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ABSTRACT

Scalable Machine Learning Methods for Massive Biomedical Data Analysis

by

Takanori Watanabe

Chair: Clayton D. Scott

Co-chair: Chandra S. Sripada

Modern data acquisition techniques have enabled biomedical researchers to collect and

analyze datasets of substantial size and complexity. The massive size of these datasets

allows us to comprehensively study the biological system of interest at an unprecedented

level of detail, which may lead to the discovery of clinically relevant biomarkers.

Nonetheless, the dimensionality of these datasets presents critical computational and

statistical challenges, as traditional statistical methods break down when the number of

predictors dominates the number of observations, a setting frequently encountered in

biomedical data analysis. This difficulty is compounded by the fact that biological data

tend to be noisy and often possess complex correlation patterns among the predictors.

The central goal of this dissertation is to develop a computationally tractable machine

learning framework that allows us to extract scientifically meaningful information from

these massive and highly complex biomedical datasets. We motivate the scope of our study

by considering two important problems with clinical relevance: (1) uncertainty analysis for

biomedical image registration, and (2) psychiatric disease prediction based on functional

xii



connectomes, which are high dimensional correlation maps generated from resting state

functional MRI.

The first part of the dissertation concerns the problem of analyzing the level of

uncertainty involved in biomedical image registration, where image registration is the

process of finding the spatial transformation that best aligns the coordinates of an image

pair. Toward this end, we introduce a data-driven method that allows one to visualize

and quantify image registration uncertainty using spatially adaptive confidence regions,

and demonstrate that empirical evaluations of the method on 2-D images yield promising

results. At the heart of our proposed method is a novel shrinkage-based estimate of the

distribution on deformation parameters.

The second part of the dissertation focuses on the supervised learning problem of

binary classification, where the goal is to predict the psychiatric disorder status of

an individual using functional connectomes derived from resting-state functional MRI.

To address the dimensionality of the features, we introduce a regularized empirical

risk minimization framework that allows us to encode various structures in the data.

Specifically, in contrast to previous methods, our approach explicitly accounts for the

6-D spatial structure of the functional connectomes (defined by pairs of points in 3-D

space) by using either the GraphNet, fused Lasso, or the isotropic total variation penalty.

Furthermore, we also introduce a multitask extension to this framework, which is suitable

when the data are aggregated from multiple imaging institutions. Experiments on both

synthetic and real world data reveal that the proposed method can recover results that

are more neuroscientifically informative than previous methods while improving predictive

performance.
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CHAPTER 1

Introduction

With advancing data acquisition technology, high dimensional data have become

much more regularly encountered in various areas of biomedical science. For example,

advanced microarray technology allows scientists to measure the expression levels of

tens of thousands of genes in a single experiment. In addition, modern neuroimaging

techniques afford a variety of modalities that produce large-scale measurements that

represent different aspects of neuronal activity, such as functional magnetic resonance

imaging (fMRI), positron emission tomography (PET), and electroencephalograms (EEG)

and magnetoencephalograms (MEG) recordings. The massive size of these data offers

new possibilities, as they allow us to comprehensively study the biological system of

interest at an unprecedented level of detail, which may lead to the discovery of clinically

relevant biomarkers1. Nonetheless, the dimensionality of these data presents critical

computational and statistical challenges, as traditional statistical methods break down when

the number of parameters (predictors) dominates the number of observations, a setting

frequently encountered in biomedical data analysis. This difficulty is compounded by the

fact that biological data often possess complex correlation patterns among the predictors

and tend to be noisy for variety of reasons, such as background noise, calibration error in

1The word biomarker is formally defined by the National Institutes of Health Biomarkers Definitions
Working Group as: “a characteristic that is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention”
(Atkinson et al., 2001; Strimbu and Tavel, 2010).
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the measurement device, physiological movements (e.g., cardiac and respiratory motion),

and other sources of experimental variations. The central goal of this dissertation is to

develop a computationally tractable machine learning framework that allows us to extract

scientifically meaningful information from these massive and highly complex biomedical

data. We motivate the scope of our study by considering two important problems

with clinical relevance: (1) uncertainty analysis for biomedical image registration, and

(2) psychiatric disease prediction based on functional connectomes, which are high

dimensional correlation maps generated from resting state fMRI.

The remainder of this introductory chapter is organized as follows. First, we will

formally present the challenges encountered in high dimensional data analysis, and

introduce some of the key tools we utilize to mitigate these problems. Next, we will

provide a brief primer on image registration and functional connectomes, and present the

main contributions of our work. Finally, we will conclude this chapter with an outline of

the dissertation.

1.1 High Dimensional Challenges

The setup where the number of parameters p greatly exceeds the sample size n is

commonly referred to as the “large p small n problem,” denoted p " n (Bühlmann

and van de Geer, 2011; West, 2003). In such setting, classical statistical methods break

down in the face of the “curse of dimensionality” (Donoho, 2000; Duda et al., 2000).

More concretely, the estimation procedure becomes susceptible to overfitting, i.e., the

estimated model will perform extremely well on the training data, but will predict poorly

on unobserved data. Furthermore, in the p " n setup, it is impossible to attain a

statistically consistent estimator unless we impose some type of structural assumption on

the model (Negahban et al., 2012). This leads us to the notion of regularization, a concept

that will appear throughout this dissertation.

Regularization is a classical technique to prevent overfitting (James and Stein, 1961;

2



Tikhonov, 1963), and is achieved by encoding prior knowledge about the data structure

into the estimation problem. In fact, many well known estimators from statistics and

machine learning are based on solving a regularized empirical risk minimization problem

(e.g., support vector machine, logistic regression, boosting) that has the following form:

arg min
wPRp

L pwq � λRpwq . (1.1)

The first term L : Rp Ñ R� corresponds to the empirical risk of some loss function (e.g.,

square loss, Huber loss, hinge loss), which quantifies how well the model fits the data. The

second termR : Rp Ñ R� is a regularizer that curtails overfitting and enforces some kind

of structure on the solution by penalizing models that deviate from the assumed structure.

The user defined regularization parameter λ ¥ 0 controls the tradeoff between data fit

and regularization. Several different regularizers have been proposed in the literature to

promote various forms of structure, such as smoothness (e.g., ridge regression (Hoerl and

Kennard, 1970), support vector machine (Cortes and Vapnik, 1995)), sparsity (e.g., Lasso

(Tibshirani, 1996), basis pursuit (Chen et al., 2001)), group sparsity (e.g., group Lasso

(Yuan and Lin, 2006), latent group Lasso (Obozinski et al., 2011)), low-rank structure (e.g.,

trace/nuclear norm (Bach, 2008b; Recht et al., 2010)), and sparse covariance and inverse

covariance structure (Bien and Tibshirani, 2011; Friedman et al., 2007; Meinshausen and

Bühlmann, 2006).

Finally, an equally important aspect of a learning method is its computational

tractability, as many statistical learning problems involve solving a numerical optimization

problem (e.g., Equation 1.1). In principle, almost all convex optimization problems can

be solved with high accuracy using polynomial time interior-point methods. However,

these generic solvers are impractical for high dimensional data, since the iteration cost of

these methods grows nonlinearly with the problem size p (Boyd and Vandenberghe, 2004;

Sra et al., 2012). Furthermore, sparsity promoting regularizers (e.g., Lasso, group Lasso,

3



Elastic-net), which are commonly used in high dimensional statistical inference problems,

add to the difficulty by introducing non-differentiability to the objective function. For this

reason, first-order optimization methods have generated renewed interest from the statistics

and machine learning community, as they are capable of solving large scale and often

nonsmooth optimization problems. These methods include conjugate gradient, proximal

gradient, projected gradient, and alternating direction methods (Bach et al., 2012; Beck and

Teboulle, 2009; Boyd et al., 2011; Nesterov, 2007). The work presented in the dissertation

will frequently rely on these types of first-order optimization techniques.

1.2 Biomedical Image Registration and Uncertainty Analysis

Image registration is the process of finding the spatial transformation that maps the

homologous image’s coordinate space to the reference image’s coordinates; Fig. 1.1

provides an example execution of the registration process. Its ability to fuse medical

images with complementary information has led to its adoption in a variety of clinical

research settings (Hill et al., 2001). For instance, PET and MRI are modalities that are

commonly used for surgical planning. On one hand, PET images contain information

about cancerous activity within the brain, but do not contain much anatomical structure.

On the other hand, MRI images capture anatomical structures in the brain, but provide

little physiological information. The variation in the appearance of the anatomy from these

modalities can be seen in Fig. 1.2. By registering these images, the cancerous anatomical

structures can be localized in a unified coordinate system. Other medical applications of

image registration include motion correction, atlas construction, dose estimation, treatment

monitoring, radiation therapy, and many more (Hill et al., 2001; Long et al., 2010; Shi et al.,

2012; Sotiras et al., 2013).
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1.2.1 Background: Elements of Biomedical Image Registration

Image registration is typically cast as an optimization problem, where the goal is to find

the transformation that optimizes a user specified similarity measure that quantifies the

quality of alignment between the reference image and the transformed homologous image.

More formally, given a pair of d-dimensional images fref and fhol, image registration aims

to solve the following optimization problem:

T̂ � arg max
T

Ψ
�
frefp�q,fhol � T p�q

�
, (1.2)

where fref : Rd Ñ R and fhol : Rd Ñ R are the reference and the homologous image

respectively, T : Rd Ñ Rd denotes the spatial transformation that models the misaligment

between the image pair, and Ψ is a user-specified similarity measure that quantifies the

quality of the alignment. Importantly, Equation 1.2 illustrates the following three major

design components of image registration:

1. the similarity measure Ψ,

2. the model for the spatial transformation T ,

3. the optimization algorithm for solving (1.2).

(a) Reference image (b) Homologous image (c) Registered image

Figure 1.1: Example execution of the registration process.
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(a) CT (b) MRI (c) PET

Figure 1.2: Brain images acquired from different imaging modalities. Note the variation in
the appearance of the anatomy.

Similarity measure (Ψ): The choice of the similarity measure depends on the type of

relationship one expects among the pixel (voxel) intensities in the image pair. For example,

in the intramodal setup, where the images are acquired from the same imaging modality,

it is reasonable to assume the intensities of the images to be directly/linearly related. Thus

simple similarity measures such as the sum of squared differences (SSD) and Pearson’s

correlation are popular choices for this setup. Conversely, in the intermodal setup, where

the images are acquired from different imaging modalities, the intensities of the two images

are no longer directly related, hence SSD and Pearson’s correlation become inappropriate.

In this case, usually one instead assumes a statistical/probabilistic relationship between

the images, and information theoretic measures such as conditional entropy and mutual

information are common choices (Pluim et al., 2003). Fig. 1.3 illustrates how the choice of

the similarity measure can have a huge impact on the outcome of a registration algorithm.

Transformation model (T ): The transformation model describes the type of spatial

deformation that is expected between the reference and the homologous image. A

parametric approach is commonly adopted for this, where the transformation T is

compactly characterized by a parameter vector θ; the size of θ determines the degrees

of freedom (DOF) of the model. The simplest choice is the rigid transformation model
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(a) Reference (b) Homologous (c) Registered homologous

Figure 1.3: The impact of the choice of similarity measure Ψ. Top row: successful
intramodal registration using SSD. Middle row: unsuccessful intermodal registration using
SSD; note the misalignment in the corpus callosum, which has a black appearance in the
reference image and a white appearance in the homologous image. Bottom row: successful
intermodal registration using mutual information.
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that is characterized by rotation and translation, corresponding to three DOF in 2-D and

six DOF in 3-D. While this model is appropriate for describing movements in the hard

tissue region, it is not capable of capturing local movements in the soft tissue area (e.g.,

respiratory and cardiac motion). To model these types of local deformations, nonrigid

transformation models such as the B-spline and thin-plate spline models are commonly

used (Meyer et al., 1997; Rueckert et al., 1999; Unser, 1999). Extensive reviews on

nonrigid deformation models can be found in (Holden, 2008; Sotiras et al., 2013). However,

the flexibility afforded by the nonrigid model comes at the expense of the size of the

parameter vector θ, which can often be on the order of a million. This not only increases

computational complexity but also leads to overfitting, which results in a physically

unrealistic transformation such as bone-warping. Thus, regularization becomes crucial for

stabilizing the estimation procedure, and various regularizers have been introduced in the

literature, such as the gradient norm, elastic energy, topology preserving penalty (Chun and

Fessler, 2009; Modersitzki, 2004)).

Optimization strategies: As explained earlier, image registration is an optimization

problem that aims to find the transformation that best aligns the coordinates of an image

pair. Hence the choice of the optimization strategy can have a significant impact on the

outcome of the registration algorithm. Iterative gradient based approaches such as gradient

descent, conjugate gradient descent, and quasi-Newton methods are frequently used for

nonrigid models with high DOF (Holden, 2008; Klein et al., 2007; Sotiras et al., 2013).
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1.2.2 Contribution: Registration Uncertainty Analysis using Spatial Confidence

Regions

Despite the promises that image registration offers, there are numerous issues that still

must be solved before it can be used in the clinical practice. For instance, it is well known

that registration accuracy is limited in practice, and the degree of uncertainty varies at

different image regions. Such uncertainty arises for variety of reasons, such as the variation

in the appearance of the anatomy, measurement noises, deformation model mismatch, local

minima, etc. Evaluating this degree of uncertainty is highly non-trivial due to the scarcity of

ground-truth data. Understanding the accuracy of a registration result is one of the central

themes in modern medical image analysis.

In light of these challenges, in Chapter 2 of the dissertation, we propose a data-

driven method that allows one to visualize and quantify the registration uncertainty

through spatially adaptive confidence regions. The method applies to any choice of

the similarity measure and various parametric transformation models, including high

dimensional deformation models such as the B-spline. At the heart of the proposed method

is a novel shrinkage-based estimate of the distribution on deformation parameters θ. We

present some empirical evaluations of the method in 2-D using images of the lung and liver,

and demonstrate that the confidence regions produces promising results.

1.3 Disease Prediction based on Functional Connectomes

The emerging field of connectomics, which is the study of the network architecture

of the brain, has provided various new insights about neuropsychiatric disorders that are

associated with abnormalities in brain connectivity (Biswal et al., 2010; Hagmann, 2005;

Sporns et al., 2005). Brain connectivity can be broadly divided into two categories:

structural connectivity and functional connectivity. On one hand, “structural connectivity”

describes anatomical connections, i.e., physical wiring of the brain such as linkages
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in white matter fiber tracts that can be studied using modalities such as diffusion

tensor images (DTI) (Bihan and Johansen-Berg, 2012). On the other hand, “functional

connectivity” describes functional connections that are typically characterized by the

statistical dependencies among the neuronal signals between remote brain regions (Biswal

et al., 1995). These brain connectivities are commonly represented as graphs called

structural and functional connectomes, where the nodes represent brain regions and

the edges (weighted or binary) represent the structural/functional relationship between

the neuronal signals (Bullmore and Sporns, 2009; Smith et al., 2013; Sporns, 2013).

Throughout this dissertation, we will focus on functional connectomes generated from

resting state fMRI.

1.3.1 Background: Resting state fMRI and Functional Connectomes

FMRI data consist of a time series of three dimensional volumes imaging the brain,

where each 3-D volume encompasses around 10, 000�100, 000 voxels. The univariate time

series at each voxel represents a blood oxygen level dependent (BOLD) signal, an indirect

measure of neuronal activities in the brain. The imaging process is noninvasive, relatively

cheap and accessible, and does not expose subjects to radiation, making fMRI an attractive

tool for studying the human brain.

Traditional experiments in the early years of fMRI research involved task-based studies,

where participants perform a set of tasks during scan time, and the goal is to identify the

brain regions associated with the task performance. However, it was later discovered

that even in the absence of a cognitive task performance, the BOLD signal follows a

synchronized fluctuation pattern at distributed brain regions (Biswal et al., 1995), implying

that the brain is functionally connected at rest (Greicius et al., 2003). These temporal

correlations between remote brain regions is referred to as functional connectivity (Friston,

1994), and resting state fMRI has become a vital modality for studying the intrinsic

functional architecture of brain networks (Fox and Raichle, 2007; Smith et al., 2013).
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A particularly notable tool that made a significant contribution in the development of

the field of connectomics is functional connectome, which is a correlation map derived from

resting state fMRI. More precisely, functional connectomes are constructed by parcellating

the brain into multiple distinct regions and computing cross-correlations among the inter-

regional BOLD signals (Varoquaux and Craddock, 2013). It is important to note that even

with a relatively coarse parcellation scheme with several hundred regions of interest (ROI),

the resulting functional connectome will be massive, encompassing hundreds of thousands

of connections or more.

A central goal in connectomic research is the identification of an objective,

connectivity-based biomarker of psychiatric disorders using functional connectomes. Such

discovery would not only substantially extend our knowledge about the network topology

of the human brain, but also offers the potential for a machine-based diagnosis system

to enter the clinical realm (Atluri et al., 2013). Thus in recent years, machine learning

techniques have garnered considerable amount of interests among the neuroimaging

community (Pereira et al., 2009; Richiardi et al., 2013). However, many standard “off-

the-shelf” machine learning algorithms are not immediately applicable due to the massive

size of functional connectomes. Thus, a specialized class of machine learning techniques

that are amenable to the dimensionality of functional connectomes is in critical need.

1.3.2 Contribution: Connectome-based Disease Prediction using a Scalable and

Spatially-Informed Support Vector Machine

Abundant neurophysiological evidences indicate that major psychiatric disorders such

as Alzheimer’s disease, Attention Deficit Hyperactive Disorder (ADHD), autism spectrum

disorder (ASD), and schizophrenia are associated with altered connectivity in the brain

(Bassett and Bullmore, 2009; Castellanos et al., 2013; Dey et al., 2012; Fornito et al.,

2012; Fox and Greicius, 2010; Sripada et al., 2014). Thus, there is great interest in

developing machine-based methods that reliably distinguish patients from healthy controls
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using neuroimaging data. In this dissertation, we are specifically interested in a multivariate

approach that uses features derived from whole-brain resting state functional connectomes.

However, functional connectomes reside in a high dimensional space, which complicates

model interpretation and introduces numerous statistical and computational challenges.

Traditional feature selection techniques are used to reduce data dimensionality, but are

blind to the spatial structure of the connectomes (Castellanos et al., 2013; Craddock et al.,

2009; Dai et al., 2012; Sripada et al., 2013b; Zeng et al., 2012).

In Chapter 3, we address these issues by proposing a regularization framework where

the 6-D structure of the functional connectome (defined by pairs of points in 3-D space)

is explicitly taken into account via the sparse fused Lasso (Tibshirani et al., 2005) or the

GraphNet regularizer (Grosenick et al., 2013). Our method only restricts the loss function

to be convex and margin-based, allowing non-differentiable loss such as the hinge-loss

to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to

a structured sparse support vector machine (SVM) with embedded feature selection. We

introduce a novel efficient optimization algorithm based on augmented Lagrangian and

the classical alternating direction method (Boyd et al., 2011), which can solve both fused

Lasso and GraphNet regularized SVM with very little modification. We also demonstrate

that the inner subproblems of the algorithm can be solved efficiently in analytic form by

coupling the variable splitting strategy with a data augmentation scheme. Experiments on

simulated data and resting state scans from a large schizophrenia dataset show that our

proposed approach can identify predictive regions that are spatially contiguous in the 6-D

“connectome space,” offering an additional layer of interpretability that could provide new

insights about various disease processes.
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1.3.3 Contribution: Multitask Structured Sparse Support Vector Machine for

Multisite Connectivity-based Disease Prediction

In response to the significant interest in developing imaging-based methods for

diagnosing neuropsychiatric conditions, several data-sharing initiatives have been launched

in the neuroimaging field (Biswal et al., 2010; Di Martino et al., 2013; Essen et al., 2012;

Mennes et al., 2013; Poldrack et al., 2013; Poline et al., 2012; The ADHD-200 Consortium,

2012; Weiner et al., 2012). Here the datasets are collected across multiple imaging sites

throughout the world. While this enables researchers to study the disorders of interest with

substantial sample size, it also creates new challenges since the data aggregation process

introduces various sources of site-specific heterogeneities.

To address this issue, in Chapter 4 we introduce a multitask structured sparse SVM,

an extension to the method introduced in Chapter 3. Specifically, we employ a penalty

that accounts for the following two-way structure that exists in a multisite functional

connectome dataset: (1) the 6-D spatial structure in the functional connectomes captured

via either the GraphNet, fused Lasso, or the isotropic total variation penalty, and (2) the

inter-site structure captured via the multitask `1{`2-penalty (Lounici et al., 2009; Obozinski

et al., 2010). The potential utility of the proposed method is demonstrated on the multisite

ADHD-200 dataset.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows. In Chapter 2, we introduce

a novel data-driven method that allows one to visualize and quantify image registration

uncertainty using spatially adaptive confidence regions. In Chapter 3, we present a

statistical learning framework for predicting the neuropsychiatric disease status of an

individual using functional connectomes generated from resting state fMRI. In contrast to

previous approaches, the method we present explicitly accounts for the 6-D spatial structure
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of the data. Chapter 4 presents a multitask extension to the work of Chapter 3, where the

imaging sites are treated as the tasks. Finally, we conclude in Chapter 5 by providing a

summary of the dissertation, and outline directions for future work.
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CHAPTER 2

Spatial Confidence Regions for Quantifying and

Visualizing Registration Uncertainty

For image registration to be most useful in a clinical setting, it is desirable to know the

degree of uncertainty in the returned point-correspondences. In this chapter, we propose a

data-driven method that allows one to visualize and quantify the registration uncertainty

through spatially adaptive confidence regions. The method applies to any parametric

deformation models and to any choice of the similarity criterion. We adopt the B-spline

model and the negative sum of squared differences for concreteness. At the heart of the

proposed method is a novel shrinkage-based estimate of the distribution on deformation

parameters. We present some empirical evaluations of the method in 2-D using images of

the lung and liver, and the method generalizes to 3-D.

2.1 Introduction

Image registration is the process of finding the spatial transformation that best aligns

the coordinates of an image pair. Its ability to combine physiological and anatomical

information has led to its adoption in a variety of clinical settings. However, the registration

process is complicated by several factors, such as the variation in the appearance of the

This chapter is based on Watanabe and Scott (2012)
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anatomy, measurement noises, deformation model mismatch, local minima, etc. Thus,

registration accuracy is limited in practice, and the degree of uncertainty varies at different

image regions. For image registration to be most useful in clinical practice, it is important

to understand its associated uncertainty.

Unfortunately, evaluating the accuracy of a registration result is non-trivial, mainly

due to the scarcity of ground-truth data. For rigid-registration, there have been studies

where physical landmarks are used to perform error analysis (Fitzpatrick and West, 2001).

Statistical performance bounds for simple transformation models have been presented

under a Gaussian noise condition (Robinson and Milanfar, 2004; Yetik and Nehorai,

2006). However, it is generally difficult or impractical to extend these methods to nonrigid

registration, which limits their applicability since many part of the human anatomy cannot

be described by a rigid model.

While characterizing the accuracy of a nonrigid registration algorithm is even more

challenging, there have been recent works addressing this issue. Christensen et al. (2006)

initiated a project which aims to allow researchers to perform comparative evaluation of

nonrigid registration algorithms on brain images. Ruan and Fessler (2008) presented an

observation model for image registration that accounts for image noise, and analyzed the

performance limit of the model using Cramér-Rao bound analysis. Kybic (2010) used

bootstrap resampling to perform multiple registrations on each bootstrap sample, and used

the results to compute the statistics of the deformation parameter. Hub et al. (2009)

proposed an algorithm and a heuristic measure of local uncertainty to evaluate the fidelity

of the registration result. Risholm et al. adopted a Bayesian framework in (Risholm et al.,

2010), where they proposed a registration uncertainty map based on the inter-quartile range

(IQR) of the posterior distribution of the deformation field. Simpson et al. also adopted

the Bayesian paradigm in (Simpson et al., 2012), where they introduced a probabilistic

model that allows inference to take place on both the regularization level and the posterior

of the deformation parameters. The mean-field variational Bayesian method was used to
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approximate the posterior of the deformation parameters, providing an efficient inference

scheme.

We view the deformation as a random variable and propose a method that estimates the

distribution of the deformation parameters given an image pair and registration algorithm.

