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Abstract Intermediate disturbances shape forest structure and composition, which may in turn alter
carbon, nitrogen, and water cycling. We used a large-scale experiment in a forest in northern lower
Michigan where we prescribed an intermediate disturbance by stem girdling all canopy-dominant early
successional trees to simulate an accelerated age-related senescence associated with natural succession.
Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control
plot, we analyzed disturbance-induced changes to plot level and species-specific transpiration and stomatal
conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control
plots. However, species-specific responses to changes in microclimate varied. While red oak and white pine
showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red
maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure
deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous
anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and
paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman-Monteith
model for LE to demonstrate that these species-specific responses to disturbance are not well captured using
current modeling strategies and that accounting for changes to leaf area index and plot microclimate are
insufficient to fully describe the effects of disturbance on transpiration.

1. Introduction

Evapotranspiration (ET) accounts for 60–95% of precipitated water in terrestrial ecosystems, comprising the
one of the largest components of the terrestrial hydrologic cycle [Fisher et al., 2005; Ford et al., 2007; Jasechko
et al., 2013; Katul et al., 2012]. Transpiring vegetation recycles ~62,000 km3 of water, while sequestering ~130 Gt
of carbon annually at the global scale [Jasechko et al., 2013]. Transpiration couples the carbon, energy, and
water cycles and acts as the principal feedback between the land surface and atmosphere. It is therefore
crucial to understand its dynamics. With global and regional temperature increases and a potential rise of the
variation in regional precipitation patterns, the ability to accurately simulate transpiration is essential to
predicting land surface-climate change feedbacks in terms of heat, water, and carbon exchange [e.g., Allen
et al., 2010; Choat et al., 2012; Wu et al., 2012].

Disturbance plays a major role in determining forest structure, composition, and carbon (C), nitrogen (N), and
water cycling [Pan et al., 2011]. Nonstand replacing disturbances, often called intermediate disturbances,
occur naturally via species-specific pest infestation [e.g., Herms and McCullough, 2014; Simard et al., 2012],
strong storms and wind throws [e.g., Uriarte et al., 2012], drought [e.g., Huang and Anderegg, 2012; McDowell
et al., 2008; Royer et al., 2010], and ecological succession [e.g., Gough et al., 2013; Hardiman et al., 2013] and
anthropogenically via fire management and biomass removals [e.g., Royer et al., 2010; Stephens et al., 2009]
and selective logging [e.g., Asase et al., 2014; Asner et al., 2004]. These disturbances impact canopy structure
at a diffuse spatial scale ranging from one to several tree crowns per hectare, and may be distributed over
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large regional spatial domains. Disturbances at this scale will impact the heterogeneity of light attenuation
through the canopy [Hardiman et al., 2013; Schnitzer et al., 2012] and the canopymicroclimate, including wind
speed, turbulent mixing, humidity, temperature, and soil moisture under the canopy [Asase et al., 2014; Bohrer
et al., 2009; Forrester et al., 2012; He et al., 2013; Maurer et al., 2013]. These variables directly affect
photosynthesis, canopy evaporative demand, and soil water availability, thereby influencing transpiration.

Ultimately, the interaction between the hydrodynamic traits of trees, such as stomatal response to vapor
pressure deficit and leaf water potential, the root response to soil water deficit, the conductivity and structure
of the xylem system, and environmental conditions at the tree crown determine the way in which individual
trees respond to microclimatic changes following disturbance. The responses of photosynthesis and
transpiration to disturbance may be driven in a large part by dynamic changes to stomatal conductance and
by spatial variation in leaf distribution. Given the nonlinear nature of leaf stomatal conductance and
transpiration, special attention should be paid to the mechanistic physiological properties that control them.
Nonetheless, a majority of current land surface models represent this type of intermediate disturbance
through a change in overall leaf area index (LAI), the only manner through which canopy structure is
represented in coarse-scale, largely big-leaf or two-layer models (e.g., CanIBIS [Kucharik et al., 2000], SiB2
[Sellers et al., 1995], and BiomeBGC [Running and Coughlan, 1988]). Although changes to LAI will affect
simulated photosynthesis and transpiration, changes in LAI alone may not capture the observed effects of
intermediate disturbance on transpiration.

Tree growth following intermediate disturbance will result in structural changes including sapwood-to-leaf
area ratio, LAI, and the mean and variability of tree height [Dietze et al., 2008]. These factors influence tree
C uptake and water flux, and it is unlikely that all species will respond to these changes in the same manner
[e.g., Chapin, 2003; Ewers et al., 2008;Moore et al., 2004; O’Brien et al., 2004; Schäfer et al., 2013]. Further studies
have described numerous differences among species responses to the same environmental conditions on
the basis of hydraulic strategy and functional type [e.g., Ford et al., 2011; McCulloh et al., 2012; Thomsen et al.,
2013]. Incorporating differences in species-specific controls over transpiration in models may improve the
prediction of whole forest transpiration, and how it responds to disturbance-induced differences in
microclimate, canopy structure, and species composition.

Following intermediate disturbance, as forcing conditions and canopy structure around the tree change,
internal water storage levels, xylem water potential, and stomatal conductance may also change accordingly.
The imbalance between the rates of water demand in the leaf and water supply from the soil imposes
hydrodynamic limitations on stomatal conductance [Bohrer et al., 2005; Damour et al., 2010; McCulloh and
Sperry, 2005; Tyree and Sperry, 1989]. Hydraulic limitations have recently been linked to the hysteretic
relationship between transpiration (or stomatal conductance) and vapor pressure deficit (VPD) [Matheny
et al., 2014; Novick et al., 2014; O’Brien et al., 2004; Unsworth et al., 2004; Verbeeck et al., 2007a; Zhang et al.,
2014]. For a given level of atmospheric VPD and soil moisture, plants transpire more during the morning
hours, when internal water storage is high, than they do for the same VPD in the afternoon-evening hours,
when within-plant water storage may have become depleted. Thus, when plotting transpiration throughout
the day as a function of VPD, a hysteretic “loop” is created. This hysteresis is related in part to the time lag
between daily maximal light and daily maximal VPD conditions, but it is also driven by the daily
hydrodynamic cycle and the depletion of water storage within the plant. The area enclosed by this loop, can
thus be indicative of the relative change in plant water status throughout the day and the degree of
hydrodynamic stress incurred by the plant.

The hydrodynamic processes that drive the daily hysteresis of transpiration operate at a fast, intradaily time
scale and at the spatial scale of a single tree, and when aggregated over many trees, can change the overall
diurnal distribution of transpiration and stomatal conductance at the plot level. These processes, and their
interactions with changes to canopy structure and species composition could also accumulate to affect total
transpiration over longer (daily-seasonal-annual) time scales by affecting water use efficiency and the
effective degree of daily stomata-closing stresses the trees experience post disturbance. By analyzing and
understanding these fast daily dynamics rather than longer-term periods (monthly) or periods of drought
stress, it may be possible to improve modeling of transpiration at the subdaily time step [Thompson et al.,
2011] as well as to show more realistic coupling between hydrodynamic phenomena and gross primary
productivity in land surface models [Fatichi and Ivanov, 2014].
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We used a large-scale experiment to examine the response of tree and plot-scale transpiration to changes in
canopy structure resulting from an intermediate disturbance. This study utilized meteorological, eddy
covariance, sap flow, and soil moisture observations in two forest plots. Our experiment was composed of a
control plot in a mixed, deciduous, mature (~90 years old), early-middle successional forest in Northern
Michigan, and a nearby treatment plot, where all early successional aspen and birch trees were killed by
stem girdling to represent an intermediate disturbance that accounted for roughly 35% of leaf area in the
predisturbance forest [Hardiman et al., 2013]. This disturbance has resulted in a successional shift into a
middle-late successional forest structure, dominated by red maple, red oak, and white pine. We
monitored the transpiration response of trees in the disturbed plot and the undisturbed control. We
hypothesized that

1. Species with different hydraulic strategies and xylem structure, i.e., red oaks, red maples, and white pines,
would demonstrate different capacities to increase transpiration following disturbance.

