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ABSTRACT

Treatment Effect Estimation for Randomized Clinical Trials Subject to
Noncompliance and Missing Outcomes

by

Shan Kang

Chair: Roderick Little and Thomas Braun

Noncompliance and missing outcomes are common in randomized clinical trials. In

this dissertation, we explore treatment arm switching issues for survival data and

nonrandom dropout issues for masked clinical trials.

In Chapter 2, we consider noncompliance in phase III clinical trials in oncolo-

gy. Although patients are randomized to their treatment assignments, the option of

treatment switching may be offered to patients who experience disease recurrence for

ethical considerations. Standard statistical methods that ignore this nonrandom non-

compliance can lead to biased estimations. Although methods do exist to account for

the effect of treatment arm switching, several of these methods focus on quantifying

an overall switching effect, which can still lead to biased results if the benefit derived

from switching varies among patients. We propose a new parametric method to ad-

dress this limitation that factorizes the likelihood into two parts in order to evaluate

the individual benefit of switching. A more robust latent event time approach is also

proposed for the possible assumption violation. In simulation studies, our proposed

methods outperform the existing methods.
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In Chapter 3, we consider missing outcome problems in masked (blinded) clinical

trials. Most standard models for analyzing the data make the missing at random

(MAR) assumption, but in practice, there are often situations where missingness

is likely to depend on the outcome, so MAR is not valid. For masked trials, we

propose a specific missing not at random (MNAR) assumption, which we call masked

MNAR (MMNAR): since the specific treatment received is unknown, masking justifies

the assumption that missingness does not depend on treatment assignment after

conditioning on outcomes and side effects. We suggest that methods based on the

MMNAR assumption are useful for masked clinical trials, either in their own right

or to provide a form of sensitivity analysis for deviations from MAR. We formulate

models for categorical and continuous outcomes under this assumption. Simulations

show that our proposed methods outperform other methods when MAR is violated

and the efficiency of treatment effect estimates is similar to that of MAR methods

when MAR is true. We apply our methods to the TRial Of Preventing HYpertension

(TROPHY) study (Julius et al., 2006).

In Chapter 4, we develop regression-based multiple imputation models that exploit

the MMNAR assumption proposed in Chapter 3 for longitudinal data. Simulation

studies are conducted to compare the performance of the proposed method with other

methods. The idea is also illustrated with the TROPHY study.
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CHAPTER I

Introduction

Randomized controlled trials (RCTs) are the gold standard for investigating the

effectiveness of a medical intervention, because the randomization of patients to the

experimental treatment arm or comparative control protects the comparison between

two arms from selection bias and confounders of treatment effect. For an ideal clinical

experiment, after participants are randomly assigned to treatment arms, they actually

receive the interventions exactly as specified in the protocols, and provide measures

of outcome. In this case, randomization, complete compliance, and no loss of follow

up enable us to draw valid statistical inferences for the treatment effect. In this

cases, the ‘double blind’ experiments are preferred, because this approach conceals

the treatment assignment from the subject and the clinician to prevent the potential

bias caused by knowing this information.

In practice, such conditions are difficult to achieve because of a variety of hu-

man behaviors. As a result, missing data are common in many clinical trials. For

example, subjects may (partially) fail to take their assigned treatments, or receive

an alternative treatment as a rescue therapy. This treatment discontinuation can be

conceptualized as a form of noncompliance (Rubin, 1987) and must be accounted for

properly. When participants discontinue their assigned treatment, their outcomes

can still be recorded, and those who remain on their assigned treatment can have
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missing outcomes. For example, when subjects miss their clinic visits, outcomes are

not recorded but they still receive assigned treatment. Or the study is terminated for

administrative reasons, all outcomes are missing but there is no evidence to show that

the participants would discontinue their treatment if the study was still going on. It

is important to distinguish between treatment discontinuation and missing outcomes

(Meinert, 1980), although they often appear together, as when the subjects are lost

to follow-up, the underlying reason could be noncompliance and the outcomes are

missing.

There are many possible reasons for noncompliance, but as they are often not

random, the benefits of randomization are undermined. The most widely accepted

approach to handle noncompliance is the ‘intention-to-treat’ (ITT) analysis. In ITT

analysis, all randomized patients are analyzed according to the treatment they were

originally assigned, regardless of the actual treatment received or subsequent with-

drawal from treatment (Hill, 1961). In ITT analysis, the entire treatment regimen

including treatment discontinuation is evaluated as a whole. This approach tends to

estimate a diluted treatment effect, sometimes called treatment effectiveness, which is

generally a conservative estimate comparing with treatment efficacy, the effectiveness

of a treatment when it is in fact taken (Little et al., 2009).

An alternative to ITT analysis is ‘per-protocol’ (PP) analysis, in which only the

patients who comply with the assigned treatment are counted towards the final result.

In PP analysis, the treatment efficacy is estimated. However, with this approach,

selection bias may be a problem, because people who experience better outcomes are

more likely to remain in the data set, and PP analysis may provide overoptimistic

estimates of the efficacy of the treatment resulting from the removal of non-compliers.

Several existing methods for analyzing complete data sets are briefly reviewed

here. Most of the missing data approaches introduced below are based on them.

Maximum likelihood (ML) methods maximize the likelihood function, which is based
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on the specified joint density function for all observations. ML has many good prop-

erties including consistency, asymptotic normality, functional invariance, asymptotic

efficiency, and many others under some regularity conditions. Bayesian inference

method is another approach. This approach uses Bayes’ rule to update the probabili-

ty estimate when additional evidence is acquired. For longitudinal data, mixed effect

models can be used to introduce correlation between observations. Another approach

is to specify the variance covariance matrix directly. Generalized estimating equa-

tions (GEE) (Liang and Zeger, 1986) are also popular in estimating the parameters

of a model with a possible unknown correlation between outcomes, which is because

parameter estimates from the GEE are consistent even when the covariance structure

is misspecified.

When outcomes are missing, one common approach is complete case (CC) anal-

ysis, in which only subjects who have all variables observed are used. CC analysis

results are unbiased when the missingness is independent of both observed and un-

observed variables, which is called missing completely at random (MCAR). Although

CC analysis is the default option in many statistical software, it is criticized because

MCAR is generally unrealistic and even if MCAR is assumed, it discards the infor-

mation in the incomplete cases. CC analysis is also valid when the missingness does

not depend on outcomes in a regression, in which no distribution assumption is made

for the covariates.

Alternative missing data adjustment methods often assume that the missing data

are missing at random (MAR), in the sense that missingness does not depend on

the missing values after conditioning on the observed data (Rubin, 1976). Approach-

es based on MAR include ignorable likelihood-based methods such as parametric

multiple imputation (MI) (Rubin, 1987) and maximum likelihood (ML) estimation,

and inverse probability-weighted methods (Robins et al., 1995). Ignorable likelihood-

based methods have the advantage of retaining all the data, and are fully efficient
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as long as MAR is true. Furthermore, they are robust, performing reasonably well

even when the MAR assumption is slightly violated (Little and Zhang, 2011). The

robustness is because the efficiency gain by using more cases outweighs the bias result-

ing from incorrectly ignoring the missing data mechanism. In multiple imputation,

missing values are replaced by D (=5 or 10) imputed versions. For inference, each of

the imputed complete data sets is analyzed by standard methods, and those results

are combined to calculate estimates and confidence intervals which can incorporate

uncertainty from missing data.

When data on outcomes are missing because of adverse events or lack of treat-

ment efficacy, missingness depends on the missing values and the MAR assumption

is violated. Such mechanisms are called missing not at random (MNAR), or non-

ignorable (Rubin, 1976; Little and Rubin, 2002). Joint models for the outcomes and

missing indicators are usually required for non-ignorable missing data mechanisms.

Little (1993) considered two classes of joint models: selection models and pattern-

mixture models. Selection models factorize the joint model of outcomes and missing

indicators into a model for the marginal outcomes and another model of missing in-

dicators conditional on the possibly unobserved outcomes. Pattern-mixture models

factorize the joint model into a model of missing data patterns and another model for

outcomes given missing data patterns. In either approach, unverifiable restrictions or

assumptions are required to identify the parameters (Fitzmaurice et al., 2005). Re-

searchers have proposed sensitivity analyses to address this issue (Little and Rubin,

2002; Scharfstein et al., 1999; National Research Council, 2010), but in practice only

a limited set of MNAR models can be assessed.

In this dissertation, we explore two missing data problems in clinical trials: treat-

ment arm switching issues for survival data and nonrandom dropout issues for masked

clinical trials.

In Chapter 2, we consider noncompliance problem in phase III clinical trials in
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oncology, which evaluate the survival benefit for a new treatment relative to an exist-

ing treatment or standard-of-care. Although patients are randomized to their treat-

ment assignments, ethical motivations dictate that patients who experience disease

recurrence or other event indicating increased likelihood of death may be offered the

option to switch to the other treatment arm and continue to be followed for survival.

Standard statistical methods that ignore this non-random noncompliance can lead to

biased estimation of the survival benefit attributed to the new treatment. Although

methods do exist to account for the effect of treatment arm switching, several of these

methods focus on quantifying an overall switching effect, which can still lead to biased

results if the benefit derived from switching varies among patients.

We propose a new parametric method to address this limitation that factorizes

the likelihood into two parts in order to evaluate the individual benefit of switching.

For the cases when assumptions in the above parametric method may be violated,

we propose another more robust latent time method inspired by iterative parameter

estimation (IPE) procedure (Branson and Whitehead, 2002). Via simulation, we ex-

amine the performance of our methods and compare the performance with existing

methods including (1) ITT analysis; (2) PP analysis in which patients who switch

treatment arms are either omitted entirely from analysis or are treated in the anal-

ysis as censored at the time of switching; (3) Cox proportional hazards model (PH)

with treatment arm as a time-varying covariate; (4) IPE procedure which assumes

a parametric accelerated failure-time (AFT) model with a multiplicative treatment

effect of exp(η), and iteratively calculate the value of η̂ and latent event times until

values for η̂ converge.

In Chapter 3, we consider missing outcome problems in masked (blinded) clinical

trials. Most standard models for analyzing the data make the MAR assumption,

but in practice, there are often situations where missingness is likely to depend on

the outcome, so MAR is not valid. For masked trials, we propose a specific MNAR
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assumption, which we call masked MNAR (MMNAR): since the specific treatment

received is unknown, masking justifies the assumption that missingness does not de-

pend on treatment assignment after conditioning on outcomes and side effects. We

suggest that methods based on the MMNAR assumption are useful for masked clin-

ical trials, either in their own right or to provide a form of sensitivity analysis for

deviations from MAR. MAR analysis might be favored on grounds of efficiency if the

estimates based on MMNAR and MAR are similar, but if the estimates are substan-

tially different, the MMNAR estimates might be preferred because the mechanism is

more plausible. We formulate models for categorical and continuous outcomes under

this assumption. Simulations are conducted to examine the finite sample performance

of ML methods assuming MMNAR and compare them with other methods such as

CC analysis and ML assuming MAR. We also applied our methods to the TRial Of

Preventing HYpertension (TROPHY) study (Julius et al., 2006).

In Chapter 4, we further extend the MMNAR assumption proposed in Chapter 3

to longitudinal data models. Since there are many possible longitudinal models, we

propose a strategy to develop a longitudinal MMNAR model based on the preferred

longitudinal model for complete data. The estimation procedure including a regres-

sion step and an imputation step is also presented. Simulation studies are conducted

to compare the performance of the proposed method with other methods. The idea

is also illustrated with the TROPHY study.
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CHAPTER II

Estimating Survival Benefit in Randomized

Clinical Trials with Treatment Arm Switching

After Disease Progression

2.1 Introduction

Randomized controlled trials (RCTs) are often considered the gold standard for

evaluating the efficacy of an experimental treatment, as the randomization of patients

to the treatment arm or the comparative control arm limits the impact of selection

bias and possible confounding of the potential treatment effect. After randomization,

each patient is followed for a pre-specified period of time, often several years, during

which the occurrence of a primary event of interest, usually death from any cause,

may occur. Patients who do not die before the end of their follow-up are considered

censored for death, necessitating the use of censored data methods, i.e. log-rank tests

and Cox regression, to compare the difference between the overall survival (OS) rates

of the treatment arms.

In many diseases, such as cancer and acquired immune deficiency syndrome (AID-

S), death may be preceded by a serious event, such as recurrence of disease with cancer

or continued elevation of CD34+ cells with AIDS, that is associated with death and

would suggest that the treatment assignment of the patient be switched for compas-
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sionate and ethical reasons. For example, Slamon et al. (2001) described an RCT

comparing the use of standard chemotherapy (anthracycline plus cyclophosphmide

or paclitaxel) alone or in combination with the recombinant monoclonal antibody

trastuzimab (Herceptin) for the treatment of metastatic breast cancer. At the time

of disease progression, all patients had the option of enrolling in a follow-up (non-

randomized) study of Herceptin alone or in combination with chemotherapy in hopes

of prolonging overall survival. Of the 234 patients randomized to chemotherapy alone,

66% elected to receive Herceptin as part of this follow-up study. The combination

of the data from the the RCT and the follow-up study were then used to assess the

effect of Herceptin on overall survival (Lewis et al., 2002).

A second example is the RECORD-1 trial, which studied everolimus, which al-

ters the mammalian target of rapamyacin (mTOR) pathway, a known pathway of

the pathogenesis of renal cell carcinoma (RCC) (Motzer et al., 2008). RECORD-1

enrolled 416 patients with metastatic RCC, each of whom was randomized to re-

ceive either everolimus plus best standard of care (BSC) or placebo plus BSC. The

primary endpoint was progression-free survival (PFS), which is the earlier of disease-

progression or death, because the treatment assignment of patients with disease pro-

gression were unblinded, and those randomized to placebo plus BSC were allowed to

switch to everolimus plus BSC at the time of disease progression. However, the pub-

lished PFS results were accompanied by an editorial that questioned the use of PFS

as an endpoint for RCC (Knox, 2008), a concern that has now pervaded through the

design of RCTs in cancer treatment, with most RCTs now using OS as the primary

endpoint. In response to the editorial, the OS results of the RECORD-1 trial, based

upon the rank-preserving structural failure time model of Robins and Tsiatis (1991)

were published later (Motzer et al., 2010). Other examples of treatment switching

and the resulting statistical issues include the use of sunitinib for the treatment of

gastrointestinal stromal tumors (Blay, 2010), the study of ganitumab in the treatment
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of breast cancer (Robertson et al., 2013), and the study of zidovudine in patients with

HIV infection (Concorde Coordinating Committee, 1994; White et al., 1999; Hernan

et al., 2000).

It is obvious that when OS is the primary endpoint for a RCT that allows pa-

tients to switch from their randomized assignments, comparison of the two arms will

be biased unless the switching is accounted for properly. When using standard sta-

tistical methods to estimate the difference in OS between the two arms, the simplest

and most-commonly used approach is an intent-to-treat (ITT) analysis, whereby the

follow-up of each patient is assigned completely to their original arm assignment, re-

gardless if they later switched to the other arm. However, if the treatment is truly

effective, then an ITT analysis will only serve to give a diluted treatment effect es-

timate. Furthermore, ITT produces an estimate of the effect of the entire treatment

regimen that includes switching, whereas usually investigators are interested solely in

the effect in the treatment when switching is not an option in practice, a parameter

referred to as “biological efficacy” by Sommer and Zeger (2011).

Another method is termed a “per-protocol” approach, in which patients who

switch treatment arms are either omitted entirely from analysis or are treated in

the analysis as censored at the time of switching. Neither of these approaches is sat-

isfactory, as both approaches fail to use all information available in the data, thereby

reducing the power of the study. Moreover, both per-protocol approaches lead to a bi-

ased analysis of a selected subset of patients who are no longer balanced with respect

to all confounding factors. The bias is further compounded when the probability of

switching is related to disease progression, as it is in all the RCTs cited earlier. We

note that Law and Kaldor (1996) proposed a modified ITT analysis approach that

seems to have received little use in application, although it has been shown to lead

to valid estimation under a weaker set of restrictions than a crude ITT analysis. A

more detailed examination of the weaknesses of ITT and per-protocol approaches can
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be found in Morden et al. (2011).

Several statistical approaches have been developed that incorporate the complete

follow-up of all patients and give an unbiased estimate of treatment effect when certain

assumptions are met. As stated earlier, data from the RECORD-1 trial were analyzed

using the methods of Robins and Tsiatis (1991), which assume that treatment has a

multiplicative effect (eη; the model with η will be described later in detail) on each

patient’s overall survival. Each patient is assigned a latent event time that would

have been observed had no treatment been received, and a rank-based statistic, given

a value of η, is computed using the latent values. A grid search among a range of

possible values for η is used until one identifies the value that leads to a rank-based

statistic of zero; this value of η is the estimated treatment effect η̂. However, this grid

search can be computationally expensive, as no systematic or iterative process exists

for identifying η̂.

In response to this limitation, Branson and Whitehead (2002) proposed an itera-

tive parameter estimation (IPE) procedure. A parametric (e.g. Weibull or exponen-

tial) accelerated failure-time model is assumed with a multiplicative treatment effect

of eη, and η̂ is computed from the data as randomized. Based upon this value of

η̂, latent event times are then formulated for patients who switched treatment and

these latent event times replace the corresponding observed event times in the data.

A updated value of η̂ is then computed, from which one formulates updated latent

event times, and this iterative process continues until values for η̂ converge. Thus, as

stated by White (2006), the methods of Robins and Tsiatis (1991) and Branson and

Whitehead (2002) assume the same estimand and differ only by whether a rank or

parametric test is used to determine η̂. However, White (2006) does emphasize that

the methods of Branson and Whitehead (2002) as published do not adequately deal

with censored subjects because they do not correctly recensor subjects as outlined by

White et al. (1999). Thus, in a study with a large amount of censoring, the value of
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η̂ can be biased with IPE.

