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Abstract Hydrologic and geomorphic responses of watersheds to changes in climate are difficult to assess
due to projection uncertainties and nonlinearity of the processes that are involved. Yet such assessments are
increasingly needed and call for mechanistic approaches within a probabilistic framework. This study employs an
integrated hydrology-geomorphology model, the Triangulated Irregular Network-based Real-time Integrated
Basin Simulator (tRIBS)-Erosion, to analyze runoff and erosion sensitivity of seven semiarid headwater basins
to projected climate conditions. The AdvancedWeather Generator is used to produce two climate ensembles
representative of the historic and future climate conditions for the Walnut Gulch Experimental Watershed
located in the southwest U.S. The former ensemble incorporates the stochastic variability of the observed
climate, while the latter includes the stochastic variability and the uncertainty of multimodel climate change
projections. The ensembles are used as forcing for tRIBS-Erosion that simulates runoff and sediment basin
responses leading to probabilistic inferences of future changes. The results show that annual precipitation for
the area is generally expected to decrease in the future, with lower hourly intensities and similar daily rates. The
smaller hourly rainfall generally results in lower mean annual runoff. However, a non-negligible probability of
runoff increase in the future is identified, resulting from stochastic combinations of years with low and high
runoff. On average, the magnitudes of mean and extreme events of sediment yield are expected to decrease
with a very high probability. Importantly, the projected variability of annual sediment transport for the future
conditions is comparable to that for the historic conditions, despite the fact that the former account for a
much wider range of possible climate “alternatives.” This result demonstrates that the historic natural climate
variability of sediment yield is already so high, that it is comparable to the variability for a projected and highly
uncertain future. Additionally, changes in the scaling relationship between specific sediment yield/runoff
and drainage basin area are detected.

1. Introduction

Soil erosion due to rainfall detachment and flow entrainment of soil particles are physical processes governing
the continuous evolution of landscapes in many regions of the world. Most of their controlling factors, such as
climate, hydrologic regime, geomorphic characteristics, soil type, and vegetation cover, are interrelated at
the hillslope-watershed scales and determine soil erosion magnitude and its variations in space and time
[Istanbulluoglu, 2009a, 2009b; Nunes and Nearing, 2010]. Among these controls, climate is an external factor
that plays the key role in the dynamics of the erosion process. Given the overall complexity of the processes
that are involved, the relationship between basin erosion rates and climate is not straightforward to
capture [Favis-Mortlock and Boardman, 1995; Imeson and Lavee, 1998; Pruski and Nearing, 2002a, 2002b;
Nunes and Nearing, 2010; Mullan, 2013]. While soil erosion rates are expected to change in response to
climate perturbations, these changes can be highly nonlinear and catchment specific, making any
generalization difficult [Coulthard et al., 2012; Nunes et al., 2013].

A significant body of research has been carried out on impacts of climate on landscapes and many studies
have clearly shown the strong influence of climate on basin sediment yields [Langbein and Schumm, 1958;
Walling and Kleo, 1979; Roering et al., 2001; Zhang et al., 2001; Nunes and Nearing, 2010; Chen et al., 2011; Naik
and Jay, 2011; Phan et al., 2011; Coulthard et al., 2012; Nunes et al., 2013; Shrestha et al., 2013] and landscape
morphology [Hack and Goodlett, 1960; Osterkamp et al., 1995; De Boer and Crosby, 1996; Goodrich et al., 1997;
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Dedkov, 2004; Birkinshaw and Bathurst, 2006; Lane, 2013]. Given the general paucity of sediment transport
and erosion observations and the importance of analyzing projections for the future, numerical modeling
is an appropriate approach for investigating complex climate-hydrology-geomorphology interactions
[Martin and Church, 2004; Nunes and Nearing, 2010; Martin, 2013]. By incorporating the capability to describe
multiple physical processes that are difficult to quantify in an experimental setting, numerical models, when
successfully calibrated and confirmed, can alleviate problems associated with small-scale experiments or
sparse observations. A number of modeling studies have been developed to explore the impacts of climate
change on basin sediment response for a range of time and space scales, and examples of the approaches
and limitations are presented by Coulthard et al. [2012], Mullan et al. [2012], and Nunes et al. [2013]. Early
studies typically focused on hillslope erosion [Favis-Mortlock and Savabi, 1996; Favis-Mortlock and Guerra,
1999; Nearing, 2001; Pruski and Nearing, 2002a; Nearing et al., 2005] and clearly demonstrated that soil erosion
can respond both to changes in the total amount of rainfall and rainfall intensity [Pruski and Nearing, 2002a;
Römkens et al., 2002; Nearing et al., 2005; Nunes and Nearing, 2010]. Such studies have been primarily based
on the Water Erosion Prediction Project (WEPP) soil erosion model [Nearing et al., 1989; Laflen et al., 1991].
For example, Favis-Mortlock and Guerra [1999] used Global Circulation Model (GCM) climate projections to
investigate changes in erosion rates. Pruski and Nearing [2002a] forced the WEPP model with hypothetical
fractional changes of annual rainfall for a combination of soils, slopes, and crop types for several locations.
Similarly, Pruski and Nearing [2002b] and O’Neal et al. [2005] applied the WEPP model to investigate potential
changes in soil erosion rates in the Midwestern U.S. using synthetic daily climatology generated with the
stochastic weather generator CLImate GENeration (CLIGEN) [Nicks and Gander, 1994] and downscaled GCM
projections. Zhang [2007] tested the impacts of different downscaling methods on WEPP predictions, pointing
out the importance of appropriate GCM projection downscaling. Using long-term climate scenarios of daily
climate series, Kim et al. [2009] applied CLIGEN and the WEPP model to investigate the sensitivity of erosion
process to precipitation representation. Mullan [2013] applied the WEPP model to six case study hillslopes in
Northern Ireland using a Statistical Downscaling Model [Wilby and Dawson, 2007], demonstrating a potential
increase in soil erosion in future climate conditions.

Modeling applications using various catchment-scale models have led to inferences regarding larger-scale
process interactions. For example, erosion has been shown to be more sensitive to changes in rainfall
intensity rather than rainfall amount, especially in semiarid and arid regions [Nearing et al., 2005; Nunes and
Nearing, 2010], where sparse vegetation (mainly in the form of shrubs) does not effectively shield soil from
the erosive action of rain [Riebe et al., 2001]. Chaplot [2007] applied an erosion component of the Soil and
Water Assessment Tool (SWAT)model [Neitsch et al., 2002] to twowatershedswith humid and semiarid climates
using synthetic series that assumed an amplification of observed rainfall. Nunes et al. [2008] applied the SWAT
model to two groups of watersheds in Portugal with humid and semiarid climates using CLIGEN to simulate the
projected temperature increase and a rainfall decrease in the area, pointing to rainfall changes as the main
driving force to alter soil erosion regime. Nunes et al. [2013] used climate projections to explore the impacts on
basin saturation deficit and vegetation cover affecting erosion processes and sediment yield with the MEFIDIS
(Modelo de Erosão FÍsico e DIStribuído – Spatially Distributed Physical ErosionModel) model [Nunes et al., 2005],
demonstrating that the process interplay can offset positive response to increasing rainfall rates and exhibit
scale dependence. Routschek et al. [2014] used a comprehensive EROSION 3D model [von Werner, 1995] to
quantify the impact of climate change on soil loss at a catchment scale at high temporal and spatial resolution.
Climate forcing for the period of 2031–2050 was generated with the WETTREG (weather situation-based
regression method – in German: WETTerlagen-basierte REGressionsmethode) [Enke and Spekat, 1997; Enke
et al., 2005], which is a statistical downscaling method able to generate precipitation with high resolution
(including extreme rainfall events) from GCMs outputs. Simulations with EROSION 3D showed that the impact
of expected increase of precipitation intensities leads to a significant increase of soil loss.

Some of the limitations of the above studies include coarse spatial resolutions, possibly because of the need to
deal with computational challenges, thereby obscuring the significance of the controlling effect of topography
[Kim et al., 2013; Kim and Ivanov, 2014]. Importantly, most of the climate change impact studies treated
rainfall process overly simplistically, typically using daily events with the exceptions of studies by Routschek
et al. [2014] and by Coulthard et al. [2012] (see below). Since the process of erosion is strongly and nonlinearly
affected by the higher percentiles of rainfall intensity and magnitude (i.e., extreme events), higher-resolution
characterization of rainfall is warranted for climate impact assessment studies [e.g., Mullan et al., 2012].
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At the other end of the spectrum, landscape evolution models (LEMs) were designed to examine connections
between geomorphic processes and resulting landforms. The main limitation of LEMs is that they represent
climate over long time scales (millennial scales), often in terms of mean magnitudes of precipitation
and temperature [e.g., Tucker and Slingerland, 1997; Tucker and Bras, 2000; Tucker et al., 2001a; Temme et al.,
2009; van Balen et al., 2010], thereby ignoring details of the coupled hydrogeomorphic response to extreme
rainfall. Only few LEMs operating at intermediate time scales have been adapted to integrate a more
sophisticated representation of hydrological processes [Hancock et al., 2011]. For example, CAESAR [Coulthard
et al., 2002, 2005] introduced a topography-driven, quasi steady state description of the hydrological
response. The model has been used for a variety of temporal scales, from millennial [Coulthard and Macklin,
2001; Van De Wiel et al., 2007] and centennial [Welsh et al., 2009], to storm event scales [Hancock and
Coulthard, 2012].

As mentioned, one notable exception to the major body of research on climate change impacts on
hydrogeomorphic processes is a study by Coulthard et al. [2012]. Specifically, this study for the first time
explicitly recognized that errors in climate change projections (with a resultant “cascade” propagation) and
the short observational records representing historical dynamics cause large uncertainties in characterizing
both high- and low-order moment properties of erosion and sediment transport characteristics. Coulthard
et al. [2012] therefore chose a stochastic approach for representing both the historic conditions and the
future, which allowed an evaluation of the effects of climate change on watershed geomorphic response in
probabilistic terms. Hourly “baseline” (historic) and multiple climate projection rainfall scenarios were
generated with a weather generator [Murphy et al., 2009] to drive the CAESAR model. When applied to a
midsize catchment in UK, their results demonstrated that a large fraction of projection uncertainty can be
related to natural variability, also demonstrating a possible amplification of extreme runoff and erosion
responses to climate change.

Another compounding problem in generalization of climate change impacts is that the basin geomorphic
regime may exhibit scaling properties with catchment dimension. Several field studies suggested that
sediment yield per unit area and sediment delivery ratio decrease as the basin area grows, following a power
law with an exponent ranging between�1 and 0 [Walling, 1983;Morris and Fan, 1998; Lu et al., 2005; Parsons
et al., 2006; de Vente et al., 2007]. This inverse relationship can be explained by a decrease in slope and
channel gradients, and hence in energy for sediment transport, as the basin size increases [Birkinshaw and
Bathurst, 2006]. Similarly, as the distance between hillslope sediment sources and channels grows, so does the
chance of deposition occurrence in wide valley floors and channels bars [Birkinshaw and Bathurst, 2006]. Still, a
number of recent studies have indicated that the relationship between sediment yield and basin scale is
complex because, unlike transport capacity, supply conditions may not change in a straightforward manner
with basin scale [e.g., De Boer and Crosby, 1996; Dedkov, 2004].

Similar to the approach of Coulthard et al. [2012], this research stems from the understanding that any
characterization of change of hydrogeomorphic states and fluxes should account for the variability of both
the historic conditions as well as uncertainties associated with projections of the future. The study focuses
on the U.S. Southwest, which is projected to become drier in the decades to come, with an overall increase
of temperature and an increase of mean annual precipitation with less frequent rainfall events but of
higher intensity [Easterling et al., 2000; Christensen et al., 2007; Seager, 2007; Seager et al., 2007]. While the
region is expected to become drier on average, the warmer atmosphere can create conditions that
potentially could lead to larger and more frequent floods by causing more intense, heavy rainfall events
[Fowler and Hennessy, 1995; Intergovernmental Panel on Climate Change, 2007; Kunkel et al., 2010; Wang et al.,
2010]. The specific objective of this study is to investigate the effect of projected future climate conditions on
mean and extreme runoff and sediment yield for semiarid watersheds of zeroth to first order, accounting for
the uncertainty related to climate change predictions as well as stochastic climate variability. The spatially
distributed, process-based hydrological model tRIBS, the Triangulated Irregular Network (TIN)-based Real-time
Integrated Basin Simulator [Ivanov et al., 2004a, 2004b], is used in combination with its integrated geomorphic
component, tRIBS-Erosion [Francipane, 2010; Francipane et al., 2012]. Climate forcing scenarios for historical
and future conditions are generated using the Advanced Weather Generator (AWE-GEN) and a stochastic
downscalingmethodology [Fatichi et al., 2011, 2013]. Climate scenarios are used as input to themodel that is
applied to a set of nested headwater basins in theWalnut Gulch Experimental Watershed (WGEW) [Goodrich
et al., 2008b; Nearing et al., 2008] to yield probabilistic descriptions of basin responses to climate change in
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terms of runoff and sediment yield. Moreover, since the approach is applied to basins different in size but
similar in morphology, climate, and vegetation, the influence of climate change on scaling relationships of
runoff and specific sediment yield with drainage area is also investigated.

2. Study Catchments

Climate, hydrology, digital elevation model (DEM), and land use data were combined for seven headwater
basins nested within the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona, USA
(31.7166°N, 110.6833°W) [Renard et al., 1993; Ritchie et al., 2005; Goodrich et al., 2008b; Nearing et al., 2008;
Francipane et al., 2012]. These watersheds are identified by a three-digit code (i.e., Basin 102, Basin 104,
Basin 105, Basin 106, Basin 121, and Basin 125), with the exception for Basin 101-103, which is composed of
Basins 101 and 103. Their areas range between 0.26 and 6.7 ha and elevation ranges between 1334 and
1388mabove sea level (asl; Figure 1). Basins 101-103, 102, 104, 105, and 106 are adjacent (Figure 1), while
Basins 121 and 125 are located about 2 km farther south. Most of the catchments exhibit morphology with
steeper slopes in the middle of the flow path. Slopes range between 0% and 44.29% (24°). Climate,
vegetation, and soil type are very similar and assumed to be identical for all basins.

