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Abstract 

Initiated by riparian homeowners concerned with increased shoreline erosion due to 

artificially high managed lake levels, this study of the potential ecological impacts of 

changing lake level management strategies on Higgins Lake was funded by the Muskegon 

River Watershed Assembly via the Michigan Department of Natural Resource’s Fisheries 

Division Habitat Improvement Fund and the Higgins Lake Property Owners Association. 

The focus of this thesis was the development of bathymetric, substrate and vegetation maps 

from sonar surveys (conducted July-August, 2012) to assess the extents and distribution of 

submersed aquatic vegetation (SAV), a key component of fisheries habitat, and to develop a 

predictive model to quantify how changes to lake level management might impact those 

extents and distributions. 

The observed percent cover of SAV on Higgins Lake was 11.1% (approximately 1,138 

acres) and was largely restricted to depths between 3 and 15 meters. The average observed 

depth of SAV was 6.03 m and the most frequent depth of SAV occurrence was 4.32 m; 

emergent vegetation was not observed during the survey. The maximum recorded height of 

SAV was 2.09 m. Average SAV height was 0.27 m (+/- 0.20 m) and the most frequently 

occurring SAV height was 0.13 m.  

The logistic regression model (R-squared = 0.397; covariates: depth, % light remaining 

at depth, slope and fetch) successfully predicted occurrence of SAV at a rate of 82.5% when 

compared to the observed data.  The lake level management scenarios explored had a range 

of water surface elevations of 350.89 – 351.80 meters above mean sea level. Under these 

scenarios the predicted areal extent of SAV ranged from 1,276 acres at the lowest water 

surface elevation, to 1,416 acres at the highest. The baseline model scenario (same water 
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surface elevation as during the survey) over-predicted SAV extents by 267 acres. The 

predicted depth range of SAV shifted in conjunction with changes to water surface 

elevation.  Overall, the model did not predict significant changes to SAV extents or 

distributions under the lake level management scenarios in question and the potential 

changes are likely insufficient to measurably impact fisheries habitat on the lake.  
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Introduction 

Lake levels have been legally established by courts on many inland lakes in the state 

of Michigan and throughout the Midwest. Court regulated lake levels generally include a 

high water level during the open water season (summer) and a lower level during periods of 

ice-cover.  The high levels are set so that residents have easier boating access in the open 

water season, and the low levels help prevent ice damage to docks and shorelines (O’Neal & 

Soulliere, 2006). These managed water levels are generally achieved via actively managed 

lake-level control structures (i.e. dams).   

 The control of lake-levels can have significant effects on whole lake ecosystems, 

particularly in relation to community diversity, fish spawning, fish movements and plant and 

animal production (Wilcox & Meeker, 1992). Dams alter natural water level fluctuations 

which can be important for maintaining diverse plant communities; and this in turn impacts 

rearing habitat for fish, mammals and water fowl. Furthermore, they typically restrict the 

passage of fish species between lakes and downstream systems, which can adversely affect 

seasonal and spawning migrations. Artificially high water levels can increase shoreline 

erosion as well, a result that often leads to the construction of seawalls by lake-residents. 

Seawalls in turn reduce the presence of shoreline and emergent vegetation, restrict the 

movement amphibians and mammals, and increase shoreline erosion adjacent to the seawall 

(O’Neal & Soulliere, 2006). 

On Higgins Lake, local controversies about water level fluctuations related to the 

management of the outlet control structure have persisted for years and more recently 

become a heated topic of debate (Reznich, 2012). Due to concerns associated with high rates 

of erosion in parts of the lake, the Higgins Lake Property Owners Association (HLPOA) 
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requested help in 2010 from the Michigan Department of Natural Resources (MDNR) 

Fisheries Division with evaluating erosion, habitat, and passage issues relating to future 

management options of the Higgins Lake water-level outlet control structure.  In order to 

better inform citizens, MDNR Fisheries Division acting through the Muskegon River 

Watershed Assembly (MWRA) funded a study in 2012 using Michigan’s Habitat 

Improvement Fund. The purpose of the study was to evaluate potential impacts to Higgins 

Lake and its outlet river (the Cut River) of altering the current court imposed lake-level 

management regimes, including as a potential scenario the for the sake argument the 

potential removal of the outlet control structure.  

The study consisted of a hydrologic and hydraulic evaluation of the study system by 

Michigan State University’s (MSU) Hydrogeology Lab as well as extensive hydro-acoustic 

surveys by both MSU and University of Michigan to evaluate existing fish habitat 

conditions and predict how future alterations in water level might affect those conditions 

(University of Michigan). My goal in this thesis research was (1) to collect and use 

hydroacoustic data from several different sonar systems to evaluate the bathymetry and 

spatial distribution of submerged aquatic vegetation (SAV) on Higgins Lake, as aquatic 

vegetation is a key aspect of fish habitat (Stuber et al., 1982; Wiley et al., 1984, Krieger et 

al., 1984; McMahon et al., 1984) ; and (2) to generate a predictive SAV model that could be 

used to quantify how areal extents of vegetation might change in response to changes in 

lake-level management. 

 

 

 



3 

 

Methods 

Study Site  

Higgins Lake is an intermorainal lake in deep glacial drift deposits in Roscommon 

County Michigan and is the tenth largest and fifth deepest inland lake in Michigan. The 

maximum recorded depth from this survey was 41.05 m (134.69 ft) and the average depth 

was calculated to be 15.86 m (52.03 ft).  The lake area varies seasonally with water level 

and was calculated to be 10,252 acres at the time of this survey (summer 2012). The volume 

of the lake was estimated at 20 billion cubic feet (Jones, 1991) and has a hydrologic 

retention time of 12.4 years (Minnerick, 2001). The shoal region (less than 3 m depth) 

makes up approximately 27% of the total lake area. 

Higgins Lake and its watershed form the headwaters of the Muskegon River; it has a 

catchment area of approximately 28,738 acres (Huron Pines, 2007) and is primarily 

groundwater fed. About 51.3% of the water input comes from groundwater, 43% is derived 

from direct rainfall, and two small inlet streams (Big and Little Creek) contribute 4.3% and 

1.4%, respectively (Limno-Tech, 1992). The only outflow of the lake is the Cut River, which 

passes through Marl Lake just downstream of Higgins and joins with the Backus Creek 

system before entering Houghton Lake.   

 A lake-level control structure located at the Cut River outlet is used to manage water 

levels at Higgins Lake. It is a low-head dam that can alter the water surface elevation by 

approximately +/-18 inches. The first outlet control structure was built in 1936, with repairs 

and additions in 1950. In 1982 a Roscommon County Circuit Court order confirmed the 

summer legal lake level at 1154.11 feet above sea level and a winter legal lake level of 

1153.61 feet above sea level (Huron Pines, 2007). The authority responsible for operating 
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the dam to maintain the legal lake levels is the Roscommon County Board of 

Commissioners. 

Higgins Lake is an oligotrophic lake and due to its depth and high groundwater 

inputs, supports a number of cool and coldwater fish species including Rainbow Trout, Lake 

Trout, Brown Trout, Rainbow Smelt, Yellow Perch and Lake Whitefish. Other popular 

game species include Rock Bass, Walleye and Pike. As a result, angler use of the lake is 

substantial; the Michigan Department of Natural Resources (MDNR) estimates that anglers 

annually take over 60,000 trips, logging over 250,000 hours on Higgins. The annual 

economic value of this fishery to the local economy is approximately $1.6 million and the 

two state parks on the lake bring in over 600,000 visitors to Higgins Lake every year (Huron 

Pines, 2007).  

 

SONAR Units Employed 

 The following acoustic range finding units were employed in this study: a 200 kHz 

depth sounder, a 455 kHz down-facing linear transducer, a tow-behind side scan unit, and an 

Acoustic Doppler Current Profiler (ADCP).  

The 200 kHz (20o cone angle) and 455 kHz (1.1o cone angle) transducers were a part 

of Navitronic’s Lowrance HDS-8 recreational sonar and navigation unit with integrated 

WAAS enabled GPS. Transducers were mounted on adjustable rigging at the stern of the 

vessel.  

