demonstrate that linear 

regression-based joint analysis and sample-size weighted meta-analysis are well-calibrated 

and have equivalent power for variants with E[MAC] ≥ 10, while inverse-variance meta-

analysis can be slightly anti-conservative for small-sized studies; joint and meta-analysis 

can be conservative for low-frequency variants with E[MAC] < 10.  For non-normally 

distributed QTs, joint and meta-analysis can be equally anti-conservative especially for low 
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frequencies, but inverse-normal transformation restores good calibration, but the 

transformation reduces power slightly when applied to any QT distribution.  Hence, given 

normally distributed QTs, we recommend either joint and meta-analysis using linear 

regression for association analysis of variants of any frequency. 
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Supplemental Figures 

Figure S3.1:  Type I error rates of normally distributed quantitative traits (QTs) for 
linear regression in joint and meta-analysis with covariates. 
Sample-size (SS) and inverse variance (IV) weighted meta-analysis correspond to datasets 
having K = 10 studies with n = 1,000 individuals each; joint analysis corresponds to 
analysis of N = n × K individuals.  Datasets have one binary (Z1) and one normally 
distributed (Z2) covariate, with (A) no effect on the phenotype; (B) 5% and 0.5% variance 
explained; and (C) 10% and 10% variance explained.  Covariate effects on the QT are 
regressed out, and regression residuals are inverse-normalized within each study.  All 
points are based on 107 simulation replicates, and the error bar (in panel A) represents two 
standard deviations (SD) from the nominal significance threshold α = 5×10-5. 
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Figure S3.2:  Type I error rates of additional non-normally distributed quantitative 
traits (QTs) for linear regression in joint and meta-analysis. 
Sample-size (SS) and inverse variance (IV) weighted meta-analysis correspond to datasets 
having K = 10 studies with n = 1,000 individuals each; joint analysis corresponds to 
analysis of N = n × K individuals.  Non-normally distributed QTs with (A-C) t distribution (df 
= 1, 2, or 5), and (B) chi-squared distribution (df = 1, 5, 10) are transformed from a 
normally distributed QT using the inverse cumulative distribution function of the target 
non-normal distribution.  The horizontal line denotes the nominal significance threshold α 
= 5×10-5. 
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Chapter 4: Evaluating the calibration and power of three gene-based 

association tests for the X chromosome 

Introduction 

Genome-wide association studies (GWAS) have identified thousands of genetic variants 

associated with hundreds of diseases and traits [Hindorff et al., 2012].  However, the 

proportion of associated variants on the X chromosome, relative to its chromosomal length, 

lags far behind those on the autosomal chromosomes [Wise et al., 2013].  Analysis of X 

chromosome association requires proper treatment of diploid female and haploid male 

participants.  Whereas we can code female genotypes as the number of minor alleles for a 

specific variant:  g = {0,1,2}, just as we do for autosomal variants, for male genotypes, there 

are two obvious coding schemes.  For a variant under X-inactivation [Lyon, 1961], where 

one copy of the female X chromosome is inactivated, one copy of the male allele is 

equivalent to two copies of the female allele, and hence we code haploid male genotypes as 

g = {0,2}.  For a variant at a locus that does not undergo X-inactivation, we code male 

genotypes as g = {0,1}.  For analysis of a mixed sample of males and females, specialized 

analytical tools are needed for initial data processing (e.g. estimating allele frequencies and 

testing Hardy-Weinberg Equilibrium) [Purcell et al., 2007], genotype imputation [Marchini 

et al., 2007; Howie et al., 2012], and association analysis [Zheng et al., 2007; Clayton, 2008].  

Hence, in many GWAS, the analysis of the X chromosome has been omitted due to the 

additional analysis steps required and/or lack of available software tools [Wise et al., 

2013].  With use of specialized analytical tools, many additional trait-associated variants on 

the X chromosome are likely to be identified. 

Existing X chromosome analysis methods focus on single-marker association analysis.  

Zheng et al. [2007] proposed allele-based tests comparing differences in allele counts 

between cases and controls for males and females jointly, and assume no X-inactivation 



 

 
 58 

(coding male genotypes as g = {0,1}).  Clayton [2008] proposed score tests for the additive 

and dominant genetic models assuming X-inactivation (coding male genotypes as g = {0,2}).  

His test assumes equal allele frequencies in males and females; if this assumption is 

violated, he recommends stratifying by sex and combining score statistics across strata.  

Loley et al. [2011] evaluated the calibration and power of these tests and showed that no 

single test is uniformly most powerful over all genetic models and simulation parameters.  

Notably, Loley showed that Clayton's non-sex-stratified tests can be anti-conservative 

when allele frequencies differ between the sexes.  Hickey and Bahlo [2011] conducted a 

similar evaluation, and showed that tests that made use of both male and female data were 

uniformly more powerful than tests that only use female data. 