Average annual precipitation for the period 1956–2005, calculated as the average of total rainfall at six rain
gauges distributed over the entire basin [Goodrich et al., 2008a, 2008b], is approximately 312mm, 60% of
which falls during the summer monsoon between July and September [Goodrich et al., 2008a, 2008b].
Runoff regime is typical of many semiarid regions, where channels are dry for most time of the year.
Typically, streamflow occurs as a result of intense thunderstorm rainfall, flood peaks arrive very quickly after
the start of runoff generation, and runoff duration is short (e.g., from 40min for the smaller watersheds to
over 300min for the large watersheds [Stone et al., 2008]). Runoff is produced by the infiltration-excess
mechanism [Francipane et al., 2012]. The mean annual temperature is 18°C, with average monthly
maximum temperatures of 35°C in June and average monthly minimum temperatures of 2°C in December.
Vegetation in the area is dominated by desert shrub and semiarid rangeland plants. The dominant
vegetation types are creosote bush (Larrea tridentada, shrub) with 2–5m spacing and whitethorn (Acacia
constricta, shrub). Desert zinnia (Zinnia acerosa, shrub), tarbush (Flourensia cernua, shrub), and black grama
(Bouteloua eriopoda, grass) are present but less frequent. Larger creosote shrubs are about 1m tall and can be
characterized by spatially averaged leaf area index of 0.4 [Flerchinger et al., 1998; Fatichi et al., 2012]. Canopy
cover during the rainy season is approximately 25–35% [Weltz et al., 1994; King et al., 2008; Skirvin et al.,
2008]. The dominant soil type is the McNeal gravelly sandy loam (60% sand, 25% silt, and 15% clay) with
approximately 25% of rock fragments in the surface layer [Francipane, 2010]. The range in rock fragments
(>2mm) for the 0–25 cm soil layer is between 18% and 59% [Ritchie et al., 2005]. Table 1 reports a summary of
the principal characteristics of the catchments. For each basin, a DEM with a grid resolution of 10m×10m
has been downloaded from the official WGEW website. All of the data used in this study are available at
http://www.tucson.ars.ag.gov/dap/.

3. Models, Data, and Methods
3.1. tRIBS: Hydrological Model

The TIN (Triangulated Irregular Network)-based Real-time Integrated Basin Simulator, tRIBS [Ivanov et al., 2004a,
2004b], is a hydrological model that reproduces essential hydrologic processes in a river basin. The watershed
topography is represented using a multiple-resolution approach based on TIN. The model uses a Voronoi
polygon network (VPN), which offers a flexible computational structure reducing the number of computational
elements without a significant loss of information [Vivoni et al., 2004]. This permits the simulation of basin
hydrological processes at very fine temporal (minutes to hour) and spatial (10–100m) resolutions, stressing the
role of topography in lateral soil moisture redistribution, by accounting for the effects of heterogeneous and
anisotropic soil. A brief outline of the implemented process parameterizations is provided in the following:

1. Precipitation interception is simulated with the Rutter canopy water balance model [Rutter et al., 1972,
1975] at the hourly time step. Canopy characteristics can vary for different vegetation types and are
assigned based on values published in literature.

2. Surface energy budget is simulated at each computational element at the hourly scale accounting for
shortwave and longwave radiation components that depend on geographic location, time of year,
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aspect, and slope of the element surface. The Penman-Monteith evapotranspiration model [Penman,
1948; Monteith, 1965], the gradient method [Entekhabi, 2000], and the force-restore ground heat flux
approach [Lin, 1980; Hu and Islam, 1995] are used to estimate the latent, sensible, and ground heat fluxes
at the land surface.

3. For simulating the process of infiltration, an assumption of gravity-dominated flow in a sloped column
of heterogeneous, anisotropic soil is used, so that the effect of capillary forces is approximated [Ivanov
et al., 2004b]. The model of infiltration process simulates the evolution of wetting fronts that may lead
to unsaturated, perched groundwater and completely saturated states. The first two cases represent
states when the soil infiltration capacity is not constrained by the conductivity at the surface. The
surface-saturated state is generated when the soil’s infiltration capacity is constrained by the entire
saturated profile.

Figure 1. Digital elevation models (DEMs) of study basins. Grid resolution equals to 10 × 10m. Headwater areas of Basins 101-103, 102, 104, 105, and 106 are
adjacent. Basins 121 and 125 are located about 2 km farther south.
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4. The groundwater dynamics are modeled based on the Boussinesq equation under the Dupuit-Forchheimer
assumptions for lateral flows in the saturated zone [e.g., Freeze and Cherry, 1979, p. 180], allowing
for lateral water redistribution in the saturated zone and its dynamic interactions with the
unsaturated zone.

5. Runoff generation is made possible via four mechanisms: saturation excess, infiltration excess, perched
subsurface stormflow, and groundwater exfiltration. Runoff is generated by representing the movement
of infiltration fronts, water table fluctuations, and lateral moisture fluxes in the unsaturated and saturated
zones. The computed runoff is used as input to the hydrologic (hillslope) and hydraulic (channel) flow
models. Runoff flows along the edges of the watershed TIN in accordance with predetermined drainage
directions (gradient of topographic surface).

6. A snowpack dynamic model [Rinehart et al., 2008] permits the simulation of energy and mass budgets of
snow-covered areas.

A full detailed description of the processes modeled in tRIBS is given in Ivanov et al. [2004b], while a
discussion of the model performance is provided in Ivanov et al. [2004a].

3.2. tRIBS-Erosion: Geomorphic Component

The geomorphic component of tRIBS [Francipane et al., 2012] formulates sediment flux equations for the
processes of rainfall detachment and sheet erosion entrainment, combined with the continuity of mass to
compute sediment dynamics across the landscape. The rate of change in landscape elevation, ∂z/∂t, is
assumed to be equal to a smaller value of local detachment/entrainment capacity and divergence of
sediment flux (i.e., the excess sediment transport capacity [Tucker and Slingerland, 1997; Tucker et al.,
2001b]):

∂z
∂t

¼ �Min Dc;∇qs½ �; (1)

where Min is the minimum operator, Dc [L/T] is the detachment/entrainment capacity, qs [L
3/LT] is the

sediment load of overland flow, and ∇ is the divergence operator, i.e., the sediment transport capacity
less the sum of incoming sediment fluxes, qt, at a given location. The term Dc combines the capacities for
sediment detached due to raindrop impact (rain splash) and sediment entrained in sheet overland flow.
The rate of soil detachment due to raindrop impact energy, DR [M/L2T], is modeled with a conceptual
approach of Wicks and Bathurst [1996], in which rain action is split between the effects of direct raindrop
impact and that of leaf drip:

DR ¼ krFw CRMR þ CDMD½ �; (2)

where kr [1/J ] is the raindrop soil erodibility and Fw is the shield effect of surface water. The variablesMR [M
2/T3]

and MD [M2/T3] are the rainfall drop impact squared momentum and the leaf drip squared momentum,
respectively [Salles et al., 2000; Styczen and Høgh-Schmidt, 1988], used to represent splash of soil particles
into the air. The variables CR and CD are weighted areal fractions that quantify the direct raindrop and leaf drip
impacts on rain splash detachment. The fraction CR is modeled as

CR ¼ 1 –Cp
� �

1� Vð Þ þ pV½ �; (3)

Table 1. Essential Characteristics of Study Basins

Characteristics Basin 101-103 Basin 102 Basin 104 Basin 105 Basin 106 Basin 121 Basin 125

Area (km2) 0.037 0.0178 0.0226 0.0026 0.0033 0.0484 0.067
Elevation range (m) 11.26 9.44 12.13 5.31 4.02 21.53 28.76
Mean elevation (m) 1370.39 1367.85 1363.10 1363.34 1366.54 1379.64 1352.82
Minimum slope (%) 0.15 0.10 0.00 1.05 0.77 0.02 0.13
Maximum slope (%) 33.80 26.16 15.94 6.45 7.19 21.53 44.29
Mean slope (%) 6.29 7.52 6.03 3.44 3.98 5.47 9.70
Annual rainfall (mm) 312
Land use/plant community Shrub-dominated rangeland
Plant cover (%) 25%
Soil type Gravelly sandy loam
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where Cp is the fraction of Voronoi cell protected against drop erosion, V is the vegetation fraction of a
Voronoi cell, and p is the throughfall coefficient for vegetation fraction, i.e., the fraction of rainfall over
canopy not intercepted by vegetation. In equation (3), the terms (1� Cp) (1� V) and (1� Cp) pV
respectively represent splash erosion in bare soil and vegetated soil fractions of the Voronoi cell. The
fraction CD is modeled as

CD ¼ Fl 1 –Cp
� �

1 � pð ÞV ; (4)

where Fl [0� 1] is the fraction of rainfall intercepted by canopy that reaches soil in the form of leaf drip.

The entrainment and transport of sediment by overland flow are estimated using shear stress-based
formulations [Yang, 1996; Nearing et al., 1999], without differentiating between overland and channel flows as
the form of shear stress-based equations for both cases is nearly identical [Francipane et al., 2012]. The
effective boundary shear stress, τ [M/LT2], is calculated according to a well-known power law function of local
discharge and slope:

τ ¼ ktq
mbSnb ; (5)

where q [L3/LT] is the local discharge per unit width of Voronoi edge, S [0–1] is the local slope, andmb and nb
are empirical parameters [Willgoose et al., 1991; Istanbulluoglu et al., 2004]. Assuming locally uniform overland
flow conditions and using Manning’s equation for the flow velocity, mb and nb are equal to 0.6 and 0.7,
respectively [Tucker et al., 2001a]. The variable kt [M/L2T2] depends on the Manning coefficient n as follows
[Simons and Şentürk, 1992; Tucker et al., 2001b; Istanbulluoglu and Bras, 2005]:

kt ¼ ρwgn
1:5
s

ns þ nvð Þ0:9 ; (6)

where ρw is the water density [M/L3], g is the acceleration due to gravity [L/T2], ns is the Manning roughness
coefficient for soil, and nv is the latter coefficient for vegetation.

The flow entrainment capacity, DD [L/T], is calculated as

DD ¼ kb τ � τcð Þpb ; (7)

where kb is the soil erosion efficiency coefficient [L/T (M/LT2) pb], τc [M/LT2] is a threshold stress for particle
entrainment (i.e., “the critical shear stress”), and pb is an empirical parameter equal to 2.3 [Nearing et al., 1999].

The transport capacity, DT [L
3/T], is calculated as

DT ¼ Wkf τ � τcð Þpf ; (8)

where W [L] is the channel width, considered to be equal to the width of the edge of a Voronoi cell [Tucker
et al., 2001b], pf is a parameter equal to 2.5, and kf is a coefficient for a single sediment size fraction [Yalin,
1972; Simons and Şentürk, 1992]:

kf ¼ kk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g s� 1ð Þd3

q

ρwg s� 1ð Þd½ �pf ; (9)

where s is the ratio of sediment density to water density (taken as 2.65) and d is the dominant grain size [L],
taken as d50, i.e., the diameter corresponding to the 50% value of the granulometric distribution curve, and kk
is a calibration coefficient. The values of kk have been reported to be in the range of 4–40 in different studies
[Yalin, 1972].

In the application of equation (1), sediment is routed on a cell-by-cell basis following the direction of steepest
descent. The detached/entrained sediment of an upstream Voronoi element (or multiple elements) enters
a downstream cell and is used for calculating the divergence of sediment flux. In a continuous application
of the geomorphic model to a watershed domain that has a spatially variable structure of hydrological states,
the sediment accumulates or moves downstream and elevations change as a consequence of this transport
process. Calculation starts at a Voronoi cell with the highest elevation and proceeds downstream to the
basin outlet cell:

1. For each computational element, the rate of soil detachment by raindropDR and the entrainment capacity
rate DD are calculated using equations (2) and (7).
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2. The transport capacity rate DT is calculated using equation (8).
3. For each cell, the potential rate of transport-limited erosion, ∇qs ¼ � Δzi; pot

Δt , where zi and Δzi, pot are the
elevation and the potential elevation change at node i, respectively, is calculated as a function of DT.

4. For each cell, the maximum potential rate of detachment/entrainment-limited erosion, Dc¼� Δzi; ava

Δt ,
where zi and Δzi, ava are the elevation and the available elevation change at node i, respectively, is
calculated based on the sum of rates DR and DD (conventionally, Δzi,ava is always less than 0).

5. Finally, the two rate products (i.e., rate multiplied by a time step of 1 h) are compared to define local
deposition and erosion and properly define flux downstream of a given Voronoi cell:

a. If Δzi,pot> 0, deposition occurs and Δz =Δzi,pot;
b. If Δzi,ava<Δzi,pot< 0 (erosion), then Δzi=Δzi,pot and transport-limited erosion occurs;
c. If Δzi,pot<Δzi,ava< 0 (erosion), then Δzi=Δzi,ava and detachment/entrainment-limited erosion occurs.
d. In the case when |Δzi,pot|> |Δzi,ava|, the transport capacity rate of the flow is not at the maximum

value (i.e., detachment or entrainment-limited), and upon calculation of the actual erosion/deposition
in a cell, the outgoing sediment flux from the cell under consideration into a downstream cell is redefined
as a function of Δzi,ava.

At the hourly scale, the model updates the elevation of each Voronoi element and recomputes slopes,
azimuthal aspects, flow directions, and drainage areas of the entire VPN, as well as re-sorts nodes according
to the topography-dictated flow graph order. The latter is determined based on local maximum surface
slopes [Ivanov et al., 2004b], and the erosion process thus leads to a continuously updated drainage pattern.
Since the topography of the catchment is updated, the geomorphic processes of erosion and deposition
have the capability to feedback the hydrologic dynamics.

A comprehensive description of the processes modeled in tRIBS-Erosion is provided in Francipane et al. [2012].
The latter study also offers the results of a long-term calibration of runoff and sediment yield for the Lucky Hills
basin (a basin nested within the WGEW) that served to provide model parameterization (Tables S1 and S2 in the
supporting information) for assessment developed here. The implicit assumption is that the accepted model
parameterization, partly based on calibration and partly on literature-inferred values, is suitable for representing
geomorphic dynamics characteristic of headwater basins in the semiarid environment of the Walnut Gulch
Experimental Watershed. As later comparison of scaling relationships demonstrates (see a discussion of Figure
14 in section 4.6), the chosen model formulation provides a consistent baseline for all of the basins, including
six for which no prior calibration has been carried out. This therefore permits model use in a study addressing
the differential effect of change in the forcing conditions.