Shao et al. (2005) also extended the IPE procedure by proposing to use a Cox

regression model, rather than a fully parametric model, for survival times, and thereby

have a likelihood-based approach for estimating η which is computationally simpler

than the iterative approach of Branson and Whitehead (2002). Shao et al. (2005) also

introduce a weight function that allows for a differential treatment effect for patients

randomized initially to the treatment arm and patients randomized initially to control

and later switch to the treatment arm. Nonethless, White (2006) demonstrated that

these methods are based upon a likelihood that is conditional upon the switching

times and therefore can be biased when switching is not ignorable, i.e. is correlated

with prognosis. Most recently, Zheng et al. (2012) developed a computationally-

intensive method based on a semi-parametric hazards model. Instead of calculating

latent event times, Zheng et al. (2012) only model the observed event times and

instead use separate models for each of: (a) the time of the event causing a switch

to another arm, (b) the time from switching to death, and (c) the time of death for

those who did not switch from their original arm assignment.

We present a parametric approach as an alternative to the methods just discussed.

In Section 2.2, we propose our new parametric model and Section 2.3 contains the

details of parameter estimation. In Section 2.4, we examine the performance of our

methods via simulation. In Section 2.5, we compare the performance of our methods

to existing approaches and also present two approaches for limiting the bias of the IPE

algorithm applied to multivariate normal data. Concluding remarks are in Section

2.6.

2.2 Parametric Model

We have a clinical trial designed to assess the difference in overall survival between

patients receiving a control and patients receiving an experimental agent (treatment).
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Patients are initially randomized equally to either arm (j = 0 for control; j = 1 for

treatment) and each is followed until the earliest of (a) censoring, (b) progression of

disease, or (c) death. Patients on the control (treatment) arm with progression of

disease are allowed to switch to the treatment (control) arm at the time their disease

progresses. We let Xi, i = 1, 2, . . . n denote the arm to which patient i was assigned

and Yi denotes the arm assignment for patient i after disease progression in patients

whose disease progresses. We emphasize that disease progression does not imply a

patient will switch to the other arm with certainty, as some patients most likely will

remain on their original arm even after disease progression. To that end, Mij is the

binary indicator of whether or not subject i experienced disease progression after

randomization to arm j, and Rij denotes if patient i switched treatment, i.e Xi = j

and Xi 6= Yi. Thus, Mi,Xi
is the observed indicator of progression for subject i, while

Mi,(1−Xi) is a latent indicator of progression for subject i had they been randomized

to the other arm. We let p1j = Prob(Mij = 1) and p0j = (1− p1j) = Prob(Mij = 0).

We let Ti0 and Gi0 be the respective time to progression and time to death after

progression in patients initially randomized to control, and TGi0 is the time from

randomization to death in patients randomized to control without disease progres-

sion. We have similar definitions of Ti1, Gi1, and TGi1 for patients randomized to the

treatment arm. Note that under this model, Gij, the time to death for patient i in

arm j after disease progression, is independent of the original treatment assignment

of patient i. Specifically, if patient i were originally assigned to the control arm and

did not switch to the treatment arm after disease progression, a period of time Gi0

would be observed for this patient. By our assumption, if that patient had instead

been assigned to the treatment arm and switched to the control arm after progres-

sion, the same length of time Gi0 would be observed after progression. Last, we let

Ci denote the censoring time for patient i. We further assume that the decision of

treatment switching is independent of the potential outcomes Gi0 and Gi1 given the
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progression time Tij, and the censoring time is also assumed to be independent of

each of Tij, Gij, and TGij. In summary, the observed data for each patient are one

of twelve possibilities outlined in Table 2.1.

Table 2.1: Summary of the data to be observed in the clinical trial, dependent upon
disease progression, treatment arm switching, and censoring.

Initial Arm Censored Progression Switch Observed Data for Patient i
Control no no n/a Xi = 0, Mi0 = 0, TGi0

yes no Xi = 0, Mi0 = 1, Ri0 = 0, Ti0, Gi0

yes yes Xi = 0, Mi0 = 1, Ri0 = 1, Ti0, Gi1

Treatment no no n/a Xi = 1, Mi1 = 0, TGi1

yes no Xi = 1, Mi1 = 1, Ri1 = 0, Ti1, Gi1

yes yes Xi = 1, Mi1 = 1, Ri1 = 1, Ti1, Gi0

Control yes no n/a Xi = 0, Ci
yes no Xi = 0, Mi0 = 1, Ri0 = 0, Ti0, Ci
yes yes Xi = 0, Mi0 = 1, Ri0 = 1, Ti0, Ci

Treatment yes no n/a Xi = 1, Ci
yes no Xi = 1, Mi1 = 1, Ri1 = 0, Ti1, Ci
yes yes Xi = 1, Mi1 = 1, Ri1 = 1, Ti1, Ci

Thus, in the absence of censoring, we have a total of six duration of times for

subject i: Ti0, Gi0, TGi0, Ti1, Gi1, and TGi1, some of which are observed and some of

which are latent depending on the original arm assignment and whether or not disease

progression occurs. We will directly model the joint distribution of Ti0, Gi0, TGi0, and

Ti1, and then make assumptions that allow us to determine distributions for Gi1 and

TGi1. Specifically, the vector (log Ti0, log Ti1, log Gi0, log TGi0) has a multivariate

normal distribution with mean vector (µ0, µ1, µ2, µ0E) and covariance matrix



σ2
0 ρ1σ0σ1 ρ2σ0σ2 ρ4σ0σ0E

ρ1σ0σ1 σ2
1 ρ3σ1σ2 ρ5σ1σ0E

ρ2σ0σ2 ρ3σ1σ2 σ2
2 ρ6σ2σ0E

ρ4σ0σ0E ρ5σ1σ0E ρ6σ2σ0E σ2
0E


(2.1)
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We define DT i = log Ti1−log Ti0, which is also normally distributed and has mean

∆ = µ1 − µ0 and variance σ2
D = σ2

1 + σ2
0 − 2ρ1σ0σ1. The parameter ∆ quantifies the

treatment effect of interest, and, as defined, holds only for the time before progression

in patients with disease progression. We therefore assume that this treatment effect

carries over to the time from progression to death, as well as the time to death in

patients who do not experience disease progression. Specifically, we assume that

DGi = log Gi1 − log Gi0 and DTGi = log TGi1 − log TGi0 are both equal to DT i, i.e.

DT i ≡ DGi ≡ DTGi, and this assumption leads to distributions for Gi1 and TGi1 and

establishes a fully parametric model.

Although our assumption that the treatment effect is the same both before and

after disease progression may seem strong, it actually leads to intuitive results. In

patients randomized to control who experience disease progression, we would expect

that the effect of the treatment in these patients would be related to when their disease

progressed. Specifically, the benefit of the treatment is expected to be greater in those

whose disease progressed earlier than average as compared to those whose disease

progressed later than average, a concept referred to by White (2006) as “individual

benefit to be gained from treatment,” which we denote as Bi.

This concept can be explained by our proposed model. If patient i is assigned to

the control arm and experiences disease progression at time ti0, the expected condi-

tional treatment effect after progression is

E(logGi1 − logGi0| log Ti0 = log ti0) = E(log Ti1 − log Ti0| log Ti0 = log ti0)

= E(log Ti1| log Ti0 = log ti0)− log ti0

= µ1 + ρ1σ0/σ1(log ti0 − µ0)− log ti0

= µ1 − µ0 + ρ1σ0/σ1(log ti0 − µ0)− log ti0 + µ0

= ∆ + (ρ1σ0/σ1 − 1)(log ti0 − µ0)
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with Bi = (ρ1σ0/σ1 − 1)(log ti0 − µ0). Since we expect σ0 and σ1 to be relatively

similar to each other and ρ will not be large enough to dominate the ratio of σ0 and

σ1, it is very likely in practice that (ρ1σ0/σ1− 1) < 0. Thus, Bi > 0 when log ti0 < µ0

and Bi < 0 when log ti0 > µ0, meaning that the individual treatment benefit from

switching is large for patients with early progression relative to patients with average

time to progression. In fact, our model presumes that those who progress later than

average will receive less benefit from switching to the treatment arm than those with

average time to progression. Therefore, the concept of a positive benefit attributed to

switching is supported by our model independent of the sign of µ1−µ0, and switching

a patient’s treatment arm assignment based on their observed time to progression is

justified.

We note that our methods define the treatment effect as ∆ = E{log(Ti1/Ti0)},

so that e∆ ≈ E{Ti1/Ti0}. We contrast this definition of treatment effect with the

following two alternatives

∆∗ = log

(
E[Mi1(Ti1 +Gi1)] + E[(1−Mi1)TGi1]

E[Mi0(Ti0 +Gi0)] + E[(1−Mi0)TGi0]

)
(2.2)

∆∗∗ = E

[
log

(
Mi1(Ti1 +Gi1) + (1−Mi1)TGi1

Mi0(Ti0 +Gi0) + (1−Mi0)TGi0

)]
(2.3)

Although ∆,∆∗, and ∆∗∗ are not identical quantities, it can be shown that

∆ = ∆∗∗ if either p10 = p11, i.e. the probability of progression is the same in both

arms, or Ti0 + Gi0 = TGi0, i.e. the sum of the time to progression and time from

progression to death for a patient with progression is the same as the time to death

for a patient without progression. However, both of these equalities have little bi-

ological justification. Although ∆∗∗ is related more closely to ∆, ∆∗ is the most

commonly defined treatment effect because it can be directly obtained from the data

in the absence of treatment switching and censoring. In Section 2.4, estimates of ∆,
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∆∗, and ∆∗∗ will all be presented as summaries of the performance of our proposed

method and estimates of ∆∗ will be presented when comparing our proposed methods

to existing methods.

2.3 Likelihood and Parameter Estimation

Since we have a fully parametric model, we can use maximum-likelihood meth-

ods to estimate parameters, although some of the parameters are not estimable and

will be discussed in further detail. As outlined in Table 2.1, the contribution of

each subject to the likelihood is a function of their original treatment assignmen-

t, whether or not they experience disease progression, whether they switch treat-

ment arms after disease progression, and when they are censored. We let θ =

{p10, p11, µ0, µ1, µ2, µ0E, σ
2
0, σ

2
1, σ

2
2, σ

2
0E, σ

2
1E, ρ1, ρ2, ρ3} be the vector of the 14 parame-

ters to be estimated. The parameter σ2
1E will be described in the outline below, and is

used in the likelihood in place of ρ4, ρ5, and ρ6, which are not estimable from the data.

We let Ki = 1, 2, . . . 12 be the indicator as to which of the twelve possibilities subject

i resides and their corresponding likelihood contribution to be LKi
, leading to a joint

likelihood function
∏n

i=1 LKi
. We now outline the twelve possible likelihood contribu-

tions of each subject in more specific terms. In the following outline, φ(x | µ, σ2) and

Φ(x | µ, σ2) denote the density and cumulative probability function, respectively, of

a normal distribution with mean µ and variance σ2. We also organize our outline by

first describing the six possibilities when patients are not censored, which are then

followed by the corresponding possibilities when patients are censored.

• Ki = 1: patient i is assigned to the control arm and does not experience disease

progression. We observe their time to death TGi0 and L1 = φ(log TGi0 | µ0E, σ
2
0E);

• Ki = 2: patient i is assigned to the control arm, experiences disease progression,

and does not switch to the treatment arm. We observe their time to disease
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progression, Ti0, and their time from disease progression to death, Gi0. Since

(Ti0, Gi0) is not a random sample, their likelihood contribution cannot be based

upon their joint distribution. Instead, we use the product of the conditional dis-

tribution of Gi0 given Ti0 and the marginal distribution of Ti0. Since logGi0 giv-

en Ti0 = ti0 has a normal distribution with mean µ̃i2 = µ2+(ρ2σ2/σ0)(log ti0−µ0)

and variance σ̃2
2 = σ2

2(1−ρ2
2), we have L2 = φ(log Ti0 | µ0, σ

2
0)φ(logGi0 | µ̃i2, σ̃2

2);

• Ki = 3: patient i is assigned to the control arm, experiences disease progression,

and switches to the treatment arm. We observe their time to disease progression,

Ti0, and time from disease progression to death, Gi1. Through our assumption

that logGi1− logGi0 = log Ti1− log Ti0, we can derive the mean and variance of

Gi1 conditional on Ti0 = ti0, whose respective values are µ̃i3 = µ1 +µ2− log ti0 +

(ρ1σ1/σ0+ρ2σ2/σ0)(log ti0−µ0) and σ̃2
3 = σ2

1(1−ρ2
1)+σ2

2(1−ρ2
2)+2σ1σ2(ρ3−ρ1ρ2).

Thus, L3 = φ(log Ti0 | µ0, σ
2
0)φ(logGi0 | µ̃i3, σ̃2

3);

• Ki = 4: patient i is assigned to the treatment arm and does not experience

disease progression. We observe their time to death, log TGi1 and from our as-

sumption that log TGi1− log TGi0 = log Ti1− log Ti0, we know that log TGi1 has

a normal distribution whose variance is a function of the inestimable parameters

ρ4, ρ5, and ρ6. Thus, we introduce σ2
1E to denote the variance of log TGi1 and

use this parameter directly in the likelihood. Thus, L4 = φ(log TGi1 | µ̃4, σ
2
1E),

in which µ̃4 = µ0E − µ0 + µ1.

• Ki = 5: patient i is assigned to the treatment arm, experiences progression,

and does not switch to the control arm. We observe their time to disease pro-

gression, Ti1, and time from disease progression to death, Gi1. Analogous to

the likelihood when Ki = 3, we first derive the conditional mean and vari-

ance of logGi1|Ti1 = ti1, which are µ̃i5 = µ2 − µ0 + log ti1 + (ρ3σ2/σ1 −

ρ1σ0/σ1)(log ti1 − µ1) and σ̃2
5 = σ2

0(1 − ρ2
1) + σ2

2(1 − ρ2
3) − 2σ0σ2(ρ2 − ρ1ρ3).
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Thus, L5 = φ(log Ti1 | µ1, σ
2
1)φ(logGi1 | µ̃5, σ̃

2
5).

• Ki = 6: patient i is assigned to the treatment arm, experiences progression,

and switches to the control arm. We observe their time to progression, Ti1, and

time from disease progression to death, Gi0. Analogous the likelihood when

Ki = 2, we see that logGi0|Ti1 = t1 has a normal distribution with mean

of µ̃i6 = µ2 + (ρ3σ2/σ1)(log ti1 − µ1) and variance σ̃2
6 = σ2

2(1 − ρ2
3). Thus,

L6 = φ(log Ti1 | µ1, σ
2
1)φ(logGi0 | µ̃i6, σ̃2

6).

• Ki = 7: patient i is assigned to the control arm and is censored before ei-

ther progression or death occurs. We observe their time of censoring, Ci, and

the likelihood contribution is a mixture of patients who would have otherwise

died in the absence of disease progression and patients who would have other-

wise experienced disease progression prior to death. Thus, L7 = (1 − p10)[1 −

Φ(logCi | µ0E, σ
2
0E)] + p10[1− Φ(logCi | µ0, σ

2
0)].

• Ki = 8: patient i is assigned to the control arm, does not switch arms at

time of disease progression, and is censored before death. We observe their

time to disease progression, Ti0, and time from disease progression to censoring,

Ui = Ci − Ti0. Thus, L8 = φ(log Ti0 | µ0, σ
2
0)[1− Φ(logUi | µ̃2, σ̃

2
2)].

• Ki = 9: patient i is assigned to the control arm, switches arm at time of disease

progression, and is censored before death. We observe their time to disease

progression, Ti0, and time from disease progression to censoring, Ui = Ci − Ti0.

Thus, L9 = φ(log Ti0 | µ0, σ
2
0)[1− Φ(logUi | µ̃3, σ̃

2
3)].

• Ki = 10: patient i is assigned to the treatment arm and is censored before

either disease progression or death occurs. We observe their time of censor-

ing, Ci. Analogous to the likelihood when Ki = 7, we have L10 = p11[1 −

Φ(logCi | µ1, σ
2
1)] + (1− p11)[1− Φ(logCi | µ̃4, σ

2
1E)].
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• Ki = 11: patient i is assigned to the treatment arm, does not switch arms

at time of disease progression, and is censored before death. We observe their

time to disease progression Ti1, and time from disease progression to censoring

Ui = Ci − Ti1. Thus, L11 = φ(log Ti1 | µ1, σ
2
1)[1− Φ(logUi | µ̃5, σ̃

2
5)].

• Ki = 12: patient i is assigned to the treatment arm, switches arms at time

of disease progression, and is censored before dead. We observe their time to

disease progression, Ti1, and time from disease progression to censoring, Ui =

Ci − Ti1. Thus, L12 = φ(log Ti1 | µ1, σ
2
1)[1− Φ(logUi | µ̃6, σ̃

2
6)].

2.4 Simulation Studies

We examine the finite sample properties of our proposed methods via simulation.

We have a hypothetical clinical trial comparing an experimental agent and a control.

400 patients are randomized so that each arm has 200 patients. We first generate all

the possible event times (progression, death after progression, and death in absence of

progression) for each subject. We first draw the vector (log Ti0, log Ti1, log Gi0, log TGi0)

from a multivariate normal distribution with mean vector µ = (−1.3,−1.1,−1.2,−0.5)

and variance matrix with diagonal elements σ2
0 = 2.0, σ2

1 = 1.8, σ2
2 = 1.3, and σ2

0E =

2.0 and off-diagonal elements such that ρ1 = 0.58, ρ2 = 0.50, ρ3 = 0.10, ρ4 = 0.40, ρ5 =

0.39, and ρ6 = 0.30. From the given values of log Ti0, log Ti1, logGi0, and log TGi0, we

compute logGi1 = logGi0 +log Ti1− log Ti0 and log TGi1 = log TGi0 +log Ti1− log Ti0.

We also draw independent censoring times Ci for each subject from a exponential dis-

tribution with mean 2. We then simulate a binary indicator of progression for each

subject using the probabilities p11 = 0.5 and p10 = 0.6. If a subject experiences pro-

gression, their data is comprised of either (i) their censoring time, (ii) their separate

times to disease progression and from disease progression to censoring, or (iii) their

separate times to disease progression and from disease progression to death. The data
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for subjects without disease progression are either (i) their censoring time or (ii) the

time to death.