Recent GWAS use genome or exome sequencing [The GoT2D Consortium] or specialized 

genotyping arrays [Huyghe et al., 2013] to better assay low-frequency (0.5% < minor allele 

frequency [MAF] < 5%) and rare genetic variants (MAF < 0.5%).  Single-marker tests have 

low power to test for association with rare variants unless the sample and/or effect size is 

very large [Asimit and Zeggini, 2010].  In contrast, gene-based tests in which multiple 

markers are analyzed jointly as a unit can be more powerful for analyzing rare variants 

[Lee et al., 2014].  The calibration and power of gene-based tests have not been evaluated 

in the context of analyzing rare variants on the X chromosome.  Using simulated binary and 

quantitative trait (QT) datasets, we describe, apply, and evaluate three gene-based tests for 

the X chromosome: burden, SKAT, and optimal unified SKAT (SKAT-O) [Lee et al., 2012].  

Specifically, we evaluate the calibration and power of these tests with: (1) different 

male:female ratios in cases and controls, and (2) different coding of male genotypes. 

We find that for case-control studies, all tests are well-calibrated or very slightly anti-

conservative for different male:female ratios in cases and controls, and different coding of 

male genotypes.  Power for association testing is comparable for studies with different 

ratios of males and females in cases and controls, but as expected, power depends on the 

underlying genetic architecture of the genomic region analyzed.  In most scenarios, power 

is slightly increased when we analyze data using the true model to code male genotypes, 

but power is only decreased slightly under the incorrect model.  For QT studies, burden 

and SKAT are well-calibrated, while SKAT-O can be slightly anti-conservative, and power 
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results are similar to those for binary traits.  We conclude that these gene-based tests can 

be directly applied to the association analysis of rare variants for both binary and 

quantitative traits. 

Methods 

Notation 

Consider n individuals sequenced at m variants in a genomic region of interest.  For 

individual i, let ),,( 1  isi xx iX be the vector of s covariates (including a covariate for sex) 

and ),,( 1  imi gg iG  be the vector of genotypes.  For (diploid) female i, let gij = {0,1,2} be the 

number of minor alleles for variant j.  For (haploid) males, we consider two coding 

schemes:  (1) gij = {0,1} when assuming X-inactivation in the females and (2) gij = {0,2} 

when assuming no X-inactivation.  For binary traits, yi = 1 or yi = 0 denotes a case or control 

respectively; for QTs, yi denotes the QT value.  In a combined sample of nm males and nf 

females (all unrelated), the maximum likelihood estimate of the MAF p of a bi-allelic variant 

with alleles A and a is: 
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where naa,f and nAa,f are the number of females with genotypes aa and Aa, and na,m is the 

number of males with the a allele. 

Gene-based tests 

For binary traits, we consider the logistic regression model: 

 βGγX i1i  0)(logit))1(Pr(logit  iiy  (Equation 4.1) 
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where 0γ  is the intercept, 1γ  is the 1s  vector of regression coefficients for the covariates, 

and ),,( 1  m β is the 1m  vector of regression coefficients for the genetic variants.  For 

QTs, the linear regression model is: 

 iiy   βGγX i1i0  (Equation 4.2) 

where i  is the normally distributed error term with mean zero and variance σ2. 

Since there is limited power to test the null hypothesis that the vector β 0  for large m, the 

burden test combines the genetic effects over the genomic region by assuming cjj w   , 

given weights wj.  Thus, equations (4.1) and (4.2) become: 
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We use weights wj= Beta(pj, α = 1, β = 25), having beta density function with shape 

parameters α = 1 and β = 25, to up-weight rarer variants, where pj is the MAF of variant j 

[Wu et al., 2011].  To test the gene-based null hypothesis 0: co βH , the burden score 

statistic is: 
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where S j = (y
i=1

n

å
i
-m̂i )gij  is the score statistic for testing 0: jo βH  with only SNP j in the 

regression model, and m̂i is the estimated mean of yi  under H0. The burden score statistic is 

evaluated relative to a scaled 2
1  distribution. 
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SKAT assumes the βj's follow an arbitrary distribution with mean zero and variance 2jw .  

Testing the null hypothesis Ho: β=0 is equivalent to testing Ho: τ=0.  The SKAT score 

statistic is: 

 2

1

2
j

m

j

jS SwQ 


  (Equation 4.6) 

and follows a mixture of chi-square distributions [Lee et al., 2012]. 

Wu et al. [2011] showed that the power of the burden test and SKAT depends on the 

underlying genetic architecture of the analyzed genomic region.  For example, the burden 

test is more powerful when most variants in the region are causal and have the same 

direction of effect; in contrast, SKAT is more powerful when fewer variants are causal 

and/or have opposite directions of effect.  The optimal unified association test SKAT-O [Lee 

et al., 2012] combines the strength of both tests and is powerful in both scenarios.  The 

SKAT-O statistic is a weighted average of QB and QS: 

 10,)1(   SB QQQ  (Equation 4.7) 

with weight parameter ρ.  In practice, ρ is unknown.  To estimate the optimal ρ, we perform 

a grid search on 10 21  b  , and select ρ such that the Qρ is maximized (or the 

corresponding p-value is minimized).  We choose to perform the search on ρ = {0, 0.12, 0.22, 

0.32, 0.42, 0.52, 0.5, 1} as suggested by Lee et al [2012].  Significance is evaluated analytically 

using numerical integration [Lee et al., 2012]. 

