
 

Accelerating Solid Form Discovery for Pharmaceuticals 
 

by 

 

Laura Yvonne Pfund 

 

 
 
 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Chemistry) 

in The University of Michigan 
2015 

 
 
 
 
 
 

 

 

Doctoral Committee: 

Professor Adam J. Matzger, Chair 
Professor Charles L. Brooks III 
Professor Zhan Chen 
Associate Professor Kenichi Kuroda 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

© 
Reserved Rights All

Pfund Yvonne Laura  2015 

  



 

ii 
 

 
 

 

 

 

 

 

 

 

 

For my parents 

 Sharon and Jimmy Pfund



 

iii 
 

Acknowledgements 
 

Thank you to Professor Matzger who has been a constant source of support throughout 

my graduate career. I could never fully express my appreciation for all that he has taught me. He 

has always encouraged me to push myself and strive for excellence. I have always admired his 

honesty, forthrightness and his sense of humor, even if it was often at the expense of the great 

state of New Jersey.  His vast knowledge and keen insight truly furthered the research endeavors 

of everyone in the group and allowed us all to succeed as scientists. Professor Matzger truly 

makes his lab environment an incredibly fun and welcoming place to work.  

I am also very thankful for my committee members: Professor Charles Brooks III, 

Professor Zhan Chen, and Professor Kenichi Kuroda. I am very appreciative of their guidance 

and support as I started my thesis work on and have benefited from their insight. Thank you also 

to Professor Melanie Sanford who worked with me on the MOF catalysis project. She has always 

been a source of support and encouragement. 

I would like to thank all of the members of the Matzger lab, both past and present: Ping, Jake, 

Jon, Raj, Li Zi, Kortney, Amanda, Ananya, Ly, Jialiu, and Kyle. You have all supported me in 

every way possible throughout my time in lab. Thank you to Antek, his expertise with all the lab 

equipment and willingness to help truly keeps the Matzger lab going. I am very thankful for his 

kindness and his continual willingness to help and provide whatever suggestions he can for all of 

the problems and questions I have proposed over the years. Thank you for being a constant 

source of hilarious comments and always making me laugh even in the most stressful situations. 

Thank you to the former lab members Kira, Roy, and Leila, you were all so kind to me when I 

first started in the lab and truly paved the way for the start of my graduate career. Thank you all 

for training me on all of the instrumentation. Thank you to Onas whose expertise in 

crystallization and materials science helped me to excel in my own research. Thank you to 

Jeremy, who has always been so kind to me since the moment I met him, I truly value our 

friendship. Thank you to Dr. Chris Price, although we have not met in person, he has been 

extremely kind and helpful to me. Thank you to Brianna, you were an incredibly talented student 



 

iv 
 

and it was a lot of fun working with you. Thank you to Jessica, without you I would not have 

been able to complete the additive project. You are a wonderful and meticulous scientist, I am so 

grateful I was given the opportunity to mentor you. Thank you to Doug, who although not a 

member of the lab per se, was a constant fixture in the lab for many years. Thank you for being a 

wonderful collaborator and friend. Thank you to Ping, who has been such a wonderful partner in 

crime during my time here. Thank you for helping me relax and enjoy life, you always can find 

joy and adventure in everything you do. Thank you to Jon who, whether he likes it or not, is 

inheriting most of the lab instruments from me. I truly appreciate and cherish our friendship; you 

can always turn my day around when I am stressed. Thank you for teaching me so much about 

New Hampshire even if I have been very reluctant to learn. Thank you to Ly who is always a 

bright ray of sunshine. Thank you for always sharing your expertise in organic chemistry with 

me and with all of the members of the lab. Thank you to Ananya for always being a kind friend 

for me to talk to. 

 I would not be here today if it were not for the love and support of my family. I dedicate 

my thesis to my mom and dad, who have always put me and my siblings above everything. 

Thank you to mom, dad, Stephen, and Katie, I love you all so much. I would not be the person I 

am today without you. Thank you to my amazing husband Brian, I am so happy to have shared 

this journey with you. Thank you for your constant love and support, it has truly helped me get 

through the toughest of times. Thank you my closest friends: Casey, Colleen, and Wendi. Thank 

you for always getting me to go out and have fun, you have all been such wonderful friends to 

me.  

 

 

 

 

 

 

 

 



 

v 
 

Table of Contents 
 

Dedication                                                                                                                           ii 

Acknowledgements                                                                                                        iii 

List of Figures                               viii 

List of Tables                                                                                                                   xii 

Abstract                                                                                                                           xiii  

Chapter 1 Introduction                                                                                             1 

1.1 Pharmaceutical Polymorphism                                                                     1 

1.2 Nucleation                                                                                                         2 

1.3 Thermodynamic and Kinetic Contributions to the Nucleation of a Polymorph     4 

1.4 Methods for Selecting and Discovering Polymorphs                                             5 

1.5 Discovery of Two Novel Polymorphs of the Bioenhancer Piperine                     6 

1.6 Towards Exhaustive and Automated High Throughput Screening for  

Crystalline Polymorphs                                                                                             7 

1.7 Controlling Pharmaceutical Crystallization with Designed Polymeric 

Heteronuclei                                                                                                         8 

1.8 References                                                                                                       10 

Chapter 2 Discovery of Two Novel Polymorphs of the Bioenhancer Piperine       13 

2.1 Introduction                                                                                                       13 

2.2 Results and Discussion                                                                                           14 

2.3 Conclusions                                                                                                       23 

2.4 Experimental                                                                                                       24 

2.4.1 Creation of Acidic Polymer Library                                                       24 

2.4.2 Crystallization of Piperine Polymorphs                                                       24 

2.4.3 Optical Microscopy                                                                               25 

2.4.4 Raman Spectroscopy                                                                               26 



 

vi 
 

2.4.5 Powder X-ray Diffraction of Piperine Polymorphs I, II, and III                   26 

       2.4.6 Single X-Ray Diffraction of Piperine Polymorphs II and III                   27 

2.4.7 Hirshfeld Surface Analysis of Piperine Polymorphs I and II                   28 

2.4.8 Differential Scanning Calorimetry of Piperine Polymorphs I, II, and III        30 

2.4.9 Free Energy Relationships Among the Piperine Polymorphs                         31 

2.5 References                                                                                                       33 

Chapter 3 Towards Exhaustive and Automated High Throughput Screening for 

Crystalline Polymorphs                                                                                                    35 

3.1 Introduction                                                                                                       35 

3.2 Results and Discussion                                                                                           37 

3.3 Conclusions                                                                                                       44 

3.4 Experimental                                                                                                       45 

3.4.1 Preparation of the polymer libraries                                                       45 

3.4.2 Materials                                                                                                       46 

3.4.3 Pin tool preparation                                                                               47 

3.4.4 Creation of a quartz slide with an array of depressions                               47 

3.4.5 Printing Procedure to produce a µPIHn plate                                           47 

3.4.6 Crystallizations                                                                                           50 

3.4.7 Raman vibrational spectroscopy                                                                   52 

3.4.8 Quantifying the effect of well depth on Raman laser intensity                   52 

3.5 References                                                                                                       56 

Chapter 4 Controlling Pharmaceutical Crystallization with Designed Polymeric 

Heteronuclei                                                                                                                      58 

4.1 Introduction                                                                                                       58 

4.2 Results and Discussion                                                                                           59 

4.3 Conclusions                                                                                                       65 

4.4 Experimental                                                                                                       65 

4.4.1 Materials                                                                                                       65 

4.4.2 Raman Spectroscopy                                                                               66 

4.4.3 Crystallization of acetaminophen in the presence of the additives       66 



 

vii 
 

4.4.4 Raman spectra of acetaminophen crystallized in the presence of the additives

                                                                                                                               67 

4.4.5 Polymerization of p-acetamidostyrene/styrene and N-hydroxyphenyl 

methacrylamide/styrene                                                                                           68 

4.4.6 Crystallization of acetaminophen in the presence of additive-containing 

polymers                                                                                                                   69 

4.4.7 Solubility of p-Acetamidostyrene/styrene copolymers, N-hydroxyphenyl 

methacrylamide/styrene copolymers, and polystyrene in water                               70 

4.4.8 Synthesis of 2-((4-vinylphenyl)amino)benzoic acid                                        70 

4.4.9 Crystallization of mefenamic acid in the presence of 2-((4-

vinylphenyl)amino)benzoic acid                                                                               71 

4.4.10 Polymerization of 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene and 

divinylbenzene                                                                                                          73 

4.4.11 Crystallization of mefenamic acid in the presence of 2-((4-

vinylphenyl)amino)benzoic acid/divinylbenzene copolymers and divinylbenzene 74 

4.4.12 Powder X-Ray Diffraction (PXRD)                                                       76 

4.4.13 Indexing mefenamic acid crystals formed in the presence of 2-((4 

vinylphenyl)amino)benzoic acid and pure mefenamic acid                               77 

4.4.14 Examining the effect of unground polymer on the induction time for crystal 

appearance                                                                                                                78 

4.5 References                                                                                                       80 

Chapter 5 Conclusion                                                                                           83 

5.1 Summary of Work and Future Directions                                                       83 

5.2 References                                                                                                       85 

 

 

 

 

 



 

viii 
 

 

List of Figures 

 

Figure 1.1. Shape of the crystallizing solution for the isotropic approximation of 

heterogeneous nucleation.                                                                                             2 

Figure 1.2. Schematic of the reaction coordinate for crystallization in a system with two 

polymorphs.                                                                                                                     4 

Figure 1.3. Structure of piperine.                                                                                 6 

Figure 1.4. High throughput screening platform: µPIHn.                                             7 

Figure 1.5. Custom pin tool used for the deposition of material onto the µPIHn plate.    7 

Figure 1.6. Diagram showing how a tailor-made additive selectively adsorbs onto to 

certain faces of a growing crystal resulting in a change in morphology.                     8 

Figure 1.7. Morphology of mefenamic acid crystals grown in the presence of 2-((4-

vinylphenyl)amino)benzoic acid. On left: no additive, on the right: 1 mol% additive.     9 

Figure 2.1. Structure of piperine.                                                                               13 

Figure 2.2.  Raman spectra of piperine polymorphs: forms I, II, and III.                   15 

Figure 2.3. Powder X-ray diffraction patterns for piperine forms I, II, and III.              16 

Figure 2.4. Crystal packing diagrams of piperine polymorphs form I, II, and III as 

viewed down the b-axis.                                                                                           19 

Figure 2.5. π-π Interactions present in form II. As shown in the figure π stacking close 

contacts are at a distance of 3.110 Å and 3.303 Å for each of the molecules in the 

asymmetric unit                                                                                                           20 

Figure 2.6. π-π Interactions present in form III. As shown in the figure the π stacking 

close contacts are at a distance of 3.327 Å for both of the molecules in the asymmetric 

unit                                                                                                                                    20 

Figure 2.7. Graph of quantitative data collected from Hirshfeld surface analysis of forms 

I, II, and III of piperine.                                                                                           21 

Figure 2.8. DSC scans of forms I, II, and III.                                                       23 



 

ix 
 

Figure 2.9. Optical microscopy of piperine forms I and II.                                           25 

Figure 2.10. Optical microscopy of piperine form III.                                         26 

Figure 2.11.  2D finger plot and the Hirshfeld surface for piperine form I.                    28 

Figure 2.12. 2D finger plot for the Hirshfeld surface for one molecule in the asymmetric 

unit of piperine form II.                                                                                           29 

Figure 2.13. 2D finger plot and the Hirshfeld surface for the second molecule in the 

asymmetric unit of piperine form II.                                                                               29 

Figure 2.14. 2D finger plot and the Hirshfeld surface for one molecule in the 

asymmetric unit of piperine form III.                                                                               30 

Figure 2.15. 2D finger plot and the Hirshfeld surface for the second molecule in the 

asymmetric unit of piperine form III.                                                                               30 

Figure 3.1. Schematic of quartz slide with an array of depressions (1 mm wide) with a 

2.25 mm spacing from center of one depression to another, implemented in this study as 

the crystallization platform.                                                                                              38 

Figure 3.2. Pin tool used for deposition of material onto a µPIHn plate.                   39 

Figure 3.3. Raman spectra of acetaminophen forms I and II obtained directly from 

crystals on the µPIHn plate                                                                                               41 

Figure 3.4. Raman Spectra of the diagnostic nitrile region for ROY, in order from left to 

right: red prism, yellow needles, orange needles, yellow prims, obtained directly from 

crystals on a µPIHn plate.                                                                                           42 

Figure 3.5. Raman Spectra of tolfenamic acid forms I, II, III, VI, and V, obtained 

directly from crystals on a µPIHn plate.                                                                           42 

Figure 3.6. Raman Spectra of curcumin forms I, II, and III, obtained directly from 

crystals on a µPIHn plate.                                                                                                 43 

Figure 3.7. First print from a 384 well plate onto quartz slide with an array of 

depressions.                                                                                                                   48 

Figure 3.8. Second print from a 384 well plate onto quartz slide with an array of 

depressions.                                                                                                                   48 

Figure 3.9. Third print from a 384 well plate onto quartz slide with an array of 

depressions.                                                                                                                   49 



 

x 
 

Figure 3.10. Fourth print from a 384 well plate onto quartz slide with an array of 

depressions.                                                                                                                   49 

Figure 3.11. Raman spectrum of piperine on a planar substrate.                               53 

Figure 3.12. Raman spectrum of piperine with one Delrin aperture.                               54 

Figure 3.13. Raman spectrum of piperine with two Delrin apertures.                   55 

Figure 4.1. Comparison of the structure of acetaminophen to the tailor-made additive, 

N-hydroxyphenyl methacrylamide.                                                                               59 

Figure 4.2. Morphology of acetaminophen crystals grown in the presence of N-

hydroxyphenyl methacrylamide. (a) no additive, (b) 1 mM additive, (c) 3 mM additive, 

and (d) 6 mM additive.                                                                                           60 

Figure 4.3. Induction time for crystal appearance for acetaminophen crystallized in the 

presence of N-hydroxyphenyl methacrylamide/styrene copolymers. The percentages 

indicated next to each line represent the molar percent of the tailor-made additive in the 

polymer.                                                                                                                   61 

Figure 4.4. Induction time for crystal appearance for acetaminophen crystallized in the 

presence of p-acetamidostyrene/styrene copolymers. The percentages indicated next to 

each line represent the molar percent of the tailor-made additive in the polymer.       62 

Figure 4.5. Morphology of acetaminophen crystals grown in the presence of 10 mol% p-

acetamidostyrene/styrene.                                                                                           62 

Figure 4.6. Comparison of the structure of mefenamic acid to the tailor-made additive: 

2-((4-vinylphenyl)amino)benzoic acid.                                                                   63 

Figure 4.7. Morphology of acetaminophen crystals grown in the presence of p-

acetamidostyrene. Clockwise from top left: no additive, 1 mM additive, 3 mM additive, 

and 6 mM additive.                                                                                                       66 

Figure 4.8. Raman spectra of acetaminophen crystals obtained from crystallizations in 

the presence of no additive, 1 mol% N-hydroxyphenyl methacrylamide, 5 mol% N-

hydroxyphenyl methacrylamide, and 10 mol% N-hydroxyphenyl methacrylamide (from 

the bottom to the top spectrum).                                                                               67 

Figure 4.9. Raman spectra of acetaminophen crystals obtained from crystallizations in 

the presence of no additive, 1 mol% p-acetamidostyrene, 5 mol% p-acetamidostyrene, 

and 10 mol% p-acetamidostyrene (from the bottom to the top spectrum).                   67 



 

xi 
 

Figure 4.10. Induction time for crystal appearance for mefenamic acid crystallized in the 

presence of 2-((4-vinylphenyl)amino)benzoic acid in solution.                               71 

Figure 4.11. Morphology of mefenamic acid crystals grown in the presence of 2-((4-

vinylphenyl)amino)benzoic acid. (a) no additive, (b) 1 mol% additive, (c) 5 mol% 

additive, and (d) 10 mol% additive.                                                                               72 

Figure 4.12. Raman spectra of mefenamic acid crystals obtained from crystallizations in 

the presence of no additive, 1 mol% additive, 5 mol% additive, and 10 mol% additive 

(from the bottom to the top spectrum).                                                                   73 