The tow-behind side scan sonar unit employed was a triple-frequency Imagenex 

Yellowfin with an integrated differential ready GPS. For this survey, an operating frequency 
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of 330-kHz and a range of 200 meters (400 meter total swath coverage) was employed. 

Cable-out was recorded to assess the unit’s layback position relative to the vessel. 

 The ADCP unit was a Sontek River Surveyor S5 (1 Hz sample rate) with integrated 

GPS.  This unit was installed on an adjustable mount approximately about half-way between 

midship and stern at the region of the vessel least affected by wave motion.   

  

Bathymetric Mapping – Field Data Collection Methods 

 Bathymetric mapping was performed collaboratively with researchers from MSU.  

Higgins Lake’s unusual morphology governed our field data collection strategy. The team 

from MSU collected depth soundings on the broad shallow near-shore shelf around the 

margins of the lake. They used a “warp and weft” sampling pattern; three warp survey lines 

following the 0.5 meter, 1.5 and 3 meter depth contours and a weft survey line which runs 

between. I performed the offshore bathymetric survey (3 m and deeper) which consisted of a 

400 meter spaced grid, “painting” of significant features (“sunken islands”) smaller than the 

400 m grid, and concentrated zig-zag coverage of the drop-off region encompassing the 

lake. The survey was designed so that coverage by both crews would overlap at 3 meters 

depth. Both survey crews maintained survey speeds at approximately 5 knots. The initial 

survey by both crews occurred from July 30th 2012 to August 17th 2012.  

The 200 kHz transducer was used to collect ranging data for the offshore and drop-

off bathymetry. The unit also recorded depth-corrected signal return intensity, evaluated as a 

relative measure of substrate hardness and thus a proxy for sediment type. Substrate maps 

were then developed from these data, and a 1936 MDNR winter lake-survey was used to 
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delineate the substrate classes. The tow-behind side scan sonar unit was a triple-frequency 

Imagenex Yellowfin with an integrated differential ready GPS.  

 

Bathymetric Mapping – Data Processing Methods 

Unless otherwise noted, all GIS (Geographic Information Systems) processing and 

outputs were completed using the Esri ArcGIS® software, ArcMap™ version 10 and will 

hereto be referred to in the text as ArcGIS or ArcMap.  The bathymetric surface was the first 

data-product to be generated, and a number of corrections had to be applied to the sounding 

records to correct for systematic errors, including the position of the transducers relative to 

the GPS receiver, physical variables associated with the lake conditions (i.e. lake-level 

changes during survey dates, wave size and frequency), skews in acoustic return signal at 

varying angles of incidence (i.e. surveying across steep bed slopes), depth related anomalies 

(i.e. lack of bottom detection in deep water or multiple echo returns in shallow water), and 

survey unit misidentification of SAV canopy or fish schools as lake-bottom. To account for 

these errors, a number of corrections were applied to the sonar data before import into GIS 

software for map generation. 

(1) The transducer offsets relative to the GPS antennae and average depth of the 

transducers below the water surface during normal survey speed were applied to location 

information using commercial survey software (DrDepth).  

(2)  Due to the complexity of potential errors, automated correction methods did not 

greatly improve accuracy and thus visual examination of the sonogram was necessary. 

Visual inspection and correction of errors resulting from wave-action, signal return 
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inconsistencies, and misidentification of true lake bottom were also performed using 

DrDepth. 

DrDepth includes a tool for visually displaying the sounding sonogram and applying 

corrections either manually or via correction algorithms (Figure 1). DrDepth provides 

‘Refine,’ ‘Smooth,’ and ‘Manual draw’ tools to correct errors. The ‘Refine’ tool performs a 

local depth estimator around the current estimate on a ping by ping basis. The ‘Smooth’ tool 

uses a band pass filter to attenuate amplitudes of depth-soundings, resulting in a smoothing 

of any wave action present in the data. The ‘Manual draw’ allows the user to digitize a new 

estimate of lake-bottom which is ideal for correcting false bottom detections.  

 

Figure 1. DrDepth sonogram display; this is a color-scaled representation of echo 
backscattering strength, with brightest colors indicating highest return intensity. Depth in 
meters is displayed on the right axis. The bright yellow at the top of the sonogram is the 
result of water surface echo return, as well as interference from propeller turbulence and 
epilimnetic organisms (phytoplankton). The lake floor is represented by the black line and 
the data below this is non-real and represents attenuated signal return. 
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(3) The Lowrance data with above noted offsets and corrections were then exported 

from DrDepth as comma delimited files ASCII text consisting of  latitude and longitude in 

World Geodetic System (WGS) 1984, depth in feet, time offset in milliseconds from the 

start of recording, and relative hardness.  

(4) A final review of each file consisted of sorting the depth data to remove any 

outliers (any negative depths and depths greater than 41 meters, the maximum known depth 

of the lake).  

(5) Finally, mean daily USGS lake level gauge information was applied for each 

sample date to correct for changes in depth due to changing water level during survey dates 

to ensure accuracy of lake-bottom elevations. Daily lake level information was obtained 

from the United States Geological Survey (USGS) Higgins Lake gauge (station number 

442805084411001).  

The shoreline elevation (the selected zero-depth for used throughout this project) 

was established as the average daily lake level at the date of aerial imagery collection (July 

2, 2012), which was just slightly before our survey. This elevation (351.773 meters AMSL), 

which is also the current summer legal lake level (SLL), was linked to the water’s edge of 

Higgins Lake via digitization of the shoreline using ArcMap. Aerial imagery was obtained 

via the United States Department of Agriculture National Farm Service Agency Aerial 

Imagery Program ortho-rectified aerial imagery database (www.fsa.usda.gov/FSA/). The 

georeferenced bottom elevations were imported and a bathymetric surface interpolated via 

the ArcGIS Geostatistical Wizard. To produce the bathymetric raster surface, ordinary 

kriging with no detrending was employed (Oliver, 1990; Stein, 1999).  The semivariogram 

model was optimized to minimize mean square error, and the interpolation search 

http://www.fsa.usda.gov/FSA/
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neighborhood was set to a four sector 45o offset with a maximum of five and minimum of 

two neighbors.  

 

Aquatic Vegetation Mapping – Field Data Collection Methods 

Conventional manual techniques for delineating aquatic vegetation are typically very 

labor intensive and result in observations over limited spatial extents. Although optical 

techniques such as aerial photography can be useful to delineate spatial patterns in shallow 

or clear water, they are limited by light attenuation in the water column, surface roughness 

and cloud cover. Hydroacoustic surveys however, can overcome many of these obstacles 

(Winfield et al., 2007).  To determine extents and heights of submerged aquatic vegetation, 

a sidescan towfish unit and the Lowrance 455 kHz down-facing linear transducer were used. 

Due to the higher operating frequency and characteristics of the 455 kHz linear acoustic 

beam, it produces a higher resolution image when compared to the 200 kHz conical depth-

sounder (Figure 2).  As discussed in more detail below, the sidecan data were processed, but 

deemed insufficient to accurately delineate SAV on Higgins.  

 

Aquatic Vegetation Mapping – Data Processing Methods 

To delineate submerged aquatic vegetation on Higgins Lake, a number of techniques 

were explored and used. As side scanning techniques have been found to be effective for 

delineated seagrass beds (Lee Long et al., 1998; Moreno et al., 1998), I first attempted to 

map vegetation using the  Imagenex Yellowfin side-scan data (sensor depth and cable 

layback offsets applied, turns clipped, georeferenced) using Chesapeake Technology’s 

SonarWiz 5. The SAV beds on Higgins however, were difficult to distinguish on the 
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resulting sidescan mosaic imagery for two main reasons. One, because the unit was set to its 

maximum range, the resulting mosaic images were of lower resolution making it difficult to 

visually distinguish SAV. Two, sidescan mapping is best utilized on flat terrain; on Higgins, 

much of the SAV exists along the drop off regions in the lake, and the rapid changes in 

topography negatively impacted the output imagery.  Thus ultimately image processing was 

performed on only the outputs from the Lowrance StructureScan 455 kHz down-facing 

linear transducer (Lowrance’s DownScan ImagingTM) to determine the extents and height of 

SAV in Higgins Lake. 