For analysis of case-control studies, we examine the effect of applying the small-sample 

adjustment as described in Lee et al. [2012]. 
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Numerical simulations 

To generate simulated genomic regions, we use 10,000 haplotypes simulated using the 

COSI coalescent simulator [Schaffner et al., 2005], as provided in the SKAT R package.  For 

each simulated male individual, we randomly select 3Kb region from a single random 

haplotype.  For each simulated female individual, we select a 3Kb region from two random 

haplotypes and pair them together.  For a simulated sample of 1,000 cases and 1,000 

controls under the null hypothesis, the 3 Kb region has average number of variants = 36.8 

(SD = 6.0), with a median total minor allele count [MAC] =2,812 (interquartile range [IQR] 

= 1,766-4,270).   When considering only variants with MAF < 0.01, the average number of 

variants = 28.4 (SD = 5.2), with median total MAC = 99 (IQR = 79-125). 

Type I error simulations 

For binary traits, we simulate case-control datasets with Ncases = 1,000 and Nctrls = 1,000 

under the logistic regression model: 

 issiiiii ggXXX   113322110)(logit  (Equation 4.8) 

with one continuous covariate X1i normally-distributed with mean zero and variance one, 

one binary covariate X2i distributed Bernoulli with success probability f = 0.5, sex covariate 

X3i, and selected causal variants gi1, …, gis (but under the null model, we set genetic effects to 

zero β1=…=βs=0).  The sex covariate accounts for differences in genotype frequency 

between males and females, so that we can avoid inflated type I error rates as for Clayton's 

score test [2008] when allele frequencies differ between sexes [Loley et al., 2011].  We set 

the intercept γ0 so that the disease prevalence is 10%, the covariate regression coefficients 

γ1 = γ2 = 0.5, and the effect for sex γ3 = 0.  We explore a broad range of male:female ratios in 
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cases and controls by sampling the exact number of males and females (Table 4.1) from the 

simulated cases and controls. 

For QTs, we take a similar approach to simulate datasets with N = 2,000 individuals under 

the null linear regression model: 

 iissiiiii ggXXXy   113322110  (Equation 4.9) 

with X1i, X2i, X3i, and gi1, …, gis as for equation (4.8).  We set covariate effect sizes γ1 = γ2 = 0.5, 

or equivalently, the proportion of trait variance explained 2
1

2
1 )( X and )1()( 2

2
2

2 ffX   ; 

the effect of sex is zero (γ3 = 0).  The normally-distributed residual error has mean zero and 

variance = 2
2

2
11 XX   .  We sample the desired number of males and females (Table 4.2) 

from the simulated individuals. 

Table 4.1:  Sample sizes for simulated case-control datasets 

Simulation 
# Cases 

(Males:Females) 
# Controls 

(Males:Females) 

A 500:500 500:500 
B 900:100 500:500 
C 100:900 500:500 
G 500:500 900:100 
H 500:500 100:900 
I 900:100 900:100 
J 100:100 100:900 

 

Table 4.2:  Sample sizes for simulated quantitative trait datasets 

Simulation 
# Individuals 

(Males:Females) 

D 1,000:1,000 
E 200:1,800 
F 1,800:200 

 

We analyze each simulated dataset using the six combinations of three gene-based tests 

(Equation 4.5, 4.6, 4.7) and two coding schemes for male genotypes.  To increase 
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computational efficiency, we simulate 100,000 independent datasets per simulation 

scenario, and resample the phenotype 1,000 times per independent dataset, resulting in a 

total of 100 million simulation replicates.  We evaluate the robustness of the resampling 

approach by comparing results with 1 million independent simulated datasets without 

resampling for a subset of the simulation scenarios.  We estimate type I error as the 

proportion of simulation replicates with a p-value < α = 2.5x10-6, corresponding to 

Bonferroni correction for association testing of the approximately 20,000 genes in the 

human genome. 

Power simulations 

Within the 3Kb region, we select 10% or 50% of variants with MAF < 0.03 as causal.  Using 

the same simulation settings as for type I error simulations, we simulate case-control 

datasets using the logistic regression model (Equation 4.7); we simulate QT datasets using 

the linear (Equation 4.8) regression model assuming the normally-distributed residual 

error εi has mean zero and variance =  


s

j jXX 1

22
2

2
11  where )1(2)( 22

jjjj pp   is 

the proportion of trait variance explained by variant j.   

We simulate datasets under the alternative hypothesis assuming with and without X-

inactivation coding for male genotypes.  We consider genetic effect sizes proportional to 

the variant's MAF  2/log10 jj pc , and adjust the tuning parameter c so that power 

estimates will not be too close to 1 or 0.  For binary traits, when 10% of variants are causal, 

c = log(15), which gives an odds ratio of 15 when MAF = 0.01; when 50% variants were 

causal, c = log(3) or log(5).  For QTs, when 10% of variants are causal, c = log(7), which 

gives a linear regression coefficient of approximately 1.95 when MAF = 0.01; when 50% of 
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variants are causal, c = log(1.8).  We assume that either all causal variants are deleterious, 

or that 50% are deleterious and 50% are protective.  We simulate 1,000 independent 

replicates per simulation scenario, and evaluate power as the proportion of replicates with 

p-value < α = 2.5x10-6. 

