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Abstract The current system associated with the boundary of plasma bubbles in the Earth’s
magnetotail has been studied by employing Cluster multipoint observations. We have investigated the
currents in both the dipolarization front (DF, leading edge of the plasma bubble) and the trailing edge of
the plasma bubble. The distribution of currents at the edge indicates that there is a current circuit in the
boundary of a plasma bubble. The field-aligned currents in the trailing edge of the plasma bubble are
flowing toward the ionosphere (downward) on the dawnside and away from the ionosphere (upward) on
the duskside, in the same sense as region-1 current. Together with previous studies of the current
distributions in the DF and magnetic dip region, we have obtained a more complete picture of the current
system surrounding the boundary of plasma bubble. This current system is very similar to the substorm
current wedge predicted by MHD simulation models but with much smaller scale.

1. Introduction

Bursty bulk flows (BBFs) are one of the most important transient phenomena in the Earth’s magnetotail. It
has been shown that BBFs transport 60–100% of mass, momentum, and energy of the total plasma sheet
transport and therefore play a fundamental role in the magnetospheric activities [Angelopoulos et al., 1992,
1994]. Many investigations have revealed that the braking/diversion of BBFs are highly related with the for-
mation of field-aligned currents (FACs) in the magnetotail [e.g., Shiokawa et al., 1997; Birn et al., 1999; Slavin
et al., 2002; Yao et al., 2012]. A plasma bubble [Pontius and Wolf, 1990; Chen and Wolf, 1993], which is one
model of BBF, contains entropy-depleted flux tubes often observed in the magnetotail plasma sheet [e.g.,
Sergeev et al., 1996; Wolf et al., 2006; Walsh et al., 2009]. In observations, a plasma bubble possesses lower
plasma pressure and stronger magnetic field than its ambient plasma. Therefore, the interface between
the reconnected flow and background plasma of the plasma sheet is unstable to interchange/ballooning
instability and could deform into a wave shape and grows into plasma bubbles in the nonlinear stage [e.g.,
Nakamura et al., 2002; Vapirev et al., 2013; Pritchett et al., 2014].

The leading edge of the plasma bubble, which is frequently identified as dipolarization front (DF), often
exhibits a sharp increase of Bz component of the tail magnetic field accompanied by a decrease of plasma
density [see Sergeev et al., 1996; Runov et al., 2009; Zhou et al., 2013; Liu et al., 2014]. A Bz decrease called
magnetic dip is frequently observed ahead of the DF [Ohtani et al., 2004; Runov et al., 2009; Yao et al., 2013].
A DF is a structure with spatial scale comparable to the background proton Larmor radius and therefore has
strong kinetic properties [Sergeev et al., 2009; Fu et al., 2012; Huang et al., 2012; Angelopoulos et al., 2013].
Recently, a Cluster multipoint study has shown that the normal electric field in the DF layer is mainly con-
tributed by Hall electric field and the duskward electric field by convection electric field. The Hall electric
field in the DF layer is in the opposite direction of the magnetic dip region [Sun et al., 2014]. Statistical and
case studies revealed that the DF layer current is mainly duskward, and dip current mainly dawnward [Yao et
al., 2013; Liu et al., 2013]. The field-aligned component is in the sense of region-1 FAC in the DF layer and, in
the dip region, in region-2-sense FAC [Liu et al., 2013; Sun et al., 2013; Yao et al., 2013]. Previous studies have
obtained currents associated with DF and the magnetic dip region. But it is still not clear about the current
in the trailing edge of plasma bubble.
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Figure 1. (a) Bx , (b) By , (c) Bz , and (d) Bt . (e) Plasma density. Black dots
represent the proton density; red dots represent the electron density
from C2 PEACE, and red line represents the electron density deduced
from C2 spacecraft potential [Pedersen et al., 2008]. (f ) Proton parallel
(Tpar, black) and perpendicular (Tperp, blue) temperatures, (g) proton bulk
velocity Vx (red), Vy (green), and Vz (blue), and (h) energy spectrum for
proton differential particle flux. Proton data are from C1 CIS-CODIF. The
four spacecraft in Figures 1a to 1d are color coded. Plasma bubble is
defined between the two vertical dashed lines.