The Lowrance file formats (SL2) were then processed with a commercial sonar 

software package (SonarTRX, Leraand Engineering Inc.). This software program converted 

the Lowrance SL2 sonar files into piecewise images at a user-specified number of pings per 

image and applied speed corrections for these images (i.e. when traveling at faster speeds 

the image was stretched to account for the increased distance between pings). SonarTRX 

also produced a Google Earth KML (Keyhole Markup Language) file for each SL2 file 

processed, which contained the geospatial information that was later used to map the SAV 

data in ArcGIS. A series of image analysis algorithms were then developed in MATLAB to 

extract vegetation information.  
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 Figure 2. A comparison of two sonar outputs from the same stand of submerged aquatic 
vegetation. The image on the left was collected with the 200-kHz conical transducer and the 
image on the right was collected with the 455-kHz linear transducer. Note the increased 
level of detail in the SAV stands in the image on the right. 

 

The steps in my MATLAB-based image analysis which were performed on each 

sonar image (See Appendix B for the MATLAB image-analysis scripts) included: 

(1)  Each image was imported as an 8-bit grayscale intensity image and treated as a 

matrix array with a value range of 0-255 for each element. This scaled intensity 

represents the echo backscatter strength at any location with low values 

representing little echo return (unpopulated water column) and high values 

representing strong echo returns. A series of “cleaning” and preparation steps 

followed. 

(2) The next step was the application of a mask. This masking replaced 

approximately the top twenty percent of the image with zero values to eliminate 

surface return interference from entering into latter SAV detection steps.  
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(3) Then, a median filter was applied (five by five pixel window) to reduce random 

intensity and overall “noise” in the sonar image (i.e. gaseous bubbles in the water 

column).  

(4)  Next, each column in the image was normalized by the maximum value in that 

column to bring the values in each column to a normalized continuous scale of 

zero to one. These normalized values were then multiplied by 255 and rounded 

to return the values to an 8-bit integer array.  

The next step involved the application of logical decision rules to draw distinctions 

between the water column, any potential SAV and the lake bottom in each image.  My 

primary assumptions were:  (a) the maximum value in each column represented the 

strongest signal return which is indicative of lake-bottom; (b) all sufficiently low pixel 

values represented open water column; (c) pixel values of intermediate intensity, that were  

directly adjacent to the bottom represent SAV. Processing steps consisted of identifying the 

maximum value in each column and evaluating the pixel values directly above that 

maximum value location as either SAV or water column. After four continuous pixels of 

water column were detected above the lake bottom or vegetation, the remainder of the pixels 

above were classed as water column.  

 Down-scan image quality varied throughout the data set due to factors such as wave 

action, the angle of incidence between the acoustic beam and the lake bed, speed of the 

vessel, and distance to lake-bottom. Manually adjusting key parameters in the cleaning steps 

(mask size, median filter neighborhood, pixel values determining SAV and bottom) was 

necessary for approximately twenty percent of the data set (5,400 of 27,000 images). The 

images requiring additional user input were most typically associated with one of the 
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following conditions: survey locations in deep water (over 30 meters) where signal loss 

occurred; survey locations in shallow water (less than 3 meters) where surface return signals 

encompassed a majority of the water column; or survey locations which ran perpendicular to 

steep angle drop-off where a higher proportion of the sonar signal was reflected away from 

the transducer.  

Other issues encountered included: returns from fish schools  being interpreted as 

SAV; the non-detection of  SAV in shallow water due to the masking step described above; 

and inaccuracy in SAV heights, particularly macrophyte stands where gaps between 

interspersed leafs resulted in labeling the remainder of rows in the column as water. These 

issues were corrected manually during a final intensive quality control review. 

The result of delineation via the MATLAB image analysis steps (Figure 3) was a 

trinary image consisting of bottom (pixel value = 255), potential SAV (pixel value = 128), 

and water column (pixel value = 0) for each image. These trinary outputs were then written 

to comma-delimited text files where the following data from each column in the image was 

reported as follows: the number of pixels from the water’s surface to the detected bottom, 

the number of pixels to the top of the vegetation (if present), percent SAV (as pixels) of 

water column, and a binary indicator of vegetation presence/absence.  
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Figure 3. Results of MATLAB image processing on sonar imagery. The image on the left is 
the raw data input with mask applied. The middle image is after the application of a median 
filter and column by column normalization by maximum column value. The right image is 
the trinary output with the white representing the lake-bottom, gray representing SAV, and 
black above SAV representing the water column. 

The quality control review consisted of visually scanning through the output images 

from each sonar record to identify for which images the MATLAB processing steps would 

likely produce inaccurate SAV detections. Generally, sonar images which were problematic 

were very easy to recognize. These problematic images were then re-processed individually 

by the user in MATLAB to determine if manual corrections were necessary. If the image 

analysis output was inaccurate, the pixel counts were directly edited in the text file to more 

accurately reflect presence/absence of vegetation and/or height of vegetation present in the 

sonar image (approximately 3.5% of the data required this step).  

At this stage, the text files containing SAV information were not geocoded: however 

each sonar image output via SonarTRX had an associated Google Earth KML file which 
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included spatial reference data. To georeference the SAV text files for import into GIS 

software, a Python script was developed to parse the text of the KML file and extract the 

start and end latitude and longitude of each image. Then, using MATLAB, the start and end 

latitude and longitude were inserted at the beginning and end of each SAV text file and a 

derivation of the Haversine formula (Robusto, 1957) was employed to calculate the latitude 

and longitude for all intermediary records in each file such that every column of every 

speed-corrected image had been converted to a spatially referenced record that could be 

imported into GIS software where each record serves as a point observation. 

Upon importing the georeferenced SAV data into ArcGIS, as series of processing 

steps were required before a continuous interpolated surface could be generated. First, depth 

information from the bathymetric surface was added to the SAV data set. The height of 

vegetation at each sample location was then calculated using the percent height (pixel height 

of SAV in the image divided by the pixel height of water column) of SAV.  

Due to the number of records (over 7.4 million) the SAV data, every 10th record was 

selected as a subsample. During reviews of original sonar imagery, the tallest noted 

vegetation was approximately 2.1 m in height, so all samples with vegetation heights greater 

than 2.2 m were eliminated. Also during the image review stage, the greatest depth noted for 

standing algal biomass (likely stonewort, family Characeae) was approximately 14 meters, 

so all SAV data with vegetation detected at a depth of 15 meters or greater was eliminated. 

Additionally, due to limits associated with the resolution of the sonar imagery and the 

image-processing techniques, any detected vegetation which was less than one percent of 

the water column or less than 10 cm in height was removed.   
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Supplemental Aerial imagery and SAV Map Generation 

There were portions of the lake that were not captured in my hydroacoustic survey. 

These areas included the shallow shelf (surveyed by MSU) as well as areas that were in 

between my survey tracks. To supplement the SAV point data derived from the sonar 

survey, the following GIS processing steps were performed: 

(1) Using aerial imagery (July 2, 2012), polygons were digitized around all 

visible SAV beds and all shallow regions (and thus good visibility on the 

aerial imagery) of the lake. 

(2) If sonar survey data points were present within the SAV polygons, the 

information from these survey points was used to assign an average 

vegetation height for that polygon. Otherwise, the nearest available survey 

point data at a similar depth were used. 

(3) A point grid was generated (100 meter spacing) across the lake and depth 

information was added to each point. Each point was then assigned 

vegetation information (i.e. presence/absence of SAV, height of SAV if 

present) based on the polygon it fell within. 

(4) All points greater than 15 m deep was assigned an absence value for 

vegetation. 

(5) The 100 m spaced point grid was combined with the sonar survey point data 

to form the final data set for subsequent mapping and modeling.  

  Using the final combined data set described above, ordinary kriging was performed 

(ArcGIS Geospatial Wizard) to generate a continuous surface representing SAV heights 

across Higgins Lake (Figure 9). No detrending was employed and the semivariogram model 
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was optimized to minimize the mean square error. Following the same 10 cm cutoff used to 

account for limitations in image processing methods, a binary presence/absence map was 

generated from the SAV height map where all values greater than 10 cm were considered 

SAV (Figure 11).  