For illustration purpose, we use the cubic B-spline deformation model and the negative sum

of squared differences as the similarity criterion, but the idea is applicable for other forms

of parametric model (see Holden (2008) for other possible choices) and intensity-based

registration algorithms. The estimated distribution will allow us to simulate realizations

of registration errors, which can be used to learn spatial confidence regions. To the best

of our knowledge, none of the existing methods view the registration uncertainty through

spatial confidence regions represented in the pixel-domain. The confidence regions can

be used to create an interactive visual interface that can be used to assess the accuracy of

the original registration result. A conceptual depiction of this visual interface is shown

in Fig. 2.1. When a user, such as a radiologist, selects a pixel in the reference image, a

confidence region appears around the estimated corresponding pixel in the homologous

image. If the prespecified confidence level is, say γ � 0.95, then the actual corresponding

point is located within the confidence region with at least 95% probability. The magnitude

and the orientation of the confidence region offers an understanding of the geometrical

fidelity of the registration result at different spatial locations.

2.2 Method

For clarity, the idea is presented in a 2-D setting, but the method generalizes directly to

3-D.

2.2.1 Nonrigid Registration and Deformation Model

When adopting a parametric deformation model, it is common to cast image registration

as an optimization problem over a real valued function Ψ, a similarity measure quantifying
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the quality of the overall registration. Formally, this is written

arg max
θ

Ψ
�
frefp�q,fhol � T p� ;θq

�
, (2.1)

where fref,fhol : R2 Ñ R are the reference and the homologous images respectively, and

T p� ;θq : R2 Ñ R2 is a transformation parametrized by θ. Letting r � px, yq denote

a pixel location, a nonrigid transformation can be written T pr;θq � r � dpr;θq, where

dp� ;θq is the deformation. To evaluate the value fholpT pr;θqq at non-pixel positions, we

use fast B-spline interpolation (Unser et al., 1991, 1993a,b) with a 4-level multiresolution

scheme (Unser et al., 1993c). To model the deformation, we adopt the commonly used

tensor product of the cubic B-spline basis function β (Kybic and Unser, 2003; Rueckert

et al., 1999), where the deformation for each direction q P tx, yu is described independently

by parameter coefficients tθqu as follows:

dqpr;θqq �
¸
i,j

θ pi,jqq β

�
x

mx

� i



β

�
y

my

� j



,

(a) (b) (c)

Figure 2.1: Conceptual illustration of the proposed method. The marks in (a)-(b) are a
few point-correspondences estimated by registration. The confidence regions in (c) offer
an understanding of the possible registration error for these pixels. We expect the shape of
the confidence regions to reflect the local image structure, as demonstrated in (c).
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where the B-spline function β has the representation

βpxq �

$''''''&''''''%

2
3
� |x|2 � |x|3

2
, 0 ¤ |x|   1

p2�|x|q3
6

, 1 ¤ |x|   2

0, |x| ¥ 2

.

The scale of the deformation is controlled by mq, which is the knot spacing in the q

direction. If K knots are placed on the image, the total dimension of the parameter

θ � tθx,θyu is 2K since θx,θy P RK .

2.2.2 Spatial Confidence Regions

Given the image pair fref and fhol, let Ωref � R2 and Ωhol � R2 denote the regions of

interest in the reference and homologous image respectively. Also, let θ̂ be the deformation

coefficients estimated from registration (2.1). We will assume that the underlying ground-

truth deformation belongs to the adopted deformation class with deformation parameter θ.

Then, the registration error e for pixel r P Ωref is expressed as

eprq � �
exprq, eyprq

� � T pr; θ̂q � T pr;θq . (2.2)

We will view the true deformation θ as a random variable, which together with other

sources of randomness such as image noise, introduces a distribution on eprq for each r.

Here, Ωhol is the sample space of the registration error eprq, and the confidence region

Φprq � Ωhol is a set such that

Pr
 
eprq P Φprq( ¥ γ,

where γ P r0, 1s is a prespecified confidence level. To estimate the spatial confidence

regions, we adopt the following two-step process.
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First, we estimate the distribution of θ. We assume θ � N pµθ,Σθq, so the problem

reduces to estimating µθ and Σθ. This is a challenging task because there is only a single

realization of θ, corresponding to the given reference and homologous images, and this

realization is not observed.

Second, given the estimates of µθ and Σθ, we can then simulate approximate

realizations of θ, and thereby simulate spatial errors eprq. From this it is straight-forward

to estimate Φprq. However, sampling from N pµ̂θ, Σ̂θq is potentially computationally

intensive. The total dimension of θ for the B-spline model is 2K in 2-D and 3K in 3-

D. For a high resolution CT dataset of image size 512 � 512 � 480 with voxel dimensions

1 � 1 � 1 mm3, B-spline knots placed every 5 mm leads to a dimension on the order

of millions. Sampling from a multivariate normal distribution requires a matrix square

root of Σθ, but this is clearly prohibitive in both computational cost and memory storage.

Therefore it is essential that the estimate Σ̂θ have some structure that facilitates efficient

sampling.

2.2.3 Estimation of Deformation Distribution

We use the registration result θ̂ as the estimate forµθ, and propose the following convex

combination for Σθ:

Σ̂θ � p1� ρqΣo � ρθ̂θ̂T . (2.3)

The first term Σo is a positive-definite matrix which is an a priori baseline we impose on

the covariance structure, and the second term is a rank-1 outer product that serves as the

data-driven component. The weighting between the two terms is controlled by ρ P r0, 1q.
Note that (2.3) has a form of a shrinkage estimator reminiscent of the Ledoit-Wolfe type

covariance estimate (Ledoit and Wolf, 2003), but only using the registration result θ̂.

For the baseline covariance Σo, we propose to use a covariance matrix which is

motivated from the autoregressive model. Let ΣAR P RK�K
�� denote the covariance of a
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first order 2-D autoregressive model, whose entries are given as

ΣARpi, jq � r|xpiq�xpjq|x r|ypiq�ypjq|y , 1 ¤ i, j ¤ K .

Here, |rx|   1 and |ry|   1 are parameters that control the smoothness between

neighboring knots, and xpiq � mod pi � 1, nxq, ypiq � tpi� 1q{nxu are the mappings

from the lexicographic index i to its corresponding px, yq coordinate, assuming an pnx�nyq
grid of knots. A key property of this dense matrix is that its inverse, or the precision matrix

ΘAR � Σ�1
AR

, is block-tridiagonal with tridiagonal blocks. Specifically, ΘAR has an ny-by-ny

block matrix structure with each blocks of size pnx � nxq, and only the main diagonal and

the subdiagonal blocks are non-zero. Furthermore, these non-zero blocks are tridiagonal

with the values of the non-zero entries known as a function of rx and ry.

Based on ΣAR , we propose to use the following baseline covariance Σo P R2K�2K
��

having a 2-by-2 block matrix structure expressed by the Kronecker product:

Σo �

��� cxΣAR cxyΣAR

cxyΣAR cyΣAR

��� �

���cx, cxy
cxy, cy

���bΣAR . (2.4)

The coefficients cx and cy assign the prior variance level on θx and θy , whereas cxy

assigns the prior cross-covariance level between θx and θy . The only restriction on these

values is pcxcyq ¡ c2
xy, which ensures Σo is positive-definite. It is important to note that the

precision matrix Θo of this baseline covariance is sparse, also having a 2-by-2 block matrix

structure

Θo � Σ�1
o �

���cx, cxy
cxy, cy

���
�1

bΣ�1
AR
�

���px, pxy
pxy, py

���bΘAR ,

where tpx, py, pxyu are obtained by inverting the 2 � 2 coefficient matrix. The sparsity

structure of Θo can be interpreted intuitively under a Gaussian graphical model framework.

The conditional dependencies between knots are described by the non-zero entries in the
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matrix, which are represented as edges in an undirected graph. For our model, a knot

θxpi, jq has 17 edges, 8 connected to its 8-nearest neighbors and the other 9 connected to

the corresponding θypi, jq knot and its 8-nearest neighbors. Fig. 2.2 provides an illustration

of Σo and the sparsity structure of its inverse Θo, along with an example realization of

B-spline coefficients θ � pθx,θyq.

2.2.4 Efficient Sampling.

We now discuss how the sparsity structure of Θo can be exploited. LetLΘAR
denote the

cholesky factor for ΘAR , which can be computed efficiently in OpKq operations due to its

block-tridiagonal with tridiagonal blocks structure (Golub and Van Loan, 1996). Then the

Cholesky factor for Θo can be expressed

Lo �

���?pxLΘAR
0

pxy?
px
LΘAR

b
py � p2xy

px
LΘAR

��� .

Defining matrix L as

L �
a
p1� ρq

�
L�T
o �m

�
ρ

1� ρ



θ̂θ̂TLo

�
,

where constants t and m are defined as t :�
�

ρ
1�ρ

	
θ̂TΘoθ̂ and m :�

?
1�t�1
t

, it can be

shown that

LLT � p1� ρqΣo � ρθ̂θ̂T ,

i.e., L is a matrix square root for Σθ. Therefore, letting z � N p0, Iq, we have

θ̂ �L z � N pθ̂, Σ̂θq,
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Figure 2.2: Illustration of the properties of the baseline covariance Σo. The values
used are pnx, nyq � p50, 50q, prx, ryq � p0.95, 0.8q, and tcx, cy, cxyu � t1, 2, 0.5u.
(a) The baseline covariance Σo, (b) the sparsity structure of Θo � Σ�1

o , (c)-(d) B-spline
coefficients θx and θy obtained from sample θ � pθx,θyq � N p0,Σoq.
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the desired distribution. Furthermore, by invoking the matrix inversion lemma, this matrix-

vector product term can be expressed as

L z �
a
p1� ρqL�T

o z �m

�
ρ?

1� ρ



θ̂θ̂TLoz.

The first term L�T
o z can be computed in OpKq operations using backward-substitution

and exploiting the sparsity of Lo (Golub and Van Loan, 1996). The second term involves a

simple matrix-vector multiplication, thus it can also be computed efficiently.

In summary, we never need to store or directly compute a matrix square root for the

dense matrix Σθ; we only need to store the sparse precision matrix Θo and compute its

cholesky factor Lo. Therefore, the sampling procedure scales gracefully to 3-D.

2.2.5 Error Simulations and Spatial Confidence Regions

Using the sampling procedure discussed in the previous section, we can now generate

realizations of registration error eprq as follows:

1. Sample θi � N pµ̂θ, Σ̂θq.

2. Synthesize reference image f piq
ref prq Ð fhol � T pr;θiq.

3. Register fhol on to f piq
ref to get estimate θ̂i.

4. Compute error eiprq � T pr; θ̂iq � T pr;θiq.

We assume that eprq � N �
µeprq,Σeprq

�
for all r. Then the spatial confidence region

associated with pixel r P Ωref is defined by the ellipsoid

Φprq � tr1 :
�
r1 � µeprq

�T
Σ�1
e prq

�
r1 � µeprq

�   χ2
2p1� γqu ,

which is the 100γ% level set of the bivariate normal distribution. Under this formulation,

confidence region estimation becomes the problem of estimating tµeprq,Σeprqu, the mean
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and covariance of the registration error at pixel location r. We estimate these with the

sample mean and covariance based on the simulated errors teiprqu. Algorithm 1 outlines

the overall spatial confidence region estimation process.

Note that since we are using θ̂ as the estimate for µθ, it is important for the original

registration to return an anatomically sensible result (e.g., no bone warping), as severe

inaccuracy could negatively impact the quality of the spatial confidence regions.

2.3 Experiments

We now demonstrate an application of the method, and also present preliminary

experiments performed in 2-D. For illustration purpose, we used the negative sum of

squared differences as the similarity criterion, but other metrics such as mutual information

are also appropriate. For optimization, we used the conjugate gradient method, and

the line search step size was determined by one step of Newton’s method. For image

interpolation, we used the popular B-spline model (Unser, 1999). To encourage the

estimated deformation to be topology-preserving, we included the penalty term introduced

by Chun and Fessler (2009) into the cost function for all experiments.

2.3.1 Application

We first applied the proposed method to two coronal CT slices in the lung region, shown

in Fig. 2.3. Both images are size 256�360, and the exhale-frame served as the homologous

image while the inhale-frame served as reference. The notable motion in this dataset is

the sliding of the diaphragm with respect to the chest wall. Due to the opposing motion

fields at this interface, registration uncertainty is expected to be higher around this region.

To model the deformation, we used a knot spacing of pmx,myq � p3, 8q, resulting in a

parameter dimension of θ P R7650. A tighter knot spacing was used for mx since a finer

scale of deformation was needed in the x-direction to model the sliding motion at the chest

wall. Since the degree of this slide is relatively small for this dataset, the registration result
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Algorithm 1 Spatial Confidence Regions Generation
1: Input: fref,fhol

2: Output: tµ̂eprq, Σ̂eprqu for all r P Ωref

3: θ̂ Ð arg max
θ1

Ψ
�
frefp�q,fhol � T p� ;θ1q

�
4: µ̂θ Ð θ̂

5: Σ̂θ Ð p1� ρqΣo � ρθ̂θ̂T

6: for i � 1, . . . , N

7: sample θi Ð N pµ̂θ, Σ̂θq
8: generate f piq

ref prq Ð fhol � T pr;θiq
9: register θ̂i Ð arg max

θ1
Ψ
�
f
piq
ref p�q,fhol � T p� ;θ1q

�
10: compute eiprq � T pr; θ̂iq � T pr;θiq
11: end for

12: µ̂eprq Ð 1
N

°N
i�1 eiprq

13: Σ̂eprq Ð 1
N

°N
i�1

�
eiprq � µ̂eprq

��
eiprq � µ̂eprq

�T

shown in Fig. 2.3 looks reasonably accurate based on visual inspection.

Using θ̂ obtained from registering these images, we used the single-shot mean and

covariance estimate and the efficient sampling scheme to obtain 100 new realizations of

deformations. For the baseline covariance Σo, we used values of prx, ryq � p0.9, 0.9q and

tcx, cy, cxyu � t2, 4, 0.5u. A relatively high value for cy was used since the magnitude

of the overall deformation was higher in the y-direction. Finally, ρ � 0.1 was used, as

it was found to produce sensible deformation samples. One of the synthesized reference

images is shown in Fig. 2.3. Following Algorithm 1, we obtained a set of spatial confidence

regions tΦprqu for all r in the region of anatomical interest, using a confidence level of

γ � 0.9. A few of these are displayed in Fig. 2.3 (a)-(h), along with 100 simulated errors.

It is important to note how the shapes of these confidence regions reflect the local image

structure. The principal major axes of the ellipses are oriented along the edge, indicating
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higher uncertainty for those directions. The confidence regions for (c) and (g) take on

isotropic shapes due to the absence of well-defined image structures. Finally, notice how

the confidence region for (e) is quite large, illustrating how difficult it is to accurately

register the sliding diaphragm at the chest wall.

2.3.2 Experimental Result

To quantitatively evaluate our method, we manually assigned µθ and Σθ for the cubic

B-spline deformation-generating process. The mean deformation µθ was designed to

model the exhale to inhale motion in the abdominal area around the liver region, simulated

by a contracting motion field. Manually assigning a sensible ground-truth value for

the covariance Σθ is extremely difficult due to its high dimension and positive-definite

constraint. Therefore, we took the shrinkage-based covariance model (2.3) as the ground-

truth, using values of prx, ryq � p0.95, 0.95q, tcx, cy, cxyu � t2, 3, 0.5u, and ρ � 0.1. These

values imply that the covariance is smooth with moderate level of correlation in the x and

y deformations. We sampled a single instance of deformation θ from this ground-truth

distribution, and used it to deform a 2D axial CT slice in the liver region, having image size

512 � 420. We labeled the original image as the homologous and the deformed image as

the reference. This resulting image pair and their difference image are shown in Fig. 2.4.

A knot spacing of pmx,myq � p8, 8q was used to define the scale of the ground-truth

deformation, resulting in a parameter dimension of θ P R6656.

Next, we generated three classes of spatial confidence regions for this image pair, using

confidence levels of γ � 0.9 and 0.95. The first confidence region Φ1prq corresponds to the

case where a correct deformation model is used for registration, and the parameter values

for the shrinkage-based covariance estimate Σ̂θ matches that of the ground truth. The

second confidence region Φ2prq corresponds to the case where there is a mismatch in the

deformation model. Here, we used a fifth-order B-spline function during registration, with

a knot spacing of pmx,myq � p6, 6q. In addition, we introduced some discrepancies in the
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Reference Image fref (r) Homologous Image fhol (r)

Registered Image fhol
�
T pr; θ̂q

�
Sampled Image fhol

�
T pr;θiq

�

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: The top two rows show the 2-D dataset used in the first experiment, along with
the registration result and an image synthesized using one of the sampled deformations.
A few of the confidence regions from r P Ωref are shown in (a)-(h), with the red marks
representing 100 realizations of registration error. Note how the confidence regions reflect
the local image structure.
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Def. Basis Def. Scale Parameter values used for Σ̂θ

Conf. Reg. 1 Cubic mx � 8 ρ � 0.1, prx, ryq � p0.95, 0.95q
Φ1prq B-spline my � 8 tcx, cy, cxyu � t2, 3, 0.5u

Conf. Reg. 2 Fifth order mx � 6 ρ � 0.15, prx, ryq � p0.9, 0.9q
Φ2prq B-spline my � 6 tcx, cy, cxyu � t2, 2, 0u

Conf. Reg. 3 Cubic mx � 8 µ̂θ � µθ,Σ̂θ � Σθ

Φ3prq B-spline my � 8 (Oracle)

Table 2.1: Spatial Confidence Regions Generated for Validation

parameter values for Σ̂θ. Finally, the third confidence region Φ3prq corresponds to the ideal

case, and is constructed for the purpose of comparison. Here, a correct deformation model

is used for registration, and the deformations used to train the spatial confidence regions

were sampled from the ground-truth N pµθ,Σθq rather than the estimated distribution.

The descriptions of these confidence regions are summarized in Table 2.1. All confidence

regions were generated using N � 200 simulated errors.

To assess the quality of these spatial confidence regions, we evaluated their coverage

rates by sampling M � 500 additional deformations from the ground-truth distribution

N pµθ,Σθq. Coverage rate for a given pixel r is defined as the percentage of registration

errors that are confined within the confidence region Φprq, and is written mathematically

(a) (b) (c)

Figure 2.4: The dataset used for validation: (a) the homologous image fholprq, (b) the
reference image frefprq � fhol

�
T pr;θq� generated by a deformation coefficient sampled

from the ground-truth distribution θ � N pµθ,Σθq, (c) the absolute difference image.
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as
1

M

M̧

i�1

1 tẽiprq P Φprqu , (2.5)

where 1t�u is the indicator function, and ẽiprq are registration errors generated from

deformations sampled from the ground-truth distribution. We computed the coverage rate

for the pixels that are located within the region of anatomy. The resulting coverage rates

are rendered as heatmaps and are displayed in Fig. 2.5, along with their corresponding

histograms. It can observed that the coverage rates for the first two confidence regions,

Φ1prq and Φ2prq, generally come close to the prespecified confidence level γ, although

some degree of discrepancy can be observed at some image regions. The third confidence

region Φ3prq gave the best result as expected; the coverage rate for all pixels comes very

close to γ.

In summary, the performance of the spatial confidence regions Φ1prq and Φ2prq turned

out to be reasonably close, having results comparable to the ideal case of Φ3prq. Although

further validation studies are required to obtain a more conclusive finding, this is an

encouraging preliminary result.

2.4 Discussion and Conclusion

In this work, we presented a new method to evaluate the accuracy of a registration

algorithm using spatially adaptive confidence regions. Preliminary experimental test results

in 2-D suggest the confidence regions are effective based on their coverage rates. However,

it is important to note that the computational cost of the proposed method is N times the

original registration algorithm, since we must register each of the sampled deformations.

Depending on the user’s choice, this N can be in the order of hundreds to even thousands,

with higher values likely to return more reliable confidence regions. We note that the

process is easily parallelizable. Furthermore, in application such as surgical planning and

radiation therapy, it may not be necessary to have spatial confidence regions for every
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Figure 2.5: The coverage rates evaluated for the three classes of spatial confidence regions
presented in Table 2.1, displayed in the form of heatmap and histogram. Note that the
performances of Φ1prq and Φ2prq are fairly comparable to the ideal confidence region
Φ3prq, as the coverage rates for many of the pixels come close to the prespecified
confidence level γ.
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voxel in the image volume. Therefore, after completing the original full 3-D registration,

we suggest to run the N registrations only within a subregion where the accuracy of the

initial registration must be known. This allows one to obtain spatial confidence regions for

these locations at a much more reasonable computational expense.

While the presented work demonstrated promising preliminary results, there are several

directions and open questions that remain for future research. For example, the natural next

step is to perform more extensive validation studies in 3-D using various similarity criteria

and deformation models, and explore a way to quantify the robustness of the method.

Furthermore, other choices of a priori baseline for the shrinkage-based covariance estimate

shall be investigated. It is also important to conduct a simulation study under various

noise conditions, as image noise can significantly impact registration accuracy. Finally,

it is important to seek a way to incorporate more data into our model to allow a more

sophisticated parameter selection to take place.
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CHAPTER 3

Disease Prediction based on Functional Connectomes

using a Scalable and Spatially-Informed Support Vector

Machine

3.1 Introduction

There is substantial interest in establishing neuroimaging-based biomarkers that

reliably distinguish individuals with psychiatric disorders from healthy individuals.

Towards this end, neuroimaging affords a variety of specific modalities including structural

imaging, diffusion tensor imaging (DTI) and tractography, and activation studies under

conditions of cognitive challenge (i.e., task-based functional magnetic resonance imaging

(fMRI)). In addition, resting state fMRI has emerged as a mainstream approach that

offers robust, sharable, and scalable ability to comprehensively characterize patterns of

connections and network architecture of the brain.

Recently a number of groups have demonstrated that substantial quantities of

discriminative information regarding psychiatric diseases reside in resting state functional

connectomes (Castellanos et al., 2013; Fox and Greicius, 2010). In this article, we define

the functional connectomes as the cross-correlation matrix that results from parcellating

This chapter is based on Watanabe et al. (2014a,b)
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the brain into hundreds of distinct regions, and computing cross-correlation matrices across

time (Varoquaux and Craddock, 2013). Even with relatively coarse parcellation schemes

with several hundred regions of interest (ROI), the resulting connectomes encompass

hundreds of thousands of connections or more. The massive size of connectomes offers

new possibilities, as patterns of connectivity across the entirety of the brain are represented.

Nonetheless, the high dimensionality of connectomic data presents critical statistical and

computational challenges. In particular, mass univariate strategies that perform separate

statistical tests at each edge of the connectome require excessively stringent corrections for

multiple comparisons. Multivariate methods are promising, but these require specialized

approaches in the context where the number of parameters dominate the number of

observations, a setting commonly referred to as the “large p small n problem,” denoted

p " n (Bühlmann and van de Geer, 2011; West, 2003).

In the p " n regime, it is important to leverage any potential structure in the data,

and sparsity is a natural assumption that arises in many applications (Candes and Wakin,

2008; Fan and Lv, 2010). For example, in the context of connectomics, it is reasonable

to believe that only a fraction of the functional connectome is impacted under a specific

disorder, an assumption that has been supported in nearly all extant studies (see Castellanos

et al. (2013)). Furthermore, when sparsity is coupled with a linear classifier1, the nonzero

variables can be interpreted as pairs of brain regions that allow reliable discrimination

between controls and patients. In other words, sparse linear classifiers have the potential

of revealing connectivity-based biomarkers that characterize mechanisms of the disease

process of interest (Atluri et al., 2013).

The problem of identifying the subset of variables relevant for prediction is called

feature selection (Guyon and Elisseeff, 2003; Jain et al., 2000), which can be done in a

univariate or a multivariate fashion. In the univariate approach, features are independentally

ranked based on their statistical relationship with the target label (e.g., two sample t-

1Here we mean linear in the correlation values, not the original data.
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test, mutual information), and only the top features are submitted to the classifier. While

this method is commonly used (Sripada et al., 2013b; Zeng et al., 2012), it ignores the

multivariate nature of fMRI. On the other hand, multivariate approaches such as recursive

feature elimination (Guyon and Elisseeff, 2003) can be used to capture feature interactions

(Craddock et al., 2009; Dai et al., 2012), but these methods are computationally intensive

and rely on suboptimal heuristics. However, a more serious shortcoming common to

all the methods above is that outside of sparsity, no structural information is taken into

account. In particular, we further know that functional connectomes reside in a structured

space, defined by pairs of coordinate points in 3-D brain space. Performing prediction and

feature selection in a spatially informed manner could potentially allow us to draw more

neuroscientifically meaningful conclusions. Fortunately, regularization methods allow us

to achieve this in a natural and principled way.