Recall that when a patient has disease progression, it is possible for them to switch

to the arm to which they were not randomized if their expected individual benefit is

large enough to warrant switching. Thus, a rule must be formulated that determines

if a patient will switch arms at disease progression. We first examine the properties

of our methods when switching occurs if a patient has disease progression that occurs

earlier than the median progression time for their arm, which is exp(−1.1) = 0.33 for

the treatment arm and exp(−1.3) = 0.27 for the control arm. Since the actual median

may not be known and will have to be estimated, we will examine the properties of

our methods using a variety of decision rules.

Based upon the parameter values and switching rules stated above, the original

control arm consisted of 27% of patients who were censored before progression or

death, 12% of patients who were censored for death after progression (61% of whom

switched treatment arm), 26% of patients who died in the absence of disease progres-

sion, and 35% of patients whose death was observed after progression (60% of whom

switched treatment arm). The original treatment arm consisted of 33% of patients

who were censored before progression or death, 9% of patients who were censored

for death after progression (50% of whom switched treatment arms), 29% of patients

who died in the absence of disease progression, and 29% of patients whose death was

observed after progression (65% of whom switched treatment arms).

We use a Newton-Raphson algorithm to maximize the likelihood presented in

Section 2.3, with the marginal means and variances computed from the observed

data as initial parameter estimates. The data can also be used to generate a starting

value for ρ2. However, since ρ1 and ρ3 cannot be estimated, we use a starting value

of 0.15 for each. Theoretical expressions of the first and second derivatives are used

in the algorithm. The properties of our methods based on 1,000 simulations are
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presented in Table 2.2. The table contains the true value for each parameter, the

empirical mean of the estimates among the 1,000 simulations, the empirical MSE

of the estimates among 1,000 simulations, and the coverage probability of the 95%

confidence interval computed from the inverse of the information matrix and a normal

approximation, i.e. estimate ± 1.96 standard deviations. The true value of ∆ is

simply µ1 − µ0 = 0.2, and true values of ∆∗ and ∆∗∗ are the average over 1,000

simulations assuming all information is known for each subject. Since ∆, ∆∗, and ∆∗∗

are functions of parameters, the corresponding variance estimates of their estimates

are calculated with the delta method.

Based on Table 2.2, it can be seen that all parameter estimates are unbiased and

the coverage of the 95% confidence intervals are very close to 0.95. Table 2.3 sum-

marizes the finite sample properties of our methods with different rules for switching

treatment arms. The last six columns contain the empirical mean and MSE of each

parameter with switching rules that differ from the ones used with the results in

Table 2.2. Switching rule 2 (SR2) shows the performance when both of thresholds

for switching (exp(−0.7) = 0.50 for the treatment arm and exp(−1.0) = 0.37 for the

control arm) are greater than the true medians. Switching rule 3 (SR3) illustrates

the result when both of the switching thresholds (exp(−1.4) = 0.25 for the treatment

arm and exp(−1.7) = 0.18 for the control arm) are less than the true medians. In

switching rule 4 (SR4), threshold for the treatment arm (exp(−1.3) = 0.27) is less

than the true median (exp(−1.1) = 0.33) when the threshold for the control arm

(exp(−1.1) = 0.33) is greater than the true median (exp(−1.3) = 0.27). The results

presented in Table 2.3 demonstrate that estimation is relatively unaffected by the

actual switching rule that is used.

Since our methods are fully parametric, we also examine the performance of our

methods when some of the assumptions are violated. Table 2.4 summarizes simu-

lation results based upon data drawn from a log-Gamma distribution rather than a
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Table 2.2: Finite sample properties of estimating parameters based upon 1,000 sim-
ulations of a clinical trial with 200 patients in each arm. Patients are
allowed to switch at disease progression if their progression time is less
than exp(−1.1) = 0.33 (treatment arm) or exp(−1.3) = 0.27 (control
arm); MSE = mean squared error; CP = coverage probability for 95%
confidence interval.

True
Parameter Value Mean MSE CP
µ0 -1.30 -1.30 0.03 0.91
µ1 -1.10 -1.11 0.03 0.92
µ2 -1.20 -1.20 0.02 0.95
µ0E -0.50 -0.51 0.03 0.95

σ2
0 2.00 1.99 0.13 0.92
σ2

1 1.80 1.78 0.13 0.89
σ2

2 1.30 1.32 0.07 0.93
σ2

0E 2.00 2.00 0.21 0.92
σ2

1E 3.49 3.44 0.47 0.95

ρ1 0.58 0.57 0.05 0.89
ρ2 0.50 0.50 0.02 0.92
ρ3 0.10 0.11 0.03 0.93

p10 0.60 0.60 0.00 0.94
p11 0.50 0.50 0.00 0.95

∆ 0.20 0.20 0.02 0.96
∆∗ 0.69 0.68 0.11 0.95
∆∗∗ 0.19 0.18 0.02 0.95

22



Table 2.3: Comparison of finite sample properties of estimating parameters based
upon 1,000 simulations of a clinical trial with 200 patients in each arm
for a variety of stopping rules. SR2 = Patients are allowed to switch at
disease progression if their progression time is less than exp(−0.7) = 0.50
(treatment arm) or exp(−1.0) = 0.37 (control arm); SR3 = Patients are
allowed to switch at disease progression if their progression time is less than
exp(−1.4) = 0.25 (treatment arm) or exp(−1.7) = 0.18 (control arm); SR4
= Patients are allowed to switch at disease progression if their progression
time is less than exp(−1.3) = 0.27 (treatment arm) or exp(−1.1) = 0.33
(control arm); MSE = mean squared error; CP = coverage probability for
95% confidence interval.

True SR2 SR3 SR4
Parameter Value Mean MSE Mean MSE Mean MSE
µ0 -1.30 -1.30 0.03 -1.30 0.02 -1.31 0.03
µ1 -1.10 -1.10 0.03 -1.11 0.03 -1.11 0.03
µ2 -1.20 -1.20 0.02 -1.20 0.02 -1.20 0.03
µ0E -0.50 -0.51 0.03 -0.51 0.03 -0.51 0.03

σ2
0 2.00 2.00 0.13 1.99 0.12 1.99 0.13
σ2

1 1.80 1.78 0.13 1.78 0.13 1.78 0.13
σ2

2 1.30 1.31 0.06 1.32 0.07 1.32 0.08
σ2

0E 2.00 1.99 0.21 2.00 0.21 1.99 0.21
σ2

1E 3.49 3.44 0.47 3.44 0.48 3.42 0.47

ρ1 0.58 0.57 0.04 0.57 0.05 0.57 0.05
ρ2 0.50 0.50 0.02 0.50 0.02 0.49 0.03
ρ3 0.10 0.11 0.02 0.11 0.03 0.11 0.03

p10 0.60 0.60 0.00 0.60 0.00 0.60 0.00
p11 0.50 0.50 0.00 0.50 0.00 0.50 0.00

∆ 0.20 0.20 0.02 0.20 0.02 0.20 0.02
∆∗ 0.69 0.68 0.11 0.68 0.12 0.68 0.12
∆∗∗ 0.19 0.19 0.02 0.18 0.02 0.18 0.02
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lognormal distribution. The following approach is used to generate draws from a mul-

tivariate Gamma distribution. First, a vector of {Qi1, Qi2, Qi3, Qi4} is generated for

patient i from a mean-zero multivariate normal distribution that has variance matrix



1 ρ1 ρ2 ρ4

ρ1 1 ρ3 ρ5

ρ2 ρ3 1 ρ6

ρ4 ρ5 ρ6 1


(2.4)

Then Ti0 is calculated with {Ti0 = B(Φ(Qi1);κ1, θ1), where Φ(x) is the CDF of the

standard normal distribution and B(w;κ1, θ1) is the inverse CDF of a Gamma dis-

tribution with shape parameter κ1 and scale parameter θ1. κ1 and θ1 are chosen so

that logarithm of a variable with this Gamma distribution has a mean of µ0 and a

variance of σ2
0. Similarly, Ti1, Gi0, and TGi0 are calculated with B(Φ(Qi2);κ2, θ2),

B(Φ(Qi3);κ3, θ3), and B(Φ(Qi4);κ4, θ4). {κ2, θ2}, {κ3, θ3}, and {κ4, θ4} are chosen

based on the values of {µ1, σ
2
1}, {µ2, σ

2
2}, and {µ0E, σ

2
0E} accordingly. Specifically,

in the 1,000 simulations summarized in Table 2.4, we have {κ1, θ1} = {0.88, 0.60},

{κ2, θ2} = {0.94, 0.66}, {κ3, θ3} = {1.18, 0.41}, and {κ4, θ4} = {0.88, 1.33}. We note

that although this approach does provide a vector of correlated Gamma random vari-

ables, the actual correlation matrix for the resulting vector is not exactly the same

as the matrix in (2.4).

It can be seen that although the parameter estimates are biased, the treatment

effects ∆, ∆∗ and ∆∗∗ estimates are close to their true values. Note that in practice,

the proposed parametric model can be easily extended to other distributions such

as Gamma if the observed distribution is not likely to be normal distributed. We

relegate comparing our methods to existing methods in the next section after we first

develop methods to reduce the inherent bias in the IPE algorithm of Branson and

Whitehead with multivariate normal data.
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Table 2.4: Comparison of finite sample properties of estimating parameters based
upon 1,000 simulations of a clinical trial with 200 patients in each arm
when distributions of event times are gamma rather than normal; Patients
are allowed to switch at disease progression if their progression time is
less than exp(−1.1) = 0.33 (treatment arm) or exp(−1.3) = 0.27 (control
arm); MSE = mean squared error; CP = coverage probability for 95%
confidence interval.

True
Parameter Value Mean MSE CP
µ0 -1.30 -1.14 0.04 0.81
µ1 -1.10 -0.92 0.05 0.81
µ2 -1.20 -1.22 0.02 0.95
µ0E -0.50 -0.53 0.03 0.98

σ2
0 2.00 2.40 0.43 0.77
σ2

1 1.80 2.37 0.63 0.71
σ2

2 1.30 1.55 0.25 0.87
σ2

0E 2.00 2.36 0.73 0.83
σ2

1E 3.49 4.03 1.55 0.86

ρ1 0.58 0.36 0.09 0.74
ρ2 0.50 0.65 0.04 0.51
ρ3 0.10 0.08 0.02 0.92

p10 0.60 0.62 0.00 0.91
p11 0.50 0.53 0.00 0.89

∆ 0.20 0.21 0.02 0.98
∆∗ 0.74 0.80 0.23 0.94
∆∗∗ 0.20 0.20 0.02 0.97
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2.5 Modifying IPE to Accomodate Multivariate Normality

In the IPE algorithm of Branson and Whitehead (2002), if a patient in the control

arm switches to the treatment arm when their disease progresses, their latent time

from randomization to death that would have been observed had the patient not

switched is calculated as Ti0 + exp(−η̂)Gi1. In this formulation, exp(η) is assumed to

be both (i) the ratio E(Gi1)/E(Gi0), and (ii) the treatment effect exp(∆∗) defined in

Section 2.2. However, quantities (i) and (ii) are very different under the multivariate

normal model we have used to generate our data. Another reason for the difference

between (i) and (ii) is that the decision of whether a patient switches their treatment

arm depends on the disease progression time Ti0, so that even when quantities (i) and

(ii) are the same, the calculated latent time Ti0 + exp(−η̂)Gi1 is still biased.

Recall that we assume log(Ti0), log(Ti1), and log(Gi0) follow a multivariate normal

distribution defined in (2.1), with the distribution of log(Gi1) defined by log(Gi1) =

log(Gi0)+log(Ti1)−log(Ti0). A patient in the control arm will switch to the treatment

group after disease progression if their time to disease progression for this patient is

earlier than a certain value. This patient’s latent time to death (the one that would

have been observed in the absence of switching) would be Ti0 +Gi0, which based upon

the definition of treatment effect in the IPE algorithm should equal Ti0 +exp(−η)Gi1.

Now, conditional upon Ti0 = ti0, we have:

E(Ti0 +Gi0 | Ti0 = ti0) = E(Ti0 + exp(−η)Gi1 | Ti0 = ti0)

= E(Ti0 + [Gi1 ∗ E(Gi0)/E(Gi1)] | Ti0 = ti0)

so that

E(Gi0 | Ti0 = ti0)E(Gi1) = E(Gi1 | Ti0 = ti0)E(Gi0)
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resulting in the requirement that

E(Gi1 | Ti0 = ti0)

E(Gi0 | Ti0 = ti0)

E(Gi0)

E(Gi1)
= 1 (2.5)

Using earlier notation, we know

E(Gi1 | Ti0 = ti0)

E(Gi0 | Ti0 = ti0)
=

exp(µ̃i3 + σ̃2
3/2)

exp(µ̃i2 + σ̃2
2/2)

= exp([µ̃i3 − µ̃i2] + [σ̃2
3 − σ̃2

2]/2)

= exp{µ1 − log ti0 + ρ1σ1/σ0(log ti0 − µ0)

+σ2
1(1− ρ2

1)/2 + σ1σ2(ρ3 − ρ1ρ2)}

and

E(Gi0)

E(Gi1)
=

exp(µ2 + σ2
2/2)

exp{µ1 + µ2 − µ0 + σ2
0/2 + σ2

1/2 + σ2
2/2− ρ1σ0σ1 − ρ2σ0σ2 + ρ3σ1σ2}

= exp{−µ1 + µ0 − σ2
0/2− σ2

1/2 + ρ1σ0σ1 + ρ2σ0σ2 − ρ3σ1σ2}

Thus, we can express the ratio in Equation (2.5) as

log

{
E(Gi1 | Ti0 = ti0)

E(Gi0 | Ti0 = ti0)

E(Gi0)

E(Gi1)

}
= (ρ1σ1/σ0 − 1)(log ti0 − µ0)− ρ2

1σ
2
1/2

− σ2
0/2 + ρ1σ0σ1 + ρ2σ0σ2 − ρ1ρ2σ1σ2. (2.6)

In order to better examine the magnitude to which the equality in Equation (2.5)

is violated, we make two further assumptions to simplify Equation (2.6). The first

assumption is that variance of log(Gi0) = σ2
2/2, is equal to variance of log(Gi1) =

σ2
0/2 + σ2

1/2 + σ2
2/2 − ρ1σ0σ1 − ρ2σ0σ2 + ρ3σ1σ2. Such an assumption is biologically

plausible and is often used by many models, such as the accelerated failure time

(AFT) model. Under this assumption, the logarithm of the ratio becomes (ρ1σ1/σ0−

1)(log ti0 − µ0) + (1− ρ2
1)σ2

1/2 + (ρ3 − ρ1ρ2)σ1σ2. Our second assumption is that Ti1

27



and Gi0 are independent given Ti0 = ti0 so that we have ρ3 = ρ1ρ2, which further

simplifies Equation (2.6) to be (ρ1σ1/σ0−1)(log ti0−µ0)+(1−ρ2
1)σ2

1/2. As mentioned

in Section 2.2, it is reasonable to assume that ρ1σ1/σ0−1 is negative, so that Equation

(2.6) is strictly greater than zero when log ti0 < µ0. Therefore, the latent event time

will be biased for patients in the control arm who switch to the treatment arm after a

relatively early recurrence of disease. As a result, application of the IPE algorithm of

Branson and Whitehead (2002) leads to potentially biased treatment effect estimates.

To remedy this bias in the IPE algorithm, the latent event times for control arm

patients who switch to the treatment arm should not be computed as Ti0 +Gi1/∆
∗, in

which ∆∗ is constant for all values of Ti0, but should instead be Ti0 +Gi1/[∆
∗τ(ti0)],

in which τ(ti0) = exp[(ρ1σ1/σ0 − 1)(log ti0 − µ0)] and varies by when a subject had

disease progression. Notice that τ(ti0) does not contain all quantities in Equation

(2.6), but only the parameters related to the mean change of log Ti0 after treatment

arm switching. The remaining parameters in Equation (2.6) may vary significantly

for different assumed distributions for Ti0, Ti1, Gi0, and Gi1; thus we ignore these

parameters in order to create an approach fairly robust to distributional assumptions.

Nonetheless, computation of τ(ti0) is less straightforward than computation of

∆∗. Thus, we make a further simplifying assumption that the variance of log(Ti0)

is equal to variance of log(Ti1), i.e. σ2
1 = σ2

0, so that computation of τ(ti0) only

requires estimates of µ0 and ρ1. Direct estimation of µ0 (denoted as µ̂0) is possible

because Ti0 is fully observed, but ρ1 cannot be directly estimated as it expresses the

within-patient association of Ti0 and Ti1, one of which will be latent for each patient.

Instead, one must assign a suitable value ρ∗1 to ρ1 and perform a sensitivity analysis

across a range of values for ρ1 regarding the overall performance of the IPE algorithm.

We define our approach of replacing ∆∗ with ∆∗τ̂(ti0) as IPE Adjustment 1, where

τ̂(ti0) = exp[(ρ∗1 − 1)(log ti0 − µ̂0)].

Because Gi1 and Gi0 are only observed after treatment switching, E(Gi1)/E(Gi0)
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cannot be correctly estimated from the data, making it impossible to confirm if

E(Gi1)/E(Gi0) is equal to ∆∗, which is one of the assumptions of the IPE algo-

rithm. However, because both Ti1 and Ti0 are observed prior to treatment switch-

ing, we can estimate E(Ti1)/E(Ti0), which is similar to the inestimable quanti-

ty E(Gi1)/E(Gi0). If we take Equation (2.6) and substitute E(Gi1)/E(Gi0) with

E(Ti1)/E(Ti0) = exp{(µ0 + σ2
0/2)− (µ1 + σ2

1/2)}, we have

log

{
E(Gi1 | Ti0 = ti0)

E(Gi0 | Ti0 = ti0)

E(Ti0)

E(Ti1)

}
= (ρ1σ1/σ0 − 1)(log ti0 − µ0)

− ρ2
1σ

2
1/2 + σ2

0/2 + (ρ3 − ρ1ρ2)σ1σ2. (2.7)

The minor difference between Equations (2.6) and (2.7) is explained by variance

parameters that were omitted in IPE Adjustment 1. Thus, we can take IPE Ad-

justment 1, ∆∗τ̂(ti0), and replace ∆∗ with E(Ti1)/E(Ti0), giving us IPE Adjustment

2, [Ê(Ti1)/Ê(Ti0)]τ̂(ti0), which attempts to limit dependence on the unverifiable as-

sumption that ∆∗ = E(Gi1)/E(Gi0). Note that because ∆∗ is no longer used in the

estimating procedure, iteration is avoided in IPE Adjustment 2.