2. Disturbance-related changes to external physical drivers of transpiration would influence the diurnal
pattern of transpiration more strongly in some species than in others. This would cause increases
in afternoon hydrodynamic stress and stomata closure in relatively isohydric species such as red maple
during most of the growing season when precipitation at our site is not limiting.

3. Diurnal hydraulic stress, expressed as the hysteresis of the transpiration curve, would be consistently
greater in anisohydric species than in similarly sized isohydric species.

4. As a result of changes to microclimate and species composition, plot level transpiration and stomatal
conductance in postdisturbance plots would be significantly different from plot level transpiration
in undisturbed plots. This difference would not be simply scaled by the leaf areas of the two plot types,
indicating that changes in LAI alone are not sufficient to represent disturbance in land surface models.

2. Methods
2.1. Site Description

This study was completed at the University of Michigan Biological Station (UMBS) located in northern, Lower
Michigan, USA. The site receives 805mm of mean annual precipitation and has an annual average
temperature of 6.8°C. Soils consist of well drained Haplorthods of the Rubicon, Blue Lake or Cheboygan series
that are 92.2% sand, 6.5% silt and 0.6% clay [Nave et al., 2011]. We conducted our study in two adjacent forest
plots surrounding two Ameriflux-affiliated eddy covariance flux stations (http://ameriflux.lbl.gov/). The
experiment and site layout are described in detail in Gough et al. [2013]. While neither of our two forest plots
is physically bounded, we considered the control plot area to be the 180 ha area composing 99% of the
flux footprint of the primary eddy covariance tower. The experimental plot consists of a 39 ha plot
surrounding the secondary eddy covariance tower, where a manipulation treatment was enacted to
accelerate succession. Because of the treatment plot’s smaller size, it typically contributes 70–90% of the flux
footprint. To account for this, we further normalized plot level eddy covariance measurements from the
treatment plot (see “Eddy covariance measurements” below). Within each plot, we had one large 60m
diameter and 80 (in the control) and 22 (in the treatment) 16m census plots, where the diameters at breast
height (DBH) of all trees larger than 8 cm were measured (see “Scaling tree level sap flow to plot level
transpiration” below).

The control plot (45°33′35″N, 84°42′48″W, elevation 236m) is dominated by early successional bigtooth
aspen (Populus grandidentata) and paper birch (Betula papyrifera). As these early successional trees begin to
decline, later successional species such as red oak (Quercus rubra), red maple (Acer rubrum), white pine (Pinus
strobus), American beech (Fagus grandifolia), and sugar maple (Acer saccharum) are beginning to comprise
a more significant portion of the stand basal area. Mean canopy height is approximately 25m, average tree
age is ~90 years, mean peak LAI is ~3.9m2m�2, and average stem density is ~750 trees ha�1 (for trees
with diameter at breast height ≥ 8 cm) [Gough et al., 2010]. Flux, meteorological, and plot level biological data
are available from the Ameriflux database, under the site-ID US-UMB.

The treatment plot (45°33′45″N, 84°41′51″W, elevation 239m) was designed as part of the Forest Accelerated
Succession ExperimenT to test the effects of intermediate disturbance and ecological succession on forest
biogeochemistry. In 2008, all aspen and birch within the treatment plot were stem girdled to inducemortality
within 2–4 years. The remaining canopy is dominated by red oak, red maple, white pine, and American
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beech.Before the experimental girdling, the treatment and control plots (about 1.2 km away) were similar in
forest composition, structure, soil, and meteorological conditions. In 2008, the control and treatment plots
differed in growing season mean latent heat flux by less than 1.5 Wm�2. Flux, meteorological, and plot level
biological data are available from the Ameriflux database, under the site-ID US-UMd.

2.2. Experimental Approach

We combined long-term plot level and individual tree level observations of transpiration, sap flow, soil
moisture, and other environmental conditions to test our hypotheses and isolate species-specific differences
in transpiration and hydrodynamic regulation of stomatal conductance. We scaled measured values of sap
flux from 84 trees to the equivalent plot level transpiration and evaluated our estimates using eddy
covariance measurements of latent heat flux. We then used sap flux observations to estimate stomatal
conductance and demonstrate differences in daily patterns of stomatal closure between species and size
classes of trees. Similarly, we used the statistics of daily hysteresis of the transpiration-VPD curve to quantify
the degree of short-term (intradaily) hydraulic stress each species incurred and analyzed the relationship
between the extent of hysteretic stress and environmental forcings, particularly VPD and soil water potential.
Finally, we employed the Penman-Monteith (PM) model for transpiration as a null hypothesis to account
for the effects of all environmental forcings on evapotranspiration, with the exception of soil water potential
and tree hydrodynamics. We compared the residuals between predictions from the PM model and observed
daily transpiration to determine the effects of species, size, and hydraulic strategy on actual transpiration
under different soil water potential conditions. The formulations and more detailed explanations for these
analyses are provided in the following sections.

2.3. Sap Flux Measurements

We observed and quantified the forest’s response to disturbance by monitoring sap flux in the experimental
and control forest plots and determined whether the different postdisturbance species composition affected
transpiration and as well as whether the lessened competition for resources resulted in increased
transpiration at the treatment plot. In 2011 and 2012, 30 trees in each plot were instrumented with Granier
[1987] style thermal dissipation probes to continuously measure sap flux density (Jsji). Data were recorded
every minute and averaged to half-hourly time steps. In 2013, additional sensors were added for a total of 42
instrumented trees per plot (n=84). Trees were selected to represent the characteristic canopy-dominant
species and sizes (i.e., height and diameter) for each plot (Table 1). Pairs of 20mm long, self-manufactured
probes were inserted into the sapwood at breast height (1.37m) on the north facing side of the tree with a
vertical separation of ~10 cm. For all trees where sapwood depth was less than 2 cm, the Clearwater et al.
[1999] correction was applied. Sap flux sensor data were processed using a baselining procedure to account
for the daily maximum temperature of each sensor and times when the 2 h average VPD was lower than
0.5 kPa in order to account for nocturnal recharge flux [Oishi et al., 2008]. No radial scaling information was
available for our plots [Phillips et al., 1996]. We therefore assumed that our sap flux measurements represent
an average sap flux density through the entire conductive area.

Table 1. List of Instrumented Sap Flux Trees for Each Plot. Ranges for DBH, Height, and Projected Crown Area for All Trees

n DBH (cm) Height (m) Crown Area (m2) Sapwood Depth (cm) LAI (m2/m2)
Leaf Area per

Xylem Area (m2/m2)

Control
Red oak 10 21.7–37.2 11.1–26.7 23.2–179.6 3.0–5.6 0.99 5400
Red maple 8 11.9–22.3 9.6–17.4 20.2–82.0 3.8–9.3 0.84 2000
White pine 8 6–32.5 4.2–20.4 5.9–24.1 1.7–3.6 0.69 3500
Bigtooth aspen 8 16.4–32.5 13.5–22.1 10.4–49.0 6.8–12.8 0.94 970
Paper birch 8 10.4–25 10.1–16.0 11.1–79.5 4.6–10.0 0.20 1400

Treatment
Red oak 10 8.2–41.6 11.0–25.5 3.6–88.1 0.8–6.8 1.11 3300
Red maple 12 7.9–28.4 9.8–25.7 4.9–81.7 2.8–10.6 1.23 2900
White pine 10 7.2–30.5 5.8–22.9 5.3–25.9 2.0–5.1 0.45 820
American beech 10 12.2–22.2 11.2–25.5 25.9–89.8 2.7–4.0 0.75 12000
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2.4. Sapwood Depth Measurements

Allometric equations relating diameter at breast height to sapwood area were developed for the main
species (aspen, birch, and maple) at our site by Bovard et al. [2005]. An expansion of the Bovard et al. [2005]
study was conducted during summer 2014 to determine allometric scaling relationships for red oak, white
pine, and American beech. To develop these relationships, tree cores were taken at breast height and stained
using a 2% solution of tetrazolium chloride (TTC) to determine the depth of hydroactive xylem. The
results from all trees of the same species were fitted to an allometric equation (equation (1)) to describe the
relationship between DBH and active xylem area (Asi). The species-specific parameters of the allometric
equation (equation (1)) are listed in Table 2. Oak cores, for which the TTC assay gave ambiguous results, were
further analyzed using a stereoscopic microscope to verify the results of the staining assay.

