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Abstract This paper evaluates the numerical convergence of very short (1 h) simulations carried out with
a spectral-element (SE) configuration of the Community Atmosphere Model version 5 (CAM5). While the
horizontal grid spacing is fixed at approximately 110 km, the process-coupling time step is varied between
1800 and 1 s to reveal the convergence rate with respect to the temporal resolution. Special attention is
paid to the behavior of the parameterized subgrid-scale physics. First, a dynamical core test with reduced
dynamics time steps is presented. The results demonstrate that the experimental setup is able to correctly
assess the convergence rate of the discrete solutions to the adiabatic equations of atmospheric motion. Sec-
ond, results from full-physics CAM5 simulations with reduced physics and dynamics time steps are dis-
cussed. It is shown that the convergence rate is 0.4—considerably slower than the expected rate of 1.0.
Sensitivity experiments indicate that, among the various subgrid-scale physical parameterizations, the strati-
form cloud schemes are associated with the largest time-stepping errors, and are the primary cause of slow
time step convergence. While the details of our findings are model specific, the general test procedure is
applicable to any atmospheric general circulation model. The need for more accurate numerical treatments
of physical parameterizations, especially the representation of stratiform clouds, is likely common in many
models. The suggested test technique can help quantify the time-stepping errors and identify the related
model sensitivities.

1. Introduction

There is an extensive body of literature that documents the horizontal-resolution dependence of atmos-
pheric models and their components. In contrast, much less attention has been paid to the time step sensi-
tivity [e.g., Teixeira et al., 2007], and a major portion of these studies focused on issues associated with
convection parameterizations [e.g., Williamson and Olson, 2003; Mishra et al., 2008; Mishra and Sahany, 2011;
Williamson, 2013]. Recently, Wan et al. [2014] demonstrated substantial sensitivities to time step length in
the simulated clouds and precipitation in the Community Atmosphere Model version 5 (CAM5) [Neale et al.,
2010]. That study’s analysis suggested that the model’s time integration was responsible for significant
errors at the default temporal resolution. The source of the errors might be the time-stepping methods
used inside individual parameterization schemes, and/or the operator-splitting method the model uses to
calculate tendencies from separate processes and update the solution. A detailed quantification of the vari-
ous error sources is a necessary basis for any further efforts that aim at improving the numerical accuracy of
the model. This short paper documents one possible approach to such a quantification.

To measure the numerical error, one needs a reference and a metric. Neither is trivial for complex atmos-
pheric models, due to the absence of generic nontrivial analytical solutions to the governing equations. The
ultimate ‘‘ground truth’’ for a model simulation is the observed atmospheric motion. However, the discrep-
ancies between simulations and observations are affected by many aspects such as the physical approxima-
tions in the equation sets, as well as the initial-data and observation uncertainties. Since our focus here is
on the temporal discretization, the error assessments are based on model simulations performed with dif-
ferent time step sizes in the range between 1 and 1800 s. The results obtained with the shortest time step
are considered the reference solution. Our assumption is that as the time step size is reduced, the discrete
formulation should asymptote to a correct rendering of the intended collection of algebraic and differential
equations that are used to express the mathematical model in continuous form. We acknowledge there is
no guarantee that the solution obtained with the shortest step size is the closest to the correct solution.
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Nevertheless, it is a good proxy [see
e.g., Teixeira et al., 2007, 2008], and
convergence toward this proxy is a
necessary but insufficient condition
for the convergence toward the true
solution.

If the atmospheric model under con-
sideration is a numerically consistent
discretization of a well-posed continu-
ous problem, then the discretization
error with respect to the reference
solution is expected to level off as the
time step is reduced to a sufficiently
small value. This is schematically
shown in Figure 1 by the blue and
green curves which reach a lower
bound related to, for example, the
accumulation of rounding error dis-
cussed by Rosinski and Williamson

[1997]. In practice, it is often unnecessary to seek a solution to this level of accuracy. The required time step
size could easily produce a model that is too expensive to run from a computational viewpoint; hence an
error tolerance can be defined through physical reasoning. Once the error of a particular solution falls below
that tolerance (see open circles in Figure 1), a ‘‘physically reasonable convergence’’ is achieved, and the
quality of the solution becomes practically equivalent to that of the reference solution. The choice of the
tolerance depends on the physical quantity in question, and might vary for different scientific investiga-
tions. Our study focuses on the numerical convergence. Therefore, the tolerance is established as a concept
but is not extensively discussed with respect to the physical flow characteristics.