 

SAV Mapping Validation 

To assess the accuracy of the SAV point observations derived from image analysis 

steps, the SAV data were validated against a Eurasian watermilfoil (Myriophyllum 

spicatum) survey of Higgins Lake conducted by the Huron Pines Resource Conservation & 

Development Area Council, Inc. in 2002  (Huron Pines, 2002) with updates in 2003 and 

2005. Their effort consisted of a boat-based survey of the shoals and drop off regions, using 

glass-bottom buckets to identify milfoil beds; each recorded survey point was a confirmed 

milfoil bed. In ArcGIS, a 30m buffer was generated around each Huron Pines survey 

location and all image-analysis derived SAV observations intersecting this buffer were 

validated. Additionally, because of the clarity of the lake, aerial imagery could be used to 

qualitatively confirm the success of the code output in shallow shoal areas. 

 

Predicting Aquatic Vegetation – An Empirical Model 

 Important factors effecting the occurrence and distribution of aquatic vegetation 

include light, substrate texture, substrate stability, wave disturbance, and hydrostatic 

pressure (Figure 3).   I developed a conceptual model to link these factors with variables 

(highlighted in blue) that I measured with sonar or could be derived from my sonar-based 

surveys.  I then developed an empirical model using a binary logistic regression (King, 
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2008) reflecting the causal structure illustrated in my diagram.  Note that in Figure 4 depth 

is connected to almost every other factor related to aquatic vegetation occurrence and is 

likely therefore be a key driving factor in any statistical model.  

 

Figure 4. Conceptual model linking factors influencing the occurrence and distribution of 
aquatic vegetation to measureable/calculable variables.  

Solar radiation intensities which are too high can inhibit growth and survival of 

many species (Powles, 1984). Below inhibiting levels, however, photosynthesis is light 

dependent. During thermal stratification, vertical distributions of temperature and light are 

correlated in lentic systems; both decreasing with depth. Substrate conditions can also 

influence SAV distributions. A number of factors including wave action (energy dissipation 

per unit depth), substrate texture (grain size) and bottom slope influence substrate stability. 

If the sediments are unstable, vascular plants are more likely to be dislodged, and less likely 

to become established. Sediment texture can independently influence likelihood of 
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occurrence of aquatic vegetation; for example, a cobble bed may be particularly stable and 

suitable for attached algae but does not allow penetration of vascular rooting structures. It 

has also been shown that increasing hydrostatic pressure also negatively impacts aquatic 

plant growth and survival (Wetzel, 2001).   

 Binary logistic regression was used to produce a statistical model to predict the 

distribution of SAV in response to changes to lake-level arising from different management 

scenarios. Following a similar model developed for bays and estuaries of Lake Superior 

(Angradi et al., 2013), I explored the following variables as potential predictors:  water 

depth, slope, directionally-weighted fetch, substrate hardness, and percent light remaining at 

depth, plus all 2-way interactions between predictors. A log base 10 transformation was 

applied to the substrate hardness data.  

 Models were fit using DataDesk 6.3 (Data Description, Inc.). Due to the large 

sample size (n = 551,162), all of the predictors noted above were statistically significant 

(p<0.0001) predictors and a manual step-wise selection of all possible combinations and 2-

way interactions was tested. The combination with the highest resulting R-squared value 

and the highest accuracy in predicted presence and absence relative to observed 

(contingency table analysis) was selected.   

For the purposes of interpretation I assigned modeled probabilities in a binary 

fashion assigning predicted values < 0.3675  = 0, and predicted values  > 0.3675 = 1.  This 

binary assignment was selected to produce symmetrically assessed accuracies when 

compared to the observed data. That is, the model was designed to produce true positives 

and true negatives in equal proportion as no advantage could be determined for a model that 

favored one type of error over the other. Once model symmetry was achieved, Pearson 
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product-moment correlation coefficient and R-squared values were calculated for each 

combination of predicting variables and interaction terms.  The final model was selected 

based on highest assessed accuracy and R-squared values.  The best-fit model was entered 

into the raster calculator in ArcGIS to develop predicted SAV output maps. Water level 

change scenarios were then explored by adding or subtracting the desired value to the depth 

components in the regression equation. For lower water level scenarios, a raster mask was 

applied to exclude what would be newly exposed shoal area from the analysis. Because no 

on-shore elevation data were collected however, the analysis of raised water level scenarios 

(i.e. reporting % cover of SAV) used extrapolated lake-surface areas via a linear regression 

of lake area versus changes in depth based on the lower elevation scenarios.  

 

Management Scenarios 

In consultation with the Muskegon River Watershed Council and MDNR, the 

research team developed a series of lake-level change scenarios (Table 1) to be evaluated in 

modeling studies. Each scenario was named by reference to change in depth (in inches) 

from the summer legal level (351.77 m above mean sea level). I added an extreme high and 

an extreme low scenario to help clarify responses in model sensitivity tests. 
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Scenario 

Name 
Scenario Description WSE  

(m AMSL) 
WSE 

Change (m) 

Aprox. 
Change in 

Inches 
SLL +60 Extreme high (sensitivity test) 353.04 1.50 +60 
SLL +1 Highest level without dam 

modification 351.80 0.03 +1 

SLL Summer legal level 351.77 0.00 0 
SLL -9 Proposed new low level 351.54 -0.23 -9 

SLL -18 All dam gates open 351.09 -0.46 -18 
SLL -26  Dam removal 350.89 -0.66 -26 
SLL -60  Extreme low (sensitivity test) 350.04 -1.50 -60 

Table 1. Scenario names and descriptions of lake-level change scenarios to be modeled. 
Note that the scenario names are approximations in inches of the lake level change scenario, 
as the management of the dam by stakeholders is conducted in English units. 

 The SLL +1 scenario represents the highest achievable water level given the current 

capacity of the Higgins Lake outlet structure, where all flop gates are in the up position and 

all stop logs are in place. The SLL -9 scenario represents a potential lower lake level 

suggested by some stakeholders. The SLL -18 scenario represents the lowest achievable 

lake-level (all-gates open) without modifications to the dam structure itself. The SLL -26 

scenario represents the best estimate of WSE elevation were the outlet control structure to 

be removed. As noted above, the SLL +60 and SLL -60 scenarios are used to assess model 

sensitivity to extreme high and low water elevations.   

 

Aquatic Vegetation Modeling – Ancillary Data 

A series of ancillary data products were produced as input variables for the lake-

wide vegetation model. These included maps of fetch, slope, and substrate hardness. 

Additionally, surface water quality data was collected and explored for spatial trends, 

although no spatial trends were observed and will not be discussed further. Methods 

employed to develop these maps are described briefly below: 
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Fetch- Historical weather data were obtained for the nearby Roscommon County station at 

Houghton Lake (Houghton, MI). One year of daily average wind direction data was sampled 

at approximately five year intervals from 1963-2013 and the statistical frequency of wind 

direction was determined along the four cardinal axes.  The directionally-weighted fetch was 

then computed in MATLAB at a 100 m by 100 m grid resolution, where the value at each 

location is equal to the sum of the distance to shore in each cardinal direction weighted by 

the frequency of wind direction across the meteorological record. These grid data were then 

imported into ArcGIS and an exact inverse-distance weighting interpolator was applied to 

generate a continuous raster surface. 