Asi ¼ α1s þ α2sDBH
α35
i (1)

2.5. Scaling Tree Level Sap Flow to Plot Level Transpiration

We measured the DBH and projected crown area of each tree in which we installed a sap flow sensor.
Projected crown area was estimated using the perpendicular major and minor diameters of each crown as
measured from the ground. Crown area was then calculated following the assumption that crowns tend to be
roughly elliptical in shape. The observed sap flow rate per unit sapwood area was scaled to the total flow
through the stem using the tree’s sapwood area (Asji) obtained from the DBH-As allometric relationships
described above. We characterized three size bins defining small, medium, and large trees as having DBH of
6–10 cm, 10.1–20 cm, and >20 cm, respectively. Plot-scale total basal area for each species/size bin was
determined using tree census data collected in 2010 (Figure 1), with further adjusted DBH values for each
subsequent year. Adjusted DBH values were calculated on the basis of dendrometer measurements that
provide continuous measurement of DBH at a subsample of the trees, n= 933 and 449 for the control and
treatment plots, respectively [Gough et al., 2008, 2013; . Incremental growth data for the study period is
presented in Table 3. Trees instrumented with sap flow sensors were binned on the same species/size basis as
the plot-scale histogram.

Table 2. Species-Specific Allometric Factors for the Determination Sapwood Area (Asi, cm
2) on the Basis of DBH (cm) in

Equation (1)

Species (n) α1 α2 α3 R2 Reference

Red oak (14) 0 0.21 2.1838 0.95
White pine (15) 0 1 1.7491 0.97
American beech (15) 0 1.15 1.6946 0.91
Bigtooth aspen (16) 0 0.77 1.868 0.97 Bovard et al. [2005]
Paper birch (12) �112.21 17.17 1 0.98 Bovard et al. [2005]
Red maple (13) �110.66 17.04 1 0.98 Bovard et al. [2005]

Figure 1. Species/size histograms for the total plot area (AP) (75,649 and 29,003m2 in the control and treatment plots,
respectively). Percent composition of total trees is displayed: 8974 trees were surveyed in the control and 2567 in the
treatment plot.
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Plot total sap flux equivalent transpiration (EC, Wm�2) was computed as the sum of sap flux equivalent
transpiration from all species (Es) which is, in turn,

EC ¼
X
s

Es ¼
X
s

X
j

Esj (2)

where here, and throughout the manuscript, subscript i represents individual tree in which sap flux was
measured, j represents size bin, and s represents species. The sum of sap flux equivalent transpiration from all
size bins within the species (Esj) as calculated from the tree level observation of sap flux density per sapwood
area (Jsji, gm

�2
sapwood s

�1):

Esj ¼

X
k

Asjk

Ap
λJsj (3)

Jsj ¼ 1
nsj

X
i

Jsji

 !
(4)

where λ is the latent heat of vaporization of water (2440 kJ/kg), Asjk is the sapwood area of each tree of each
size bin and species in the census plot. Here and throughout the manuscript, subscript k represents an
individual tree within the census plot. nsj is the number of trees where sap flowwas observed for each species
and size bin, and AP is the total ground area of the plot.

Plot level total (JC, gm
�2
sapwood s

�1) and species-specific sap flux per sapwood area (Js, gm
�2
sapwood s

�1) were
calculated as

JC ¼
X
s

Js (5)

Js ¼ 1X
j

X
k

Asjk

X
j

X
k

Asjk

 !
Jsj (6)

Similarly, canopy transpiration per leaf area (EL, g H2O m�2
leaf s

�1) was calculated from plot level sap flux using
the plot level species-specific sapwood to leaf area ratio:

EL ¼
X
s

EL;s ¼
X
s

X
j

EL;sj (7)

EL;sj ¼

X
k

Asjk

AL;s
Jsj (8)

where AL,s is the plot level species-specific leaf area (m
2
leaf m

�2
ground) during each week of the growing season.

Species-specific seasonal and maximum seasonal LAI for our site were measured by litter traps and optical

Table 3. Incremental Growth Data for Each Study Species at the Control and Treatment Plotsa

Bole Area per
Ground Area
(m2 ha�1)

Average Annual
Increase LAI

Average Annual
Increase

Leaf Area per
Sapwood Area

Average Annual
Increase

Control
Red oak 3.7 2.1% 1.1 �7.6% 6029.4 �7.8%
Red maple 6.0 1.3% 0.9 1.1% 2161.8 3.6%
White pine 2.6 3.5% 0.7 �15.0% 4165.4 �15.2%
Bigtooth aspen 16.1 1.4% 0.9 9.4% 897.1 8.0%
Paper birch 2.4 0.5% 0.2 �2.3% 1365.8 �1.0%

Treatment
Red oak 7.1 2.3% 1.3 �6.1 3728.5 �5.5%
Red maple 5.7 2.0% 1.4 2.5% 3362.0 0.9%
White pine 5.5 2.1% 0.4 6.0% 771.1 3.0%
American beech 0.8 2.5% 0.4 32.5% 7946.1 28.6%

aInitial values are from 2011 and have units of m2m�2, unless specified otherwise.
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(LAI-2000, LI-COR Biosciences, Lincoln, NE) measurements in each plot, respectively. To account for
changes in LAI throughout the course of the growing season, total canopy LAI optical measurements were
conducted weekly during leaf out (April–May) and at the beginning of leaf senescence (late September to
early October), and monthly during the rest of the growing season (June–September). Observations were
made at six locations per plot and averaged at the plot level. Seasonal time series of LAI were normalized by
peak seasonal LAI. Normalized LAI time series were multiplied by the species-specific LAI from the litter traps
to create species-specific time series for each growing season. This time course of species-specific LAI was
used to calculate AL,s in equation (8).

Similarly to sap flux, stomatal conductance per species (gs) was calculated as the sum of stomatal
conductance over all size classes for a particular species in each plot. Assuming strong coupling between the
atmosphere and canopy [McNaughton and Jarvis, 1986], stomatal conductance for each species/size bin (gsj)
was calculated from EL,sj following Phillips and Oren [1998] using species-specific LAI and was converted to
the units of mmol H2Om�2

leaf s
�1 (following Pearcy et al. [1989]).

gs ¼
X
j

gsj (9)

gsj ¼
P�EL:sj

ρair Tð ÞMWwater
MWair

VPD

 !
R

T0
T þ T0

� �
P
P0

� �
(10)

where P is atmospheric pressure (kPa), T is air temperature (°C), ρair (T) is air density as a function of T (kgm�3),
and MWwater and MWair are the molecular weights of water and air, respectively, (mol kg�1), R= 0.0446 is the
ideal gas constant adjusted for water vapor (molmm�3), P0 = 101.3 is the standard sea level atmospheric
pressure (kPa), and T0 = 273 is the temperature conversion from °C to K. The final two terms in equation (10)
correct for the effects of temperature and pressure on the volume of air. To reduce errors in calculated
gsj, periods when VPD< 0.6 kPa were excluded (following Ewers and Oren [2000]). A full derivation of
equation (10) is provided in Text S1 in the supporting information.