Regularization is a classical technique to prevent overfitting (James and Stein, 1961;

Tikhonov, 1963), achieved by encoding prior knowledge about the data structure into the

estimation problem. Sparsity promoting regularization methods, such as Lasso (Tibshirani,

1996) and Elastic-net (Zou and Hastie, 2005), have the advantage of performing prediction

and feature selection jointly (Grosenick et al., 2008; Yamashita et al., 2008); however, they

also have the issue of neglecting additional structure the data may have. Recently, there has

been strong interest in the machine learning community in designing a convex regularizer

that promotes structured sparsity (Chen et al., 2012b; Mairal et al., 2011; Micchelli

et al., 2013), which extends the standard concept of sparsity. Indeed, spatially informed

regularizers have been applied successfully in task-based detection, i.e., decoding, where

the goal is to localize in 3-D space the brain regions that become active under an external

stimulus (Baldassarre et al., 2012; Gramfort et al., 2013; Grosenick et al., 2013; Jenatton

et al., 2012; Michel et al., 2011). Connectomic maps exhibit rich spatial structure, as each

connection comes from a pair of localized regions in 3-D space, giving each connection a

localization in 6-D space (referred to as “connectome space” hereafter). However, to the
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best of our knowledge, no framework currently deployed exploits this spatial structure in

the functional connectome.

Based on these considerations, the main contributions of this paper are two-fold.

First, we propose to explicitly account for the 6-D spatial structure of the functional

connectome by using either the fused Lasso (Tibshirani et al., 2005) or the GraphNet

regularizer (Grosenick et al., 2013). Second, we introduce a novel scalable algorithm

based on the classical alternating direction method (Boyd et al., 2011; Gabay and Mercier,

1976; Glowinski and Marroco, 1975) for solving the nonsmooth, large-scale optimization

problem that results from these spatially-informed regularizers. Variable splitting and

data augmentation strategies are used to break the problem into simpler subproblems that

can be solved efficiently in closed form. The method we propose only restricts the loss

function to be convex and margin-based, which allows non-differentiable loss functions

such as the hinge-loss to be used. This is important, since using the fused Lasso or the

GraphNet regularizer with the hinge-loss function leads to a structured sparse support

vector machine (SVM) (Grosenick et al., 2013; Ye and Xie, 2011), where feature selection

is embedded (Guyon and Elisseeff, 2003), i.e., feature selection is conducted jointly with

classification. We demonstrate that the optimization algorithm we introduce can solve both

fused Lasso and GraphNet regularized SVM with very little modification. To the best of our

knowledge, this is the first application of structured sparse methods in the context of disease

prediction using functional connectomes. Additional discussions of technical contributions

are reported in Sec. 3.4. We perform experiments on simulated connectomic data and

resting state scans from a large schizophrenia dataset to demonstrate that the proposed

method identifies predictive regions that are spatially contiguous in the connectome space,

offering an additional layer of interpretability that could provide new insights about various

disease processes.
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Notation We let lowercase and uppercase bold letters denote vectors and matrices,

respectively. For every positive integer n P N, we define an index set rns :� t1, . . . , nu,
and also let In P Rn�n denote the identity matrix. Given a matrix A P Rn�p, we let AT

denote its matrix transpose, and AH denote its Hermitian transpose. Given w, r P Rn, we

invoke the standard notation xw, ry :� °n
i�1wivi to express the inner product in Rn. We

also let }w}p � p°n
i�1w

p
i q1{p denote the `p-norm of a vector, p ¥ 1, with the absence of

subscript indicating the standard Euclidean norm, }�} � }�}2.

3.2 Defining Functional Connectomes

FMRI data consist of a time series of three dimensional volumes imaging the brain,

where each 3-D volume encompasses around 10, 000�100, 000 voxels. The univariate time

series at each voxel represents a blood oxygen level dependent (BOLD) signal, an indirect

measure of neuronal activities in the brain. Traditional experiments in the early years of

fMRI research involved task-based studies, but after it was discovered that the brain is

functionally connected at rest, resting state fMRI became a dominant tool for studying the

network architecture of the brain. As such, we used the time series from resting state fMRI

to generate FC’s, which are correlation maps that describe brain connectivity.

More precisely, we produced a whole-brain resting state functional connectome as

follows. First, 347 non-overlapping spherical nodes are placed throughout the entire brain

in a regularly-spaced grid pattern, with a spacing of 18 � 18 � 18 mm; each of these

nodes represents a pseudo-spherical ROI with a radius of 7.5 mm, which encompasses 33

voxels (the voxel size is 3� 3� 3 mm). For a schematic representation of the parcellation

scheme, see Fig. 3.1. Next, for each of these nodes, a single representative time-series is

assigned by spatially averaging the BOLD signals falling within the ROI. Then, a cross-

correlation matrix is generated by computing Pearson’s correlation coefficient between

these representative time-series. Finally, a vector x of length
�

347
2

� � 60, 031 is obtained

by extracting the lower-triangular portion of the cross-correlation matrix. This vector
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x P R60,031 represents the whole-brain functional connectome, which serves as the feature

vector for disease prediction.

The grid-based scheme for brain parcellation used in this work provides numerous

advantages. Of note, this approach has been validated in previous studies (Sripada et al.,

2013a, 2014, 2013b). Furthermore, the uniformly spaced grid is a good fit with our

implementation of fused Lasso and GraphNet, as it provides a natural notion of nearest-

neighbor and ordering among the coordinates of the connectome. This property also turns

out to be critical for employing our optimization algorithm, which will be discussed in

Sec. 3.4. This is in contrast to alternative approaches, such as methods that rely on

anatomical (Tzourio-Mazoyer et al., 2002; Zeng et al., 2012) or functional parcellation

schemes (Dosenbach et al., 2010). Anatomical parcellations in particular have been

shown to yield inferior performance to alternative schemes in the literature (Power et al.,

2011). Additionally, grid-based approaches provide scalable density: there is a natural

way to increase the spatial resolution of the grid when computational feasibility allows.

In particular, to increase node density, one could reduce the inter-node distance and also

reduce the node size such that suitable inter-node space remains. This scalable density

property turns out to be quite important, as our grid-based scheme is considerably more

dense than standard functional parcellations (e.g., Dosenbach et al. (2010); Shirer et al.

(2011)) that use as many as several hundred fewer nodes, and thus have tens of thousands

fewer connections in the connectome. Finally, the use of our grid-based scheme naturally

leaves space between the nodes. While on the surface this may appear to yield incomplete

coverage, this is in fact a desirable property to avoid inappropriate inter-node smoothing.

This may result as a function of either the point-spread process of fMRI image acquisition

or be introduced as a standard preprocessing step. In recognition of these advantages, we

have elected to use a grid scheme composed of pseudo-spherical nodes spaced at regular

intervals.

One pragmatic advantage of using an a priori parcellation scheme as opposed to one
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Grid-based Brain Parcellation Scheme with 347-nodes

(a) Coronal (b) Sagittal (c) Axial (d) 33 voxel node

Figure 3.1: Coronal, sagittal, and axial slices depicting the coverage of our brain
parcellation scheme along with 3-D rendering of one pseudo-sphereical node. Each
contiguous green region represents a pseudo-spherical node representing an ROI containing
33-voxels. Overall, there are 347 non-overlapping nodes placed throughout the entire brain.
These nodes are placed on a grid with 18 mm spacing between node centers in the X , Y ,
and Z dimensions.

that combines parcellation and connectome calculation is that it permits the usage of a

grid, and thus yields all the advantages outlined above. Moreover, it allows for easier

comparison across studies since an identical (or at least similar) parcellation can be brought

to bear on a variety of connectomic investigations. Secondly, while an approach that

embeds both parcellation and connectome calculation in a single step may be suitable

for recovering a more informative normative connectome, it would not necessarily be

appropriate for recovering discriminative information about diseases in the connectome

unless features were selected based on their disease-versus-healthy discriminative value.

This approach, however, would require nesting parcellation within cross validation and

would lead to highly dissimilar classification problems across cross validation folds and

present challenges to any sort of inference or aggregation of performance. In light of these

challenges, we have elected to use our a priori grid-based scheme.

3.3 Statistical learning framework

We now formally introduce the statistical learning framework adopted to perform joint

feature selection and disease prediction with spatial information taken into consideration.
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3.3.1 Regularized empirical risk minimization and feature selection

In this work, we are interested in the supervised learning problem of linear binary

classification. Suppose we are given a set of training data tpx1, y1q, � � � , pxn, ynqu, where

xi P Rp is the input feature vector and yi P t�1,�1u is the corresponding class label for

each i P rns. In our application, xi represents functional connectome and yi indicates the

diagnostic status of subject i P rns, where we adopt the convention of letting y � �1

indicate “disorder” and y � �1 indicate “healthy” in this article. The goal is to learn

a linear decision function sign pxx,wyq, parameterized by weight vector w P Rp, that

predicts the label y P t�1,�1u of a new input x P Rp. A standard approach for estimating

w is solving a regularized empirical risk minimization (ERM) problem with the form

arg min
wPRp

1

n

ņ

i�1

` pyi xw,xiyq � λRpwq . (3.1)

The first term 1
n

°n
i�1 ` pyi xw,xiyq corresponds to the empirical risk of a margin-based

loss function ` : R Ñ R� (e.g., hinge, logistic, exponential), which quantifies how

well the model fits the data. The second term R : Rp Ñ R� is a regularizer that

curtails overfitting and enforces some kind of structure on the solution by penalizing weight

vectors that deviate from the assumed structure. The user-defined regularization parameter

λ ¥ 0 controls the tradeoff between data fit and regularization. Throughout this work, we

assume the loss function and the regularizer to be convex, but not necessarily differentiable.

Furthermore, we introduce the following notations

Y :� diag ty1, � � � , ynu , X :�

������
xT1
...

xTn

������ , Y Xw �

������
y1 xw,x1y

...

yn xw,xny

������ ,

which allow us to express the empirical risk succinctly by defining a functional

L : Rn Ñ R� which aggregates the total loss LpY Xwq :� °n
i�1 `pyi xw,xiyq .
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Regularized ERM (3.1) has a rich history in statistics and machine learning, and many

well known estimators can be recovered from this framework. For example, when the hinge

loss `ptq :� maxp0, 1� tq is used with the smoothness promoting `2-regularizer }w}2
2, we

recover the SVM (Cortes and Vapnik, 1995). However, while smoothness helps prevent

overfitting, it is problematic for model interpretation, as all the coefficients from the weight

vector contribute to the final prediction function. Automatic feature selection can be done

using the `1-regularizer }w}1 known as the Lasso (Tibshirani, 1996), which causes many

of the coefficients in w to be exactly zero. Because the prediction function is described

by a linear combination between the weight w and the feature vector x, we can directly

identify and visualize the regions that are relevant for prediction.

While the `1-regularizer possesses many useful statistical properties, several works have

reported poor performance when the features are highly correlated. More precisely, if there

are clusters of correlated features, Lasso will select only a single representative feature from

each cluster group, ignoring all the other equally predictive features. This leads to a model

that is overly sparse and sensitive to data resampling, creating problems for interpretation.

To address this issue, Zou and Hastie (2005) proposed to combine the `1 and `2 regularizers,

leading to the Elastic-net, which has the form }w}1 � γ
2λ
}w}2

2, where γ ¥ 0 is a second

regularization parameter. The `1-regularizer has the role of encouraging sparsity, whereas

the `2-regularizer has the effect of allowing groups of highly correlated features to enter

the model together, leading to a more stable and arguably a more sensible solution. While

Elastic-net addresses part of the limitations of Lasso and has been demonstrated to improve

prediction accuracy (Carroll et al., 2009; Ryali et al., 2010), it does not leverage the 6-D

structure of connectome space. To address this issue, we employ the fused Lasso and

GraphNet (Grosenick et al., 2013).
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3.3.2 Spatially informed feature selection and classification via fused Lasso and

GraphNet

The original formulation of fused Lasso (Tibshirani et al., 2005) was designed for

encoding correlations among successive variables in 1-D data, such as mass spectrometry

and comparative genomic hybridization (CGH) data (Ye and Xie, 2011). More specifically,

assuming the weight vector w P Rp has a natural ordering among its coordinates j P rps,
the regularized ERM problem with the fused Lasso has the following form:

arg min
wPRp

1

n
LpY Xwq � λ }w}1 � γ

p̧

j�2

��wpjq � wpj�1q�� , (3.2)

where wpjq indicates the j-th entry of w. Like Elastic-net, this regularizer has two

components: the first component is the usual sparsity promoting `1-regularizer, and the

second component penalizes the absolute deviation among adjacent coordinates. Together,

they have the net effect of promoting sparse and piecewise constant solutions.

The idea of penalizing the deviations among neighboring coefficients can be extended

to other situations where there is a natural ordering among the feature coordinates. For

instance, the extension of the 1-D fused Lasso (3.2) for 2-D imaging data is to penalize

the vertical and horizontal difference between pixels; here, the coordinates are described

via lexicographical ordering. This type of generalization applies to our 6-D functional

connectomes by the virtue of the grid pattern in the nodes, and the ERM formulation reads

arg min
wPRp

1

n
LpY Xwq � λ }w}1 � γ

p̧

j�1

¸
kPNj

�� wpjq � wpkq�� , (3.3)

where Nj is the first-order neighborhood set corresponding to coordinate j in 6-D

connectome space. The spatial penalty γ
°p
j�1

°
kPNj

��wpjq � wpkq�� accounts for the 6-D

structure in the connectome by penalizing deviations among nearest-neighbor edges,

encouraging solutions that are spatially coherent in the connectome space. This type of
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regularizer is known as an anisotropic total variation (TV) penalty in the image processing

community (Wang et al., 2008b), and an analogous isotropic TV penalty was applied by

Michel et al. (2011) for the application of 3-D brain decoding.

When the absolute value penalty in the spatial regularizer |wpjq � wpkq| in (3.3) is

replaced by the squared penalty 1
2
pwpjq�wpkqq2, we recover the GraphNet model proposed

by Grosenick et al. (2013):

arg min
wPRp

1

n
LpY Xwq � λ }w}1 �

γ

2

p̧

j�1

¸
kPNj

�
wpjq � wpkq�2

. (3.4)

GraphNet also promotes spatial contiguity, but instead of promoting sharp piecewise

constant patches, it encourages the clusters to appear in smoother form by penalizing

the quadratic deviations among the nearest-neighbor edges (i.e., the coordinates of the

functional connectome x). We emphasize that the optimization algorithm we propose can

be used to solve both fused Lasso (3.3) and GraphNet (3.4) with very little modification.

To gain a better understanding of the neighborhood set Nj in the context of our

application, let us denote px, y, zq and px1, y1, z1q the pair of 3-D points in the brain that

define the connectome coordinate j. Then, the first-order neighborhood set of j can be

written precisely as2

Nj :�

$'&'%
�
x� 1, y, z, x1, y1, z1

�
,
�
x, y � 1, z, x1, y1, z1

�
,
�
x, y, z � 1, x1, y1, z1

�
,�

x, y, z, x1 � 1, y1, z1
�
,
�
x, y, z, x1, y1 � 1, z1

�
,
�
x, y, z, x1, y1, z1 � 1

�
,/./- .

Fig. 3.2 provides a pictorial illustration of Nj in the case of a 4-D connectome, where the

nodes reside in 2-D space.

There are multiple reasons why fused Lasso and GraphNet are justified approaches for

our problem. For example, fMRI is known to possess high spatio-temporal correlation

between neighboring voxels and time points, partly for biological reasons as well as from

2If px, y, zq or px1, y1, z1q are on the boundary of the brain volume, then neighboring points outside the
brain volume are excluded from Nj .
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preprocessing (e.g., spatial smoothing). Consequently, functional connectomes contain

rich correlations among nearby coordinates in the connectome space. In addition, there

is a neurophysiological basis for why the predictive features are expected to be spatially

contiguous rather than being randomly dispersed throughout the brain; this point will be

thoroughly discussed in Sec. 3.7.1. Finally, the spatial coherence that fused Lasso and

GraphNet promotes facilitates model interpretation.

LettingC P Re�p denote the 6-D finite differencing matrix (also known as the incidence

matrix), the spatial regularization term for both fused Lasso and GraphNet can be written

compactly as

}Cw}qq �
p̧

j�1

¸
kPNj

|wpjq � wpkq|q, q P t1, 2u ,

where each row inC contains a single�1 and a�1 entry, and e represents the total number

of adjacent coordinates in the connectome. This allows us to write out the regularized ERM

formulation for both fused Lasso (3.3) and GraphNet (3.4) in the following unified form:

arg min
wPRp

1

n
LpY Xwq � λ }w}1 �

γ

q
}Cw}qq , q P t1, 2u . (3.5)

We will focus on this matrix-vector representation hereafter, as it is more intuitive and

convenient for analyzing the variable splitting framework in the upcoming section.

3.4 Optimization

Solving the optimization problem (3.5) is challenging since the problem size p is large

and the three terms in the cost function can each be non-differentiable. To address these

challenges, we now introduce a scalable optimization framework based on augmented

Lagrangian (AL) methods. In particular, we introduce a variable splitting scheme that

converts the unconstrained optimization problem of the form (3.5) into an equivalent

constrained optimization problem, which can be solved efficiently using the alternating
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Nj in 4-D Connectome Space

1,1 2,1 3,1 4,1 5,1 6,1 7,1

1,2 2,2 3,2 4,2 5,2 6,2 7,2

1,3 2,3 3,3 4,3 5,3 6,3 7,3

1,4 2,4 3,4 4,4 5,4 6,4 7,4

1,5 2,5 3,5 4,5 5,5 6,5 7,5

Figure 3.2: Illustration of the neighborhood structure of the connectome when the nodes
reside in 2-D space. The red edge represents coordinate j �  p2, 4q, p6, 2q( in 4-D
connectome space, and its neighborhood setNj is represented by the blue and green edges.
This idea extends directly to 6-D connectomes generated from 3-D resting state volumes.

direction method of multipliers (ADMM) algorithm (Boyd et al., 2011; Gabay and Mercier,

1976; Glowinski and Marroco, 1975). We demonstrate that by augmenting the weight

vector with zero entries at appropriate locations, the inner subproblems associated with

ADMM can be solved efficiently in closed form.

3.4.1 Alternating Direction Method of Multipliers

The ADMM algorithm is a powerful algorithm for solving large scale optimization

problems. The method was first introduced in the 1970’s (Gabay and Mercier, 1976;

Glowinski and Marroco, 1975), but has recently generated renewed interest from the

statistics and signal processing community, as large-scale datasets became more routinely

encountered. We refer the readers to (Boyd et al., 2011) for an extensive review of ADMM.

More precisely, ADMM solves convex optimization problems having the separable

structure

min
x̄,ȳ

f̄px̄q � ḡpȳq subject to Āx̄� B̄ȳ � 0 , (3.6)

where x̄ P Rp̄ and ȳ P Rq̄ are unknown primal variables, f̄ : Rp̄ Ñ R Y t�8u and
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ḡ : Rq̄ Ñ RYt�8u are closed convex functions, and Ā P Rc�p̄ and B̄ P Rc�q̄ are matrices

representing c linear constraints. In the classical AL framework, the primal variables are

solved by the following iterations

�
x̄pt�1q, ȳpt�1q�Ð arg min

x̄,ȳ
Lρ

�
x̄, ȳ, ūptq�

ūpt�1q Ð ūptq � ρ
�
Āx̄pt�1q � B̄ȳpt�1q� , (3.7)

where superscript t denotes the iteration count, and

Lρpx̄, ȳ, ūq :� f̄px̄q � ḡpȳq � xū, Āx̄� B̄ȳy�ρ
2

��Āx̄� B̄ȳ � ū��2 (3.8)

is the AL function with dual variable ū P Rc and AL parameter ρ ¡ 0. In practice,

minimizing the AL function jointly over x̄ and ȳ can be challenging. Fortunately, ADMM

exploits the separable structure in (3.6) by decomposing the primal variable update in (3.7)

into two separate steps

x̄pt�1q Ð arg min
x̄

Lρ
�
x̄, ȳptq, ūptq�

ȳpt�1q Ð arg min
ȳ

Lρ
�
x̄pt�1q, ȳ, ūptq� (3.9)

ūpt�1q Ð ūptq � ρ
�
Āx̄pt�1q � B̄ȳpt�1q� .

This alternating minimization strategy is especially useful when it is easy to minimize

x̄ and ȳ independently overLρ, a situation rather commonly encountered in practice. Note

that by completing the square and defining the scaled dual variable u :� ū{ρ, the ADMM

iterations (3.9) can be written in the following equivalent form:

x̄pt�1q Ð arg min
x̄

f̄px̄q � ρ

2

��Āx̄� B̄ȳptq � uptq��2
(3.10)

ȳpt�1q Ð arg min
ȳ

ḡpȳq � ρ

2

��Āx̄pt�1q � B̄ȳ � uptq��2
(3.11)

46



upt�1q Ð uptq � �
Āx̄pt�1q � B̄ȳpt�1q� . (3.12)

Unless otherwise stated, we will focus on this scaled formulation of ADMM, as it is more

convenient to work with.

The convergence of the ADMM algorithm has been established by Mota et al. in

Mota et al. (2011). While the AL parameter ρ ¡ 0 does not affect the convergence

property of ADMM, it can impact its convergence speed. We use the value ρ � 1 in

all of our implementations, although this value can be empirically tuned in practice. For

completeness and later reference, we now present the theorem providing the sufficient

conditions for ADMM to converge.

Theorem 3.1 (Theorem 1 from Mota et al. (2011)). Consider problem (3.6), where f̄ and

ḡ are convex functions over Rp̄ and Rq̄ respectively. Assume the linear constraint matrices

Ā P Rc�p̄ and B̄ P Rc�q̄ are full column-rank, and also assume problem (3.6) is solvable,

i.e., it has an optimal objective value. Then the sequence
 
x̄ptq, ȳptq, ūptq( generated by

(3.9) converges to tx̄�, ȳ�, ū�u, where

1. tx̄�, ȳ�u solves (3.6).

2. ū� solves the dual problem of (3.6):

max
ū
F̄ pūq � Ḡpūq ,

where F̄ :� inf
x̄
f̄px̄q � xū, Āx̄y and Ḡ :� inf

ȳ
ḡpȳq � xū, B̄ȳy.

3.4.2 Variable splitting and data augmentation

The original formulation of our problem (3.5) does not have the structure of (3.6).

However, we can convert the unconstrained optimization problem (3.5) into an equivalent

constrained optimization problem (3.6) by introducing auxiliary constraint variables, a
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method known as variable splitting (Afonso et al., 2010). While there are several different

ways to introduce the constraint variables, the heart of the strategy is to select a splitting

scheme that decouples the problem into more manageable subproblems. For example, one

particular splitting strategy we can adopt for problem (3.5) is

minimize
w,v1

v2,v3,v4

1

n
Lpv1q � λ }v2}1 �

γ

q
}v3}qq

subject to Y Xw � v1, w � v2, Cv4 � v3, w � v4 ,

(3.13)

where v1,v2,v3,v4 are the constraint variables. It is easy to see that problems (3.5) and

(3.13) are equivalent, and the correspondence with the ADMM formulation (3.6) is as

follows:

f̄px̄q � γ

q
}v3}qq , ḡpȳq � 1

n
Lpv1q � λ }v2}1

Ā �

���������

Y X 0

I 0

0 I

I 0

���������
, x̄ �

���w
v3

���, B̄ �

���������

�I 0 0

0 �I 0

0 0 �C
0 0 �I

���������
, ȳ �

������
v1

v2

v4

������ .
(3.14)

However, there is an issue with this splitting strategy: one of the resulting subproblems

from the ADMM algorithm requires us to invert a matrix involving the Laplacian matrix

CTC P Rp�p, which is prohibitively large. Although this matrix is sparse, it has a

distorted structure due to the irregularities in the coordinates of x. These irregularities

arise from two reasons: (1) the nodes defining the functional connectome x are placed only

on the brain, not the entire rectangular field of view (FOV), and (2) x lacks a complete

6-D representation since it only contains the lower-triangular part of the cross-correlation

matrix. Fig. 3.3a displays the Laplacian matrix that results from the 347-node functional

connectome defined in Section 3.2, and the distorted structure is clearly visible.