3.3. Climate Data

In order to force the hydrogeomorphic model, time series of various meteorological variables are required.
Specifically, the model needs hourly precipitation, air temperature, vapor pressure, wind speed, atmospheric
pressure, and shortwave radiation. All of the required meteorological time series were collected for a
relatively short period (July 1996 through December 2009) at the meteorological station US-Whs (31.7438°N,
110.0522°W, elevation 1372masl) within the Lucky Hills watershed [Emmerich and Verdugo, 2008; Fatichi
et al., 2012]. The US-Whs station is a part of AmeriFlux, a regional FLUXNET network that coordinates regional
and global analysis of observations from numerous flux tower sites (http://public.ornl.gov/ameriflux/index.
html). The relatively short duration of observations is insufficient to provide baseline climate characteristics
that are responsible for runoff and sediment transport regimes of a semiarid system such as WGEW, since
these regimes are affected by considerable interannual variability [Polyakov et al., 2010]. Due to this reason,
a longer record of observations for a meteorological station at Tucson airport (32.1145°N, 110.9392°W,
elevation 792masl) for a period of 1961–2000 is used in this study. Tucson exhibits desert, semiarid climate
with hot summers and temperate winters. Precipitation has a strong seasonality with about 50% falling
during the summer monsoon period from July to September [Sheppard et al., 2002]. The mean annual
temperature is 20.2°C and the mean annual precipitation is 304mm. Climate characteristics of Tucson are
similar to those of Lucky Hills: Tucson is slightly warmer (+3°C) and drier (precipitation is less by 50mm),
mainly due to its lower elevation. Nonetheless, the climate of Tucson can be considered to be representative
of the conditions of southeast Arizona [Sheppard et al., 2002]. Therefore, climate characterized by the
observational record from Tucson airport is used as a baseline for the generation of time series representative
of present and future climates, as described below.
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3.3.1. Generation of Climate Forcing With AWE-GEN
The Advanced Weather Generator (AWE-GEN) is a stochastic simulator designed to produce hourly time
series of weather variables for a given stationary climate. In situ, point-scale observations are required for
its parameterization [Fatichi, 2010; Fatichi et al., 2011]. The generator simulates several types of climate
variables:

1. Precipitation is the primary driving variable simulated using the Neyman-Scott rectangular pulse
model [Cowpertwait, 1991; Cowpertwait et al., 1996, 2007; Paschalis et al., 2014]. The precipitation pro-
cess is characterized using various statistics for aggregation intervals of 1, 6, 24, and 72h. Seasonal variations
are introduced by using month-specific parameter values. Interannual dynamics are imposed by simulating
annual precipitation through an autoregressive order-one model [Fatichi, 2010; Fatichi et al., 2011].

2. Cloud cover is simulated during interstorm periods, during which the existence of the stationary “fair
weather” region is assumed. A dynamic transition of the cloud process between the boundary of a storm
and the fair weather period is assumed.

3. Air temperature, vapor pressure, and wind speed are simulated using similar functional forms as a
combination of deterministic components that introduce dependencies among meteorological variables
(e.g., between rainy hours and cloud cover, changes in air temperature and Sun position, solar radiation, and
wind speed) and stochastic components.

4. Shortwave radiation is simulated with a two-band atmospheric radiation transfer model for clear-sky
conditions [Gueymard, 2008], modified to account for cloud cover [Stephens, 1978; Slingo, 1989]. For a
complete description of the AWE-GEN model structure and parameterization, the reader is referred to
Fatichi et al. [2011] and to the AWE-GEN technical reference (http://www.umich.edu/~ivanov/
HYDROWIT/Models.html).

3.3.2. Generation of Baseline Climate Ensemble
Forty years of observed climate can be generally assumed to be sufficient to fully characterize the first two
moments, i.e., the mean and the variance, of most of the observed meteorological variables such as air
temperature, vapor pressure, and wind speed [Peixoto and Oort, 1992]. With regard to precipitation, however,
such an observational period can yield only a fairly accurate estimate of the first moment at various temporal
scales. Statistical characterization of rare events, such as very wet or dry periods as well as extreme rainfall,
remains limited because of natural climate (stochastic) variability [Deser et al., 2012a, 2012b; Fatichi et al.,
2013; Fischer et al., 2013; Fatichi et al., 2014]. As a result, the characterization of hydrogeomorphic fluxes
that are driven by infrequent, extreme precipitation events is an even grander challenge. In a semiarid
environment, this statement is well confirmed by the rare occurrence of runoff and sedimentation events
[Coppus and Imeson, 2002; Polyakov et al., 2010]. Sediment yield series, either observed or simulated for a
40 year period, are therefore only representative of a particular climate realization. The observed series can be
used to evaluate the annual mean of sediment yield, yet with fairly large error bounds. For example, if annual
yield could be considered a random variate following the normal distribution with unknown variance (an
obvious simplification to illustrate the statement), the 5th and 95th percentile bounds of the distribution
describing the mean value estimated from a record of length n= 11–16 (i.e., the number of observational
years for a set of selected basins) would be ±30% to ±137% of the estimatedmean value. Reliable assessment
of variance of the process with such short records is practically impossible.

Consequently, in order to explore the natural (stochastic) variability of the reference climate and its impact
on the basin hydrogeomorphic response, we used AWE-GEN to generate an ensemble of fifty 30 year
long, hourly time series of meteorological variables representing realizations of climate consistent with
observations in Tucson over the control period of 1961–2000. This set of realizations is referred to as the
ConTrol Scenario (CTS) “ensemble” or “set.” AWE-GEN parameter values are reported in Fatichi [2010] and
Fatichi et al. [2011].
3.3.3. Generation of Future Climate Ensemble
A stochastic downscalingmethodology is used to generate an ensemble of hourly time series ofmeteorological
variables that express a set of possible future climate conditions for the location of Tucson. The stochastic
downscaling uses realizations from GCMs and the hourly weather generator AWE-GEN. Procedural steps and
theoretical assumptions of the methodology for generating the time series expressing the “most probable”
future and/or an ensemble distribution of possible future scenarios are described in detail in Fatichi et al. [2011,
2013]. Only a brief outline is provided below:
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1. Information on projected climate change is derived from realizations of GCMs. This study used projections
obtained from the data set compiled in the World Climate Research Programme (WCRP), Coupled
Model Intercomparison Project, Phase 3 (CMIP3) for the emission scenario A1B (a midrange positive
radiative forcing scenario [Meehl et al., 2007]). The GCM-derived time series of precipitation and
temperature are used for estimation of daily, monthly, and annual statistics. For the GCM surface
temperature time series, the means are computed at the monthly resolution. For the precipitation
process, the mean, the variance, the skewness, and the frequency of nonprecipitation for different
aggregation intervals are estimated (four statistics, four aggregation intervals, and 12months).
Additionally, to account for low-frequency properties of the precipitation process, the coefficient of
variance and skewness is estimated.

2. The probabilistic distributions of “factors of change,”which are either additive (for air temperature) or ratios
(for precipitation) [Anandhi et al., 2011; Fatichi et al., 2011], are computed. They are derived from GCM rea-
lizations using a specific technique, a Bayesian methodology [Tebaldi et al., 2004; Tebaldi et al., 2005; Fatichi
et al., 2013], that weights different members of the GCM ensemble and produces a probability distribution
function for each factor of change. Since AWE-GEN is a point-scale weather generator, accordingly, factors of
change from climate models are estimated for grid cells nearest to Tucson. This assumption is reasonable,
when one considers that spatial variability of factors of change among neighboring cells of a given GCM is
rather small and definitely smaller than differences among GCMs [Fatichi et al., 2011].

3. A Monte Carlo technique is consequently used to sample the factors of change from their respective
marginal probability distributions, assuming specific cross correlations among the factors of change [Fatichi
et al., 2013]. In this study, 100 sets of factors of change are drawn to sample the frequency distributions
of projected future climate statistics. Such a large ensemble is used to address the uncertainties of GCM
simulations and partially account for stochastic climate variability due to the proximity of some of the
climate trajectories imposed by factors of change obtained with Monte Carlo sampling [Fatichi et al., 2013].

4. The factors of change are applied to the climate statistics derived from historical observations to reevaluate
the parameters of the weather generator. In this study, 100 parameter sets for AWE-GEN are obtained, each
corresponding to a future climate “alternative.”

5. The final result of the procedure is the generation of hourly time series using the reevaluated parameter sets.
An ensemble of one hundred 30 year long, hourly time series of meteorological variables is simulated with
AWE-GEN. Each of the 100 series can be considered representative of the 2081–2100 future climate
conditions. This set of realizations is referred to as the FUTure (FUT) “ensemble” or “set.”

The above methodology represents the state-of-the-art of stochastic downscaling approaches: it permits
the simulation of short temporal scales (hourly) and higher-order statistics (extremes) and allows one to
concurrently account for the internal (stochastic) climate variability and the spread among climate model
predictions, which are typically indicated as the principal uncertainty sources [Räisänen, 2007; Hawkins and
Sutton, 2011; Fatichi et al., 2014].

4. Results

Using the ensemble series of the CTS (ConTrol Scenario) and the FUT (FUTure scenario) sets, the tRIBS-Erosion
model is forced to reproduce hydrogeomorphic responses of seven study basins (described in section 2) in
terms of runoff and sediment yield.

4.1. Variability of Climate Forcing

Since rainfall characteristics of the study area are the main factors driving runoff and sediment yield, an
analysis of both the CTS and the FUT climate ensembles is first developed.

Mean annual precipitation (MAP) is computed for each 30 year long climate ensemble member of the CTS
and FUT scenarios. The interannual variability of precipitation of each climate realization is characterized
using the standard deviation (STD) of annual rainfall. In order to assess the differences between precipitation
forcings of the CTS and FUT ensembles, the cumulative density functions (CDFs, i.e., the probability that a
variable takes on a value less than or equal to a given value) of MAP and STD are computed using 50 (for the
CTS ensemble) or 100 (for the FUT ensemble) realizations and plotted in Figure 2. The CTS ensemble is
characterized by a much smaller MAP variability in the ensemble set, with a mean value of ~300mm/yr
(Figure 2a). The corresponding relative variability among different 30 year realizations is assessed by the
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coefficient of variation, CVE, which is equal to 0.65%. The FUT ensemble is characterized by a larger MAP
variability (CVE= 21.83%), corresponding to a mean MAP value of ~207mm/yr (Figure 2a). These differences
are not surprising given the fact that the CTS set represents a single stationary climate, while the FUT
ensemble is composed of 100 possible future climates determined from uncertain projections, which are
not necessarily similar to each other.

Variations of interannual characteristics of precipitation among the members of the two ensembles are
expressed through STD of annual precipitation, which is shown in Figure 2b in terms of CDFs of the 50
(the CTS set) and 100 (the FUT ensemble) STDs of annual precipitation. As seen in these plots, the annual
precipitation of individual realizations of the FUT ensemble exhibits wider fluctuations, as compared to
the annual precipitation of the CTS ensemble. This is a result of applying two factors of change in the
downscaling methodology: one for coefficient of variation and the other for skewness of the annual
precipitation [Fatichi et al., 2011, 2013], as well as due to the overall uncertainty in representing the process
at both short (event) and large (annual) scales.

Statistics of rainfall intensity obtained at the hourly scale (considering rainy hours only) are shown in
Figures 3a and 3b where the curves of relative frequency of exceedance, i.e., the probability of rainfall being
greater than or equal to a given value, of hourly and daily rainfall are shown. The FUT ensemble exhibits
a larger variability of rainfall intensity, as compared to the CTS ensemble. This is another illustration of
the high uncertainty characteristic of the projection of future climate conditions. Furthermore, the median
relative frequencies of the exceedance curve of hourly rainfall for the CTS set are always higher than those
of the FUT set (Figure 3a). Concurrently, the median relative frequencies of exceedance curves nearly
overlap for the daily rainfall (Figure 3b). This leads to an inference that the projected future climate can be

Figure 2. A statistical representation of precipitation forcing for the CTS (grey) and the FUT (black) ensembles simulated
with the AWE-GEN model (a) the cumulative frequency distributions of 30 year mean annual precipitation (MAP) and (b)
the cumulative frequency distributions of 30 year standard deviation (STD) are computed using the FUT and CTS ensembles.
Magnitudes of the median and mean values of MAP are also shown in Figure 2a.

Figure 3. Curves of relative frequency of exceedance constructed for (a) hourly and (b) daily rainfall. The thin lines (grey or
black) show the relative frequency of exceedance of individual ensemble members (CTS or FUT), while the thick lines
(green or cyan) represent the median relative frequencies of exceedance of an ensemble (CTS or FUT).
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characterized by rainfall events with lower hourly intensities than the present climate, but with similar or
larger (for the largest magnitudes) daily rainfall.

This aspect can be further explored by analyzing changes in extreme events for different durations. Annual
maximum precipitation for different durations (1, 3, 6, and 24 h) is shown as a function of the return period in
Figure 4. Future climate (black line) is generally characterized by extreme rainfall events with magnitudes
lower than those in the present climate (grey lines) for shorter durations. However, the uncertainty of
characterizing extremes is very high with a large overlap between the present and future climates, as testified
by the 5th and 95th percentile bounds (the vertical bars). Moreover, one can also appreciate that the
employed weather generator is capable of reproducing extreme precipitation events for different durations
for the location of Tucson. Extreme events are also similar and within the confidence bounds for the location
of Lucky Hills (Figure 4).

Besides precipitation forcing, AWE-GEN also generates synthetic time series of all other hydroclimatic
variables necessary to force tRIBS-Erosion simulations. Figure 5 illustrates average daily cycles of most
relevant variables used in hydrogeomorphic simulations. As seen, future climate is represented by higher
daily air temperature (Figure 5a) and atmospheric longwave radiation (Figure 5c) and lower daily relative
humidity (Figure 5b). This is consistent with the projected warmer and drier climate and therefore higher
atmospheric moisture demand. Nearly the same daily incoming shortwave radiation (Figure 5d) cycle is
obtained since the factor of change for this variable is not computed directly [Fatichi et al., 2013]. However,
shortwave radiation is not projected to significantly change in the future.

Overall, the differences between the CTS and FUT ensembles identified here, in terms of the mean annual
and interannual variability of precipitation as well as event-scale precipitation statistics and other climate
drivers, will be responsible for contrasting responses of basin runoff generation and sediment yield
representing current and future conditions.

4.2. Runoff

For each of the catchments, tRIBS-Erosion is forced with ensemble members of the CTS and the FUT scenarios
and the mean annual runoff normalized per unit area (MAR) is computed for each 30 year simulation. The
interannual variability of runoff is characterized by estimating the standard deviation of annual runoff for
each simulation. In order to assess the differences between the runoff characteristics of the CTS and FUT
ensembles, the CDFs of MAR are computed using 50 (for the CTS ensemble) and 100 (for the FUT ensemble)
simulations (Figure 6).