2.6. Soil Water Potential Measurements

Soil moisture and temperature were recorded at four locations in each plot at depths of 5, 15, 30, and 60 cm,
and at two locations in each plot at 100, 200, and 300 cm (Hydra probe SDI-12, Stevens Water Monitoring
Systems, Inc., Portland, OR, USA) [He et al., 2013]. All soil moisture data were corrected by adding an estimate
of systematic bias (estimated to be ~0.03m3m�3). To eliminate sensor noise (± 0.001m3m�3), the soil
moisture data were processed with a moving averaging window with a size of 10 h. Soil moisture values in
each measurement depth at each plot were averaged (two to four measurements per plot, depending on
depth). The soil water potential values (Ψ, mm) were estimated by using the Van Genuchten [1980] hydraulic
parameterization with residual and saturation soil water contents θr= 0.04 (m3m�3) and θs= 0.45 (m3m�3).
Soil hydraulic parameters were derived from pedotransfer functions using the percentages of sand, silt,
and clay (92%, 7%, and 1%) for our plots [He et al., 2013]. Ψ was then converted from units of millimeters to
units of kilopascal.

2.7. Classification of “Wet” and “Dry” Days

Soil water potential at each depth was found to be highly correlated with soil water potential at every other
depth in each plot. We selectedΨ at 30 cm (Ψ30cm) for our analysis as it was the most strongly correlated with
sap flux from the largest number of species in both plots. Soil conditions were characterized into three
categorical levels on the basis ofΨ30cm, representing the times when the soil was wettest, intermediately wet,
and driest. Days for which the daily mean Ψ30cm fell within the highest (least negative) 33% of the seasonal
range of Ψ30cm were considered “wet soil” days (�5 to �15 kPa). Similarly, in “dry soil” days the mean daily
Ψ30cm fell within the lowest (most negative) 33% (�25 to �35kPa), and “intermediate soil” refers to the
middle 33% (�15 to�25 kPa). VPDwas characterized into three categories in a similar manner, such that days
with a daily mean VPD within the highest 33% of the seasonal VPD range were considered “high VPD” days,
while days within the bottom 33% were considered “low VPD”, and the intervening 33% were considered
to have “intermediate VPD” conditions.
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2.8. Eddy Covariance Measurements

In each plot, above-canopy meteorological conditions as well as CO2 and H2O fluxes were measured from
towers. The control plot tower measurements were conducted at two levels, 46m and 34m. Tower-top
observations at the treatment plot were conducted at 32m. Radiation and precipitation data used in this
study were only conducted at the higher level of the control tower but reflect the conditions in the entire site
[Gough et al., 2013]. We used the air temperature, humidity, pressure, and fluxes from top level at each plot.
Precipitation was measured using a tipping bucket rain gauge (TE-525, Texas Electronics, Dallas, TX, USA).
Incoming photosynthetically active photon flux (PAR) was measured using a quantum PAR sensor (LI-190,
LI-COR Biosciences, Lincoln, NE, USA). Air temperature and humidity were measured in each plot (HMP45g,
Vaisala, Helsinki, Finland). Atmospheric pressure was measured by a pressure sensor (PTB101B, Vaisala,
Helsinki, Finland). Observations from these sensors were recorded every 10min. Latent heat flux was
measured using the eddy covariance approach using closed-path infrared gas analyzers (LI7000, LI-COR
Biosciences, Lincoln, NE, USA), which provide water vapor and CO2 concentrations observations, and 3-D
ultrasonic anemometers (CSAT3, Campbell Scientific, Logan, UT, USA) which provide high-frequency wind
velocities and temperature measurements, all measured at 10Hz [Schmid et al., 2003]. At each tower, the
anemometer was located near the gas analyzer inlet.

Data from the sensors were despiked and spurious observations that were beyond the acceptable physical
range or identified as outliers by exceeding 6 standard deviations above themean of a 2minmoving window
were removed. We also removed any observation that was marked by the sensors’ built-in quality control
indicators. These were typically flagging data during precipitation. Time series from the two sensors were
aligned to correct for placement separation distance following the maximal covariance approach. The
anemometer data were rotated in 3-D such that the half-hourly mean vertical wind speed was set to zero and
the horizontal wind was aligned with the mean wind direction [Finnigan, 2004]. Temperature measurements
from the sonic were corrected for crosswind velocity contamination, following Kaimal and Gaynor [1991]
and their covariance with vertical wind provided the sensible heat flux. Seasonal averages of the principal
meteorological conditions for each plot are presented in Table 4. Primary forcing conditions (precipitation,
soil moisture, temperature, and incoming radiation) and latent heat flux for both plots from 2008 to 2013 are
presented in Figure 2.

Latent heat flux was calculated from the covariance of water vapor concentration with vertical wind. A
correction based on Webb-Pearman-Leuning [Detto and Katul, 2007;Webb et al., 1980] that included only the
sensible heat flux term was applied to the latent heat flux to yield the final half-hourly above-canopy
estimates of latent heat flux (LE). A spectral correction was applied to the water vapor flux measurements to
account for volume averaging and signal dissipation in the sampling tube [Massman, 2000]. We used a
threshold frictional velocity value (u* filter, based on the approach of Reichstein et al. [2005]) to filter data
when turbulent mixing was low. A detailed description of our eddy flux processing is reported in Gough et al.
[2013]. We used a bilinear periodic approach [Morin et al., 2014] to gap-fill latent and sensible heat flux.
We quantify our confidence in measured LE using the energy budget closure. The relative deficit in the
energy budget (δ) can be approximated as:

δ ¼

X
season

Rn � LE� H� Gð ÞX
season

Rn
(11)

where Rn is net radiation (Wm�2), H is sensible heat flux (Wm�2), and G is ground heat flux (Wm�2)
calculated following Liebethal et al. [2005]. To compute the total seasonal deficit in the energy budget, daily
deficits were summed over the duration of the season.

Table 4. Seasonal Means (± 1 SD) of Principal Environmental Conditions (Atmospheric Vapor Pressure Deficit (VPD), Air
Temperature (Temp), and Soil Water Potential) for Control and Treatment Plots Across the 3 Year Observational Period

VPD (kPa) Temp (°C) Soil Water Potential at 30 cm (kPa)

Control 0.70 ± 0.09 19.00 ± 0.63 �17 ± 3
Treatment 0.69 ± 0.10 18.49 ± 0.95 �13 ± 3
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Though all the observations in both
plots are ongoing and continuous
year round, in this study we only
analyzed data centered on the peak of
the growing season. The length of
each growing season was determined
using the carbon-flux phenology
approach [Garrity et al., 2012] from
observational net ecosystem
exchange (NEE). Following Matheny
et al. [2014], we further focused on the
peak growing seasons by using
observations during periods when C
uptake flux was at least 40% of the
annual peak of the 1 month moving
average of NEE. This rather arbitrary
threshold guarantees that we do not
include days during the seasonal
transition period in our analysis. In our
plots, this peak growing season was
days of year (DOY) 160–264, 144–250,
and 153–262 for the years
2011–2013, respectively.

Due to the limited area of the
treatment plot (39 ha), the footprint
of the flux measurements
occasionally included fluxes that
originated outside of the disturbed
plot. A 2-D footprint model [Detto
et al., 2006; Morin et al., 2014] was
used to approximate how much of
the measured flux came from the
disturbed plot on the basis of wind
speed, direction, surface roughness
height, and atmospheric boundary
layer stability. Fluxes for the
treatment plot were corrected
assuming that the observed total flux
for each half hour was a mixture of
fluxes from a control-like forest
(surrounding the treatment plot) and
from the treatment plot itself. Using
the footprint probability and the
observed flux in the control plot, we
determined the flux rate for the
treatment plot as

LEf ¼
LEm � 1� Fp

� �
LEc

Fp
(12)

Where LEf is the corrected latent heat flux from the treatment plot, LEm is the latent heat flux as measured
from the US-UMd tower (which represents a mixture of mostly disturbance flux and some flux from the
control-like surrounding forest), Fp is the spatially integrated footprint probability of the treatment plot, and
LEc is the latent heat flux measured at the same time in the control plot, which is representative of the

A

B

C

Figure 2. Time series of (a) daily total precipitation (mm) and daily mean soil
moisture (%); (b) daily mean incoming solar radiation and temperature; and
(c) daily mean latent heat flux, for the control and treatment plots from
2008 to 2014. Measurements in the treatment plot began in 2008, the same
year the girdling took place, thought the girdling treatment took 1–2 years
to take full effect and defoliate the girdled trees.
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undisturbed forest surrounding the treatment plot. This correction rarely affected LEf by more than
10% of LEm.