Figure 4.13. Induction time for crystal appearance for mefenamic acid crystallized in the 

presence of the 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene copolymers and 

divinylbenzene.                                                                                                       75   

Figure 4.14.  Raman spectra of mefenamic acid crystals obtained from crystallizations 

in the presence of no polymer, 1 mol% 2-((4-vinylphenyl)amino)benzoic 

acid/divinylbenzene copolymer, 5 mol% 2-((4-vinylphenyl)amino)benzoic 

acid/divinylbenzene, and 10 mol% 2-((4-vinylphenyl)amino)benzoic 

acid/divinylbenzene (from the bottom to the top spectrum).                                           75 

Figure 4.15. Morphology of mefenamic acid crystals obtained in the presence of the 

tailor-made additive copolymers.                                                                               76 

Figure 4.16. Representative PXRD pattern of mefenamic acid crystallized on a 10 mol% 

2-((4-vinylphenyl) amino)benzoic acid/divinylbenzene copolymer film.                        77 

Figure 4.17. (a) View along the a axis of blade-like crystal of mefenamic acid (additive 

present). (b) View along the c axis of blade-like mefenamic acid crystal.                   78 

Figure 4.18. (a) View along the a axis of native mefenamic acid crystal. (b) View along 

the c axis of native mefenamic acid crystal.                                                                   78 

Figure 4.19. Crystallization of mefenamic acid in the presence of that 2-((4-

vinylphenyl)amino)benzoic acid/divinylbenzene copolymers, unground 10 mol% 2-((4-

vinylphenyl)amino)benzoic acid/divinylbenzene copolymer, divinylbenzene, and pure 

mefenamic acid.                                                                                                                79 

 

 

 



 

xii 
 

 

List of Tables 

 

Table 2.1. Crystallographic parameters of piperine forms I, II, and III.                   18 

Table 2.2. Relative free energies of the piperine polymorphs.                               32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 
 

 

Abstract 

    Polymorphism is the ability of a molecule to exist in multiple crystalline phases, each with a 

different arrangement or conformation of molecules within the solid state. The focus of this 

thesis is both the use of polymer-based approaches to crystallization control to explore the role of 

solid form diversity in pharmaceuticals and also developing methods based on these approaches 

to accelerate solid form discovery. Polymer-induced heteronucleation (PIHn), a powerful 

crystalline polymorph discovery method, has revealed two novel polymorphs of piperine 

exhibiting enhanced solubility as compared to the known polymorph. These unique forms may 

now be able to improve the efficacy of piperine as a bioenhancer.  

  As demonstrated by the discovery of these new piperine forms, it is imperative to determine the 

potential polymorphism of a compound, especially at an early stage in the pharmaceutical 

development process, due to the unique physiochemical properties of each distinct form. 

However, methods capable of exhaustively screening for crystal polymorphism remain an 

elusive goal in solid-state chemistry due to large sample requirements and long analysis times. 

PIHn has now been redeployed in a high density format in which 288 distinct polymers, each 

acting as a heteronucleant, are arrayed on one substrate. This format allows determining the 

outcome of thousands of crystallizations in an automated fashion with only a few milligrams of 

sample. This technology enables the study of a broader range of targets, including preclinical 

candidates, facilitating determination of polymorphism propensity much earlier in the drug 
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development process. The efficacy of this approach has now been demonstrated using four 

pharmaceutically relevant compounds: acetaminophen, tolfenamic acid, ROY, and curcumin. 

  A further problem explored in this thesis relates to compounds which are very slow or even 

resistant to crystallization. This behavior can severely hinder the development and formulation of 

a target pharmaceutical. In order to combat this issue, inspiration was drawn from the extensive 

work on soluble tailor-made additives, which can affect crystal morphology by selectively 

binding to the faces of a growing crystal. If these strong interactions between a tailor-made 

additive and a target compound could instead be applied at the surface of an insoluble polymer, it 

was hypothesized that the additive would instead act as crystallization promoter. To investigate 

this hypothesis, additives were synthesized that mimic the pharmaceuticals acetaminophen or 

mefenamic acid and also possess polymerizable functionality. It was found that, in solution, 

these additives face-selectively inhibit crystal growth and lead to overall slower crystal 

appearance. In contrast, when the tailor-made additives were incorporated into an insoluble 

polymer, the induction time for the onset of crystal formation for both pharmaceuticals was 

substantially decreased. This approach now allows for the synthesis of tailor-made polymers that 

decrease the induction time for crystal appearance and may find application with compounds that 

are resistant to crystallization or in improving the fidelity of heteronucleation approaches to solid 

form discovery. 
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Chapter 1 Introduction 
 

1.1 Pharmaceutical Polymorphism 

Solid forms of active pharmaceutical ingredients (APIs) are the most prevalent dosage forms due 

to the significant advantages in their stability and convenience of administration. In the vast 

majority of these solid formulations, the API is crystalline. However, it is well known that most 

APIs exhibit multiple solid forms including polymorphs. Polymorphism is the ability of a 

molecule to exist in multiple crystalline phases, each exhibiting a different arrangement or 

conformation of molecules within the solid state.1, 4 Determining the potential polymorphism of a 

newly synthesized compound is extremely important due to variations in the solubility and 

bioavailability of different polymorphic forms. However, pre-formulation, where issues of 

polymorphism are addressed in detail, occurs as a late stage consideration in drug development 

despite its central role in the creation of a viable pharmaceutical product. Additionally, the 

process by which a solid form is chosen is rather inefficient and prone to missing potential solid 

form diversity. Failure to properly formulate a drug can, and indeed does, derail the introduction 

of new therapeutics to market. Furthermore, if unknown polymorphic transitions occur after the 

drug has gone on the market, it can be detrimental for the dosage and administration of the 

compound. This is most apparent in the case of ritonavir, an anti-HIV compound. During the 

discovery process, only one form of the compound was identified.5, 6  The crystalline form was 

found to have limited bioavailability and, as a result, the compound was formulated as a 

water/ethanol solution, leading researchers to believe that the crystalline form would not be 
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important in the formulation process. However several years after ritonavir was put on the 

market, it was found that the capsules were not passing dissolution requirements, due to the 

presence of a new polymorph which had crystallized within the capsules.5, 6 This new, more 

stable form had a significantly lower solubility as compared to the known polymorph, resulting 

in researchers reformulating the dosage so that this new form could be utilized.5, 6 Thus, it is 

imperative that all polymorphs of a newly synthesized compound can be found and characterized 

in order to circumvent any potential issues caused by unknown form conversion. 

1.2 Nucleation 

Nucleation is typically considered the controlling step in the formation of different 

polymorphs. Nucleation can be classified as primary or secondary nucleation. Secondary 

nucleation occurs when nuclei form in the presence of crystals in a supersaturated solution.1, 2 

Primary nucleation occurs when no seeds of 

the crystallizing material are present in the 

supersaturated solution. There are two 

mechanisms, homogeneous or heterogeneous 

nucleation, by which primary nucleation can 

occur. Homogeneous nucleation involves the 

spontaneous formation of nuclei in the bulk 

of a supersaturated or supercooled system.2, 3 

Although homogeneous nucleation has been studied theoretically, it occurs quite rarely 

experimentally. More commonly, the mechanism for nucleation can be described as 

heterogeneous nucleation, in which a foreign surface is present that interacts with the 

crystallizing material in solution.3 The classical mechanism for heterogeneous nucleation is an 

Figure 1.1. Shape of the crystallizing 
solution for the isotropic approximation of 
heterogeneous nucleation.3 
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 α
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isotropic approximation in which a liquid droplet, represented by a sphere, forms a wetting angle 

θ with a substrate (Figure 1.1.). The surface energy of this system can be defined as: αcosθ = αsm- 

αss (where S is the substrate, αsm is the substrate-medium droplet interface, and αss is the substrate-

solid droplet interface). The free-energy change or potential barrier for heterogeneous nucleation 

is: ΔGc*=16𝜋𝛺
2 ∝2

3 (∆𝜇)2
 ×  (1−cos𝜃)2 (2+cos𝜃) 

4
  where Ω is the molecular volume, ∆𝜇 (= 𝜇𝑣 −𝜇𝑐) 

represents the difference between the chemical potentials of the initial vapor phase and the final 

condensed phase transformation, θ is the wetting angle, and α is the specific free energy of the 

surface formed. The second multiplier in the equation is the Volmer factor, having values from 0 

(θ = 0°) to 1 (θ = 180°), which represents how well the crystallizing solution is able to interact 

with the substrate.3 It is apparent that there are two potential extremes for this equation: the 

crystallizing solution could be interacting so strongly with the substrate that the wetting angle is 

zero or the crystallizing solution could be completely unable to interact with the substrate (i.e., 

completely non-wetting; rendered completely ineffective for heteronucleation) such that the 

wetting angle is 180°.3 Typically, the wetting angle will be somewhere in between these two 

extremes, allowing the barrier for nucleation to be significantly lowered. For an anisotropic 

system, in which a drop with length L and height h is deposited onto a surface, the energy change 

of the system is ΔG= -(L2h/Ω) (∆𝜇)+ L2Δα + 4Lhα, where Δα (= α + αss-αsm) represents the 

strength of the interaction of the crystal with itself relative to the strength of the interaction 

between the forming crystal and the substrate, and the other symbols are defined identically to 

the isotropic system described above. If Δα < 0, the forming crystal is interacting strongly with 

the surface, allowing for heteronucleation; however, if Δα > 0, there is limited interaction 

between the molecules in solution and the surface, precluding heteronucleation.  
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1.3 Thermodynamic and Kinetic Contributions to the Nucleation of a Polymorph 

To understand the mechanism by which one 

polymorph nucleates over another, the kinetics 

and thermodynamics of crystallization must be 

considered. A reaction coordinate for 

crystallization in a system with two polymorphs 

can be used to do this (Figure 1.2). Both 

forms have the same initial free energy (G0), 

which represents the free energy per mole of 

the solute in a supersaturated fluid.1 Once at this initial free energy, the molecules in solution can 

then crystallize into one of the two products, form I or II, in which form I is more stable 

polymorph with GII > GI. For both reaction pathways there is an associated transition state and an 

activation free energy which corresponds to the relative rates of formation for each form.2, 3 

Unlike a traditional reaction scheme, for crystallization there exists a phase boundary between 

the solid and liquid phase. A phase boundary is associated with an increase in the free energy of 

the system, which must be offset by an overall loss of free energy. As a result, the magnitudes of 

the activated barriers are dependent on the size of the crystal nucleus.1 The critical radius, the 

minimum size of a crystal nucleus that must be formed for nucleation to occur, can be defined as 

rc= 2Ωα/∆𝜇, where Ω is  the molecular volume, ∆𝜇 (= 𝜇𝑣 −𝜇𝑐) is the difference between the 

chemical potentials of the initial vapor phase and the final condensed phase transformation, and 

α is the specific free energy of the surface formed.3 The higher the degree of supersaturation, the 

smaller the critical radius becomes. By examining Figure 1.2, it is apparent that the 

supersaturation with respect to form II (G0 – GII) is lower than that of form I (G0 – GI). If, for a 

Figure 1.2. Schematic of the reaction 
coordinate for crystallization in a system with 
two polymorphs.1 
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particular solution composition, the critical size is lower for form II, then the activation free 

energy for nucleation will be lower, and kinetics will favor the crystallization of form II. 

However, due to the thermodynamic stability of form I, form II will ultimately transform into 

form I. 1, 2 

The thermodynamic relationship between two different phases can be described by Gibbs’ 

phase rule: P+F=C+2, where C is the number of components, P is the number of phases that exist 

in equilibrium, and F is the number of degrees of freedom or variance in the system.7, 8 By 

examining the phase rule, it is apparent that, theoretically, only one phase can exist at any given 

temperature and pressure. The exception to this occurs at the transition temperature of at a 

defined pressure, in which case two phases can exist in equilibrium. It is possible for one 

polymorph to transform into another at a given pressure by changing the temperature. If the 

phase transition from one form to another is reversible, the polymorphs are said to be 

enantiotropically related, and the transition will be endothermic when heated.7, 8 If the phase 

transition is irreversible, the two forms are monotropically related, and only one form is stable 

regardless of the temperature. For monotropes, the transformation from a metastable form to the 

stable form will be exothermic on heating.7, 8 However, as stated previously, unstable 

polymorphs may exist for a time outside the region assigned by the phase diagram and the phase 

rule for a given compound due to kinetic reasons. 8  

1.4 Methods for Selecting and Discovering Polymorphs 

Due to the differences in the kinetic and thermodynamic properties between different 

crystalline forms, determination of the potential polymorphism of a newly synthesized 

compound must occur as early as possible in the formulation process. The ideal technique should 

facilitate the formation and identification of all possible polymorphs of a molecule while 
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utilizing minimal amounts of the target compound via automated form identification. A typical 

polymorph screen can involve changing the degree of supersaturation, the temperature, and the 

solvent. Additionally, crystallization in the presence of various types of heteronucleants, 

including self-assembled monolayers,9-12 crystalline substrates,13-15 and amorphous polymers,16-23 

has been utilized to aid in the discovery and formation of novel polymorphs. Polymer-induced 

heteronucleation (PIHn) has proven to be an extremely powerful polymorph discovery platform, 

utilizing hundreds of insoluble, amorphous polymers as heteronucleants.24-26 The polymer 

selectively promotes the growth of one form above others through a kinetic mechanism 

involving selective stabilization at the stage of nucleation.27, 28 It has been found that the 

functional group interactions between the polymer surface and the growing crystal are 

responsible for promoting the formation of one polymorph over another.27, 28  

Outline of the Thesis 

1.5 Discovery of Two Novel Polymorphs of the Bioenhancer Piperine 

The utility of discovering novel polymorphs was recently demonstrated for the nutraceutical 

piperine (Figure 1.3). Piperine has been found to act as a 

bioenhancer, a molecule which is able to increase the 

bioavailability of a compound for a variety of 

pharmaceuticals including propranolol, theophylline, 

ciprofloxacin, and tetracycline.29-32 However, the efficacy of this compound as a bioenhancer is 

currently limited by its poor aqueous solubility (40 mg/L). When initially examining the known 

crystal structure of piperine it was found that the structure was completely devoid of any π-π 

interactions, despite the extended conjugation present in the molecule.33 It was hypothesized that 

if alternative arrangements of piperine could be found, they would possess π-π interactions. Now, 

N

O

O

O

Figure 1.3. Structure of piperine. 
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as described in Chapter 2, two additional polymorphs of piperine have been discovered, both of 

which exhibit these interactions. Moreover, both newly discovered forms have an enhanced 

aqueous solubility as compared to the commercial form.  

1.6 Towards Exhaustive and Automated High Throughput Screening for  
Crystalline Polymorphs34 
 

As evidenced by the discovery of novel polymorphs of the bioenhancer piperine, PIHn is a 

very powerful method for discovering novel polymorphs. However, PIHn, along with many of 

the methods utilized for solid form screening, 

requires substantial sample quantity (roughly 1-

5g). Therefore, it is not currently feasible to 

perform comprehensive solid form screening as 

an early stage selection criterion for choosing 

which bioactive compounds to advance in the 

pipeline. As described in Chapter 3, PIHn has now been reengineered into a novel high 

throughput system, termed µPIHn, in which hundreds of crystallizations can be conducted and 

studied in an automated fashion using only 

~1 mg of material (Figure 1.4). This platform 

is created by contact printing solutions 

directly onto the µPIHn plate via custom 

fabricated pin tools (Figure 1.5). The 

efficacy of µPIHn was studied with four polymorphic pharmaceutically relevant compounds: 

acetaminophen, tolfenamic acid, ROY, and curcumin. For all of the compounds studied, 

polymorph selection was achieved while utilizing only ~1 mg of material. Additionally, all of the 

pharmaceutical polymorphs were successfully identified by automated analysis using Raman 

Figure 1.4. High throughput screening platform: 
µPIHn. 