Figure 4. Changes in extreme rainfall events for (a) 1, (b) 3, (c) 6, and (d) 24 h durations. The confidence bounds correspond
to the 5th and 95th percentile of the stochastic ensemble. Symbols for “Tucson” and “Lucky Hills” correspond to the
observed data at these respective locations.
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For all of the basins, MAR of the CTS ensemble is characterized by a lower variability, as compared to the
FUT ensemble (Figure 6). The corresponding coefficient of variation, CVE, is ~15% for all of the basins for
the CTS, while this coefficient ranges between 46.6% (Basin 106) and 60.4% (Basin 125) for the FUT
ensemble. These differences, which are expected, are a direct consequence of the variability underlying
the CTS and FUT climate forcings. However, it is noteworthy that despite the fact that the mean annual
rainfall of the CTS ensemble has a very low variability (Figure 2), the variability of runoff is much larger due

Figure 6. The cumulative frequency distributions of 30 year mean annual runoff (MAR) for the control (CTS, 50 realizations)
and future (FUT, 100 realizations) climate ensembles. The results are presented for all seven basins arranged in the order
corresponding to a decreasing area. The values in the grey boxes indicate respective basin areas in hectares.

Figure 5. Mean diurnal cycles of several climate variables obtained by averaging over all realizations of the CTS (grey line)
and the FUT (black line) ensembles simulated with AWE-GEN: (a) air temperature, (b) relative humidity, and incoming
(c) longwave and (d) shortwave fluxes. The confidence bounds represent standard deviations estimated using the ensemble
members (50 for CTS and 100 for FUT).
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to within year stochasticity. This can be also attributed to a threshold behavior in generation of runoff by
the infiltration excess mechanism, which is predominant in this area and responsible for most of the
simulated runoff (not shown). Overall, the mean streamflow in the future is projected to be lower than
that in the present conditions (Figure 6): only 15–20% of the largest 30 year averaged runoff is expected
to be higher for the FUT set (i.e., higher than the percentile value corresponding to the intersection of the
black and grey lines).

When annual runoff (i.e., not averaged over 30 years of simulation) for both the CTS and the FUT ensembles is
compared in terms of cumulative frequency distributions (Figure 7), one can infer that the distribution of
projected future runoff is essentially to the left of the distribution corresponding to the present conditions.
The differences in the probability of non-exceedance are remarkable especially during years with low runoff
(Figure 7). One can consequently infer that the 15–20% possibility of increase of long-term runoff in the
future inferred from Figure 6 is mainly explained by interannual variability, i.e., how different years are
combined within an ensemble member. That is, a series of years with relatively large runoff represent a future
alternative with higher runoff for the same MAR percentile value, as compared to the control conditions. This
is in contrast to a hypothetical case of ensemble members exhibiting few years with runoff higher than in the
CTS set, not obtained here (Figures 6 and 7).

4.3. Sediment Yield

The mean annual sediment yield normalized per unit area (MAS) for each 30 year long simulation is shown
in Figure 8. The mean sediment yield increases with the basin area. On average, the long-term sediment
yield is expected to decrease in the future with a very high probability: the black line (CDF of FUT) rarely
crosses the grey line (CDF of CTS) in Figure 8. This occurs despite a non-negligible probability that mean
runoff may in fact increase (Figure 6).

In contrast to the previous conclusion for runoff, the variability of sediment yield for the FUT ensemble is
comparable to that for the CTS ensemble for all of the basins. The coefficient of variation CVE of sediment
yield exhibits a nearly robust negative dependence on the catchment area and ranges between 17.8% (Basin
101-103) and 93.7% (Basin 106) for the CTS set and between 38.3% (Basin 101-103) and 127% (Basin 106) for
the FUT ensemble set (Figure 8).

Figure 7. The cumulative frequency distributions of annual runoff, AR, for the control, CTS (50 scenarios, 30 year long each,
or 1500 of simulated years in total), and future, FUT (100 scenarios, 30 year long each, or 3000 of simulated years in total),
climate ensembles. The values in the grey boxes indicate respective basin areas in hectares.
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When the annual sediment yield per unit area for individual years is considered (i.e., not averaged over
30 years), the non-exceedance probability of sediment yield for the FUT set appears to be always higher
than that for the CTS set (Figure 9). The differences in the probability of non-exceedance are remarkable
especially during years with very low sediment yields (Figure 9). One can also notice that the probability of
not having sediment yield in a given year increases considerably for the smaller basins. For instance, despite

Figure 8. The cumulative frequency distributions of 30 year mean annual sediment yield (MAS) for the control (CTS, 50
realizations) and future (FUT, 100 realizations) climate ensembles. The results are presented for all seven basins arranged in
the order corresponding to a decreasing area. The text in the grey boxes indicates the area of the basin expressed in hectares.

Figure 9. The cumulative frequency distributions of annual sediment yield, AS, for the control, CTS (50 scenarios, 30 year
long each, or 1500 of simulated years in total), and future, FUT (100 scenarios, 30 year long each, or 3000 of simulated
years in total), climate ensembles. Note that the distributions start at high values of the non-exceedance probability
signifying the fraction of years with zero annual yield. The text in the grey boxes indicates the area of the basin expressed
in hectares.
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the same rainfall and similar annual hydrologic response, Basins 105 and 106, for their size, exhibit a much
higher probability to have years with no sediment yield, as compared to the rest of the study catchments.

4.4. Bivariate Analysis of Changes in Hydrologic and Geomorphologic Responses

A comparison of CDFs of MAR and MAS implies that despite a non-negligible probability of runoff increase in
the projected future conditions (Figure 6), sediment yield exhibits a tendency to be always smaller than that
in the present conditions (Figure 8). In order to elucidate this counterintuitive inference, we analyzed the
interdependence between runoff and sediment yield, probabilistically characterizing their projected changes
as functions of changes in rainfall. As a representative example for the study watersheds, the results are
presented for Basin 101-103 (Figure 10). In Figure 10, the changes in MAP, MAR, and MAS are calculated as
the difference between metric magnitudes of respective members in the FUT and CTS ensembles and
normalized by the metric magnitude of the CTS member (in total, 100 × 50= 5000 differences are computed).
As seen, most of the points representing a relationship between variations in MAP, MAR, and MAS are in the
third quadrant (Figures 10a–10c), where reductions in MAR and in MAS in the future correspond to a
reduction in MAP (Figures 10a and 10b). The remaining points are scattered in the other quadrants with
individual “hot spots”: for example, the hot spot A1 is representative of a reduction in MAP but an increase in
MAR andMAS, while the hot spot B1 is representative of an increase in MAP but a reduction in MAR andMAS.
The different responses represented by these points are due to differences in rainfall characteristics. As an
example, the hot spot A1 is due to the response of the basin to simulations with MAP of 302mm/yr (CTS) and
187mm/yr (FUT). Despite larger annual magnitude, the CTS ensemble member exhibits, on average, low
rainfall intensities and a high number of rainfall events, as compared to the scenario characterizing future
conditions. Larger average annual rainfall but lower individual event intensities of the CTS ensemble member
thus result in smaller MAR and MAS, as compared to the FUT ensemble member that exhibits more intense
rainfall. Conversely, the hot spot B1 is due to the response of the basin to MAP of about 296 and 348mm/yr
for the CTS and FUT scenarios, respectively, with the CTS intra-annual rainfall that, on average, exhibits
slightly higher intensities and a lower number of events. In this case, the higher MAP of FUT ensemble
member is insufficient to compensate for smaller intensities and the higher rainfall intensities of the CTS

Figure 10. Relationships between variations inMAP, MAR, andMAS for Basin 101-103. The x axis in Figures 10a and 10b shows
the change in precipitation calculated as the difference between each MAP member of the FUT ensemble and each member
of the CTS scenario and normalized by dividing by MAP of the CTS member (in total, 100 × 50 = 5000 differences are
computed). The y axis illustrates the corresponding normalized changes of (a) MAR and (b) MAS. These are similarly calculated
as the difference between metric magnitudes of respective members in the FUT and CTS ensembles and normalized by
the metric magnitude of the CTS member. (c) Relationship between the normalized changes in runoff and sediment yield
shown in Figures 10a and 10b. The regression line between the changes in MAR and MAS, calculated with the principal axis
regression method, has a slope equal to 0.8355. The black dashed line represents the 1 : 1 relationship.
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scenario lead to relatively negligible differences between the FUT and the CTS in terms of runoff and
sediment yield. When changes in MAR and MAS are simultaneously considered (Figure 10c), one may notice
that the points are somewhat asymmetric with respect to the first bisector (Figure 10c). However, the fit line
between the changes in MAR and MAS and calculated with the principal axis regression method is not 1 : 1
but has a slope equal to 0.8355 and a negative y intercept equal to �5.0908. This indicates that a probable
future characterized by a decrease (increase) in runoff leads to less strongly decreased (increased)
sediment yield. Moreover, the negative y intercept implies a probability that an increase in future runoff
may lead to a decrease in sediment yield (points in the fourth quadrant).

In order to provide an assessment of probability for the joint variations of these variables, bivariate
frequency distributions for changes in MAP and MAR (Figure 11a), MAP and MAS (Figure 11b), and MAR and
MAS (Figure 11c) were estimated with the Multivariate Kernel Density Estimation (MKDE [Simonoff, 1996]), a
nonparametric technique for estimation of probability density functions. MKDE is carried out using the
kernel smoothing (ks) package of the statistical software R (version 2.15.3, 2013). For a given value of the
normalized change in MAP, one can obtain a conditional probability density function (PDF) of the
normalized changes in MAR (Figure 11a) and/or in MAS (Figure 11b). As seen, the area with the higher
probability mass is mostly included in the third quadrant; this corresponds to a variation of MAP between
�52% and �32% and a MAR variation between �70% and �15% (Figure 11a).

When changes in MAS are considered (Figure 11b), the area with the higher probability mass is still contained
in the third quadrant but split into two regions. The first one corresponds to normalized changes of MAP
between �51% and �33% and MAS variations between �60% and 0%; the second region corresponds to
MAP variations between �20% and �15% and MAS variations between �25% and �10%. In both cases,
almost half of the mass of the bivariate distribution is contained in the third quadrant, and 75% of the mass is
within the second and third quadrants. This result is also reflected in the bivariate PDF of normalized changes
in MAR and MAS: most of the mass is contained in the third quadrant (Figure 11c). In particular, the area
corresponding to 25% of the mass (the black region) is entirely contained within the third quadrant. Note a
non-negligible mass of the probability distribution in the fourth quadrant: it is representative of cases in
which an increase in average runoff does not lead to an increase in sediment yield.

The results presented in Figures 10 and 11 can be considered to be representative of the Basins 102, 104, 121,
and 125. However, the smaller Basins 105 and 106, although demonstrating qualitatively similar bivariate

Figure 11. The Multivariate Kernel Density Estimation of the normalized changes in (a) MAP and MAR, (b) MAP and MAS,
and (c) MAR and MAS for Basin 101-103; black = 25%, dark grey + black = 50%, light grey + dark grey + black = 75% of
the bivariate distributions mass. The estimation function automatically selects an optimal bandwidth matrix (affects the
performance of MKDE). The regression line between the changes in MAR and MAS has a slope equal to 0.8355. The black
lines represent the 1 : 1 relationship.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003232

FRANCIPANE ET AL. ©2015. American Geophysical Union. All Rights Reserved. 523



frequency distributions for variations in MAP and MAR (Figure 12a), show much higher variability in MAS
(Figures 12b and 12c), as compared to the other basins (the results for Basin 105 are also representative for
Basin 106). The fit line between the changes in MAR and MAS is steeper than that of Basin 101-103 and has a
positive y intercept. The slope of the fit line greater than 1 indicates that, conversely to larger basins, a future
characterized by a decrease (increase) in runoff may lead to an even stronger decrease (increase) in sediment
yield. However, the spread over the y axis (Figure 12c) is larger, indicating a higher variability of changes in
sediment transport, as compared to the other basins. The much higher variability in MAS of smaller basins
suggests that the sediment transport response in these basins depends on local geomorphologic characteristics
to a greater extent than the hydrological response.

4.5. Changes in Extremes

Runoff and sediment yield extremes, computed with the plotting-position method using annual maxima
[Cunnane, 1978], were analyzed in order to explore the propagation of changes in extreme rainfall events to
extreme sediment delivery events. Figure 13 synthesizes this information for Basin 101-103 and can be
considered representative for the remaining basins. Changes in runoff extremes for the durations of 1 and 24h
(Figure 13) mostly reflect changes in rainfall extremes for the same time aggregation (Figures 4a and 4d). We
only present the results for 1 and 24h aggregation periods because the properties of runoff and sediment
delivery responses are very similar also for durations of 3 and 6h. In reference to the median of the stochastic
ensemble, extreme events of sediment production are consistently projected to be smaller in the future, as
a consequence of the decrease of runoff. However, the decrease in themedian sediment transport (�15/�30%)
for the higher return periods (>5 years) is typically larger than the projected change in the median runoff
(�2/�16%) for the exemplary basins (see Table 2 for actual magnitudes). “Geomorphic multipliers”
[Coulthard et al., 2012], i.e., an enhanced decrease or increase of runoff and sediment delivery for larger
return periods, are not clearly discernible in our analysis at the hourly scale, since changes for 5, 10, and
30 year return periods are rather similar for runoff and sediment yield (Table 2). One however can infer that
the relative decrease of extreme runoff at the hourly scale is not accompanied by an equivalent change at
the daily scale, following the pattern of projected changes in extreme rainfall. At the daily scale, the
reduction of runoff is smaller than 8%, but changes in sediment yield are amplified (15–30%). This is because
extreme sediment transport events are driven by runoff corresponding to event scale (i.e., shorter than the
daily scale), which exhibits larger projected changes and comparable to what is illustrated for the duration
of 1 h. More generally, Figure 13 suggests the dominance of uncertainty in the changes of extreme runoff and

Figure 12. The Multivariate Kernel Density Estimation of the normalized changes in (a) MAP and MAR, (b) MAP and MAS,
and (c) MAR and MAS for Basin 105; black = 25%, dark grey + black = 50%, light grey + dark grey + black = 75% of the
bivariate distributions mass. The estimation function automatically selects an optimal bandwidth matrix (affects the
performance of MKDE). The regression line between the changes inMAR andMAS, calculatedwith the principal axis regression
method, has a slope equal to 2.7699. The black dashed lines represent the 1 : 1 relationship.
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sediment transport events due to the stochastic variability of climate. The uncertainty range exhibits a large
overlap between the CTS and the FUT scenarios, even though the latter are representative of 100 possible
different climates, while the former represents only the present climate.