 

Bathymetric slope- A slope raster surface was generated in ArcGIS as the first derivative of 

the bathymetric surface. Due to the low density of sample data in offshore regions of the 

lake, however, any interpolation method employed on this data would result in increasingly 

irregular artifacts as distance from the sampled data increases. When kriging the bathymetric 

surface the interpolator generated artificial “ridges” or spider-webbing in the offshore areas 

that extended along the sector edges of the search neighborhoods. These ridges were 

artificially higher than the surrounding area, resulting in an un-realistic derived slope 

surface. To produce a more realistic slope map, a 50 m point grid was introduced and 

surface information from the bathymetric map was added to these points. This allowed the 

production of a secondary “smoothed” bathymetric surface from which the slope surface 

was derived.  
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Substrate- To delineate substrate types in Higgins Lake, the depth-corrected signal 

attenuation of the 200 kHz sonar data was interpreted as a relative measure of substrate 

hardness and served in my vegetation model as a proxy for sediment texture. Signal 

attenuation values were subsequently classed as sediment types (i.e., organic depositional, 

clay, marl, sand, gravel/hardpan/vegetation) based on a 1936 MDNR substrate survey map 

of Higgins Lake and on visual assessment during our survey. These hardness data were 

imported into ArcGIS. Sonar data were again supplemented with a 100 m regular spaced 

point grid using average interpreted hardness values and visual classification. For example, 

an average hardness value for the sandy shoals was estimated from sonar samples and used 

to assign a hardness value for all grid points in the shoals. The survey data and 100 m grid 

points were joined into a single data set and then interpolated by ordinary kriging following 

the same methods used for the bathymetric surface.  

 

Percent light remaining at depth- This was calculated using the equation: 

% 𝐿𝐿𝐿ℎ𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎 𝑑𝑑𝑑𝑑ℎ = 100 ∗ 𝑒−0.05∗ 𝑍 where Z is the depth in feet. The light 

extinction coefficient value (-0.05) was estimated from 20 years of vertical profile 

monitoring in Higgins Lake by the Higgins Lake Property Owners Association. No 

significant difference in light penetration was found between the North and South basins. 

 

Results 

Bathymetric Mapping  

The bathymetric surface reflects the unique morphological characteristics of Higgins 

Lake: a large shallow shoal surrounding a series of deep basins. The maximum recorded 
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depth was 41.05 m (134.69 ft), mean depth was 15.86 m (52.03 ft), and the mode was 1.52 

m (4.99 ft). The shoal region (less than 3 m depth) made up approximately 27.1% of the 

total area. The average and maximum depth of the North basin was 15.94 m and 41.05 m, 

respectively. The average and maximum depth of the South basin was 15.42 m and 30.88 m, 

respectively. The hypsometric curve (Figure 6) shows depth on the horizontal axis and a 

cumulative percent of lake area as a percent on the vertical axis. Important physical and 

ecological values are noted along the horizontal axis, including depth (28.07 m) of 

phototrophic zone (the depth at which only 1% of surface light remains), the average depth 

of the thermocline (approximately between 9 and 14 m), the terminus of the shoal shelf 

(approximately 3 m), and the zone of vegetation.  
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Figure 5. Interpolated bathymetric surface of Higgins Lake. 
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Figure 6. Hypsometric curve for Higgins Lake.  

 

Aquatic Vegetation Mapping 

Submersed vegetation covered approximately 11.1% of the lake basin, or 1,138 acres 

(Figure 9). SAV was largely restricted to depths between 3 and 15 meters (Figure 6, 8). The 

average observed depth of SAV was 6.03 m and the most frequent depth of SAV occurrence 

was 4.32 m. Emergent vegetation was not observed during the survey. During the image 

review stage, the greatest depth noted for standing algal biomass was approximately 14 m.  

The maximum mapped SAV height was 1.37 m (Figure 7), although the maximum recorded 

SAV height before interpolation was 2.09 m. Kriging produces an inexact estimated surface, 
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so these taller macrophytic stands were lost in the interpolation step. Average SAV height 

was 0.27 m and the most frequently occurring SAV height was 0.13 m. The range of heights 

was considered to be 0.10 – 2.09 m with a standard deviation of 0.20 m.  

 

Figure 7. Height and location of submerged aquatic vegetation on Higgins Lake (Summer, 
2012). 
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Figure 8. Frequency distribution of observed submerged aquatic vegetation occurrence at 
depth. 
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Figure 9. Observed presence/absence map of submerged aquatic vegetation on Higgins 
Lake. 

 

Vegetation Mapping Validation 

To assess the accuracy of the MATLAB-based sonar image analysis to delineate 

SAV in Higgins, a 30 m buffer was generated around each Huron Pines survey location and 

all image-analysis derived SAV observations intersecting this buffer were validated. The 
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Huron Pines surveys identified 78 as having Eurasian water milfoil present and of these 78 

sites, 22 had SAV point data derived from the image analysis within the buffer zone. Of 

these 22 locations, 21 had observation points with SAV presence detected, 89.1% of which 

were positive for SAV. 

 

Ancillary Data Maps 

Maps of substrate hardness and wind fetch were produced for use in the SAV 

modeling (Figures 10,11). The substrate map (Figure 10) shows sandy shoals surrounding 

the mainly clay basins, with some significant areas designated as marl. A single class is 

assigned for regions of high acoustic return intensity (hardpan\gravel\vegetation).   
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Figure 10. Acoustically derived sediment classification map.  

 



32 

 

 

Figure 11. Fetch map, weighted by wind direction over the four cardinal axes and 
interpolated with inverse distance weighting.    

The fetch map (Figure 11) showed that the highest fetch regions are in the northeast 

region of Higgins Lake. This is a region with high levels of active shoreline erosion reported 

by riparian homeowners.  The fetch values serve as a correlate for wind-driven wave energy 
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which at shallow depths, results in bottom disturbance which impacts SAV distribution 

(Koch, 2001). 

 Below is the frequency distribution of wind direction for a sub-sample of 

meteorological data collected from 1964-2013 at the Houghton Lake station. The 

predominant wind direction is a westerly wind.  

 

Figure 12. Frequency distribution of wind direction at the Houghton Lake station from 1964 
-2013. Note that at 270o, the wind direction is from the west, at 360o the wind direction is 
from the north, etc. 

 

Logistic modeling of SAV 

The best performing logistic model of submersed aquatic vegetation had the following form: 

𝑙𝑙
𝑝

1 − 𝑝
= 19.03 − 1.187 ∗ 𝐷𝐷𝐷𝐷ℎ − 0.2086 ∗ %𝑙𝑙𝑙ℎ𝑡 + 0.0201 ∗ %𝑠𝑠𝑠𝑠𝑠 − 0.00196 ∗ 𝑓𝑓𝑓𝑓ℎ 

Where p is the probability that the dependent variable (aquatic vegetation) is present, depth 

is water depth in meters, %light is percent of surface light intensity,% slope is percent slope 
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of the bathymetric surface, and fetch is directionally weighted mean fetch in meters (R-

squared = 0.3969, n = 551,162). 

A threshold value of 0.3675 was used to classify the linear output of the logistic 

equation into binary presence/absence predictions. This corresponds to a threshold 

probability of 0.591. The classification accuracy of the categorical model with respect to the 

input data was about 82.5% (Table 2), and the classification error rate was 17.5%.  The Chi-

squared for the contingency test was 218,700 (p<0.0001), indicating statistically significant 

difference between observed and predicted occurrences, despite the 17.5% error rate. This is 

due to the very large sample size and as such we were willing to accept the high error rate. 

  Observed  

 
 

0 1 

Pr
ed

ic
te

d 0 82.5% 17.5% 

1 17.5% 82.5% 

Table 2. Contingency analysis of observed SAV versus model predicted SAV. 

 

Evaluation of Management Scenarios 

Increasing water surface elevations led to increases in the areal extent of submersed 

vegetation and vice-versa (Table 3).  However, lake surface area and water surface elevation 

(WSE) were also highly correlated (R-squared = 0.984; Figure 13). Consequently, within 

the range of WSE levels envisioned in the management scenarios, little change in percent of 

surface with submersed vegetation coverage was predicted by my model (Table 3). The 
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overall relationship observed between WSE and SAV as a percentage of lake surface area 

cover was somewhat parabolic, particularly when the extreme scenarios were included. In 

general though, increases in surface elevations above SLL -26 (the lowest realistic lake 

level) led to increases in vegetation cover (Figure 14, Table 3). These increases were modest 

for the realistic scenarios, but more substantial in the extreme case. Median depth for the 

vegetation declined with increasing WSE (Figure 14) as might be expected. 

 

Figure 13. Regression of lake area as a function of depth derived by raster analysis and used 
to predict lake area at raised water level scenarios for percent SAV cover estimations.  