Figure 1.5. Custom pin tool used for the 
deposition of material onto the µPIHn plate. 
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microspectroscopy. µPIHn now offers a pathway to conduct more comprehensive phase space 

searches even with very limited quantities of material. This high throughput platform allows for 

rapid and reliable polymorph screening of a pharmaceutical, enabling more informed decisions 

about which forms are the most promising for further development.34 

1.7 Controlling Pharmaceutical Crystallization with Designed Polymeric Heteronuclei35 

Despite the success of PIHn in discovering novel polymorphs, it currently only utilizes 

commercial monomers to build the polymer libraries. By expanding the monomer scope to 

include monomers which are specifically tailored for a particular target compound one may be 

able to exude even more control over crystallization by taking advantage of the strong 

intermolecular interactions at the polymer crystal interface. This could be of particular 

importance for compounds that are resistant to crystallization.36 This issue can greatly 

complicate the formulation process by preventing one from purifying a compound by 

crystallization and determining the structure of the compound by crystallography. In order to 

circumvent this problem, inspiration was drawn from what is known about tailor-made soluble 

additives. These compounds can affect the morphology and polymorphism of a compound by 

Figure 1.6. Diagram showing how a tailor-made additive selectively adsorbs onto to 
certain faces of a growing crystal resulting in a change in morphology.2 

A A 

B B 

B B 

unaffected crystal 
growth 

 

affected crystal growth 
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preferentially adsorbing to certain faces of a growing crystal (Figure 1.6).37, 38 Because of the 

favorable interactions between an additive and its target compound, a soluble additive is able to 

selectively bind to the face of a crystal.10, 14, 15, 21, 37-50 If the strong interactions between a tailor-

made additive and a target compound could instead be applied at the surface of an insoluble 

polymer, it was hypothesized that the additive would act as crystallization promoter. As 

described in Chapter 4, additives were synthesized that mimic the pharmaceuticals 

acetaminophen or mefenamic acid and also possess polymerizable functionality. In solution, it 

was found that these additives face-selectively inhibit crystal growth and lead to overall slower 

crystal appearance (Figure 1.7).35 However, when the additives were incorporated into an 

insoluble polymer, a decrease in the induction time for crystal appearance was observed for both 

pharmaceuticals relative to the induction time without polymer present. For acetaminophen 

crystallizations in the presence of the tailor-made copolymers, crystals appear on average within 

an hour, one hundredth of the time needed for crystallization to occur in the absence of polymer. 

This approach now allows for the synthesis of heteronucleants that can accelerate the rate of 

crystallization, for systems that are resistant to crystallization.35, 36  

 

 

Figure 1.7. Morphology of mefenamic acid crystals grown in the presence of 2-((4-
vinylphenyl)amino)benzoic acid. On left: no additive, on the right: 1 mol% additive. 



 

10 
 

1.8 References 

1. Bernstein, J., Polymorphism in Molecular Crystals. Oxford University Press: New York, 
2002. 
2. Davey, R.; Garside, J., From Molecules to Crystallizers. Oxford University Press: New 
York, 2000. 
3. Givargizov, E. I., Oriented Crystallization on Amorphous Substrates. Plenum PRESS: 
New York, 1991. 
4. Davey, R. J.; Blagden, N.; Potts, G. D.; Docherty, R., Polymorphism in molecular 
crystals: Stabilization of a metastable form by conformational mimicry. J. Am. Chem. Soc. 1997, 
119, (7), 1767-1772. 
5. Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter, W.; Morris, J., Ritonavir: 
An Extraordinary Example of Conformational Polymorphism. Pharm Res 2001, 18, (6), 859-
866. 
6. Chemburkar, S. R.; Bauer, J.; Deming, K.; Spiwek, H.; Patel, K.; Morris, J.; Henry, R.; 
Spanton, S.; Dziki, W.; Porter, W.; Quick, J.; Bauer, P.; Donaubauer, J.; Narayanan, B. A.; 
Soldani, M.; Riley, D.; McFarland, K., Dealing with the Impact of Ritonavir Polymorphs on the 
Late Stages of Bulk Drug Process Development. Organic Process Research & Development 
2000, 4, (5), 413-417. 
7. Giron, D., Investigations of polymorphism and pseudo-polymorphism in pharmaceuticals 
by combined thermoanalytical techniques. J. Therm. Anal. 2001, 64, (1), 37-60. 
8. Burger, A.; Ramberger, R., Polymorphism of Pharmaceuticals and Other Molecular-
Crystals. 1. Theory of Thermodynamic Rules Mikrochim. Acta 1979, 2, (3-4), 259-271. 
9. Kang, J. F.; Zaccaro, J.; Ulman, A.; Myerson, A., Nucleation and growth of glycine 
crystals on self-assembled monolayers on gold. Langmuir 2000, 16, (8), 3791-3796. 
10. Lee, A. Y.; Ulman, A.; Myerson, A. S., Crystallization of amino acids on self-assembled 
monolayers of rigid thiols on gold. Langmuir 2002, 18, (15), 5886-5898. 
11. Ulman, A.; Kang, J. F.; Shnidman, Y.; Liao, S.; Jordan, R.; Choi, G. Y.; Zaccaro, J.; 
Myerson, A. S.; Rafailovich, M.; Sokolov, J.; Fleischer, C., Self-assembled monolayers of rigid 
thiols. Journal of biotechnology 2000, 74, (3), 175-88. 
12. Capacci-Daniel, C.; Gaskell, K. J.; Swift, J. A., Nucleation and Growth of Metastable 
Polymorphs on Siloxane Monolayer Templates. Cryst. Growth Des. 2010, 10, (2), 952-962. 
13. Mitchell, C. A.; Yu, L.; Ward, M. D., Selective nucleation and discovery of organic 
polymorphs through epitaxy with single crystal substrates. J. Am. Chem. Soc. 2001, 123, (44), 
10830-10839. 
14. Ward, M. D., Bulk crystals to surfaces: Combining X-ray diffraction and atomic force 
microscopy to probe the structure and formation of crystal interfaces. Chem. Rev. 2001, 101, (6), 
1697-1725. 
15. Weissbuch, I.; Lahav, M.; Leiserowitz, L., Toward stereochentical control, monitoring, 
and understanding of crystal nucleation. Cryst. Growth Des. 2003, 3, (2), 125-150. 
16. Chen, J. H.; Shao, M.; Xiao, K.; He, Z. R.; Li, D. W.; Lokitz, B. S.; Hensley, D. K.; 
Kilbey, S. M.; Anthony, J. E.; Keum, J. K.; Rondinone, A. J.; Lee, W. Y.; Hong, S. Y.; Bao, Z. 
A., Conjugated Polymer-Mediated Polymorphism of a High Performance, Small-Molecule 
Organic Semiconductor with Tuned Intermolecular Interactions, Enhanced Long-Range Order, 
and Charge Transport. Chem. Mat. 2013, 25, (21), 4378-4386. 



 

11 
 

17. Curcio, E.; López-Mejías, V.; Di Profio, G.; Fontananova, E.; Drioli, E.; Trout, B. L.; 
Myerson, A. S., Regulating Nucleation Kinetics through Molecular Interactions at the Polymer–
Solute Interface. Cryst. Growth Des. 2013, 14, (2), 678-686. 
18. Diao, Y.; Helgeson, M. E.; Myerson, A. S.; Hatton, T. A.; Doyle, P. S.; Trout, B. L., 
Controlled Nucleation from Solution Using Polymer Microgels. J. Am. Chem. Soc. 2011, 133, 
(11), 3756-3759. 
19. Lee, M. K.; Lee, H.; Kim, I. W.; Lee, J., Novel polymorphic form of adefovir dipivoxil 
derived from polymer-directed crystallization. Pharmazie 2011, 66, (10), 766-770. 
20. McKellar, S. C.; Urquhart, A. J.; Lamprou, D. A.; Florence, A. J., Polymer Templating of 
Supercooled Indomethacin for Polymorph Selection. ACS Combinatorial Science 2012, 14, (3), 
155-159. 
21. Staab, E.; Addadi, L.; Leiserowitz, L.; Lahav, M., Control of polymorphism by ‘tailor-
made’ polymeric crystallization auxiliaries. Preferential precipitation of a metastable polar form 
for second harmonic generation. Adv. Mater. 1990, 2, (1), 40-43. 
22. Sudha, C.; Nandhini, R.; Srinivasan, K., Polymer-Induced Selective Nucleation of Mono 
or Ortho Polymorphs of Paracetamol through Swift Cooling of Boiled Aqueous Solution. Cryst. 
Growth Des. 2014, 14, (2), 705-715. 
23. Xu, A. W.; Dong, W. F.; Antonietti, M.; Colfen, H., Polymorph switching of calcium 
carbonate crystals by polymer-controlled crystallization. Advanced Functional Materials 2008, 
18, (8), 1307-1313. 
24. Lopez-Mejias, V.; Kampf, J. W.; Matzger, A. J., Nonamorphism in Flufenamic Acid and 
a New Record for a Polymorphic Compound with Solved Structures. J. Am. Chem. Soc. 2012, 
134, (24), 9872-9875. 
25. López-Mejías, V.; Kampf, J. W.; Matzger, A. J., Polymer-Induced Heteronucleation of 
Tolfenamic Acid: Structural Investigation of a Pentamorph. J. Am. Chem. Soc. 2009, 131, (13), 
4554-4555. 
26. Price, C. P.; Grzesiak, A. L.; Matzger, A. J., Crystalline polymorph selection and 
discovery with polymer heteronuclei. J. Am. Chem. Soc. 2005, 127, (15), 5512-5517. 
27. Lopez-Mejias, V.; Knight, J. L.; Brooks, C. L.; Matzger, A. J., On the Mechanism of 
Crystalline Polymorph Selection by Polymer Heteronuclei. Langmuir 2011, 27, (12), 7575-7579. 
28. McClelland, A. A.; Lopez-Mejias, V.; Matzger, A. J.; Chen, Z., Peering at a Buried 
Polymer-Crystal Interface: Probing Heterogeneous Nucleation by Sum Frequency Generation 
Vibrational Spectroscopy. Langmuir 2011, 27, (6), 2162-2165. 
29. Atal, C. K.; Zutshi, U.; Rao, P. G., Scientific Evidence on the Role of  Ayurvedic Herbals 
on Bioavailability of Drugs. J. Ethnopharmacol. 1981, 4, (2), 229-232. 
30. Mao, Q. Q.; Huang, Z.; Zhong, X. M.; Xian, Y. F.; Ip, S. P., Brain-derived neurotrophic 
factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. 
Behav. Brain Res. 2014, 261, 140-145. 
31. Bano, G.; Raina, R. K.; Zutshi, U.; Bedi, K. L.; Johri, R. K.; Sharma, S. C., Effect of 
Piperine on Bioavailablity and Pharmacokinetics of  Propanolol  and Theophylline in Healthy-
Volunteers. Eur. J. Clin. Pharmacol. 1991, 41, (6), 615-617. 
32. Mujumdar, A. M.; Dhuley, J. N.; Deshmukh, V. K.; Raman, P. H.; Thorat, S. L.; Naik, S. 
R., Effect of Piperine on Pentobarbital Induced Hypnosis in Rats. Indian J. Exp. Biol. 1990, 28, 
(5), 486-487. 
33. Grynpas, M.; Lindley, P. F., Crystal and Molecular-Structure of 1-Piperoylpiperidine 
Acta Crystallogr. Sect. B-Struct. Commun. 1975, 31, (NOV15), 2663-2667. 



 

12 
 

34. Pfund, L. Y.; Matzger, A. J., Towards Exhaustive and Automated High-Throughput 
Screening for Crystalline Polymorphs. ACS Combinatorial Science 2014, 16, (7), 309-313. 
35. Pfund, L. Y.; Price, C. P.; Frick, J. J.; Matzger, A. J., Controlling Pharmaceutical 
Crystallization with Designed Polymeric Heteronuclei. J. Am. Chem. Soc. 2014. 
36. Dunitz, J. D.; Bernstein, J., Disappearing Polymorphs. Accounts Chem. Res. 1995, 28, 
(4), 193-200. 
37. Weissbuch, I.; Addadi, L.; Lahav, M.; Leiserowitz, L., Molecular Recognition at Crystal 
Interfaces Science 1991, 253, (5020), 637-645. 
38. Black, S. N.; Davey, R. J.; Halcrow, M., The Kinetics of Crystal- Growth in the Presence 
of Tailor-Made Additives. J. Cryst. Growth 1986, 79, (1-3), 765-774. 
39. Addadi, L.; Berkovitchyellin, Z.; Weissbuch, I.; Vanmil, J.; Shimon, L. J. W.; Lahav, M.; 
Leiserowitz, L., Growth and Dissolution of Organic-Crystals with Tailor-Made Inhibitors- 
Implications in Stereochemistry and Materials Science Angew. Chem.-Int. Edit. Engl. 1985, 24, 
(6), 466-485. 
40. Addadi, L.; Weinstein, S.; Gati, E.; Weissbuch, I.; Lahav, M., Resolution of 
Conglomerates with the Assistance of Tailor-Made Impurities- Generality and Mechanistic 
Aspects of the Rule of Reversal-A New Method for Assignment of Absolute-Configuration J. 
Am. Chem. Soc. 1982, 104, (17), 4610-4617. 
41. Berkovitchyellin, Z.; Vanmil, J.; Addadi, L.; Idelson, M.; Lahav, M.; Leiserowitz, L., 
Crystal Morphology Engineering by Tailor-Made Inhibitors- A New Probe to Fine 
Intermolecular Interactions. J. Am. Chem. Soc. 1985, 107, (11), 3111-3122. 
42. Farmanesh, S.; Ramamoorthy, S.; Chung, J. H.; Asplin, J. R.; Karande, P.; Rimer, J. D., 
Specificity of Growth Inhibitors and their Cooperative Effects in Calcium Oxalate Monohydrate 
Crystallization. J. Am. Chem. Soc. 2014, 136, (1), 367-376. 
43. He, X. R.; Stowell, J. G.; Morris, K. R.; Pfeiffer, R. R.; Li, H.; Stahly, G. P.; Byrn, S. R., 
Stabilization of a metastable polymorph of 4-methyl-2-nitroacetanilide by isomorphic additives. 
Cryst. Growth Des. 2001, 1, (4), 305-312. 
44. Li, T.; Morris, K.; Park, K., Influence of Tailor-Made Additives on Etching Patterns of 
Acetaminophen Single Crystals. Pharm Res 2001, 18, (3), 398-402. 
45. Li, T. L.; Wen, H.; Park, K.; Morris, K. R., How specific interactions between 
acetaminophen and its additive 4-methylacetanilide affect growth morphology: Elucidation using 
etching patterns. Cryst. Growth Des. 2002, 2, (3), 185-189. 
46. Lovette, M. A.; Browning, A. R.; Griffin, D. W.; Sizemore, J. P.; Snyder, R. C.; Doherty, 
M. F., Crystal Shape Engineering. Ind. Eng. Chem. Res. 2008, 47, (24), 9812-9833. 
47. Shtukenberg, A. G.; Lee, S. S.; Kahr, B.; Ward, M. D., Manipulating Crystallization with 
Molecular Additives. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 77-96. 
48. Torbeev, V. Y.; Shavit, E.; Weissbuch, I.; Leiserowitz, L.; Lahav, M., Control of crystal 
polymorphism by tuning the structure of auxiliary molecules as nucleation inhibitors. The beta-
polymorph of glycine grown in aqueous solutions. Cryst. Growth Des. 2005, 5, (6), 2190-2196. 
49. van Enckevort, W. J. P.; Los, J. H., "Tailor-Made" inhibitors in crystal growth: a Monte 
Carlo simulation study. J. Phys. Chem. C 2008, 112, (16), 6380-6389. 
50. Weissbuch, I.; Leisorowitz, L.; Lahav, M., Tailor-Made and Charge-Transfer Auxiliaries 
for the Control of the Crystal Polymorphism of Glycine. Adv. Mater. 1994, 6, (12), 952-956. 
 