2.9. Hysteresis

Sap flux, similar to transpiration, exhibits diurnal hysteresis that can be illustrated by plotting Js as a
function of VPD during the course of each day [Chen et al., 2011; O’Grady et al., 2008]. The plot traces a
clockwise loop characteristic of the system’s hysteresis [Matheny et al., 2014; Novick et al., 2014; Verbeeck
et al., 2007a; Zhang et al., 2014]. In this work, the “hysteresis” of sap flux was expressed as the area
encompassed by the loop. We restricted the definition of “day” in this calculation to include only daylight
hours (PAR> 100 μmolm�2 s�1) and artificially closed the loop by connecting the first point of the day
with the last to allow a closed-form integration. We analyzed both the relative hysteresis, where sap flux
and VPD are normalized by their respective daily maxima and averaged among trees and days, and
the absolute hysteresis where sap flux is not normalized.

2.10. Penman-Monteith Model

Periods when the soil water potential is low are typically also characterized by low humidity and high radiation
(clear sky). Because air temperature, VPD, and soil moisture tend to be cross correlated, any direct correlation
of evaporation with one of these variables would have confounded the interpretation of the effects of the
others. To isolate the effects of soil water potential, we used the Penman-Monteith (PM) model [Monteith, 1965;
Penman, 1948; Thom, 1972] to estimate the expected transpiration for each species/size bin during each
half-hour observation period, given the atmospheric forcing (VPD, wind speed, humidity, and temperature) at
that time and plot. The formulation we used does not include a term to incorporate the effects of soil moisture.
We also used a general parameterization and did not include separate parameters for each species/size
(equations (13) and (14)), thus assuming that transpiration per leaf area is constant across all species and sizes.
The model predictions, therefore, represent the expected transpiration given the observed meteorological
forcings (accurate within the model’s goodness of fit) but do not include the effects of soil moisture or
the differences between species/sizes. We fitted a PM transpiration model to the observed plot level latent
heat flux and then tested the effects of soil moisture on the residual between the observed evapotranspiration
and the model’s predictions. We chose the PM model for this analysis as it is widely used and accepted
for estimating LE, while it does not include any mechanistic link between soil water potential and stomatal
conductance [Ershadi et al., 2014; Stannard, 1993]. The PM model predictions for transpiration, EPM
(Wm�2) therefore represent our null hypothesis to test for species/size, and soil moisture effects
on transpiration.

EPM ¼ Δ Rn � Gð Þ þ ρCpVPD
rh

Δþ γ rcþrhð Þ
rh

(13)

where Δ is the slope of the saturation vapor pressure curve (kPa K�1), ρ is the density of air (gm�3), Cp is the
specific heat of air (J g�1 K�1), γ is the psychrometric constant as a function of air density and the heat
capacity of air (kPa K�1), rh is the aerodynamic resistance to heat flux (sm�1) following Stannard [1993], rc is
the stomatal resistance calculated from Leuning [1995]:

rc ¼ 1
g0

þ
Cs � Γð Þ 1þVPD

D0

� �
aAC

(14)

where Cs is CO2 concentration in the air (ppm), Γ is the CO2 compensation point in the absence of dark
respiration (ppm) calculated following Leuning et al. [1995], and ΑC is the CO2 assimilation rate (μmolm�2 s�1)
calculated following Leuning et al. [1995]. The parameters for minimum leaf conductance, go (molm�2 s),
the reference vapor deficit, Do (kPa), and a (a dimensionless shape parameter), were optimized using a
Markov Chain Monte Carlo optimization algorithm with the sum of squared errors between daily integrated
LE and EPM minimized by the objective function [Andrieu et al., 2003]. The optimization of these parameters
accounts for the scaling between leaf-scale resistance [Leuning, 1995] and canopy-scale resistance
[Thom, 1972]. We use a species/size scaling factor, Ssj, to partition plot level EPM into the fraction assumed to
be contributed by each species/size bin (EPM,sj) for comparison with species-specific transpiration (Esj). In

Journal of Geophysical Research: Biogeosciences 10.1002/2014JG002804

MATHENY ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2301



order to partition leaf area into size bins for each species test, we assumed that the leaf to sapwood area
ratio is constant across sizes for each species.

EPM;sj ¼ EPMSsj (15)

Ssj ¼

X
k

AsjkX
j

Asj

AL;s
LAI

(16)

where LAI is the plot total leaf area index.

2.11. Statistical Analysis

Statistical analysis was performed using JMP 11 (SAS Corporation, Cary, NC, USA). General linear models were
used for both the PM-residual analysis and the hysteresis analysis of variance. Variables of year, plot, species,
and size were common for both models. For the PM analysis, the effects of the four common variables
and Ψ30cm on the root-mean-squared error (RMSE) between Esj and EPMsj were tested. The hysteresis analysis
tested the effects of the four common variables, daily mean VPD, daily mean PAR, and daily mean Ψ30cm

on the absolute hysteresis. For both models, year was assigned as a nominal variable with a random effect.
Plot and species were also treated as nominal variables for both tests, and size was specified as ordinal
according to the specified bins.

3. Results

The observed average seasonal LE at the control plot was 10.0% higher than that of the disturbed plot. Seasonal
plot level canopy transpiration that was determined from sap fluxmeasurements, EC, in the control plotmade up
76.3%, 93.3%, and 86.4% of plot level LE for 2011–2013, respectively. For the treatment plot, sap flux-driven
total EC constituted 66.9, 58.3, and 67.4% of LE. The deficit of the energy budget, δ, was used to estimate the
confidence in LE measurements and was represented by the right most error bar on LE for each plot (1.4% and
1.3% for the control and treatment plots, respectively), Figure 3. The majority of transpiration (51.0%) in the
control plot was supplied by bigtooth aspen trees, followed by redmaple (21.4%). Transpiration at the treatment
plot was dominated by red oak and red maple (33.1% and 31.1%, respectively) (Figure 3).

Although species differences in stand-level fluxes can be partially attributed to relative differences between
control and treatment plots in terms of stand basal area of each species, notable differences in species’
behaviors between treatments were apparent after normalization by the sapwood area of each species in
each plot. Integrated daily Jswas 53.2% greater for red oaks in the treatment plot, as compared to the control
plot (Figure 4). Conversely, red maples and white pines in the treatment plot show only slightly higher
integrated daily sap flux density than those in the control plot by 6.1% and 5.7%, respectively (Figure 4).

Figure 3. Total seasonal flux from each of the dominant species in each plot. The bar represents average values for the
period of observation; the error bars on Es represent the standard deviation of total plot EC between years. The black
error bar (left) on LE represents the standard deviation between years. The blue error bar (right) on LE represents the
average annual closure deficit in the energy budget.
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All species in both plots exhibited some degree of afternoon suppression of gs (Figure 5). The most
pronounced reductions occurred in bigtooth aspen (Figure 5d), red maple (Figures 5d and 5h), and white
pine in the treatment plot (Figure 5h). Red oak demonstrated a moderate reduction of gs near 3 pm but
rebounded shortly after (Figure 5). Overall, red maple trees in the treatment plot showed a 29.5% greater
reduction in total peak daily gs than those in the control plot (Figures 5d and 5h). Conversely, red oak and
white pine showed an increase in daily peak gs in the treatment plot relative to the control plot (Figures 5d
and 5h). The mean daily integrated gs of red maple in the control plot exceeded that of maple in the
treatment plot by 36.8%; while, red oak and white pine gs in the treatment plot exceeded those in the control
plot by 62.5 and 132.2%, respectively (Figures 5d and 5h). It is also clear from the size breakdown that small
trees contribute a negligible portion of the evaporation per leaf area as compared to the contributions of
canopy-dominant/codominant medium and large trees (Figure 5).