We chose to characterize the numerical convergence in terms of the root-mean-square error (RMSE) of the
3-dimensional temperature field, and compute the RMSE after a short 1 h integration with the CAM5 model.
Temperature is a fundamental and easy-to-use state variable, and is familiar to climate scientists. These fea-
tures make this variable a desirable choice for model evaluation. Temperature errors are also a characteriza-
tion of the overall model errors since temperature is coupled to all the other state variables through the
model equations. The temperature convergence rate is thereby representative, although the physically
acceptable tolerance levels are likely to be different for different variables. We view our discussion of the
temperature error in this study as a minimal realization of, or first look at, the comprehensive evaluation of
the solution accuracy of all state variables.

All model simulations start from identical initial conditions, and utilize different time step sizes. The 1 h inte-
gration time is extremely short and thereby unusual for climate model evaluations, but it has several impor-
tant advantages. First, by keeping the integration length well within the predictability limit, we can perform
deterministic testing without worrying about uncertainties associated with the natural variability or the cha-
otic nature of the fluid equations [Lorenz, 1963]. Second, a 1 h time frame is arguably short enough to mini-
mize the effect of many nonlinear feedback mechanisms, thus facilitating the isolation of errors from
individual parameterizations. From a technical viewpoint, a shorter integration time also gives less opportu-
nity for physical or numerical instabilities to grow when physical parameterizations are turned on or off in
our sensitivity studies. The initial conditions, which would normally produce smoothly evolving simulations
as a result of a balance between forcing terms, can trigger much larger changes when terms in the balance
are turned off. If the simulation is short, as it is the case here, the simulations can still be physically reasona-
ble and numerically stable despite the missing forcing mechanisms. Last but not least, the relatively low
computational cost enables us to evaluate very short time step lengths (down to 1 s) which would other-
wise be prohibitively expensive.

The temperature RMSE allows us to evaluate the order of accuracy (a.k.a. the convergence rate) of CAM5’s
time-stepping methods. In the spectral-element configuration, the model uses sequential splitting (also
known as the Godunov operator splitting or the method of fractional steps) [Bagrinovskii and Godunov,

Figure 1. Schematic convergence pathways of three time stepping schemes.
Curves B and C denote two schemes that have the same order of accuracy but dif-
ferent magnitudes of error. Line A represents a lower-order scheme. Further details
are discussed in section 1.
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1957; Yanenko, 1971] for the coupling between the fluid dynamics solver (the dynamical core) and the para-
meterized subgrid-scale processes. It means that one model component updates the prognostic variables
before handing them to the next component. Such a splitting is formally first-order accurate; therefore, we
expect a first-order convergence rate for the full model when assuming that the temporal accuracy inside
the individual components are at least first-order.

Our paper addresses the following three CAM5-centered science questions:

1. Does the temperature field converge at the expected first-order rate?

2. What processes are responsible for departures from the expected rate?

3. Is numerical convergence achieved with a 1 s time step?

The remainder of the article is structured as follows. Section 2 briefly introduces the CAM5 model and the
experimental design. Section 3 presents a validation of the test procedure via adiabatic dynamical core
experiments. The convergence behavior of the full model is discussed in section 4, with the implications dis-
cussed in section 5. The summary and conclusions are presented in section 6.

2. Model and Simulation Basics

This study evaluates the convergence properties of CAM version 5.3.07 with its spectral element (SE)
dynamical core [Taylor and Fournier, 2010; Dennis et al., 2012]. The SE dynamics solver employs an explicit,
five-stage, third-order-accurate Runge-Kutta (RK) time-stepping scheme, where the extra RK stages are cho-
sen to increase the stability region. Fourth-order hyper-viscosity is applied as a numerical diffusion mecha-
nism. The SE dynamical core offers two options for the vertical discretization. These are an Eulerian finite-
difference scheme [Simmons and Burridge, 1981] and a floating Lagrangian method [Lin, 2004], with the lat-
ter being the default choice. The floating Lagrangian approach lets the horizontal flow evolve for brief time
before the prognostic variables get remapped back to a vertical reference grid. The vertical reference coor-
dinate is a pressure-based terrain-following hybrid coordinate. The resolved-scale tracer transport employs
a three-stage, second-order-accurate, strong-stability-preserving Runge-Kutta (SSP-RK) method with a
quasi-monotone limiter [Guba et al., 2014].