 



 

13 
 

 

Chapter 2 Discovery of Two Novel Polymorphs of the Bioenhancer Piperine 

Unpublished Work 

2.1 Introduction 

  Piperine (1-[5-(1,3-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine) is a natural alkaloid 

that is produced via extraction from both long and black pepper (Figure 2.1).1, 2 Piperine has 

been used in herbal medicine as an anti-inflammatory, anti-

arthritic, and anti-depressant.1, 2 Moreover, it has been 

reported to act as a bioenhancer2, a compound used in 

combination with a pharmaceutical in order to increase drug bioavailability, in combination with 

propranolol, theophylline, ciprofloxacin, and tetracycline.2-5 Recently, piperine was used as a 

bioenhancer with the antitubercular drug, rifampicin.2 Rifampicin inhibits transcription within 

mycobacterium smegmatis by binding to the σ-subunit of RNA polymerase.2 Piperine has been 

shown to have no effect on mycobacterium smegmatis growth, but when piperine was 

administered with rifampicin it was found to increase the binding ability of rifampicin to RNA 

polymerase.2 The combined therapy of the drug with piperine has enabled the therapeutic dose of 

rifampicin to be reduced by 50%. This formulation has been successfully patented and 

undergone phase I, II, and III clinical trials.2 

  Despite its success as a bioenhancer, the aqueous solubility of piperine is only 40 mg/L, which 

limits its efficacy.1 However, solubility often depends on crystalline form and crystalline 
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Figure 2.1. Structure of piperine. 
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polymorphs can exhibit significant differences in solubility and hence, activity within the human 

body.6 Now, the polymorphism of piperine is studied with polymer-induced heteronucleation 

(PIHn),7-9 a powerful crystalline polymorph discovery method, with the goal of discovering 

novel crystalline forms which have an enhanced solubility as compared to the known piperine 

form. Previously, only one crystal form of piperine was known. Herein, it is shown that piperine 

is at least trimorphic and both new piperine forms have enhanced aqueous solubility as compared 

to the known polymorph. 

2.2 Results and Discussion 

  In order to explore the potential polymorphism of piperine, the compound was crystallized by 

solvent evaporation in the presence of polymer heteronucleants.7-9 Initial characterization of the 

piperine polymorphs was carried out by Raman spectroscopy. All of the forms were observed to 

have characteristic peaks in the 1100-1700 cm-1 region (Figure 2.2). Strong bands were observed 

for the aromatic ring vibrations (1583.1, 1591.6, and 1600.4 cm-1 for form I, II, and III 

respectively) and CH2 bending (1445.8, 1450.7, and 1442.8 cm-1 for form I, II, and III 

respectively). Additionally, there was significant peak shifting in the 1620-1640 cm-1 region, 

which can be attributed to the stretching of the amide carbonyl. This region is characterized by at 

least two peaks for all of the forms with the peak positions of forms II and III shifting towards 

higher frequencies relative to form I. The shifting of the amide carbonyl vibrational modes gives 

insight into the expected conformation of the two new forms of piperine as peak shifting can be 

attributed to local conformational effects and resonance via conjugation of the pentadiene chain. 

The local conformational effect is present due to the nitrogen of the piperidine ring acting as an 

electron donor. When the carbonyl group is in a planar conformation, electrons are readily 

donated, thereby shifting the peak observed for the stretching of the amide carbonyl to lower 
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frequencies as observed in form I. It is also possible for this region of the molecule to experience 

distortions such as local bond rotation, which would hinder the electron donating ability of the 

nitrogen. In this case, the peaks corresponding to amide carbonyl stretching would shift towards 

higher energy. Therefore the Raman data suggests that both forms II and III have increased 

rotation around either the O=C−N or O=C−C bond. 

 

             Wavenumber (cm-1) 

Figure 2.2. Raman spectra of piperine polymorphs: forms I, II, and III. 

  

   Crystalline samples of all the forms were also characterized by powder X-ray diffraction 

(PXRD) (Figure 2.3). Form I exhibits peaks at 2θ = 13.0°, 14.3°, 14.8°, 16.0°, 19.7°, and 20.7°, 

which agrees well with the literature powder pattern.10 Form II was found to possess peaks at 2θ 
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=13.3°, 13.9°, 16.8°, 19.4°, and 21.7°. Form III was found to be distinct from both forms I and II 

by the presence of peaks at 2θ = 13.5°, 17.8°, 21.4°, and 22.7°. Thus it was confirmed that forms 

II and III were in fact different from form I by their distinct powder patterns. 

 

                 2θ (°) 

Figure 2.3.  Powder X-ray diffraction patterns for piperine forms I, II, and III. 

 

  When initially examining the known crystal structure of piperine it was found that it was 

completely devoid of any π-π interactions despite the extended conjugation present in the 

molecule.10 It was hypothesized that if alternative arrangements of piperine could be found, they 

would possess π-π interactions. Single crystal X-ray analysis of form II at 95 K revealed a 

monoclinic unit cell in the space group P21/n with the following unit cell parameters: a = 

16.6510(2) Å, b = 9.5153(7) Å, c = 18.0362(1) Å, β = 99.587(7)° (see Figure 2.4, Table 2.1). 
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The asymmetric unit consists of two symmetry independent molecules with a total of eight 

molecules within the unit cell. Unlike form I, form II does exhibit strong π-π interactions with 

the close contacts for π stacking at a distance of 3.110 Å and 3.303 Å for each of the molecules 

in the asymmetric unit (Figure 2.5). These distances are very close; commonly the distance for π-

π interactions in a crystal structure is between 3.3-3.6 Å.11-13 Single crystal X-ray analysis of 

form III at 85 K revealed a monoclinic unit cell in the space group C2/c with the following unit 

cell parameters: a = 23.3983(4) Å, b = 10.0341(2) Å, c = 25.8291(18) Å, β = 108.545(8)° (see 

Table 2.1, Figure 2.4). The asymmetric unit consists of two symmetry independent molecules 

with a total of sixteen molecules within the unit cell. In form III the piperidine rings adopt a chair 

conformation, similar to what is observed in forms I and II. π-π Interactions are also present in 

form III, with the close contacts for π stacking at a distance of 3.327 Å for both molecules in the 

asymmetric unit (Figure 2.6). Thus, both novel forms exhibited π-π interactions as would be 

expected in a molecule with extended conjugation. 
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Table 2.1. Crystallographic parameters of piperine forms I, II, and III.  

 Form I10 Form II Form III 

Crystal System Monoclinic Monoclinic Monoclinic 

Space Group P21/n P21/n C2/c 

a (Å)= 8.743(2) 16.6510(16) 23.3983(4) 

b (Å)= 13.364(3) 9.5153(7) 10.0341(2) 

c (Å)= 13.147(3) 18.0362(13) 25.8291(18) 

α (°)= 90.00 90.00 90.00 

β (°)= 108.66(1) 99.587(7) 108.545 

γ (°) = 90.00 90.00 90.00 

Volume (Å3) 1455.36 2817.7(4) 5749.3(4) 

Z 4 8 16 

Final R indices (obs data) 0.056 0.0398 0.054 

Temperature 283-303 K 95(2) K 85(1) K 
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 Figure 2.4. Crystal packing diagrams of piperine polymorphs form I, II, and III as viewed down 
the b-axis 
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Figure 2.5. π-π Interactions present in form II. As shown in the figure π stacking close contacts 
are at a distance of 3.110 Å and 3.303 Å for each of the molecules in the asymmetric unit. 

 
 
Figure 2.6. π-π Interactions present in form III. As shown in the figure the π stacking close 
contacts are at a distance of 3.327 Å for both of the molecules in the asymmetric unit. 
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  Hirshfeld surface (HSs)14 analysis was performed to determine the relative contribution of the 

important intermolecular contacts present in each of the molecules in the asymmetric unit of the 

piperine polymorphs (see section 2.4.7). For form I, the C…C contacts compose only 2.2% of the 

HSs, while for form III this is increased to 3.0% most likely due to the close π-π interactions 

present in this structure. Although the crystal phases differ in their packing arrangements and 

conformations, the strong hydrogen bonding contacts (O···H and N···H) and the H···H contacts 

remain fairly constant among all three forms of piperine (Figure 2.7).  

 

 

Figure 2.7. Graph of quantitative data collected from Hirshfeld surface analysis of piperine 
polymorphs form I and form II. 
 
  To assess the effect of the structural differences on the energies of the polymorphs, the relative 

free energies were established experimentally for each of the novel forms. The optical 

absorbance of the piperine polymorphs in water was monitored in situ over time to determine the 

absorbance at equilibrium. It was found that both forms II and III converted to form I over time 

as confirmed by PXRD (see section 2.4.8.). Form I was found to be the most thermodynamically 
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stable form by at least 0.39 kcal/mol (see section 2.4.8.). In addition to determining the relative 

free energies of the polymorphs, by measuring the optical absorbance of different polymorphs in 

situ one can also determine the relative solubilities of each form. It is well established that 

metastable forms exhibit higher solubilities than the thermodynamically stable form.6, 15 

Accordingly, form II was found to be one and a half times more soluble than form I, whereas 

form III exhibited solubility twice that of the thermodynamically stable form (see section 2.4.8.).  

  The thermodynamic relationship between polymorphs can be described as enantiotropic or 

monotropic. If polymorphs are enantiotropically related then the phase transition from one form 

to another is reversible and the enthalpy change corresponding to this transition is endothermic 

on heating.15 For monotropically related polymorphs, the phase transition from one polymorph to 

another is irreversible meaning that only one form is stable at all temperatures and the 

transformation from a metastable form to the stable form is generally exothermic on heating.15 

Differential scanning calorimetry (DSC), an analytical technique which can measure the enthalpy 

associated with events including melting, can be used to determine if polymorphs are 

enantiotropes or monotropes. If the higher melting form has the lower melting enthalpy then the 

forms are enantiotropically related; if the higher melting form has the higher melting enthalpy 

then the forms are monotropically related. 15, 16 Form I was found to melt at 132.49 °C, while 

form II melts at 127.97 °C, and form III melts at 116.48 °C; making form I the highest melting 

form. The melting enthalpy of form I (7.5 kcal/mol) is higher than that of form II (6.0 kcal/mol) 

and form III (5.9 kcal/mol), thus both of the metastable forms are monotropically related to form 

I (Figure 2.8). Also by examining the DSC scan for form III, it was found that the form first 

melts and then recrystallizes into form I as confirmed by the subsequent melt at 132.50 °C.  
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Figure 2.8. DSC scans of forms I, II, and III. 

 

2.3 Conclusion  

  Piperine is at minimum trimorphic, with two of these forms structurally characterized for the 

first time. The novel crystal forms were found to possess π-π interactions which are lacking in 

the known form despite the extended conjugation in the molecule. The polymorphs were also 

found to have an enhanced solubility relative to the known form, allowing them to potentially 

enhance piperine’s efficacy as a bioenhancer. 
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2.4 Experimental 

2.4.1 Creation of Acidic Polymer Library 

 The components used to build the acidic polymer library are methyl methacrylate (MMA), 

acrylic acid (AA), methacrylic acid (MAA), 2-hydroxyethyl methacrylate (HEMA), 2-

ethoxyethyl methacrylate (EEMA), styrene (STY), and divinylbenzene (DVB). For each library 

six 1:1 (v/v) monomer solutions in ethanol were dispensed as 90 pair wise combinations of 

varied ratios (86:14, 71:29, 57:43, 43:57, 29:71, and 14:86) and six pure monomer solutions by a 

Gilson 215 liquid handler to a volume of 120 μL. To this was added 40 μL of a 1:1 solution of 

DVB in ethanol containing 2 mol% 2,2'-azobis(2-methylpropionitrile) (AIBN) with respect to 

DVB.). The monomer solutions were then photopolymerized with four 15W UVA bulbs in an 

atmosphere of N2 for two hours. Following polymerization the polymers were annealed at 85 °C 

under vacuum for 2 hours to produce the cross-linked polymer libraries.  

2.4.2 Crystallization of Piperine Polymorphs 

  Piperine form I was obtained commercially from Acros Organics (NJ). Forms II and III were 

discovered through polymer-induced heteronucleation (PIHn).7 A dry ethanol solution of 

piperine (70.5 mg/mL) was prepared by heating at 80 °C and immediate filtering through a 0.45 

µm PTFE filter. Approximately 0.15 mL of the solution was then added to each well of a 96-well 

polypropylene plate containing various ratios of acidic polymers in each well. Form II was 

present most reliably on cross-linked polymers derived from hydroxyethylmethacrylate (HEMA) 

and acrylic acid (AA) or methylmethacrylate (MMA) and methacrylic acid (MAA). Form II was 

consistently observed on a polymer derived from DVB:HEMA:AA (33:71:29). Form III was 

present most reliably on cross-linked polymers derived from acrylic acid (AA), styrene (STY), 

and 2-ethoxyethyl methacrylate (EEMA). Form III was consistently observed on cross linked 
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polymers derived from DVB:STY (33:100) and DVB:EEMA (33:100). Form III was also 

obtained by heating form I past the melting point followed by immediate supercooling to -40 °C 

and then reheating the sample to 105 °C the resulting solid was confirmed to be form III by both 

Raman spectroscopy and powder X-ray diffraction (PXRD).  

2.4.3 Optical Microscopy 

Images of forms I, II, and III were collected using a Spot Advanced camera through a Leica 

microscope. All images were processed using Spot Advanced software (Version 4.6).  

                                Form I                                              Form II   

                        

Figure 2.9. Optical microscopy of piperine forms I, and II. 
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Figure 2.10. Optical microscopy of piperine form III.  

2.4.4 Raman Spectroscopy 

Raman spectra were collected using a Renishaw inVia Raman microscope equipped with a Leica 

microscope, RenCam CCD detector, 633 nm Kr+ laser, 1800 lines/nm grating, and 50 μm slit. 

Spectra were collected in extended scan mode in the range of 100-3600 cm-1 and then analyzed 

using the Wire 3.4 software package. Calibration was performed using a silicon standard. 

2.4.5 Powder X-ray Diffraction of Piperine Polymorphs I, II and III 

Powder X-ray diffraction (PXRD) patterns were collected at ambient temperature using a Rigaku 

R-Axis Spider diffractometer with an image plate detector and graphite monochromated Cu-Kα 

radiation (1.5406 Å). Samples were mounted on a CryoLoop™ and images were collected for 

five minutes while rotating the sample about the φ-axis at 10°/sec, oscillating ω between 120° 

and 180° at 1°/sec and with χ fixed at 45°. Images were integrated from 2° to 70° with a 0.02° 

step size using the AreaMax software. Powder patterns were processed in Jade Plus to calculate 

peak positions and intensities. 
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2.4.6 Single X-ray Diffraction of Piperine Polymorphs II and III 

Single crystal X-ray diffraction data of form II was recorded on a Rigaku R-axis Spider 

diffractometer with an image plate detector using graphite monochromated Cu-Kα radiation 

(1.5406 Å). The data collection was made at 95 K and the structure was solved using direct 

methods.18 All calculations were performed using CrystalStructure19 crystallographic software 

package except for refinement, which was performed using SHELXL-97.20  A crystal of piperine 

form III with dimensions 0.12 x 0.10 x 0.02 mm was mounted on a Rigaku AFC10K Saturn 

944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-

007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 

30 mA).  The X-ray intensities were measured at 85(1) K with the detector placed at a distance 

42.00 mm from the crystal.  A total of 3935 images were collected with an oscillation width of 

1.0° in ω. The exposure time was 1 second for the low angle images, 8 seconds for high angle.  

The integration of the data yielded a total of 77393 reflections to a maximum 2θ value of 

136.46° of which 5221 were independent and 4436 were greater than 2σ(I). The final cell 

constants (Table 2.1) were based on the xyz centroids 46619 reflections above 10σ(I). Analysis 

of the data showed negligible decay during data collection; the data were processed with 

CrystalClear 2.0 and corrected for absorption.21  The structure was solved and refined with the 

Bruker SHELXTL (version 2008/4) software package, using the space group C2/c with Z = 16 

for the formula C17H19NO3.  There are two crystallographically independent molecules in the 

asymmetric unit.22 All non-hydrogen atoms were refined anisotropically with the hydrogen 

atoms placed in idealized positions. Full matrix least-squares refinement based on F2 converged 

at R1 = 0.0540 and wR2 = 0.1496 [based on I > 2sigma(I)], R1 = 0.0599 and wR2 = 0.1545 for 
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all data. Additional details are presented in Table 2.1. Acknowledgement is made for funding 

from NSF grant CHE-0840456 for X-ray instrumentation. 