To address this issue, we introduce an augmentation matrix A P Rp̃�p, whose rows
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(a) Laplacian matrix: CTC (b) Augmented Laplacian matrix: rCT rC
Figure 3.3: Laplacian matrix corresponding to the original data CTC and the augmented
data rCT rC, where the rows and columns of these matrices represent the coordinates of the
original and augmented functional connectome. Note that the irregularities in the original
Laplacian matrix are rectified by data augmentation. The augmented Laplacian matrix
has a special structure known as block-circulant with circulant-blocks (BCCB), which has
important computational advantages that will be exploited in this work.

are either the zero vector or an element from the trivial basis tej | j P rpsu, and has the

property ATA � Ip. Furthermore, we define the augmented weight vector rw :� Aw,

where A rectifies the irregularities in the coordinates of w (and x) by padding extra zero

entries, accommodating for: (1) the nodes that were not placed in the FOV (i.e., the regions

outside the brain), and (2) the diagonal and upper-triangular part of the cross-correlation

matrix, which were disposed due to redundancy; further details regarding this augmentation

scheme is reported in 3.B. As a result, we now have a new differencing matrix rC P Rẽ�p̃

corresponding to rw P Rp̃, whose Laplacian matrix rCT rC P Rp̃�p̃ has a systematic structure,

as shown in Fig. 3.3b. In fact, this matrix has a special structure known as block-circulant

with circulant-blocks (BCCB), which is critical since the matrix inversion involving rCT rC
can be computed efficiently in closed form using the fast Fourier transform (FFT) (the

utility of this property will be elaborated more in Section 3.4.3). It is important to note that

this BCCB structure in the Laplacian matrix arises from the grid structure introduced from

the parcellation scheme we adopted for producing the functional connectome.
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Finally, by introducing a diagonal masking matrixB P t0, 1uẽ�ẽ, we have }B rC rw}qq �
}Cw}qq for q P t1, 2u. Note that this masking strategy was adopted from the recent works

of Allison et al. (2013) and Matakos et al. (2013), and has the effect of removing artifacts

that are introduced from the data augmentation procedure when computing the }�}qq-norm.

This allows us to write out the fused Lasso and GraphNet problem (3.5) in the following

equivalent form:

arg min
wPRp

1

n
LpY Xwq � λ }w}1 �

γ

q

���B rCAw���q
q
, q P t1, 2u

Moreover, this can be converted into a constrained optimization problem

minimize
w,v1

v2,v3,v4

1

n
Lpv1q � λ }v2}1 �

γ

q
}Bv3}qq

subject to Y Xw � v1, w � v2, rCv4 � v3, Aw � v4 ,

(3.15)

and the correspondence with the ADMM formulation (3.6) now becomes:

f̄px̄q � γ

q
}Bv3}qq , ḡpȳq � 1

n
Lpv1q � λ }v2}1

Ā �

���������

Y X 0

I 0

0 I

A 0

���������
, x̄ �

���w
v3

���, B̄ �

���������

�I 0 0

0 �I 0

0 0 � rC
0 0 �I

���������
, ȳ �

������
v1

v2

v4

������ .
(3.16)

The dual variables corresponding to v1,v2,v3, and v4 are written in block form u �
ru1

T ,u2
T ,u3

T ,u4
T sT . Note that functions f̄ and ḡ are convex, and matrices Ā and B̄ are

full column-rank, so the convergence of the ADMM iterations (3.10)-(3.12) is guaranteed

by Theorem 3.1.
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3.4.3 ADMM: efficient closed-form updates

With the variable splitting scheme (3.15) and ADMM formulation (3.16), the ADMM

update for the primal variable x̄ (3.10) decomposes into subproblems

wpt�1q Ð arg min
w

#��Y Xw � �
v1

ptq � u1
ptq���2 � ��w � �

v2
ptq � u2

ptq���2

� ��Aw � �
v4

ptq � u4
ptq���2

+
(3.17)

v3
pt�1q Ð arg min

v3

#
γ

q
}Bv3}qq �

ρ

2

���v3 �
� rCv4

ptq � u3
ptq
	���2

+
, (3.18)

whereas the updates for primal variable ȳ (3.11) are

v1
pt�1q Ð arg min

v1

"
1

n
Lpv1q � ρ

2

��v1 �
�
Y Xwpt�1q � u1

ptq���2
*

(3.19)

v2
pt�1q Ð arg min

v2

!
λ }v2}1 �

ρ

2

��v2 �
�
wpt�1q � u2

ptq���2
)

(3.20)

v4
pt�1q Ð arg min

v4

" ��� rCv4 �
�
v3

pt�1q � u3
ptq����2

� ��v4 �
�
Awpt�1q � u4

ptq���2
*
.

(3.21)

The update for the dual variable u is a trivial matrix-vector multiplication (3.12) (see

Algorithm 2 line 14-17).

We now demonstrate that the minimization problems (3.17)-(3.21) each admits an

efficient, closed form solution.

w update The quadratic minimization problem (3.17) has the following closed form

solution:

wpt�1q Ð �
XTX � 2Ip

��1
�
XTY T rv1

ptq � u1
ptqs � rv2

ptq � u2
ptqs �AT rv4

ptq � u4
ptqs

	
.

(3.22)
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Note we used the fact thatY TY � In andATA � Ip to arrive at this expression. Applying

update (3.22) brute force will require an inversion of a pp � pq matrix, but this can be

converted into an pn� nq inversion problem by invoking the matrix inversion Lemma

�
XTX � 2Ip

��1 � 1

2
Ip � 1

4
XT

�
In � 1

2
XXT

��1
X . (3.23)

In the context of our work, n denotes the number of scanned subjects, which is typically

on the order of a few hundred. The matrix pXTX � 2Ipq�1 can be stored in memory

if p is small, but the massive dimensionality of the functional connectome in our

application dismisses this option. Therefore, we instead precompute the pp � nq matrix

H :� 1
4
XT pIn � 1

2
XXT q�1 in (3.23), and let

%ptq :�XTY T rv1
ptq � u1

ptqs � rv2
ptq � u2

ptqs �AT rv4
ptq � u4

ptqs .

This way, the update (3.22) can be implemented as follows:

wpt�1q Ð pXTX � 2Ipq�1%ptq � 1

2
%ptq �HX%ptq , (3.24)

which allows us to carry out the w-update without having to store a pp � pq matrix in

memory.

v1 and v2 update The minimization problems (3.19) and (3.20) have the form of the

(scaled) proximal operator ProxτF : Rp Ñ Rp (Rockafellar and Wets, 1998), defined by

ProxτF prq � arg min
uPRp

τF puq � 1

2
}r � u}2 , τ ¡ 0 , (3.25)

where F : Rp Ñ R Y t�8u is a closed convex function. Using standard subdifferential

calculus rules (Borwein and Lewis, 2006), it is straightforward to show that a point u� P Rp
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solves the minimization in (3.25) if and only if the condition

0 P BF pu�q � pu� � rq{τ (3.26)

holds. Here, BF pu�q denotes the subdifferential of function F at u�, defined by

BF pu�q :� tz P Rp : F pu�q � xz,u� u�y ¤ F puq, @u P Rpu .

In addition, both updates (3.19) and (3.20) are fully separable across their coordinates,

decomposing into the following sets of elementwise scalar optimization problems:

�
v1

pt�1q�
i
Ð Prox `

nρ

��
Y Xwpt�1q � u1

ptq�
i

�
, i P rns (3.27)�

v2
pt�1q�

j
Ð Proxλ

ρ
|�|
��
wpt�1q � u2

ptq�
j

	
, j P rps , (3.28)

where r � si and r � sj each index the i-th and j-th element of a vector in Rn and Rp

respectively. For some margin-based loss functions, their corresponding proximal operator

(3.27) can be derived in closed form using the optimality condition (3.26). For example,

the proximal operator for the non-differentiable hinge-loss has the expression:

Proxτ`ptq �

$''''''&''''''%
t if t ¡ 1

1 if 1� τ ¤ t ¤ 1

t� τ if t   1� τ .

If differentiability is desired, one can instead use the truncated least square or the huberized

hinge-loss (Wang et al., 2008a), which both admit closed form proximal operator as well.

Fig. 3.4 plots a few commonly used margin-based losses and their corresponding proximal

operators, and Table 3.1 provides their closed form expressions. The choice of the margin-

based loss is application dependent, such as whether differentiability is desired or not. The
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proximal operator of the `1-norm (3.20) and the absolute loss function (3.28) corresponds

to the well known soft-threshold operator (Donoho, 1995)

Softτ ptq :�

$''''''&''''''%
t� τ if t ¡ τ

0 if |t| ¤ τ

t� τ if t   �τ

. (3.29)

The absolute loss and the soft-threshold operator are also included in Fig. 3.4 and Table. 3.1

for completeness.

v3 update The solution to the minimization problem (3.18) depends on the choice of

q P t1, 2u, where q � 1 recovers fused Lasso and q � 2 recovers GraphNet.

In the fused Lasso case q � 1, since the masking matrix B P t0, 1uẽ�ẽ is diagonal, the

update (3.18) is fully separable. Letting ζptq :� rCv4
ptq � u3

ptq, the minimization problem

decouples into a set of scalar minimization problems of the form:

arg min
vkPR

"
γ bk |vk| � ρ

2

�
vk � ζ

ptq
k

	2
*
, k P rẽs (3.30)

where bk is the k-th diagonal entry of B and ζptqk is the k-th entry of ζptq P Rẽ. On one

hand, when bk � 0, the minimizer for problem (3.30) returns the trivial solution ζptqk . On

the other hand, when bk � 1, the minimizer will once again have the form of the proximal

operator (3.25) corresponding to the absolute loss function |�|, recovering the soft-threshold

operator (3.29). To summarize, when q � 1, the update for v3 (3.18) can be done efficiently

by conducting the following elementwise update for each k P rẽs:

�
v3

pt�1q�
k
Ð

$''&''%
Softγ{ρ

�� rC �
v4

ptq � u3
ptq��

k

	
ifBk,k � 1� rC �

v4
ptq � u3

ptq��
k

ifBk,k � 0

(3.31)

where r�sk indexes the k-th element of a vector in Rẽ.
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Figure 3.4: Plots of scalar convex loss functions that are relevant in this work, along with
their associated proximal operators. Table 3.1 provides the closed form expression for these
functions. Parameter values of τ � 2 and δ � 0.5 are used in the plot for the proximal
operator and the huberized hinge-loss respectively.

`ptq Proxτ`ptq

Hinge maxp0, 1� tq

$'&'%
t if t ¡ 1

1 if 1� τ ¤ t ¤ 1

t� τ if t   1� τ

Truncated
least squares

 
maxp0, 1� tq(2

$&%t if t ¡ 1
t� 2τ

1� 2τ
if t ¤ 1

Huberized
hinge

(Wang et al., 2008a)

$''&''%
0 if t ¡ 1
p1� tq2

2δ
if 1� δ ¤ t ¤ 1

1� t� δ
2

if t   1� δ

$'''&'''%
t if t ¡ 1
t� τ{δ
1� τ{δ if 1� δ � τ ¤ t ¤ 1

t� τ if t   1� δ � τ

Absolute
loss

|t|
(from `1-regularization) Softτ ptq :�

$'&'%
t� τ if t ¡ τ

0 if |t| ¤ τ

t� τ if t   �τ
Table 3.1: Examples of scalar convex loss functions that are relevant for this work, along
with their corresponding proximal operators in closed form.

In the GraphNet case q � 2, update (3.18) is a quadratic optimization problem with the

closed form solution

v3
pt�1q Ð ρ

�
γB � ρIẽq�1 rCpv4

ptq � u3
ptqq , (3.32)

which is trivial to compute since the matrix pγB � ρIẽq is diagonal.
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v4 update The closed form solution to the quadratic optimization problem (3.21) is

v4
pt�1q Ð

� rCT rC � Ip̃
	�1 � rCT rv3

ptq � u3
ptqs �Awpt�1q � u4

ptq
	
. (3.33)

To suppress notations, let us defineQ P Rp̃�p̃ and b P Rp̃, whereQ :� rCT rC � Ip̃ and

b :� rCT rv3
ptq � u3

ptqs �Awpt�1q � u4
ptq.

As stated earlier, the Laplacian matrix rCT rC is block-circulant with circulant-blocks

(BCCB), and consequently, the matrix Q is BCCB as well. It is well known that a BCCB

matrix can be diagonalized as (Davis, 1979)

Q � UHΛU ,

where U P Rp̃�p̃ is the (6-D) DFT matrix and Λ P Rp̃�p̃ is a diagonal matrix containing

the (6-D) DFT coefficients of the first column of Q. As a result, the update (3.33) can be

carried out efficiently using the (6-D) FFT

Q�1b � �
UHΛ�1U

�
b � ifft

�
fftpbq c φ

	
, (3.34)

where fft and ifft denote the (6-D) FFT and inverse-FFT operation3,φ is a vector containing

the diagonal entries of Λ, and c indicates elementwise division (more precisely, vectors b

and φ are reshaped into 6-D arrays prior to the 6-D FFT and inverse-FFT operations, and

the result of these operations is re-vectorized).

AL-based optimization methods that involve this kind of FFT-based inversion have been

applied in image processing (Afonso et al., 2010; Allison et al., 2013; Matakos et al., 2013).

Problems such as image denoising, reconstruction, and restoration are typically cast as a

3These multidimensional FFT and inverse FFT operations are implemented using fftn and iffn
functions in MATLAB.
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regularized ERM problem involving the squared loss function. The data augmentation

scheme we propose allows us to apply this FFT-based technique with 6-D functional

connectomes in the context of binary classification with margin-based loss functions.

Finally, note that the ADMM algorithm was also used to solve the fused Lasso

regularized SVM problem in (Ye and Xie, 2011) under a different variable splitting setup.

However, their application focuses on 1-D data such as mass spectrometry and array CGH.

Consequently, the Laplacian matrix corresponding to their feature vector is tridiagonal with

no irregularities present. Furthermore, the variable splitting scheme they propose requires

an iterative algorithm to be used for one of the ADMM subproblems. In contrast, the

variable splitting scheme and the data augmentation strategy we propose allow the ADMM

subproblems to be decoupled in a way that all the updates can be carried out efficiently and

non-iteratively in closed form.

Summary: the final algorithm and termination criteria Algorithm 2 outlines the

complete ADMM algorithm for solving both the fused Lasso and GraphNet regularized

ERM problem (3.5), and is guaranteed to converge. In our implementations, all the

variables were initialized at zero. The algorithm is terminated when the relative difference

between two successive iterates falls below a user-specified threshold:

��wpt�1q �wptq��
}wptq} ¤ ε . (3.35)

3.5 Experiment setup

3.5.1 Generation of synthetic data: 4-D functional connectomes

To assess the validity of our method, we ran experiments on synthetic 4-D functional

connectome data. The data were generated to imitate functional connectomes resulting

from a single slice of our grid-based parcellation scheme (see Fig. 3.1). Specifically, we
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Algorithm 2 ADMM for solving fused Lasso pq � 1q or GraphNet pq � 2q
1: Initialize primal variables w,v1,v2,v3,v4

2: Initialize dual variables u1,u2,u3,u4

3: Set t � 0, assign λ ¥ 0, γ ¥ 0

4: PrecomputeH :� 1
4
XT pIn � 1

2
XXT q�1

5: repeat
6: x̄-update (3.10)
7: wpt�1q Ð �

XTX � 2Ip
��1 �

XTY T rv1
ptq � u1

ptqs � rv2
ptq � u2

ptqs �
AT rv4

ptq � u4
ptqs�

� apply update (3.24)

8: v3
pt�1q Ð

$&%solve using (3.31) if q � 1 (fused Lasso)

solve using (3.32) if q � 2 (GraphNet)
9: ȳ-update (3.11)

10: v1
pt�1q Ð Prox L

nρ

�
Y Xwpt�1q � u1

ptq� � apply (3.27) elementwise

11: v2
pt�1q Ð Softλ{ρ

�
wpt�1q � u2

ptq� � apply (3.28) elementwise

12: v4
pt�1q Ð

� rCT rC � Ip̃
	�1 � rCT rv3

pt�1q � u3
ptqs �Awpt�1q � u4

ptq
	

� solve using FFT approach (3.34)
13: u-update (3.12)
14: u1

pt�1q Ð u1
ptq � Y Xwpt�1q � v1

pt�1q

15: u2
pt�1q Ð u2

ptq �wpt�1q � v2
pt�1q

16: u3
pt�1q Ð u3

ptq � v3
pt�1q � rCv4

pt�1q

17: u4
pt�1q Ð u4

ptq �Awpt�1q � v4
pt�1q

18: tÐ t� 1

19: until stopping criterion is met

selected only the nodes that are present at axial slice z � 18 in the MNI space; this slice was

selected for its substantialX and Y coverage. Fig. 3.5a provides a schematic representation

of the selected nodes.

To mimic the control vs. patient binary classification setup, we created two classes

of functional connectomes sampled from random normal distributions. The mean and the

variance for these distributions were assigned using the functional connectomes generated

from the real resting state dataset described later in Sec. 3.5.2. Specifically, we first took

the subject-level functional connectomes corresponding to the 67 healthy controls in the
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dataset, and extracted the entries that represent the edges among the nodes at slice z � 18.

Since there are 66 nodes within this slice, this gives us
�

66
2

� � 2145 edges for each subjects.

Next, we applied Fisher transformation on these edges to map the correlation values to

the real line. For each of these transformed edges, we calculated the inter-subject sample

mean and sample variance, which we denote by tµ̂pkq, σ̂2pkquwith k P r2145s indexing the

edges. Finally, a synthetic subject-level “control class” connectome is realized by sampling

edges individually from a set of random normal distributions having the above mean and

variance, and then applying inverse Fisher transformation tanh : R Ñ p�1,�1q on these

sampled edges, i.e.,

x � �
tanh

�
xp1q

�
, . . . , tanh

�
xp2145q��T where xpkq � N �

µ̂pkq, σ̂2pkq� , k P r2145s.

Realizations of the “patient class” connectomes are generated in a similar manner, but here

we introduced two clusters of anomalous nodes, indicated by the red nodes in Fig. 3.5b.

These clusters participate in a disease-specific perturbation, where signal was added to

all connections originating in one cluster and terminating in the other. More formally,

let K � r2145s denote the index set corresponding to these disease-specific anomalous

edges, which consist of a complete bipartite graph formed by the anomalous node clusters

C1 � t8, 14, 15, 16, 23u and C2 � t41, 48, 49, 50, 56u, C1, C2 � r66s. Under these notations,

a synthetic subject-level “patient class” connectome is realized by the following procedure:

x � �
tanh

�
xp1q

�
, . . . , tanh

�
xp2145q��T where

$''&''%
xpkq � N

�
µ̂pkq, σ̂2pkq

	
if k R K

xpkq � N
�
µ̂pkq � d � σ̂pkq, σ̂2pkq

	
if k P K .

In other words, if an edge k is a member of the anomalous edge setK, a non-random signal

d � σ̂pkq is added to the sampled edge-value. Here, d denotes Cohen’s effect size (Cohen,

1988), which we set at d � 0.6 for our experiments. Overall, since |C1| � |C2| � 5, we

have |K| � |C1| � |C2| � 25, i.e., there are 25 anomalous edges in the patient group; see
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Figure 3.5: Schematic representations of the synthetic 4-D functional connectome data
generated for the simulation experiments (best viewed in color). (a) Node orientation
representing the “control class” connectome, where the blue nodes indicate the normal
nodes. (b) Node orientation representing the “patient class” connectome, where there
are 25 anomalous edges shared among the two anomalous node clusters indicated in red
(this subfigure is split into two side-by-side figures to improve visibility of the impacted
edges). (c) Binary support matrix indicating the locations of the anomalous edges in the
connectome space.

Fig. 3.5b for a pictorial illustration of the anomalous edge set K in the 2-D node space.

Fig. 3.5c presents a binary support matrix indicating the structure of the anomalous edges

in the 4-D connectome space, with the locations of the anomalous edges specified by the

product set C1 � C2 � r66s � r66s.
It is important to note that the inclusion of the clusters of anomalous nodes is motivated

from the “patchiness assumption” of brain disorders, a view that has been born from

multiple task-based and connectivity-based studies; this point will be expounded in finer

detail in 3.7.1. In short, the “patchiness assumption” is the view that major psychiatric

disorders manifest in the brain by impacting moderately sized spatially contiguous regions,

which is what the clusters of anomalous nodes are intended to mimic in this simulation.

For training the classifiers, we sampled 100 functional connectomes consisting of 50

control samples and 50 patient samples. For evaluating the performance of the classifiers,

we sampled 500 additional functional connectomes consisting of 250 control samples and

250 patient samples.
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3.5.2 Real experimental data: schizophrenia resting state dataset

To further assess the utility of the proposed method, we also conducted experiments on

real resting state scans.

Participants We used the Center for Biomedical Research Excellence (COBRE) dataset4

made available by the Mind Research Network. The dataset is comprised of 74 typically

developing control participants and 71 participants with a DSM-IV-TR diagnosis of

schizophrenia. Diagnosis was established by the Structured Clinical Interview for DSM-IV

(SCID). Participants were excluded if they had mental retardation, neurological disorder,

head trauma, or substance abuse or dependence in the last 12 months. A summary of the

participant demographic characteristics is provided in Table 3.2.

Data collection was performed at the Mind Research Network, and funded by a Center

of Biomedical Research Excellence (COBRE) grant 5P20RR021938/P20GM103472 from

the NIH to Dr. Vince Calhoun. The COBRE data set can also be downloaded from the

Collaborative Informatics and Neuroimaging Suite data exchange tool (COINS)5 (Scott

et al., 2011).

Data Acquisition A multi-echo MPRAGE (MEMPR) sequence was used with the

following parameters: TR/TE/TI = 2530{r1.64, 3.5, 5.36, 7.22, 9.08s/900 ms, flip angle

� 7�, FOV � 256 � 256 mm, slab thickness � 176 mm, matrix size � 256 � 256 � 176,

voxel size � 1 � 1 � 1 mm, number of echoes � 5, pixel bandwidth � 650 Hz, total scan

time � 6 minutes. With 5 echoes, the TR and TI time to encode partitions for the MEMPR

are similar to that of a conventional MPRAGE, resulting in similar GM/WM/CSF contrast.

Resting state data were collected with single-shot full k-space echo-planar imaging (EPI)

with ramp sampling correction using the intercomissural line (AC-PC) as a reference (TR:

2 s, TE: 29 ms, matrix size: 64� 64, 32 slices, voxel size: 3� 3� 4mm3).
4Available at http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html.
5Available at http://coins.mrn.org/dx.
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Healthy Controls Schizophrenia
n Age #male #RH n Age #male #RH

Pre-exclusion 74 35.8� 11.6 51 71 71 38.1� 14.0 57 59
Post-exclusion 67 35.2� 11.7 46 66 54 35.5� 13.1 48 46

Table 3.2: Demographic characteristics of the participants before and after sample
exclusion criteria is applied (RH = right-handed).

Imaging Sample Selection Analyses were limited to participants with: (1) MPRAGE

anatomical images, with consistent near-full brain coverage (i.e., superior extent included

the majority of frontal and parietal cortex and inferior extent included the temporal lobes)

with successful registration; (2) complete phenotypic information for main phenotypic

variables (diagnosis, age, handedness); (3) mean framewise displacement (FD) within two

standard deviations of the sample mean; (4) at least 50% of frames retained after application

of framewise censoring for motion (“motion scrubbing”; see below). After applying these

sample selection criteria, we analyzed resting state scans from 121 individuals consisting of

67 healthy controls (HC) and 54 schizophrenic subjects (SZ). Demographic characteristics

of the post-exclusion sample are shown in Table 3.2.

Preprocessing Preprocessing steps were performed using statistical parametric mapping

(SPM8; www.fil.ion.ucl.ac.uk/spm). Scans were reconstructed, slice-time

corrected, realigned to the first scan in the experiment for correction of head motion, and

co-registered with the high-resolution T1-weighted image. Normalization was performed

using the voxel-based morphometry (VBM) toolbox implemented in SPM8. The high-

resolution T1-weighted image was segmented into tissue types, bias-corrected, registered

to MNI space, and then normalized using Diffeomorphic Anatomical Registration Through

Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007). The resulting deformation fields

were then applied to the functional images. Smoothing of functional data was performed

with an 8 mm3 kernel.

In the above preprocessing steps, since the slices of the functional images were
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not individually registered to the T1-weighted image, there could be motion-induced

misalignments among the individual slices. However, we note that the rest scans were

collected while the participants are in awake state, and the maximum motion in the data is

generally less than the resolution of the voxel. Moreover, since the BOLD signals are

spatially averaged over a 15 mm diameter ROI when generating the connectomes, the

misalignments among the slices of the functional images will only have a negligible impact

on the resulting functional connectomes.