4.6. Scaling Relationships of Runoff and Sediment Yield

Results presented in section 4.4 suggest that differences in sediment yield and hydrological response of a
basin may partially depend on its geomorphological characteristics. In order to investigate the possible
dependence of these variables on the basin area, the scaling regime of runoff (Figure 14a) and sediment flux
(Figure 14b) with watershed area is investigated. The modeled results, despite underestimation of runoff and

Figure 13. Changes in (a and b) extreme runoff and (c and d) sediment yield events for 1 (Figures 13a and 13c) and 24 h
(Figures 13b and 13d) aggregation intervals. Extremes are computed from annual maxima and probabilities are assigned with
the plotting-positionmethod. Vertical bars denote the 5th to 95th percentiles of the CTS and FUT ensembles. The presented case
is for the basin 101-103.

Table 2. Changes in Extreme Rain, Runoff, and Sediment Yield for 1 and 24 h Aggregation Intervals

Duration (h) Variable (mm) Return Period (years)

Basin 101-103 Basin 125

CTS (mm) FUT (mm) Δ(FUT�CTS) (%) CTS (mm) FUT (mm) Δ(FUT�CTS) (%)

1 Rain 5 28.80 24.67 �14.33 28.80 24.67 �14.33
10 33.10 28.79 �13.04 33.10 28.79 �13.04
30 43.75 36.98 �15.48 43.75 36.98 �15.48

Runoff 5 15.01 12.46 �16.98 14.70 12.06 �17.98
10 21.89 17.51 �19.99 21.15 16.88 �20.20
30 34.02 27.77 �18.39 33.32 26.74 �19.73

Sediment yield 5 0.18 0.14 �22.71 1.40 0.98 �29.94
10 0.37 0.27 �26.09 2.89 2.06 �28.77
30 0.82 0.66 �19.38 9.41 5.79 �38.52

24 Rain 5 53.25 52.86 �0.73 53.25 52.86 �0.73
10 64.68 65.65 1.51 64.68 65.65 1.51
30 85.56 87.35 2.09 85.56 87.35 2.09

Runoff 5 21.62 21.10 �2.42 21.01 20.09 �4.37
10 33.98 31.78 �6.48 33.18 30.54 �7.94
30 54.15 55.09 1.74 52.51 51.17 �2.54

Sediment yield 5 0.20 0.17 �15.89 1.62 1.23 �23.91
10 0.42 0.33 �20.46 3.25 2.40 �26.10
30 0.95 0.79 �16.07 9.96 6.99 �29.84
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sediment yield for the smaller basins and overestimation of sediment yield for the larger basins, do reproduce
the major characteristics of runoff and sediment yield scaling with the contributing area. Regardless of the
larger uncertainty characteristic of the FUT climate (i.e., larger error bars), no detectable changes in the
scaling, but rather a reduction of the magnitudes of sediment yield and runoff can be observed.

A statistical assessment of changes in the fit of the scaling relationship obtained for the current climate in the
form of a power lawmodel, y= axb, is carried out for both mean annual runoff and sediment yield. Simulation
results for the CTS and FUT were used to fit the relationship versus area, where y is runoff (or sediment yield)
and x is the basin area. The intercept, a, and the slope, b, of the power law are not significantly different
between the CTS and FUT scenarios for the sediment yield (analysis of covariance test with the 0.05
significance level). The slope of the scaling relationship for runoff is still not significant (p value = 0.838, the
null hypothesis of equal slopes), while the intercept is significantly different, which means lower runoff with
the same scaling exponent (Table 3).

Figure 14. Scaling relationships for (a) mean annual runoff and (b) sediment flux with area. The black diamonds represent
empirical observations and the black dashed line is the corresponding fit that follows Stone et al. [2008] for runoff and
Nichols et al. [2008] for the sediment yield. The grey circles and the black squares error bars correspond to the results
obtained for the CTS and the FUT ensembles, respectively. The confidence bounds represent standard deviations
estimated using the ensemble members (50 for CTS and 100 for FUT).

Table 3. Statistical Assessment of Difference From the Fits Obtained for the Scaling Relationships of Current and Future Climate of Runoff and Sediment Yielda

Runoff (mm/yr) Sediment Yield (kg/yr)

Ensemble CTS FUT CTS FUT
Fitting model axb

Coefficients a 15.16 12.4 3.81 × 108 1.72 × 108

b �0.06224 �0.0645 2.763 2.582
95% Confidence bounds a 13.62–16.7 11.17–13.63 �9.885 × 108 to 1.75 × 109 �5.032 × 108 to 8.467 × 108

b �0.08517 to �0.0393 �0.08688 to �0.04213 1.466–4.059 1.171–3.993
ANCOVA (p value) a 0.0 0.4943

b 0.8382 0.8031
SSE 1.624 1.056 1.78 × 109 1.36 × 109

R2 0.9037 0.9138 0.9571 0.9409
Adjusted R2 0.8844 0.8966 0.9485 0.9291
RMSE 0.5699 0.4596 1.886 × 104 1.648 × 104

aANCOVA, analysis of covariance for difference between future and present; SSE, sum of squares due to error; R2, R-square; Adjusted R2, degrees of freedom
adjusted R-square; RMSE, root mean squared error.
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5. Discussion
5.1. Projected Changes and Mechanistic Interpretation

Based on stochastic downscaling of climate projections for the study location in southeastern Arizona, USA,
annual precipitation is generally expected to decrease in the future (Figure 2a), with rainfall events characterized,
on average, by lower intensities at the hourly scale, as compared to the present climate (Figure 3a). Furthermore,
when medians of extreme rainfall are analyzed, future climate is characterized by less extreme events at the
hourly scale than the present climate but of similar average intensity at the daily scale (even though these results
exhibit a large uncertainty; Figure 4a).

The lower hourly rainfall (across all percentile ranges) results in generally lower mean annual runoff in the
future, as compared to historic conditions. However, 15–20% of the stochastic ensemble members show that
30 year averaged runoff could be higher in the future conditions (Figures 6 and 7). This result demonstrates
that runoff behaves nonlinearly and differently than stochastically driven precipitation, whose mean in the
FUT scenarios is expected to be nearly always lower than the mean representative of the historic period (CTS
scenarios; Figure 2a).

A non-negligible chance of runoff increase in the future is a consequence of stochastic combinations of years
with low and high runoff due to interannual variability, rather than an emergence of alternative futures
with years characterized by exceptionally high runoff. A more in-depth explanation has to relate to the
predominant physical mechanism of runoff generation in the analyzed area—the infiltration excess process.
Specifically, since total precipitation is projected to decrease, hypothetically, higher runoff in the future can
result either from a larger number of rainfall events within a year exceeding temporally dynamic threshold of
infiltration capacity or merely from a combination of years in the FUT and CTS ensembles (i.e., interannual
variability in the ensemble member). Since the annual runoff projected for all percentiles corresponds to
magnitudes lower than that in the control period, the former possibility is not the case (Figure 7). Therefore,
the only explanation of larger runoff in the future is the composition of 30 year ensemble members: a
combination of years with relatively high runoff magnitudes may result in larger 30 year runoff averages, as
compared to the CTS scenario (Figure 6).

On average, the mean sediment yield is expected to decrease in the future with a very high probability
(Figures 8 and 9). Moreover, for all of the basins, the predicted variability (i.e., the standard deviation over a
30 year period of a single climate realization) for the future conditions as well as extreme sediment transport
events is comparable to that for the present conditions. This is despite the fact that the future scenarios
account for a much wider range of possible climates that are “sampled” from the distributions of factors of
change. This is a very significant result that shows how natural climate variability, i.e., stochasticity, in the
present plays a progressively more important role when rainfall, runoff, and sediment yield are successively
analyzed. Fundamentally, the stochastic variability of sediment yield corresponding to the present climate
(i.e., a single, stationary climate) is already so high, that it is “comparable” to the variability induced by
considering multiple possible future climates due to uncertainty of projections. This also highlights that a
simple evaluation of sediment transport characteristics for the present climate should be carried out in a
stochastic framework, where a single realization (i.e., that can be derived from observational record [e.g.,
Nearing et al., 2008; Polyakov et al., 2010]) can be only partially informative of the current conditions [see also
Coulthard et al., 2012]. We also remark that it is quite unrealistic for studies based on observed trends and
comparisons with a single or a few deterministic future scenarios to obtain meaningful results, because of the
significant stochastic variability of extreme events that are the primary drivers for runoff and sediment
transport events in semiarid environments. Note that the stochastic variability may not only be climate
induced but could be also governed by hydrologic and geomorphic initial conditions anteceding the events
[Kim and Ivanov, 2014], although this is not addressed here.

As inferred from empirical observations, sediment flux in absolute units exhibits a positive dependence on
basin area (Figure 14b). Consistently, this relationship is a result of the larger area that leads to higher rates
of concentrated runoff and transport capacities that have a greater chance of exceeding entrainment
threshold (i.e., the critical shear stress). The variability induced by climate in erosion and sediment transport
variables can be amplified or dampened by basin geomorphic characteristics. For example, for smaller
watersheds, where thresholds for particle detachment and transport capacity are less likely to be exceeded,
as compared to larger basins, the probability of not having sediment flux in a given year increases
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considerably (Figure 9). We note however that since vegetation is sparse and parameterized to have little
canopy (Table S1 in the supporting information), a thresholding effect in the detachment erosion is overall
of minor significance and detachment capacity scales as a power law function with rainfall magnitude
[Francipane et al., 2012].

The differences of responses of runoff and sediment yield that we reveal in this study, i.e., the 15–20% chance
of higher future runoff, while the zero chance of higher future sediment yield, can be attributed to the nature
of physical processes governing erosion and sediment transport in the analyzed watersheds. Runoff is
exclusively generated through the infiltration excess mechanism and the process is confined to most intense
storms. Erosion and sediment transport are triggered only by a fraction of runoff events that are most
extreme and have short durations, coinciding with the timing of runoff peak (1–2 h). This is because the
critical shear stress in entrainment and transport capacities has to be exceeded before flowing water can
transport soil particles, making the occurrence of these processes infrequent, especially in smaller watersheds.
Many simulated years exhibit sediment yield close or equal to 0, despite runoff-generating events (Figures 7
and 9). Therefore, while changes in precipitation interannual variability lead to potential futures with an
increase in runoff, they do not affect in the same fashion sediment yield, because subdaily rainfall is projected
to decrease in intensity or remain within the range of stochastic variability characterizing the historic
conditions (Figures 3 and 4). At these subdaily scales, median hourly runoff and sediment transport
extremes are both projected to decrease (Figures 13a and 13c), as the chance that surface flow exceeds the
rate required for effective particle entrainment also goes down. However, such an agreement between
projections for runoff and sediment yield is lost at the 24 h aggregation interval, at which median extreme
runoff is essentially projected to remain unchanged, while sediment yield still decreases (Figures 13b and 13d).
This is because the exceedance of the transport capacity threshold that results in sediment transport events is
mainly controlled by characteristics of shorter temporal scales (e.g., hourly peak runoff ), i.e., the same daily
runoff in the projected future but composed of events of smaller magnitude necessarily leads to a reduction
in daily sediment.

We also investigated how climate change affects properties of extreme events (Figure 13) and scaling
relationships of runoff and specific sediment yield with the watershed drainage area (Figure 14). We find that
the concept of “geomorphic multipliers” [Coulthard et al., 2012], i.e., a much stronger decrease or increase
of sediment yield, as compared to runoff, for larger return periods, is still valid at the daily or coarser temporal
aggregations (Table 2). This is not the case for the hourly scale, at which similar reductions in runoff and
sediment yield are exhibited for different return periods and with larger uncertainties (Table 2). Despite the
overall projection of decreases in runoff and sediment yield, we did not find any evidence for changes
in scaling regimes of runoff and sediment yield with contributing area. The intercepts, rather than the
exponents, of these relationships are mostly affected by the climate change (a statistically significant change
in the intercept for runoff ), even though large uncertainties induced by the stochastic variability preclude
robust conclusions.

5.2. Limits of Interpretation and Stochastic Variability

There are certain limitations to the approach undertaken in this study. The Walnut Gulch area is located in a
semiarid region characterized by highly seasonal rainfall dominated by summer monsoon, with localized,
spatially variable, high-intensity storms. The presented results are therefore likely to be valid only for
headwater catchments in semiarid climatic conditions and for climate projections showing a reduction or
unchanged mean precipitation and extreme rainfall events. The paramount importance of short temporal
scales for sediment generation hints that despite the fact that we used hourly resolution and could reproduce
well extreme events, rainfall variability at the subhourly scale may be still important for addressing climatic
impacts in this type of environment, where storms of highest intensity can last less than 1h [Osborn, 1983].
Another important control of sediment dynamics, such as the effects of vegetation dynamics on erosion activity
(growth and death of vegetation, feedbacks, and seasonal cycles due to climate and/or erosion/deposition
events), is not investigated in this study. The uncertainty of parameters controlling sediment transport is also not
explicitly analyzed: the parameter values were inherited from the long-term calibration and validation carried
out for the Lucky Hills basin in Francipane et al. [2012]. High spatial variability of hydraulic and hydrologic
properties known from empirical observations is another source of uncertainty that can exhibit the property of
amplifying or dampening the projection assessment. It warrants a comprehensive approach and a separate
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study and thus was also not addressed here. Additionally, this study considered only a single climate change
projection, the A1B gas emission scenario, which limits broader interpretation of the results in the context of
uncertainties of climate scenarios.

Despite these limitations, some of the results are likely to be of general applicability for projecting climate
change impacts in semiarid watersheds. The role of changes in precipitation from the hourly to the annual
scales has been found to be predominant, with the compounding effect of basin size being of secondary
importance. Admittedly, the range of analyzed basin areas is fairly limited and the role of watershed shape,
slope, and morphology is not explicitly considered. Importantly, the finding that we believe to be very
general concerns the importance of the stochastic variability. Any assessment of long-term sediment yield is
subject to uncertainty because of dependence of erosion physical processes on short-term (subhourly to few
hours) characteristics of stochastic process of rainfall; the uncertainty corresponding to historic climate
conditions is very high and is comparable to that inferred for future conditions that are subject to
projection uncertainties.

Consistently with the above inference, the approach undertaken assumes deterministic simulations within a
stochastic framework (and thus follows the same philosophical strategy as the study of Coulthard et al.
[2012]). We believe it represents the only consistent approach for assessment of hydrogeomorphic changes
that are controlled by extreme, rare events. Changes in runoff and sediment yield extremes show an
amplification/dampening effect when rainfall, discharge, and sediment transport are successively analyzed.
Extremes cannot be well characterized by using only limited observational data because of the intrinsic
natural variability of climate and because of nonlinearity imposed by thresholds in underlying physical
processes (infiltration capacity and transport capacities in our case). Therefore, a proper characterization of
hydrogeomorphic variables necessitates taking into account both the variability of the historic conditions as
well as the uncertainties associated with projections of the future. Only in this case, i.e., when a comprehensive
probabilistic framework is developed, we can rationally address impending challenges of the climate change
and design mitigation strategies.