Parameterized subgrid-scale processes include solar and terrestrial radiation [Iacono et al., 2008; Mlawer
et al., 1997], deep convection [Zhang and McFarlane, 1995; Richter and Rasch, 2008; Neale et al., 2008], shal-
low convection [Park and Bretherton, 2009], moist turbulence [Bretherton and Park, 2009], surface exchange
processes [Bryan et al., 1996; Lawrence et al., 2011; Hunke et al., 2013], stratiform cloud macrophysics (con-
densation, evaporation, and cloud fraction) [Park et al., 2014], and microphysics [Morrison and Gettelman,
2008; Gettelman et al., 2008, 2010], as well as aerosol physics and chemistry [Liu et al., 2012]. Land surface
processes are represented using the Community Land Model version 4 [Lawrence et al., 2011].

For stratiform clouds, we also performed sensitivity experiments (see Section 4) using the macrophysics and
microphysics parameterizations from the predecessor model CAM4 [Neale et al., 2013; Zhang et al., 2003; Rasch
and Kristj�ansson, 1998], and the large-scale condensation scheme from the ‘‘simple-physics’’ suite of Reed and
Jablonowski [2012]. The latter instantaneously converts the moisture in excess of 100% relative humidity to
large-scale precipitation without any cloud stages or reevaporation in underlying unsaturated layers.

All simulations presented in this paper used CAM5-SE’s ‘‘ne30np4’’ horizontal resolution. This terminology
approximately corresponds to a 18 (or 110 km) grid spacing, since each of the six faces of CAM5-SE’s cubed-
sphere computational mesh is divided into 30 3 30 elements with 4 3 4 quadrature points per element. In
the vertical direction, the computational domain extends from the Earth’s surface to a constant-pressure
level at 2 hPa, and is unevenly divided into 30 discrete layers. The layer thicknesses in the hybrid p-r coordi-
nate change with location and time in either pressure or height; but roughly speaking, the vertical grid spac-
ing is on the order of 60–100 m in the planetary boundary layer, and gradually transitions to about 1 km in
the free troposphere. The exact placement of the levels is documented in Reed and Jablonowski [2012].

The model’s time stepping procedure is complex, and employs different numerical algorithms for the adia-
batic fluid dynamics and the subgrid-scale diabatic physics. The time step combinations relevant to this
study are listed in Table 1. The time step ratios (rightmost column in Table 1) are optimized to account for
the typical time scales or the numerical stability limits of each atmospheric process. In terms of the time
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integration procedure of the whole model, the frequency at which the resolved dynamics and various para-
meterized physical processes are coupled together plays the central role, as further explained below. We
refer to this step size as the ‘‘process-coupling’’ time step, and denote it by Dt hereafter.

Although individual parameterizations may employ substepping, and often use different numerical algo-
rithms (e.g., the Euler forward scheme, predictor-corrector methods, or implicit algorithms), they each invar-
iably update the model state variables at an interval Dt before giving the control to the next
parameterization. Short-wave and long-wave radiative heating rates are typically computed at longer
(hourly) time intervals to reduce their computational cost. Those tendencies are then kept constant, and
used for the state variable updates at the same interval Dt as other parameterizations. In the dynamical
core, different time step sizes are employed for the tracer transport, vertical remapping, and the adiabatic
dynamics. These shorter time steps are implemented as substeps with respect to Dt. During an interval Dt,
the SE dynamical core operates on its own without exchanging information with the parameterized physics.
Furthermore, when CAM5 communicates with CLM4 (or the ocean and sea-ice models in a fully coupled
mode, which we do not use in this study), the Dt defined above is referred to as the atmosphere model
time step, and is also used by the coupler to determine when exchanges of surface fluxes should occur.