Now that we have developed methods for reducing the bias of the IPE algorithm,

we present simulation results in Table 2.5 that compare the performance of our pro-

posed methods with other existing methods for estimation of ∆∗. The intent-to-treat

and per-protocol analyses used an AFT model assuming a log-normal distribution,

as did the standard IPE, and IPE with Adjustments 1 and 2. Data were simulated

similar to the procedure described in Section 2.4, except that no censoring was in-

corporated into the data. The true treatment effect is ∆∗ = 0.71 and 1,000 data sets

were simulated. The effects of Adjustments 1 and 2 to the IPE algorithm were ex-

amined using three different values of ρ∗1 = {0.2, 0.5, 1.0}. Table 2.5 displays the bias

and MSE across the 1,000 simulations. We acknowledge that most of the competing

methods are semiparametric or nonparametric, and thus our proposed method has
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the smallest MSE. Therefore another comparison is illustrated under the last column

labeled as MSE*. If we suppose that the unobserved Gi0 for control arm patients

who switch and the unobserved Gi1 for treatment arm patients who switch can actu-

ally be observed, then we consider the ratio of the sample means of overall survival

time between the two arms as a gold standard nonparametric estimate of ∆∗ and we

call this the “true treatment effect” for each simulation. For each method, MSE* is

defined to be the averaged squared difference between the estimate from the method

and the “true treatment effect” and provides a measure of how well a method can

recover the information lost due to switching treatment arms.

With regard to bias, we see in Table 2.5 that our proposed method is unbiased

and the IPE algorithm has the least bias among all other methods examined. The

intent-to-treat analysis underestimates the treatment effect as expected, and down-

ward bias also exists for the per-protocol methods. Exclusion of patients who switch

treatment leads to bias because exclusion is a function of when subjects experience

disease progression, and treating treatment switching as a censoring event also creates

bias because the censoring is informative. The bias occurring in a Cox proportional

hazards model with treatment arm as a time-varying covariate occurs because the as-

sumption of proportional hazards (PH) is violated. This last approach has the largest

bias because the PH assumption holds for the entire sample of data, while the bias

of the other approaches only related to assumption made about patients who switch

treatment arms.

The bias of the treatment effect estimate from the IPE algorithm using Adjustment

1 is small and appears to be insensitive to the value of ρ∗1; note that when ρ∗1 = 1,

τ̂(ti0) is actually one, and using IPE with Adjustment 1 is equivalent to the original

IPE algorithm. The bias of the treatment effect estimate for the IPE algorithm with

Adjustment 2 appears to be more sensitive to the value of ρ∗1 which indications of

non-negligible bias with values of ρ∗1 > 0.50. Although bias of Adjustment 2 is slightly
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Table 2.5: Finite sample properties of different methods for estimating a known treat-
ment effect of ∆∗ = 0.71. There were 200 patients in each arm and 1,000
simulations were conducted. Proposed: parametric MLE assuming mul-
tivariate normality; ITT: Intent-to-treat analysis; PPES: per-protocol ex-
cluding data from those who switch treatment arms; PPCS: per-protocol
treating disease progression as a censoring event for future death; CoxTV:
Cox proportional hazards model with treatment arm as a time-varying
covariate; IPE: iterative parameter estimation algorithm by Branson and
Whitehead (2002); A1 and A2: Adjustment methods 1 and 2 for IPE as
described in Section 2.5; MSE: mean-squared error; MSE*: MSE with
recovery of latent event times.

Assumed
Method Value for ρ∗1 Bias MSE MSE*
Proposed · 0.00 0.05 0.064

ITT · -0.12 0.12 0.011

PPES · -0.05 0.12 0.003
PPCS · -0.04 0.12 0.003

CoxTV · -0.25 0.12 0.104

IPE · 0.01 0.14 0.005

IPE A1 0.2 0.02 0.13 0.003
0.5 0.02 0.13 0.003
1.0 0.01 0.14 0.005

IPE A2 0.2 -0.03 0.11 0.001
0.5 -0.04 0.11 0.001
1.0 -0.08 0.11 0.005
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larger than bias of Adjustment 1, we should point out that it is because there is a

small difference between the value of 0.71 for ∆∗ calculated from the true parameters

and the average of the “true treatment effect” over the 1,000 simulation, which is

0.68. If the latter value had been assumed to be the true value of ∆∗, the bias of

Adjustment 2 is much less.

We acknowledge that our method has the lowest MSE among the methods because

the data are simulated from our assumed model. However, the corresponding MSE*

for our method is the second largest among all approaches because of the parametric

estimation relative to the other semi- and non-parametric methods. Although the

true value of ρ1 in our simulation is 0.58, we observe that the MSE and MSE* for the

IPE algorithm with Adjustment 2 are very small when ρ∗1 is 0.2 or 0.5, demonstrating

that much of the lost information can be recovered by the IPE algorithm when using

Adjustment 2 even if the specified ρ∗1 is less than ρ1. Generally, we suggest that

Adjustment 2 with ρ∗1 between 0.0 and 0.5 should be used in practice because: (i) ρ1

is unlikely to be very large in realistic settings, and (ii) the recommended value for

ρ∗1 should be less than that for ρ1 if DT i is not equal to but positively correlated with

DGi.

We chose to simulate data without censoring because White (2006) pointed out

that the recensoring approach proposed by Branson and Whitehead (2002) for the

IPE algorithm was potentially biased and White (2006) provided a corrected version

of recensoring to use with the IPE algorithm. Unfortunately, this modified recen-

soring approach cannot be applied to our approach because the censoring times are

not observed for uncensored patients. A potential approach to recensoring for our

approach is still under investigation.
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2.6 Discussion

Our work has shown that when treatment arm switching depends on the observed

progression time of patients, the IPE adjustment of Branson and Whitehead (2002)

may be biased. This is because the causal effect can be altered after treatment

switching selection. For the same reason, if treatment switching depends on some-

thing that is not measured in the data set (for example, an investigator’s judgment

and/or prognosis), unverifiable assumptions are required to identify the effect of these

unmeasured factors. In this chapter, we propose a robust approach to address the

issue when treatment switching depends on the observed progression time, and we

assume independence between treatment switching and the future event time given

observed progression time. This assumption, although weaker than the assumption-

s required by IPE, is still questionable in practice, so it is highly recommended to

collect more variables associated with both treatment switching and the future event

time to weaken the unverified assumption.

Our assumption that DT i ≡ DGi ≡ DTGi may appear strong but is intuitive. It

provides an idea to understand the association between the causal effect of treatment

with survival both before progression and after progression and leads to our proposed

adjustments for treatment arm switching. The assumption can be relaxed by assum-

ing DGi is positively correlated with DT i instead of equal to DT i. Note that although

the correlation between DGi and DT i (denoted as ρTG) may be unidentifiable, the ro-

bust approaches proposed in Section 2.5 with ρ1 replaced by ρ1ρTG could be applied,

although a sensitivity analysis for the assumed value of ρ1ρTG would still be required.
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CHAPTER III

Missing Not at Random Models for Masked

Clinical Trials with Dropouts

3.1 Introduction

Randomized controlled trials (RCTs) are the gold standard for assessing the effec-

tiveness of health interventions. However, missing data are common in many experi-

mental studies and undermine the benefits of randomization. Although missing data

can be reduced by preventive measures in the design and conduct of clinical trials

(Little et al., 2012), some missing values are often unavoidable.

Simple methods such as complete case analysis and last observation carried for-

ward imputation can yield severe bias or loss of efficiency (National Research Council,

2010). Alternative missing data adjustment methods often assume that the missing

data are missing at random (MAR), in the sense that missingness does not depend on

the missing values after conditioning on the observed data (Rubin, 1976). Approaches

based on MAR include ignorable likelihood-based methods such as parametric multi-

ple imputation (Rubin, 1987) and maximum likelihood (ML) estimation, and inverse

probability-weighted methods (Robins et al., 1995). However, in many settings, such

as when data on outcomes are missing because of adverse events or lack of treatment

efficacy, missingness depends on the missing values, in which case the MAR assump-
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tion is violated. Such mechanisms are called missing not at random (MNAR), or

non-ignorable (Little and Rubin, 2002).

Joint models for the outcomes and missing indicators are usually required for

non-ignorable missing data mechanisms. Little (1993) considered two classes of joint

models: selection models and pattern-mixture models. Selection models factorize the

joint model of outcomes and missing indicators into a model for the marginal out-

comes and another model of missing indicators conditional on the possibly unobserved

outcomes. Pattern-mixture models factorize the joint model into a model of missing

data patterns and another model for outcomes given missing data patterns. In either

approach, unverifiable restrictions or assumptions are required to identify the param-

eters (Fitzmaurice et al., 2005). Researchers have proposed sensitivity analyses to

address this issue (Little and Rubin, 2002; Scharfstein et al., 1999; National Research

Council, 2010), but in practice only a limited set of MNAR models can be assessed.

Masked (or blinded) experiments conceal the treatment assignment from the sub-

ject (and perhaps also from the clinician) to prevent the potential bias caused by

knowing this information. We suggest that, since the specific treatment received

is unknown, masking justifies the assumption that missingness does not depend on

treatment assignment after conditioning on outcomes and side effects. That is, any

treatment effect on missingness is fully mediated through outcome and side effect-

s. Since missingness of outcomes is allowed to depend on the outcomes values, this

assumption is MNAR – we call the assumption masked missing not at random (MM-

NAR). Even if some participants guess the treatment group to which they are as-

signed, their judgement on whether to stay in the study still depends primarily on

outcomes and side effects, so our proposed assumption may be more plausible than

MAR. Unlike MAR, MMNAR is not always sufficient to identify the parameters, as

discussed for categorical and continuous data models in Section 3.2.

Our motivating example is the TRial Of Preventing HYpertension (TROPHY)
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study (Julius et al., 2006), a randomized, double-blind clinical trial that examined

whether early treatment of prehypertensive patients might prevent or delay the de-

velopment of hypertension. After the entry criteria were met, the participants were

randomized to treatment or placebo. In the first 2-year phase, subjects in the treat-

ment group received candesartan at a dose level of 16mg daily. This was followed by

the second 2-year phase, in which all study patients received placebo. For subjects in

both groups, return visits were scheduled every 3 months, with two additional visits

at month 1 and month 25. At each clinic visit, sitting and resting blood pressures

were recorded along with adverse effects. Throughout the 4-year period, subjects and

study investigators remained masked to the original treatment assignment. Our anal-

ysis was to determine whether for patients with prehypertension, 2 years of treatment

(candesartan) would reduce the incidence of hypertension for up to 2 years after active

treatment was discontinued. Among 772 randomized patients, 109 of them discon-

tinued participation before reaching the trial end point. This missing data problem

was originally addressed with the last observation carried forward (LOCF) method,

in which the blood pressure recorded at the last clinic visit was carried forward. We

apply our proposed MMNAR model to this study.

The remainder of the chapter is organized as follows. In Section 3.2, we formalize

our assumption about the missing data mechanism and incorporate it in two models

for categorical and continuous outcomes, along with associated estimation procedures.

Section 3.2.4 describes simulation studies that compare our methods with alternatives.

In Section 3.3, we analyze the TROPHY data. We conclude with a discussion in

Section 3.4.
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3.2 Masked Missing Not at Random (MMNAR) Models

3.2.1 The MMNAR Assumption

We consider a randomized clinical trial with two or more arms and n subjects.

The full data for ith individual are given by Xi, Zi, Si, Yi, where (a) Xi denotes the

assigned treatment arm, (b) Zi denotes a set of baseline covariates, (c) Si denotes

side effects recorded in the course of the study, and (d) Yi denotes an outcome of

interest at the end of the study. The variables Xi, Zi, and Si are assumed to be fully

recorded, but some values of the outcome Yi are missing. We define a missing data

indicator Mi, which equals 1 if Yi is missing and 0 if Yi is observed. The data for

ith individual are modeled by the joint distribution of the outcome, side effects and

missing data indicator given the covariates and treatment indicators, with density

f(Yi, Si,Mi|Zi, Xi, θ), where θ is the set of model parameters.

We assume observations are independent. Then the missing data mechanism is

missing at random (MAR, (Rubin, 1976)) if

Pr(Mi = 1|Yi, Si, Zi, Xi, θ) = Pr(Mi = 1|Si, Zi, Xi, θ), (3.1)

that is, probability of being missing can depend on observed side effects, covariates,

and treatment indicators, but does not depend on the outcomes Yi after conditioning

on these variables. An equivalent assumption is

f(Yi|Si, Zi, Xi,Mi = 1, θ) = f(Yi|Si, Zi, Xi,Mi = 0, θ), (3.2)

that is, the distribution of Yi given Si, Zi, Xi is the same for cases with Y missing as

for cases with Y observed. Under the MAR assumption of Eqs. (3.1) or (3.2), infer-

ence for the parameters θ does not require a model for the missing data mechanism

(National Research Council, 2010).
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Most standard models for analyzing the data make the MAR assumption, but

in practice, there are often situations where missingness is likely to depend on the

outcome Y , so MAR is not valid. In masked trials, it seems plausible that after

conditioning on relevant observed information, namely side effects and outcomes,

missingness does not depend on the treatment assigned. This motivates the following

alternative to MAR:

Pr(Mi = 1|Xi, Yi, Si, Zi, θ) = Pr(Mi = 1|Yi, Si, Zi, θ), (3.3)

that is, the probability that Y is missing is allowed to depend on the side effects,

covariates and outcome, but does not depend on the assigned treatment. We call

this the masked MNAR (MMNAR) assumption. Like MAR, Eq. (3.3) cannot be

verified from the observed data, but we suggest that it can be justified by the nature

of masked experiments. It is easy to show (see Appendix 3.5.1 for details) that Eq.

(3.3) is equivalent to

f(Xi|Yi, Si, Zi,Mi = 1) = f(Xi|Yi, Si, Zi,Mi = 0) (3.4)

so the MMNAR assumption implies that the conditional probability of being in a

treatment group given outcomes, side effects, and covariates, is the same for individ-

uals with Yi observed and individuals with Yi missing.

3.2.2 Some MMNAR models

We describe some MMNAR models that assume Xi and Mi are categorical vari-

ables, but consider various models for the distribution of Si and Yi.

Example 1. A categorical MMNAR model. Suppose there are no covariates

Zi, and Xi, Yi, Si, and Mi are all categorical; Xi has J categories, corresponding

to J treatment arms, Yi has K categories corresponding to K possible outcomes,
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and Si has L categories, corresponding to no side effect or L − 1 different types of

side effects. These, together with the binary missing data indicator Mi, form a 4-

way J × K × L × 2 contingency table, which is incompletely observed since Yi is

missing for cases with Mi = 1. We assume that conditional on the sample size n

the cell counts follow a multinomial distribution with parameters γ = {γjklm) where

γjklm = Pr{Xi = j, Yi = k, Si = l,Mi = m}. We can express the cell probabilities

{γjklm} as a saturated loglinear model

log γjklm = α(0) + α
(1)
j + α

(2)
k + α

(3)
l + α(4)

m + α
(12)
jk + α

(13)
jl + α

(14)
jm + α

(23)
kl

+α
(24)
km + α

(34)
lm + α

(123)
jkl + α

(124)
jkm + α

(134)
jlm + α

(234)
klm + α

(1234)
jklm , (3.5)

where the α terms are constrained to sum to zero over any of their subscripts. This

model has 2JKL − 1 parameters. It is not identified without restrictions, because

the observed data only provides estimates for JKL+ JL− 1 parameters – there are

JKL cell counts for cases with Y observed, JL cell counts for cases with Y missing,

less one for the contraint that the probabilities sum to one. However, under the

MMNAR assumption, there are no associations between Xi and Mi given Yi and Si, so

α
(14)
jm = α

(124)
jkm = α

(134)
jlm = α

(1234)
jklm = 0. In total, (J−1)KL parameters are set to zero, so

this MMNAR model has 2JKL−1−(J−1)KL = JKL+KL−1 unknown parameters.

This model is identified if and only if JKL+KL− 1 ≤ JKL+ JL− 1⇐⇒ K ≤ J ,

that is, the number of treatment groups is greater than or equal to the number of

categories of outcomes (See Appendix 3.5.2 for more details). ML estimates can be

readily computed using an EM algorithm.

This saturated categorical MMNAR model can be written as (XY S, Y SM), using

the notation in Agresti (2002) which lists the highest-order associations for each

variable. It may require a large sample size to yield estimates with sufficient precision,

so unsaturated models that further constrain the parameters are also of interest. Table
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3.1 lists all hierarchical log-linear models that (a) include the YM association (not

MAR models), and (b) include at least one of the XS and XY associations (the

treatment assignment is associated with either side effects or outcomes). The table

summarizes the degrees of freedom for these models and the conditions required for

them to be identified. For example, if we assume there is no three-way association

Y SM , as in model 5 in Table 3.1, there are (K − 1)(L − 1) less parameters in the

model. This model is identified if K ≤ JL−L+1, a much less stringent condition than

K ≤ J . These models can be further extended by including categorical covariates Z.

Table 3.1: All categorical models assuming MMNAR that include YM and at least
one of XS and XY .