Connectome generation Functional connectomes were generated by placing 7.5 mm

radius nodes representing ROIs encompassing 33 3 � 3 � 3 mm voxels in a regular grid

spaced at 18 � 18 � 18 mm intervals throughout the brain. Spatially averaged time series

were extracted from each of the ROIs. Next, linear detrending was performed, followed

by nuisance regression. Regressors included six motion regressors generated from the

realignment step, as well as their first derivatives. White matter and cerebrospinal fluid

masks were generated from the VBM-based tissue segmentation step noted above, and

eroded using the fslmaths program from FSL to eliminate border regions of potentially

ambiguous tissue type. The top five principal components of the BOLD time series were

extracted from each of the masks and included as regressors in the model – a method

that has been demonstrated to effectively remove signals arising from the cardiac and

respiratory cycle (Behzadi et al., 2007). The time-series for each ROI was then band-passed

filtered in the 0.01 – 0.10 Hz range. Individual frames with excessive head motion were

then censored from the time series. Subjects with more than 50% of their frames removed

by scrubbing were excluded from further analysis, a threshold justified by simulations

conducted by other groups (Fair et al., 2013), as well as by our group. Pearson product-

moment correlation coefficients were then calculated pairwise between time courses for

each of the 347 ROIs. Standard steps in functional connectivity analysis (removing motion

artifacts and nuisance covariates and calculating Pearson’s product moment correlations
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between pairs of nodes) was performed with ConnTool, a functional connectivity analysis

package developed by Robert C. Welsh, University of Michigan.

3.6 Results

3.6.1 Results on synthetic functional connectome data

In order to evaluate the validity of our proposed method, we compared the performance

of four linear classifiers trained on the synthetic functional connectome data described

in Section 3.5.1, where the training set consists of 100 samples with 50 patients and 50

controls. Specifically, we solved the regularized ERM problem (3.1) using the hinge-loss

and the following four regularizers: Lasso, Elastic-net, GraphNet, and fused Lasso. Lasso

and Elastic-net were also solved using ADMM, although the variable splitting scenario and

the optimization steps are different from Algorithm 2. The ADMM algorithm for Elastic-

net is provided in 3.A, and the algorithm for Lasso follows directly from Elastic-net by

setting γ � 0. The ADMM algorithm was terminated when the tolerance level (3.35) fell

below ε � 4 � 10�3 or the algorithm reached 400 iterations. Note that in our experiment,

we let y � �1 indicate the “patient class” and y � �1 indicate the “control class.”

With the exception of Lasso, the regularizers we investigated involve two tuning

parameters: λ ¥ 0 and γ ¥ 0. We tuned these regularization parameters by conducting

a 5-fold cross-validation on the training set over a two-dimensional grid, and tuned Lasso

over a one-dimensional grid. More precisely, the `1 regularization parameter λ ¥ 0 was

tuned over the range λ P t2�11, 2�10.75, . . . , 2�3.5u for all four regularizers. The second

regularization parameter γ ¥ 0 was tuned over the range γ P t2�16, 2�15.5, . . . , 2�2u for

Elastic-net and GraphNet and γ P t2�16, 2�15.5, . . . , 2�5u for fused Lasso6. The final

weight vector estimates are obtained by re-training the classifiers on the entire training

6The grid search region for γ is different for fused Lasso since we observed a clear drop-off in
classification performance for any values of γ higher than the range presented. We found this to be true
for the real data experiment in Sec. 3.6.2 as well; see Fig. 3.7 and Fig. 3.9.
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set using the regularization parameter values tλ, γu that yielded the highest 5-fold cross-

validation classification accuracy. For visualization, the estimated weight vectors are

reshaped into 66 � 66 symmetric matrices with zeroes on the diagonal (although these

are matrices, we will refer to them as “weight vectors” as well), and the classification

accuracies are evaluated on a testing set consisting of 500 samples with 250 patients and

250 controls.

Fig. 3.6a-d displays the estimated weight vectors, and the corresponding testing

classification accuracies are reported under the subcaptions. Here, the fused Lasso

regularized SVM yielded the best classification accuracy at 88.2% using 92 features,

followed by 85.6% from GraphNet which used 104 features; Lasso and Elastic-net both

achieved 77.0% classification accuracy using 230 and 232 features respectively. However,

a perhaps more interesting observation is that fused Lasso and GraphNet were able to

recover the structure of the anomalous edges much more clearly than Lasso and Elastic-net;

this can be seen by comparing the weight vectors estimated by the four regularizers with

the support of the anomalous edges displayed in Fig. 3.6e. While Lasso and Elastic-net

yielded weight vector estimates with salt-and-pepper patterns that are difficult to interpret,

the weight vector estimates for fused Lasso and GraphNet closely resembles the structure

of the anomalous edges.

To quantify the regularizers’ ability to identify the discriminative edges, we generated

a receiver operating characteristic (ROC) curve by thresholding the absolute value of

the elements of the estimated weight vector. The resulting ROC curve for the four

regularizers are plotted in Fig. 3.6f; we emphasize that this ROC curve summarizes the

regularizers’ ability to identify the informative edges, and does not represent classification

accuracy. From this ROC curve, we see that fused Lasso and GraphNet attain the best

performances, achieving a nearly perfect area under the curve (AUC) value of 0.998 and

0.997 respectively, whereas the AUC value for Lasso and Elastic-net were 0.921 and 0.939

respectively. In short, Fig. 3.6a-f demonstrate that fused Lasso and GraphNet not only
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(a) Lasso (classification accuracy = 77.0%) (b) Elastic-net (classification accuracy = 77.0%)
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(c) GraphNet (classification accuracy = 85.6%) (d) Fused Lasso (classification accuracy = 88.2%)
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(e) Support of the anomalous edges
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(f) ROC (edge identification accuracy)

Figure 3.6: Simulation experiment result: training set consists of n � 100 samples with
50 patients and 50 controls (best viewed in color). (a)-(d) Weight vectors (reshaped into
symmetric matrices) estimated from solving the regularized ERM problem (3.1) using the
hinge-loss and four different regularizers. Regularization parameters were tuned via 5-
fold cross-validation on the training set, and classification accuracies were evaluated on a
testing set consisting of 500 samples with 250 patients and 250 controls. (e) Support matrix
indicating the locations of the anomalous edges. (f) ROC curve representing the anomalous
edge identification accuracy (not classification accuracy) of the four regularizers.
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improved classification accuracy, but also exhibited superior performance in recovering the

discriminatory edges with respect to their non-spatially informed counterparts, Lasso and

Elastic-net.

In our next analysis, we studied how classification accuracy and sparsity (i.e., number

of features selected) behave as a function of the regularization parameters tλ, γu. For this,

we conducted a grid search over the same range of λ and γ values presented above, but the

classifiers were trained over the entire training set. Classification accuracy was evaluated

on the same testing set as the above experiment. The result of the grid search is presented

in Fig. 3.7, where the top row plots the testing classification accuracy and the bottom row

plots the number of features selected, both as a function of the regularization parameters

tλ, γu.
To further study the performance of our method, we next conducted a sample complexity

analysis (Gramfort et al., 2011), where we studied how the classification accuracy of the

four regularizers behaved as a function of the training sample size n. This was done

by repeating our earlier experiment of tuning the regularization parameters via 5-fold

cross-validation on the training set, but here we varied the training sample size over the

range n P t20, 40, 60, . . . , 200u; the same testing set of size 500 was used throughout for

evaluating the classification accuracy. Note the labels are balanced for all datasets, i.e., the

training set consists of n{2 patients and n{2 controls, and similarly the testing set consists

of 250 patients and 250 controls. The result of this experiment is reported in Fig. 3.8

and Table 3.3. A key observation from this analysis is that the classification accuracy for

GraphNet and fused Lasso consistently outperformed Lasso and Elastic-net, which can

be attributed to the spatial information injected by these spatially-informed regularizers.

Overall, fused Lasso yielded the best classification accuracy.

It is important to note that the inclusion of the anomalous node clusters in the data

generating process certainly favors fused Lasso and GraphNet. However, we remind the

readers that these anomalous node clusters are not some arbitrary structures we introduced
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Figure 3.7: Grid search result for the simulation experiment (best viewed in color).
All classifiers were learned using 100 training samples consisting of 50 patients and
50 controls. Top two rows: classification accuracy as a function of the regularization
parameters tλ, γu (evaluated from 500 testing samples consisting of 250 patients and
250 controls). Bottom two rows: the number of features selected as a function of the
regularization parameters tλ, γu.
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Testing Classification accuracy (n = training sample size, 500 = test size)
Regularizer n=20 n=40 n=60 n=80 n=100 n=120 n=140 n=160 n=180 n=200

Lasso 60.0% 68.4% 65.4% 72.4% 77.0% 83.0% 82.8% 82.4% 84.4% 85.8%
Elastic-net 59.7% 68.2% 73.2% 70.6% 77.0% 80.4% 83.2% 82.4% 85.2% 87.0%
GraphNet 62.6% 68.6% 75.0% 76.6% 85.6% 86.8% 85.6% 87.4% 88.2% 89.8%

Fused Lasso 62.4% 68.6% 77.8% 77.4% 88.2% 89.4% 88.2% 89.6% 90.8% 90.6%

Table 3.3: The testing classification accuracy of the different regularizers as a function as a
number of training samples n in the simulation experiment (the best classification accuracy
for each n is denoted in bold font). See Fig. 3.8 for a plot of this result.
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Figure 3.8: The testing classification accuracy of the different regularizers as a function as
a number of training samples n in the simulation experiment. Regularization parameters
were tuned via 5-fold cross-validation on the training set. The testing set consists of 500
samples with 250 patients and 250 controls. Table 3.3 reports the actual numbers.

to favor the spatially-informed regularizers, but are motivated from the “patchiness

assumption” of brain disorders, a neuroscientific viewpoint which we discuss in detail in

Sec. 3.7.1. The results from the simulation experiments confirm the intuition that if the

“patchiness assumption” of brain disorders holds true, spatially-informed classifiers can be

a powerful tool for recovering relevant biosignatures.
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3.6.2 Results on resting state fMRI data from a schizophrenia dataset

In this experiment, we examined the performance of linear classifiers trained using

regularized ERM (3.1) with the hinge-loss, and three regularizers were subject to

comparison: Elastic-net, GraphNet, and fused Lasso. The study involved 121 participants,

consisting of 54 schizophrenic subjects (SZ) and 67 healthy controls (HC). We adopt the

convention of letting y � �1 indicate SZ and y � �1 indicate HC subjects. The ADMM

algorithm was terminated when the tolerance level (3.35) fell below ε � 4 � 10�3 or

the algorithm reached 400 iterations. Empirically, we found the algorithm to converge at

around 180�300 iterations. For the two regularization parameters, we conducted a two-

dimensional grid search: the `1 regularization parameter λ ¥ 0 was searched over the

range λ P t2�20, 2�19, � � � , 2�3u for all three regularizers, and the second regularization

parameter γ ¥ 0 was searched over γ P t2�20, 2�19, � � � , 23u for Elastic-net and GraphNet

and γ P t2�20, 2�19, � � � , 2�3u for fused Lasso. Ten-fold cross-validation to evaluate the

generalizability of the classifiers. Furthermore, we analyzed the sparsity level achieved

during the grid search by computing the average number of features selected across the

cross-validation folds.

The resulting testing classification accuracy and sparsity level for different

combinations of tλ, γu are rendered as heatmaps in Fig. 3.9. The general trend observed

from the grid search is that for all three regularization methods, the classification accuracy

improved as more features entered the model. We observed the same trend when using

other loss functions as well, specifically the truncated-least squares loss and the huberized-

hinge loss (using δ � 0.5) function. Although this behavior may be somewhat surprising,

it has been reported that in the p " n setting, the unregularized SVM often performs just

as well as the best regularized case, and accuracy can degrade when feature pruning takes

place (see Ch.18 in Hastie et al. (2009)).

A common practice for choosing the final set of regularization parameters is to select

the choice that gives the highest prediction accuracy. Based on the grid search result
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Figure 3.9: Grid search result for the real resting state data (best viewed in color). Top
row: the classification accuracy evaluated from 10-fold cross-validation. Bottom row:
the average number of features selected across the cross-validation folds. The px, yq-axis
corresponds to the two regularization parameters λ and γ.

reported in Fig. 3.9, one may be tempted to conclude that the prediction models from

GraphNet and fused Lasso are not any better than Elastic-net. However, the ultimate

goal in our application is the discovery and validation of connectivity-based biomarkers,

thus classification accuracy by itself is not sufficient. It is equally important for the

prediction model to be interpretable (e.g., sparse) and inform us about the predictive

regions residing in the high dimensional connectome space. From the grid search, we

found that for all three regularization methods, the classifiers achieved a good balance

between accuracy and sparsity when approximately 3, 000 features (� 5%) were selected

out of p � 60, 031. More specifically, Elastic-net, GraphNet, and fused Lasso achieved

classification accuracies of 73.5%, 70.3%, and 71.9%, using an average of 3076, 3403, and
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3140 features across the cross-validation folds. Corresponding regularization parameter

values tλ, γuwere: t2�6, 2�1u, t2�5, 2�2u, and t2�9, 2�10u. Therefore, we further analyzed

the classifiers obtained from these regularization parameter values.

During cross-validation, we learned a different weight vector for each partitioning of the

dataset. To obtain a single representative weight vector, we took the approach of Grosenick

et al. (2013), computing the elementwise median of the weight vectors across the cross-

validation folds. Note that this approach possesses attractive theoretical properties; see

Grosenick et al. (2013) and Minsker (2013) for a detailed discussion. For visualization and

interpretation, we grouped the indices of these weight vectors according to the network

parcellation scheme proposed by Yeo et al. (2011), and augmented this parcellation with

subcortical regions and cerebellum derived from the parcellation of Tzourio-Mazoyer et al.

(2002) (see Table 3.4); these weight vectors are then reshaped them into 347 � 347

symmetric matrices with zeroes on the diagonal. Furthermore, we generated trinary

representations of these matrices in order to highlight their support structures, where red,

blue, and white denotes positive, negative, and zero entries respectively. The resulting

matrices are displayed in Fig. 3.10.

t

From these figures, one can observe that Elastic-net yields solutions that are scattered

throughout the connectome space, which can be problematic for interpretation. In contrast,

the weight vector returned from GraphNet has a much smoother structure, demonstrating

the impact of the smooth spatial penalty; this is arguably a far more sensible structure from

a biological standpoint. Finally, the weight vector from fused Lasso reveals systematic

sparsity patterns with multiple contiguous clusters present, indicating that the predictive

regions are compactly localized in the connectome space (e.g., see the rich connectivity

patterns present in the intra-visual and intra-cerebellum network). It is noteworthy the fused

Lasso not only appears to identify more densely packed patches of abnormalities in certain

regions, it also generates large areas of relative sparsity (e.g., see somatomotor network
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Figure 3.10: Weight vectors (reshaped into symmetric matrices) generated by computing
the elementwise median of the estimated weight vectors across the cross-validation folds
(best viewed in color). The rows and columns of these matrices are grouped according
to the network parcellation scheme proposed by Yeo et al. (2011), which is reported in
Table 3.4. The top row displays the heatmap of the estimated weight vectors, whereas the
bottom row displays their support structures, with red, blue, and white indicating positive,
negative, and zero entries respectively. In order to highlight the structure of the estimated
weight vectors, the bottom row further plots the degree of the nodes, i.e., the number of
connections a node makes with the rest of the network.

Network Membership Table (� is “unlabeled”)
1. Visual 2. Somatomotor 3. Dorsal Attention 4. Ventral Attention
5. Limbic 6. Frontoparietal 7. Default 8. Striatum
9. Amygdala 10. Hippocampus 11. Thalamus 12. Cerebellum

Table 3.4: Network parcellation of the brain proposed by Yeo et al. (2011). In our real
resting state fMRI study, the indices of the estimated weight vectors are grouped according
to this parcellation scheme; see Fig. 3.10.
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interconnections with other networks, and the nodes that fall outside the augmented Yeo

parcellation scheme, which are labeled “�”). These areas are more sparse in the fused

Lasso map, and this appears to be consistent with existing knowledge of connectivity

alterations in schizophrenia (see Sec. 3.7.3 of the Discussion). In addition, the weight

vector estimate from fused Lasso appears to implicate certain nodes more often in

connectivity alterations. In order to emphasize this point, the bottom row in Fig. 3.10

also plots the degree of the nodes, i.e., the number of connections a node makes with the

rest of the nodes (this is another example of “spatial contiguity” in the 6-D connectome

space).

Finally, in order to convey the regional distribution of the edges recovered by fused

Lasso, we rendered implicated edges on canonical 3-D brains (Fig. 3.11; these figures

were generated with the BrainNet Viewer, http://www.nitrc.org/projects/

bnv/). We focus on the three sets of network-to-network connections, intra-frontoparietal,

frontoparietal-default, and intra-cerebellum, as these three networks have particularly

extensive evidence of their involvement in schizophrenia (see Discussion in Sec. 3.7). It is

noteworthy that lateral prefrontal cortex, an important region in frontoparietal network, is

well represented in the fused Lasso map. Edges involving this region represent 39.3%

of the intra-frontoparietal connections and 43.6% of the frontoparietal-default network

connections. This finding is consistent with previous studies of schizophrenia that

emphasize the importance of this region (see Discussion in Sec. 3.7).

3.6.3 Computational considerations

It is important to note that the benefit of spatial regularization comes with higher

computational expense. To illustrate this point, we ran the ADMM algorithms for Elastic-

net, GraphNet, and fused Lasso for 1000 iterations on the full resting state dataset using

regularization parameter values tλ, γu � t2�15, 2�15u and compared their computation

times (the algorithm for Elastic-net is reported in 3.A, whereas the algorithms for GraphNet
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(node color) (edge color)

Intra-Frontoparietal (6-6)

Frontoparietal-Default (6-7)

Intra-Cerebellum (12-12)

Figure 3.11: Nonzero edge values of the median weight vector generated from the fused
Lasso regularized SVM. For three sets of network-to-network connections, we rendered
abnormal connections separately on anterior, sagittal, and axial views of a canonical
brain. Notice the prominent involvement of lateral prefrontal regions in connections within
frontoparietal network and in connections between frontoparietal network and default
network.
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and fused Lasso are reported in Algorithm 2). This timing experiment was implemented

in MATLAB version 7.13.0 on a desktop PC with Intel quad-core 3.40 GHz CPU and

12 GB RAM. The total computation times for Elastic-net, GraphNet, and fused Lasso

were 17.04 seconds, 96.07 seconds, and 112.45 seconds respectively. The increase in

computation time for GraphNet and fused Lasso stems from the fact that unlike the `2-

penalty in Elastic-net, the spatial penalty }Cw}qq , q P t1, 2u is not separable across the

coordinates of w. To address this difficulty, the variable splitting strategy proposed for

GraphNet and fused Lasso (3.15) contains four constraint variables, which is two more

than the splitting proposed for Elastic-net (3.36); as a consequence, the ADMM algorithms

for GraphNet and fused Lasso contain two additional subproblems. Furthermore, the

computational bottlenecks of the ADMM algorithms for GraphNet and fused Lasso are

the 6-D FFT and inverse-FFT operations (3.34), which are not conducted for the Elastic-

net. Therefore, if achieving high classification accuracy is the central goal, then Elastic-net

would be the most sensible and practical choice, as it yields good classification accuracy

and is by far the fastest among the three regularization methods we studied.

Finally, in order to assess the practical utility of our proposed algorithm with respect

to existing methods, we conducted another timing experiment using the ADMM algorithm

proposed by Ye and Xie (2011), which also solves fused Lasso regularized SVM. It is

important to note that the variable splitting scheme they employ is different from the one we

introduce, and consequently, their method requires the following matrix inversion problem

to be solved for one of the ADMM updates:

wpt�1q Ð �
XTX �CTC � Ip

��1 �
XTY T rv1

ptq�u1
ptqs�rv2

ptq�u2
ptqs�CT rv3

ptq�u3
ptqs�.

As suggested in Ye and Xie (2011), we applied the conjugate gradient algorithm to

numerically solve this large scale matrix inversion problem7. Using the same experimental

7The conjugate gradient algorithm was ran until either the `2-norm of the residual fell below 1� 10�3 or
the algorithm reached 60 iterations.
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protocol as our first timing experiment, we ran Ye and Xie’s algorithm for 1000 iterations on

the full resting state dataset, which resulted in a total computation time of 331.36 seconds,

which is nearly three times longer than the algorithm we proposed. This illustrates the

practical benefit of our proposed variable splitting and data augmentation scheme, which

allows all the ADMM updates to be solved analytically.

3.7 Discussion

Abundant neurophysiological evidence indicates that major psychiatric disorders are

associated with distributed neural dysconnectivity (Konrad and Eickhoff, 2010; Müller

et al., 2011; Stephan et al., 2006). Thus, there is strong interest in using neuroimaging

methods to establish connectivity-based biomarkers that accurately predict disorder status

(Cohen et al., 2011; Klöppel et al., 2012; Sundermann et al., 2013). Multivariate

methods that use whole-brain functional connectomes are particularly promising since

they comprehensively look at the network structure of the entire brain (Castellanos et al.,

2013; Fornito et al., 2012), but the massive size of connectomes requires some form of

dimensionality reduction.

In this work, we developed and deployed a multivariate approach based on the

SVM (Cortes and Vapnik, 1995) and regularization methods that leverage the 6-D spatial

structure of the functional connectome, namely the fused Lasso (Tibshirani et al., 2005)

and the GraphNet regularizer (Grosenick et al., 2013). In addition, we introduced a

novel and scalable algorithm based on the classical alternating direction method (Boyd

et al., 2011; Gabay and Mercier, 1976; Glowinski and Marroco, 1975) for solving the

nonsmooth, large-scale optimization problem that results from the structured sparse SVM.

Note that most existing multivariate methods in the literature rely on some form of a priori

feature selection or feature extraction (e.g., principal component analysis, locally linear

embedding) before invoking some “off the shelf” classifier (e.g., nearest-neighbor, SVM,

linear discriminant analysis) (Castellanos et al., 2013). In contrast, our feature selection
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method is not only spatially informed, but is also embedded (Guyon and Elisseeff, 2003),

meaning that feature selection is conducted together with model fitting. This type of

joint feature selection and classification has been rarely applied in the disease prediction

framework with functional connectomes.

We used a grid-based parcellation scheme for producing whole-brain resting state

functional connectomes (see Section 3.2), and this has two advantages. First, it endows

a natural ordering and a notion of nearest neighbors among the coordinates of functional

connectomes, which is important when defining the neighborhood set for fused Lasso

and GraphNet (one may consider predefining an arbitrary graph structured neighborhood

set, but we prefer an approach that enforces little a priori assumption on the structure

of the predictive regions). Second, the finite differencing matrix corresponding to this

(augmented) functional connectome has a special structure that allows efficient FFT-based

matrix inversion to be applied (this structure is absent when a functional or an anatomical

based parcellation scheme is adopted). When this property is used in tandem with variable

splitting, the inner subproblems associated with the proposed ADMM algorithm admit

closed form solutions that can be carried out efficiently and non-iteratively.

Using a simulation method and a large real-world schizophrenia dataset, we

demonstrate that the proposed spatially-informed regularization methods can achieve

accurate disease prediction with superior interpretability of discriminative features. To

the best of our knowledge, this is the first application of structured sparse methods in the

context of disease prediction using functional connectomes.

3.7.1 Rationale behind spatial regularization

The rationale for using the fused Lasso and GraphNet regularizer can be better

appreciated by considering the “patchiness assumption” – the view that major psychiatric

diseases manifest in the brain by impacting moderately-sized (e.g., 1, 000 mm3 to 30, 000

mm3) spatially contiguous neural regions. This assumption has been repeatedly born out
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across different imaging modalities. In structural studies and task-based activation studies,

theorists have consistently identified mid-sized blobs in maps of differences between

patients and controls (Dickstein et al., 2006; Glahn et al., 2005; Wright et al., 2000).

In studies of functional connectivity, the patchiness assumption has found clear support.

The vast majority of previous connectivity studies are seed-based; they create maps of

connectivity with a single or a handful of discrete seeds, and compare these maps between

patients and controls. These studies nearly always report connectivity between patients

and controls is altered at one or more discrete medium-sized blobs, similar to structural

studies and activation-based studies (Etkin and Wager, 2007; van den Heuvel and Pol, 2010;

Konrad and Eickhoff, 2010).

In addition to actual findings from previous connectivity studies, the patchiness

assumption is justified by careful examination of the hypotheses proposed by theorists.

It is exceedingly common for theorists to state their hypotheses in terms of altered

connectivity between two discrete regions or discrete sets of regions. For example, based on

hypofrontality models of auditory hallucinations in schizophrenia, Lawrie and colleagues

(Lawrie et al., 2002) predicted that individuals with schizophrenia would exhibit decreased

connectivity between dorsal lateral prefrontal cortex (DLPFC; Brodman’s areas 9 and 10),

involved in top-down control, and superior temporal gyrus (STG), which is involved in

auditory processing. Both DLPFC and STG are large structures, and they encompass

roughly a dozen nodes each in our grid-based parcellation. If Lawrie and colleagues’

conjecture is correct, then we should observe alterations in connectivity between the large

set of connections that link the nodes that fall within the respective brain structures.