The default process-coupling time step for the 18, 30 layer model configuration is Dt 5 1800 s with radiative
tendencies calculated every hour. Within the dynamical core, vertical remapping is performed every 900 s.
Tracer advection and adiabatic dynamics are subcycled using a step size of 300 s. The explicit numerical dif-
fusion, employed in the form of hyperviscosity, uses time steps of 100 s (Table 1). In our convergence tests,
we decreased the process-coupling time step Dt from 1800 to 450, 120, 30, 8, 2 and 1 s, and proportionally
reduced the step sizes in the dynamics components (Table 1). In case the physical parameterizations
needed subcycling, the either fixed or interactively determined number of iterations were kept unchanged.
Radiative heating rates were calculated hourly and applied at every coupling time step.

The simulations with the shortest time step (Dt 5 1 s) are considered reference solutions. Departures from
the reference solution are expressed as a temperature RMSE following Rosinski and Williamson [1997]:
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Here Dp(i,k) denotes the pressure-layer thickness on vertical level k at grid cell i. wi is the area of cell i. Sub-
script r indicates the reference solution. The sums in equation (1) are taken over all grid cells of the horizon-
tal mesh and all layers of the vertical grid.

Table 1. Time Step Sizes Used in the Convergence Tests by Various Parts of the CAM5 Model With the SE Dynamical Corea

Process or Treatment Time Step Size (unit: s) Ratio to Dt

Process coupling with Dt 1 2 8 30 120 450 1800 1
Physics

Radiation 3600 3600 3600 3600 3600 3600 3600 Varying
Deep convection 1 2 8 30 120 450 1800 1
Shallow convection 1 2 8 30 120 450 1800 1
Stratiform cloud macrophysics 1 2 8 30 120 450 1800 1
Stratiform cloud microphysicsb 1 2 8 30 120 450 1800 1

SE dynamics
Vertical remappingc 0.5 1 4 15 60 225 900 1/2
Adiabatic fluid dynamics 0.17 0.33 1.33 5 20 75 300 1/6
Resolved-scale tracer transport 0.17 0.33 1.33 5 20 75 300 1/6
Explicit numerical diffusion 0.06 0.11 0.44 1.67 6.67 25 100 1/18

aDt denotes the time interval of numerical coupling between the resolved dynamics and the parameterized physics, and among
most (except radiation) parameterizations within the physics package. Further details are provided in section 2.

bIncluding two substeps for the diagnostic rain and snow equations.
cOnly relevant to the Lagrangian vertical discretization.
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3. Tests With the Dynamical Core

As a proof of concept, we first present
results from dry, adiabatic simulations with
the SE dynamical core. All subgrid-scale
physical parameterizations were switched
off, and the initial concentrations of water
species were set to zero. However, all other
initial conditions were taken from a spun-up
CAM5-SE climate simulation and utilized
real-world topography and land-sea masks.
We deliberately chose to perform such ‘‘real-
istic’’ adiabatic simulations instead of the
idealized tests recommended by, e.g., the
Dynamical Core Intercomparison Project
(DCMIP, https://www.earthsystemcog.org/
projects/dcmip-2012/) or by Jablonowski and
Williamson [2006], to facilitate the compari-
son with the full-physics results in section 4.

Four configurations of the SE dynamical
core were tested which used different com-
binations of the vertical discretization meth-
ods (floating Lagrangian (‘‘LGR’’) versus
Eulerian (‘‘EUL’’)) and the hyperviscosity set-
ting (inviscid without diffusion (‘‘inv’’) versus
standard diffusion (‘‘vis’’)). The convergence
properties of these combinations are shown
in Figure 2. The figure displays the tempera-
ture RMSE versus the process-coupling time

step Dt in a double-logarithmic diagram. Recall that the dynamics time steps are shorter than Dt as shown
in Table 1, but Dt is plotted here for consistency with other figures. The dashed lines are linear fits between
the actual data points which are denoted by colored dots. The convergence rates are noted in parentheses.