6. Conclusions

Runoff, erosion, and sediment transport were simulated for seven headwater catchments located in a
semiarid environment of southeast Arizona. We used a mechanistic, process-based hydrogeomorphic
model forced with multiple climate conditions representative of the present and projected future climates.
A stochastic approach is used to assess probable changes in precipitation, runoff, and sediment yield. An
overall reduction in precipitation mean and hourly intensities leads to a concurrent decrease in runoff
and sediment yield. Increases in long-term runoff not accompanied by larger sediment delivery are also
projected for some scenarios, as a consequence of changes in interannual variability of precipitation. Intense
runoff events of short duration (<2h) that lead to exceedance of thresholds in soil detachment/entrainment
and transport capacities are the major controllers of sediment yield. Changes in the occurrence of these extreme
events are subject to a very large uncertainty due to the natural climate variability. As the study finds, current
stochastic variability in erosion events is almost comparable to that projected for multiple future climate
alternatives. The importance of stochastic variability is shown to grow when rainfall, runoff, and sediment yield
are successively analyzed. Ultimately, this leads to a conclusion that climate change effects on sediment
transport cannot be properly addressed without understanding of stochastic variability representative of historic
conditions as well as climate model and stochastic uncertainties associated with projected future conditions.

References
Anandhi, A., A. Frei, D. C. Pierson, E. M. Schneiderman, M. S. Zion, D. Lounsbury, and A. H. Matonse (2011), Examination of change factor

methodologies for climate change impact assessment, Water Resour. Res., 47, W03501, doi:10.1029/2010WR009104.
Birkinshaw, S. J., and J. C. Bathurst (2006), Model study of the relationship between sediment yield and river basin area, Earth Surf. Processes

Landforms, 31(6), 750–761, doi:10.1002/Esp.1291.
Chaplot, V. (2007), Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and

air temperature, J. Hydrol., 337(1–2), 159–171, doi:10.1016/j.jhydrol.2007.01.026.
Chen, J., F. P. Brissette, and R. Leconte (2011), Uncertainty of downscaling method in quantifying the impact of climate change on hydrology,

J. Hydrol., 401(3–4), 190–202, doi:10.1016/j.jhydrol.2011.02.020.
Christensen, J. H., et al. (2007), Regional Climate Projections, Climate Change, 2007: The Physical Science Basis. Contribution of Working Group I

to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., p. 996, Cambridge Univ.
Press, Cambridge, U. K.

Acknowledgments
We acknowledge the modeling groups,
the Program for Climate Model
Diagnosis and Intercomparison (PCMDI)
and the WCRP’s Working Group on
Coupled Modeling (WGCM) for their
roles in making available the WCRP
CMIP3 multimodel data set. Support of
this data set is provided by the Office of
Science, U.S. Department of Energy.
Ivanov is supported by the NSF grant
EAR 1151443 and partially by the
Visiting Faculty grant at the Institute of
Environmental Engineering, ETH Zürich.
Francipane and Noto were supported
by the SESAMO (SistEma informativo
integrato per l’acquisizione, geStione e
condivisione di dAti aMbientali per il
suppOrto alle decisioni project. Authors
would like to acknowledge helpful
criticism of T. Coulthard, G. Tucker, and
three other anonymous reviewers that
substantially improved the quality of
this manuscript.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003232

FRANCIPANE ET AL. ©2015. American Geophysical Union. All Rights Reserved. 529

http://dx.doi.org/10.1029/2010WR009104
http://dx.doi.org/10.1002/Esp.1291
http://dx.doi.org/10.1016/j.jhydrol.2007.01.026
http://dx.doi.org/10.1016/j.jhydrol.2011.02.020


Coppus, R., and A. C. Imeson (2002), Extreme events controlling erosion and sediment transport in a semi-arid sub-Andean valley, Earth Surf.
Processes Landforms, 27(13), 1365–1375, doi:10.1002/esp.435.

Coulthard, T. J., and M. G. Macklin (2001), How sensitive are river systems to climate and land-use changes? A model-based evaluation,
J. Quat. Sci., 16(4), 347–351, doi:10.1002/jqs.604.

Coulthard, T. J., M. G. Macklin, and M. J. Kirkby (2002), A cellular model of Holocene upland river basin and alluvial fan evolution, Earth Surf.
Processes Landforms, 27(3), 269–288, doi:10.1002/Esp.318.

Coulthard, T. J., J. Lewin, and M. G. Macklin (2005), Modelling differential catchment response to environmental change, Geomorphology,
69(1–4), 222–241, doi:10.1016/j.geomorph.2005.01.008.

Coulthard, T. J., J. Ramirez, H. J. Fowler, and V. Glenis (2012), Using the UKCP09 probabilistic scenarios to model the amplified impact of
climate change on drainage basin sediment yield, Hydrol. Earth Syst. Sci., 16(11), 4401–4416, doi:10.5194/hess-16-4401-2012.

Cowpertwait, P., V. Isham, and C. Onof (2007), Point Process Models of Rainfall: Developments for Fine-Scale Structure, pp. 2569–2587.
Cowpertwait, P. S. P. (1991), Further developments of the neyman-scott clustered point process for modeling rainfall, Water Resour. Res.,

27(7), 1431–1438, doi:10.1029/91WR00479.
Cowpertwait, P. S. P., P. E. O’Connell, A. V. Metcalfe, and J. A. Mawdsley (1996), Stochastic point process modelling of rainfall. I. Single-site

fitting and validation, J. Hydrol., 175(1–4), 17–46, doi:10.1016/S0022-1694(96)80004-7.
Cunnane, C. (1978), Unbiased plotting positions — A review, J. Hydrol., 37(3-4), 205–222, doi:10.1016/0022-1694(78)90017-3.
De Boer, D. H., and G. Crosby (1996), Specific Sediment Yield and Drainage Basin Scale, Paper Presented at Global and Regional Perspective,

IAHS, Exeter, U. K.
Dedkov, A. (2004), The relationship between sediment yield and drainage basin area, in Sediment Transfer Through the Fluvial

System: Proceedings of the International Symposium Held at Moscow, Russia, from 2 to 6 August, 2004, pp. 197–204, IAHS,
Wallingford, U. K.

Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng (2012a), Uncertainty in climate change projections: The role of internal variability, Clim. Dyn.,
38(3–4), 527–546, doi:10.1007/s00382-010-0977-x.

Deser, C., R. Knutti, S. Solomon, and A. S. Phillips (2012b), Communication of the role of natural variability in future North American climate,
Nat. Clim. Change, 2(11), 775–779, doi:10.1038/Nclimate1562.

de Vente, J., J. Poesen, M. Arabkhedri, and G. Verstraeten (2007), The sediment delivery problem revisited, Prog. Phys. Geogr., 31(2), 155–178,
doi:10.1177/0309133307076485.

Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns (2000), Climate extremes: Observations, modeling, and
impacts, Science, 289(5487), 2068–2074, doi:10.1126/science.289.5487.2068.

Emmerich, W. E., and C. L. Verdugo (2008), Long-term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed,
Arizona, United States, Water Resour. Res., 44, W05S09, doi:10.1029/2006WR005693.

Enke, W., and A. Spekat (1997), Downscaling climate model outputs into local and regional weather elements by classification and
regression, Clim. Res., 8(3), 195–207, doi:10.3354/cr008195.

Enke, W., T. Deutschlander, F. Schneider, and W. Kuchler (2005), Results of five regional climate studies applying a weather pattern based
downscaling method to ECHAM4 climate simulations, Meteorol. Z., 14(2), 247–257, doi:10.1127/0941-2948/2005/0028.

Entekhabi, D. (2000), Land Surface Processes: Basic Tools and Concepts, MIT, Cambridge, Mass.
Fatichi, S. (2010), The modeling of hydrological cycle and its interaction with vegetation in the framework of climate change, PhD

dissertation thesis, Univ. of Firenze and T.U. Braunschweig.
Fatichi, S., V. Y. Ivanov, and E. Caporali (2011), Simulation of future climate scenarios with a weather generator, Adv. Water Resour., 34(4),

448–467, doi:10.1016/j.advwatres.2010.12.013.
Fatichi, S., V. Y. Ivanov, and E. Caporali (2012), A mechanistic ecohydrological model to investigate complex interactions in cold and warm

water-controlled environments: 2 Spatiotemporal analyses, J. Adv. Model. Earth Syst., 4, M05003, doi:10.1029/2011MS000087.
Fatichi, S., V. Y. Ivanov, and E. Caporali (2013), Assessment of a stochastic downscaling methodology in generating an ensemble of hourly

future climate time series, Clim. Dyn., 40(7–8), 1841–1861, doi:10.1007/s00382-012-1627-2.
Fatichi, S., S. Rimkus, P. Burlando, and R. Bordoy (2014), Does internal climate variability overwhelm climate change signals in streamflow?

The upper Po and Rhone basin case studies, Sci. Total Environ., 493, 1171–1182, doi: 10.1016/j.scitotenv.2013.12.014.
Favis-Mortlock, D., and J. Boardman (1995), Nonlinear responses of soil erosion to climate change: A modelling study on the UK South

Downs, Catena, 25(1–4), 365–387, doi:10.1016/0341-8162(95)00018-n.
Favis-Mortlock, D. T., and S. J. T. Guerra (1999), The implications of general circulation model estimates of rainfall for future erosion: A case

study from Brazil, Catena, 37(3–4), 329–354, doi:10.1016/S0341-8162(99)00025-9.
Favis-Mortlock, D. T., and M. R. Savabi (1996), Shifts in rates and spatial distribution of soil erosion and deposition under climate change, in

Advances in Hillslope Processes, edited by M. G. Anderson and S. M. Brooks, pp. 129–560, John Wiley, New York.
Fischer, E. M., U. Beyerle, and R. Knutti (2013), Robust spatially aggregated projections of climate extremes, Nat. Clim. Change, 3(12),

1033–1038, doi:10.1038/nclimate2051.
Flerchinger, G. N., W. P. Kustas, and M. A. Weltz (1998), Simulating surface energy fluxes and radiometric surface temperatures for two

arid vegetation communities using the SHAW model, J. Appl. Meteorol., 37(5), 449–460, doi:10.1175/1520-0450(1998)037<0449:
Ssefar>2.0.Co;2.

Fowler, A. M., and K. J. Hennessy (1995), Potential impacts of global warming on the frequency and magnitude of heavy precipitation, Nat.
Hazards, 11(3), 283–303, doi:10.1007/Bf00613411.

Francipane, A. (2010), tRIBS-Erosion: A physically-based model for studying mechanisms of eco-hydro-geomorphic coupling, PhD
dissertation thesis, Univ. of Palermo, Palermo.

Francipane, A., V. Y. Ivanov, L. V. Noto, E. Istanbulluoglu, E. Arnone, and R. L. Bras (2012), tRIBS-Erosion: A parsimonious physically-based
model for studying catchment hydro-geomorphic response, Catena, 92, 216–231, doi:10.1016/j.catena.2011.10.005.

Freeze, R. A., and J. A. Cherry (1979), Groundwater, Prentice-Hall, Englewood Cliffs, N. J.
Goodrich, D. C., L. J. Lane, R. M. Shillito, S. N. Miller, K. H. Syed, and D. A. Woolhiser (1997), Linearity of basin response as a function of scale in a

semiarid watershed, Water Resour. Res., 33(12), 2951–2965, doi:10.1029/97WR01422.
Goodrich, D. C., T. O. Keefer, C. L. Unkrich, M. H. Nichols, H. B. Osborn, J. J. Stone, and J. R. Smith (2008a), Long-term precipitation database,

Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S04, doi:10.1029/2006WR005782.
Goodrich, D. C., C. L. Unkrich, T. O. Keefer, M. H. Nichols, J. J. Stone, L. R. Levick, and R. L. Scott (2008b), Event to multidecadal persistence in

rainfall and runoff in southeast Arizona, Water Resour. Res., 44, W05S14, doi:10.1029/2007WR006222.
Gueymard, C. A. (2008), REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically

active radiation - Validation with a benchmark dataset, Sol. Energy, 82(3), 272–285, doi:10.1016/j.solener.2007.04.008.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003232

FRANCIPANE ET AL. ©2015. American Geophysical Union. All Rights Reserved. 530

http://dx.doi.org/10.1002/esp.435
http://dx.doi.org/10.1002/jqs.604
http://dx.doi.org/10.1002/Esp.318
http://dx.doi.org/10.1016/j.geomorph.2005.01.008
http://dx.doi.org/10.5194/hess-16-4401-2012
http://dx.doi.org/10.1029/91WR00479
http://dx.doi.org/10.1016/S0022-1694(96)80004-7
http://dx.doi.org/10.1016/0022-1694(78)90017-3
http://dx.doi.org/10.1007/s00382-010-0977-x
http://dx.doi.org/10.1038/Nclimate1562
http://dx.doi.org/10.1177/0309133307076485
http://dx.doi.org/10.1126/science.289.5487.2068
http://dx.doi.org/10.1029/2006WR005693
http://dx.doi.org/10.3354/cr008195
http://dx.doi.org/10.1127/0941-2948/2005/0028
http://dx.doi.org/10.1016/j.advwatres.2010.12.013
http://dx.doi.org/10.1029/2011MS000087
http://dx.doi.org/10.1007/s00382-012-1627-2
http://dx.doi.org/10.1016/j.scitotenv.2013.12.014
http://dx.doi.org/10.1016/0341-8162(95)00018-n
http://dx.doi.org/10.1016/S0341-8162(99)00025-9
http://dx.doi.org/10.1038/nclimate2051
http://dx.doi.org/10.1175/1520-0450(1998)037<0449:Ssefar>2.0.Co;2
http://dx.doi.org/10.1175/1520-0450(1998)037<0449:Ssefar>2.0.Co;2
http://dx.doi.org/10.1175/1520-0450(1998)037<0449:Ssefar>2.0.Co;2
http://dx.doi.org/10.1175/1520-0450(1998)037<0449:Ssefar>2.0.Co;2
http://dx.doi.org/10.1007/Bf00613411
http://dx.doi.org/10.1016/j.catena.2011.10.005
http://dx.doi.org/10.1029/97WR01422
http://dx.doi.org/10.1029/2006WR005782
http://dx.doi.org/10.1029/2007WR006222
http://dx.doi.org/10.1016/j.solener.2007.04.008


Hack, J. T., and J. C. Goodlett (1960), Geomorphology and Forest Ecology of a Mountain Region in the Central Appalachians, U. S. Gov. Print. Off.,
Washington D. C.