 

 

 

 

 

 

y = 1029.7x + 10312 
R² = 0.9844 

8600

8800

9000

9200

9400

9600

9800

10000

10200

10400

-2 -1.5 -1 -0.5 0

La
ke

 A
re

a 
(a

cr
es

) 

Change in Depth (m) 

Lake area (acres) as a function of depth 



36 

 

Scenario 
Name WSE (m AMSL) WSE Change 

(m) 
Lake Area 

(acres) % Cover SAV  Acres SAV 

SLL +60 353.04 1.5 11856 21.67 2569 
SLL +1 351.8 0.03 10340 13.69 1416 

SLL 351.77 0 10216 13.75 1405 
SLL -9 351.54 -0.23 10097 13.28 1341 

SLL -18 351.09 -0.46 9943 13.08 1301 
SLL -26  350.89 -0.66 9801 13.02 1276 
SLL -60  350.04 -1.5 8731 13.61 1188 

Table 3. Summary of predicted lake areas and lake-wide percent cover of SAV under model 
scenarios.  

 

 

Figure 14.  Predicted lake-wide percent cover versus changes in depth (m).  

 

y = 1.7147x2 + 2.6466x + 13.808 
R² = 0.9981 

0

5

10

15

20

25

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

%
 S

AV
 C

ov
er

 

Change in Depth (m) 

Predicted Lake-wide % SAV Cover with Change in Depth 



37 

 

 

Figure 15. Predicted median depth (m) of SAV versus lake level change. The median depth 
is corrected for the associated change in lake-level for each scenario. 

 

The mapped baseline SAV model output is displayed in Figure 15. Maps of all 

modeled SAV scenarios can be found in Appendix A.  
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Figure 16. Predicted presence/absence map of submerged aquatic vegetation on Higgins 
Lake at baseline conditions (water-level at summer legal level, 351.773m AMSL). 
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Discussion 

The results of my vegetation model indicate that for the lake-level management 

scenarios which are under debate by residents and stakeholders (SLL +1, SLL -9, SLL -18 

and SLL -26) there would not be significant change to the distribution and areal cover of 

SAV on Higgins Lake. This is likely due to the morphometry of the lake; there is available 

area for the vegetated zone to shift up or down in conjunction with lake levels, and this is 

what the model suggests will occur.  Relative to the baseline SAV model scenario, the 

model predicts declines in percent cover of vegetation of the lake (corrected for lake area at 

that water level) for the lower water level scenarios as well as the slightly higher water level 

scenario (SLL +1), with the maximum change (a loss of 0.73 percent cover, or 128.4 acres) 

occurring with the lowest (dam removal) lake level scenario. Under these four scenarios, the 

predicted areal extent of SAV ranges from 1,276 to 1,416 acres with increasing lake levels. 

These potential changes to aquatic vegetation are likely insufficient to measurably effect 

fisheries habitat on the lake (Wiley et al., 1984). 

Both the mean and the median depths of SAV predicted by the model follow similar 

trends. The median was selected to summarize potential changes to depth to avoid influence 

from outliers. The predicted changes in depth of SAV change in accordance with changes in 

depth; raising the water level results in predicted SAV distribution moving up to more 

shallow water and vice-versa.  

It is important to note that for the above four scenarios, there are two types of 

proposed lake-level elevations changes: managed and unmanaged lake-levels. The SLL -9 

and SLL + 1 represent proposed water level management scenarios; that is, the dam would 

be managed to maintain these water levels. The other scenarios SLL-18 and SLL -26 
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(leaving all the dam gates open and removing the dam, respectively), represent unmanaged 

levels. That is, the actual lake-level under these scenarios would be determined by the 

hydrologic water balance, and will vary depending on short-term (seasonal) and long-term 

(climatic) events. Quantification of these unmanaged water levels will be evaluated by 

Michigan State University’s hydrologic modeling of the system. I have treated them here as 

equilibrium elevations for the purposes of SAV modeling. 

The SAV occurrence model over-predicted the percent cover of aquatic vegetation 

on the lake for the baseline scenario by about 2.65%, compared to the observed data. The 

model had an assessed accuracy of 82.5%; that is there was 82.5% agreement between the 

predicted value and observed value. The model was constructed so as to produce 

symmetrical errors (produce false positives and false negatives in equal proportion) as no 

advantage could be determined for a model that favored one error type. As such, the exact 

reasons as to why the model overestimates are difficult to assess precisely, but a basis for 

interpreting this is by first considering that the  model outputs can be interpreted as a 

likelihood of occurrence of vegetation at any location, based on the covariates included in 

the model.  

This over-prediction could be explained by several different factors; there may have 

been important ecological components which were limiting SAV distribution, such as 

herbivory or inter- or intra-species competition among aquatic plants. It is also possible that 

an incorporation of a variable that more directly reflects boat-wake and skiing disturbance 

could reduce the overestimation. Furthermore, substrate nutrients could be a limiting factor 

in regions of the lake. Spatially variable connections to the water table could alter patterns 

of nutrient availability (carbon, nitrogen, phosphorus), especially in conjunction with failing 
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septic systems if they exist. Although I collected and analyzed surface water quality 

information using a YSI sonde and detected no spatial variability in phytoplankton, TDS or 

turbidity, nutrient concentrations were not empirically measured in this study.  

The model outputs of the extreme high and extreme low water level scenarios (SLL 

+60 and SLL -60) were included as sensitivity tests and helped evaluate the response 

dynamics of the system. The SLL +60 test scenario shows a significant increase in percent 

cover of aquatic vegetation (a 7.92% increase equating to 1,164 additional acres above the 

baseline SLL scenario). This is likely also tied to the morphology of the lake; under the 

current lake conditions, much of the aquatic vegetation occurs at a depth that corresponds to 

the drop off area where the low-slope shoal meets the edge of the basins. It seems likely that 

the low amounts of vegetation observed on Higgins are because there is limited lake-bed 

area in the depth range that is most suited for aquatic vegetation. The model predicts that if 

the water elevation is raised drastically, much of the shelf area is now likely to experience 

SAV colonization as those regions are now at the suitable depth. Additionally, there is 

heavy human usage of the shallow shelf, which is likely negatively impacting the ability of 

vegetation to colonize those areas. The extreme low WSE model test predicted a loss of 

about 216 acres of aquatic vegetation relative to the model baseline. In areas along the drop 

off, it is reasonable to assume that aquatic vegetation extents would shift down the slope, so 

losses should not be significant in these regions. However, we can expect that in shallow 

and flat regions such as the sunken peninsula on the west side of the north basin and the 

shallow bay on the south edge of the north basin, a significant lowering of the water level 

would reduce the areas suitable for vegetation. The mapped model outputs reflect this 

(Appendix A).  
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Study Limitations 

A limitation in this study was the lack of precise estimates of lake area under raised 

water level scenarios. For lower water levels, a raster mask could be applied to eliminate 

raster cells that would represent newly exposed shore and thus a direct estimation of lake 

surface area was possible. However, topographic elevation data were not collected up onto 

shore during the survey, and the topographic raster of the lake ended at the waters’ edge. As 

a result, for the two raised water level scenarios (SLL +1, SLL +60), a direct calculation of 

lake area was not possible. Instead, a linear regression of lake area versus depth (R-squared 

= 0.984) was produced based on the lowered water level rasters, and used to extrapolate to 

higher water levels. More accurate calculations could have been made if on shore elevations 

(collected perpendicular to the waters’ edge) were collected.  

Additional limitations and/or shortcomings are associated with some of the ancillary 

data products used to develop the SAV model, in particular the fetch model and the 

sediment classification map.  