The vertically Eulerian, inviscid simulations (‘‘EUL_inv’’) are expected to show third-order convergence which
is inherent of CAM5-SE’s RK method. When hyperviscosity is applied (‘‘EUL_vis’’), the solutions are expected
to converge at a first-order rate when the horizontal spacing Dx is fixed. This is due to the Euler forward
scheme that the explicitly-added diffusion equation utilizes. We note that the solutions would converge at a
third-order rate if Dx and Dt were reduced together, since in practice the hyperviscosity coefficient is set
proportionally to Dx3.2. The Lagrangian vertical discretization (‘‘LGR’’) is also expected to reduce the conver-
gence rate to first-order, due to the utilization of monotonic limiter and the fact that the vertical remapping
uses sequential operator splitting. The RMSE characteristics in Figure 2 indeed reveal the expected behavior.

To evaluate the uncertainties in the estimated convergence rates, we repeated the dynamical core tests
with different initial conditions (not shown). We found that the absolute magnitudes of the temperature
error may differ from case to case, but the estimated convergence rates are rather insensitive to the starting
state of the simulations. In addition, the qualitative conclusions regarding the relative accuracy stay
unchanged. Namely, the vertically Lagrangian scheme without viscosity (‘‘LGR_inv’’) is associated with the
largest temperature error, while the vertically Eulerian, inviscid version (‘‘EUL_inv’’) leads to the smallest
RMSE among the four configurations. These results suggest that the test procedure based on the tempera-
ture RMSE of 1 h simulations is capable of providing a reliable characterization of the time step convergence
rate in the global model.

4. Results With Diabatic Physics

The added complexity of parameterized subgrid-scale physics may lead to larger uncertainties in the esti-
mated convergence rate. Therefore, ensemble simulations with six members were performed using

Figure 2. Dependence of the temperature RMSE (in K, cf. equation (1)) on
the physics-dynamics coupling time step Dt (in s) in 1 h dry adabatic simu-
lations that were conducted with the SE dynamical core using real-world
land-sea mask and topography. The Lagrangian and Eulerian vertical dis-
cretization schemes are referred to as ‘‘LGN’’ and ‘‘EUL’’, respectively. Simu-
lations with the standard hyperviscosity are denoted by ‘‘vis’’, and those
without viscosity by ‘‘inv’’. Colored dots show the temperature RMSE calcu-
lated over all grid cells of the horizontal mesh and all levels of the vertical
grid. Dashed lines are linear fits between log10(RMSE) and log10(Dt). The
convergence rates are given in parenthesis. We note that the results in this
figure were obtained without physics parameterization, but the errors are
plotted against the physics-dynamics coupling time step Dt for consistency
with other figures. The entire 3-D domain was included in the calculation
of the RMSE.
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independent atmospheric states for the initial conditions. The ensemble-mean temperature error and
the standard deviation of the six members are shown in Figure 3 with thick dots and vertical bars,
respectively.

The first simulation set in this section includes a land-sea mask and realistic topography, with differing sur-
face fluxes over land and ocean for momentum, heat, moisture, and trace constituents. These are referred
to as the ‘‘full model’’ simulations in the text below and in Figure 3. Somewhat unexpectedly, solutions from
the full model converge rather slowly at a rate of 0.4 instead of 1.0. Compared to the results in the previous
section, the RMSE temperature errors are much higher for any choice of Dt. For example, they are 0.1 K with
the default 1800 s coupling time step and 0.01 K with a 2 s time step. Figure 4 (left) shows the correspond-
ing histograms of the temperature error (assessed in the global domain). The histograms indicate that,
despite the rather short integration period, local errors on the order of 1 K can be found at a nonnegligible