In this paper, by employing the Cluster
data, we will investigate the currents
associated with DF as well as the trail-
ing edge of the plasma bubble to
obtain a more complete picture of
current system associated with the
boundary of a plasma bubble. In the
2003 tail season the separations among
Cluster satellites were ∼ 100–300 km,
enabling the application of multispace-
craft methods on subproton spatial
scales (∼ 1000 km). The results show
that there is current flowing in the
boundary of plasma bubble, which par-
tially closes in the boundary and the
ionosphere via region-1-sense FAC.

2. Observations

The magnetic field (22.4 samples per
second), ion, electron, and spacecraft
potential (five samples per second)
data used in this study come from
the experiments on Cluster: Fluxgate
Magnetometer (FGM) [Balogh et al.,
2001], Cluster Ion Spectrometry
(CIS) [Rème et al., 2001], Plasma
Electron And Current Experiment
(PEACE) [Johnstone et al., 1997],
and Electric Field and Wave (EFW)
[Gustafsson et al., 2001].

2.1. Case Study
Figure 1 shows the event overview
made by Cluster between 1342:30 and
1345:30 UT on 29 August 2003. Cluster

was located at [−17.53,−1.85, 2.77] RE . All quantities in this study are in Geocentric Solar Magnetospheric
(GSM) coordinates unless otherwise indicated. During this time interval, |Bx| < 5 nT (Figure 1a), plasma den-
sity np < 0.4 cm−3 (Figure 1e), and proton temperature kBTp ∼ 5 keV (Figure 1f ) are consistent with those
of plasma sheet. A plasma bubble is defined between the two dashed lines with stronger magnetic field
(Figure 1d) and lower plasma density (Figure 1e) than the ambient plasma, which is also accompanied with
high-speed earthward flow, vx,max > 800 km/s (Figure 1g). The ion temperature is almost unchanged during
this time interval. Plasma beta (𝛽) of the ambient plasma is estimated to be ∼25, which confirms the satel-
lite being in the inner plasma sheet [Angelopoulos et al., 1994]. The leading edge of this plasma bubble is
a well-defined DF observed at ∼ 1343:30, which was accompanied by a sharp increase of Bz (from ∼ 0 to
∼ 15 nT in 5 s) and decrease of np (from ∼ 0.3 to ∼ 0.1 cm−3). The trailing edge of the plasma bubble is iden-
tified by a sharp decrease of Bz (from ∼ 10 to ∼ 0 nT in 3 s) and increase of np (from ∼ 0.15 to ∼ 0.3 cm−3) at
∼ 1344:20 UT. It is worth noticing that there is a small plasma bubble with intense magnetic field behind this
event, which also corresponds to a decrease of plasma density and high-speed plasma flow.

Figure 2 shows observations of the current density at the DF and the trailing edge of the plasma bubble
shown in Figure 1. During this time interval, Cluster formed a regular tetrahedron configuration: the elon-
gation and planarity of the four spacecraft tetrahedron were 0.22 and 0.25. Thus, the curlometer technique
can be used to calculate the current density [Robert et al., 1998]. The magnitude of |∇ ⋅ B∕∇ × B|, which
gives an estimate of the error of current density calculation, is smaller than 0.3 around the DF layer and trail-
ing edge, affirming that the curlometer calculation is reliable [Robert et al., 1998]. The normal directions of
the DF and trailing edge were [0.7, −0.61, 0.37] and [0.61, −0.79, 0.02], respectively. The Minimum Variance
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Figure 2. (a, f ) Bz . (b, g) Current density components in GSM coordinate, Jx (red), Jy (green), and Jz (blue). (c, h) Cur-
rent density components in LMN coordinate, Jl (blue), Jm (green), and Jn (red). (d, i) Total current density (Jt , black), field
aligned (Jfac, red), and magnitude of perpendicular (|Jperp|, blue) components. (e, j) Magnitude of |∇ ⋅ B∕∇ × B|.