Table 4.3:  Type I error rates for burden, SKAT, and SKAT-O tests in binary and 
quantitative trait studies. 
Type I error estimates are based on 108 simulation replicates so that the nominal 
significance threshold of α = 2.5x10-6 corresponds to 250 rejections.   Empirical type I error 
rates between 2.2x10-6 and 2.8x10-6 have 95% confidence intervals which include the 
nominal value. 

Binary Traits 

    
Type I error rate (×10-6) 

Sim. 
# Cases 

(Males:Females) 
# Controls 

(Males:Females) 
Coding for Male 

Genotypes 
Burden SKAT SKAT-O 

A 500:500 500:500 
No X-inactivation 

g={0,1} 
2.4 2.6 2.4 

X-inactivation g={0,2} 1.8 1.9 3.7 

B 900:100 500:500 
No X-inactivation 

g={0,1} 
3.1 3.9 2.9 

X-inactivation g={0,2} 1.8 2.9 4.6 

C 100:900 500:500 
No X-inactivation 

g={0,1} 
3.1 3.4 3.0 

X-inactivation g={0,2} 2.8 5.2 4.6 

       
Quantitative Traits 

   
Type I error rate (×10-6) 

Sim. 
# Individuals 

(Males:Females) 
Coding for Male 

Genotypes 
Burden SKAT SKAT-O 

D 1000:1000 
No X-inactivation 

g={0,1} 
2.5 2.1 2.8 

X-inactivation g={0,2} 2.5 2.4 2.8 

E 1800:200 
No X-inactivation 

g={0,1} 
2.7 2.5 3.3 

X-inactivation g={0,2} 2.5 2.4 3.1 

F 200:1800 
No X-inactivation 

g={0,1} 
2.6 2.8 3.4 

X-inactivation g={0,2} 2.7 2.8 3.7 
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Results 

Type I error rates 

For binary traits, the burden, SKAT and SKAT-O tests are well-calibrated or slightly anti-

conservative (at α = 2.5x10-6) for all scenarios considered (Table 4.3).  For each gene-based 

test, we examine type I error rates for two male genotype coding schemes: (1) gij = {0,1} 

and (2) gij = {0,2}; and datasets with three male:female ratios in cases: (Simulation A) 

500:500, (B) 900:100, and (C) 100:900.   For datasets with male:female ratio=500:500 in 

cases (Simulation A), non-X-inactivation coding is less conservative than X-inactivation 

coding for burden (non-X-inactivation type I error rate = 2.4×10-6 vs. X-inactivation 

=1.8×10-6) and SKAT (2.6×10-6 vs. 1.9×10-6).  However, the opposite is true for SKAT-O 

(2.4×10-6 vs. 3.7×10-6).  These patterns also hold true for datasets with male:female 

ratio=900:100 in cases (Simulation B).  In comparison, for datasets with male:female 

ratio=100:900 in cases (Simulation C), non-X-inactivation coding is less conservative for 

burden, but more conservative for SKAT and SKAT-O.  These results are generalizable to 

other male:female sample sizes and depend only on the male:female ratio in cases and 

controls (Supplemental Figure S4.1). 

We also examine the effect of applying the small-sample adjustment [Lee et al., 2012] to the 

three gene-based tests; type I error rates are generally slightly anti-conservative after 

applying the small-sample adjustment (Supplemental Figure S4.1), but the patterns of type 

I error rates between male genotype coding schemes and male:female ratios are identical 

to those without small-sample adjustment.  Finally, we demonstrate the accuracy of our 

computationally efficient resampling approach by comparing type I error rates with 

resampling to those without resampling (106 independent replicates; α = 5x10-4); type I 
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error rates are comparable with (Supplemental Figure 4.2A-C) and without resampling 

(Supplemental Figure 4.2D-F). 

For QTs, the burden and SKAT tests are well-calibrated and SKAT-O can be very slightly 

anti-conservative across the three simulated datasets with male:female ratios of 

1,000:1,000; 1,800:200; and 200:1,800 (Table 4.3).  Type I error rates are nearly identical 

between the two male coding schemes. 

Power 

We examine power for four combinations of:  proportion of causal variants in a region 

(10% or 50%),  and causal variant direction of effect (all deleterious, or 50% deleterious 

and 50% protective).  For binary traits, power results (Figure 4.1, 4.2) reflect the 

previously described relative power of gene-based tests for different underlying genetic 

architectures [Lee et al., 2012].  For example, the burden test is more powerful when 50% 

of rare variants are causal and have the same direction of effect (Figure 4.1D-F).  SKAT is 

more powerful when 10% of rare variants are causal with the same or opposite direction of 

effect (Figure 4.1A-C), or when 50% of causal variants have opposite direction of effect 

(Figure 4.2).  SKAT-O is generally robust and powerful across all scenarios tested.  Despite 

the slightly anti-conservative type I error rates, the small-sample adjusted and non-

adjusted power estimates are comparable (data not shown). 