The fetch analysis did not incorporate wind speed, which if included could have 

been used to develop a relative exposure index (after Keddy, 1982) and might have more 

realistically accounted for the wind-wave conditions. The relative exposure computation 

integrates depth, wind speed and fetch (the variables required to calculate wave height) into 

an index by computing the sum across wind directions of mean monthly wind for April – 

October from each direction multiplied by the proportion of the month that the wind was 

blowing from that direction, scaled from 0 to 1, and multiplied by the fetch distance for the 

direction. 
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The fetch model developed for my research was a computation of fetch weighted by 

the frequency of wind direction along the four cardinal axes. The meteorological record 

used included data from across the entire year (January – December) which is one 

limitation, as during months of ice cover there are no waves. During the model selection 

process, a fetch divided by depth covariate was tested to account for the dissipation of wave 

velocity (and thus bottom shear stress) with depth. This covariate however, was found to 

reduce the prediction accuracy of the SAV model and was removed. A simple fetch model is 

still a useful index of wave disturbance however, since maximum predicted wave height on 

lakes is proportional to the square root of the fetch (Wetzel, 2001).  Furthermore, bed shear 

stress is a function of depth, so although a more complex wind wave model could have been 

generated, for the purposes of the empirical SAV model, depth would likely continue to 

drive model outputs. Additionally, other studies that attempt to evaluate the importance of 

wind conditions and fetch on wave-generated bottom shear stresses incorporated a single 

wind velocity in their calculations (Fagherazzi & Wiberg, 2009).  So, for example, scaling 

the Higgins fetch model by an average windspeed across the meteorological record would 

not have changed its importance when incorporated into the SAV prediction model. 

My sediment map was based on the relative intensity of the acoustic signal returns 

which serves as an index of acoustic reflectivity and therefore substrate hardness. Aquatic 

vegetation however, also tends to have high acoustic reflectivity which is thought to result 

primarily from gas within the plants (Sabo et al., 2002), and this is supported by the 

observation that more buoyant species (those with more gas) are more acoustically reflective 

(Sabol and Burczynski 1998). Because of this characteristic, locations with aquatic 

vegetation tended to be grouped in the hardest acoustic substrate class. Because acoustic 
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energy is reflected off of vegetation at a high rate, this also means there is likely sampling 

bias for delineating the substrate where vegetation is present. This fact may explain why 

substrate was not a useful covariate in the empirical model.  A further shortcoming was that 

the substrate map was ground-truthed using the MDNR Higgins Lake survey map from 

1936, but obviously could have benefited from more recent on-site sampling to confirm 

sediment class interpretations.  

 

Side-Scan Sonar 

  A tow-behind sidescan sonar unit was employed for this study as well with the 

intent to map both sediment and aquatic vegetation, but sidescan data were not incorporated 

for a few reasons. First, the output sidescan mosaics were not of high enough resolution to 

confidently delineate submerged aquatic vegetation beds. This was due to the fact that the 

unit was set to its largest range (200 m or 400 m of swath coverage). This range seemed 

necessary to get close to complete coverage of the lake given the time constraints of the 

survey. Second, there were issues associated with the drop off regions of the lake, since 

many of my survey tracks were parallel to these. The sidescan acoustic signal travels 

perpendicular to the survey vessel and can be thought of as a narrow fan extending outwards 

towards the waters’ surface and lake bottom. When there is steep or tall topography in the 

lake bottom, these features result in output mosaics that are difficult to interpret because the 

rapid change in elevation results in a compressed and intense return signal. In this setting the 

455 kHz down-scan imagery proved much more useful. However, different lake conditions 

(i.e. a lake with less extreme topographic features) might result in much better success with 

side-scan units. I also attempted to interpret side-scan data for substrate mapping using 
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Quester Tangent’s QTC Swathview automated sediment classification software. However, 

this software assumes for the image classification step that the lake bottom has little to no 

variation in topography, and so again the steep slopes in Higgins Lake along the drop off 

regions compromised data interpretation. 

 

Useful Software Packages 

 A number of useful software packages were employed for this study, although two 

of these were purchased by larger companies and are no longer available for purchase 

(DrDepth and UnderSee Explorer). SonarTRX (Leraand Engineering Inc.) was a very cost 

effective solution for use with Navitronic’s file formats, and allows for easy export of 

downscan and sidescan imagery mosaics. I also used both Chesapeake Technology’s 

SonarWiz 5 and Quester Tangent’s QTC Swathview to process the sidescan data. These are 

both excellent software packages and are considered industry standards, but they are cost 

prohibitive. 

 

Conclusions 

My goals in this thesis research were (1) to collect and use hydroacoustic data from 

several different sonar systems to evaluate the bathymetry and spatial distribution of 

submerged aquatic vegetation on Higgins Lake; and (2) to generate a predictive SAV model 

that could be used to quantify how areal extents of vegetation might change in response to 

changes in lake-level management.  

As to the first goal, hydroacoustic survey proved a very effective way to map the 

bathymetry and submersed aquatic vegetation on Higgins Lake. Hydroacoustic methods are 
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less time consuming when compared to traditional lake-survey methods, and the data 

analysis can be automated. The image analysis scripts I developed were very effective at 

accurately capturing aquatic vegetation, but did require a very significant effort to run and 

validate and this should be considered for those attempting similar methods.  Commercial 

packages which combine hardware and software are available (BioSonics Aquatic Habitat 

Echosounder, http://www.biosonicsinc.com/product-mx-habitat-echosounder.asp) which 

will produce bathymetric maps, classify substrate, and map submersed aquatic vegetation in 

real-time.  

As to the second goal, the predictive model had high output accuracies and 

compared very well with the observed SAV found on the lake.  Agreement between the 

baseline model output and the observed SAV provides strong confidence in my prediction 

of changes to SAV at different lake level management scenarios. Also, due to the fact that 

depth and light were the driving factors in the empirical model, it is likely that this model 

could be applied to other lakes with good success.   

 

 

 

 

 

 

 

 

 

http://www.biosonicsinc.com/product-mx-habitat-echosounder.asp
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Appendix A  

SAV Model Outputs 

 

Figure 17. Model output scenario SLL +60. This scenario is a sensitivity test to determine 
how the dynamics of the system respond to an extreme high water level. SLL +60 stands for 
Summer Legal Level plus approximately 60 inches of water surface elevation.   
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Figure 18. Model output scenario SLL +1. This scenario represents the highest water level 
achievable if all the dam gates and stop logs are up and in closed positions.  SLL +1 stands 
for Summer Legal Level plus approximately 1 inch of water surface elevation.   

 



49 

 

 

Figure 19. Model output scenario SLL -9. This scenario represents a proposed lower water 
level.  SLL -9 stands for Summer Legal Level minus approximately 9 inches of water 
surface elevation.   

 

 
 
 



50 

 

 

Figure 20. Model output scenario SLL -18. This scenario represents the lowest achievable 
water level by fully opening all gates and stop logs on the dam. This scenario assumes no 
modification to the dam structure.  SLL -18 stands for Summer Legal Level minus 
approximately 18 inches of water surface elevation.   
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Figure 21. Model output scenario SLL -26. This scenario represents an unobstructed 
opening at the Cut River, which would require removal of the dam. SLL -26 stands for 
Summer Legal Level minus approximately 26 inches of water surface elevation.   
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Figure 22. Model output scenario SLL -60. This scenario is a sensitivity test to determine 
how the dynamics of the system respond to an extreme low water level. SLL -60 stands for 
Summer Legal Level plus approximately 60 inches of water surface elevation.   
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Appendix B 

MATLAB Image Analysis Scripts 

 
files = dir('E:\Higgins_Lake\VegMap\SonarTRX-16AUG12LOW-20140525-
134342\Images-SpeedCorrected\*.PNG'); 
numfiles = numel(files); 
for z = 1:numfiles 
    origImage = imread(files(z).name);  
    %origImage = imread('T-SpeedCorrected-007CD-16AUG12LOW.png'); 
    origImage = origImage(:,:,1); 
    [row,col] = size(origImage); 
    
    %replaces first fraction of columns with zeros, based on mask size, to 
avoid surface noise in image analysis 
    mask = round(0.10*col);  
    origImage(:,1:mask) = 0; 
     
    %median filter applied 
    a = 3; 
    filtI = medfilt2(origImage, 'indexed', [a a]); 
    maxImage = max(filtI,[],2); 
    %convert to double 
    filtIdbl = im2double(filtI); 
    maxIdbl = im2double(maxImage); 
    %normalize every column by its maximum value so that bottom return is 
255 
    normIdbl = bsxfun(@rdivide, filtIdbl, maxIdbl)*255; 
    normI = uint8(normIdbl); 
  