Figure 3. Similar to Figure 2 but for moist simulations conducted with subgrid-scale physics parameterization. Dots: average log10(RMSE)
of six ensemble simulations. Vertical bars: ensemble standard deviation of log10(RMSE). ‘‘Full Model’’: standard CAM5-SE configuration with
real-world land-sea mask and topography. All other simulations: SE dynamical core (Dyn) plus one parameterization in an aqua-planet
setup. ‘‘St Cld’’: stratiform cloud macrophysics and microphysics; ‘‘Sh Cu’’ and ‘‘Dp Cu’’: shallow and deep cumulus convection; ‘‘Rad’’: radia-
tion. ‘‘CAM5 mac1mic’’ in Figure 3b and ‘‘Dyn 1 St Cld’’ in Figure 3a refer to the same group of simulations. ‘‘CAM5 mac1mic, no precip’’:
similar to ‘‘CAM5 mac1mic’’, but without the formation and sedimentation of rain and snow. ‘‘CAM5 mac only’’: CAM5 cloud macrophysics
scheme was switched on but the stratiform cloud microphysics was turned off. ‘‘CAM4 mac1mic’’: stratiform cloud parameterizations from
CAM4. ‘‘Smpl Cond’’: simplified representation of large-scale condensation following Reed and Jablonowski [2012]. The entire 3-D domain
was included in the calculation of the RMSE.

Figure 4. Analysis of the ‘‘Full Model’’ CAM5 simulations in Figure 3a: (a) Histogram of the absolute temperature difference (in K) between the reference simulation and the simulations
with longer time steps. The sampling region is the entire 3-D domain. (b) Geographical distribution of the 700 hP absolute temperature difference (in K) between the Dt 5 1800 s and 1 s
time step simulations.
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number of grid points. Smaller errors (i.e., left halves of the histograms) converge at a first-order rate, while
the largest errors are not reduced as fast. This suggests that the slow convergence might be attributable to
certain climate regimes and/or physical processes. Figure 4 (right) shows the geographical distribution of
the 700 hPa temperature error. The characteristic patterns give a clear hint that the largest errors occur pri-
marily in regions with clouds and/or precipitation.

To identify which processes or interactions were responsible for the slow convergence, we conducted a
series of sensitivity simulations. First, we simplified the problem and switched from the real world to an
aqua-planet configuration following the experimental design of Neale and Hoskins [2000]. These aqua-
planet convergence results were very similar to those from the real-world full-physics simulations, and are
therefore not shown. This indicates that the topography and the land-surface processes are not the cause
of the convergence problem.

In order to isolate causes and effects, we then tested the physical parameterizations in isolation by using
the dynamical core plus one parameterization at a time. This set of simulations were also conducted in the
aqua-planet mode. Figure 3a shows selected examples where we paired the dynamical core (‘‘Dyn’’) with
the stratiform cloud macrophysics and microphysics (‘‘St Cld’’), the shallow cumulus convection (‘‘Sh Cu’’),
the deep cumulus convection (‘‘Dp Cu’’), and radiation (‘‘Rad’’). The convergence rates are listed in parenthe-
ses. Clearly the diagram indicates that the time-stepping errors differ substantially in individual
parameterizations.

The radiative transfer and cooling/heating calculations introduce very little error in the absence of clouds
(Figure 3a, dark red dots). The dynamics-only aqua-planet simulations, although not shown in the figure,
are virtually indistinguishable from the ‘‘Dyn 1 Rad’’ simulations.

The first-order convergence of the ‘‘Dyn 1 Dp Cu’’ simulations (Figure 3a, green dots) might seem surpris-
ingly ‘‘fast’’ at first, but displays the expected behavior. The deep convection parameterization in CAM5 is
a mass-flux scheme [Zhang and McFarlane, 1995]. The strength of the convective activities, and hence
their feedback to the large-scale environment, is ultimately determined using the assumption that the
convective available potential energy (CAPE) is restored to an equilibrium state on a certain time scale.
Both the equilibrium CAPE and the convective adjustment time scale are empirical constants in CAM5.
Such a relaxation is expected to help ensure first-order convergence. By contrast, a moist adiabatic adjust-
ment scheme explicitly resets the state of the model column to a moist adiabatic profile within one time
step. In this case, the subgrid-scale processes that lead to the ‘‘desired’’ neutral state cannot (and are not
meant to) be temporally resolved. The interplay between the related buoyancy change, vertical motion,
and the phase change of water species might be highly nonlinear and numerically challenging. It will be
interesting to test the convergence property of such an adjustment scheme as well as other convection
parameterizations that use closure assumptions different from the one in the Zhang and McFarlane [1995]
parameterization.