Stomatal conductance is not directly observed but calculated from observed sap flow (equations (9) and (10)).
The calculation includes the observed values of air temperature, pressure, and VPD. To estimate the
sensitivity of the calculated stomatal conductance, gsj, to differences in microclimatic environmental

Figure 4. Mean seasonal diurnal sap flux density per sapwood area (Js) (gH2O m�2
sapwood s�1) at the (left) control plot and

(right) treatment.

Figure 5. Average diurnal stomatal conductance over all seasons (gsj) (mmol H2O m�2
leaf s

�1) by species/size class in the
control and treatment plots. Total stomatal conductance refers to the sum of all size classes of trees of each species (gs).
Small trees (DBH< 10 cm), medium trees (10 cm ≤DBH< 20 cm), large trees (DBH ≥ 20 cm).
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conditions (air temperature, pressure, and VPD) between plots, we calculated gsj′ for each plot, combining the
observed sap flux density from that plot with atmospheric forcing from the alternate plot. The mean daily
root-mean-squared difference between gsj and gsj′ was 17.0 and 6.7mmol H2Om�2

leaf s
�1 for the control and

treatment plots, respectively. This indicates that differences in microclimatic conditions between the plots
may account for up to 19.0% and 7.6% of the variation in each plot’s mean stomatal conductance, for the
control and treatment plots respectively.

In addition to changes in the external environmental drivers of stomatal conductance, we observed changes
to relative C allocation to different pools within the tree after the disturbance treatment. In the 3 year period
studied, white pines in the control plot and American beech in the treatment plot demonstrated the
largest increases in basal area annually of all species (Table 3). Red oaks and red maples in the treatment plot
both increased in basal area more quickly than the representative counterparts in the control plot (Table 3).
Interestingly, red oaks are the sole species in the treatment plot to show a decline in LAI and leaf area per
sapwood area over the three study years (Table 3). Although, in the control plot, red oaks, white pine, and
paper birch showed similar declines in LAI and leaf area per sapwood areas (Table 3). White pines in the
treatment plot and red maples in both plots gained in LAI and leaf area per sapwood area (Table 3). American
beech in the treatment plot showed the largest annual increase in LAI and leaf per sapwood area ratios at
32.5% and 28.6%, respectively.

In both plots, stomatal conductance achieved its daily maxima between 11A.M. and noon while sap flux
density peaks between 1 and 2 P.M. (Figures 4 and 5). The difference between the morning and the afternoon
response to the same or similar forcing conditions resulted in hysteresis between Js and VPD (Figure 6). Red
oak in the treatment plot and red maple in the control exhibited the largest absolute hysteresis, while white
pine and paper birch tended to have the lowest hysteresis overall (Table 5). Typically, the largest absolute
hysteresis occurred for all trees when VPD is high. A general linear model (overall R2 = 0.22) showed
significant effects of plot, species, tree diameter (size),Ψ30cm, and VPD (Table 5) on absolute hysteresis.Ψ30cm

was found to have a significant interaction with tree size. The interaction between VPD and species was also
significant (Table 5). PAR and VPD were also shown to have a significant combined effect, although the
independent effect of PAR was not significant (Table 5). The total absolute hysteresis in different species
under different dry-moist conditions is shown in Table 6, a complete breakdown by species/size category is
provided in Table S1 in the supporting information.

Overall, intermediate disturbance in the treatment plot increased mean seasonal evaporative demand per
total plot leaf area by 34% as compared to the control plot (Tables 1 and 3). However, compensatory growth

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Control

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Treatment 

Oak
Maple
Pine
Aspen
Birch
Beech

Figure 6. Relative hysteresis between sap flux and VPD during daylight hours over all size classifications for each species.
Both Js and VPD have been normalized by their respective daily maxima. Open symbols represent prenoon hours, closed
symbols are afternoon. Arrows indicate the direction of the hysteresis.
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in terms of increases in basal area and
therefore sapwood area, helped to
overcome the increased demands
(Table 4). There were significant
differences between plots in a particular
species’ absolute hysteresis (Table 5).
The effect of plot on absolute hysteresis
over all species was significant, as were
the effects of Ψ30cm and VPD (Table 5).
This indicates that differences between
plots exist outside of the influence of
Ψ30cm and VPD. The combined effect
of soil water potential and size was
stronger for smaller trees (DBH< 20 cm,
P< 0.0001) than it was for larger trees

(DBH ≥ 20 cm, P= 0.0068). VPD was shown to have a significant combined effect with species, but not with
tree size.

To test the independent effect of soil water potential on sap flux regardless of air temperature and humidity,
we compared Esj from each species/size bin with the PM modeled value, EPM,sj. The root-mean-square
half-hourly error (RMSE) between the observed values and themodel represented the portion of the variation
in Esj that was not explained by VPD, light levels, wind speed, and air temperature, whose effects are included
in the PM model with the Leuning [1995] stomatal conductance parameterization. Species, size, plot, and
Ψ30cm had significant effects on transpiration (Table 7). Here we distinguish the direct effects of Ψ30cm on
transpiration from the effects of the other plot-specific forcings (light, wind, VPD, temperature, LAI), which are
accounted for by the PM model. Interactions between Ψ30cm and species and Ψ30cm and size were also
significant (Table 7). These effects were found to account for some, but not all of the model RMSE between
Esj and EPM,sj (R

2 = 0.40). When analyzed with respect to Ψ30cm alone, the PM model was found to have
lower RMSE during well-watered conditions than when water was limiting, as was expected (R2 = 0.04,
P< 0.0001, slope =�0.62).

4. Discussion

Transpiration in the disturbed treatment plot was reduced when compared to that of the control plot. On
average, our sap flux measurements accounted for 85.6% of LE in the control plot and 64.2% in the treatment

Table 6. Average Absolute Hysteresis (gm�2
sapwood s

�1) for Each Species’ JsOver All Days, Days With Wet, Intermediate, and
Dry Soil, and Days With Low, Intermediate, and High VPD for Both Plots. Plot Total Hysteresis is the Hysteresis of JC. Values
Listed as ± are Standard Deviation Among Days Having Each Environmental Condition (e.g., Wet Soil, High VPD)

Red Oak White Pine Red Maple Bigtooth Aspen Paper Birch Plot Total

Control
All conditions 20.2 ± 25.9 10.7 ± 11.7 24.3 ± 21.0 18.5 ± 16.8 15.0 ± 9.7 108.2 ± 84.2
Wet soil 16.2 ± 26.0 8.4 ± 11.3 18.6 ± 20.4 14.7 ± 16.7 8.5 ± 10.6 84.6 ± 84.8
Low VPD 17.0 ± 17.7 6.5 ± 11.6 13.6 ± 16.9 11.0 ± 14.5 10.6 ± 9.3 68.9 ± 77.5
Int. soil 13.6 ± 16.6 8.3 ± 11.6 21.1 ± 25.3 14.2 ± 17.7 5.1 ± 9.0 86.2 ± 101.1
Int. VPD 21.8 ± 31.0 12.6 ± 11.4 28.9 ± 20.2 21.5 ± 16.1 18.0 ± 8.7 124.8 ± 79.7
Dry soil 6.9 ± 11.1 2.6 ± 5.6 8.9 ± 12.7 4.7 ± 7.4 4.5 ± 7.7 37.4 ± 52.7
High VPD 22.6 ± 10.7 14.4 ± 9.3 37.3 ±23.0 28.8 ± 19.1 20.3 ± 10.5 155.0 ± 81.5