Next, we investigate the effect of simulating causal variants with (male genotype coding gij 

= {0,2}) and without (gij = {0,1}) X-inactivation.  The two coding schemes for male 

genotypes have only a small effect on power.  When simulating variants assuming no X-

inactivation, non-X-inactivation coding (gij = {0,1}) is slightly more powerful, except for 
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SKAT-O which is unexpectedly more powerful for the misspecified X-inactivation coding 

(gij ={0,2}) (Figure 4.1, 4.2).  However, when simulating variants assuming X-inactivation, 

X-inactivation coding (gij ={0,2}) is slightly more powerful in all scenarios (Supplemental 

Figure 4.3 and 4.4).  However, the power loss for misspecifying the unknown model is 

small.  For example, in simulations assuming non-X-inactivation coding, the largest power 

loss for misspecifying the coding scheme is 7.7% (32.7% vs. 25.0% for SKAT (Figure 4.1E), 

and the average difference is 2.3%.  Power results are comparable for studies with different 

male:female ratios in cases and controls.  Finally, for QTs, power comparisons are very 

similar to those for binary traits (Figure 4.3, 4.4). 
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Figure 4.1:  Power for gene-based tests in case-control studies assuming all causal 
variants are deleterious. 
Causal variants are simulated with non-X-inactivation coding of male genotypes gij = {0,1}.  
Within each simulated 3Kb genomic region, (A-C) 10% or (D-F) 50% of variants with MAF 
< 0.03 are selected as causal.  The effect size for causal variants is given by 2/log10 jj pc , 

and is proportional to MAF (pj) and scaled by tuning parameter (A-C) c = log(15) and (D-F) 
c = log(3); all causal variants are simulated as deleterious.  In cases, there are (A,D) 
500/500, (B,E) 900/100, and (C,F) 100/900 males and females respectively.  In controls, all 
simulated datasets have 500 males and 500 females.  Power estimates (at α = 2.5x10-6) are 
based on 1,000 simulation replicates; vertical bars denote the exact binomial 95% 
confidence intervals. 
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Figure 4.2:  Power for gene-based tests in case-control studies assuming causal 
variants are 50% deleterious and 50% protective. 
Causal variants are simulated with non-X-inactivation coding of male genotypes gij = {0,1}.  
Within each simulated 3Kb genomic region, (A-C) 10% or (D-F) 50% of variants with MAF 
< 0.03 are selected as causal.  The effect size for causal variants is given by 2/log10 jj pc , 

and is proportional to MAF (pj) and scaled by tuning parameter (A-C) c = log(15) and (D-F) 
c = log(5); causal variants are simulated as 50% deleterious and 50% protective.  In cases, 
there are (A,D) 500/500, (B,E) 900/100, and (C,F) 100/900 males and females 
respectively.  In controls, all simulated datasets have 500 males and 500 females.  Power 
estimates (at α = 2.5x10-6) are based on 1,000 simulation replicates; vertical bars denote 
the exact binomial 95% confidence intervals. 
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Figure 4.3:  Power for gene-based tests in QT studies assuming all causal variants are 
deleterious. 
Causal variants are simulated with non-X-inactivation coding of male genotypes gij = {0,1}.  
Within each simulated 3Kb genomic region, (A-C) 10% or (D-F) 50% of variants with MAF 

< 0.03 are selected as causal.  The effect size for causal variants is given by 2/log10 jj pc

, and is proportional to MAF (pj) and scaled by tuning parameter (A-C) c = log(7) and (D-F) 
c = log(1.8); all causal variants are simulated as deleterious.  Simulated datasets have (A,D) 
1,000/1,000, (B,E) 1,800/200, and (C,F) 200/1,800 males and females respectively.  Power 
estimates (at α = 2.5x10-6) are based on 1,000 simulation replicates; vertical bars denote 
the exact binomial 95% confidence intervals. 
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Figure 4.4:  Power for gene-based tests in QT studies assuming causal variants are 
50% deleterious and 50% protective. 
Causal variants are simulated with non-X-inactivation coding of male genotypes gij = {0,1}.  
Within each simulated 3Kb genomic region, (A-C) 10% or (D-F) 50% of variants with MAF 
< 0.03 are selected as causal.  The effect size for causal variants is given by 2/log10 jj pc , 

and is proportional to MAF (pj) and scaled by tuning parameter (A-C) c = log(7) and (D-F) c 
= log(1.8); causal variants are simulated as 50% deleterious and 50% protective.  
Simulated datasets have (A,D) 1,000/1,000, (B,E) 1,800/200, and (C,F) 200/1,800 males 
and females respectively.  Power estimates (at α = 2.5x10-6) are based on 1,000 simulation 
replicates; vertical bars denote the exact binomial 95% confidence intervals. 
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Discussion 

We examined the calibration and power of the burden, SKAT, and SKAT-O gene-based 

association tests for analyzing the X chromosome in simulated binary and quantitative trait 

data.  For binary traits, all tests are well-calibrated or slightly anti-conservative for all 

simulation scenarios.  Power differences reflect the previously described strengths and 

weaknesses of each test for analyzing regions with differing underlying genetic 

architectures.  Power is usually slightly increased when we code male genotypes with the 

coding scheme that matches the underlying genetic model (e.g. with or without X-

inactivation), but power loss is modest when we misspecify the coding scheme.  Differences 

in male:female ratio in cases and controls have little effect on power.  For QTs, the burden 

and SKAT tests are well-calibrated, and SKAT-O is very slightly anti-conservative; power 

results are similar to those for binary traits. 