Moreover, Lawrie and colleagues’ hypothesis implies that the predicted changes will be

relatively discrete and localized to connections linking these two regions. For example, the

finding of salt and pepper changes throughout the connectome would of course not support

their conjecture. Moreover, their hypothesis predicts that even regions that are relatively

close to dorsal lateral prefrontal cortex, for example precentral gyrus, involved in motor
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processing, do not change their connectivity with STG – the connectivity changes they

predict are relatively localized and discrete.

In addition to hypotheses about region-to-region abnormalities, the patchiness

assumption is also evident in recent network models of mental disorders. In recent years,

theorists have recognized that the human brain is organized into large-scale networks that

operate as cohesive functional units (Bressler and Menon, 2010; Laird et al., 2011; Yeo

et al., 2011). Each individual network is composed of a set of discrete regions, and each

region itself encompasses multiple nodes given a standard, suitably dense parcellation

scheme (such as our grid-based scheme). Concurrent with the rise of this network

understanding of neural organization, theorists have proposed models in which psychiatric

disorders are seen to involve perturbations in the interrelationships between individual

pairs of network, where the remainder of the network interrelationships remain essentially

unaffected (Lynall et al., 2010; Menon, 2011; Tu et al., 2013). If these network models of

disease are correct, then using functional connectivity methods, we should discover that

in a psychiatric disease that is proposed to affect the interrelationship between network A

and network B, the set of regions that make up network A change their relationship with

the set of regions in network B. The regions that abut the regions in networks A and B are,

by hypothesis, not proposed to alter their connectivity. In connectomic space, this pattern

would be represented as patchy changes in the sets of connections linking the blobs of

contiguous nodes that represent networks A and B, with the remainder of the connectome

remaining largely unaffected.

In sum, actual results from structural, task-based, and connectivity studies suggest the

patchiness assumption is reasonable, while close examination of the form of the hypotheses

routinely made by psychiatric researchers suggests the assumption underlies theorists’

conjectures about disease processes. If these claims are correct, then this provides a

powerful rationale for both the fused Lasso and GraphNet penalty. Fused Lasso penalizes

abrupt discontinuities, favoring the detection of piecewise constant patches in noisy
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contexts. Similarly, GraphNet also promotes spatial contiguity, but encourages the clusters

to appear in smoother form. Given that there is a solid basis for expecting that the disease

discriminative patterns in functional connectomes will consist of spatially contiguous

patches, rather than consisting of salt-and-pepper patterns randomly dispersed throughout

the brain, then fused Lasso and GraphNet are well very positioned to uncover these patchy

discriminative signatures. In addition, the spatial coherence promoted by these spatially-

informed regularizers helps decrease model complexity and facilitates interpretation.

3.7.2 Simulation study and interpretability of results

The analytic intuitions discussed above were confirmed in our simulation study. Here,

we imposed “patchiness” in the ground truth by introducing clusters of anomalous nodes in

the synthetic functional connectomes that represent the patient group (see Section 3.5.1).

For comparison, we learned SVM classifiers from the training data using the hinge-loss

and one of the following regularizers: Lasso, Elastic-net, GraphNet, and fused Lasso. Our

results indicate that fused Lasso and GraphNet not only improved classification accuracy,

but also exhibited superior performance in recovering the discriminatory edges with respect

to their non-spatially informed counterparts, Lasso and Elastic-net.

3.7.3 Application: classifying healthy controls vs. schizophrenic subjects

Our results indicate that at similar sparsity level, the classification accuracy with

Elastic-net, GraphNet, and fused Lasso are comparable. However, studying the structure

of the learned weight vectors reveals the key advantage of GraphNet and fused Lasso: they

facilitate interpretation by promoting sparsity patterns that are spatially contiguous in the

connectome space. Fused Lasso recovers highly systematic sparsity patterns with multiple

spatially contiguous clusters, including nodes with diffuse connectivity profiles, which is

one manifestation of the “patchiness assumption” discussed earlier. On the other hand, the

smooth sparsity structure that GraphNet recovers is biologically more sensible than the salt-
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and-pepper like structure yielded by the Elastic-net. These decreases in model complexity

come without sacrificing prediction accuracy, which fits well with the principle of Occam’s

razor – given multiple equally predictive models, the simplest choice should be selected.

Finally, additional evidence that fused Lasso recovered more interpretable

discriminative features for the schizophrenia dataset comes from comparing visualizations

of the respective weight vectors from the three regularizers (see Fig. 3.10). The map

of the fused Lasso support shows more prominent and clearly localized alterations in

connectivity involving frontoparietal network, default network, and cerebellum, among

other regions. These networks also exhibited increased node degree, indicating diffuse

connectivity alterations with other networks. Interestingly, these networks are among

the most commonly implicated in schizophrenia. Frontoparietal network, which has

multiple important hubs in prefrontal cortex, is involved in executive processing and

cognitive control (Cole et al., 2013), and has been shown to exhibit abnormal activation

(see Minzenberg et al. (2009) for a quantitative meta-analysis) and connectivity (Repovs

et al. (2011); Tu et al. (2013); see Fornito et al. (2012) for a review) in schizophrenia.

Fused Lasso also recovered altered connectivity between frontoparietal network and default

mode network, an important brain network involved in autobiographical memory and

internally generated mental simulations (Buckner et al., 2008; Raichle et al., 2001). The

weight vectors shown in Fig. 3.10 and the 3-D brains shown in Fig. 3.11 evidence a

substantial number of aberrant connections between frontoparietal network and default

network, with a predominance of reduced connectivity in schizophrenia. Frontoparietal

network and default network become more interconnected throughout childhood and

adolescence (Anderson et al., 2011; Fair et al., 2007), which might reflect development

of top-down cognitive control by frontoparietal regions over default network. Reduced

connectivity between these two networks is among the most commonly observed findings

in connectivity research in schizophrenia (Jafri et al., 2008; Repovs et al., 2011; Woodward

et al., 2011; Zhou et al., 2007a,b), and has been proposed to reflect disruptions and/or
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delays in normal trajectories of maturation (Repovs et al., 2011). It is also noteworthy

that a sizable portion of the aberrant connection within frontoparietal cortex and between

frontoparietal network and default network involved dorsal lateral prefrontal cortex (see

results in Sec. 3.6.2). This region is perhaps the most frequently described as being

abnormal in schizophrenia (Bunney and Bunney, 2000; Callicott et al., 2000; Zhou et al.,

2007a). A third network highlighted by fused Lasso is cerebellum, which is featured in

the influential ‘cognitive dysmetria’ hypothesis of schizophrenia (Andreasen et al., 1998).

Abnormalities in cerebellum have been found in post-mortem (Weinberger et al., 1980),

structural (Wassink et al., 1999), and functional connectivity studies (Mamah et al., 2013).

Fused Lasso also tended to generate more sparsity in regions of the connectome that

are not associated with schizophrenia pathology. For example, connectivity abnormalities

in somatomotor network, and in particular its interconnections with attention network

and frontoparietal network, have as far as we know not been described in previous

schizophrenia connectivity studies. The same is true of the nodes that fell outside the

Yeo parcellation augmented with subcortical regions and cerebellum. These too have not

been associated with schizophrenia pathology and tended to be sparser with fused Lasso.

Overall, fused Lasso appeared to identify regions known from prior research to be involved

in schizophrenia and appeared to generate more sparsity outside of these regions, providing

some corroboration for the interpretability of fused Lasso findings.

3.7.4 Future Directions

While the spatially-informed disease prediction framework we introduced is capable of

yielding predictive and highly interpretable results, there are several open questions that

remain for future investigation. For example, with little modification, the variable splitting

and the data augmentation procedure we introduced should be applicable to the isotropic

TV penalty, which also promotes spatial contiguity (Wang et al., 2008b). This is important

because on one hand, fused Lasso lacks the rotational invariance property of the isotropic
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TV penalty, whereas on the other hand, isotropic TV penalty is known to introduce artifacts

at corner structured regions (Birkholz, 2011; Grasmair and Lenzen, 2010). Therefore,

fused Lasso and isotropic TV penalty can both potentially be problematic for connectomic

investigations, and a thorough comparison between these two penalties with our functional

connectome data would be an important direction for future investigation. In addition, there

are multiple works that have introduced a framework for achieving structured sparsity by

coupling the isotropic TV penalty with the differentiable logistic loss function (Baldassarre

et al., 2012; Gramfort et al., 2013; Michel et al., 2011). Although our method has the

advantage that it can handle non-differentiable loss functions and hence the SVM, the

algorithm employed in the above works enjoy a faster rate of convergence than the ADMM

algorithm we employ (Beck and Teboulle, 2009; He and Yuan, 2012). Investigating ways

to accelerate our proposed ADMM algorithm will be important for future work (Deng and

Yin, 2012; Goldstein et al., 2012).

There are several other interesting extensions that remain for future research as well.

First, functional and anatomical parcellations (which lack a grid structure and hence the

BCCB structure) are often used in connectomic investigations. Future work should extend

our methodology so the ADMM subproblems can be solved efficiently in analytic form

even when a irregularly structured parcellation scheme is used (although the ADMM

algorithm proposed by Ye and Xie (2011) is applicable in this setup, their approach requires

an iterative update to be used to numerically solve one of the ADMM subproblems).

In addition, we used Pearson’s correlation coefficient as the measure of dependence

between brain regions when constructing the functional connectomes. Since Pearson’s

correlation can only capture linear dependencies, an interesting future work would be to

study the performance of our classifiers when nonlinear dependence measures such as

mutual information is used (however, we note that it has been reported that nonlinear

measures of dependence may not be necessary for fMRI data; see Hlinka et al. (2011);

Richiardi et al. (2013)). Further, the symmetric matrices presented in Fig. 3.10 for
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interpreting the weight vectors are not positive semidefinite in general, which could limit

its interpretability. Hence another important avenue for future exploration would be to

modify our method so that these matrices are guaranteed to be positive semidefinite. One

immediate way to do this is to convert the ERM problem (3.1) into a matrix optimization

problem with a positive semidefinite constraint (Henrion and Malick, 2012).

With the emergence of various data sharing projects in the neuroimaging community

such as Autism Brain Imaging Data Exchange (ABIDE) (Di Martino et al., 2013), ADHD-

200 (The ADHD-200 Consortium, 2012), 1000 Functional Connectomes Project, and the

International Neuroimaging Data-sharing Initiative (INDI) (Mennes et al., 2013), there is a

need for a principled framework to handle the heterogeneity introduced by aggregating the

data from multiple imaging centers. Toward this end, we are seeking ways to combine

the currently presented spatial regularization scheme and multi-task learning (Caruana,

1997), where the tasks correspond to the imaging centers from which the resting state

scans originate. One particular approach we have in mind for this is to replace the `1-

regularizer in the objective function (3.5) with the `1{`2 mixed-norm regularizer (Gramfort

et al., 2012; Lounici et al., 2009), which encourages the weight vectors across the different

tasks to share similar sparsity patterns (a structure often referred to as block-sparsity). Our

proposed ADMM algorithm can easily be modified to handle this change, as this simply

amounts to replacing the scalar soft-threshold operator for the v2 update (3.28) with the

vector soft-threshold operator (see Gramfort et al. (2012)). Finally, a more sophisticated

approach for parameter tuning is needed, ideally a model selection strategy that provides

statistical guarantees (Cawley and Talbot, 2010). Resampling-based approaches (Bach,

2008a; Varoquaux et al., 2012) such as stability selection (Meinshausen and Bühlmann,

2010) may be considered, albeit these methods can be computationally demanding in high

dimension. Finally, developing an intuitive and accurate representation of the predictive

edges in brain space remains as an open challenge for connectomic studies, as well

as devising a performance measure that quantifies both accuracy and interpretability of
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different classifiers.

3.8 Conclusion

In this work, we introduced a regularized ERM framework that explicitly accounts

for the 6-D spatial structure in the connectome via the fused Lasso and the GraphNet

regularizer. We demonstrate that our method recovers sparse and highly interpretable

patterns across the connectome while maintaining predictive power, and thus could

generate new insights into how psychiatric disorders impact brain networks.

3.A ADMM updates for Elastic-net

The unconstrained formulation of the Elastic-net regularized ERM problem reads

arg min
wPRp

1

n
LpY Xwq � λ }w}1 �

γ

2
}w}2

2 ,

which can be converted into the following equivalent constrained formulation:

minimize
w,v1v2

1

n
Lpv1q � λ }v2}1 �

γ

2
}w}2

2 subject to Y Xw � v1, w � v2 . (3.36)

With this variable splitting scheme, the correspondence with the ADMM formulation (3.6)

is
f̄px̄q � γ

2
}w}2

2 , ḡpȳq � 1

n
Lpv1q � λ }v2}1

Ā �

��� Y X

I

��� , x̄ � w, B̄ � �I, ȳ �

���v1

v2

��� .

and the ADMM updates for x̄ (3.10) and ȳ (3.11) decomposes into subproblems

wpt�1q Ð arg min
w

#
γ

2
}w}2 � ��Y Xw � �

v1
ptq � u1

ptq���2 � ��w � �
v2

ptq � u2
ptq���2

+
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v1
pt�1q Ð arg min

v1

"
1

n
Lpv1q � ρ

2

��v1 �
�
Y Xwpt�1q � u1

ptq���2
*

v2
pt�1q Ð arg min

v2

!
λ }v2}1 �

ρ

2

��v2 �
�
wpt�1q � u2

ptq���2
)
.

The update for w is

wpt�1q Ð �
ρXTX � rγ � ρsIp

��1
�
ρXTY T rv1

ptq � u1
ptqs � ρrv2

ptq � u2
ptqs

	

which can be solved efficiently via inversion Lemma (3.23). The update for v1 and v2 is

identical to (3.19) and (3.20) described in Sec. 3.4.3, which can be solved via coordinate-

wise proximal operators (3.27) and (3.28). The dual variable update (3.12) is a trivial

matrix-vector multiplication.

3.B Details on the data augmentation scheme

As discussed in Sec. 3.4.2, the augmentation matrix A P Rp̃�p aims to rectify the

irregularities in the Laplacian matrix CTC. To gain a better understanding about A, it is

best to think of it as a concatenation of two matrices,A � A2A1. We refer toA1 P Rp��p

andA2 P Rp̃�p� as the first level and the second level augmentation matrix respectively.

Role of A1 The first source of irregularities is that the nodes defining the functional

connectome x P Rp are placed only on the brain, not the entire rectangular FOV. As a

consequence, x only contains edges among the nodes placed on the support of the brain

(represented by the green nodes in Fig. 3.12). To fix these irregularities,A1 pads extra zero

entries on x to create an intermediate augmented connectome x� � A1x, where x� P Rp� .

Here, x� can be treated as if the nodes were placed throughout the entire rectangular FOV;

the red nodes in Fig. 3.12 represent a set of ghost nodes that were not originally present.

The coordinates of x� contain all possible edges between the ghost nodes and the original

set of nodes, where the edges connected with the ghost nodes have zero values.
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Role of A2 The second source of irregularities is that x (and x�) lack a complete

6-D representation since it only contains the lower-triangular part of the cross-correlation

matrix. Consequently, the coordinates of x� lack symmetry, as their entries only contain

edges for the following set of 6-D coordinate points: tprj, rkq | j ¡ ku, where rj �
pxj, yj, zjq and rk � pxk, yk, zkq are the 3-D locations of the node-pairs defining the

edges. Matrix A2 fixes this asymmetry by padding zero entries to fill in for the 6-D

coordinate points tprj, rkq | j ¤ ku, which correspond to the diagonal and the upper-

triangular entries in the cross-correlation matrix that were disposed due to redundancy

(see Fig. 3.13). Applying A2 on x� � A1x provides the desired augmented functional

connectome x̃ � A2x
� � Ax, and similarly the augmented weight vector rw � Aw.

Here, x̃ and rw contain the full set of 6-D coordinate points tprj, rkq | j, k P rdsu, where d

is the total number of nodes on the rectangular FOV including the ghost nodes (i.e., both the

green and the red nodes in Fig. 3.12). Note that dimension p̃ of the augmented functional

connectome is p̃ � d2, and the total number of adjacent coordinates ẽ in this augmented

6-D connectome space is ẽ � 6p̃.

t
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(a) Original Functional connectome

looooooooooooomooooooooooooon

x��A1x

(b) Intermediate augmented connectome

Figure 3.12: The effect of the first level augmentation matrix A1. Left: the original
functional connectome x only contains edges between the nodes placed on the support
of the brain (represented by the green nodes). Right: A1 pads extra zero entries on x to
create the intermediate augmented connectome x�. Here, x� can be treated as if the nodes
were placed throughout the entire rectangular FOV (the red bubbles represent nodes that
are outside the brain support), as its entries contain all possible edges between the green
and red nodes; the edges that connect with the red nodes all have zero values.
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(b) Augmented functional connectome

Figure 3.13: The effect of the second level augmentation matrix A2. The entries of
x� represent edges localized by 6-D coordinate points tprj, rkq | j ¡ ku, where rj �
pxj, yj, zjq and rk � pxk, yk, zkq are the 3-D locations of the node pairs defining the edges.
A2 fixes the asymmetry in the coordinates of x� by padding zero entries to accommodate
for the 6-D coordinate points tprj, rkq | j ¤ ku; these are the diagonal and the upper-
triangular entries in the cross-correlation matrix that were disposed for redundancy.
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CHAPTER 4

Multisite Disease Classification with Functional

Connectomes via Multitask Structured Sparse SVM

4.1 Introduction

There is great interest in identifying neuroimaging biomarkers of psychiatric disorders,

such as attention-deficit/hyperactivity disorder (ADHD), autism, Alzheimer’s disease, and

schizophrenia. Such discovery will not only deeply extend our knowledge about the

functional architecture of the brain, but also offers the potential for an objective, machine-

based diagnostic system to enter the clinical realm. To this end, multiple data-sharing

initiatives have been launched in the neuroimaging field (Poldrack et al., 2013; Poline et al.,

2012), including the ADHD-200, Alzheimer’s Disease Neuroimaging Initiative (ADNI),

Autism Brain Imaging Data Exchange (ABIDE), and Enhanced NKI-Rockland Sample

dataset (Di Martino et al., 2013; Mennes et al., 2013; Nooner et al., 2012; The ADHD-

200 Consortium, 2012; Weiner et al., 2010). These community-wide collaborative efforts

offer unique potential, as they foster reproducible research and allow us to examine the

association between diseases and biomarkers with unprecedented sample size.

A significant body of the literature indicates that several major psychiatric disorders are

associated with topological alternations in the brain’s functional network (Castellanos et al.,

This chapter is based on Watanabe et al. (2014c)
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2013; Fox and Greicius, 2010). In particular, functional connectivity, which is measured

by the statistical dependencies among the blood oxygenation level dependent (BOLD)

signal between remote brain regions (Biswal et al., 1995), have played a critical role in

helping us better understand the neurobiological mechanism of various disorders (Fox and

Raichle, 2007; Greicius et al., 2003). Motivated by these findings, in this work we are

interested in the supervised learning problem of binary classification, where the goal is to

predict the diagnostic status of an individual using functional connectomes, which are high

dimensional correlation maps derived from resting-state functional magnetic resonance

imaging (fMRI) (Varoquaux and Craddock, 2013). However, multisite data present new

challenges for this, as the data aggregation process introduces several sources of systematic

confounds, such as variability in the scanner quality, image acquisition protocol, subject

demographics, and other sources of experimental variations. In order to effectively make

use of multisite data, it is important to train the classifiers in a way that accounts for these

site-specific heterogeneities. To this end, we propose a classification framework that adopts

a multitask learning approach (Argyriou et al., 2008; Caruana, 1997; Obozinski et al.,

2010).

The idea behind multitask learning is to jointly train multiple tasks in order to improve

classification performance, under the assumption that the tasks are related to each other

in some sense. Recently, multitask learning methods have been successfully applied in

brain decoding (Marquand et al., 2014; Rao et al., 2013), where the participants from

a multi-subject fMRI study are treated as the tasks. The underlying assumption here

is that the brain regions that are activated from a stimulus will share similar patterns

across different tasks/subjects. In contrast to these works, the method we propose in this

work treats the sites from which the resting state fMRI scans are collected as the tasks.

In particular, we present multitask structured sparse support vector machine (SVM), a

multitask extension to the connectome-based disease classification framework introduced

in our recent work (Watanabe et al., 2014a). Unlike existing methods, our approach adopts
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a penalization scheme that accounts for the following two-way structure that exists in a

multisite connectomic dataset: (1) the 6-D spatial structure in the functional connectomes

that arises from pairs of points in 3-D brain space, and (2) the inter-site structure captured

via the multitask `1{`2-penalty, which allows consistent model interpretation to be made by

selecting the same set of informative features across sites (Chen et al., 2012a; Obozinski

et al., 2010). In addition, to address the large dimensionality of functional connectomes,

we introduce a scalable optimization algorithm based on the classical alternating direction

method (Boyd et al., 2011; Gabay, 1983; Glowinski and Marroco, 1975).

To demonstrate the utility of our method, we perform experiments on the publicly

available ADHD-200 dataset, a multisite dataset that contains resting state scans from

seven contributing sites. Our empirical results not only shows that the proposed

multitask approach can lead to improvement in classification performance, but also yields

interpretable models that have consistent representation of informative features across sites.

Notation We let lowercase and uppercase bold letters denote vectors and matrices,

respectively. For every positive integer n P N, we let In P Rn�n denote the identity

matrix. Given a matrix A P Rn�p, we let AT denote its matrix transpose, and AH

denote its Hermitian transpose. Given w,v P Rn, we invoke the standard notation

xw,vy :� °n
i�1wivi to express the inner product in Rn. We also let }w}p � p°n

i�1w
p
i q1{p

denote the `p-norm of a vector, p ¥ 1, with the absence of subscript indicating the standard

Euclidean norm, }�} � }�}2.

4.2 Material and Methods

4.2.1 Data and Preprocessing

Subjects We used the publicly available ADHD-200 competition data (The ADHD-

200 Consortium, 2012), a multisite dataset that contains resting state scans of subjects

diagnosed as either typically developing controls (TDC) or with ADHD. The dataset
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consists of a training set and a validation test set collected across seven sites: New

York University Child Study Center, Beijing Normal University, University of Pittsburgh,

Oregon Health and Science University, NeuroImage, Washington University at St. Louis,

and Kennedy Krieger Institute1. Table 4.1 and 4.2 provide a summary of the demographic

characteristics for each site in the training and validation test set. Informed consent was

provided from all subjects, and study procedures complied with the Human Investigation

Review Boards at respective sites. Detailed reporting of phenotypics, assessment protocols,

and scanning parameters is available in Fair et al. (2013).

Data acquisition All participants were scanned on 3.0 Tesla scanners. Resting state

scans used standard resting-connectivity T2�-weighted echo-planar imaging, whereas the

structural scans used standard T1-weighted MPRAGE imaging. All imaging data used are

publicly available at the Neuroimaging Informatics Tools and Resources Clearinghouse

(NITRC) (http://fcon_1000.projects.nitrc.org/indi/adhd200).

Image sample selection Analyses were limited to participants with the following: (1)

MPRAGE anatomical images with consistent near full brain coverage (i.e., superior

extent included the majority of frontal and parietal cortex and inferior extent included

the temporal lobes) with successful registration; (2) complete phenotypic information for

main phenotypic variables (diagnosis, age, gender, and handedness), although imputation

was allowed for missing intelligence quotient (IQ) data (see below for details); (3) full IQ

(FIQ) within two standard deviation (SD) of the overall sample mean; (4) mean framewise

displacement (FD) within two SD of the overall sample mean.