Treatment
Red Oak White Pine Red Maple American Beech Plot Total

All conditions 31.4 ± 28.4 12.2 ± 10.3 20.6 ± 18.5 21.5 ± 18.7 94.2 ± 68.4
Wet soil 26.0 ± 29.9 10.7 ± 11.0 16.6 ± 18.6 17.3 ± 18.9 76.5 ± 72.0
Low VPD 27.8 ± 33.1 8.2 ± 11.6 9.2 ± 17.5 9.9 ± 17.7 68.1 ± 82.1
Int. soil 21.6 ± 26.6 7.8 ± 9.6 13.9 ± 17.6 14.5 ± 18.1 65.8 ± 72.1
Int. VPD 33.4 ± 26.9 14.2 ± 9.4 24.7 ± 16.4 25.7 ± 16.6 105.0 ± 58.8
Dry soil 19.1 ± 22.9 5.8 ± 7.7 14.3 ± 18.8 15.1 ± 19.4 60.9 ± 71.9
High VPD 31.7 ± 21.8 12.9 ± 8.2 29.8 ± 17.2 30.9 ± 17.2

Table 5. Absolute Hysteresis Analysis Statistics Using a Simple Linear
Model (R2 = 0.22)

Variable F Ratio P value Partial R2

Plot 10.53 0.0012 8.13E-04
Species 195.08 <0.0001 8.38E-02
Size 62.26 <0.0001 2.25E-02
VPD 13.78 0.0002 8.80E-05
PAR 0.31 0.5753 1.74E-03
Ψ30cm 57.15 <0.0001 4.41E-02
Species × Plot 9.52 <0.0001 2.14E-02
Ψ30cm × Species 0.31 0.7337 1.16E-04
Ψ30cm × Size 41.50 <0.0001 1.40E-02
VPD × Species 31.87 <0.0001 1.08E-02
VPD × Size 1.11 0.3281 3.81E-04
VPD × PAR 115.93 <0.0001 1.98E-02
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plot. Discrepancies between EC and
LE at each plot are primarily due to
sources of evaporation that were
accounted for in LE but were not
included in sap flow measurements,
such as soil evaporation,
transpiration from understory
vegetation and from trees smaller
than 8 cm in diameter, and
evaporation of intercepted

precipitation from and condensation on leaf surfaces. It is most likely that the larger discrepancy between EC
and LE in the treatment plot was related to increased understory transpiration, due to increased light
penetration through themore open canopy that characterizes the disturbed plot [Hardiman et al., 2013]. In their
study of soil moisture in these same plots, He et al. [2013] similarly found ET to be lower in the treatment
plot, but that enhanced soil evaporation was not sufficient to completely offset the difference in total LE.
Between the two plots, there were relatively small differences in atmospheric conditions (VPD, temperature,
and pressure) such that, in accordance with our gsj-gsj′ analysis, ~7–19%of the differences inwater flux between
plots could be attributed to the differences in forcing. He et al. [2013] found that canopy interception typically
accounted for ~11–25% and up to 31% of precipitation in our plots with reduced interception in the
disturbance plot. It is unlikely that the lower treatment plot EC could be the outcome of biased species
representation among the instrumented trees. Only 2% of stand basal area in the treatment plot is made up of
species that were not represented by our sap flux study. It is equally unlikely that EC/LE mismatch is due to
errors in measured LE. Errors in the energy balance were found to be very small (1.4% and 1.3% for the control
and treatment plots, respectively), indicating high accuracy of eddy covariance measurements.

Although transpiration accounting for ~80% of LE in dry sites is not unheard of [Miller et al., 2010], we
acknowledge that our lack of sap flux measurements over depth ranges within the sapwood and radial scaling
of sap fluxmeasurements contributed to errors in the sap flux data [Phillips et al., 1996; Schäfer et al., 2000]. Due
to the increased number of large red maples and large bigtooth aspen trees in the control plot, these errors
were likely greater in the control plot andwould reduce the fraction of LE that is accounted for by EC in that plot.
Using a rough estimate, we computed the percentage of sapwood area that is beyond the reach of the 20mm
probes and assumed a 50% reduction of Js in this inner sapwood area. On this basis, we expected an
overestimation of EC of roughly 11% in the control plot and 3.7% in the treatment plot. Due to the dependence
of radial patterns in sap flow on species, tree age, and site history and, therefore, the large variability among
reduction factors, we chose to disclose this limitation rather than to assume the applicability of a reduction
factor from existing literature that was not specific to our plots [James et al., 2002; Nadezhdina et al., 2002;
Phillips et al., 1996; Renninger et al., 2013; Schäfer et al., 2000; Shinohara et al., 2013]. Despite these errors, the
roughly 15% difference in transpiration between the control and treatment plots remains significant.

It has been suggested that transpiration at a landscape scale must be invariant because there is a finite
amount of incoming radiation to a square meter of land [Enquist, 2002]. Nonetheless, it is important to note
that such scaling laws refer to vegetation that has established an “optimized,” steady state canopy. The
intermediate disturbance in our treatment plot served to disrupt any preexisting optimization the canopy
may have achieved. This disturbance led to a period of rapid transition characterized by changes to nitrogen
[Nave et al., 2011], carbon [Gough et al., 2013], and light penetration [Hardiman et al., 2013]. It has also been
shown through multiple studies that plants having diverse functional traits (isohydric/anisohydric,
ring/diffuse porous, and broadleaf/conifer) scale transpiration with environmental forcings in a nonlinear and
unique manner [e.g., Baldocchi, 2005; McCulloh et al., 2012; Wullschleger et al., 2001]. These differences in
forcings and species/size composition combine with specific functional traits of the species in our plot to
produce a plot level water flux that is significantly altered from that of the undisturbed control plot.

Of the three species compared between plots, each presented a different hydraulic functional type and showed
a unique response to the changed forcing conditions due to the disturbance treatment, thus supporting our
hypothesis that the capacity to increase transpiration following intermediate disturbances would differ
between trees with opposing hydraulic strategies. Red maples, diffuse porous and relatively isohydric, showed

Table 7. Penman-Moneith Residual Analysis Statistics Using a Simple
Linear Model (R2 = 0.40)

Variable F Ratio P value Partial R2

Plot 24.44 <0.0001 2.21E-02
Species 203.30 <0.0001 1.18E-01
Size 78.23 <0.0001 9.88E-03
Ψ30cm 26.92 <0.0001 2.00E-06
Ψ30cm × Species 994.87 <0.0001 2.60E-01
Ψ30cm × Size 39.49 <0.0001 2.03E-02
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lower transpiration per leaf area and lower stomatal conductance in the treatment plot than in the control plot.
This was in contrast to red oaks, ring porous and relatively anisohydric, that showed higher sap flux density,
transpiration per leaf area, and stomatal conductance in the treatment plot than those in the control plot. White
pines, a conifer, showed a small increase in sap flux density in the disturbance area while their transpiration per
leaf area and stomatal conductance increased. Differential growth may account for a portion of these
differences. Maples at the treatment plot hadmore leaf area per xylem area than those in the control plot, while
oaks and pines in the treatment plot had fewer leaves per xylem area. On average, basal area for oaks and
maples increased more quickly in the treatment plot than in the control, whereas pines in the treatment plot
showed lower average annual basal growth rate than those in the control plot.