2.4.7 Hirshfeld Surface Analysis of Piperine forms I, II, and III 

Hirshfeld surfaces of each of the molecules in the asymmetric unit of the ordered polymorphs of  

piperine were constructed using the program CrystalExplorer (Version 3.1).14  Crystallographic 

information files were uploaded to the program after the normalization of N-H, O-H and C-H 

bond lengths (1.008, 0.983, and 1.083 Å, respectively) to average neutron values was 

performed.23, 24  

 

    

Figure 2.11. 2D finger plot and the Hirshfeld surface for piperine form I.  
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Figure 2.12. 2D finger plot for the Hirshfeld surface for one molecule in the asymmetric unit of 
piperine form II. 
 
 
 

   

Figure 2.13. 2D finger plot and the Hirshfeld surface for the second molecule in the asymmetric 
unit of piperine form II. 
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Figure 2.14. 2D finger plot and the Hirshfeld surface for one molecule in the asymmetric unit of 
piperine form III. 
 
 
 

  

Figure 2.15. 2D finger plot and the Hirshfeld surface for the second molecule in the asymmetric 
unit of piperine form III. 
 
 
2.4.8 Differential Scanning Calorimetry of Piperine Polymorphs I, II, and III 

Thermograms of the samples were recorded on a TA Instruments Q20 DSC. The thermal 

behavior of the samples, placed in sealed aluminum pans, was studied under nitrogen purge with 

a heating/cooling rate of 10 °C min-1covering the temperature range 25 °C to 300 °C. The 
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instrument was calibrated with an indium standard. Differential scanning calorimetry was 

performed on piperine forms I, II, and III. Form I showed no transitions prior to a melt centered 

at 132.49 °C. Form II was found to melt at 127.97 °C. Form III exhibited an initial melt centered 

at 116.48 °C followed by an exothermic transition between 118 °C and 128 °C. This exothermic 

transition represents the recrystallization of form III into form I, shown by the subsequent melt 

centered at 132.5 °C.  

2.4.9 Free Energy Relationships Among the Piperine Polymorphs 

The optical absorbance of the piperine polymorphs in water was monitored in situ over time 

using a Pion µDISS Profiler in the range of 500-200 nm at 300 ± 1 K., 22 mL glass cells were 

used for the experiment. The lambda maximum (λmax.) of absorbance of piperine in water was 

located at 340 nm. A time-dependent absorbance curve was used to determine the absorbance at 

equilibrium and these values were employed in determining the relative free energy (ΔG) for 

each of the polymorphs as well as to monitor conversions in solution over a longer period of time 

(see equation 1). The solute remaining was identified using PXRD. In the case of form I, no 

transformation was observed within the time frame of the experiment. However it was found that 

both forms II and III converted to form I during the course of the experiment, as confirmed by 

PXRD. Furthermore, the relative solubilities of each of the forms were found by determining the 

absorbance at equilibrium for each of the polymorphs in water and then taking the ratio of the 

relative absorbance of the metastable forms relative to the stable form. 

 

                                   ΔG = RT ln(S2/S1)                              (1) 
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Form ΔG (kcal/mol) 

I 0 

II 0.24* 

III 0.39* 

 

*Polymorphs II and III transformed during the experimental time frame to form I, therefore the 
free energies presented in this table are a slight underestimation of the free energies due to 
polymorphic transformation preventing full supersaturation from being achieved. 
 

Table 2.2. Relative free energies of the piperine polymorphs. 
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Chapter 3 Towards Exhaustive and Automated High Throughput Screening 
for Crystalline Polymorphs 

Published: Pfund, L. Y.; Matzger, A. J., ACS Combinatorial Science 2014, 16, (7), 309-313. 
 
3.1 Introduction 

The recognition that pharmaceuticals often exist in multiple crystalline forms solely 

differing in the arrangement of molecules, crystalline polymorphs,1 has led to an increase in 

activity directed towards efficiently screening for solid form diversity. The ideal technique 

should facilitate formation and identification of all possible polymorphs of a molecule while 

utilizing minimal amounts of the target compound and automated form identification. This goal 

remains elusive in part due to the fact that the nucleation of a specified polymorph is influenced 

by a wide array of factors, making polymorph discovery an often time-consuming, Edisonian 

process. A traditional screen typically involves changes in variables such as solvent, temperature, 

and degree of supersaturation. These variables have empirically been shown to influence the 

polymorphic form obtained from a crystallization trial, albeit through a mechanism that is 

obscure. More sophisticated approaches involving heterogeneous nucleation, where a foreign 

surface is present that can interact with the crystallizing material in solution2 are emerging. For 

example, self-assembled monolayers (SAMs)3-6, crystalline heteronucleants7, 8, and amorphous 

polymers9-13 have all been employed with varying degrees of success. In particular, polymer-

induced heteronucleation (PIHn) has proven to be a powerful discovery method utilizing
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hundreds of unique amorphous polymers as crystallization directors for obtaining novel solid 

forms.14-16 The polymer selectively promotes the growth of one form above others through a 

kinetic mechanism involving selective stabilization at the stage of nucleation.17, 18 It has been 

established that functional group interactions at the polymer-crystal

interface are responsible for directing and controlling the nucleation of different crystal phases 

on specific polymer heteronucleants.17, 18 Recently nonamorphism in the anti-inflammatory 

compound flufenamic acid was demonstrated using PIHn, setting a new record for the organic 

compound with the most structurally characterized polymorphs.19 

Although PIHn has been extremely successful in both form selection and in obtaining novel 

polymorphs, there are still several challenges that must be overcome to improve screening 

efficiency and accuracy. Raman spectroscopy, an analytical technique used to study the 

vibrational modes in a material, is often employed to distinguish among polymorphs due to its 

short analysis times, minimal sample preparation requirements, and high sensitivity. However, 

the relatively large amount of polymer heteronucleant present often leads to problematic levels 

of background Raman scattering; this can obscure the Raman spectrum of the compound of 

interest and hamper automated analysis. Furthermore, PIHn relies on relatively large amounts of 

sample, limiting polymorph screening to compounds that are readily available. 

Previous work on high throughput platforms focused on the creation of polymer microarrays 

by a piezo jet-printer.20 This system employed hundreds of soluble commercial polymers and a 

few synthesized cross-linked and linear copolymers as polymer heteronucleants and 

demonstrated some success in form selection.20 Here PIHn is adapted into a high density format 

in which hundreds of distinct amorphous, insoluble cross-linked terpolymers are arrayed on a 

single substrate by using simple pin tools, making automated, high throughput screening 
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possible. The cross-linked terpolymers used in this study are readily generated from simple 

feedstocks of monomer solutions which are combined in various, allowing for diversity and 

flexibility in the composition of the cross-linked terpolymers that are utilized as the 

heteronucleants in this high density platform. This new format is distinct from traditional PIHn 

in that the amount of polymer, the platform on which the crystallizations occur, the volume of 

solvent used for crystallization, and the total amount of material used for the crystallization have 

been dramatically decreased. The reduction in scale is advantageous for a number of reasons. 

The reduction in polymer thickness yields Raman spectra of compounds with minimal spectral 

interference from the polymer heteronucleant, enabling completely automated analysis. The 

amount of material needed has been considerably reduced (to ~1 mg) as compared to the 

amounts previously needed for polymorph discovery with PIHn (~300 mg). Hence, screening 

newly synthesized compounds for which typically only small quantities are available becomes 

feasible. Here the efficacy of this new, high density format using the compounds 

acetaminophen14, tolfenamic acid16, ROY,21 and curcumin22 is demonstrated. Furthermore, the 

consequence of this reduction in scale on polymorph selection efficacy, as compared with PIHn 

deployed in a traditional format, is explored. 

3.2 Results and Discussion 

Most high throughput crystallizations are currently conducted using 96, 384, or 1536 well 

microtiter plates due to their high densities and compatibility with liquid handling robotics. 

However, using these plates for polymorph screening can be problematic for several reasons. In 

situ Raman analysis is challenging due to the high aspect ratio and narrow width of the wells in 

these microtiter plates. When laser light from the Raman spectrometer is focused on a crystal at 

the bottom of a well, it is hindered from reaching the sample due to the refraction of light at the 
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top of the well arising from its narrow diameter. This also results in an increase in the focal 

volume of the laser.23 Even for the portion of the laser light reaching the sample, the light does 

not scatter directly upwards but rather will scatter off of the opaque walls of the plate, limiting 

the amount of light that reaches the detector. These issues effectively reduce sample throughput 

by increasing the time needed to collect individual spectra. In order to quantitatively understand 

these effects, an experiment was performed with a Delrin aperture (hole diameter of 3.30 mm 

with a 6.0 mm height) placed above a crystal of the nutraceutical piperine, monitoring the signal 

intensity as the number of Delrin pieces was increased. When one Delrin aperture was used the 

signal was diminished by 41%; when two were used (effectively mimicking the depth in a 

standard 384 microtiter plate) the signal was diminished by 72% as compared to having the same 

crystal on a planar substrate. This experiment demonstrates how the signal in Raman 

spectroscopy is affected by the depth and narrowness of a well (see Section 3.4.8). Direct 

interrogation of crystals within a microtiter plate by X-rays is not possible due to the geometric 

requirements for diffraction. The geometry of the microtiter plates also makes it very difficult to 

manually manipulate crystals for ex situ analysis. After examining all of these disadvantages, it is 

apparent that microtiter plates are not optimal for conducting efficient polymorph screening.  

To overcome the limitations of 

current approaches to high throughput 

polymorph screening, a platform which 

takes advantage of the benefits of a 

high density microtiter plate, but limits 

the drawbacks currently associated 

with them was devised. A CO2 laser 

Figure 3.1. Schematic of quartz slide with an 
array of depressions (1 mm wide) with a 2.25 
mm spacing from center of one depression to 
another, implemented in this study as the 
crystallization platform. 
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was utilized to create an array of 288 depressions approximately 300 µm deep on a standard 

quartz microscope slide (75 mm × 25 mm × 1 mm). This geometry eliminates any constraints to 

in situ analysis and crystal harvesting (Figure 3.1, see Section 3.4.4).  This precisely-defined 

array possesses the spacing of a 1536 well plate (2.25 mm from the center of one depression to 

another) maintaining compatibility with liquid handling robots. For demonstration purposes the 

three distinct polymer libraries commonly 

employed in PIHn studies were chosen; 

these are characterized by the 

functionalities of their constituent 

monomers: acidic, nonpolar aromatic, and 

polar nitrogen.14 For each of these libraries 

there are 96 cross-linked polymers, for a total of 288 unique cross-linked polymers. Therefore, 

the three libraries can be deposited on a single quartz slide with a unique polymer in each 

depression. This manipulation was accomplished by taking advantage of the geometry of a 1536 

well plate relative to a 384 well plate. On a 384 microtiter plate the spacing from the center of 

one well to another is 4.5 mm (exactly double the spacing in a 1536 well plate). With this in 

mind, a custom pin tool24 was fabricated comprised of five Delrin combs held together in a 

poly(methyl methacrylate) lattice (Figure 3.2). This pin tool enables rapid contact-printing of up 

to 80 distinct monomer solutions simultaneously from a 384 well plate containing the monomer 

solutions onto the individual depressions on the laser-etched quartz slide. The number of 

monomer solutions printed onto the quartz slide can be easily changed by removing a comb from 

the lattice; depending on the number of combs present, 16-80 distinct monomer solutions can be 

dispensed at one time. Immediately after each print from the 384 well plate onto the quartz slide, 

Figure 3.2. Pin tool used for deposition of 
material onto a µPIHn plate. 
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the monomer solutions were photopolymerized, yielding thin polymer films in each depression. 

Four applications of the printing tool were required to print all 288 distinct monomer solutions 

(see Section 3.4.5) and after polymerization was completed, the µPIHn plate was applied to 

crystallization studies. An additional comb was then used to dispense the crystallization solution 

of the molecule to be investigated onto the µPIHn plate. This contact printing leads to very low 

volume transfer (~0.3 µL per well) and therefore small sample requirements. The extremely thin 

polymer films allow for analysis of polymorphs directly on the plate without significant signal 

interference from the polymer heteronucleant, thus enabling automated Raman microscopy 

mapping. The efficacy of this platform was demonstrated with four model polymorphic 

compounds: acetaminophen (ACM), tolfenamic acid (TA), ROY, and curcumin.  

Acetaminophen. Acetaminophen is typically found in one of two stable polymorphic forms: 

form I (monoclinic) and form II (orthorhombic).14 Previously, when PIHn was used to study the 

polymorphism of ACM, both the monoclinic and orthorhombic forms were found utilizing 

roughly half of a gram of material for one screen.14 With µPIHn both forms I and II of ACM 

were obtained using less than one milligram of material (Figure 3.3). Form I of ACM was 

crystallized by room temperature evaporation of aqueous solutions in the presence of acidic 

polymers whereas form II nucleated on polymers within the nonpolar aromatic library (see 

Section 3.4.6).  
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ROY. ROY, an intermediate in the production of the pharmaceutical olanzapine, is known for 

the color of its red, orange, and yellow polymorphs.21 Using µPIHn, four of the seven 

structurally characterized forms were obtained: red prism (R), yellow needle (YN), orange 

needle (ON), and yellow prism (Y) (Figure 3.4). Red and yellow prisms nucleated on polymers 

within the polar nitrogen library. However, polymers in the nonpolar aromatic library facilitated 

the formation of yellow needles. Orange needles were found on polymers in the acidic library 

(see Section 3.4.6). 

Figure 3.3. Raman spectra of acetaminophen forms I and II obtained directly from 
crystals on the µPIHn plate. 
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Tolfenamic acid. Tolfenamic acid (TA) is a pentamorphic, non-steroidal anti-inflammatory 

drug.16 Previously when TA was subjected to traditional PIHn screening, five polymorphs were 

found, with three forms discovered for the first time.16 Now with µPIHn all five known forms of 

TA were obtained using only 0.2 mg of TA (Figure 3.5). Forms I, II, and V of TA were found to 

nucleate on polymers within the polar nitrogen library, whereas forms III and IV nucleated on 

polymers in the nonpolar aromatic library (see Section 3.4.6). 

  
Figure 3.5. Raman Spectra of tolfenamic acid forms I, II, III, VI, and V, obtained directly from 
crystals on a µPIHn plate. 

Figure 3.4. Raman Spectra of the diagnostic nitrile region for ROY, in order from left to 
right: red prism, yellow needles, orange needles, yellow prims, obtained directly from 
crystals on a µPIHn plate. 
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Curcumin. Curcumin is the primary curcuminoid in the spice turmeric. Curcumin has been 

found to act as an anti-inflammatory, anti-cancer, and anti-HIV agent.25 Nangia and coworkers 

discovered two new polymorphs of curcumin while attempting to form cocrystals.22 All three 

polymorphs of curcumin were found in the present study (Figure 3.6). Form I and II formed on 

polymers within the polar nitrogen library, whereas form III nucleated on polymers within the 

acidic library (see Section 3.4.6). 

  

 

 

In the present study, automated Raman mapping was used to identify all of the pharmaceutical 

polymorphs. The above results illustrate that using ~1 mg is viable for efficient polymorph 

screening for all of the compounds studied with µPIHn. However, the polymers responsible for 

promoting the formation of a particular polymorph in some cases were different from those of 

traditional PIHn. For example, with µPIHn, forms II and V of tolfenamic acid were found to 

nucleate on polymers within the polar nitrogen library whereas with traditional PIHn, these 

forms were obtained exclusively on polymers within the aromatic library. This difference may 

arise from the dramatic increase in the rate of evaporation of the crystallizing solution with 

Figure 3.6. Raman Spectra of curcumin forms I, II, and III, obtained directly from crystals 
on a µPIHn plate. 
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µPIHn as compared with traditional PIHn. This enhanced evaporation rate is a direct result of the 

extremely small amount of solvent that is printed into each depression (~0.3 µL) and the 

relatively open nature of conducting crystallization on an open plate. Despite this drastic 

difference in the kinetics of the crystallization, the efficacy of PIHn was still maintained.  

3.3 Conclusions 

The above results have important implications for the stage at which comprehensive 

polymorph discovery can take place. Solid form screening, as currently practiced, requires 

substantial sample quantities and it has thus far not been feasible to perform solid form screening 

as an early-stage selection criterion for choosing which bioactive compounds to advance in the 

pipeline. Hence, the process by which a drug candidate is chosen neglects solid form 

considerations until a rather late stage where the cost of failure is greater.26, 27 With µPIHn only a 

small amount of material is needed in order to study the potential polymorphism of a newly 

synthesized compound. Therefore, this new polymorph discovery platform can shift solid form 

considerations to an earlier stage in the pharmaceutical development process.  