While we only presented calibration and power results for a specific set of simulation 

settings, we performed a variety of simulations with other covariate settings, case:control 

ratios, and prevalence rates to demonstrate that our results are generalizable (data not 

shown).  We estimated power using nominal significance thresholds, e.g. power is the 

proportion of simulation replicates (under the alternative hypothesis) with p-values more 

significant than the nominal significance threshold α = 2.5×10-6.  By using our type I error 

simulations, we investigated the power using empirical thresholds.  For each test, the 

empirical threshold is the αth quantile of the 108 p-values simulated (with resampling) 

under the null hypothesis; empirical power is the proportion of simulated p-values more 

significant than the empirical threshold.  Overall, power using either nominal or empirical 

thresholds are near-identical since tests are relatively well-calibrated across all scenarios, 

and the empirical thresholds (range = 1×10-6 ― 3.5×10-6) are very similar to the nominal 

significance threshold (data not shown).  However, we observe that using empirical 

thresholds can partially resolve unexpected power results by accounting for poorly 

calibrated tests.  When power is calculated using nominal thresholds, assuming a non-X-

inactivated region, SKAT-O is unexpectedly more powerful using the misspecified X-

inactivation coding (gij ={0,2}) compared to the non-X-inactivated coding (gij ={0,1}), 

(Figure 4.1, 4.2).  However, when we use empirical thresholds, this effect is removed or 
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reduced (data not shown).  In practice, it is usually computationally infeasible to use 

empirical thresholds in real data analysis. 

We did not evaluate the calibration and power for other gene-based association methods, 

such as the WST [Madsen and Browning, 2009], C-alpha [Neale et al., 2011], and SSU [Pan, 

2009] tests.  However, our burden test is equivalent to the WST, and SKAT includes the C-

alpha and SSU tests as a special case, indicating that our results could be extended to other 

gene-based tests.  We only explored the effect of random X-inactivation, where ~50% of 

the cells have one female allele inactivated and the remaining ~50% of the other.  We did 

not examine the possibility of non-random or skewed X-inactivation [Amos-Landgraf et al., 

2006], where >75% of cells have one allele inactivated.  While a unified approach to 

account for both random and non-random X-inactivation may be more robust and 

powerful, as demonstrated by Wang et al. [2014a] for single-marker association testing, we 

speculate that misspecifying the model for the burden, SKAT, and SKAT-O gene-based tests 

will only result in a small power loss. 

In conclusion, we demonstrate that the burden, SKAT, and SKAT-O tests are generally well-

calibrated and powerful for a wide range of simulation scenarios.  These tests can be 

directly applied to the association analysis of rare variants on the X chromosome. 
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Supplemental Figures 

Figure S4.1:  Complete type I error rates for the burden (BURD), SKAT, and SKAT-O 
tests in case-control studies. 
Type I error rates are for studies with (A-C) male/female ratio = 1; (D-E) male/female ratio 
> 1; (F-G) male/female ratio < 1.  The suffixes "1" and "2" denote coding male genotypes as 
gij = {0,1} or {0,2} respectively.  The suffix "ADJ" denotes analysis with small-sample 
adjustment.  Type I error rates (at α = 2.5x10-6) are based on 108 simulation replicates, and 
vertical bars denote the exact binomial 95% confidence interval. 
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Figure S4.2:  Type I error rates based on simulated datasets with re-sampling and 
without re-sampling . 
Type I error rates are based on simulations with (A-C) 1,000 independent replicates each 
with 1,000 resampled phenotypes (total replicates = 106); and (D-E) 106 independent 
replicates.  In cases, there are (A,D) 500/500, (B,E) 900/100, and (C,F) 100/900 males and 
females respectively.  In controls, all simulated datasets have 500 males and 500 females.  
Type I error rates are evaluated at α = 5x10-4, and vertical bars denote the exact binomial 
95% confidence interval. 
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Figure S4.3:  Power simulated with X-inactivation for gene-based tests in case-
control studies assuming all causal variants are deleterious. 
Causal variants are simulated with X-inactivation coding of male genotypes gij = {0,2}.  
Within each simulated 3Kb genomic region, (A-C) 10% or (D-F) 50% of variants with MAF 
< 0.03 are selected as causal.  The effect size for causal variants is given by 2/log10 jj pc , 

and is proportional to MAF (pj) and scaled by tuning parameter (A-C) c = log(15) and (D-F) 
c = log(3); all causal variants are simulated as deleterious.  In cases, there are (A,D) 
500/500, (B,E) 900/100, and (C,F) 100/900 males and females respectively.  In controls, all 
simulated datasets have 500 males and 500 females.  Power estimates (at α = 2.5x10-6) are 
based on 1,000 simulation replicates; vertical bars denote the exact binomial 95% 
confidence intervals. 
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Figure S4.4:  Power simulated with X-inactivation for gene-based tests in case-
control studies assuming causal variants are 50% deleterious and 50% protective. 
Causal variants are simulated with X-inactivation coding of male genotypes gij = {0,2}.  
Within each simulated 3Kb genomic region, (A-C) 10% or (D-F) 50% of variants with MAF 
< 0.03 are selected as causal.  The effect size for causal variants is given by 2/log10 jj pc , 

and is proportional to MAF (pj) and scaled by tuning parameter (A-C) c = log(15) and (D-F) 
c = log(3); causal variants are simulated as 50% deleterious and 50% protective.  In cases, 
there are (A,D) 500/500, (B,E) 900/100, and (C,F) 100/900 males and females 
respectively.  In controls, all simulated datasets have 500 males and 500 females.  Power 
estimates (at α = 2.5x10-6) are based on 1,000 simulation replicates; vertical bars denote 
the exact binomial 95% confidence intervals. 
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Chapter 5: Summary, discussion, and future directions 