Model Symbol Model DF Identified if

1 XY S, Y SM (J + 1)KL− 1 K ≤ J
2 XY,XS, Y SM 2KL+ JL+ JK − J − L−K K ≤ J
3 XY, Y SM 2KL+ (J − 1)K − 1 K ≤ J
4 XS, Y SM 2KL+ (J − 1)L− 1 Never
5 XY S, SM, YM JKL+K + L− 2 K ≤ JL− L+ 1
6 XY,XS, Y S, SM, YM KL+ JL+ JK − J − 1 K ≤ JL− L+ 1
7 XY, Y S, SM, YM KL+ JK + L− 2 K ≤ JL− L+ 1
8 XS, Y S, SM, YM KL+ JL+K − 2 Never
9 XY,XS, SM, YM JL+ JK − J +K + L− 2 K ≤ J
10 XY, SM, YM JK +K + 2L− 3 K ≤ J
11 XS, SM, YM JL+ 2K + L− 3 Never
12 XY S, YM JKL+K − 1 K ≤ JL
13 XY,XS, Y S, Y M KL+ JL+ JK − J − L K ≤ JL
14 XY, Y S, Y M KL+ JK − 1 K ≤ JL
15 XS, Y S, Y M KL+ JL+K − L− 1 K ≤ L
16 XY,XS, YM JL+ JK − J +K − 1 K ≤ J
17 XY, S, Y M JK +K + L− 2 K ≤ J
18 XY, YM JK +K + L− 3 K ≤ J
19 XS, YM JL+ 2K − 2 Never

Example 2. A normal MMNAR model. We now suppose Xi remains

categorical, with two treatment arms, a control arm (Xi = 0) and an experimental

arm (Xi = 1), but Yi is a continuous variable that (possibly after transformation) can
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be modeled as normal. No distributional assumption is made for Si and Zi.

Specifically, we assume the model of Mi given Xi, Si, and Zi is logit(Pr(Mi =

1|Xi = xi, Si = si, Zi = zi))=βM0 + βMXxi + βMSsi + βMZzi. The conditional distri-

bution of Yi given Xi, Mi, Si, and Zi is assumed to be

[Yi|Xi = xi,Mi = mi, Si = si, Zi = zi] ∼ N(βY 0 +βY Xxi+βYMmi+βY Ssi+βY Zzi, σ
2)

whereN(µ, σ2) denotes the normal distribution with mean µ and variance σ2, assumed

to be the same for different xi, mi, si, and zi. Interactions are not included for

simplicity, but other more complex models can be considered and a table similar to

Table 3.1 can be generated. The set of parameters β is

{βM0, βMX , βMS, βMZ , βY 0, βY X , βYM , βY S, βY Z , σ
2}

This model can be shown with some algebra to imply that logit(Pr(Mi = 1|Yi =

yi, Xi = xi, Si = si, Zi = zi, β))= αM0 + αMY yi + αMXxi + αMSsi + αMZzi, where

αM0, αMY , αMX , αMS, and αMZ are known functions of β. The MMNAR assumption

implies one restriction αMX = βMX − βYMβY X/σ
2 = 0. Since there is only one

inestimable parameter βYM (which is caused by missingness of Yi when Mi = 1) in

the unconstrained model, the constrained model is just identified. The loglikelihood

is maximized by (a) calculating the ML estimates of βM0, βMX , βMS, βMZ with

all observations; (b) calculating the ML estimates of βY 0, βY X , βY S, βY Z with all

observations with observed Yi; and (c) calculating the estimated value of βYM =

βMXσ
2/βY X . Once the ML estimates are obtained, an multiple imputation procedure

(details in Appendix 3.5.3) (Rubin, 1987) can be used to draw inference. We label

this model the normal MMNAR model.
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3.2.3 Efficiency of MMNAR model estimates

The intersection of the MAR and MMNAR model (when both MAR and MMNAR

are true) is a restricted MAR model where missingness can depend on the side effects

and the covariates, but does not depend on the outcome or the treatment. That is:

Pr(Mi = 1|Xi, Yi, Si, Zi, θ) = Pr(Mi = 1|Si, Zi, θ),

We label this the MARSZ model. If MARSZ is the correct model, ML assuming

MAR is prefered to ML assuming MMNAR, since estimates of treatment effects (say

θ1) under MAR are more or equally efficient – a sketch of the proof is given in the

Appendix . Some simulation comparisons of the efficiency of these methods when

MARSZ is true are given in Section 3.2.4. The MMNAR model might be fitted as

a form of sensitivity analysis for deviations from MAR. If the estimates based on

the MMNAR model are similar to those based on MAR, the MAR analysis might

be favored on grounds of efficiency. But if the estimates are substantially different,

the MMNAR estimates might be preferred because the mechanism is more plausible.

More formally, a likelihood ratio test could be performed to check if the data are

consistent with MARSZ given MMNAR, but the power of this test may be limited.

3.2.4 Simulation Studies

Scenario 1&2. The categorical MMNAR model. Finite sample properties

of the categorical MMNAR model in Section 3.2.2 are explored via simulation. We

assume two treatment arms (J = 2), a binary outcome (K = 2), and two categories

of side effects (L = 2). Xi, Yi,Mi, Si for 400 subjects are drawn based on factorization

γjklm = γ(j)kl+γ+kl(m)γ+kl+. The specific parameter settings are shown in Table 3.2,

Scenario 1, and they imply that Pr(Xi = 1) = 0.5. After Xi, Yi,Mi, and Si are

generated, values of Yi for cases with Mi = 1 are deleted to make 40% of outcome
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values missing.

Table 3.2: Parameters used to generate categorical and normal models

Scenario 1: the categorical model when MMNAR is true.
{Yi, Si} {1, 1} {1, 2} {2, 1} {2, 2}
Pr(Yi, Si) 0.17 0.20 0.40 0.23
Pr(Xi = 1|Yi, Si) 0.94 0.24 0.57 0.28
Pr(Mi = 1|Yi, Si) 0.30 0.31 0.54 0.33

Scenario 2: the categorical model when both MMNAR and MAR are true.
{Si,Mi} {1, 0} {1, 1} {2, 0} {2, 1}
Pr(Si,Mi) 0.02 0.09 0.71 0.18
Pr(Xi, Yi|Si = 1) 0.08 0.26 0.52 0.14
Pr(Xi, Yi|Si = 2) 0.45 0.07 0.08 0.40

Scenario 3: the normal model when MMNAR is true.
Z1i Pr(Z1i = 1) = 0.4
Z2i|Z1i [Z2i|Z1i] ∼ N(1 + 0.2Z1i, 1)
Si|Xi, Z1i, Z2i logit(Si = 1|Xi, Z1i, Z2i) = 1− 2Xi + Z1i − 0.5Z2i

Mi|Si, Xi, Z1i, Z2i {βM0, βMX , βMZ1, βMZ2, βMS}={−0.5,−1, 2,−0.5, 1}
Yi|Mi, Si, Xi, Z1i, Z2i {βY 0, βY X , βY Z1, βY Z2, βY S, βYM , σ

2}={−1, 1, 2, 0.5,−1,−1, 1}
Scenario 4: the normal model when both MMNAR and MAR are true.

Z1i Pr(Z1i = 1) = 0.4
Z2i|Z1i [Z2i|Z1i] ∼ N(1 + 0.2Z1i, 1)
Si|Xi, Z1i, Z2i logit(Si = 1|Xi, Z1i, Z2i) = 1− 2Xi + Z1i − 0.5Z2i

Mi|Si, Xi, Z1i, Z2i {βM0, βMX , βMZ1, βMZ2, βMS}={−0.5, 0, 2,−0.5, 1}
Yi|Mi, Si, Xi, Z1i, Z2i {βY 0, βY X , βY Z1, βY Z2, βY S, βYM , σ

2}={−1, 1, 2, 0.5,−1, 0, 1}

Two other methods, complete case analysis and ML assuming MAR, are also

applied to the generated samples for comparison purposes. The ”before deletion”

data analysis, which assumes that we have access to all Yi, is also included as a

benchmark for comparison. Differences of Yi between groups ofXi, Pr(Yi = 1|Xi = 2)-

Pr(Yi = 1|Xi = 1), along with Pr(Yi = 1|Xi = 1) are of interest. We compare

estimates for each method and their estimated variances. Variance estimates for the

ML methods are computed from the inverse of the information matrix by the delta

method.

Table 3.3 presents the true parameter values, and for each method the empirical
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mean and empirical MSE of the estimates, and the coverage proportion (CP) of

the 95% confidence interval (CI), based on 1,000 simulated data sets. The 95%

confidence interval is calculated with a normal approximation, i.e. point estimate ±

1.96 standard deviations.

Table 3.3: Finite sample properties of four methods based upon 1,000 simulations of
a clinical trial with 400 patients. All of Xi, Yi, and Si are categorical.
In Scenario 1, MMNAR is true (Mi and Xi are independent given Yi and
Si). In Scenario 2, both MMNAR and MAR are true (Mi are independent
with Xi and Yi given Si). MSE = 104 × mean squared error. CP = 102 ×
coverage proportion for 95% confidence interval.

Method Parameter True Mean MSE CP

Scenario 1: the categorical model when MMNAR is true.
Before deletion Pr(Yi = 1|Xi = 1) 0.42 0.42 12 95.3
data analysis Pr(Yi = 1|Xi = 2)-Pr(Yi = 1|Xi = 1) -0.09 -0.09 23 95.0
Complete case Pr(Yi = 1|Xi = 1) 0.42 0.49 83 60.0
analysis Pr(Yi = 1|Xi = 2)-Pr(Yi = 1|Xi = 1) -0.09 -0.12 49 92.4
ML assuming Pr(Yi = 1|Xi = 1) 0.42 0.50 88 57.8
MAR Pr(Yi = 1|Xi = 2)-Pr(Yi = 1|Xi = 1) -0.09 -0.16 80 82.0
ML assuming Pr(Yi = 1|Xi = 1) 0.42 0.42 72 98.0
MMNAR Pr(Yi = 1|Xi = 2)-Pr(Yi = 1|Xi = 1) -0.09 -0.09 101 97.6

Scenario 2: the categorical model when both MMNAR and MAR are true.
Before deletion Pr(Yi = 1|Xi = 1) 0.82 0.82 7 96.1
data analysis Pr(Yi = 1|Xi = 2)-Pr(Yi = 1|Xi = 1) -0.56 -0.56 17 93.9
Complete case Pr(Yi = 1|Xi = 1) 0.82 0.85 20 74.1
analysis Pr(Yi = 1|Xi = 2)-Pr(Yi = 1|Xi = 1) -0.56 -0.66 118 37.8
ML assuming Pr(Yi = 1|Xi = 1) 0.82 0.82 12 97.9
MAR Pr(Yi = 1|Xi = 2)-Pr(Yi = 1|Xi = 1) -0.56 -0.56 29 98.5
ML assuming Pr(Yi = 1|Xi = 1) 0.82 0.82 14 96.1
MMNAR Pr(Yi = 1|Xi = 2)-Pr(Yi = 1|Xi = 1) -0.56 -0.57 33 96.4

In Table 3.3, treatment effects from both complete case analysis and ML assuming

MAR are biased, showing the potential for bias when the missing data mechanism

is MNAR. Our proposed method is essentially unbiased with small MSE and cover-

age proportion very close to 95%, confirming as expected that our proposed model

outperforms the MAR model when MMNAR is true.
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It is of interest to compare ML under MMNAR and ML under MAR when Mi

does not depend on Xi or Yi given Si, so both methods are valid. Xi, Yi,Mi, Si

are drawn based on factorization Pr(Xi, Yi, Si,Mi) = Pr(Si,Mi)Pr(Xi, Yi|Si). More

specifical parameter setting can be found in Table 3.2, Scenario 2, which leads to

Pr(Xi = 1) = 0.5. After all Xi, Yi,Mi, and Si are generated, values of Yi for cases

with Mi = 1 are deleted to make 27% of outcome values missing. Results for 1,000

data sets simulated in this way are shown in Table 3.3.

The estimates from complete case analysis are biased. Both ML under MMNAR

and ML assuming MAR have small empirical bias, and confidence intervals close to

nominal 95% coverage. This is expected since model assumptions in both models

are satisfied. We noted above that ML assuming MAR is at least as efficient as ML

assuming MMNAR. In this simulation, ML under MMNAR is very close to ML under

MAR in terms of efficiency.

Scenario 3&4. The normal MMNAR model. Simulation studies are also

conducted to examine the performance of the normal MMNAR model. We consider

a design with an experimental group and a control group with 200 patients in each

group. We generate one binary covariate Z1i, one normal covariate Z2i, one binary

side effect Si, the missing indicator Mi, and the normal outcome Yi successively with

the parameters specified in Table 3.2, Scenario 3. The rate of missing data for this

scenario is 45%.

Before deletion data analysis, complete case analysis and the model assuming

MAR are compared with our proposed model in estimating E(Yi|Xi = 0) and E(Yi|Xi =

1)−E(Yi|Xi = 0). In complete case analysis, a general linear regression of Yi on Xi is

fitted for the subsample with Mi = 0. In ML estimates assuming MAR and MMNAR,

the multiple imputation described in Section 3.2.2 is used to estimate E(Yi|Xi = 0)

and E(Yi|Xi = 1) − E(Yi|Xi = 0). Table 3.4 presents the true value, the empir-

ical mean of the estimates, the empirical MSE of the estimates, and the coverage
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proportion of the 95% confidence intervals (CI) based on 1,000 simulations.

Table 3.4: Finite sample properties of four methods based upon 1,000 simulations of
a clinical trial with 400 patients. Xi, Z1i, Mi and Si are categorical. Yi,
and Z2i are continuous. In Scenario 3, MMNAR is true (Mi and Xi are
independent given Yi, Z1i, Z2i, and Si). In Scenario 4, both MMNAR and
MAR are true (Mi are independent with Xi and Yi given Z1i, Z2i, and Si).
MSE = 103 × mean squared error. CP = 102 × coverage proportion for
95% confidence interval.

Method Parameter True Mean MSE CP

Scenario 3: the normal model when MMNAR is true.
Before deletion E(Yi|Xi = 0) -0.93 -0.92 13 95.1
data analysis E(Yi|Xi = 1)− E(Yi|Xi = 0) 1.69 1.67 24 95.4
Complete case E(Yi|Xi = 0) -0.93 -0.53 183 32.8
analysis E(Yi|Xi = 1)− E(Yi|Xi = 0) 1.69 1.47 91 80.1
ML assuming E(Yi|Xi = 0) -0.93 -0.34 361 2.2
MAR E(Yi|Xi = 1)− E(Yi|Xi = 0) 1.69 1.42 107 68.2
ML assuming E(Yi|Xi = 0) -0.93 -0.93 56 93.5
MMNAR E(Yi|Xi = 1)− E(Yi|Xi = 0) 1.69 1.69 38 95.3

Scenario 4: the normal model when both MMNAR and MAR are true.
Before deletion E(Yi|Xi = 0) -0.35 -0.34 13 94.0
data analysis E(Yi|Xi = 1)− E(Yi|Xi = 0) 1.43 1.43 26 93.9
Complete case E(Yi|Xi = 0) -0.35 -0.53 61 77.4
analysis E(Yi|Xi = 1)− E(Yi|Xi = 0) 1.43 1.41 48 94.7
ML assuming E(Yi|Xi = 0) -0.35 -0.34 24 94.0
MAR E(Yi|Xi = 1)− E(Yi|Xi = 0) 1.43 1.43 37 95.0
ML assuming E(Yi|Xi = 0) -0.35 -0.35 48 94.9
MMNAR E(Yi|Xi = 1)− E(Yi|Xi = 0) 1.43 1.44 37 95.3

Both complete case analysis and ML assuming MAR are biased, as expected.

Our proposed method has small empirical bias with variance estimates that yield

confidence intervals with close to nominal coverage. The comparisons between ML

assuming MAR and the proposed method, when both assumptions are satisfied, are

also presented in Table 3.4.

In this setting, Mi are independent with Xi and Yi given Z1i, Z2i, and Si. The

parameters for generating the samples are specified in Table 3.2, Scenario 4. The rate

of missing data for this scenario is 45%.
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As seen in Table 3.4, complete case analysis is biased, while the other two methods

have small empirical bias and have confidence intervals close to nominal 95% coverage.

As for the categorical MMNAR model simulation, the MSE of the treatment effect

estimates from the two methods are very similar. Here the loss of efficiency from the

MMNAR model is very small, but further investigation is needed to establish this

finding more generally.

3.3 Application

We illustrate the categorical MMNAR model described in Section 3.2.2 with the

TROPHY study (Julius et al., 2006). The population consisted of 772 patients en-

rolled at 71 centers, randomly assigned to one of the two groups: placebo (381) and

candesartan (391). Let xi be the binary treatment indicator with xi = 0 denoting

the placebo arm and xi = 1 denoting the candesartan arm. Let yi be the indicator

of hypertension being observed in the 4-year period for ith subject. Development of

hypertension was defined as the first appearance of one of the following outcomes:

systolic pressure of 140 mm Hg or higher or diastolic pressure of 90 mm Hg or higher,

for any three visits; systolic pressure of 160 mm Hg or higher or diastolic pressure of

100 mm Hg or higher for any visit; initiation of pharmacologic treatment; or systolic

pressure of 140 mm Hg or higher or diastolic pressure of 90 mm Hg or higher at the

visit at month 48. Among those 772 patients, 109 (55 in candesartan group) dropped

out before development of hypertension. Let mi be the missing data indicator for

yi with mi = 1 denoting subject i dropping out before yi was observed. If patien-

t i dropped out after development of hypertension, the value of mi was 0 because

yi = 1 was already observed. Therefore mi was likely to be related to yi and the

independence between yi and mi given other variables was questionable.

Two types of adverse effects were recorded. The first type contained severe adverse

effects (SAE), such as hospitalization, disability/incapacity, and some others. 88 out
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of the 772 subjects had at least one of SAE. The second type included other adverse

effects (OAE), such as exacerbation of back pain and sinusitis. For each subject,

OAE were recorded for most visits along with their severity (mild, moderate, or

severe) and whether OAE were related to treatment (probably, possible, or unlikely).