Another interesting result revealed by Figure 3a is that the relationship between log(RMSE) and log(Dt) is
nonlinear in the ‘‘Dyn 1 Sh Cu’’ simulations (Figure 3a, brown dots). We have not yet conducted any further
analyses of the shallow convection parameterization, thus the causes for this behavior are unclear. Never-
theless, the temperature error does decrease with reduced time step size. Furthermore, the RMSE associated
with shallow convection is about one order of magnitude smaller than that associated with the stratiform
cloud parameterizations.

It is evident that the full-model real-world simulations (Figure 3a, black dots) and the ‘‘Dyn 1 St Cld’’ aqua-
planet simulations (Figure 3a, purple dots) have similar temperature RMSE. This suggests that the stratiform
cloud parameterizations are a major source of numerical error, which might be an expected result when
considering the large number of highly nonlinear processes in this part of the model. In addition, a large
number of physical approximations are required to make the representation of the small-scale processes
computationally affordable in a global climate model. The complex connections between aerosols and
clouds [Liu et al., 2012], the treatment of ice supersaturation and nucleation [Gettelman et al., 2010], and the
variety of precipitation-related processes [Morrison and Gettelman, 2008; Gettelman et al., 2008] pose big
challenges to the design of time-stepping methods. Additional simulations using the dynamical core plus
only the macrophysics (‘‘CAM5 mac only’’ in Figure 3b) show substantially smaller errors, confirming that
the main difficulty lies indeed in the microphysics package.

Journal of Advances in Modeling Earth Systems 10.1002/2014MS000368

WAN ET AL. VC 2015. The Authors. 221



Over the past few years, efforts have been underway to replace the diagnostic rain and snow repre-
sentation in the cloud microphysics parameterization with a prognostic treatment [Gettelman and Mor-
rison, 2014; Gettelman et al., 2014a]. The new formulation provides an improved representation of the
relative balance between different rain formation mechanisms [Gettelman and Morrison, 2014; Gettel-
man et al., 2013, 2014a, 2014b]. Therefore, it is a logical next step to ask whether these changes also
alleviate the numerical convergence problem. Once the new prognostic treatment becomes available
in CAM, the updated microphysics package will be tested. Alternatively, we performed a set of sensi-
tivity simulations with the current microphysics parameterization but without the rain and snow forma-
tion or sedimentation. These are the ‘‘CAM5 mac1mic, no precip’’ simulations in Figure 3b. In such a
model configuration, the liquid-phase and ice-phase cloud condensates can be generated by large-
scale condensation and vapor deposition (including the Bergeron process) in terms of mass concentra-
tion, and by droplet activation and ice nucleation in terms of number concentration. The removal
mechanisms include droplet evaporation, ice sublimation, and condensate sedimentation. The tempera-
ture errors in this set of simulations are shown by the green dots in Figure 3b. The convergence rate
is similar to that of the simulations with diagnostic precipitation, while the magnitude of the tempera-
ture RMSE is about a factor-of-two smaller. In other words, the diagnostic precipitation equations seem
to contribute to the total error, but do not determine the rate of convergence. We speculate that the
time step sensitivity of the ice cloud microphysics in the current model needs to be carefully exam-
ined. Whether the new microphysics parameterization will bring substantial improvement remains to
be answered in the future.

For further comparison, we also tested the stratiform cloud parameterization of the CAM4 model
coupled with the SE dynamical core. Under this configuration, we got smaller temperature errors com-
pared to CAM5, but still a rather slow convergence rate (0.5, Figure 3b, pink dots). The CAM4 and CAM5
microphysics schemes have very little in common in terms of the continuous formulation and the
numerical treatments. It is curious that they both appear to have convergence issues. Future investiga-
tions are planned to obtain an in-depth understanding of the behavior of these schemes. As an aside,
the simple large-scale condensation scheme of Reed and Jablonowski [2012] converges at first-order
(‘‘Smpl Cond’’). This may seem trivial, but provides useful information. In the absence of a subgrid-scale
cloudiness scheme which might complicate the situation, the assumption that the condensation of
water vapor is fast and always occurs within one time step Dt does not degrade the numerical
convergence.