After applying these sample selection criteria, we analyzed resting state scans from

628 individuals (TDC� 416, ADHD� 212) in the training set and 106 subjects (TD� 65,

ADHD� 41) in the test set. Table 4.1 and 4.2 present the basic demographic characteristics

1Participants from Brown site are excluded from our study, as the diagnostic labels for these subjects have
not been released.
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Typically Developing Controls ADHD
Site n Age % Male IQ n Age % Male IQ

Pre-exclusion—

KKI 61 10.3� 1.3 55.7 111.5� 10.3 22 10.2� 1.6 54.5 106.0� 15.2

NeuroImage 22 17.3� 2.6 50.0 111.2 22 17.0� 2.8 81.8 111.2

NYU 93 12.1� 3.1 45.2 110.7� 13.9 116 11.3� 2.7 77.6 106.4� 14.0

OHSU 41 8.9� 1.2 43.9 118.7� 12.6 37 8.8� 1.0 70.3 108.5� 13.9

Peking Univ. 116 11.7� 1.7 61.2 118.1� 13.3 78 12.4� 2.0 91.0 105.4� 13.2

Pittsburgh 89 15.1� 2.9 51.7 109.8� 11.5 — NA —

Wash. U 59 11.5� 3.9 52.5 116.0� 14.1 — NA —

Total 481 12.2� 3.3 52.6 113.8� 12.9 275 11.6� 3.0 78.9 106.7� 13.3

Post-exclusion—

KKI 55 10.4� 1.3 56.4 111.1� 10.7 19 10.4� 1.6 47.4 105.1� 14.8

NeuroImage 16 17.1� 2.3 50.0 111.2 12 16.6� 2.4 91.7 111.2

NYU 78 12.2� 3.2 44.9 111.6� 11.5 88 11.4� 2.8 75.0 108.7� 12.9

OHSU 35 9.1� 1.2 42.9 117.3� 11.9 27 9.0� 1.0 77.8 109.2� 12.5

Peking Univ. 108 11.8� 1.7 62.0 117.3� 12.0 66 12.5� 2.0 90.9 106.9� 12.2

Pittsburgh 78 15.3� 2.9 52.6 111.2� 10.5 — NA —

Wash. U 49 11.6� 3.9 53.1 115.5� 13.6 — NA —

Total 419 12.3� 3.2 53.2 113.9� 11.7 212 11.6� 2.8 78.8 108.0� 12.4

Table 4.1: Sample characteristics of the participants in the training set, shown both before
and after application of exclusion and quality control criteria. Acronyms are: KKI =
Kennedy Krieger Institute, NYU = New York University, OHSU = Oregon Health and
Science University, Wash. U = Washington University in St. Louis.

of the pre-exclusion and post-exclusion sample for the training set and validation test set,

respectively. Of note, for participants lacking a F4 or F2 IQ score, full IQ was estimated

by computing the average of the participant’s performance and verbal IQ scores. For the

NeuroImage site which lacked IQ information in the training set, the mean IQ across the

other sites was imputed.

Preprocessing Preprocessing steps were performed using statistical parametric mapping

(SPM8; www.fil.ion.ucl.ac.uk/spm). Scans were reconstructed, slice-time

corrected, realigned to the first scan in the experiment for correction of head motion, and
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Typically Developing Controls ADHD
Site n Age % Male IQ n Age % Male IQ

Pre-exclusion—

KKI 8 10.6� 1.2 87.5 115.0� 5.8 3 8.7� 0.7 100 110.7� 13.3

NeuroImage 14 20.4� 3.3 7.1 100.6� 14.4 11 17.0� 2.2 100 93.3� 16.5

NYU 12 11.8� 3.0 66.7 114� 13.4 29 10.3� 2.5 69.0 103� 13.6

OHSU 28 9.6� 1.3 46.4 113.2� 12.8 6 10.1� 1.4 66.7 117.0� 12.8

Peking Univ. 27 10.2� 1.9 48.2 117.2� 12.5 24 11.1� 2.0 79.2 108.1� 12.9

Pittsburgh 5 14.3� 0.6 80.0 109.6� 15.3 4 15.4� 1.4 75.0 103.8� 11.0

Wash. U — NA — — NA —

Total 94 12.0� 4.2 48.9 112.7� 13.5 77 11.7� 3.2 77.9 104.7� 14.6

Post-exclusion—

KKI 5 10.3� 1.2 80.0 114.8� 6.5 3 8.7� 0.7 100 110.7� 13.3

NeuroImage 11 20.8� 2.9 9.1 102.2� 15.1 5 17.2� 2.7 100 95.6� 19.5

NYU — NA — 2 11.5� 3.1 100 115.5� 4.9

OHSU 22 9.6� 1.3 50.0 112.8� 11.1 5 9.9� 1.4 60.0 118.0� 14.1

Peking Univ. 22 10.3� 2.0 40.9 117.0� 8.3 22 11.3� 2.0 81.8 107.7� 9.8

Pittsburgh 5 14.3� 0.6 80.0 109.6� 15.3 4 15.4� 1.4 75.0 103.8� 11.0

Wash. U — NA — — NA —

Total 65 12.1� 4.5 44.6 112.3� 11.9 41 12.1� 3.1 82.9 107.7� 12.8

Table 4.2: Sample characteristics of the participants in the validation test set, shown both
before and after application of exclusion and quality control criteria.

co-registered with the high-resolution T1-weighted image. Normalization was performed

using the voxel-based morphometry (VBM) toolbox implemented in SPM8. The high-

resolution T1-weighted image was segmented into tissue types, bias-corrected, registered

to MNI space, and then normalized using Diffeomorphic Anatomical Registration Through

Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007). The resulting deformation fields

were then applied to the functional images. Smoothing of functional data was performed

with an 8 mm3 kernel.

Connectome generation To generate the whole-brain resting state functional

connectomes, we employed the grid-based parcellation scheme similar to our previous
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studies (Kessler et al., 2014; Sripada et al., 2014; Watanabe et al., 2014a) (see Watanabe

et al. (2014a) for an extensive discussion on the advantages provided by this parcellation

scheme). More specifically, we placed 347 non-overlapping nodes throughout the brain,

where each of these nodes represents a pseudo-spherical ROI with a radius of 7.5 mm

encompassing 33 3�3�3 mm voxels in a regular grid spaced at 18�18�18 mm intervals.

Fig. 4.1 provides a pictorial illustration of our parcellation scheme, with the color of the

nodes indicating network membership proposed by Yeo et al. (2011).

Spatially averaged time series were next extracted from each of the ROIs. Next, linear

detrending was performed, followed by nuisance regression. Regressors included six

motion regressors generated from the realignment step, as well as their first derivatives.

White matter and cerebrospinal fluid masks were generated from the VBM-based tissue

segmentation step noted above, and eroded using the fslmaths program from FSL to

eliminate border regions of potentially ambiguous tissue type. The top five principal

components of the BOLD time series were extracted from each of the masks and included

as regressors in the model – a method that has been demonstrated to effectively remove

signals arising from the cardiac and respiratory cycle (Behzadi et al., 2007). The time-series

for each ROI was then band-passed filtered in the 0.01 – 0.10 Hz range. Pearson product-

moment correlation coefficients were then calculated pairwise between time courses for

each of the 347 ROIs, resulting in a feature vector x of length
�

347
2

� � 60, 031 which serves

as the feature vector for our disease classification framework.

4.2.2 Supervised Learning and the Multitask Framework

In this work, we propose a penalized empirical risk minimization framework for

learning a separate yet related classification model for each site. More formally, suppose we

are given K supervised learning tasks, where for each task indexed by k � 1, � � � , K, we

are given nk input and output pairs pxk1, yk1q, � � � , pxknk , yknkq P Rp�t�1u. In the context of

our work, xki and yki represent the functional connectome and the diagnostic label of the i-
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(a) Saggital (b) Coronal

(c) Axial

Unlabeled×

Visual1

Somatomotor2

Dorsal Attention3

Ventral Attention4

Limbic5

Frontoparietal6

Default7

Striatum8

Amygdala9

Hippocampus10

Thalamus11

Cerebellum12

(d) Node Labels

Figure 4.1: Sagittal, coronal, and axial slices depicting the coverage of our brain
parcellation scheme, where each nodes represents an ROI encompassing 33-voxels.
Overall, there are 347 non-overlapping nodes placed throughout the entire brain. These
nodes are placed on a grid with 18 mm spacing between node centers in the X , Y , and Z
dimensions. The color of the nodes represents the network membership according to the
parcellation scheme proposed by Yeo et al. (2011), as outlined in (d).

th subject from the k-th site, respectively. The objective is to simultaneously learn K linear

classifiers of the form fkpxq � signpxwk,xyq, where w1, . . . ,wK P Rp are task-specific

weight vectors obtained by solving the following optimization problem:

arg min
w1,...,wKPRp

Ķ

k�1

1

nk

nķ

i�1

`
�
yki xwk,xki y

��Rpw1, . . . ,wKq . (4.1)

The first term in (4.1) is the pooled empirical risk of a margin-based loss function

` : R Ñ R�, which quantifies the quality of the model fit across all tasks. Traditional

loss functions for classification include hinge, logistic, and exponential loss. In this work,
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we employ the hinge-loss `ptq � maxp1�t, 0q from the well known SVM classifier (Cortes

and Vapnik, 1995), although other convex margin-based losses can be used as well. The

second term R : RpK Ñ R� in (4.1) is a penalty function that enforces certain kind of

structure on the weight vectors, thereby allowing us to encode prior knowledge about the

data. For brevity, let us define a functional LpY kXkwkq :� °nk
i�1 `pyki xwk,xki yq which

aggregates the empirical loss from the k-th task; here Xk P Rnk�p denotes the design

matrix for the k-th task and Y k P t�1, 0,�1unk�nk is defined as Y k :� diagpyk1 , . . . , yknkq.
Also for conciseness, letw PRpK denote the vector obtained by stacking the weight vectors

twkuKk�1 together, which lets us rewrite the penalty term in (4.1) asRpwq.
In a high dimensional setup where the number of features greatly exceeds the sample

size, the following `1-penalty known as the Lasso (Tibshirani, 1996) has been commonly

applied in various applications:

Rpwq � }w}1 �
Ķ

k�1

p̧

j�1

|wkj | . (4.2)

Lasso possesses the important variable selection property, which promotes sparsity by

setting many of the weight vector coefficients to zero, which can enhance prediction

performance and interpretability by eliminating redundant features that only contribute

as noise. Sparsity is also appealing from a connectomic point of view, as it is widely

recognized that psychiatric disorders only impact a subset of the brain network, a view that

has been validated in many existing studies (Castellanos et al., 2013; Fox and Greicius,

2010). Coupled with a linear classification model (4.1), we can directly interpret the non-

zero coefficients of the weight vector as edges that are informative for disease prediction.

However, a major drawback of Lasso is that it does not account for any additional structure

in the data outside of sparsity. For instance, beyond sparsity, we further know that multisite

functional connectome datasets posses the following two structures: (1) the intra-site

spatial structure that characterizes the geometry of the functional connectomes, and (2)
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the inter-site structure that describes the similarity of the data across imaging sites.

To address this issue, in this work we will focus on convex penalty functions that consist

of two parts:

Rpwq� γ
Ķ

k�1

R1pwkq�λR2pwq, (4.3)

where γ ¥ 0 and λ ¥ 0 are hyperparameters. The first penalty R1 allows us to encode

prior knowledge about the intra-task structure of the data, i.e., the intrinsic structure in the

functional connectome that is independent of its originating site (note how this penalty is

separable across the tasks). On the other hand, R2 is a multitask penalty that allows us

incorporate a notion of “task-relatedness” by enforcing some form of mutual dependence

among the set of weight vectors twkuKk�1 across sites. Thus, the objective function we wish

to solve has the following form:

arg min
w PRKp

Ķ

k�1

1

nk
LpY kXkwkq � γ

Ķ

k�1

R1pwkq � λR2pwq . (4.4)

We next discuss and motivate our choices forR1 andR2.

4.2.2.1 Intra-task Structure: 6-D Spatial Penalty

FMRI data are known to exhibit rich spatio-temporal correlation patterns among

neighboring voxels and time points. Indeed, several works in the brain decoding

literature demonstrated that by leveraging these structures, it is possible to enhance the

accuracy, interpretability, and stability of the prediction model (Baldassarre et al., 2012;

Gramfort et al., 2013; Grosenick et al., 2013; Michel et al., 2011). Motivated by these

successes, we recently introduced a single-task penalization framework in the context of

connectomics (Watanabe et al., 2014a). In brief, the penalties adopted in Watanabe et al.

(2014a) capture the 6-D spatial structure in the functional connectomes, a structure that

arises from the fact that the coordinates of connectomes are defined by pairs of points in

3-D brain space. In this work, we propose to utilize and extend these types of penalties
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for the intra-task R1 penalty to capture the 6-D spatial structures contained in multisite

connectomic data. Of note, this structure reflects the intrinsic geometrical patterns of a

functional connectome and is thus independent of its originating site.

More formally, we account for the 6-D spatial structure of the connectomes by

employing either the GraphNet (Grosenick et al., 2013), fused Lasso (Tibshirani et al.,

2005) (also known as anisotropic total variation), or the isotropic total variation (TV)

penalty (Michel et al., 2011; Wang et al., 2008b). For the case of GraphNet and fused Lasso,

the penalty can be expressed compactly using a 6-D finite differencing matrixC P Re�p as

follows:

R1pwkq � 1

q

��Cwk
��q
q
� 1

q

p̧

j�1

¸
mPNj

��wkj � wkm
��q �

$''&''%
GraphNet if q � 2

Fused Lasso if q � 1 .

Here Nj is the first-order nearest-neighbor edge set corresponding to connectome

coordinate j, and e indicates the total number of adjacent coordinates in the connectome.

The closed form expression for the isotropic TV penalty admits a similar formulation,

which is reported in 4.A.

To gain a better understanding of Nj , let us denote px, y, zq and px1, y1, z1q the pair of

3-D points in the brain that defines the 6-D connectome coordinate j. Then the first-order

neighborhood set of j can be written precisely as:2

Nj :�

$'&'%
�
x� 1, y, z, x1, y1, z1

�
,
�
x, y � 1, z, x1, y1, z1

�
,
�
x, y, z � 1, x1, y1, z1

�
,�

x, y, z, x1 � 1, y1, z1
�
,
�
x, y, z, x1, y1 � 1, z1

�
,
�
x, y, z, x1, y1, z1 � 1

�
,/./- .

Thus the idea behind the GraphNet, fused Lasso, and isotropic TV is to promote spatial

coherence in the weight vectors wk by penalizing deviations among neighboring edges of

the functional connectomes. This allows us to mathematically model our prior knowledge

2If px, y, zq or px1, y1, z1q are on the boundary of the brain volume, then neighboring points outside the
brain volume are excluded from Nj .

100



that disease-induced abnormalities manifest in the brain by impacting spatially contiguous

regions.

We conclude this section by noting that GraphNet, fused Lasso, and isotropic TV

each induces slightly different forms of spatial contiguity. The absolute deviation penalty

from fused Lasso encourages the predictive clusters to appear as sharp piecewise constant

patches. Likewise, isotropic TV also promotes sharp piecewise constant patches, but also

possesses the rotational invariance property that fused Lasso lacks (Michel et al., 2011).

Finally, the quadratic penalty from GraphNet encourages the clusters to appear in smoother

form.

4.2.2.2 Inter-task Structure: `1{`2-Penalty and Group Variable Selection

As mentioned earlier, since we expect the numbers of disease-induced discriminatory

edges in the connectomes to be sparse, variable selection is of great importance in terms

of both prediction performance and model interpretability. Furthermore, we also expect

the connectivity-based biomarkers to be shared across the sites. To formalize this notion

of shared sparsity pattern, we employ the `1{`2-penalty, a multitask penalty that has been

widely adopted in various research areas (Chen et al., 2012a; Obozinski et al., 2010).

Specifically, let wj � rw1
j , . . . , w

K
j sT P RK denote the vector formed by stacking the

j-th weight vector coefficients across the K sites. Then the `1{`2-penalty is defined as:

R2pwq �
p̧

j�1

}wj}2 , (4.5)

i.e., it penalizes the sum of the `2-norm ofwj’s, the vector representing the j-th edge in the

connectome. This penalty has the appealing group variable selection property (Obozinski

et al., 2010), which promotes learning features that are relevant across all sites, thereby

simplifying interpretation of the selected features. At the same time, the actual weights

associated with a given correlation can vary across site, in contrast to training a single
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classifier over a pooled dataset. This alleviates the issue of inter-site variability by allowing

the amount of influence from a selected edge to vary across site, while the inter-site

information are effectively shared to assist the group variable selection process.

Of note, if we replace the `2-norm in (4.5) with the `1-norm, we recover the Lasso

penalty (4.2):

R2pwq �
p̧

j�1

}wj}1 �
Ķ

k�1

��wk
��

1
. (4.6)

Following Obozinski et al. (2010), we will refer to this penalization scheme as the `1{`1-

penalty, which is equivalent to a single-task procedure due to the separability of the penalty

across the K sites. Fig 4.2 provides an illustration of the type of sparsity pattern one can

expect from the single-task `1{`1-penalty and the multitask `1{`2-penalty.

Recently, Rao et al. (2013) introduced another multitask learning framework for

multi-subject fMRI analysis, where the voxels in the fMRI volumes are used as the features

for predicting the type of stimulus a subject is processing at different time points (e.g.,

visual vs. auditory stimulus), and the subjects are treated as the tasks. Specifically, they

proposed Sparse Overlapping Sets Lasso (SOS-Lasso) penalty, which can be viewed as a

generalization of the `1-penalty (4.6) and the `1{`2-penalty (4.5). In brief, the SOS-Lasso

penalty is motivated by the fact that the fMRI volumes for different individuals can only

be crudely aligned during preprocessing, making `1{`2-penalty ill-suited for their study as

it may potentially select groups of voxels that are misaligned across subjects.

Although the SOS-Lasso is also a valid candidate for the multitaskR2 penalty in (4.4),

we have elected to use the `1{`2-penalty for our work. The reason for this decision is

because when constructing the functional connectomes, the time series of the resting state

fMRI volumes are spatially averaged over a 15 mm diameter ROI encompassing 33 voxels

(see Sec. 4.2.1). Due to this heavy downsampling, we expect the potential misalignments in

the fMRI volumes to only have a negligible impact on the resulting functional connectomes.

In addition, the SOS-Lasso introduces another hyperparameter that requires tuning, which

creates a heavy computational overhead during cross-validation.
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Inter-site penalty: Single-task vs. Multitask

(a) Single-task penalty: R2pwq �

p̧

j�1

��wj

��
1

(b) Multitask penalty: R2pwq �

p̧

j�1

��wj

��
2

Figure 4.2: Comparison between the sparsity patterns promoted by the single-task `1{`1

and the multitask `1{`2 penalty. The rows in the matrices above represent the task-specific
weight vectors

 
wk

(K
k�1

, and the blue entries indicate the non-zero coefficients. Note how
the single-task approach yields sparsity patterns that are inconsistent across sites, which
can be problematic for interpretation. In contrast, the group variable selection property
from the multitask approach provides a sparsity pattern that is shared across all sites.

To summarize, the optimization problem we propose to solve in this work has the

following formulation:

min
wPRKp

Ķ

k�1

1

nk
LpY kXkwkq � γ

Ķ

k�1

R1pwkq � λ
p̧

j�1

}wj}2 . (4.7)

We employ the hinge-loss for the empirical loss term and use either the GraphNet, fused

Lasso, or isotropic TV for the intra-task R1 penalty, making (4.7) a multitask structured

sparse SVM, where classification is conducted jointly with group feature selection.

4.2.3 Optimization via Alternating Direction Method

Solving the optimization problem (4.7) is challenging since the problem size K � p
is large and the three terms in the cost function can each be non-differentiable. To

address these challenges, we introduce an extension to the alternating direction method

of multipliers (ADMM) (Boyd et al., 2011; Gabay and Mercier, 1976; Glowinski and

Marroco, 1975) algorithm introduced in our earlier work (Watanabe et al., 2014a).

ADMM is a flexible algorithm which iteratively solves problems that have the following
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separable structure:

min
x̄,ȳ

f̄px̄q � ḡpȳq subject to Āx̄� B̄ȳ � 0 . (4.8)

Here x̄ P Rp̄ and ȳ P Rq̄ are primal variables, f̄ : Rp̄ Ñ RYt�8u and ḡ : Rq̄ Ñ RYt�8u
are closed convex functions, and Ā P Rc�p̄ and B̄ P Rc�q̄ are matrices representing c linear

constraints. ADMM exploits the separable structure in (4.8) by applying the following

updates:

x̄pt�1q Ð arg min
x̄

f̄px̄q � ρ

2

��Āx̄� B̄ȳptq � uptq��2

2
(4.9)

ȳpt�1q Ð arg min
ȳ

ḡpȳq � ρ

2

��Āx̄pt�1q � B̄ȳ � uptq��2

2
(4.10)

upt�1q Ð uptq � �
Āx̄pt�1q � B̄ȳpt�1q� , (4.11)

where t denotes the iteration count, u P Rc is the (scaled) dual variable, and ρ ¡ 0 is a

user defined parameter which we set to ρ � 1 in our implementations. The above iterations

(4.9)-(4.11) is guaranteed to converge to the optimal solution as long as the constraint

matrices Ā and B̄ are full column-rank; see Theorem 1 in Mota et al. (2013). Of note,

while the parameter ρ ¡ 0 does not affect the convergence of ADMM, it can impact its

convergence speed.

4.2.3.1 Variable Splitting and Data Augmentation

Since the objective function for the multitask structured-sparse SVM (4.7) originally

has an unconstrained formulation, we use variable splitting techniques (Afonso et al.,

2010) to convert it into a constrained problem that is in the canonical ADMM form (4.8).

Variable splitting refers to the method of introducing auxiliary constraint variables into an

optimization problem, which is particularly useful in an ADMM framework since it allows

us to break down an optimization problem into smaller and easier subproblems.
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Before we introduce our variable splitting scheme, we note that as it stands, the ADMM

algorithm for solving the objective function (4.4) with the GraphNet, fused Lasso, or

isotropic TV penalty will require the inversion of the Laplacian matrix CTC P Rp, which

is prohibitively large. To address this issue, we employ the data augmentation + masking

strategy that was proposed in Watanabe et al. (2014a), which induces a computationally

useful structure in the Laplacian matrix. In this section, we will focus on the GraphNet and

fused Lasso penalty since these can be succinctly expressed as R1pwkq � ��Cwk
��q
q
, q P

t1, 2u. However, the same strategy can be applied for the isotropic TV penalty, and the

mathematical detail for this is given in 4.B.

In brief, this strategy introduces an augmentation matrix A P Rp̃�p, whose rows are

either the zero vector or an element from the standard basis tejupj�1. Furthermore, this

matrix has the property ATA � Ip, and allows us to define an augmented weight vector

rwk :� Awk. This results in a new finite differencing matrix rC P Rẽ�p̃ for rwk P Rp̃,

whose Laplacian matrix rCT rC P Rp̃�p̃ has a special structure known as block-circulant

with circulant-blocks (BCCB), a structure that will be exploited in our ADMM algorithm.

Finally, by introducing a diagonal masking matrixB P t0, 1up̃�p̃, we can express the intra-

structure spatial penalty in terms of rC and rwk: R1pwkq � ��Cwk
��q
q
�

���B rCAwk
���q
q
. We

refer the readers to Watanabe et al. (2014a) for additional details regarding this procedure.

In summary, using the augmentation�masking strategy above, we can rewrite the

objective for the multitask structured-sparse SVM (4.7) with the GraphNet or fused Lasso

as follows (see 4.B for the isotropic TV case):

min
w

Ķ

k�1

1

nk
LpY kXkwkq�γ

q

Ķ

k�1

��B rCAwk
��q
q
�λ

p̧

j�1

}wj}2 ,

which can be converted into the following constrained form:

min
twk,vk1 ,vk2 ,vk3 ,vk4uKk�1

Ķ

k�1

1

nk
Lpvk1q �

γ

q

Ķ

k�1

��Bvk3��qq � λ
p̧

j�1

}v2,j}2 (4.12)
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subject to Y kXkwk � vk1, wk � vk2, rCvk4 � vk3, Awk � vk4 @k � 1, . . . , K.

Here, tvk1,vk2,vk3,vk4uKk�1 are the auxiliary constraint variables introduced from variable

splitting. It is straightforward to show that the above two problems are equivalent, and the

correspondence with the ADMM formulation (4.8) is given by:

f̄px̄q � γ

q

Ķ

k�1

��Bv3
k
��q
q
, ḡpȳq �

Ķ

k�1

1

nk
Lpv1

kq � λ
p̧

j�1

}v2,j}2

Ā �

���������

Y X 0

IKp 0

0 IKẽ

IK bA 0

���������
, x̄ �

����������������

w1

...

wK

v3
1

...

v3
K

����������������
, B̄ �

���������

�In 0 0

0 �IKp 0

0 0 �IK b rC
0 0 �IKp̃

���������
, ȳ �

���������������������

v1
1...
vK1

v1
2...
vK2

v1
4...
vK4

���������������������

.

(4.13)

where “b” represents the Kronecker product, and we define

Y X �

���������

Y 1X1 0 � � � 0

0 Y 2X2 � � � 0

0 0
. . . 0

0 0 � � � Y KXK

���������
P Rn�Kp, n �

Ķ

k�1

nk.