Analysis (MVA) [Sonnerup and Cahill, 1967] eigenvalue ratio (𝜆2∕𝜆3 >10) is large enough to ensure that the
calculation of minimum variance directions is reliable. We have deduced that Cluster crossed the dawnside
of the DF and duskside of the trailing edge since the shape of plasma bubble in the XY plane is similar to an
ellipse [Chen and Wolf, 1993; Liu et al., 2014]. The current in the DF layer is flowing earthward and duskward
(Figure 2b), which is opposite to that in the trailing edge that flows in tailward and dawnward direction
(Figure 2g). We have adopted the LMN coordinate system obtained from MVA analysis to further investigate
the properties of the current in the layers. We let n be sunward, l northward, and m=−n× l (duskward) in
this study, the same definition that was applied previously in Yao et al. [2013]. The current is dominated by
Jm(−Jm) in the DF layer (trailing edge) as shown in Figure 2c (Figure 2h), and this current is mainly at the
boundary of the plasma bubble. Therefore, we see that the currents of DF and trailing edge are in opposite
local directions. Because Cluster crossed the dawnside of DF layer and duskside of trailing edge, the obser-
vations suggest a closed current circuit around the plasma bubble boundary. The estimate of averaged
perpendicular current density in the DF layer is ∼ 27.1 nA/m2 and ∼ 19.8 nA/m2 in the trailing edge, indicat-
ing that most of the DF layer current is closed via the trailing edge of this plasma bubble. These currents will
be studied further in the following section.

Both of the DF and trailing edge were observed in the Southern Hemisphere with negative Bx (Figure 1a). A
magnetic dip region is identified ahead of the DF with Bz decrease ∼ 5 nT in ∼ 4 s [e.g., Yao et al., 2013]. The
FAC is parallel to the magnetic field (upward from the ionosphere) in the magnetic dip region (ahead of the
DF) and antiparallel to the magnetic field (downward to the ionosphere) in the DF layer (Figure 2d). Because
Cluster crossed the dawnside of the DF, these FACs are consistent with previous results that region-1-sense
FACs flow inside the DF layer and region-2-sense FACs flow in the magnetic dip region [Liu et al., 2013; Sun
et al., 2013; Yao et al., 2013]. When Cluster crossed the duskside of the trailing edge, the FAC is parallel to the
magnetic field (upward from the ionosphere) as shown in Figure 2i, which is a region-1-sense FAC.

2.2. Statistical Study
The case study reveals that the current could be closed around the boundary of plasma bubble and that the
FAC in the trailing edge is similar to region-1-sense current. A statistical study is now performed to confirm
these results. Based on the DF list of Yao et al. [2013], we have further selected plasma bubbles based on the
following criteria: (1) the event accompanied earthward plasma flow with total velocity (vt) is higher than
300 km/s, (2) the event contains a lower plasma density and stronger magnetic field than the background
plasma sheet, which is in front of the compression region, and (3) the DF and trailing edge is well defined;
i.e., the DF corresponds to the increase of magnetic field intensity and decrease of plasma density, and the
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Figure 3. Current density distribution of the 12 plasma bubbles boundaries in the XY plane, which has been divided into four regions according to their n′y : (a)
the crossings of DF with n′y < 0, (b) the crossings of trailing edge with n′y > 0, (c) the crossings of DF with n′y > 0, and (d) the crossings of trailing edge with n′y < 0.
(e) The FACs in the trailing edge. Bx∕BL is an estimation of the distance from neutral sheet, and n′y denote the crossing direction of the spacecraft relative to the
trailing edges. Currents flowing toward the ionosphere are shown as blue circles and those out of the ionosphere as red circles. The size of the circle denotes the
averaged intensity of the FAC.

trailing edge corresponds to the decrease of magnetic field intensity and increase of plasma density. Using
these selection criteria resulted in 12 plasma bubbles.