PIHn has been transformed into a high density format in which hundreds of distinct polymers 

are arrayed on one substrate, making automated, high throughput analysis possible. This new 

format is dissimilar from traditional PIHn in that the amount of polymer, the substrate on which 

the crystallizations occur, the volume of solvent utilized for crystallization, and the total amount 

of material used for the crystallization (~1 mg) have been decreased dramatically. The reduction 

in polymer thickness yields Raman spectra with minimal spectral interference from the polymer 

heteronucleant, enabling completely automated analysis.  

From the present study, it is apparent that although aspects of the crystallizations with μPIHn 

have changed from traditional PIHn, the method’s efficacy has been maintained. This is a direct 
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result of the mechanism of PIHn: it is a surface-mediated process dominated by functional group 

interactions at the polymer-crystal interface, and is therefore independent of the amount of 

polymer present.17, 18 μPIHn can now be implemented to study the potential of polymorphism in 

newly synthesized compounds. As a result of the unique configuration of this platform, countless 

crystallization conditions can be explored in the presence of hundreds of distinct polymers 

including, but not limited to, varying parameters such as the temperature,9 the degree of 

supersaturation, and solvent, enabling the structural landscape of a compound to be thoroughly 

explored. Although it is not possible to determine if all of the polymorphs of a compound have 

been found, by conducting a comprehensive experimental screening in combination with modern 

methods for computationally predicting which polymorphs are viable on the crystal energy 

landscape, one can have high confidence that all relevant polymorphs have been discovered. By 

considering all possible solid forms early in the drug development process, knowledge of solid 

form diversity can be leveraged to select which drug candidates to advance in the pipeline.  

3.4 Experimental Procedures 

3.4.1 Preparation of the polymer libraries 

The components used to build the non-polar aromatic polymer library were 4-

acetoxystyrene (AOS), n-butyl methacrylate (n-BuMA), tert-butyl methacrylate (t-BuMA), 

benzyl methacrylate (BzMA), methyl methacrylate (MMA), styrene (STY), and divinylbenzene 

(DVB). The components used to build the polar nitrogen polymer library were 2-methyl-2-

nitropropyl methacrylate (MNPMA), methacrylonitrile (MAN), 2-(dimethylamino)ethyl 

methacrylate (DMAEMA), N,N-dimethylmethacrylamide (DMMAA), 2-vinylpyridine (2VP), 4-

vinylpyridine (4VP), and divinylbenzene (DVB). The components used to build the acidic 

polymer library are methyl methacrylate (MMA), acrylic acid (AA), methacrylic acid (MAA), 2-
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hydroxyethyl methacrylate (HEMA), 2-ethoxyethyl methacrylate (EEMA), styrene (STY), and 

divinylbenzene (DVB). For each library six 1:1 (v/v) monomer solutions in ethanol were 

dispensed as 90 pair wise combinations of varied ratios (86:14, 71:29, 57:43, 43:57, 29:71, and 

14:86) and six pure monomer solutions by a Gilson 215 liquid handler to a volume of 120 μL. To 

this was added 40 μL of a 1:1 solution of DVB in ethanol containing 2 mol% 2,2'-Azobis(2-

methylpropionitrile) (AIBN) with respect to DVB. The three 96 well plates containing the 

monomer solutions were transferred into a flat bottom 384 well plate by using an Eppendorf 

epmotion® 5070 liquid handling robot. Using a pin tool comprised of Delrin combs in a PMMA 

lattice four prints were performed from a 384 well plate containing monomer solutions onto the 

depressions on the laser etched quartz slide. In order to print all 288 monomer solutions four 

prints were performed from the 384 well plate onto the quartz slide (See Supporting 

Information). After each print the monomer solutions were photopolymerized with four 15W 

UVA bulbs in an atmosphere of N2 for 1 minute. Following polymerization the µPIHn plates 

were annealed at 85 °C under vacuum for 2 hours to produce the cross-linked polymer libraries. 

3.4.2 Materials  
 
Acetaminophen (ACM) and tolfenamic acid (TA) were obtained from Sigma-Aldrich (MO). 

Curcumin was purchased from Acros Organics (NJ). ROY was synthesized by following the 

literature procedure.28 Ethanol was purchased from Decon Laboratories, Inc. (PA). 

Delrin® in sheets 1.19 mm thick and poly(methyl methacrylate) (PMMA) in sheets 3.175 mm 

thick were obtained from McMaster-Carr (OH). Quartz slides (75 mm × 25 mm × 1 mm) were 

purchased from Chemglass (NJ).  
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3.4.3 Pin tool preparation 

All pin tools used in this study were created using a Universal Laser System desktop VLS2.30 

equipped with a 30W CO2 laser and High Power Density Focusing Optics (HPDFO). The system 

described above is capable of cutting in two different manners: vector (used to cut through a 

material) and raster (used to create depressions in a material). Additionally, the power and the 

speed of the cutting can be controlled.  Both the Delrin combs and the PMMA lattice were 

created by using the vector configuration of the system. The combs were created by cutting 

Delrin sheets at 100% power and 17% speed. In order to create the PMMA lattice, PMMA sheets 

were cut at 100% power and 7% speed (Adobe Illustrator files used to define the cutting 

geometries are available in Supporting Information).   

3.4.4 Creation of a quartz slide with an array of depressions 

Quartz slides with a precisely defined array of depressions were cut in raster mode at 100% 

power and 10% speed. The width of each depression was 1 mm and the spacing from the center 

of one depression to another was 2.25 mm (the Adobe Illustrator file is available in Supporting 

Information). 

3.4.5 Printing procedure to produce a µPIHn plate. 

Using a pin tool comprised of a set of Delrin combs in a PMMA lattice four prints were 

performed from a 384 well plate containing monomer solutions onto the depressions on the laser 

etched quartz slide. For the first two prints five combs were used in the PMMA lattice. For the 

final two prints four combs were used in the PMMA lattice. Immediately after each print from 

the 384 well plate onto the quartz slide, the monomer solutions were photopolymerized with four 

15 W UVA blubs in an N2 atmosphere, yielding thin polymer films in each depression. 
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Figure 3.7. First print from a 384 well plate onto quartz slide with an array of depressions. 
 

 

Figure 3.8. Second print from a 384 well plate onto quartz slide with an array of depressions. 
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Figure 3.9. Third print from a 384 well plate onto quartz slide with an array of depressions. 

 

Figure 3.10. Fourth print from a 384 well plate onto quartz slide with an array of depressions. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
A

B

C

D

E

F

G

H

I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
A

B

C

D

E

F

G

H

I

ABCDEFGHIJKLMNOP

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

ABCDEFGHIJKLMNOP

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24



 

50 
 

3.4.6 Crystallizations 

ACM. A solution of ACM was prepared by dissolving 10 mg of ACM in 1 mL of water. The 

solution was then filtered using a 0.45 μm pore size PTFE filter. Following filtration the solution 

was dispensed onto a µPIHn plate by using Delrin combs. Form I (monoclinic) was present most 

reliably on cross-linked polymers derived from methyl methacrylate (MMA) and methacrylic 

acid (MAA). Form I was consistently observed on a polymer derived from DVB:MMA:MAA 

(33:57:43). Form II nucleated consistently on cross-linked polymers derived from styrene (STY) 

and 2-ethoxyethyl methacrylate (EEMA). In particular, cross-linked polymers derived from 

DVB:STY (33:100) assisted in the formation of form II. 

ROY. A solution of ROY was made by dissolving 10 mg of the material in 1 mL of ethanol. The 

solution was then filtered using a 0.45 µm pore size PTFE filter and printed onto a µPIHn plate 

with Delrin combs. Red prisms were found to nucleate on cross-linked polymers which were 

derived from 2-vinylpyridine (2VP) and 4-vinylpyridine (4VP). Specifically, red prisms were 

found consistently on a DVB:2VP:4VP (33:29:71) derived polymer. Yellow prisms formed on 

cross-linked polymers which were derived from 2-methyl-2-nitropropyl methacrylate 

(MNPMA). This form was most reliably obtained on cross-linked polymers derived from 

DVB:MNPMA (33:100). Yellow needles were observed on cross-linked polymers derived from 

styrene (STY) and 4-acetoxystyrene (AOS), especially on polymers derived from DVB:STY 

(33:100). Orange needles were present on several cross-linked polymers, particularly on those 

derived from 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA). Cross-linked 

polymers derived from DVB:HEMA:AA (33:57:43) consistently facilitated the formation of 

orange needles. 
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Curcumin. A solution of curcumin was made by dissolving 25 mg of curcumin in 1 mL of 

dimethyl sulfoxide (DMSO). The solution was then filtered using a 0.45 μm pore size PTFE 

filter. This solution was then contact printed onto a µPIHn plate with Delrin combs. The plate 

was then placed in a closed vessel in which a dish of water had been placed. Form I formed on 

many cross-linked polymers especially those derived from methacrylonitrile (MAN). In 

particular, cross-linked polymers derived from DVB:MAN:2VP (33:71:29) aided in the 

nucleation of form I. Form II was found on several cross-linked polymers particularly on those 

derived from methyl methacrylate (MMA), the form was specifically found on polymers derived 

from DVB:MMA:MNPMA (33:86:14). Form III nucleated on cross-linked polymers derived 

from methyl methacrylate (MMA), particularly on polymers derived from DVB:HEMA:MMA 

(33:43:57). 

TA. A solution of TA was prepared by dissolving 7.2 mg of TA in 1 mL of ethanol. The solution 

was then filtered using a 0.45 µm pore size PTFE filter. The filtered solution was then 

transferred onto a µPIHn plate by pipetting 0.1µL into each well with an Eppendorf Research 

Pipette. Form I was found on cross linked polymers derived from methacrylonitrile (MAN), 

specifically on polymers derived from DVB:MAN:2VP (33:71:29). Form II nucleated on 

numerous cross-linked polymers especially those derived from 2-methyl-2-nitropropyl 

methacrylate (MNPMA), in particular on polymers derived from DVB:MNPMA (33:100). Form 

III formed on cross-linked polymers derived from 4-acetoxystyrene (AOS), especially on 

polymers derived from DVB:AOS:t-BuMa (33:57:43). Form IV nucleated on cross-linked 

polymers derived from 2-ethoxyethyl methacrylate (EEMA). Particularly, cross-linked polymers 

derived from DVB:EEMA:MMA (33:86:14) facilitated the formation of form IV. Cross-linked 
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polymers derived from 2-vinylpyridine (2VP) assisted in the formation of form V, derived from 

DVB:MNPMA:2VP (33:14:86). 

3.4.7 Raman vibrational spectroscopy 

Automated Raman mapping was performed using a Renishaw inVia Raman Microscope 

equipped with a RenCam CCD detector, 785 nm laser, 1200 lines/nm grating, and 65 μm slit. An 

image of the µPIHn plate was captured by using an automatic Renishaw MS20 encoded stage in 

combination with the ability to montage an image using the camera. This image was used as a 

template for the mapping experiment. Using point by point mapping nine points were selected in 

each depression on the image of the µPIHn plate: three across the top, three across the center, 

and three at the bottom. These defined positions are the locations in which the spectra were 

collected during the mapping experiment. Twenty second static scans were used to determine the 

polymorphic composition of each well. The center for the static scans varied depending on which 

compound was studied: 2200 cm-1 for ROY, 1050 cm-1 for ACM, and 1450 cm-1 for TA. The 

spectra obtained by mapping were then analyzed using the Wire 3.4 software package principal 

component analysis routines. For full characterization of a polymorph on the above system or on 

the Renishaw inVia Raman Microscope equipped RenCam CCD detector, 633 nm laser, 1800 

lines/nm grating, and 50 μm slit, long scans were conducted. Spectra were collected in extended 

scan mode in the range of 4000-100 cm-1 and then analyzed using Wire 3.4 software package. 

Calibration was performed for all experiments using a silicon standard. 

3.4.8 Quantifying the effect of well depth on Raman laser intensity  

An experiment was performed with a Delrin aperture (hole diameter of 3.30 mm with a 6.0 mm 

height) placed above a crystal of the nutraceutical piperine, monitoring the signal intensity as the 

number of Delrin pieces was increased. In order to compare the signal in each spectrum, the 
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intensity of the peak at 1624 cm-1 was monitored. When one Delrin aperture was used the signal 

was diminished by 41%; when two were used (effectively mimicking the depth in a 384 

microtiter plate) the signal was diminished by 72% as compared to having the same crystal on a 

planar substrate. 

 

 
Figure 3.11. Raman spectrum of piperine on a planar substrate.  
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Figure 3.12. Raman spectrum of piperine with one Delrin aperture. 
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Figure 3.13. Raman spectrum of piperine with two Delrin apertures.  
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4.1 Introduction

There is often a large barrier to the formation of an ordered three-dimensional lattice from an 

isotropic state. The initial stage of crystallization, nucleation, can be accelerated if a surface is 

present to facilitate the organization of molecules by heteronucleation.1 Among the various 

methods utilized for heteronucleation2-6, polymer-induced heteronucleation (PIHn) has proven to 

be a powerful polymorph discovery method utilizing hundreds of unique insoluble polymers as 

crystallization directors for obtaining novel solid forms.7-13 It is well established that functional 

group interactions at the polymer-crystal interface are responsible for directing and controlling 

the nucleation of different crystal phases on specific polymer heteronucleants.13-16 However, 

there are some instances where nucleation from the polymer surface is very slow, allowing 

alternative pathways to compete. In such cases, it is hypothesized that crystallization is not 

induced by the polymer heteronucleant because little interaction between the polymer and 

compound exists; this precludes efficient stabilization of nuclei and subsequent growth into 

macroscopic crystals. An attractive approach for solving the problem of slow nucleation from 

polymer heteronucleants is to generate insoluble polymers that are designed to possess 

complementary interactions for a given compound. To implement this strategy, inspiration was 

sought from the substantial body of work available on soluble additives. Tailor-made additives 

are typically designed to adsorb onto specific faces of a growing crystal to slow or block growth 
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perpendicular to that face, often affecting the morphology and the polymorphism of the target 

compound.17-30 If the strong interactions between a tailor-made additive and a target compound 

could instead be applied at the surface of an insoluble polymer, it is hypothesized that the 

additive will act as a crystallization promoter. The nucleation rate should be increased because 

the polymer possesses functionality complementary to that of the target compound in solution 

thereby facilitating heteronucleation. Furthermore, the morphology of the resulting crystals 

should not be affected because an insoluble polymer cannot interact with multiple faces of a 

growing crystal. 