Hancock, G. R., and T. J. Coulthard (2012), Channel movement and erosion response to rainfall variability in southeast Australia, Hydrol.
Processes, 26(5), 663–673, doi:10.1002/Hyp.8166.

Hancock, G. R., T. J. Coulthard, and G. R. Willgoose (2011), Modeling erosion and channel movement - Response to rainfall variability in south
east Australia, pp. 1874–1880.

Hawkins, E., and R. Sutton (2011), The potential to narrow uncertainty in projections of regional precipitation change, Clim. Dyn., 37(1–2),
407–418, doi:10.1007/s00382-010-0810-6.

Hu, Z., and S. Islam (1995), Prediction of ground surface temperature and soil moisture content by the force-restore method, Water Resour.
Res., 31(10), 2531–2539, doi:10.1029/95WR01650.

Imeson, A. C., and H. Lavee (1998), Soil erosion and climate change: The transect approach and the influence of scale, Geomorphology,
23(2–4), 219–227, doi:10.1016/S0169-555x(98)00005-1.

Intergovernmental Panel on Climate Change (2007), Summary for policymakers, in Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press,
Cambridge, U. K., and New York.

Istanbulluoglu, E. (2009a), Modeling catchment evolution: From decoding geomorphic processes signatures toward predicting impacts of
climate change, Geogr. Compass, 3(3), 1125–1150, doi:10.1111/j.1749-8198.2009.00228.x.

Istanbulluoglu, E. (2009b), An eco-hydro-geomorphic perspective to modeling the role of climate in catchment evolution, Geogr Compass,
3(3), 1151–1175, doi:10.1111/j.1749-8198.2009.00229.x.

Istanbulluoglu, E., and R. L. Bras (2005), Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage
density, and topography, J. Geophys. Res., 110, F02012, doi:10.1029/2004JF000249.

Istanbulluoglu, E., D. G. Tarboton, R. T. Pack, and C. H. Luce (2004), Modeling of the interactions between forest vegetation, disturbances, and
sediment yields, J. Geophys. Res., 109, F01009, doi:10.1029/2003JF000041.

Ivanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi (2004a), Preserving high-resolution surface and rainfall data in operational-scale basin
hydrology: A fully-distributed physically-based approach, J. Hydrol., 298(1–4), 80–111, doi:10.1016/j.jhydrol.2004.03.041.

Ivanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi (2004b), Catchment hydrologic response with a fully distributed triangulated irregular
network model, Water Resour. Res., 40, W11102, doi:10.1029/2004WR003218.

Kim, J., and V. Y. Ivanov (2014), On the nonuniqueness of sediment yield at the catchment scale: The effects of soil antecedent conditions and
surface shield, Water Resour. Res., 50, 1025–1045, doi:10.1002/2013wr014580.

Kim, J., V. Y. Ivanov, and N. D. Katopodes (2013), Modeling erosion and sedimentation coupled with hydrological and overland flow
processes at the watershed scale, Water Resour. Res., 49, 5134–5154, doi:10.1002/wrcr.20373.

Kim, M. K., D. C. Flanagan, J. R. Frankenberger, and C. R. Meyer (2009), Impact of precipitation changes on runoff and soil erosion in Korea
using CLIGEN and WEPP, J. Soil Water Conserv., 64(2), 154–162, doi:10.2489/jswc.64.2.154.

King, D. M., S. M. Skirvin, C. D. H. Collins, M. S. Moran, S. H. Biedenbender, M. R. Kidwell, M. A. Weltz, and A. Diaz-Gutierrez (2008), Assessing
vegetation change temporally and spatially in southeastern Arizona, Water Resour. Res., 44, W05S15, doi:10.1029/2006WR005850.

Kunkel, K. E., D. R. Easterling, D. A. R. Kristovich, B. Gleason, L. Stoecker, and R. Smith (2010), Recent increases in U.S. heavy precipitation
associated with tropical cyclones, Geophys. Res. Lett., 37, L24706, doi:10.1029/2010GL045164.

Laflen, J. M., L. J. Lane, and G. R. Foster (1991), WEPP: A new generation of erosion prediction technology, J. Soil Water Conserv., 46(1),
34–38.

Lane, S. N. (2013), 21st century climate change: Where has all the geomorphology gone?, Earth Surf. Processes Landforms, 38(1), 106–110,
doi:10.1002/esp.3362.

Langbein, W. B., and S. A. Schumm (1958), Yield of sediment in relation to mean annual precipitation, Trans. Am. Geophys. Union, 39(6), 1076,
doi:10.1029/TR039i006p01076.

Lin, J. D. (1980), On the force-restore method for prediction of ground surface temperature, J. Geophys. Res., 85(C6), 3251–3254, doi:10.1029/
JC085iC06p03251.

Lu, H., C. J. Moran, and M. Sivapalan (2005), A theoretical exploration of catchment-scale sediment delivery, Water Resour. Res., 41, W09415,
doi:10.1029/2005WR004018.

Martin, Y. E. (2013), 14.6 Methods in geomorphology: Numerical modeling of drainage basin development, in Treatise on Geomorphology,
edited by J. F. Shroder, pp. 65–72, Academic Press, San Diego, Calif.

Martin, Y., and M. Church (2004), Numerical modelling of landscape evolution: Geomorphological perspectives, Prog. Phys. Geogr., 28(3),
317–339, doi:10.1191/0309133304pp412ra.

Meehl, G. A., C. Covey, T. Delworth, M. Latif, B. McAvaney, J. F. B. Mitchell, R. J. Stouffer, and K. E. Taylor (2007), The WCRP CMIP3 multimodel
dataset - A new era in climate change research, Bull. Am. Meteorol. Soc., 88(9), 1383–1394, doi:10.1175/Bams-88-9-1383.

Monteith, J. L. (1965), Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205–234.
Morris, G. L., and J. Fan (1998), Reservoir Sedimentation Handbook, McGraw-Hill Book Co., New York.
Mullan, D. (2013), Soil erosion under the impacts of future climate change: Assessing the statistical significance of future changes and the

potential on-site and off-site problems, Catena, 109, 234–246, doi:10.1016/j.catena.2013.03.007.
Mullan, D., D. Favis-Mortlock, and R. Fealy (2012), Addressing key limitations associated with modelling soil erosion under the impacts of

future climate change, Agric. For. Meteorol., 156(0), 18–30, doi:10.1016/j.agrformet.2011.12.004.
Murphy, J. M., et al. (2009), UK climate projections science report: Climate change projections Rep, Met Office Hadley Centre, Exeter.
Naik, P. K., and D. A. Jay (2011), Distinguishing human and climate influences on the Columbia River: Changes in mean flow and sediment

transport, J. Hydrol., 404(3–4), 259–277, doi:10.1016/j.jhydrol.2011.04.035.
Nearing, M. A. (2001), Potential changes in rainfall erosivity in the U.S. with climate change during the 21st century, J. Soil Water Conserv.,

56(3), 229–232.
Nearing, M. A., G. R. Foster, L. J. Lane, and S. C. Finkner (1989), A process-based soil-erosion model for USDA-water erosion prediction project

technology, Trans. Asae, 32(5), 1587–1593.
Nearing, M. A., J. R. Simanton, L. D. Norton, S. J. Bulygin, and J. Stone (1999), Soil erosion by surface water flow on a stony, semiarid hillslope,

Earth Surf. Processes Landforms, 24(8), 677–686, doi:10.1002/(Sici)1096-9837(199908)24:8<677::Aid-Esp981>3.0.Co;2-1.
Nearing, M. A., et al. (2005), Modeling response of soil erosion and runoff to changes in precipitation and cover, Catena, 61(2-3), 131–154,

doi:10.1016/j.catena.2005.03.007.
Nearing, M. A., M. H. Nichols, J. J. Stone, K. G. Renard, and J. R. Simanton (2008), Sediment yields from unit-source semiarid watersheds at

Walnut, Water Resour. Res., 44, W06426, doi:10.1029/2008WR006907.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003232

FRANCIPANE ET AL. ©2015. American Geophysical Union. All Rights Reserved. 531

http://dx.doi.org/10.1002/Hyp.8166
http://dx.doi.org/10.1007/s00382-010-0810-6
http://dx.doi.org/10.1029/95WR01650
http://dx.doi.org/10.1016/S0169-555x(98)00005-1
http://dx.doi.org/10.1111/j.1749-8198.2009.00228.x
http://dx.doi.org/10.1111/j.1749-8198.2009.00229.x
http://dx.doi.org/10.1029/2004JF000249
http://dx.doi.org/10.1029/2003JF000041
http://dx.doi.org/10.1016/j.jhydrol.2004.03.041
http://dx.doi.org/10.1029/2004WR003218
http://dx.doi.org/10.1002/2013wr014580
http://dx.doi.org/10.1002/wrcr.20373
http://dx.doi.org/10.2489/jswc.64.2.154
http://dx.doi.org/10.1029/2006WR005850
http://dx.doi.org/10.1029/2010GL045164
http://dx.doi.org/10.1002/esp.3362
http://dx.doi.org/10.1029/TR039i006p01076
http://dx.doi.org/10.1029/JC085iC06p03251
http://dx.doi.org/10.1029/JC085iC06p03251
http://dx.doi.org/10.1029/2005WR004018
http://dx.doi.org/10.1191/0309133304pp412ra
http://dx.doi.org/10.1175/Bams-88-9-1383
http://dx.doi.org/10.1016/j.catena.2013.03.007
http://dx.doi.org/10.1016/j.agrformet.2011.12.004
http://dx.doi.org/10.1016/j.jhydrol.2011.04.035
http://dx.doi.org/10.1002/(Sici)1096-9837(199908)24:8<677::Aid-Esp981>3.0.Co;2-1
http://dx.doi.org/10.1002/(Sici)1096-9837(199908)24:8<677::Aid-Esp981>3.0.Co;2-1
http://dx.doi.org/10.1002/(Sici)1096-9837(199908)24:8<677::Aid-Esp981>3.0.Co;2-1
http://dx.doi.org/10.1016/j.catena.2005.03.007
http://dx.doi.org/10.1029/2008WR006907


Neitsch, S. L., J. G. Arnold, J. R. Kiniry, J. R. Williams, and K. W. King (2002), Soil and water assessment tool theoretical documentation,TWRI Rep.
TR-191, Tex. Water Resour. Inst., College Station.

Nichols, M. H., J. J. Stone, and M. A. Nearing (2008), Sediment database, Walnut Gulch Experimental Watershed, Arizona, United States,Water
Resour. Res., 44, W05S06, doi:10.1029/2006WR005682.

Nicks, A. D., and G. A. Gander (1994), CLIGEN: A weather generator for climate inputs to water resource and other models, paper presented at
5th International Conference on Computers in Agriculture, Orlando, Fla.

Nunes, J. P., and M. A. Nearing (2010), Modelling impacts of climatic change: Case studies using the new generation of erosion models, in
Handbook of Erosion Modelling, pp. 289–312, John Wiley, Chichester, U. K.

Nunes, J. P., G. N. Vieira, J. Seixas, P. Gonclaves, and N. Carvalhais (2005), Evaluating the MEFIDIS model for runoff and soil erosion prediction
during rainfall events, Catena, 61(2-3), 210–228, doi:10.1016/j.catena.2005.03.005.

Nunes, J. P., J. Seixas, and N. R. Pacheco (2008), Vulnerability of water resources, vegetation productivity and soil erosion to climate change in
Mediterranean watersheds, Hydrol. Processes, 22(16), 3115–3134, doi:10.1002/Hyp.6897.

Nunes, J. P., J. Seixas, and J. J. Keizer (2013), Modeling the response of within-storm runoff and erosion dynamics to climate change in two
Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis, Catena, 102, 27–39, doi:10.1016/
j.catena.2011.04.001.

O’Neal, M. R., M. A. Nearing, R. C. Vining, J. Southworth, and R. A. Pfeifer (2005), Climate change impacts on soil erosion in Midwest United
States with changes in crop management, Catena, 61(2–3), 165–184, doi:10.1016/j.catena.2005.03.003.

Osborn, H. B. (1983), Timing and duration of high rainfall rates in the southwestern United States, Water Resour. Res., 19(4), 1036–1042,
doi:10.1029/WR019i004p01036.

Osterkamp, W. R., C. R. Hupp, and M. R. Schening (1995), Little River revisited — Thirty-five years after Hack and Goodlett, Geomorphology,
13(1–4), 1–20, doi:10.1016/0169-555x(95)00063-b.

Parsons, A. J., J. Wainwright, R. E. Brazier, and D. M. Powell (2006), Is sediment delivery a fallacy?, Earth Surf. Processes Landforms, 31(10),
1325–1328, doi:10.1002/esp.1395.

Paschalis, A., P. Molnar, S. Fatichi, and P. Burlando (2014), On temporal stochastic modeling of precipitation, nesting models across scales,
Adv. Water Resour., 63(0), 152–166, doi:10.1016/j.advwatres.2013.11.006.

Peixoto, J. P., and A. H. Oort (1992), The Physics of Climate, Springer, New York.
Penman, H. L. (1948), Natural evaporation from open water, bare soil and grass, Proc. R. Soc. A: Math. Phys. Eng. Sci., 193(1032), 120–145,

doi:10.1098/rspa.1948.0037.
Phan, D. B., C. C. Wu, and S. C. Hsieh (2011), Impact of climate change on stream discharge and sediment yield in Northern Viet Nam, Water

Resour., 38(6), 827–836, doi:10.1134/s0097807811060133.
Polyakov, V. O., M. A. Nearing, M. H. Nichols, R. L. Scott, J. J. Stone, andM. P. McClaran (2010), Long-term runoff and sediment yields from small

semiarid watersheds in southern Arizona, Water Resour. Res., 46, W09512, doi:10.1029/2009WR009001.
Pruski, F. F., and M. A. Nearing (2002a), Runoff and soil-loss responses to changes in precipitation: A computer simulation study, J. Soil Water

Conserv., 57(1), 7–16.
Pruski, F. F., and M. A. Nearing (2002b), Climate-induced changes in erosion during the 21st century for eight U.S. locations, Water Resour.