    %Assigning variables to Correct Max Value locations to ensure bottom 
continuity 
    [mx, indx] = max(normI,[],2); 
    mx = mx'; 
    indx = indx'; 
    mxindx = [int16(indx); uint8(mx)]; 
    lengthmx = length(mxindx); 
    B = size(indx); 
    bottomsafe = zeros(B, 'uint16'); 
    n = 3; 
  
    %Use surrounding neighbor location of reported bottom to correct 
    %for outliers if present. Does not correct for a long 
    %string of errors. 
    for i = 1 
        %Columns on the edge of image are set to innner neighbor pixel 
        %value to avoid filtering edge effects 
        bottomsafe(i,1) = mxindx(1,3);  
        bottomsafe(i, lengthmx) = mxindx(1,lengthmx-2);  
        for j = 2:1:lengthmx-1 
            if abs(mxindx(i,j+1) - mxindx(i,j))>=n && abs(mxindx(i,j-1) - 
mxindx(i,j))>=n 
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                bottomsafe(i,j) = (mxindx(i,j+1) + mxindx(i,j-1))/2; 
            else 
                bottomsafe(i,j) = mxindx(i,j);    
            end   
        end 
    end   
     
    %Defines variables to begin for loop to search above max values 
    vegArray = zeros(size(origImage), 'uint8'); 
    sznI = size(normI,1); 
    b = 225; %bottom  
    w = 85;  %water column 
     
    %searches above max values for veg.  
for k = sznI:-1:1 
        for m = bottomsafe(1,k):-1:1; 
             
              if normI(k,m)>=b  
                  vegArray (k,m) = 255; 
     
              elseif normI(k,m)>=w && normI(k,m)<b && normI(k,m-1)>=w && 
normI(k,m-1)<b; 
                  vegArray (k,m) = 128; 
                   
              elseif normI(k,m-1)<w && normI(k,m-2)<w && normI(k,m-3)<w; 
                  vegArray (k,m)=0; 
                  break  
                   
              else  
                  vegArray (k,m)=0; 
              end 
  
        end 
end 
  
%Extract pertinent info to form vegArray  
%(Veg pres, # pixels to veg, # pixels to bottom, # pixels in veg) 
ind1 = vegArray == 128; %report as 1 when value 128 present, 0 otherwise 
TopVeg = [rem(sum(~cumsum(ind1'))+1,1+size(ind1,2))']; 
TopVeg = flip(TopVeg); 
vegYorN = nonzeros(TopVeg); 
  
Output = zeros(lengthmx, 5); 
[maxV, maxVI] = max(vegArray, [],2); 
maxVI = flip(maxVI); 
Output (:,1) = 1:lengthmx; %column 1 is index  
Output(:,2) = maxVI; %column 2 is # pixles to bottom 
Output(:,4) = TopVeg(:,1);  %column 4 is top of vegetation  
Output(:,5) = (Output(:,2)-Output(:,4)); % column 5 is height of 
vegetation 
  
%column 3 is Veg Prescence (Y or N as 1 or 0) 
for p = 1:1:sznI 
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    for q = 4 
        if Output(p,q) == 0; 
            Output(p,3) = 0; 
            Output(p,5) = 0; 
        else  
            Output (p,3) = 1; 
        end 
    end     
end  
  
%write outputfile  
  
%filename_out = 
['C:\Users\alayman\Desktop\Higgins\Matlab\Batch_test\16AugLOW_speedCorrect
ed_sample\',files(z).name(1:end-4),'_vegOUT.csv']; 
filename_out = ['E:\Higgins_Lake\VegMap\SonarTRX-16AUG12LOW-20140525-
134342\Images-SpeedCorrected\',files(z).name(1:end-4),'_vegOUT.csv']; 
dlmwrite(filename_out, Output); 
  
csvwrite(VegOut, Output); 
  
% figure(1), imshow(vegArray) 
% figure(2), imshow(origImage) 
% figure(3), imshow(normI) 
  
end  
  
%http://www.mathworks.com/matlabcentral/newsreader/view_thread/115013 
  
%http://www.mathworks.com/matlabcentral/newsreader/view_thread/139387 
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MATLAB Geographic Calculations Scripts 

files = dir('E:\Higgins_Lake\VegMap\SonarTRX-16AUG12LOW-20140525-
134342\Images-SpeedCorrected\test\*.CSV'); 
numfiles = numel(files); 
PyFile = dir('E:\Higgins_Lake\VegMap\SonarTRX-16AUG12LOW-20140525-
134342\*.CSV'); 
PyFile = csvread(PyFile.name); 
  
 for z = 1:1%numfiles 
     M = csvread(files(z).name); 
     %M = csvread('T-SpeedCorrected-000CD-16AUG12LOW_vegOUT.csv'); 
     lenM = length(M); 
       
     %Place start and end lat and long from Python Output at beginning and 
     %ending of each image 
     M(1,6) = PyFile((z*2)-1,2); 
     M(1,7) = PyFile((z*2)-1,1); 
     M(lenM,6) = PyFile((z*2),2); 
     M(lenM,7) = PyFile(z*2,1); 
      
     %Convert start/end lat and long to radians 
     Alpha_lat_rad = M(1,6)*pi/180 ; 
     Alpha_lon_rad = M(1,7)*pi/180 ; 
     Omega_lat_rad = M(lenM,6)*pi/180 ; 
     Omega_lon_rad = M(lenM,7)*pi/180 ; 
     Alar = Alpha_lat_rad ; 
     Alor = Alpha_lon_rad ; 
     Olar = Omega_lat_rad ; 
     Olor = Omega_lon_rad ; 
      
     %Place start and end lat and long from Python Output at beginning and 
     %ending of each image (radians) 
     M(1,6) = Alar; 
     M(1,7) = Alor; 
     M(lenM,6) = Olar; 
     M(lenM,7) = Olor; 
      
     
     %Haversine formula to calc distance between start/end coordinates 
     R = 6378.137; %What google folks uses as Earth's mean radius (km). 
Also anything in the range between this and 6371 is acceptable 
     a = sin((Olar-Alar)/2)^2 + cos(Alar) * cos(Olar) * sin((Olor-
Alor)/2)^2; 
     c = 2*atan2(sqrt(a), sqrt(1-a)); 
     d = c*R; %distance in km between coordinates 
      
     %Bearing Calc in radians 
     bear = atan2(sin(Olor-Alor)*cos(Olar), cos(Alar)*sin(Olar)-
sin(Alar)*cos(Olar)*cos(Olor-Alor)); 
      
     %Distance per ping (actually, distance per number of rows in each 
     %image) in km 
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     Dpp = d/lenM; 
      
     %writes to CSV file the interpolated lat and long (radians) for each 
row of 
     %image; that is, given a start point, initial bearing and distance, 
     %calculates each "desitnation" point (and final bearing, if deemed 
     %necessary) when travelling along a shortest distance great circle 
     %arch (http://www.movable-type.co.uk/scripts/latlong.html) 
     for i = 2:lenM-1 
         M(i,6) = asin(sin(M(i-1,6))*cos(Dpp/R)+cos(M(i-
1,6))*sin(Dpp/R)*cos(bear)); %next lat coor 
         M(i,7) = M(i-1,7) + atan2(sin(bear)*sin(Dpp/R)*cos(M(i-1,6)), 
cos(Dpp/R)-sin(M(i-1,6))*sin(M(i,6)));%next long coor 
     end 
      
     %converts final output to lat and long from radians 
     for j = 1:lenM 
         M(j,6) = M(j,6)*180/pi; 
         M(j,7) = M(j,7)*180/pi;  
     end 
      
    filename_out = ['E:\Higgins_Lake\VegMap\SonarTRX-16AUG12LOW-20140525-
134342\Images-SpeedCorrected\test\',files(z).name];%(1:end-
4),'_vegOUT_fin.csv'];    
    dlmwrite(filename_out, M,'precision','%.13f');  %rewrites output file 
with lat and long now included, and set to 13 decimel places 
end  
  
  
 
%Py = csvread('E:\Higgins_Lake\VegMap\SonarTRX-16AUG12LOW-20140525-
134342\*.CSV'); 
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