We summarize the adverse effects into two main categories, creating a binary adverse

effect variable Si for subject i. If subject i did not have SAE, and the recorded OAE

were unlikely to be related to treatment and were also not severe, si is defined to be

0 (506 subjects), otherwise si is 1 (266 subjects).

As discussed in Section 3.2.2, other covariates related to outcomes or missing

indicators could be included in the model to make the proposed assumption more

plausible. There were many baseline covariates recorded in this study, so some di-

mension reduction is needed. We perform two logistic regressions of mi and observed

yi on those baseline covariates for the control group patients and determine the asso-

ciations based on Nagelkerke’s pseudo R2. The baseline covariates are more strongly

associated with yi (Nagelkerke’s pseudo R2 = 0.343) than with mi (Nagelkerke’s pseu-

do R2 = 0.135). Therefore we select the variables significantly related to yi (sex, race,

weight, BMI, and the baseline blood pressures measured at home), perform a logistic

regression of yi on them for the control group, and calculate the predicted probability

of Pr(yi|covariates) (denoted as z∗i ) for each subject with estimated coefficients from

this regression. We define, z∗i is transformed to be a binary variable zi (zi = 0 if z∗i

is less than the median and zi = 1 otherwise), and then combined with its binary si.

This leads to a new categorical variable s∗i with four categories. The missing values of

baseline covariates are imputed with simple mean imputation since the missing data

rate is very low (less than 1%).

The EM algorithm is applied to the incomplete data to obtain ML estimates for

the categorical MMNAR model. Complete case analysis is also conducted, including

only the subjects who did not drop out from the study. ML assuming MAR is also
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performed to compare with our proposed model. Table 3.5 shows estimates and

associated 95% confidence intervals for conditional means of yi given different xi

for the three methods. The estimates of the treatment effect given as absolute risk

reduction (ARR)=Pr(yi = 1|xi = 0)-Pr(yi = 1|xi = 1) are also shown in Table 3.5.

Table 3.5: Estimates of the absolute risk reduction (ARR) and the incidence of hyper-
tension under different treatment groups in TROPHY study. LCI = lower
bound of 95% confidence interval. HCI = higher bound of 95% confidence
interval.

Method Parameter Mean LCI HCI

Complete Pr(yi = 1|xi = 0) 0.73 0.69 0.78
case Pr(yi = 1|xi = 1) 0.62 0.57 0.67
analysis ARR=Pr(yi = 1|xi = 0)-Pr(yi = 1|xi = 1) 0.11 0.04 0.19
ML Pr(yi = 1|xi = 0) 0.73 0.68 0.78
assuming Pr(yi = 1|xi = 1) 0.61 0.56 0.67
MAR ARR=Pr(yi = 1|xi = 0)-Pr(yi = 1|xi = 1) 0.11 0.05 0.19
ML Pr(yi = 1|xi = 0) 0.71 0.45 0.96
assuming Pr(yi = 1|xi = 1) 0.59 0.34 0.83
MMNAR ARR=Pr(yi = 1|xi = 0)-Pr(yi = 1|xi = 1) 0.12 0.05 0.19

In Table 3.5, the incidence of hypertension for different treatment groups, Pr(yi =

1|xi = 0) and Pr(yi = 1|xi = 1) have relatively wide confidence intervals for ML

assuming MMNAR because MMNAR allows the missingness of yi to depend on yi

itself and this can potentially weaken the confidence of association between yi and xi.

However, the estimated ARR (or treatment effect) and its 95% confidence interval for

the categorical MMNAR model are 12% and (5%, 19%), which are very similar to ML

assuming MAR and the complete case analysis. Therefore the estimated treatment

effect is robust to deviations from MAR of the form implied by the MMNAR model

and we can conclude that there is a significant difference between the two groups.

Since Eq. (3.3) is more plausible than MAR for masked trials, no sensitivity analysis

is necessary.

There are several limitations related to this application. First, the transformation
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from original adverse effects variables to Si is post-hoc, and might be improved by

specifying one clearly defined side effect variable in the protocol. Second, outcomes

were recorded for every visit, and our simple analysis does not exploit the longitudinal

aspect of the study. The extension of MMNAR to longitudinal studies is under

investigation.

3.4 Discussion

The utility of masking in randomized clinical trials is widely recognized, since

it removes potential distortions from placebo effects, differential application of entry

criteria, or other behaviors that might bias treatment comparisons. However, we have

not seen discussions about the implications of masking for the treatment of missing

data in previous research. The potential for non-MAR missing data in clinical trials

is well known, but the class of MNAR models is very broad, so any reasonable way

of limiting the number of models to be considered is valuable. In masked trials, it

seems reasonable that missingness does not depend on the masked treatment, after

conditioning on side effect and outcome data. This motivates the class of MMNAR

models which we explore in this chapter. We describe MMNAR models for continuous

and categorical outcomes, and apply maximum likelihood and multiple imputation

based on these models to estimate treatment effects. Clearly many other models could

be constructed that incorporate the MMNAR assumption, depending on setting.

We note that for the MMNAR assumption to be plausible, important side effects

need to be recorded and incorporated in the analysis. Clinically unimportant side

effects do not need to be included, since to bias the treatment effect a side effect

needs to be associated with the outcome as well as the likelihood of dropping out.

Here we have considered the simple case of missing data in a univariate outcome

variable. In future work we plan to consider the class of MMNAR models for repeated

measures data with more than one missing data pattern, and to allow for missing data
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in covariates.
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3.5 Appendix

3.5.1 Proof that Eq. (3.4) follows from Eq. (3.3)

f(Xi|Yi, Si, Zi,Mi = mi) = f(Xi, Yi, Si, Zi,Mi = mi)/f(Yi, Si, Zi,Mi = mi)

= f(Mi = mi|Xi, Yi, Si, Zi)f(Xi, Yi, Si, Zi)

/[f(Mi = mi|Yi, Si, Zi)f(Yi, Si, Zi)]

= f(Xi, Yi, Si, Zi)/f(Yi, Si, Zi)

= f(Xi|Yi, Si, Zi)

3.5.2 Conditions under which the categorical MMNAR model is identi-

fied

For the categorical MMNAR model, when K > J , the number of model parame-

ters is larger than the number of cell counts, so the model is not identified. We show

that the model is identified under some regular conditions if K ≤ J . Follow (3.5),

cell probabilities are

log γjklm = α(0) + α
(1)
j + α

(2)
k + α

(3)
l + α(4)

m + α
(12)
jk + α

(13)
jl + α

(23)
kl

+α
(24)
km + α

(34)
lm + α

(123)
jkl + α

(234)
klm ,

where the α terms are constrained to sum to zero over any of their subscripts. Define

β
(1)
j = α

(1)
j −α

(1)
1 , β

(12)
jk = α

(12)
jk −α

(12)
1k −α

(12)
j1 +α

(12)
11 , β

(123)
jkl = α

(123)
jkl −α

(123)
1kl −α

(123)
j1l −

α
(123)
jk1 +α

(123)
j11 +α

(123)
1k1 +α

(123)
11l −α

(123)
111 for j = 1, . . . , J , k = 1, . . . , K, l = 1, . . . , L, and

define other β terms analogously. Therefore all terms with at least one subscript of 1

are restricted to 0. β(0) is a function of other β terms such that the cell probabilities

sum to 1.
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Define τ (0), τ
(1)
j , τ

(2)
k , τ

(3)
l , τ

(12)
jk , τ

(13)
jl , τ

(23)
kl , and τ

(123)
jkl to be the same as β(0), β

(1)
j ,

β
(2)
k , β

(3)
l , β

(12)
jk , β

(13)
jl , β

(23)
kl , and β

(123)
jkl , respectively. Define τ

(4)
1 = exp(β(0) + β

(4)
1 ),

τ
(24)
k1 = τ

(4)
1 exp(β

(2)
k +β

(24)
k1 ), τ

(34)
l1 = τ

(4)
1 exp(β

(34)
l1 ) and τ

(234)
kl1 = τ

(34)
l1 τ

(24)
k1 /τ

(4)
1 exp(β

(23)
kl +

β
(234)
kl1 ), for k = 2, . . . , K and l = 2, . . . , L.

First of all, τ (0), τ
(1)
j , τ

(2)
k , τ

(3)
l , τ

(12)
jk , τ

(13)
jl , τ

(23)
kl , and τ

(123)
jkl are identified since they

are corresponding to the cells that Yi is observed.

We illustrate how τ
(4)
1 and τ

(24)
k1 , k = 2, . . . , K are identified. Cell probabilities

for M = 1 and S = 1 are

log γ1111 = β(0) + β
(4)
1 = log τ

(4)
1

log γ1k11 = β(0) + β
(4)
1 + β

(2)
k + β

(24)
k1 = log τ

(24)
k1

log γj111 = β(0) + β
(4)
1 + β

(1)
j = log τ

(4)
1 + τ

(1)
j

log γjk11 = β(0) + β
(4)
1 + β

(2)
k + β

(24)
k1 + β

(1)
j + β

(12)
jk = log τ

(24)
k1 + τ

(1)
j + τ

(12)
jk ,

for j = 2, . . . , J and k = 2, . . . , K. Since Y is missing for M = 1, the observed

combined cell probabilities for M = 1 and S = 1 are

K∑
k=1

γ1k11 = τ
(4)
1 +

K∑
k=2

τ
(24)
k1

K∑
k=1

γjk11 = exp(τ
(1)
j )(τ

(4)
1 +

K∑
k=2

τ
(24)
k1 exp(τ

(12)
jk )),

for j = 2, . . . , J . Note that τ
(1)
j and τ

(12)
jk are already identified. There are J equations

and K unknown parameters with K ≤ J , so τ
(4)
1 , τ

(24)
k1 , k = 2, . . . , K are identified if
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matrix (3.6) has full rank.



1 1 . . . 1

1 exp(τ
(12)
22 ) . . . exp(τ

(12)
2K )

. . .

1 exp(τ
(12)
J2 ) . . . exp(τ

(12)
JK )


(3.6)

We then illustrate how τ
(34)
l1 , τ

(234)
kl1 , k = 2, . . . , K are identified for each l. Cell

probabilities for M = 1 and S = l are

log γ11l1 = β(0) + β
(4)
1 + β

(3)
l + β

(34)
l1 = log τ

(34)
l1 + τ

(3)
l

log γ1kl1 = β(0) + β
(4)
1 + β

(2)
k + β

(24)
k1 + β

(3)
l + β

(34)
l1 + β

(23)
kl = log τ

(234)
kl1 + τ

(3)
l

log γj1l1 = β(0) + β
(4)
1 + β

(3)
l + β

(34)
l1 + β

(1)
j + β

(13)
jl = log τ

(34)
l1 + τ

(3)
l + τ

(1)
j + τ

(13)
jl

log γjkl1 = β(0) + β
(4)
1 + β

(2)
k + β

(24)
k1 + β

(3)
l + β

(34)
l1 + β

(23)
kl + β

(1)
j + β

(13)
jl + β

(12)
jk + β

(123)
jkl

= log τ
(234)
kl1 + τ

(3)
l + τ

(1)
j + τ

(13)
jl + τ

(12)
jk + τ

(123)
jkl ,

for j = 2, . . . , J , k = 2, . . . , K, and l = 2, . . . , L. Since Y is missing for M = 1, the

observed combined cell probabilities for M = 1 and S = l are

K∑
k=1

γ1kl1 = exp(τ
(3)
l )(τ

(34)
l1 +

K∑
k=2

τ
(234)
kl1 )

K∑
k=1

γjkl1 = exp(τ
(3)
l + τ

(1)
j + τ

(13)
jl )(τ

(34)
l1 +

K∑
k=2

τ
(234)
kl1 exp(τ

(12)
jk + τ

(123)
jkl )),

for j = 2, . . . , J , k = 2, . . . , K, and l = 2, . . . , L. For each l in {2, . . . , L}, there are J

equations and K unknown parameters, so τ
(34)
l1 , τ

(234)
kl1 , k = 2, . . . , K are identified if
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matrix (3.7) has full rank.



1 1 . . . 1

1 exp(τ
(12)
22 + τ

(123)
22l ) . . . exp(τ

(12)
2K + τ

(123)
2Kl )

. . .

1 exp(τ
(12)
J2 + τ

(123)
J2l ) . . . exp(τ

(12)
JK + τ

(123)
JKl )


(3.7)

After all τ parameters are identified, β(0), β
(1)
j , β

(2)
k , β

(3)
l , β

(12)
jk , β

(13)
jl , β

(23)
kl , and

β
(123)
jkl are directly obtained. β

(4)
1 ) and β

(24)
k1 are calculated with β

(4)
1 ) = log τ

(4)
1 − β(0)

and β
(24)
k1 ) = log(τ

(24)
k1 /τ

(4)
1 )−β(2)

k , for k = 2, . . . , K. β
(34)
l1 and β

(234)
kl1 are calculated with

β
(34)
l1 = log(τ

(34)
l1 /τ

(4)
1 ) and β

(234)
kl1 = log(τ

(234)
kl1 τ

(4)
1 /τ

(34)
l1 /τ

(24)
k1 )− β(23)

kl , for k = 2, . . . , K.

Note that the calculated β terms may not be in the parameter space.

3.5.3 An multiple imputation procedure for the normal MMNAR models

After the ML estimates are obtained, the variance covariance matrix of the esti-

mates are calculated by multivariate delta method. Based on the estimates and their

variance covariance matrix, 20 samples of the parameter set are drawn. Then each of

the parameter set samples can be used to draw missing Yi and provide an imputed

data set. All 20 imputed data sets are analyzed separately and the 20 results are

combined with the Rubin’s combination rule (Rubin, 1987).

We apply the multiple imputation procedure because in this way, the results from

ML assuming MMNAR are more comparable with other methods.

3.5.4 Sketch proof that if the model MARSZ holds, the ML estimate for

θ1 under MMNAR is less efficient than ML under MARSZ.

The ML estimate of θ1 under MMNAR is less efficient than the ML estimate

of θ1 under MARSZ, since MARSZ is a submodel of MMNAR obtained by setting

parameters relating missingness to Y to zero. On the other hand, the ML estimate
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of θ1 under MAR is the same as the ML of θ1 under MARSZ, since both lead to

the same likelihood ignoring the mechanism. Hence ML for θ1 under MAR is more

efficient than ML under MMNAR.
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CHAPTER IV

Estimating Treatment Effect under the MMNAR

Assumption for Longitudinal Data with Dropouts

4.1 Introduction

Many methods based on MAR assumption have been proposed for longitudinal da-

ta and a detailed review can be found in Molenberghs and Kenward (2007). Generally

these methods include likelihood-based methods and weighted generalized estimating

equations (wGEE), which directly model missingness conditional on observed data.

An alternative is multiple imputation, which uses observed data to impute missing

values. Many of these methods (Hedeker and Gibbons, 1997) allowed for the miss-

ingness mechanism to be MNAR, but Molenberghs and Kenward (2007) provided a

method that can reproduce the result from any MNAR model by an MAR counter-

part. This fact shows that there is no formal data-based difference between MAR and

MNAR, so unless the MNAR model is unquestionable, a sensitivity analysis is rec-

ommended to examine whether the result is sensitive to the unverifiable assumption

(National Research Council, 2010; Molenberghs and Kenward, 2007).

Many MNAR models are proposed as a form of sensitivity analysis based on se-

lection models (Diggle and Kenward, 1994; Molenberghs et al., 2003; Mallinckrodt et

al., 2013). In this chapter, however, we focus on the pattern-mixture model frame-
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work, under which the distinctions between different missing patterns are stated in

a transparent and meaningful way. Similar to available case missing values (ACMV)

(Molenberghs et al., 1998), the counterpart of MAR in the PMM context, MNAR as-

sumptions including complete case missing values (CCMV) (Little, 1993) which bor-

rows information from the completers, and neighboring case missing values (NCMV)

(Molenberghs et al., 2003) which borrows information from the nearest identified pat-

tern, have been developed. Ratitch et al. (2013) proposed a delta-adjusting analysis

strategy, which can explicitly control the deviation from MAR to reflect worsened

outcomes for the dropped out subjects.

In this chapter, we apply the MMNAR assumption to longitudinal data models.

Instead of specifying just one longitudinal model, we propose a flexible strategy that

can extend a preferred complete data model to a MMNAR model, after which ML

estimates are obtained and a multiple imputation procedure is used to draw inference.

The remainder of the chapter is organized as follows. In Section 4.2, we intro-

duce the notation and assumptions used in later sections. Section 4.3 describes the

procedure to extend a complete data model to incorporate the proposed MMNAR

assumption and draw inference. In Section 4.4, we conduct simulation studies that

compare our methods with alternatives. Section 4.5 presents the result from analyz-

ing the TROPHY data. A summary and some future work are discussed in Section

4.6.

4.2 Notation and Assumptions

In this section, we discuss the strategy to extend MMNAR assumption to longi-

tudinal studies. We consider a randomized clinical trial with n subjects. For the ith

subject, where i = 1, ..., n, let Xi and Zi be the treatment assignment and baseline

covariates (Zi might be a vector). Let Yij be the response of interest designed to be

measured at visit j, where j = 1, ..., T . Similarly, let Sij be the side effect measure at
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visit j. The original intention was to have T observations of Yij for each individual,

but some of them might not be observed due to dropout. Then for subject i and visit

j, let Mij be the missing indicator for Yij, so Mij = 0, if Yij is observed, and Mij = 1,

if not. We assume that Xi, Zi, Mij, and Sij are fully observed.

The missing pattern is assumed to be monotonic. In other words, some subjects

discontinued from the study and have a number of visits with missing Yij after their

discontinuation. Let Mi denote the last visit with Yij observed, so Mi = m is equiv-

alent to Mij = 0 for j ≤ m and Mij = 1 for j > m, m = 1, ..., T . If the data is

complete for subject i, Mi = T . We define if Yij is missing from j = 1, Mi = 0.