Res., 38(12), 1298, doi: 10.1029/2001WR000493.
Räisänen, J. (2007), How reliable are climate models?, Tellus A, 59(1), 2–29, doi:10.1111/j.1600-0870.2006.00211.x.
Renard, K. G., L. J. Lane, J. R. Simanton, W. E. Emmerich, J. J. Stone, M. A. Weltz, D. C. Goodrich, and D. S. Yakowitz (1993), Agricultural impacts in

an arid environment: Walnut Gulch studies, Hydrol. Sci. Technol., 9, 145–190.
Riebe, C. S., J. W. Kirchner, D. E. Granger, and R. C. Finkel (2001), Minimal climatic control on erosion rates in the Sierra Nevada, California,

Geology, 29(5), 447–450, doi:10.1130/0091-7613(2001)029<0447:Mccoer>2.0.Co;2.
Rinehart, A. J., E. R. Vivoni, and P. D. Brooks (2008), Effects of vegetation, albedo, and solar radiation sheltering on the solution of snow in the

Valles Caldera, New Mexico, Ecohydrology, 1, 253–270.
Ritchie, J. C., M. A. Nearing, M. H. Nichols, and C. A. Ritchie (2005), Patterns of soil erosion and redeposition on Lucky Hills Watershed, Walnut

Gulch experimental watershed, Arizona, Catena, 61(2–3), 122–130, doi:10.1016/j.catena.2005.03.012.
Roering, J. J., J. W. Kirchner, and W. E. Dietrich (2001), Hillslope evolution by nonlinear, slope-dependent transport: Steady state morphology

and equilibrium adjustment timescales, J. Geophys. Res., 106(B8), 16,499–16,513, doi:10.1029/2001JB000323.
Römkens, M. J. M., K. Helming, and S. N. Prasad (2002), Soil erosion under different rainfall intensities, surface roughness, and soil water

regimes, Catena, 46(2–3), 103–123, doi:10.1016/s0341-8162(01)00161-8.
Routschek, A., J. Schmidt, W. Enke, and T. Deutschlaender (2014), Future soil erosion risk - Results of GIS-based model simulations for a

catchment in Saxony/Germany, Geomorphology, 206, 299–306, doi:10.1016/j.geomorph.2013.09.033.
Rutter, A. J., P. C. Robins, A. J. Morton, and K. A. Kershaw (1972), Predictive model of rainfall interception in forests. 1. Derivation of model from

observations in a plantation of corsican pine, Agric. Meteorol., 9(5–6), 367–384.
Rutter, A. J., A. J. Morton, and P. C. Robins (1975), A predictive model of rainfall interception in forests. II Generalization of the model and

comparison with observations in some coniferous and hardwood stands, J. Appl. Ecol., 12(1), 367–380.
Salles, C., J. Poesen, and G. Govers (2000), Statistical and physical analysis of soil detachment by raindrop impact: Rain erosivity indices and

threshold energy, Water Resour. Res., 36(9), 2721–2729, doi:10.1029/2000WR900024.
Seager, R. (2007), The turn of the century North American drought: Global context, dynamics, and past analogs, J. Clim., 20(22), 5527–5552,

doi:10.1175/2007jcli1529.1.
Seager, R., et al. (2007), Model projections of an imminent transition to a more arid climate in southwestern North America, Science,

316(5828), 1181–1184, doi:10.1126/science.1139601.
Sheppard, P. R., A. C. Comrie, G. D. Packin, K. Angersbach, and M. K. Hughes (2002), The climate of the US Southwest, Clim. Res., 21(3), 219–238,

doi:10.3354/Cr021219.
Shrestha, B., M. S. Babel, S. Maskey, A. van Griensven, S. Uhlenbrook, A. Green, and I. Akkharath (2013), Impact of climate change on

sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR, Hydrol. Earth Syst. Sci., 17(1), 1–20,
doi:10.5194/hess-17-1-2013.

Simonoff, J. S. (1996), Smoothing Methods in Statistics, Springer, New York.
Simons, D. B., and F. Şentürk (1992), Sediment Transport Technology: Water and Sediment Dynamics, Water Resour. Publ., Littleton, Colo.
Skirvin, S., M. Kidwell, S. Biedenbender, J. P. Henley, D. King, C. H. Collins, S. Moran, and M. Weltz (2008), Vegetation data, Walnut Gulch

Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S08, doi:10.1029/2006WR005724.
Slingo, A. (1989), A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46(10), 1419–1427,

doi:10.1175/1520-0469(1989)046<1419:agpfts>2.0.co;2.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003232

FRANCIPANE ET AL. ©2015. American Geophysical Union. All Rights Reserved. 532

http://dx.doi.org/10.1029/2006WR005682
http://dx.doi.org/10.1016/j.catena.2005.03.005
http://dx.doi.org/10.1002/Hyp.6897
http://dx.doi.org/10.1016/j.catena.2011.04.001
http://dx.doi.org/10.1016/j.catena.2011.04.001
http://dx.doi.org/10.1016/j.catena.2005.03.003
http://dx.doi.org/10.1029/WR019i004p01036
http://dx.doi.org/10.1016/0169-555x(95)00063-b
http://dx.doi.org/10.1002/esp.1395
http://dx.doi.org/10.1016/j.advwatres.2013.11.006
http://dx.doi.org/10.1098/rspa.1948.0037
http://dx.doi.org/10.1134/s0097807811060133
http://dx.doi.org/10.1029/2009WR009001
http://dx.doi.org/10.1029/2001WR000493
http://dx.doi.org/10.1111/j.1600-0870.2006.00211.x
http://dx.doi.org/10.1130/0091-7613(2001)029<0447:Mccoer>2.0.Co;2
http://dx.doi.org/10.1130/0091-7613(2001)029<0447:Mccoer>2.0.Co;2
http://dx.doi.org/10.1130/0091-7613(2001)029<0447:Mccoer>2.0.Co;2
http://dx.doi.org/10.1016/j.catena.2005.03.012
http://dx.doi.org/10.1029/2001JB000323
http://dx.doi.org/10.1016/s0341-8162(01)00161-8
http://dx.doi.org/10.1016/j.geomorph.2013.09.033
http://dx.doi.org/10.1029/2000WR900024
http://dx.doi.org/10.1175/2007jcli1529.1
http://dx.doi.org/10.1126/science.1139601
http://dx.doi.org/10.3354/Cr021219
http://dx.doi.org/10.5194/hess-17-1-2013
http://dx.doi.org/10.1029/2006WR005724
http://dx.doi.org/10.1175/1520-0469(1989)046<1419:agpfts>2.0.co;2
http://dx.doi.org/10.1175/1520-0469(1989)046<1419:agpfts>2.0.co;2
http://dx.doi.org/10.1175/1520-0469(1989)046<1419:agpfts>2.0.co;2


Stephens, G. L. (1978), Radiation profiles in extended water clouds. II: Parameterization schemes, J. Atmos. Sci., 35(11), 2123–2132,
doi:10.1175/1520-0469(1978)035<2123:rpiewc>2.0.co;2.

Stone, J. J., M. H. Nichols, D. C. Goodrich, and J. Buono (2008), Long-term runoff database, Walnut Gulch Experimental Watershed, Arizona,
United States, Water Resour. Res., 44, W05S05, doi:10.1029/2006WR005733.

Styczen, M., and K. Høgh-Schmidt (1988), A new description of splash erosion in relation to raindrop sizes and vegetation, in Erosion
Assessment and Modelling, edited by R. P. C. Morgan and R. J. Rickson, Commission of the European Communities Rep. EUR 10860 EN,
pp. 147–184, Brussels.

Tebaldi, C., L. O. Mearns, D. Nychka, and R. L. Smith (2004), Regional probabilities of precipitation change: A Bayesian analysis of multimodel
simulations, Geophys. Res. Lett., 31, D18123, doi:10.1029/2004GL021276.

Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns (2005), Quantifying uncertainty in projections of regional climate change: A Bayesian
approach to the analysis of multimodel ensembles, J. Clim., 18(10), 1524–1540, doi:10.1175/Jcli3363.1.

Temme, A. J. A.M., J. E. M. Baartman, and J. M. Schoorl (2009), Can uncertain landscape evolutionmodels discriminate between landscape responses
to stable and changing future climate? A millennial-scale test, Global Planet. Change, 69(1–2), 48–58, doi:10.1016/j.gloplacha.2009.08.001.

Tucker, G. E., and R. L. Bras (2000), A stochastic approach to modeling the role of rainfall variability in drainage basin evolution,Water Resour.
Res., 36(7), 1953–1964, doi:10.1029/2000WR900065.

Tucker, G. E., and R. Slingerland (1997), Drainage basin responses to climate change,Water Resour. Res., 33(8), 2031–2047, doi:10.1029/97WR00409.
Tucker, G. E., S. T. Lancaster, N. M. Gasparini, and R. L. Bras (2001a), The Channel-Hillslope Integrated Landscape Development Model (CHILD),

in Landscape Erosion and Evolution Modeling, edited by R. Harmon and W. Doe III, pp. 349–388, Springer.
Tucker, G. E., S. T. Lancaster, N. M. Gasparini, R. L. Bras, and S. M. Rybarczyk (2001b), An object-oriented framework for distributed hydrologic

and geomorphic modeling using triangulated irregular networks, Comput. Geosci., 27(8), 959–973, doi:10.1016/S0098-3004(00)00134-5.
van Balen, R. T., F. S. Busschers, and G. E. Tucker (2010), Modeling the response of the Rhine–Meuse fluvial system to Late Pleistocene climate

change, Geomorphology, 114(3), 440–452, doi:10.1016/j.geomorph.2009.08.007.
Van De Wiel, M. J., T. J. Coulthard, M. G. Macklin, and J. Lewin (2007), Embedding reach-scale fluvial dynamics within the CAESAR cellular

automaton landscape evolution model, Geomorphology, 90(3–4), 283–301, doi:10.1016/j.geomorph.2006.10.024.
Vivoni, E. R., V. Y. Ivanov, R. L. Bras, and D. Entekhabi (2004), Generation of triangulated irregular networks based on hydrological similarity,

J. Hydrol. Eng., 9(4), 288–302, doi:10.1061/(Asce)1084-0699(2004)9:4(288).
vonWerner, M. (1995), GIS-orientierte Methoden der digitalen Reliefanalyse zur Modellierung von Bodenerosion in kleinen Einzugsgebieten.
Walling, D. E. (1983), The sediment delivery problem, J. Hydrol., 65(1–3), 209–237, doi:10.1016/0022-1694(83)90217-2.
Walling, D. E., and A. H. A. Kleo (1979), Sediment yields of rivers in areas of low precipitation: A global view, in The Hydrology of Areas of Low

Precipitation: Proceedings of an International Symposium, edited by I. A. O. H. Sciences, pp. 479–493, IAHS-AISH, Exeter, U. K., 15–19 July
1996. [Available at https://books.google.it/books?id=bZ-ufVQV5yAC&dq=Sediment+yields+of+rivers+in+areas+of+low+precipitation:
+a+global+view&hl=it&source=gbs_navlinks_s.]

Wang, H., R. Fu, A. Kumar, and W. H. Li (2010), Intensification of summer rainfall variability in the southeastern United States during recent
decades, J. Hydrometeorol., 11(4), 1007–1018, doi:10.1175/2010jhm1229.1.

Welsh, K. E., J. A. Dearing, R. C. Chiverrell, and T. J. Coulthard (2009), Testing a cellular modelling approach to simulating late-Holocene
sediment and water transfer from catchment to lake in the French Alps since 1826, Holocene, 19(5), 785–798, doi:10.1177/
0959683609105303.

Weltz, M. A., J. C. Ritchie, and H. D. Fox (1994), Comparison of laser and field measurements of vegetation height and canopy cover, Water
Resour. Res., 30(5), 1311–1319, doi:10.1029/93WR03067.

Wicks, J. M., and J. C. Bathurst (1996), SHESED: A physically based, distributed erosion and sediment yield component for the SHE
hydrological modelling system, J. Hydrol., 175(1–4), 213–238, doi:10.1016/S0022-1694(96)80012-6.

Wilby, R. L., and C. W. Dawson (2007), SDSM 4.2— A decision support tool for the assessment of regional climate change impacts, Lancaster
University, Lancaster/Environment Agency of England and Wales.

Willgoose, G., R. L. Bras, and I. Rodriguez-Iturbe (1991), A coupled channel network growth and hillslope evolution model: 1 Theory, Water
Resour. Res., 27(7), 1671–1684, doi:10.1029/91WR00935.

Yalin, M. S. (1972), Mechanics of Sediment Transport, Pergamon Press, Oxford, U. K.
Yang, C. T. (1996), Sediment Transport: Theory and Practice, McGraw-Hill Higher Education, New York.
Zhang, P. Z., P. Molnar, and W. R. Downs (2001), Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate

change on erosion rates, Nature, 410(6831), 891–897.
Zhang, X. C. (2007), A comparison of explicit and implicit spatial downscaling of GCM output for soil erosion and crop production assessments,

Clim. Change, 84(3–4), 337–363, doi:10.1007/s10584-007-9256-1.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003232

FRANCIPANE ET AL. ©2015. American Geophysical Union. All Rights Reserved. 533

http://dx.doi.org/10.1175/1520-0469(1978)035<2123:rpiewc>2.0.co;2
http://dx.doi.org/10.1175/1520-0469(1978)035<2123:rpiewc>2.0.co;2
http://dx.doi.org/10.1175/1520-0469(1978)035<2123:rpiewc>2.0.co;2
http://dx.doi.org/10.1029/2006WR005733
http://dx.doi.org/10.1029/2004GL021276
http://dx.doi.org/10.1175/Jcli3363.1
http://dx.doi.org/10.1016/j.gloplacha.2009.08.001
http://dx.doi.org/10.1029/2000WR900065
http://dx.doi.org/10.1029/97WR00409
http://dx.doi.org/10.1016/S0098-3004(00)00134-5
http://dx.doi.org/10.1016/j.geomorph.2009.08.007
http://dx.doi.org/10.1016/j.geomorph.2006.10.024
http://dx.doi.org/10.1061/(Asce)1084-0699(2004)9:4(288)
http://dx.doi.org/10.1016/0022-1694(83)90217-2
https://books.google.it/books?id=bZ-ufVQV5yAC&dq=Sediment+yields+of+rivers+in+areas+of+low+precipitation:+a+global+view&hl=itsource=gbs_navlinks_s
https://books.google.it/books?id=bZ-ufVQV5yAC&dq=Sediment+yields+of+rivers+in+areas+of+low+precipitation:+a+global+view&hl=itsource=gbs_navlinks_s
http://dx.doi.org/10.1175/2010jhm1229.1
http://dx.doi.org/10.1177/0959683609105303
http://dx.doi.org/10.1177/0959683609105303
http://dx.doi.org/10.1029/93WR03067
http://dx.doi.org/10.1016/S0022-1694(96)80012-6
http://dx.doi.org/10.1029/91WR00935
http://dx.doi.org/10.1007/s10584-007-9256-1


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