5. Implications

The results from our convergence test have far-reaching impact. First, the convergence rate discussed in
this paper is not just a mathematical concept of mere academic interest. It is of clear practical relevance
because both plots of Figure 3 indicate that, at least for the parameterizations tested in this study, the con-
vergence rate is inversely correlated with absolute error. In other words, a parameterization that converges
slower also has larger time stepping error. There is no obvious theoretical reason for this behavior. In princi-
ple, it may be possible to construct implicit or semiimplicit time stepping schemes for certain parameteriza-
tions that appear to be low-order but highly accurate, giving a temperature RMSE smaller than, say, 1023 K
with a 1800 s time step. In such a case, the low-order convergence would not be of concern. But this type
of behavior is not seen in Figure 3, and will be a target for future work.

Second, the numerical errors shown in Figures 2 and 3 also reveal the parameterization schemes’ time step
sensitivity. In the tested step-size range, the lower-order parameterizations have stronger time step sensitiv-
ities than the higher-order schemes. This can be seen more clearly from Figure 5 which shows the same
convergence diagrams as in Figure 3 but with a linear scale for the y axes.

Over the past decade, global climate models have tended to incorporate new and more complex cloud
parameterizations in order to integrate more physically based representations of the atmospheric water
cycle and the aerosol-climate interactions [e.g., Lohmann et al., 2007; Posselt and Lohmann, 2008; Lohmann
and Hoose, 2009; Wilson et al., 2008a, 2008b; Morrison and Gettelman, 2008; Gettelman et al., 2008, 2010; Sal-
zmann et al., 2010]. Some recent studies have found that algorithmic details in the cloud microphysics
parameterizations can significantly affect the simulated cloud properties, precipitation rate, and aerosol
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indirect effects [e.g., Morrison and Gettelman, 2008; Posselt and Lohmann, 2008, 2009; Salzmann et al., 2010;
Gettelman and Morrison, 2014; Gettelman et al., 2014a]. Our results obtained from the time step convergence
test indicate that the impact of the numerical treatment in the stratiform cloud parameterizations is not lim-
ited to clouds and precipitation. Rather, it quickly translates into numerical errors and time step sensitivities
in the temperature field which is of fundamental importance for climate and weather modelers. Although
our short-term time step convergence test has only been applied to CAM5, the conclusion that stratiform
cloud parameterizations are a major source of time stepping error is probably valid in many other models.
Unfortunately, there is a lack of systematic investigations in the climate modeling community concerning
the efficient and accurate numerical treatments of cloud microphysics in global models. We believe that
more attention needs to be paid to this research topic, and in a broader sense, to the numerical issues in
physical parameterizations in general.

6. Conclusions

We have demonstrated that a time step convergence test based on the temperature RMSE of 1 h simula-
tions provides useful information about the time stepping errors in various components of the climate
model CAM5. Even for such a complex model, the convergence rate is still a relevant metric. Our results
indicate that parameterization schemes with slow convergence rates are associated with larger errors and
stronger time step sensitivity.

With a 1 s time step length, we did not obtain a solution that had converged in the numerical sense to
round-off level. The temperature error in CAM5 converged at a rate of 0.4, substantially slower than the
expected first-order convergence. Sensitivity experiments were performed to test individual parameter-
izations in isolation. These showed that the slow convergence of the full model is primarily attributable
to the stratiform cloud parameterizations, in particular the cloud microphysics. Processes that produce
the slowest convergence rates also produce the largest errors, providing a ‘‘flag’’ for model components
that do not accurately represent the intended physical balance of processes, and thus require more
attention.

This paper demonstrates the problem but does not explain the root cause of it. We will further explore the
issue. Once understood, our intention is to suggest alternate discrete formulations that provide better accu-
racy at a reasonable computational cost. In the long run, it may be useful to include such convergence tests
in the standard test suite of CAM, and conduct them after each major update of the model components.
Since the convergence test is straightforward to implement and computationally inexpensive, it should be
applicable to any other atmospheric general circulation model. A continuous monitoring of the time step-
ping error will help to keep the numerical artifacts under control, and assure that a discrete model indeed
reflects the intended representation of the physical processes.

Figure 5. As in Figure 3 but using linear scales for the y axes.
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