The goal is to provide a strategy to apply MMNAR assumption to parametric

longitudinal models. If the missing mechanism is MNAR, the missing indicators are

required to be included in a joint model with other variables and we make key two

assumptions to identify the parameters in this model. The first assumption is the

proposed MMNAR assumption but in a longitudinal setting: if a subject has not

dropped out at visit j − 1, the probability that this subject drops out at visit j

is independent with the treatment assignment given all the information until visit

j including the potentially missing outcome at visit j. MMNAR assumption can

provide restrictions to identify the distribution of the missing data at the time of

dropout, but the missing data for future times require the second assumption, which

assumes that dropout may depend on the current, possibly unobserved, measurement,

but not on future measurements.

4.3 Fitting Procedure

The fitting procedure includes two steps: regression step and imputation step. In

the regression step, a parametric model is assumed and ML estimates which maximize

the likelihood with MMNAR restrictions are calculated with their variance covariance

matrix. The imputation step is a multiple imputation procedure which (a) draws D
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sets of parameters based on the ML estimates and their variance covariance matrix

obtained in the regression step; (b) draws one set of missing Yij at the time of dropout

(j = Mi + 1) for each drawn parameter set; (c) sequentially draws one set of missing

Yij for visits after dropout (j > Mi + 1) for each drawn parameter set; (d) performs

statistical analyses on each of the imputed data sets and combines the results with

Rubin’s combination rule. The details are provided as follows.

4.3.1 Step 1. Regression step.

Suppose for the complete data, the vector Yi1, ..., YiT given Xi, Zi, and Sik (k =

1, ..., T ) are

[Yi1, ..., YiT |Xi = xi, Zi = zi, Sik = sik, k = 1, ..., T, β]

∼ NT




f(xi, zi, sik, k = 1, β, j = 1)

...

f(xi, zi, sik, k = 1, ..., T, β, j = T )

 ,ΣT

 (4.1)

where NT (µ,Σ) denotes the T -dimensional multivariate normal distribution with

mean vector µ and variance-covariance matrix Σ. and Σj is


σ2

11 σ2
12 ... σ2

1j

...

σ2
j1 σ2

j2 ... σ2
jj

 , forj = 1, ..., T

We further assume that there is no interaction between xi and other variables to

keep the form of MMNAR assumption simple. More specifically, f(xi, zi, sik, k =

1, ..., j, β, j) = βY Xj
xi + f ∗(zi, sik, k = 1, ..., j, β, j).

We introduce the missing indicator within the pattern-mixture model (PMM)

framework, under which, subjects are stratified according to their missingness pat-

terns. We assume a logistic form for the probability of subject i dropping out at visit
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j given all the observed information. More specifically, for j = 1, ..., T , we assume

logit(Pr(Mij = 1|Mi(j−1) = 0, Xi = xi, Zi = zi, Sik = sik, Yil = yil,

k = 1, ..., j, l = 1, ..., j − 1))

= h(xi, zi, sik, yil, k = 1, ..., j, l = 1, ..., j − 1, β, j). (4.2)

For simplicity consideration, we assume there is no interaction between xi and oth-

er variables. More specifically, h(xi, zi, sik, yil, k = 1, ..., j, l = 1, ..., j − 1, β, j) =

βMXj
xi + h∗(zi, sik, yil, k = 1, ..., j, l = 1, ..., j − 1, β, j).

Under the missing pattern Mi = m, m = 0, ..., T − 1, we add a ‘dropping effect’

βYM(m+1) to the mean of Yi(m+1) and the vector Yi1, ..., Yi(m+1) given Xi, Zi, and Sik

(k = 1, ...,m+ 1) are

[Yi1, ..., Yi(m+1)|Xi = xi, Zi = zi,Mi = m,Sik = sik, k = 1, ...,m+ 1] (4.3)

∼ Nm+1





f(xi, zi, sik, k = 1, β, j = 1)

...

f(xi, zi, sik, k = 1, ...,m, β, j = m)

f(xi, zi, sik, k = 1, ...,m+ 1, β, j = m+ 1) + βYM(m+1)


,Σm+1


.

In total of T parameters, βYM1, ..., βYMT , quantify the difference between missing

patterns, but they cannot be identified for the unrestricted model. MMNAR assump-

tion implies that probability of Mij = 1 does not depend on Xi given all the observed

information including the potentially unobserved Yij. So ∀j ∈ {1, ..., T}

Pr(Mij = 1|Mi(j−1) = 0, Xi, Zi, Sik, Yil, k = 1, ..., j, l = 1, ..., j, β)

= Pr(Mij = 1|Mi(j−1) = 0, Zi, Sik, Yil, k = 1, ..., j, l = 1, ..., j, β). (4.4)

The model specified in Eq. (4.2) and Eq. (4.3) implied that the left side of Eq.
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(4.4) follows a logistic form

logit(Pr(Mij = 1|Mi(j−1) = 0, Xi = xi, Zi = zi, Sik = sik, Yil = yil,

k = 1, ..., j, l = 1, ..., j, β))

= αMjXxi + g(zi, sik, yil, k = 1, ..., j, l = 1, ..., j, β, j), (4.5)

where αMjX and g(·) are known functions of β, f(·), and h(·) (Details are in Ap-

pendix 4.7.1). Eq. (4.4) is equivalent to αMjX = 0, j = 1, ..., T , which provides T

restrictions. Since there are T unidentified parameters from the unrestricted mod-

el and T restrictions are implied from the MMNAR assumption, the model is just

identified. ML estimates and their variance covariance matrix can be obtained by

maximizing the likelihood with MMNAR restrictions and applying the delta method.

Detailed estimation procedure is described in Appendix 4.7.2 for the specific example

in Section 4.4.

Note that when Mi = m, only Yij up to j = m + 1 are defined in Eq. (4.3).

Distribution of Yij|Mi(j−1) = 1 is restricted with the second key assumption: dropout

may depend on the current, possibly unobserved, measurement, but not on future

measurements. Kenward et al. (2003) showed that this assumption is equivalent to a

non-future dependent missing value restriction (NFMV) as follows:

∀j > m+ 1 : d(Yij|Yi1, ..., Yi(j−1),Mi = m) = d(Yij|Yi1, ..., Yi(j−1),Mi ≥ j − 1), (4.6)

where d(·) denotes the probability density function. Eq. (4.6) becomes the following

restriction with side effects and covariates included.

∀j > m+ 1 : d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi = m)

= d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi ≥ j − 1) (4.7)
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The right side of Eq. (4.7) is determined with the model in Eq. (4.3) and Eq. (4.2)

because it only involves Yij up to j = Mi + 1. Then distribution of Yij|Mi(j−1) = 1 is

fully defined by β, f(·), and h(·).

Although patients may discontinue the treatment assigned after dropout, this

issue is not in the scope of this chapter and we focus on the missing outcome that

would have been observed if the patient does not drop out and continues to receive

the assigned treatment.

4.3.2 Step 2. Imputation step.

After the ML estimates and their variance covariance matrix are obtained, D

samples of the parameter set are drawn. For each sample of the parameters, for

subject i with Mi = m < T , Yi(m+1) is drawn based on conditional distribution of

Yi(m+1) given Xi, Zi, Sik, (k = 1, ...,m+1), and Yil (l = 1, ...,m) (Details in Appendix

4.7.4). Then Yij for j = m+ 2, ..., T are sequentially drawn based on the conditional

distribution of Yij given Xi, Zi, Sik, (k = 1, ..., j), and Yil (l = 1, ..., j − 1) (Details in

Appendix 4.7.5).

After D imputed data sets are generated, the desired statistical analyses can be

performed on each of the imputed data sets and the results are combined with Rubin’s

combination rule.

4.4 Simulation studies

In this section we investigate the behaviour of the proposed likelihood analysis

through simulation studies. The sample size is set to 400 to reflect a typical applied

scenario in clinical trials. The sample has two groups, with 200 subjects assigned to

each group, and T=3 equally spaced repeated measurements. One baseline covariate

Zi is included and independent with the treatment assignment Xi. For j = 1, ..., T ,

Sij is assumed to only depend on Xi, Zi, and Si(j−1); Mij|Mi(j−1) = 0 is assumed to
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only depend on Xi, Zi, Sij, and Si(j−1); Yij|Mi(j−1) = 0 is assumed to only depend

on Xi, Zi, Sij, and Mij; σij is assumed to be σ2ρ|i−j|, where ρ0 = 1. Parameters are

specified in Table 4.1. Note for subject i with Mi = m, Yi1, ..., Yi(m+1) are generated

with (4.3) directly, and Yi(m+1), ..., YiT are generated with the NFMV restriction.

Table 4.1: Parameters used to generate longitudinal models

Scenario 5: the longitudinal model when MMNAR is true.
Variable Parameters
Zi Zi ∼ N(1, 1)
Sij|Xi, Zi, Si(j−1) logit(Sij = 1|xi, zi, si(j−1)) = −1 + 0.15xi + 0.3zi + 0.1si(j−1)

Mij|Mi(j−1) = 0 h(xi, zi, sik, yil, β, j)=−2− xi + 0.5zi + sij + 0.5si(j−1)

Yij|Mi(j−1) = 0 f(xi, zi, sik, β, j)=−1 + xi + 0.5zi + 0.2sij
Yij|Mi(j−1) = 0 {βYM1, βYM2, βYM3} = {−1,−1.4,−1.6}
Yij|Mi(j−1) = 0 {σ2, ρ1, ρ2} = {1, 0.4, 0.3}
Scenario 6: the longitudinal model when both MMNAR and MAR are true.

Variable Parameters
Zi Zi ∼ N(1, 1)
Sij|Xi, Zi, Si(j−1) logit(Sij = 1|xi, zi, si(j−1)) = −1 + 0.15xi + 0.3zi + 0.1si(j−1)

Mij|Mi(j−1) = 0 h(xi, zi, sik, yil, β, j)=−2 + 0.5zi + sij + 0.5si(j−1)

Yij|Mi(j−1) = 0 f(xi, zi, sik, β, j)=−1 + xi + 0.5zi + 0.2sij
Yij|Mi(j−1) = 0 {βYM1, βYM2, βYM3} = {0, 0, 0}
Yij|Mi(j−1) = 0 {σ2, ρ1, ρ2} = {1, 0.4, 0.3}

In scenario 5, MMNAR is true but MAR is violated because βYM1, βYM2, βYM3

are nonzero. This scenario leads to the missing rate of Pr(Mi = 0) = 26.3%, Pr(Mi =

1) = 20.5%, and Pr(Mi = 2) = 14.0%. The mean of last measurement with Xi = 0

(E(Yi3|Xi = 0), considered to be the intercept) and the difference between two groups

(E(Yi3|Xi = 1)−E(Yi3|Xi = 0), considered to be the treatment effect) are of interest.

1000 sets of data are generated and for each set, complete case analysis, ML assuming

MAR, ML assuming MMNAR, and before deletion data analysis are applied (details

in Appendix 4.7.3). For each method, the empirical mean and MSE of the estimates,

and the coverage proportion (CP) of the 95% confidence interval (CI) are presented

in Table 4.2. The 95% CI is calculated with a normal approximation. The true

values are also provided for comparison. In Table 4.2, treatment effect from both
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Table 4.2: Finite sample properties of four methods based upon 1,000 simulations of
a clinical trial with 400 patients. In scenario 5, MMNAR is true and in
scenario 6, both MMNAR and MAR are true. MSE = 103 × mean squared
error. CP = 102 × coverage proportion for 95% confidence interval. CP*
is based on Bootstrap methods.

Method Parameter True Mean MSE CP CP*

Scenario 5: the longitudinal model when MMNAR is true.
Before deletion E(Yi3|Xi = 0) -0.46 -0.45 11 94.4 NA
data analysis E(Yi3|Xi = 1)− E(Yi3|Xi = 0) 1.27 1.27 21 94.9 NA
Complete case E(Yi3|Xi = 0) -0.46 -0.35 36 87.8 NA
analysis E(Yi3|Xi = 1)− E(Yi3|Xi = 0) 1.27 1.20 43 93.6 NA
ML assuming E(Yi3|Xi = 0) -0.46 0.07 290 0.3 0.4
MAR E(Yi3|Xi = 1)− E(Yi3|Xi = 0) 1.27 1.01 89 65.0 56.9
ML assuming E(Yi3|Xi = 0) -0.46 -0.47 28 97.1 95.8
MMNAR E(Yi3|Xi = 1)− E(Yi3|Xi = 0) 1.27 1.29 28 96.7 94.3

Scenario 6: the longitudinal model when both MMNAR and MAR are true.
Before deletion E(Yi3|Xi = 0) 0.07 0.07 10 94.3 NA
data analysis E(Yi3|Xi = 1)− E(Yi3|Xi = 0) 1.01 1.01 21 95.0 NA
Complete case E(Yi3|Xi = 0) 0.07 -0.35 199 20.0 NA
analysis E(Yi3|Xi = 1)− E(Yi3|Xi = 0) 1.01 1.00 49 94.9 NA
ML assuming E(Yi3|Xi = 0) 0.07 0.07 11 97.5 94.1
MAR E(Yi3|Xi = 1)− E(Yi3|Xi = 0) 1.01 1.01 22 97.7 95.0
ML assuming E(Yi3|Xi = 0) 0.07 0.06 18 96.9 95.3
MMNAR E(Yi3|Xi = 1)− E(Yi3|Xi = 0) 1.01 1.02 22 97.9 95.3
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complete case analysis and ML assuming MAR are biased, showing the potential for

bias when the missing data mechanism is MNAR. Our proposed method is essentially

unbiased with small MSE, but the coverage proportions are larger than 95%. This

is because when the imputation model (4.3) is correct and more complex than the

analysis model which does not make any distribution assumption, the result from the

multiple imputation combination rule may overestimate the variance (Meng, 1994).

CP* are based on the variance estimated from bootstrap methods, and have coverage

proportions close to 95%. Since before deletion analysis and CC analysis do not

involve the MI procedure, bootstrap is not necessary.

In scenario 6, both MMNAR and MAR are true because all of βMXj
, βYM1, βYM2,

and βYM3 are 0. The parameters for generating the samples are specified in Table

4.1. They lead to the missing rate of Pr(Mi = 0) = 19.3%, Pr(Mi = 1) = 16.4%, and

Pr(Mi = 2) = 12.1%. True values of E(Yi3|Xi = 0) and E(Yi3|Xi = 1)− E(Yi3|Xi =

0), along with the empirical mean and MSE of the estimates, CP and CP* of the

95% CI for each method are presented in Table 4.2. Both ML assuming MAR and

ML assuming MMNAR are unbiased with small MSE, and CP* is close to 95%.

Note that MSE of ML assuming MAR and ML assuming MMNAR for E(Yi3|Xi =

1)− E(Yi3|Xi = 0) are almost the same as MSE of before deletion analysis, which is

because the information of model assumptions in (4.3) is used in the imputation steps

of ML assuming MAR and ML assuming MMNAR, but the before deletion analysis

does not make such assumptions.

4.5 Application

The data for the TROPHY study (Julius et al., 2006) consisted of 772 patients who

were randomized to placebo group (381) and candesartan group (391). Let xi be the

binary treatment indicator with xi = 0 denoting the placebo arm and xi = 1 denoting

the candesartan arm. Let zi be the baseline covariates collected at the beginning of
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the study. After the treatment was initiated, 9 visits were scheduled at month 1, 3,

6, and every 3 months until month 24. Let yij be the systolic blood pressures (SBP)

measured at visit j for ith subject, j = 1, ..., 9. One reason to cause yij missing was

development of hypertension. Development of hypertension was defined as the first

appearance of one of the following outcomes: systolic pressure of 140 mm Hg or high-

er or diastolic pressure of 90 mm Hg or higher, for any three visits; systolic pressure

of 160 mm Hg or higher or diastolic pressure of 100 mm Hg or higher for any visit;

initiation of pharmacologic treatment; or systolic pressure of 140 mm Hg or higher

or diastolic pressure of 90 mm Hg or higher at the visit at month 48. Once a patient

was diagnosed of hypertension, a rescue therapy was initiated and the blood pressures

recorded were no longer relevant. Among the 772 patients, 198 (47 in candesartan

group) had missing values of yij because of developing hypertension. Since develop-

ment of hypertension was fully determined by the observed information, the missing

mechanism was MAR. Let ∆i = 1 denote that subject i developed hypertension and

let ∆i = 0 denote that subject i completed the study. Let hi denote the specific visit

that hypertension was diagnosed. If ∆i = 1, yihi was the last measurement of SBP.

Our particular interest here is the average last SBP before hypertension or the

end of study for different treatment groups, or Exi = E(yihi ∗ I(∆i = 1) +yi9 ∗ I(∆i =

0) | xi), where I(·) is the indicator function. Note that missing values of yij for j > hi

are not related to our parameter of interest, so from this point, missing yij caused

by development of hypertension (∆i = 1) are not considered as missing data to avoid

confusion.

The other reason to cause yij missing was dropout, which is denoted by ∆i =

2. Among those 772 patients, 84 (37 in candesartan group) dropped out from the

study before development of hypertension. Let mi denote the visit in which the last

measurement of SBP was observed before dropout. Let mij be the missing data

indicator for yij with mij = 1 denoting subject i dropping out before visit j. The

67



missing pattern is monotone so for subject i with ∆i = 2, mi = r ⇔ mij = 0 for

j = 1, ..., r and mij = 1 for j = r + 1, ..., 9. If ∆i 6= 2, mij = 0 for j = 1, ..., 9.

Since blood pressures could be measured at home, patients might drop out be-

cause of lack of efficacy and therefore MAR is questionable. The proposed MMNAR

model in Section 4.4 is applied except the true parameters are unknown. One naive

longitudinal analysis was performed to determine the baseline covariates to be in-

cluded in the MMNAR model. Race, sex, BMI, age, creat, and baseline SBP were

significantly related to outcomes and therefore included in zi. Time trend for SBP

was not observed and excluded.