Results summary 

In my dissertation, I investigate the calibration and power of commonly used statistical 

methods in genome-wide association studies (GWAS) applied to new situations.  In Chapter 

2, I examine the calibration and power of logistic regression tests in joint and meta-analysis 

of low-frequency genetic variants for case-control data.  I discover that logistic regression-

based joint and meta-analysis can be poorly calibrated and/or have low power when 

analyzing variants at a combination of three extremes: low MAF, stringent significance 

threshold α, and severe case-control imbalance.  Based on simulation results, the 

recommended test for analyzing low-frequency variants differs depending on the 

availability of individual-level data across studies. 

In Chapter 3, I examine the calibration and power of linear regression in joint and meta-

analysis across a wide range of MACs for normally-distributed and non-normally 

distributed QTs, with and without adjusting for the effects of additional covariates.  In 

contrast to binary traits, for normally-distributed QTs, linear regression-based joint and 

meta-analysis are relatively well-calibrated and have good power for variants with MAC ≥ 

10 (given sufficiently large sample-sizes).  For non-normally distributed QTs, joint and 

meta-analysis can be equally anti-conservative especially for low-frequency variants.  

Inverse-normal transformation of the QT can restore accurate calibration but inverse-

normal transformation of QTs of any distribution reduces power. 

In Chapter 4, I examine the calibration and power of the burden, SKAT, and SKAT-O 

aggregation association tests for analyzing rare variants on the X chromosome, in both 

case-control and QT datasets.  For case-control datasets, all tests are relatively well-

calibrated across all simulation scenarios.  Power depends on the underlying genetic 

architecture of the genomic region analyzed.  Power increases slightly when the coding 
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scheme for male genotypes matches the underlying genetic model (with or without X-

inactivation), but power loss is small if the coding scheme is misspecified.  Power is 

comparable across different male:female ratios in cases and controls.  For QT datasets, 

patterns of calibration and power are very similar to those for case-control data. 

Strategies for numerical simulations 

In each of the three projects, I performed extensive numerical simulations to evaluate type 

I error rates at stringent significance thresholds.  To put into perspective the sheer number 

of replicates required, we need 1010 simulation replicates to expect 500 rejections under 

the null hypothesis at α = 5×10-8; the resulting type I error estimate would have 95% exact 

binomial confidence intervals of [4.57×10-8, 5.46×10-8].  Then, we need to repeat the 1010 

simulations for every combination of simulation parameters (e.g. MAF, case-control ratio, 

etc.). To overcome this immense computational burden, I employed a number of simulation 

strategies and algorithms to evaluate type I error rate at, or close to, the desired 

significance threshold. 

In Chapter 2, I devised an exact calculation to analytically compute type I error rates (at α = 

5×10-8) for logistic regression based-joint analysis in case-control studies, similar to a 

method described by Upton [1982].  I assume a dominant genetic model, which is a good 

approximation to the multiplicative model for low-frequency variants, to reduce a case-

control study to a 2 by 2 contingency table (assuming no additional covariates).  The exact 

calculation enumerates all possible tables for each MAC, and the analytical type I error rate 

is simply the sum of the probabilities of tables rejecting the null hypothesis.  This analytical 

calculation can compute type I error rates for any desired significance level in realistic 

timeframes.  For example, in a single case-control study with 10,000 cases and 10,000 

controls, and a variant with MAF = 0.0005, I can calculate type I error rates (at α = 5×10-8) 

in 12 CPU-minutes using exact computation, compared to 9.5 CPU-years using direct 

simulation (assuming 1010 simulation replicates).  However, the exact approach is limited 

to variants with MAF ≤ 0.05, where the dominant genetic model is a good approximation to 

the commonly used multiplicative model.   
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I devised an exact calculation of type I error rates for meta-analysis of K = 2 equal-sized 

studies for variants with MAC < 100; the calculation was computationally infeasible for K > 

2 or variants with MAC ≥ 100.  The algorithm enumerates all possible ways to partition the 

MACs from the joint sample into the K studies, and calculates type I error rates by summing 

the probabilities of configurations that reject the null hypothesis.  For example, for a 

variant with MAC = 50 in both cases and controls, and for K = 2, there are 51 possible ways 

to partition 50 alleles in cases, and 51 partitions for controls, thus resulting in (51)2 

configurations for cases and controls combined.  For MAC < 100 and K = 2, the exact 

algorithm produces type I error rates very similar to those estimated by direct simulation.  

However for MAC ≥ 100 or K > 2, the number of ways to partition MACs increases 

extremely rapidly and the exact calculation becomes computationally infeasible; for 

example, for MAC = 50 and K = 6, there are (3,478,761)2 possible configurations.  In these 

scenarios, direct simulation remains the only feasible way to evaluate type I error rates for 

meta-analysis. 