First, we will determine the relative normal direction and current density since the plasma bubbles are
not always moving along the X direction. The moving direction of plasma bubble is estimated from the
observed plasma flow. The relative normal direction (n′) and current density (J′) are obtained according to
this direction as we have deduced that this direction is X ′. In the case study section, we showed that the
plasma bubble moving direction is [0.95, −0.07, −0.30] (normalized from plasma flow: [386, −43, −113]
km/s, which is from CIS-CODIF of C1; the observation from C4 is similar), which has a small ny . Therefore, the
n and J of this event is almost the same as n′ and J′. We want to note that, though a vy reverse in the mid-
dle of plasma bubble, the integrated moving distance of this plasma bubble in −Y direction (dawnward)
is ∼ 0.36 RE , indicating that the dawnside crossing of DF and duskside crossing of trailing edge is reason-
able. Furthermore, we divide the boundaries of plasma bubbles into four regions/groups according to n′

and show their current (J′) distribution in this four regions shown in Figures 3a to 3d. Figure 3a (Figure 3c)
is for the dawnside (duskside) crossings of DF with n′

y < 0 (> 0), and Figure 3b (Figure 3d) is the dawnside
(duskside) crossings of trailing edge with n′

y > 0 (< 0). The blue arrows denote the current measurements
of each crossing, and the red arrow in each figure is the averaged current density of each region. We can
see that the current is earthward and duskward in the dawnside of the DF and tailward and duskward in the
duskside of the DF, while they are tailward and dawnward in the duskside of the trailing edge and earth-
ward and dawnward in the dawnside of the trailing edge. This statistical result further indicates that there is
a current circulating around the boundary of the plasma bubbles.

The superposed analysis (see the supporting information) of the 12 plasma bubbles shows that the aver-
aged current density of the DF is larger than that of the trailing edge, but about half of the current is
field-aligned, which connects to the ionosphere. While the field-aligned component of the trailing edge is
smaller than the perpendicular component, our results show that most of the perpendicular current in the
DF is closed with the trailing edge, which supports the results of the case study.

In order to determine the properties of FACs in the trailing edge, we have also selected the trailing edges
to the south and north of the neutral sheet. This has resulted in 8 of the 12 events. Figure 3e shows
the FACs in the trailing edge. The ratio Bx∕BL estimates the distance of the satellite to the neutral sheet,
where BL is the magnitude of lobe field and n′

y indicates the crossing direction of the satellite relative
to the trailing edge. The BL is deduced from the pressure balance between the plasma sheet and lobe
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Figure 4. A schematic to illustrate the current associated with the
plasma bubble in GSM XY plane. Magnetic dip region is plotted as
shaded black region earthward of the plasma bubble. The shaded gray
elliptical region indicates the plasma bubble, and the shaded green
region represents the boundary of plasma bubble.

[see, Liu et al., 2013; Sun et al., 2013].
Figure 3e shows that the FACs are flow-
ing downward into the ionosphere on
the dawnside and upward out of the
ionosphere on the duskside for the
trailing edges, which are a current in
the region-1-sense. These results agree
with the previous results that show
that the FACs in the DF are also in the
region-1-sense [Sun et al., 2013]. Thus,
we can conclude that the FACs in the
boundary of plasma bubbles are in the
region-1-sense.

3. Summary and Discussion

In this paper, we used Cluster observa-
tions and studied the currents around
the boundary of plasma bubbles. We
have not only studied the DF (usually on