Following the fitting procedure described above, ML estimates are obtained and

imputed data sets are generated, but after all the missing values of yij are imputed, an

extra imputation step is required to create the possibility to diagnose hypertension. In

this step, we assume the probability to diagnose hypertension only depends on the last

observed SBP by a logistic form: logit(Pr(hi(j+1) = 1|yij, hij = 0)) = βH0 + βHY yij,

j = 1, ..., 8, where hij is the hypertension indicator, hi = w ⇔ hij = 0 for j = 1, ..., w

and hij = 1 for j = w+ 1, ..., 9. The ML estimates of βH0 and βHY and their variance

covariance matrix are obtained by fitting a logistic regression with all observed yij.

Then for each imputed data set, following the imputation step, one set of βH0 and

βHY is randomly drawn to generate hij sequentially until hij = 1 or j = 9.

The analysis for complete data does not make any distribution assumption. Ê0 and

Ê1 (estimates of E0 and E1), and V̂ (E0) and V̂ (E1) (their variances) are the empirical

means and variances for the two treatment groups. Estimate of the treatment effect

E1 − E0 and its variance are simply Ê1 − Ê0 and V̂ (E0) + V̂ (E1). The results from

complete case analysis, ML assuming MAR, and ML assuming MMNAR are presented

in Table 4.3.

The estimated treatment effect from ML assuming MMNAR is slightly larger

than the one from ML assuming MAR. It indicates that allowing the missingness of
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Table 4.3: Estimates of the systolic blood pressure (SBP) at endpoint under different
treatment groups in TROPHY study. LCI = lower bound of 95% confi-
dence interval. HCI = higher bound of 95% confidence interval. Width =
width of 95% confidence interval.

Method Parameter Mean LCI HCI Width

Complete case E0 129.0 127.8 130.2 2.4
analysis E1-E0 -6.7 -8.4 -5.1 3.3
ML assuming E0 130.8 129.5 132.0 2.5
MAR E1-E0 -7.9 -9.6 -6.2 3.5
ML assuming E0 132.4 130.4 134.5 4.2
MMNAR E1-E0 -8.8 -10.7 -6.9 3.9

yij to depend on yij itself may alter the treatment effect. This also confirms that

the treatment effect to decrease blood pressures is robust to deviation from MAR

assumption. E0 has relatively wide confidence interval for ML assuming MMNAR,

but the width of E1−E0 confidence interval for ML assuming MMNAR is very similar

to the one for ML assuming MAR. This observation is very similar to the pattern in

previous simulation studies.

4.6 Discussion

In this section we describe MMNAR models for repeated measure data. Since

the longitudinal data models are flexible, rather than specifying one MMNAR model,

we provide the strategy to extend a complete data model to a MMNAR model and

estimate parameters of interest by applying maximum likelihood and multiple impu-

tation. Since the imputation model may be more complex than the analysis model

for the complete data, the variance estimates from the multiple imputation combi-

nation rule may be overestimated and a bootstrap method is suggested to correct

the variance estimation. Applying longitudinal MMNAR models to real data is also

illustrated with TROPHY study, and ML assuming MMNAR provides a result that
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is slightly different from ML assuming MAR. This indicates that MAR may be mildly

violated.

In the TROPHY study application, side effect variables are summarized to one

single variable to be included in the model, and the way to summarize those side

effect data can be improved for the future work, for example, by using a propensity

score which models the propensity to drop out.

In the future work, we will also extend the MMNAR assumption to other paramet-

ric or semiparametric regression models, like generalized linear models and survival

analysis models. For those models, restrictions implied by the MMNAR assumption

may not be as well defined as the logistic form illustrated above and how to apply

the MMNAR assumption properly requires further investigation.

We already considered the case when the outcome is missing, and the MMNAR

assumption can be useful for missing covariates when MAR is questionable. If the

missing probability does not depend on outcomes, the estimates based on CC analysis

may be valid, but efficiency loss is often unavoidable. More sophisticated methods

such as subsample ignorable likelihood (SSIL) method (Little and Zhang, 2011) often

assume MAR, but they are robust to slight violation of ignorability. The compari-

son between ML assuming MMNAR and other methods for different settings are of

interest.

In the longitudinal MMNAR model, we assume the missing pattern is monotone

and adopt a sequential MI procedure for the inference. For future work, it is interest-

ing to see how to apply chained equation MI methods to the longitudinal data with

arbitrary missing pattern. This can greatly simplify the application of the method

by using existing software include IVEware (Raghunathan et al., 2001) and MICE

(VanBuuren and Groothuis-Oudshoorn, 2011).
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4.7 Appendix

4.7.1 Coefficients in Eq. (4.5)

logit(Pr(Mij = 1|Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j,Mi(j−1) = 0, β)) (4.8)

= log
Pr(Mij = 1|Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j,Mi(j−1) = 0, β)

Pr(Mij = 0|Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j,Mi(j−1) = 0, β)

= log
Pr(Mij = 1, Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j,Mi(j−1) = 0, β)

Pr(Mij = 0, Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j,Mi(j−1) = 0, β)

= log
d(Yij|Mij = 1, Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j − 1,Mi(j−1) = 0, β)

d(Yij|Mij = 0, Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j − 1,Mi(j−1) = 0, β)
(4.9)

+ log
Pr(Mij = 1|Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j − 1,Mi(j−1) = 0, β)

Pr(Mij = 0|Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j − 1,Mi(j−1) = 0, β)
(4.10)

Expression (4.10) is βMXj
Xi + h∗(Zi, Sik, Yil, k = 1, ..., j, l = 1, ..., j − 1, β, j) based

on Eq. (4.2). Eq. (4.3) implies that [Yij|Mij = 0, Xi, Zi, Sik, k = 1, ..., j, Yil, l =

1, ..., j− 1,Mi(j−1) = 0, β] follows a normal distribution with mean of µj and variance

of σ2
j . µj is

f(Xi, Zi, Sik, k = 1, ..., j, β, j)

+Σ′1(j−1)Σ
−1
j−1


Yi1 − f(Xi, Zi, Sik, k = 1, β, 1)

...

Yi(j−1) − f(Xi, Zi, Sik, k = 1, ..., j − 1, β, j − 1)

 (4.11)

= f ∗(Zi, Sik, k = 1, ..., j, β, j)

+Σ′1(j−1)Σ
−1
j−1


Yi1 − f ∗(Zi, Sik, k = 1, β, 1)

...

Yi(j−1) − f ∗(Zi, Sik, k = 1, ..., j − 1, β, j − 1)


+ [βY Xj

− Σ′1(j−1)Σ
−1
j−1(βY X1 , ..., βY Xj−1

)′]Xi

= µ∗j + [βY Xj
− Σ′1(j−1)Σ

−1
j−1(βY X1 , ..., βY Xj−1

)′]Xi,
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where Σ1(j−1) is the vector (σ2
11, ..., σ

2
1(j−1)) and µ∗j does not depend on Xi. Variance

σ2
j has the form of σ2

jj − Σ′1(j−1)Σ
−1
j−1Σ1(j−1). Similarly, [Yij|Mij = 1, Xi, Zi, Sik, k =

1, ..., j, Yil, l = 1, ..., j − 1,Mi(j−1) = 0, β] follows a normal distribution with mean of

µj + βYMj and variance of σ2
j . Plug µj, σ

2
j , and βYMj in (4.9), we get

−1/2 · log(2πσ2
j )−

(Yij − µj − βYMj)
2

2σ2
j

− (−1/2 · log(2πσ2
j )
−1/2 − (Yij − µj)2

2σ2
j

)

= (2Yij − 2µj − βYMj)βYMj/(2σ
2
j )

= (2Yij − 2µ∗j − βYMj)βYMj/(2σ
2
j )

−[βY Xj
− Σ′1(j−1)Σ

−1
j−1(βY X1 , ..., βY Xj−1

)′]XiβYMj/σ
2
j

Plug in the expressions of (4.9) and (4.10), we have

logit(Pr(Mij = 1|Xi, Zi, Sik, k = 1, ..., j, Yil, l = 1, ..., j,Mi(j−1) = 0, β))

= (2Yij − 2µ∗j − βYMj)βYMj/(2σ
2
j )

−[βY Xj
− Σ′1(j−1)Σ

−1
j−1(βY X1 , ..., βY Xj−1

)′]XiβYMj/σ
2
j

+βMXj
Xi + h∗(Zi, Sik, Yil, k = 1, ..., j, l = 1, ..., j − 1, β, j)

= {βMXj
− [βY Xj

− Σ′1(j−1)Σ
−1
j−1(βY X1 , ..., βY Xj−1

)′]βYMj/σ
2
j}Xi

+(2Yij − 2µ∗j − βYMj)βYMj/(2σ
2
j )

+h∗(Zi, Sik, Yil, k = 1, ..., j, l = 1, ..., j − 1, β, j)

αMjX in Eq. (4.5) is βMXj
− [βY Xj

− Σ′1(j−1)Σ
−1
j−1(βY X1 , ..., βY Xj−1

)′]βYMj/σ
2
j .

4.7.2 Obtain ML estimates for MMNAR models

Since there are T unidentified parameters from the unrestricted model and T

restrictions are implied from the MMNAR assumption, the model is just identified.

The loglikelihood is maximized by (a) calculating the ML estimates of parameters

in h(·) with Mij given Xi, Zi, Sij, and Si(j−1) for all {i, j} that satisfy Mi(j−1) = 0;
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(b) calculating the ML estimates of parameters in f(·) with Yi1, ..., Yim given Xi,

Zi, Si1, ..., Sim, for subjects with Mi = m; and (c) calculating the estimated value

of βYM1, ..., βYM3 with restrictions αMjX = 0, j = 1, 2, 3, implied by the MMNAR

assumption (forms of αMjX in Appendix 4.7.1). Variance estimates in (a) and (b)

are computed from the inverse of the information matrix and delta method is used

to calculate the variance estimates in (c).

4.7.3 Estimation procedures for different methods

Let β̂intercept and V̂intercept be the estimate of E(Yi3|Xi = 0) and the associated

variance estimate. Let β̂trt.effect and V̂trt.effect denote the estimate of E(Yi3|Xi = 1) −

E(Yi3|Xi = 0) and the associated variance estimate.

We first introduce the estimation method for complete data, in which no distribu-

tion assumption is made. We use the empirical mean and variance of Yi3 for treatment

group Xi to estimate E(Yi3|Xi) and the associated variance, which are denoted by

β̂Xi
and V̂Xi

. Then we have β̂intercept = β̂0, V̂intercept = V̂0, β̂trt.effect = β̂1 − β̂0, and

V̂trt.effect = V̂1 + V̂0.

Complete case analysis and before deletion data analysis are direct application of

the estimation method for complete data. Note that this method is also the analysis

performed after imputed data sets are generated in ML assuming MMNAR or ML

assuming MAR. Estimation procedure for ML assuming MMNAR is provided in Sec-

tion 4.3. ML assuming MAR has a very similar procedure, which sets estimates and

the variances of βYM1, ..., βYM3 to 0 instead of calculating them with the restrictions

(step (c) in Appendix 4.7.2).

4.7.4 Imputing Yi(m+1) for Mi = m < T

Since Mi = m ⇔ Mim = 0 & Mi(m+1)=1, conditional distribution of Yi(m+1) given

Xi, Zi, Sik, (k = 1, ...,m+ 1), and Yil (l = 1, ...,m) is µj + βYMj, where µj is given in
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(4.11).

4.7.5 Imputing Yij for j = m+ 2, ..., T , Mi = m < T − 1

Because Eq. (4.7), for Mi = m < T − 1, ∀j > m+ 1,

d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi = m)

= d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi ≥ j − 1)

=
T∑

l=j−1

d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi = l)

·Pr(Mi = l|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi ≥ j − 1)

=
T∑

l=j−2

d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi = l)

·Pr(Mi = l|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi ≥ j − 1)

+ d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi = j − 1)

·Pr(Mi = j − 1|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi ≥ j − 1)

Note that since [Yi1, ..., Yi(j−1), Yij|Si1, ..., Sij, Xi, Zi,Mi = l] is the same for all l ≥

j − 2, [Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi = l] is the same for all l ≥ j − 2. We
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have

d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi = m)

=
T∑

l=j−2

Pr(Mi = l|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi ≥ j − 1)

·d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi = T )

+ d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mij = 1,Mi(j−1) = 0)

·Pr(Mij = 1|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi(j−1) = 0)

= d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mij = 0,Mi(j−1) = 0)

·Pr(Mij = 0|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi(j−1) = 0)

+ d(Yij|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mij = 1,Mi(j−1) = 0)

·Pr(Mij = 1|Yi1, ..., Yi(j−1), Si1, ..., Sij, Xi, Zi,Mi(j−1) = 0)

= φ(Yij, µj, σ
2
j )

1

exp{1 + h(Zi, Sik, Yil, k = 1, ..., j, l = 1, ..., j − 1, β, j)}

+φ(Yij, µj + βYMj, σ
2
j )

exp{1 + h(Zi, Sik, Yil, k = 1, ..., j, l = 1, ..., j − 1, β, j)}
1 + exp{1 + h(Zi, Sik, Yil, k = 1, ..., j, l = 1, ..., j − 1, β, j)}

,

where φ(x, µ, σ2) denotes the normal density function with mean µ and variance σ2.
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CHAPTER V

Conclusions and Future Work

We consider missing data problems in randomized controlled trials. Noncom-

pliance with the assigned treatment and missing outcomes can undermine the ran-

domization, which is a key feature for drawing valid statistical inferences for the

comparison between treatments. For the noncompliance issue, we focus on the treat-

ment switching for phase III clinical trials in oncology and propose a likelihood-based

method and a latent event time method. The proposed methods outperform exist-

ing methods in the simulation studies conducted. For the missing outcomes issue,

a specific MNAR assumption is proposed and applied to a variety of models. The

TROPHY study provides a real data application.

In Chapter 2, we propose a new parametric method to address the treatment arm

switching issue. This method evaluates the individual benefit of switching based on

observed progression time so the switching effect differs among patients. We also

propose a latent event time method based on the iterative parameter estimation

procedure. This method is more robust to violations of the distribution assumptions

in the parametric method.

Via simulations, we show that our proposed methods are unbiased with small

MSEs, but the existing methods, ITT analysis, PP analysis, Cox PH model with time-

varying covariate, and the IPE procedure may be biased when treatment switching
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depends on the subjects’ progression time. We analyze the reasons for bias, in the case

of the IPE procedure we suggest that bias arises because the selection of switching

can change the causal effect.

For the inference to be valid, the decision of treatment switching must not depend

on the future information (for example, investigator’s judgement for the event time)

conditional on the observed information at progression time. This assumption is

unverifiable from the data being analyzed and questionable in practice, so we recom-

mend weakening it by collecting variables associated with both treatment switching

and the future event time.

Our key assumption that the treatment effect is the same both before and after

disease progression, that is DT i ≡ DGi ≡ DTGi using the notation of Chapter 2,

may appear strong but is intuitive. It provides an idea to understand the association

between the causal effect of treatment with survival both before progression and

after progression and leads to our proposed adjustments for treatment arm switching.

For the future work, the assumption may be relaxed by assuming DGi and DT i are

positively correlated instead of equal to each other. Note that although the correlation

between DGi and DT i (denoted as ρTG) may be unidentifiable, the robust approaches

proposed in Section 2.5 with ρ1 replaced by ρ1ρTG could be applied, although a

sensitivity analysis for the assumed value of ρ1ρTG would still be required.

A potential approach to recensoring for our latent event time approach is under

investigation. We will also apply the proposed idea to semiparametric methods, such

as a Cox PH model, in which the hazard ratio between treatment groups before

progression is assumed to be equal to the hazard ratio after progression and the

switching effect can be quantified individually.

In Chapter 3, we propose the masked missing not at random (MMNAR) assump-

tion for masked clinical trials, where missingness does not depend on the masked

treatment, after conditioning on side effect and outcome data. The MMNAR as-
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sumption can be considered as an alternative to MAR or a way to limit the number

of possible MNAR models for the sensitivity analysis.

We describe MMNAR models for continuous and categorical outcomes, and apply

maximum likelihood and multiple imputation based on these models to estimate

treatment effects. Simulation studies show that when MAR is violated, assuming

MAR can lead to severe bias. Therefore if the estimates are substantially different,

which indicates a deviation from MAR, we might prefer the estimates from MMNAR

because the mechanism is more plausible but if the estimates based on MMNAR

and MAR are similar, MAR analysis might be preferred for efficiency considerations.

However, the mean squared errors of treatment effect estimates for MMNAR are very

similar to those for MAR in almost all the simulations conducted. How to generalize

this observation with theoretical approaches is still under investigation.

Clinically unimportant side effects do not need to be included because to bias

the treatment effect a side effect needs to be associated with the outcome as well as

the likelihood of dropping out. However, with extensive data on side effects methods

for summarizing them are of interest, and better methods than those used in the

TROPHY study application is a topic for future research. One potential approach is

to use a propensity score that models the propensity to drop out.

We will also extend the MMNAR assumption to other parametric or semipara-

metric regression models, like generalized linear models and survival analysis models.

In those models, the MMNAR assumption may imply some restrictions that are not

in a well recognized form such as logistic. How to utilize those restrictions to identify

MMNAR models requires further investigation.

In Chapter 4, we extend our proposed MMNAR assumption to repeated measure

data. Instead of specifying some MMNAR model examples in Chapter 3, we provide

the strategy to extend a complete data model to a MMNAR model and estimate

parameters of interest by applying maximum likelihood and multiple imputation.
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We notice the variance estimates from the multiple imputation combination rule

may be overestimated because the difference between imputation model and analysis

model, and the bootstrap approach can provide a valid estimate of the variance.

Finite sample properties of the proposed method are examined by simulation studies,

the result shows the same pattern as observed in the univariate outcome variable

simulations in Chapter 3. When MAR is violated, The method assuming MAR can

be biased when MAR is violated but it is preferred when MAR is correct. The

application to TROPHY study shows a slightly difference between assuming MAR

and assuming MMNAR.

We have considered the simple case when the missing pattern is monotone. How-

ever, for other missing patterns, or situations with missing covariates, the sequential

MI procedure introduced cannot be applied and other approaches such as chained

equation MI methods need to be developed. It would also be worthwhile to develop

weighting methods for a monotone pattern with masked data, and compare them

with our likelihood based methods.
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