4.2 Results and Discussion 

Due to the extensive work on the effect of tailor-made additives on the morphology of 

acetaminophen (ACM) crystals, this compound was used as an initial target in order to determine 

if polymers could be tailored to accelerate 

nucleation.31-33 A polymerizable additive, N-

hydroxyphenyl methacrylamide, was designed 

and synthesized34 to mimic ACM (Figure 

4.1).35-38 Whenever designing an inhibitor for 

a specific compound, the possibility exists that the particular substitution pattern chosen will 

preclude efficient interaction with the target crystal. Therefore, to verify that N-hydroxyphenyl 

methacrylamide would act in solution to modify the morphology of the acetaminophen crystals, 

crystallizations in the presence of the additive were performed. As the concentration of the tailor-

made additive was increased, the acetaminophen crystals became more elongated (Figure 4.2). In 

spite of this dramatic change in the morphology of the crystals, all were confirmed to be the 

monoclinic polymorph of acetaminophen by Raman spectroscopy (see Section 4.4.4). Having 

Figure 4.1. Comparison of the structure of 
acetaminophen to the tailor-made additive, 
N-hydroxyphenyl methacrylamide. 
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determined that N-hydroxyphenyl methacrylamide face-selectively interacts with acetaminophen 

crystals in solution, the additive was subsequently incorporated into polymers to determine if it 

possessed the ability to promote crystallization when immobilized. To explore the effect of the 

concentration of the tailor-made additive present in the polymer heteronucleant on the 

crystallization rate of the pharmaceutical, binary copolymers were prepared. The requisite 

properties for the second monomeric 

component are poor water solubility, a lack 

of hydrogen-bonding functionality, and a 

reactivity ratio similar to the additive such 

that random copolymers would be 

generated. Thus, three copolymers with 

styrene and increasing ratios of the tailor-

made additive (1 mol%, 5 mol%, and 10 

mol% of additive to total polymer) were 

synthesized in addition to pure polystyrene (see Section 4.4.5). In each case the pure polymer 

was found to be insoluble in water by UV-vis absorbance spectroscopy implicating a 

heterogeneous mechanism39, 40 for influencing crystallization (see Section 4.4.7). Crystallizations 

of acetaminophen in the presence of the three tailor-made additive copolymers and polystyrene 

as well as in the absence of polymer were carried out in aqueous solution with each 

(a) (b)    

(c) (d)  
Figure 4.2. Morphology of acetaminophen 
crystals grown in the presence of N-
hydroxyphenyl methacrylamide. (a) no 
additive, (b) 1 mM additive, (c) 3 mM additive, 
and (d) 6 mM additive.  
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crystallization condition performed eight times in triplicate (see Section 4.4.6). In order to 

determine the induction time for crystal appearance the crystallizations were checked by optical 

microscopy every fifteen minutes. On average, the induction time for crystal appearance of 

acetaminophen in the absence of the synthesized polymers occurred in >6000 minutes, whereas 

in the presence of polystyrene this time decreased to 1100 min. These observations are consistent 

with a decreased induction period resulting from heterogeneous nucleation. More substantial 

though was the decrease in the induction time for the appearance of crystals in the presence of 

polymers with incorporated N-hydroxyphenyl methacrylamide. On average crystallizations in the 

presence of the 1, 5, and 10 mol% N-

hydroxyphenyl methacrylamide/styrene 

copolymers occurred in 243 ± 7 minutes, 

189 ± 10 minutes, and 151 ± 8 minutes, 

respectively (times are shown with the 

standard error) (Figure 4.3). These 

results are consistent with the 

proposition that a soluble tailor-made 

additive that modifies morphology in 

solution acts as a crystallization 

promoter when incorporated into an insoluble polymer.  

If the strategy of immobilizing a tailor-made additive in a polymer to create a crystallization 

promoter is generally applicable, then other acetaminophen mimics should yield similar results. 

To explore this hypothesis, another tailor-made additive, p-acetamidostyrene, was synthesized.34 

This tailor-made additive possesses similar amide functionality to that of acetaminophen but also 

Figure 4.3. Induction time for crystal appearance 
for acetaminophen crystallized in the presence of 
N-hydroxyphenyl methacrylamide/styrene 
copolymers. The percentages indicated next to each 
line represent the molar percent of the tailor-made 
additive in the polymer. 
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bears a vinyl group for integration into a polymer. Acetaminophen was initially crystallized with 

p-acetamidostyrene in solution to determine if the additive could affect the morphology of the 

resulting crystals. Crystals of the monoclinic form of acetaminophen became increasingly 

elongated as the concentration of the additive was raised from 1 mM to 6 mM (see Section 

4.4.3). With successful demonstration of face-selective growth inhibition, p-acetamidostyrene 

was subsequently incorporated into polymers to yield three copolymers with increasing ratios of 

the tailor-made additive to styrene (1 

mol%, 5 mol%, and 10 mol% of tailor-

made additive relative to the total 

polymer). The crystallizations were 

conducted and monitored in the same 

manner as the N-hydroxyphenyl 

methacrylamide/styrene copolymer 

system described above. The induction 

time for crystal appearance was significantly 

decreased in the presence of the p-

acetamidostyrene/styrene copolymers. For 

crystallizations in the presence of the 10 mol% p-

acetamidostyrene/styrene copolymer, crystals appear 

on average within an hour, one hundredth of the time 

needed for crystallization to occur in the absence of polymer (Figure 4.4). Despite this drastic 

change in the induction time for the appearance of crystals, the morphology of the ACM crystals 

     
Figure 4.5. Morphology of 
acetaminophen crystals grown 
in the presence of 10 mol% p-
acetamidostyrene/styrene. 

Figure 4.4. Induction time for crystal appearance 
for acetaminophen crystallized in the presence of 
p-acetamidostyrene/styrene copolymers. The 
percentages indicated next to each line represent 
the molar percent of the tailor-made additive in 
the polymer. 
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was not affected by the presence of the tailor-made copolymers (Figure 4.5). This trend of 

decreasing induction times can be attributed to an increase in the incorporation of the tailor-made 

monomer in the copolymers, leading to more efficient organization of molecules on the polymer 

surface and thus faster heteronucleation.  

In order to expand the capabilities of this method to crystallizations in organic solvents and 

eliminate any issues due to polymer solubility, cross-linked tailor-made polymers were also 

explored as crystallization promoters. The anti-

inflammatory compound mefenamic acid was 

utilized as an initial target compound. A 

tailor-made additive: 2-((4-

vinylphenyl)amino)benzoic acid was 

synthesized, which is structurally similar to mefenamic acid but bears a vinyl group to enable 

polymerization (Figure 4.6, see Section 4.4.8).41 Mefenamic acid was initially crystallized with 

2-((4-vinylphenyl)amino)benzoic acid in solution to determine if the additive would affect the 

morphology of the resulting crystals (1, 5, and 10 mol% relative to the total amount of 

mefenamic acid). As the concentration of the tailor-made additive was increased, the mefenamic 

acid crystals became increasingly elongated and the induction time for crystal appearance was 

significantly increased (see Section 4.4.9). However, with the highest amount of the tailor-made 

additive the crystal growth was inhibited so strongly that the crystals, although still blade-like, 

lacked a distinct morphology. Despite this drastic change in the morphology, all of the crystals 

were confirmed to be form I of mefenamic acid by Raman spectroscopy (see Section 4.4.9). 

Having determined that 2-((4-vinylphenyl)amino)benzoic acid face-selectively interacts with 

mefenamic acid crystals in solution, the tailor-made additive was copolymerized with 

Figure 4.6. Comparison of the structure of 
mefenamic acid to the tailor-made additive: 2-
((4-vinylphenyl)amino)benzoic acid. 
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H
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divinylbenzene (DVB), in increasing molar ratios, to create cross-linked copolymers (see Section 

4.4.10). Similar to the acetaminophen studies each crystallization condition was performed eight 

times in triplicate. In order to determine the induction time for crystal appearance, the 

crystallizations were monitored by time-lapse photography (photos were taken every sixty 

seconds). The induction time for the appearance of crystals was considerably decreased for 

crystallizations in the presence of the 2-((4-vinylphenyl)amino)benzoic acid/DVB copolymers, 

and the copolymer with the highest incorporation of the tailor-made additive yielded a ten-fold 

decrease in induction time for crystal appearance (see Section 4.4.11). 

 Although the molecular-level events leading to the induction of crystal growth from polymer 

surfaces cannot be directly observed, rate acceleration can arise either from the polymer 

stabilizing subcritically sized nuclei of the target compound in solution or through organization 

of molecules on the polymer surface leading to aggregates of critical dimensions. In either case, 

it is hypothesized that the face-selectivity of crystal growth results from preferential interaction 

with the surface of pre-nuclear aggregates mediated by intermolecular interactions between the 

polymer and the forming nucleus.14, 15 In order to determine if there was any preferential 

interaction between the functionality on the tailor-made copolymer surface and the mefenamic 

acid molecules in solution, mefenamic acid was crystallized on polymer films comprised of the 

10 mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene copolymer. Powder X-ray 

diffraction (PXRD) analysis of the crystals present on the tailor-made copolymer films revealed 

that there are two reflections at 6.3° (100) and 12.7° (200); these correspond to mefenamic acid 

form I crystals oriented along {100} (see Section 4.4.12). In form I, carboxylic acid groups are 

oriented perpendicular to the (100) face,42 suggesting that the tailor-made copolymer is 

preferentially interacting with these groups through hydrogen bonding.14, 15 An intriguing 
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question that can test the proposed mechanism of interaction is if adsorption occurs in the same 

orientation when an additive is in solution as when it is anchored to a polymer. In order to test 

this, mefenamic acid crystals grown in the presence of 2-((4-vinylphenyl)amino)benzoic acid in 

solution were indexed. It was found that the additive in solution was in fact adsorbing onto the 

(100) face, showing that the mechanism of interaction is not changed when the additive is 

incorporated into a polymer (see Section 4.4.13).  

4.3 Conclusion 

The studies outlined here demonstrate that tailor-made additives, which alter crystal 

morphology in solution, can be incorporated into insoluble polymers to promote crystallization. 

This approach has the potential to impact a problem of considerable importance in the 

pharmaceutical industry: the emergence of compounds which, for purely kinetic reasons, under 

all growth conditions are resistant to crystallization.43 This can severely complicate purification 

and form identification. In these cases, tailoring substrates to decrease the time needed for 

crystals to appear is an attractive approach for creating appropriate seed crystals; studies 

examining this approach are currently underway. 

4.4 Experimental 

4.4.1 Materials  

Acetaminophen (ACM) was obtained from Sigma-Aldrich (MO). Mefenamic acid was obtained 

from Alfa Aesar (MA). The tailor-made additive p-acetamidostyrene was synthesized by the 

known literature procedure.34 N-hydroxyphenyl methacrylamide was synthesized by the 

literature procedure.44 2-((4-vinylphenyl)amino)benzoic acid was synthesized by a procedure 

similar to that described by Wolf and coworkers (see Section 4.4.8).41  

 



 

66 
 

4.4.2 Raman Spectroscopy 

For acetaminophen Raman spectra were obtained using a Renishaw inVia Raman microscope 

equipped with a RenCam CCD detector, 785 nm diode laser, a 1200 lines/mm grating, and 50 

μm slit. Spectra were collected and analyzed using the Wire 2.0 software package. Spectra were 

collected in extended scan mode with a range of 100-3200 cm-1. For mefenamic acid a Renishaw 

inVia Raman Microscope equipped with a RenCam CCD detector, 633 nm laser, 1800 lines/mm 

grating, and 50 μm slit was utilized for collecting data. Spectra were collected in extended scan 

mode in the range of 100-3500 cm-1 and then analyzed using the Wire 3.4 software package. 

Calibration was performed using a silicon standard for all experiments. 

4.4.3 Crystallization of acetaminophen in the presence of the additives 

The additive (p-acetamidostyrene or N-hydroxyphenyl methacrylamide) was dissolved in a 200 

mM aqueous acetaminophen solution at 70 °C in a 20 mL glass vial. Three solutions with 

different concentrations of additive, 1 mM, 3 mM, and 6 mM, were prepared in addition to a 

control: a 200 mM aqueous acetaminophen solution. 

 

Figure 4.7. Morphology of acetaminophen crystals grown in the presence of p-acetamidostyrene. 
Clockwise from top left: no additive, 1 mM additive, 3 mM additive, and 6 mM additive. 
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4.4.4 Raman spectra of acetaminophen crystallized in the presence of the additives 

 
Wavenumber (cm-1) 

Figure 4.8. Raman spectra of acetaminophen crystals obtained from crystallizations in the 
presence of no additive, 1 mol% N-hydroxyphenyl methacrylamide, 5 mol% N-hydroxyphenyl 
methacrylamide, and 10 mol% N-hydroxyphenyl methacrylamide (from the bottom to the top 
spectrum). 

 
Wavenumber (cm-1) 

 

Figure 4.9. Raman spectra of acetaminophen crystals obtained from crystallizations in the 
presence of no additive, 1 mol% p-acetamidostyrene, 5 mol% p-acetamidostyrene, and 10 mol% 
p-acetamidostyrene (from the bottom to the top spectrum). 
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4.4.5 Polymerization of p-acetamidostyrene/styrene and N-hydroxyphenyl 
methacrylamide/styrene 
 
Copolymers of p-acetamidostyrene/styrene and N-hydroxyphenyl methacrylamide/styrene with 1 

mol%, 5 mol%, and 10 mol% of additive relative to total polymer as well as pure polystyrene 

were synthesized by free radical polymerization. In all cases 1 mol% of 2,2′-Azobis(2-

methylpropionitrile) (AIBN) with respect to monomer was used as the initiator. Solutions of 

monomer and initiator dissolved in acetone (2:1 v/v acetone to monomer) were heated in glass 

vials under a nitrogen atmosphere for 24 hours at 75 °C to induce polymerization. Afterwards the 

polymers were fractionally precipitated once from CH2Cl2 with methanol. The polymer was then 

ground with a mortar and pestle. This yielded 185 mg of the 1 mol% p-acetamidostyrene/styrene 

copolymer as a white powder. GPC: Mn = 45,410, Mw = 73,546. FT-IR (KBr): 3419 (w), 3024 

(m), 2921 (m), 1699 (w), 1600 (m), 1514 (w), 1492 (s), 1452 (s), 756 (s), 696 (vs) cm-1. This 

reaction with 5 mol% p-acetamidostyrene relative to the total monomer used yielded 202 mg of 

the 5 mol% p-acetamidostyrene/styrene copolymer as a white powder. GPC: Mn = 31,882, Mw = 

146,111. FT-IR (KBr): 3406 (w), 3024 (m), 2920 (m), 1695 (m), 1600 (m), 1514 (m), 1492 (s), 

1451 (s), 756 (s), 696 (vs) cm-1. This reaction with 10 mol% p-acetamidostyrene relative to the 

total monomer used yielded 168 mg of the 10 mol% p-acetamidostyrene/styrene copolymer as a 

white powder. GPC: Mn = 14,982, Mw = 35,187. FT-IR (KBr): 3426 (w), 3023 (m), 2920 (m), 

1652 (w), 1600 (m), 1512 (m), 1492 (s), 1451 (s), 756 (s), 697 (vs) cm-1. This reaction with 1 

mol% N-hydroxyphenyl methacrylamide relative to the total monomer utilized yielded 197 mg 

of the 1 mol% N-hydroxyphenyl methacrylamide/styrene copolymer as a white powder. GPC: 

Mn = 26,725, Mw = 74,412. FT-IR (KBr): 3447 (w), 3024 (m), 2921 (m), 1600 (m), 1511 (w), 

1492 (s), 1451 (s), 756 (s), 696 cm-1. This reaction with 5 mol% N-hydroxyphenyl 
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methacrylamide relative to the total monomer utilized yielded 178 mg of the 5 mol% N-

hydroxyphenyl methacrylamide/styrene copolymer as a white powder. GPC: Mn = 16,271, Mw = 

67,001. FT-IR (KBr): 3435 (w), 3024 (m), 2921 (m), 1652 (w), 1600 (m), 1512 (m), 1492 (s), 

1452 (s), 756 (s), 696 (vs) cm-1.This reaction with 10 mol% N-hydroxyphenyl methacrylamide 

relative to the total monomer utilized yielded 151 mg of the 10 mol% N-hydroxyphenyl 

methacrylamide/styrene copolymer as a white powder. GPC: Mn = 17,474, Mw = 110,897. FT-IR 

(KBr): 3431 (w), 3024 (m), 2921 (m), 1652 (w), 1600 (m), 1512 (m), 1492 (s), 1451 (s), 756 (s), 

697 (vs) cm-1. This reaction with styrene yielded 214 mg of polystyrene as a white powder. GPC: 

Mn = 32,698, Mw = 67,297. FT-IR (KBr): 3024 (m), 2921 (m), 1600 (m), 1492 (s), 1451 (s), 756 

(s), 696 (vs) cm-1. 

4.4.6 Crystallization of acetaminophen in the presence of additive-containing polymers 

Acetaminophen was dissolved in water at 70 °C to produce a 200 mM solution which was 

subsequently added to the wells of a polypropylene plate containing the ground polymers.  The 

plate was sealed with a Costar 3080 mat and heated for 30 min at 70 °C. The sealed 

polypropylene plate was removed from the heat source and all crystallizations were monitored 

by checking each well by optical microscopy every fifteen minutes. Three trials consisting of 

eight crystallizations in the presence of each type of polymer (1 mol% p-

acetamidostyrene/styrene copolymer, 5 mol% p-acetamidostyrene/styrene copolymer, 10 mol% 

p-acetamidostyrene/styrene copolymer, 1 mol% N-hydroxyphenyl methacrylamide/styrene 

copolymer, the 5 mol% N-hydroxyphenyl methacrylamide/styrene copolymer, the 10 mol% N-

hydroxyphenyl methacrylamide/styrene copolymer, and polystyrene) were performed as well as 

in the absence of the polymers. The induction time for crystallization was determined to be the 

moment a crystal appeared in the well.  
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4.4.7 Solubility of p-Acetamidostyrene/styrene copolymers, N-hydroxyphenyl 
methacrylamide/styrene copolymers, and polystyrene in water 
 
 p-Acetamidostyrene/styrene copolymers, N-hydroxyphenyl methacrylamide/styrene 

copolymers, and polystyrene were added to separate 4 mL vials, ~3 mg of each polymer, along 

with 3 mL of water and sealed. These vials were heated at 70 °C for 30 min and cooled to room 

temperature. The resulting aqueous solutions were filtered and the UV-vis absorbance spectrum 

of the each was measured. No absorbance was observed from any of the solutions above 220 nm. 