Interestingly, red maple was the only species for which the effect of plot on absolute hysteresis was
significant (P= 0.0003). Red maple was also the sole species in the control plot, where medium-sized
codominant trees exhibited stomatal conductance at similar levels to dominant trees of that species, and in
the treatment plot the codominant medium-sized individuals showed higher conductance than the
canopy-dominant maples (Figure 5). The performance of the larger canopy-dominant maples might indicate
that maples are more sensitive to photoinhibition or thermal injury and tend to be more productive in
partially shaded situations [Aber et al., 1982; Pastor et al., 1982]. This finding is consistent with the work of
Kitao et al. [2006] who found that a shade acclimated species of maple was more susceptible to
photoinhibition after gap formation than a similarly acclimated species of oak. Additionally, it was shown by
Webster and Lorimer [2003] that shade intolerant species tend to be more efficient in terms of bole growth to
projected crown area growth. This finding is supported by our observations of more rapid bole growth by
the moderately shade intolerant red oaks [Chapman and Gower, 1991] than in more tolerant red maples
[Aber et al., 1982; Webster and Lorimer, 2003] in both study plots.

We used the hysteretic relationship between sap flux and VPD to quantify changes in plant water status
throughout the day. This response has been previously linked to soil moisture, VPD, and plant physiology
[Matheny et al., 2014; Novick et al., 2014; Unsworth et al., 2004; Verbeeck et al., 2007b; Zhang et al., 2014]. Red
oaks had the largest mean absolute hysteresis in the treatment plot, the second largest mean absolute
hysteresis in the control plot, and the largest mean relative hysteresis in both plots. This finding upholds our
third hypothesis that anisohydric species would demonstrate larger hysteresis and hydraulic stress. Red
oaks have a smaller number of large-diameter vessels and operate on the efficiency end of the
“safety-efficiency” continuum [Manzoni et al., 2013]. Therefore, these trees required more time to replenish
greater amounts of lost xylem water and to refill embolized vessels after depleting initial capacitance
which lead to lower sap flux in the afternoon as compared to more isohydric species such as maple [McCulloh
et al., 2012; Taneda and Sperry, 2008; Tyree and Zimmermann, 2002]. Bigtooth aspen and paper birch, on the
opposing safety end of the “safety-efficiency” continuum tended to exhibit smaller degrees of hysteresis,
with the exception during days when VPD was very high. Isohydric trees, such as maples, regulate their
stomatal conductance to keep leaf water potential relatively constant throughout the day [Thomsen et al.,
2013], as evidenced by the larger decline in afternoon stomatal conductance we found in red maple
relative to red oak. Surprisingly, red maples exhibited the largest mean absolute hysteresis in the control plot.
It is possible, and consistent with the finding of Thomsen et al. [2013], that the larger absolute hysteresis in red
maples in the control plot was related to the species’ sensitivity to soil water potential and the relatively drier
conditions in that plot. Additionally, when compared on the basis of relative hysteresis, when sap flux has
been normalized by the maximal sap flux for that day, red maples in both plots demonstrated lower relative
hysteresis than shown by red oaks. White pine, the only coniferous species in this study, consistently had the
least amount of diurnal hysteresis, which is consistent with the results of McAdam and Brodribb [2014] and
Matheny et al. [2014] for other conifers. These different responses to soil water availability and canopy light
penetration discussed above support the first half of our second hypothesis, that disturbance-related
changes to external physical drivers of transpiration would influence the diurnal pattern of transpiration
more strongly in some species than others. However, the larger hysteresis presented by the control plot red
maples relative to those the treatment plot refuted our prediction that the isohydric species, red maple,
would show more hydraulic stress in the postdisturbance microclimate.

The diurnal hysteresis of transpiration as a means to quantify hydrodynamic limitation is limited by the
combination of factors that control its magnitude. As described by Zhang et al. [2014], the hysteretic nature of
transpiration is partially due to the depletion of internal plant water throughout the day but is also driven in
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part by the time lag between VPD and PAR. Hysteresis is further complicated by the influence of both
short-term (half-hourly) dynamics of fast processes, such as stomatal conductance [Unsworth et al., 2004], and
longer-term dynamics (days-weeks) of slower processes such as soil drought [Wullschleger et al., 1992]. Hysteresis
will consistently be larger on days when peak transpiration is high. Normalizing the components of hysteresis,
transpiration, and VPD, by their respective daily maxima helped to reduce this effect. However, because hysteresis
is defined as the area encompassed by the loop, this form of linear normalization was only partially effective to
eliminate this bias for days when transpiration was large. Conversely, during days when soil water potential was
very low (i.e., dry soil conditions), hysteresis was minimal if transpiration was low throughout the entire day,
because both morning and afternoon transpiration were close to zero. Therefore, hydraulic stress should not be
evaluated on the basis of hysteresis alone, but as a combination of hysteresis with the skewness of the daily
patterns of sap flux and stomatal conductance, and the total transpiration per leaf and sapwood area.

Our comparative analysis of the PM-simulated transpiration showed that discrepancies between expected
transpiration and sap flux arose from differences between species and size distributions, which could not be
accounted for by linear scaling of sapwood area and leaf area alone. This may be particularly true following
intermediate disturbance, which results in diversification of tree structural dimensions [Hardiman et al., 2013].
This finding supported our fourth hypothesis, that predisturbance and postdisturbance transpiration are
distinct in such a manner that adjustment on the basis of LAI alone is not sufficient to adequately represent
disturbance in land surface models. Additionally, the PM model residual analysis demonstrated significant
interactions of soil water potential with species and size, and analysis of hysteresis revealed significant
interactions between soil water potential and tree size indicating that improving the representation of the
mechanisms by which soil moisture affects stomatal conductance, and species or hydraulic functional-type
parameterization could improve model performance [Bohrer et al., 2005; Grant et al., 2006; Janott et al., 2011;
Weng and Luo, 2008]. There was a significant decline in transpiration postdisturbance, beyond the extent
that is predicted by the differences in atmospheric forcings and LAI, and the hysteresis analysis revealed
important differences between species behavior in disturbed and undisturbed plots.

5. Conclusion

Intermediate disturbance impacted plot level transpiration through changes to the external physical drivers
including mean wind speed, turbulent mixing, air temperature, humidity, canopy structure and light
penetration, and soil water conditions. Long-term, half-hourly records of sap flux and stomatal conductance
revealed species/size-specific responses to disturbance. We found that the differences in transpiration
between species and between disturbed/undisturbed plots were significant even after the differences in
external environmental forcing were accounted for using the Penman-Monteith model, and even when
adjusted for the effects of disturbance-induced changes to leaf-to-sapwood area ratio. These
nongeneralizable differences in species response to disturbance in terms of where C is allocated (i.e., xylem
or leaves) and water flux have important implications for land surface modeling [Schäfer et al., 2014].
Frequently, red oaks and red maples are coclassified in ecosystem models as the same plant functional type
(temperate, midsuccessional, and deciduous). However, our results, along with those highlighting the
differences between the hydraulic functional types [Thomsen et al., 2013], showed that these species behave
distinctly from one another and respond differently to changes in forest structure. Similar to Ewers et al.
[2008] who found three different values for daily EL for sugar maple in three different plots, we found that
daily sap flow per sapwood area, stomatal conductance, and transpiration per leaf area will change
depending on a site’s history and the disturbance regimen.

A combined analysis using hysteresis and sap flux with soil water status demonstrated changes in plant
hydraulic status consistent with the behaviors of isohydric and anisohydric strategies. Understanding the
mechanisms that shape plot level transpiration and how they influence forests’ response to disturbancewill help
modelers eliminate errors and better capture changes to water and C fluxes as forests are shaped by natural
succession and other disturbances, as well as climate and land-use change. The incorporation of advanced
hydrodynamic models for hydraulic functional-type-specific stomatal parameterization (e.g., Finite Elements
Tree-CrownHydrodynamicmodel (FETCH) [Bohrer et al., 2005] or Expert-N [Janott et al., 2011]) could help resolve
these differences and improve the quality of simulated ET by land surface models, in general, and particularly in
forests undergoing intermediate disturbance.
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