the leading edge of plasma bubbles) but also the trailing edge of plasma bubble. Together with the results
from previous studies on the currents in the DF and magnetic dip region [Liu et al., 2013; Sun et al., 2013;
Yao et al., 2013], we have now obtained a more complete picture of the current system associated with the
boundary of plasma bubbles. A summary of this current system is schematically shown in Figure 4. This
figure is in the XY plane. The plasma bubble is represented by the shaded gray elliptical region, and the
magnetic dip region is indicated by the shaded black region earthward of the plasma bubble. From this
figure, we can see that there is a closed current system around the boundary of plasma bubbles (shaded
green region around the plasma bubble in Figure 4). The current flows in the anticlockwise sense and
also have field-aligned components above and below the neutral sheet. The FACs are flowing toward the
ionosphere (downward) on the plasma bubbles dawnside and away from the ionosphere (upward) on the
duskside, which is in the sense of the region-1 current. In the magnetic dip region, FACs are downward in
the duskside and upward in the dawnside, which is in the direction of the region-2-sense. These currents
are the main components of the dawnward currents in the magnetic dip region [Yao et al., 2013]. As pro-
posed by Yao et al. [2013], a part of the DF layer current could be closed via the current in the dip region.
Our estimation reveals that the total perpendicular current in the trailing edge is slightly smaller than the
DF layer, indicating that only a small part of the DF layer current flows in the dip region. This current sys-
tem is similar with that of the substorm current wedge (SCW) in MHD simulation [Birn and Hesse, 2014,
Figure 5; see also Birn and Hesse, 2013; Kepko et al., 2014]. The flow shears driven by earthward movement
of plasma bubble could also generate region-1-sense FACs around the plasma bubble [Birn et al., 2004;
Takada et al., 2008; Walsh et al., 2009]. But we have to note that the scale of flow shear driving FACs and SCW
could be several Earth radii [e.g., Walsh et al., 2009; Yao et al., 2012]. The current of the current system in this
study mainly exists in the boundary of plasma bubble with scale of ∼ 1000 km. The average scale of the
plasma bubbles is estimated to be ∼ 1.5 RE , which indicates that the circuit of the boundary current could
be comparable with the SCW. Previous studies showed that DF-related streamers in the expansion phase
of substorm could abruptly contribute to the ground magnetic field disturbance [Lyons et al., 2012]. And
plasma bubble-associated streamers could lead to substorm onset [Nishimura et al., 2010]. But whether the
streamer is associated with this current system is not known. The geomagnetic effect of this current system
also desires further study.

The shape of plasma bubble may not be a simple elliptical shape in the XY plane as we plotted in Figure 4.
But with the assumption that n′

y < 0 and n′
y > 0 corresponds with the duskside and dawnside of trailing

edge, we have obtained the region-1-sense FACs in the trailing edge. This is in the same sense with that of
MHD simulations [Birn and Hesse, 2013, 2014] and observations [Takada et al., 2008; Walsh et al., 2009], which
indicate that this assumption is applicable. The shape of plasma bubble is certainly needed to be further
studied. Mostl et al. [2009] applied the Grad-Shafranov Reconstruction on magnetic cloud structure and

SUN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 8173



Geophysical Research Letters 10.1002/2014GL062171

obtained the current distribution of it without assuming the shape of magnetic cloud. The application of
this technique on the plasma bubble might be useful and is needed for further investigation.

The outflow of reconnected lobe plasma from the reconnection site is the likely cause of the reduction of
the density inside the bubble as compared to the background plasma. Thus, there exists a strong plasma
density gradient at the boundary, which is represented by the blue arrows in Figure 4. Because the magnetic
field is pointing northward, the diamagnetic current (J = B∕B2 ×∇P) caused by this density gradient is in the
same sense with our observation of perpendicular current in the boundary. Another possible contributor is
the inertial current (−𝜌dv∕dt × B∕B2), but previous study showed that it is very small in comparison with
diamagnetic current and often ignored even in the near-Earth region [Keiling et al., 2009; Yao et al., 2012].
Our events are located farther downtail (< −15 RE) and contain much lower plasma density compared with
the background. It is reasonable to ignore the inertial current in this study. We therefore suggest that the
perpendicular current in the boundary could be at least part of the diamagnetic current. The anticlockwise
flowing boundary current would generate northward magnetic field according to Ampere’s law. This picture
is supported by the higher intensity of magnetic field inside the plasma bubble, which is consistent with Birn
and Hesse [2014, Figure 6b].

As shown in previous studies, Bz gradually decreases to the undisturbed value after the crossing of DF
[Runov et al., 2011]. In our case observation, strong Bz inside the plasma bubble persisted for ∼ 50 s and
then decreased to approximately the initial value identified as the trailing edge and also shown in Zhou
et al. [2013]. Most of the plasma bubbles show that the DFs and trailing edges have comparable scales and
the same magnitude of the current density. But in some plasma bubbles (3/12) we studied, the thickness
of the trailing edge is ∼2 times the DF and the current density in the trailing edge has smaller intensity
than observed in the DFs. These observations indicate that the current in the trailing edge exists in a wider
region with smaller density in some plasma bubbles than in others. The difference between the two kinds
of plasma bubbles suggests they might be at different stages of development. Further studies will consider
how the evolution of plasma bubble and the boundaries in the magnetotail evolve in space and time.
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