4.4.8 Synthesis of 2-((4-vinylphenyl)amino)benzoic acid 

 The procedure used to synthesize 2-((4-vinylphenyl)amino)benzoic acid was similar to that 

described by Wolf and coworkers.41 Specifically, a mixture of 4-aminostyrene (9.3 mmol), 2-

bromobenzoic acid (8.8 mmol), K2CO3 (13.2 mmol), Cu powder (0.2-0.3 µm, 0.8 mmol), Cu2O 

(<5 µm, 0.4 mmol), and 3 mL of 2-ethoxyethanol was refluxed at 130 °C for 24 hours under 

nitrogen. The cooled reaction mixture was poured into 30 mL of water to which decolorizing 

charcoal was added. The mixture was then filtered to remove the charcoal. The crude product 

was obtained by precipitation upon acidification of the filtrate with 1M HCl. The residue was 

dissolved in dichloromethane and then purified by column chromatography using a solvent 

system of 20:1 dichloromethane to ethyl acetate with 0.5 % acetic acid by volume. The resulting 

yellow needle-like crystals were obtained in 60% yield. mp= 225 °C 1H NMR (500 MHz, 

DMSO-d6, ppm): δ 13.10 (s, 1H), 9.68 (s, 1H), 7.91 (dd, J = 1.6 Hz, J = 8.0 Hz, 1H), 7.45 (dt, Jd 

= 8.4 Hz, Jt = 2.1 Hz, 2H), 7.41 (ddd, J = 1.7 Hz, J = 7.1 Hz, J = 8.6 Hz, 1H), 7.27 (dd, J = 0.8, J 

= 8.5, 1H), 7.22 (dt, Jd = 8.5 Hz, Jt =2.3 Hz, 2H), 6.80 (ddd, J = 1.1 Hz, J = 7.1 Hz, J = 8.0 Hz, 

1H), 6.70 (dd, J = 10.9 Hz, J = 17.6 Hz, 1H), 5.73 (dd, J = 1.0 Hz, J = 17.6 Hz, 1H), 5.17 (dd, J 

= 1.0 Hz, J = 10.9 Hz, 1H); 13C NMR (125 MHz, DMSO-d6, ppm): δ 169.9, 146.4, 140.3, 136.1, 
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134.1, 131.9, 131.7, 127.2, 120.8, 117.4, 114.2, 113.1, and 112.5; HRMS (EI) (m/z) calcd 

(found) for C15H13NO2: 239.0946 (239.0948).  

4.4.9 Crystallization of mefenamic acid in the presence of 2-((4-vinylphenyl)amino)benzoic 
acid 
 
 The additive, 2-((4-vinylphenyl)amino)benzoic acid, was dissolved in a 8.1 mg/mL ethanol 

solution of mefenamic acid at 65 °C in 4 mL vials. Three trials consisting of eight 

crystallizations with different concentrations of the additive, 1 mol%, 5 mol%, and 10 mol% 

(relative to the total amount of mefenamic acid), were prepared in addition to a control: a 8.1 

mg/mL ethanol solution of mefenamic acid. 

 
Figure 4.10. Induction time for crystal appearance for mefenamic acid crystallized in the 
presence of 2-((4-vinylphenyl)amino)benzoic acid in solution. 
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(a)                       (b)                    

(c)  (d)  
 
Figure 4.11. Morphology of mefenamic acid crystals grown in the presence of 2-((4-
vinylphenyl)amino)benzoic acid. (a) no additive, (b) 1 mol% additive, (c) 5 mol% additive, and 
(d) 10 mol% additive. 
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Wavenumber (cm-1) 

Figure 4.12. Raman spectra of mefenamic acid crystals obtained from crystallizations in the 
presence of no additive, 1 mol% additive, 5 mol% additive, and 10 mol% additive (from the 
bottom to the top spectrum). 
 
 
4.4.10 Polymerization of 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene and 
divinylbenzene 
 
Copolymers of 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene (DVB) with 1 mol%, 5 

mol% and 10 mol% of additive to total polymer as well as pure divinylbenzene were 

synthesized. In all cases 2 mol% of 2,2′-Azobis(2-methylpropionitrile) (AIBN), with respect to 

the amount of divinylbenzene utilized, was used as the initiator. Solutions of monomer and 

initiator dissolved in ethanol (1:1 v/v ethanol to monomer) were heated in glass vials under a 

nitrogen atmosphere for 12 hours at 75 °C to induce polymerization. After polymerization was 

complete, each of the polymers was ground with a mortar and pestle into a fine powder (~ 1 µm 

as measured by optical microscopy). The ground polymers were sonicated in hot ethanol, then in 

hot acetone, and washed several times with hot ethanol and hot acetone. The polymers were then 

dried in a vacuum oven at 85 °C for two hours. Additionally, copolymer films comprised of 10 

350030002500200015001000500
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mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene were synthesized by dip coating 

glass slides into a 10 mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene monomer 

solution with 2 mol%  of AIBN relative to the amount of DVB. The monomer coated slides were 

then photopolymerized with four 15 W UVA blubs in an N2 atmosphere, to yield thin polymer 

films. The polymer films were then washed with ethanol and acetone. The polymer coated slides 

were then placed in a vacuum oven at 85 °C for two hours.  

4.4.11 Crystallization of mefenamic acid in the presence of 2-((4-vinylphenyl)amino)benzoic 
acid/divinylbenzene copolymers and divinylbenzene 
 
Solutions of mefenamic acid (8.1 mg/mL) in ethanol were heated at 65 °C for ten minutes in the 

presence of 1 mg of the 1 mol%, 5 mol%, 10 mol% 2-((4-vinylphenyl)amino)benzoic 

acid/divinylbenzene copolymers, and divinylbenzene. Three trials consisting of eight 

crystallizations in the presence of each polymer type were performed as well as a control: a 8.1 

mg/mL ethanol solution of mefenamic acid. The crystallizations were monitored by time-lapse 

photography (photos were taken every 60 seconds) with a Canon EOS Rebel SL1 camera with a 

EF-S 18-55mm f/3.5-5.6 IS STM lens controlled by DSLR Remote Pro for Windows. The 

induction period for the appearance of crystals was determined by the first moment that a crystal 

appeared in the vial. The smallest crystal size that was observed using the camera was ~10 µm. 

In order to determine how the additive copolymer was interacting with the mefenamic acid 

molecules in solution, mefenamic acid was also crystallized in the presence of 10 mol% 2-((4-

vinylphenyl)amino)benzoic acid/divinylbenzene copolymer films. A solution of mefenamic acid 

was prepared by dissolving 1 mg of mefenamic acid in 1 mL of ethanol. The solution was 

dispensed onto ten distinct 10 mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene 

copolymer films and allowed to evaporate. The resulting crystals were analyzed by powder X-

ray diffraction.  
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Figure 4.13. Induction time for crystal appearance for mefenamic acid crystallized in the 
presence of the 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene copolymers and 
divinylbenzene. 

 
Wavenumber (cm-1) 

Figure 4.14. Raman spectra of mefenamic acid crystals obtained from crystallizations in the 
presence of no polymer, 1 mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene 
copolymer, 5 mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene, and 10 mol% 2-((4-
vinylphenyl)amino)benzoic acid/divinylbenzene (from the bottom to the top spectrum).  
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Figure 4.15. Morphology of mefenamic acid crystals obtained in the presence of the tailor-made 
additive copolymers. 
 
 
4.4.12 Powder X-Ray Diffraction (PXRD) 

Powder X-ray diffraction was conducted at room temperature using a Bruker D8 Advance 

diffractometer operating at 40 kV and 40 mA with Cu-Kα radiation (1.5406 Å). The powder 

patterns were collected by scanning from 5° to 45° in 2θ using a step size of 0.02° and time of 

1.5 seconds/step. Powder patterns were processed using Jade Plus v9.5. The crystals on 

copolymer films were preferentially oriented along the (100) face.  
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2θ (°) 

Figure 4.16. Representative PXRD pattern of mefenamic acid crystallized on a 10 mol% 2-((4-
vinylphenyl) amino)benzoic acid/divinylbenzene copolymer film.  
 

4.4.13 Indexing mefenamic acid crystals formed in the presence of 2-((4 
vinylphenyl)amino)benzoic acid and pure mefenamic acid 
 
Pure mefenamic acid and mefenamic acid crystals grown in the presence of 2-((4-

vinylphenyl)amino)benzoic acid were indexed (Figures 4.17, 4.18) using a Rigaku R-Axis Spider 

diffractometer with an image plate area detector using graphite monochromated Cu-Kα radiation 

(λ = 1.54187 Å) operated at 2.0 kW power (40 kV, 44 mA). Both types of crystals were mounted 

on MiTeGen MicroMounts™, indexed, and then axial images were acquired. It was found that 

the tailor-made additive was in fact adsorbing onto the (100) face.  
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(a)   (b)  
Figure 4.17. (a) View along the a axis of blade-like crystal of mefenamic acid (additive present). 
(b) View along the c axis of blade-like mefenamic acid crystal. 
 

(a)   (b)  

Figure 4.18. (a) View along the a axis of native mefenamic acid crystal. (b) View along the c 
axis of native mefenamic acid crystal. 
 
4.4.14 Examining the effect of unground polymer on the induction time for crystal 
appearance  
 
A copolymer of 10 mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene was synthesized 

and purified identical to the procedure described in section 4.4.10. However, the polymer was 

not ground into a fine powder but rather left in large pieces (~ 1 mm) in order to determine how 

the size of the polymer heteronucleant affected the induction time for crystal appearance. The 

crystallizations were performed identically to those described in section 4.4.11. The induction 

time for crystallizations in the presence of the unground 10 mol% 2-((4-

vinylphenyl)amino)benzoic acid/divinylbenzene copolymer was found to be roughly between 
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that of the ground 10 mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene copolymer 

and 5 mol% 2-((4-vinylphenyl)amino)benzoic acid/divinylbenzene. 

 
Figure 4.18. Crystallization of mefenamic acid in the presence of that 2-((4-
vinylphenyl)amino)benzoic acid/divinylbenzene copolymers, unground 10 mol% 2-((4-
vinylphenyl)amino)benzoic acid/divinylbenzene copolymer, divinylbenzene, and pure 
mefenamic acid. 
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Chapter 5 Conclusion 
  

5.1 Summary of Work and Future Directions 

  It is important to study the potential polymorphism of a compound due to the significant 

differences in the kinetic and thermodynamic stabilities between polymorphic forms. However, 

solid form screening, as currently practiced, requires substantial sample quantities and it has thus 

far not been feasible to perform solid form screening as an early-stage selection criterion for 

choosing which bioactive compounds to advance in the pipeline. Hence, the process by which a 

drug candidate is chosen neglects solid form considerations until a rather late stage where the 

cost of failure is greater.1, 2  The importance of form screening was supported by the discovery of 

two novel polymorphs of the low solubility bioenhancer piperine with PIHn as described in 

Chapter 2. The polymorphs were found to exhibit an enhanced solubility relative to the 

commercial form, allowing these novel forms to improve the efficacy of piperine as a 

bioenhancer.  

 Despite the success of PIHn in discovering novel polymorphs, it suffers from slow analysis 

times and large sample requirements. Now with µPIHn, a novel high throughput screening 

platform, one can study the potential polymorphism of a compound using only ~1 mg of 

material.7 As discussed in Chapter 3, µPIHn allows for high throughput analysis of the results of 

hundreds of crystallizations by Raman microspectroscopy and X-ray microdiffraction, saving a 

considerable amount of analysis time as well as material. With µPIHn only a small amount of 
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material is needed in order to study the potential polymorphism of a newly synthesized 

compound.7 It was found that the efficacy of PIHn was maintained despite the drastic differences 

in many aspects of the crystallizations including the substrate on which the crystallizations are 

conducted, amount of polymer heteronucleant, and the rate of evaporation. However, it has been 

found that mechanism by which PIHn is able to control the formation of a particular polymorph 

is through preferential interactions at the polymer-crystal interface. Thus, even though many of 

the aspects of the crystallizations have been changed with µPIHn the strong intermolecular 

interactions at the polymer-crystal interface are maintained, preserving the efficacy of PIHn. 

Despite the success of PIHn in discovering novel polymorphs, only commercial monomers have 

been utilized to create the polymer heteronucleants. However, by synthesizing monomers which 

are structurally similar to the target compound one may be able to promote crystallization by 

taking advantage of the strong intermolecular interactions between the polymer heteronucleant 

and the target compound. This could be of particular importance for compounds that are resistant 

to crystallization.8 This can complicate the formulation process by inhibiting one from purifying 

and determining the structure of a compound. Now, tailor-made additives, which alter crystal 

morphology in solution, can be incorporated into insoluble polymers to promote crystallization. 

As described in Chapter 4, by tailoring substrates to decrease the time needed for crystals to 

appear it can allow researchers to create appropriate seed crystals for compounds which are 

resistant to or very slow to crystallize.9 

 

 

 

 



 

85 
 

 

5.2 References 

1. Almarsson, O.; Zaworotko, M. J., Crystal Engineering of the Composition of 
Pharmaceutical Phases. Do Pharmaceutical Co-crystals Represent a New Path to Improved 
Medicines? Chem. Commun. 2004, (17), 1889-1896. 
2. Sun, Y.; Xi, H. M.; Ediger, M. D.; Richert, R.; Yu, L., Diffusion-controlled and 
"diffusionless" crystal growth near the glass transition temperature: Relation between liquid 
dynamics and growth kinetics of seven ROY polymorphs. J. Chem. Phys. 2009, 131, (7). 
3. Lopez-Mejias, V.; Kampf, J. W.; Matzger, A. J., Polymer-Induced Heteronucleation of 
Tolfenamic Acid: Structural Investigation of a Pentamorph. J. Am. Chem. Soc. 2009, 131, (13), 
4554-4555. 
4. Lopez-Mejias, V.; Kampf, J. W.; Matzger, A. J., Nonamorphism in Flufenamic Acid and 
a New Record for a Polymorphic Compound with Solved Structures. J. Am. Chem. Soc. 2012, 
134, (24), 9872-9875. 
5. Price, C. P.; Grzesiak, A. L.; Matzger, A. J., Crystalline polymorph selection and 
discovery with polymer heteronuclei. J. Am. Chem. Soc. 2005, 127, (15), 5512-5517. 
6. Roy, S.; Quiñones, R.; Matzger, A. J., Structural and Physicochemical Aspects of 
Dasatinib Hydrate and Anhydrate Phases. Cryst. Growth Des. 2012, 12, (4), 2122-2126. 
7. Pfund, L. Y.; Matzger, A. J., Towards Exhaustive and Automated High-Throughput 
Screening for Crystalline Polymorphs. ACS Combinatorial Science 2014, 16, (7), 309-313. 
8. Dunitz, J. D.; Bernstein, J., Disappearing Polymorphs. Accounts Chem. Res. 1995, 28, 
(4), 193-200. 
9. Pfund, L. Y.; Price, C. P.; Frick, J. J.; Matzger, A. J., Controlling Pharmaceutical 
Crystallization with Designed Polymeric Heteronuclei. J. Am. Chem. Soc. 2014. 
 
 

 

 


	Accelerating Solid Form Discovery for Pharmaceuticals
	Acknowledgements
	Table of Contents
	Figure 2.10. Optical microscopy of piperine form III.
	2.4.4 Raman Spectroscopy
	2.4.8 Differential Scanning Calorimetry of Piperine Polymorphs I, II, and III