In Chapter 4, I used a resampling approach to evaluate the calibration of three aggregation 

association tests at α = 2.5×10-6.  For this method, I simulate 10,000 independent datasets, 

and resample the phenotype 1,000 times for each independent dataset, resulting in 108 

total simulation replicates.  Since generating the dataset is time-consuming, I can save 

computation time by resampling the phenotype for each simulated dataset.  For example, 

for study with 1,000 cases and 1,000 controls, I can estimate type I error rates (at α = 

2.5×10-6) in 1.6 CPU-years using the resampling approach, compared to 6.3 CPU-years 

using independent simulations.  The resampling approach produces comparable results to 

independent simulation. 

Future work 

I want to continue to develop and evaluate  novel statistical methods for analyzing different 

types of genomic data.  I will initially focus on:  (1) meta-analysis method for unbalanced 

case-control studies, (2) genetic association methods for survival outcomes, and (3) 

adaptive aggregation test for analyzing rare variants on the X chromosome. 

Meta-analysis method for unbalanced case-control studies 
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In Chapter 2, I have shown that all logistic regression tests can be anti-conservative for 

meta-analysis of unbalanced studies, especially for low-frequency variants.  Large case-

control genetics consortia often include unbalanced population-based case-control studies, 

which could potentially skew the meta-analysis results.  Furthermore, even though study-

level association results are well-calibrated or conservative in unbalanced studies, meta-

analysis across studies can still be anti-conservative.  Thus the calibration problem arises 

from the meta-analysis procedure, and not the logistic regression test.  Investigating 

further, for low frequency variants in unbalanced studies, the empirical variance of the 

meta-analysis test statistic (Zmeta) is not well-approximated by the asymptotic variance.  

Hence, evaluating Zmeta against the asymptotic null distribution is inaccurate. 

I will explore a meta-analysis method based on adjusting the reference null distribution for 

determining meta-analysis p-values inspired by the moments adjustment for the sequence 

kernel association test (SKAT) [Lee et al., 2012].  Specifically, I will readjust the moments of 

the null distribution of Zmeta, and determine meta-analysis p-values based on the adjusted 

(recalibrated) null distribution.  I will compare the type I error rate of this method when 

adjusting for the first, second, and fourth moments (mean, variance, and kurtosis).  I will 

modify the moment adjustment algorithm from the SKAT software, incorporate it into my 

existing case-control simulation program, and evaluate this method through additional 

case-control simulation. 

Genetic association methods for survival outcomes 

Most genome-wide association studies to date have focused on binary or quantitative 

traits, but there have been relatively few studies investigating the genetic effects on 

survival outcomes.  To date, published GWAS on the survival outcomes have relatively 

small sample sizes, as in studies of survival in patients with small-cell lung cancer (N=139; 

[Han et al., 2014]) and pancreatic adenocarcinoma (N=1,005; [Wu et al., 2014]).  As 

sequencing costs continue to decrease, I anticipate that large sequencing studies of survival 

outcomes will become feasible.  There are relatively few statistical tools specialized for 

analyzing genetic studies of survival outcomes.  ProABEL  [Aulchenko et al., 2010] can 

analyze single variants using the Cox proportional hazards model, and coxKM  [Lin et al., 

2011] can perform SNP-set analysis based on the kernel machine Cox regression 
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framework.  I wish to (1) evaluate the calibration and power of the Cox proportional 

hazards regression in common and low-frequency variants, and (2) develop an efficient 

algorithm for the Cox proportional hazards model to feasibly test millions of genetic 

markers in large datasets. 

Unified aggregation test for analyzing rare variants on the X chromosome 

In Chapter 4, I have shown that power is slightly greater (up to 7.7%) if the coding scheme 

for male genotypes (e.g. with or without X-inactivation) matches the underlying genetic 

model, compared to when the coding scheme is misspecified.  Since the true underlying 

genetic model is generally unknown, I propose a unified aggregation association test that is 

robust across different genetic models for the X chromosome, similar to Wang's [2014a] 

method for analyzing skewed X-inactivation.  In the proposed method, I will: (1) analyze 

each genomic region using both X-inactivation and non-X-inactivation coding for male 

genotypes, (2) select the coding scheme that produces the more significant association p-

value, and (3) evaluate empirical significance using numerical permutations. 

Conclusion 

It is a truly exciting time for human genetics research.  Technological advances and 

decreasing costs in genotyping and sequencing have allowed investigators to examine the 

impact of common, low-frequency, and rare genetic variation on human traits and diseases, 

in increasingly larger sample sizes.  Nonetheless, careful statistical analysis also plays an 

important role by maximizing power while guarding against false positives in each study.  

To this end, I evaluated the calibration and power of a variety of statistical methods for 

analyzing low-frequency and rare variants in genetic association studies.  Based on these 

findings, I provided practical guidelines for analyzing different data types.  These 

recommendations increase power to identify novel, trait-associated genetic loci, providing 

new targets for fine-mapping and functional studies to identify the true causal variants.  

With a better understanding of the trait's underlying genetic and biological mechanisms, 

we can ultimately develop new preventative interventions, diagnostic tests, and effective 

therapies to combat disease. 
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