Note that the constraint matrices Ā and B̄ are both full column rank, so the convergence

of the ADMM algorithm is guaranteed (see Theorem 1 in Mota et al. (2013)).
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4.2.3.2 ADMM – Analytical Updates

Under the variable splitting scheme (4.12), the ADMM update for x̄ (4.9) decomposes

into the following subproblems:

arg min
wk

���Y kXkwk � vk1 � uk1
���2

�
���wk � vk2 � uk2

���2

�
���Awk � vk4 � uk4

���2

(4.14)

arg min
vk3

γ

q

��Bvk3��qq � ρ

2

���vk3 � � rCvk4 � uk3	���2

, k � 1, . . . , K, (4.15)

where as update for ȳ (4.10) decomposes to:

arg min
vk1

1

nk
L
�
vk1
�� ρ

2

��vk1 � �
Y kXkwk � uk1

���
2
� Prox`{pnk�ρq

�
Y kXkwk � uk1

	
(4.16)

arg min
vk4

��� rCvk4 � �
vk3 � uk3

� ���2

�
���vk4 � �

Awk � uk4
� ���2

, k � 1, � � � , K (4.17)

arg min
v2,j

λ
��v2,j

��
2
� ρ

2

���v2,j �
�
wj � u2,j

����2

� vsoftλ{ρ pwj � u2,jq , j � 1, � � � , p

(4.18)

The close form solutions for these are summarized in Algorithm 3, which outlines the

complete ADMM algorithm. We note that the update for the isotropic TV only differs

in (4.15), corresponding to Line 7 of Algorithm 3; see 4.B. We now demonstrate that the

above updates all admit closed form solutions that can be computed efficiently.

x̄-update The wk update (4.14) corresponds to a quadratic minimization problem, and

its solution can be obtained by setting the gradient of the cost function to zero, giving us

the solution

�
pXkqTXk�2Ip

	�1�
pY kXkqT �vk1�uk1� �vk2�uk2��AT

�
vk4�uk4

� 	
.
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This update can be converted into a much simpler pnk � nkq inversion problem using the

matrix inversion Lemma, where nk indicates the number of subjects from the k-th site.

The solution to the vk3 update (4.15) depends on the choice of q P t1, 2u. When q � 2,

the solution for (4.15) represents the update for GraphNet, which is given by:

vk3 Ð ρpγB � ρIẽq�1 rCpvk4 � uk3q.
This is easy to compute since the matrix pγB � ρIẽq is diagonal. On the other hand, q � 1

corresponds to fused Lasso, giving rise to the following elementwise update:

�
vk3
�
s
Ð

$''&''%
Softγ{ρ

�� rCpvk4 � uk3q�s	 ifBs,s � 1� rCpvk4 � uk3q�s ifBs,s � 0,

(4.19)

where Softτ ptq :� maxp1� τ
|t| , 0q � t denotes the scalar soft-threshold operator and r�ss

indexes the s-th element of a vector.

ȳ-update The Proxτ`p�q in the vk1 update (4.16) represents the proximal operator

(Combettes and Pesquet, 2011) of the hinge-loss `ptq � p1� tq� given by:

Proxτ`ptq :�

$'''''&'''''%
t if t ¡ 1

1 if 1� τ ¤ t ¤ 1

t� τ if t   1� τ,

(4.20)

The closed form solution for the vk4-update (4.17) is:

vk4 Ð
� rCT rC � Ip̃

	�1� rCT rvk3 � u
k
3s �Aw

k � uk4

	
.

Since the augmented Laplacian matrix rCT rC has a BCCB structure, it can be diagonalized

as rCT rC � UHΛU (Davis, 1979; Gray, 2005), where U is the 6-D discrete Fourier
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Algorithm 3 ADMM for Multitask Structured Sparse SVM

1: Initialize primal variables
 
wk,vk1,v

k
2,v

k
3,v

k
4

(K
k�1

2: Initialize dual variables
 
uk1,u

k
2,u

k
3,u

k
4

(K
k�1

3: Assign hyperparameters λ, γ ¥ 0

4: repeat

5: for k � 1, . . . , K

6: wk Ð
�
pXkqTXk�2Ip

	�1�
pY kXkqT

�
vk1�u

k
1

� �
vk2�u

k
2

�
�AT

�
vk4�u

k
4

� 	
� solve using matrix inversion Lemma

7: vk3 Ð

$''''&
''''%

apply Equation (4.19) if using fused Lasso

ρpγB � ρIq�1 rCpvk4 � uk3q if using GraphNet

See 4.B if using isotropic TV

8: vk1ÐProx`{pρnkq
�
Y kXkwk�uk1

�
� Apply (4.20) elementwise

9: vk4 Ð
� rCT rC�Ip̃	�1� rCT rvk3 � u

k
3s�Aw

k�uk4

	
� solve using FFT

10: end for

11: for j � 1, . . . , p

12: v2j Ð vsoftλ{ρ pwj � u2,jq � vsoftτ ptq:�maxp1 � τ
}t}2

, 0q t, t PRK

13: end for

14: for k � 1, . . . , K � dual variable update

15: uk1 Ð uk1 � Y
kXkwk � vk1

16: uk2 Ð uk2 �w
k � vk2

17: uk3 Ð uk3 � v
k
3 �

rCvk4
18: uk4 Ð uk4 �Aw

k � vk4

19: end for

20: until stopping criterion is met
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transform (DFT) matrix and Λ is a diagonal matrix containing the 6-D DFT coefficients

of the first column of rCT rC. Thus, the vk4 update can be implemented efficiently using fast

Fourier transform (FFT).

Finally, the solution for the v2,j update (4.18) is given in terms of the vector soft-

threshold operator: vsoftτ ptq :� max
�

1 � τ
}t}2

, 0
	
� t, where t P RK . We conclude this

section by noting that if the `1{`2-penalty in (4.7) is replaced with the `1{`1-penalty (4.6),

the v2,j update will be replaced by the scalar soft-threshold operator, thus recovering the

ADMM algorithm for the single-task version of the structured sparse SVM proposed in

Watanabe et al. (2014a).

4.3 Results

4.3.1 Experimental Setup

To assess the validity of the proposed method, we compared the performance of various

SVM-based classifiers using resting-state functional connectomes derived from the ADHD-

200 dataset (see Sec. 4.2.1 for details on preprocessing). For the intra-task penalty R1, we

compared four different regularization schemes: Elastic-net (Chen et al., 2012a; Zou and

Hastie, 2005) with R1pwq � 1
2 }w}

2
2, GraphNet, fused Lasso, and istropic TV. For the

inter-task penalty R2, we compared three different approaches:

1. Pooled `1: a single classifier is trained on the entire ADHD-200 dataset

(thus we have R2pwq � }w}1 with w P Rp as K � 1).

2. Single-task `1{`1: equivalent to training separately across sites due to the separability

of the penalty (R2pwq �
°p
j�1 }wj}1 �

°K
k�1

��wk
��

1
q.

3. Multitask `1{`2: jointly train the classifiers by solving (4.4).

The regularization parameters tλ, γu are tuned by conducting a 5-fold cross-validation on

the training set over the following two-dimensional grid: λ, γ P t2�13, 2�12, . . . , 2�3u. The
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final weight vector estimate is obtained by re-training the classifiers on the entire training

set using the tλ, γu values that maximized the cross-validation classification accuracy; for

validation, we predicted the labels of the test set subjects using this weight vector. All

methods were solved using ADMM with the algorithm terminated when the condition��wnew �wold
��

2
¤ 5�10�3�

��wold
��

2
was met or the iteration count reached 400.

To evaluate the quality of the classifiers, we analyzed the following set of performance

measures for both the 5-fold cross-validation and the validation test set results:

• Classification accuracy (ACC)

• Area under the ROC curve (AUC)

• Balanced score rate (BSR) �
psensitivity � specificityq

2

• P-value (PVAL) computed from an one-sided binomial test.

• Sparsity level (SP%) � 100 �
|# non-zero features|

pK

• Stability score (Stab.) �
1

MpM � 1q

¸
i�j

Oij (see (4.21) for precise definition).

The AUC and BSR are analyzed since classification accuracy by itself can be misleading

when the dataset labels are imbalanced (ACC, AUC, and BSR are averaged across the

tasks); the ROC curves are constructed by varying the threshold of the classifiers. Classifier

performance on the test set was compared to random guessing via a binomial test based on

a binomial distribution Bpp, nq with p � 0.5 and n � 109 samples, with PVAL evaluated

via an one-sided binomial test (Heinzle et al., 2012; Sripada et al., 2013b); the alternative

approach of permutation test was not pursued due to its severe computational cost. Sparsity

level is simply the fraction of features selected in the final model. Finally, stability score

is a measure introduced in (Rasmussen et al., 2012) which quantifies the stability of the

features selected across the cross-validation folds (Baldassarre et al., 2012; Rondina et al.,

2014). More precisely, letting Si and Sj denote the support of the weight vector estimated
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in the i-th and j-th split of an M -fold cross-validation procedure, we define:

Oij :�
|Si X Sj | � Ei

|Si|
, Ei :�

|Si|
2

pK
, i, j P 1, � � �,M. (4.21)

Here Oij measures the degree overlap between Si and Sj , and Ei is a heuristic correction

factor introduced in (Rasmussen et al., 2012), and the final stability score is obtained by

averaging Oij across all cross-validation folds.

4.3.2 Results and Discussion

Table 4.3 presents the classification results from the 5-fold cross-validation and

validation on the test-set, and Fig. 4.3 displays the corresponding ROC curves. In addition,

Fig. 4.4 and Fig. 4.5 present the classification accuracy and the mean sparsity level obtained

at different combinations of tλ, γu during cross-validation. These results demonstrate that

training a single classifier via the “pooling” approach yields the worst performance in

terms of accuracy, AUC, and BSR, suggesting that blindly aggregating the datasets across

different sites can be problematic for accurate disease classification. Comparison between

the single-task and the multitask approaches shows that the `1{`2-penalized approach yields

superior performance in terms of AUC, although no striking difference can be observed in

terms of accuracy and BSR.

In addition to the performance gain, the set of weight vector estimates tŵkuKk�1 P Rp

from the multitask approach all share a common support of length p due to the group

variable selection property of the `1{`2-penalty (Chen et al., 2012a; Obozinski et al.,

2010). This is invaluable for interpretation, as the selected features can be viewed as

edges that are informative across all sites. For visualization, we grouped the indices of

this support according to the network parcellation scheme proposed by Yeo et al. (2011),

and augmented this parcellation with subcortical regions and cerebellum derived from the

parcellation of Tzourio-Mazoyer et al. (2002) (see Table 4.4); this support vector is then
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Table 4.3: The classification results from the 5-fold cross-validation and the validation
test-set.

CV (628 subjects) Test-set (106 subjects)

ACC AUC BSR Stab. ACC AUC BSR PVAL SP%

Elastic-net (`1) .689 .687 .630 .277 .557 .617 .476 .143 2.54%

GraphNet (`1) .704 .708 .631 .253 .594 .608 .494 .032 28.88%

Fused Lasso (`1) .688 .720 .586 .059 .632 .592 .530 .004 64.85%

TV (`1) .701 .715 .620 .005 .623 .608 .521 .007 90.32%

Elastic-net (`1{`1) .709 .752 .649 .276 .623 .609 .530 .007 0.28%

GraphNet (`1{`1) .713 .750 .652 .165 .642 .613 .573 .002 67.14%

Fused Lasso (`1{`1) .715 .750 .659 .329 .632 .634 .547 .004 1.30%

TV (`1{`1) .718 .753 .661 .345 .642 .654 .550 .002 1.61%

Elastic-net (`1{`2) .720 .754 .657 .217 .651 .645 .556 .001 0.25%

GraphNet (`1{`2) .720 .766 .657 .320 .642 .668 .546 .002 1.03%

Fused Lasso (`1{`2) .718 .766 .653 .315 .642 .673 .546 .002 0.79%

TV (`1{`2) .720 .766 .658 .316 .642 .672 .546 .002 0.80%

reshaped them into 347� 347 symmetric matrix with zeroes on the diagonal. The resulting

support matrices for the Elastic-net+`1{`2 and the fused Lasso+`1{`2-penalized SVM are

presented in Fig. 4.6 (results for GraphNet+`1{`2 and isotropic TV+`1{`2 were very similar

to fused Lasso+`1{`2). An interesting observation here is that the support structure from

the fused Lasso and `1{`2-penalized SVM shows concentrated connectivity patterns in the

intra-frontoparietal (6-6) and the intra-default network (7-7) regions; Fig. 4.6 provides

a brain space representation of these connections (figures generated with the BrainNet

Viewer, http://www.nitrc.org/projects/bnv/). These network regions are

frequently reported to exhibit disrupted connectivity patterns in resting state studies of

ADHD (Castellanos and Proal, 2012; Sripada et al., 2014), although the accuracies obtained

from our classifiers are not at the level where the selected features can be interpreted as

reliable ADHD biosignatures.

We note that most of the accuracies reported on the validation test-set in
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Figure 4.3: The ROC curves obtained by varying the threshold of the classifiers in Table 4.3
classifiers’ ROC. The ROC curves for the single-task `1{`1-case are omitted to improve
curve visibility. (EN = Elastic-net, GN = GraphNet, FL = fused Lasso, TV = isotropic total
variation).

Table 4.3 exceeded the highest result from the actual ADHD-200 competition,which was

61.54% (The ADHD-200 Consortium, 2012). However, there are two major caveats: (1)

the results in this work cannot be directly compared with the official competition results

due to the subject screening procedure we applied on the test set (the criteria such as the

FD-based one is important for avoiding confounds from excessive head motion), and (2)

the participants in the actual competition were required to predict the labels of 26 subjects

from the Brown site, despite the fact that no training data were provided from this site,

thereby making it harder to predict the labels for these subjects. The second caveat also

implies that most MTL methods, including the `1{`2-penalty employed in this work, cannot

be applied since there are no means to train a weight vector for a task whose data are not

provided. An alternative approach such as transfer learning (Pan and Yang, 2010) may

be considered for future work. Finally, although the `1{`2-penalty facilitates interpretation

by selecting the same set of features across sites, it does not ensure the sign of the selected

features to be consistent, preventing us from interpreting the direction of the selected edges.

Future work should extend our methodology so that the sign of the selected edges are
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guaranteed to be consistent across sites. One possible approach for this is to introduce

vectors w�
j ,w

�
j P RK , and make the substitution

wj � w
�
j �w�

j , w�
j ¥ 0, w�

j ¥ 0.

Then we can adopt the following inter-task penalty:

R2pwq �
p̧

j�1

����w�
j

���
2
�
���w�

j

���
2

	
�

p̧

j�1

����w�
j

���
1
�
���w�

j

���
1

	
(4.22)

s.t. w�
j ,w

�
j ¥ 0.

The first summation term in (4.22) promotes group sparsity through the `1{`2-penalty, and

the second summation term promotes the sign of the selected features to be consistent

across sites by discouragingw�
j andw�

j from both being positive at the same time through

the `1-penalty.

4.4 Conclusion

We presented a multitask structured sparse SVM, a multitask extension to the

connectome-based disease classification method introduced our earlier work in Chapter 3,

where the imaging sites are treated as tasks. Experimental results on the multisite

ADHD-200 dataset suggest that the multitask approach using the `1{`2-penalty can provide

improvement in classification performance over the naive pooling approach, where a single

classifier is trained on the entire multisite dataset, an approach predominantly adopted in the

original ADHD-200 competition. In addition, the mulitask `1{`2-penalty achieved higher

AUC scores than the single-task `1{`1-penalty, and the group variable selection property

of the multitask approach gives a more interpretable model by selecting the same set of

features across sites, which can be visualized compactly in brain space.
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Figure 4.4: Classification accuracy evaluated from 5-fold cross-validation (best viewed in
color). The px, yq-axis corresponds to the two regularization parameters λ and γ.
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Mean sparsity level (number of features)
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Figure 4.5: Average number of features selected across the cross-validation folds (best
viewed in color). The px, yq-axis corresponds to the two regularization parameters λ and γ.
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Table 4.4: Network parcellation scheme of the brain proposed by Yeo et al. (2011).

Network membership Table (� is “unlabeled”)

1. Visual 2. Somatomotor 3. Dorsal Attention 4. Ventral Attention

5. Limbic 6. Frontoparietal 7. Default 8. Striatum

9. Amygdala 10. Hippocampus 11. Thalamus 12. Cerebellum
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(a) Multitask Elastic-net SVM result
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(b) Multitask Fused Lasso SVM result

Figure 4.6: Weight vectors estimated from the Elastic-net+`1{`2 and fused Lasso+`1{`2-
penalized SVM. Left: support matrices of the selected features (rows/cols grouped by
network membership). Right: brain space representation of the selected edges in the intra-
frontoparietal (6-6: blue) and the intra-default network (7-7: red).
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4.A The expression for the isotropic total variation penalty

Let Dj P R6�p denote the 6-D discrete gradient operator of w at coordinate j P

t1, . . . , pu. That is, letting pxj , yj , zjq and px1j , y
1
j , z

1
jq denote the pair of 3-D points in the

brain that defines a connection wj , we have:

Djw �

�
����������������

p∇xwqj

p∇ywqj

p∇zwqj

p∇x1wqj

p∇y1wqj

p∇z1wqj

�
����������������

�

�
����������������

wpxj , yj , zj , x
1
j , y

1
j , z

1
jq �wpxj � 1, yj , zj , x

1
j , y

1
j , z

1
jq

wpxj , yj , zj , x
1
j , y

1
j , z

1
jq �wpxj , yj � 1, zj , x

1
j , y

1
j , z

1
jq

wpxj , yj , zj , x
1
j , y

1
j , z

1
jq �wpxj , yj , zj � 1, x1j , y

1
j , z

1
jq

wpxj , yj , zj , x
1
j , y

1
j , z

1
jq �wpxj , yj , zj , x

1
j � 1, y1j , z

1
jq

wpxj , yj , zj , x
1
j , y

1
j , z

1
jq �wpxj , yj , zj , x

1
j , y

1
j � 1, z1jq

wpxj , yj , zj , x
1
j , y

1
j , z

1
jq �wpxj , yj , zj , x

1
j , y

1
j , z

1
j � 1q.

�
����������������

P R6.

Then the 6-D isotropic TV penalty can be expressed as

R1pwq�
p̧

j�1

}Djw}2 , (4.23)

which is a rotationally invariant counterpart of the fused Lasso penalty. Note that if the

`2-norm in (4.23) is replaced with the `1-norm, we recover fused Lasso, also known as the

anisotropic TV penalty. We further note that
°p
j�1D

T
j Dj � C

TC.

Thus, the multitask structured-sparse SVM formulation for the isotropic TV penalty

can be written as:

min
wPRKp

Ķ

k�1

1

nk
LpY kXkwkq � γ

Ķ

k�1

p̧

j�1

��Djw
k
��

2
� λ

p̧

j�1

}wj}2 . (4.24)
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4.B Details on the ADMM update for the Isotropic Total Variation

Penalty

Let rDj P R6�p̃, j � 1, . . . , p̃, denote the 6-D discrete gradient operator corresponding

to the augmented weight vector rw � Aw P Rp̃. Furthermore, let Bj P t0, 1u6�6, j �

1, . . . , p̃ denote a collection diagonal masking matrix that ensures the isotropic TV remains

unaffected by the augmentation scheme:

p̧

j�1

}Djw}2 �
p̧̃

j�1

���Bj
rDjAw

���
2
.

Then we can rewrite (4.24) as:

min
wPRKp

Ķ

k�1

1

nk
LpY kXkwkq � γ

Ķ

k�1

p̧̃

j�1

���Bj
rDjAw

k
���

2
� λ

p̧

j�1

}wj}2 ,

which can be converted into the following equivalent formulation via variable splitting:

min
twk,vk1 ,v

k
2 ,v

k
3 ,v

k
4u
K
k�1

Ķ

k�1

1

nk
Lpvk1q � γ

Ķ

k�1

p̧̃

j�1

��Bvk3,j��2
� λ

p̧

j�1

}v2,j}2 (4.25)

subject to Y kXkwk � vk1, w
k � vk2,

 rDjv
k
4,j � v

k
3,j

(p̃
j�1looooooooooomooooooooooon

rCvk4 � vk3

, Awk � vk4 @k � 1, . . . , K.

Applying the standard ADMM iterations (4.9)-(4.11) results in a nearly identical

algorithm with the GraphNet and fused Lasso case, except the ADMM update (4.15) gets

replaced by the following:

arg min
vk3,j

γ
��Bvk3,j��2

�
ρ

2

���vk3,j � � rDj rwj � u3,j

	���2

2
j � 1, . . . , p̃, k � 1, . . . , K.
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Since Bj is a diagonal masking matrix, this further decomposes into the following

subproblems with known closed form solutions:

�
vk3,j

�
Ij
Ð arg min

rvk3,jsIj

γ

���� �vk3,j�Ij
����

2

�
ρ

2

�����
�
vk3,j �

� rDj rwj � u3,j

	�
Ij

�����
2

2

� vsoftγ{ρ

�� rDj rwj � u3,j

�
Ij




�
vk3,j

�
Icj
Ð arg min

rvk3,jsIc
j

�����
�
vk3,j �

� rDj rwj � u3,j

	�
Icj

�����
2

2

�
� rDj rwj � u3,j

�
Icj
.

Here Ij � t1, � � � , 6u is an index set that indicates the location of the nonzero diagonal

entry in Bj with Icj representing its complement. Finally,
�
�
�
Ij

and
�
�
�
Icj

denote the

subset of a vector indexed by Ij and Icj , respectively. For example, if z P R6 and

Bj � diagp1, 0, 1, 1, 1, 0q, then we have:

Ij � t1, 3, 4, 5u, Icj � t2, 6u, z �

�
����������������

z1

z2

z3

z4

z5

z6

�
����������������

,
�
z
�
Ij
�

�
���������

z1

z3

z4

z5

�
���������
,

�
z
�
Icj
�

�
��z2

z6

�
�� .
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CHAPTER 5

Conclusion and Future Work

5.1 Summary of Contributions

The central theme of this dissertation was to devise a computationally tractable machine

learning method that allows us to extract scientifically meaningful information from

massive and highly complex biomedical data, despite being limited in sample size. To this

end, we presented innovations in two areas of biomedical science that are of substantial

clinical interest: (1) biomedical image registration and (2) psychiatric disease prediction

based on functional connectomes.

Chapter 2 highlights our first major contribution, where we tackled the challenging

problem of quantitatively evaluating the accuracy of an image registration result. In

particular, we introduced a novel data-driven method that allows one to visualize and

quantify registration uncertainty using spatially adaptive confidence regions. A vital

component to our proposed method is a shrinkage-based estimate of the distribution on

deformation parameters. This estimate allows us to simulate realizations of registration

errors, which can then be used as training data for learning spatial confidence regions.

Experimental results in 2-D suggest that the confidence regions are effective based on their

empirical coverage rates.

Chapter 3 and 4 were devoted to the topic of connectomics, which is the study of

brain connectivity. The goal here was to establish a multivariate method that allows us
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to predict the diagnostic status of an individual using whole-brain functional connectomes

derived from resting state fMRI. As opposed to previous approaches which are generally

blind to the spatial structure of the data, the method we introduce in Chapter 3 explicitly

accounts for the 6-D structure in the connectome via spatially-informed regularizers,

namely the fused Lasso and the GraphNet penalty. To solve the resulting nonsmooth and

high dimensional optimization problem, we introduced a scalable algorithm based on the

alternating direction method, and showed that the inner subproblems of the algorithm can

be solved efficiently in analytical form by coupling the variable splitting strategy with

a data augmentation scheme. Chapter 4 extends these ideas to a setting where the data

are collected from multiple imaging sites. In brief, rather than training a single classifier

over a pooled dataset, we proposed to simultaneously learn an individual classifier for

each site by adopting a multitask learning framework, where the sites are treated as the

tasks. Experiments on large real-world schizophrenia and ADHD dataset demonstrated

that our methods generate accurate disease prediction with superior interpretability of

discriminative features, and thus could provide new insights into how psychiatric disorders

impact brain network topology.

5.2 Future Directions

Machine learning methods are increasingly being applied in various areas of biomedical

science, and several promising results have been produced in the field of connectomics.

However, we are far from achieving the goal of identifying a robust, universally accepted

connectivity-based biomarker that accurately reflects the underlying neurobiological

mechanism of the disease process of interest. For instance, while the multitask learning

approach introduced in Chapter 4 produced superior results on the multisite ADHD-200

dataset, the classification accuracies are far from the level where the selected features can be

interpreted as reliable ADHD biosignatures. Such result corroborates the fact that multisite

data are highly complex and diverse, and it remains to be seen whether there are better ways
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to handle the numerous sources of inter-site heterogeneities. Moreover, the interpretability

of the features selected from the multitask approach in Chapter 4 is heavily limited since

the sign of the groups of features do not necessarily agree across imaging sites. Thus, it is

important to investigate ways to extend our method so that the groups of features selected

are consistent across sites.

Another interesting direction for future research is to investigate ways to integrate

multimodal fusion techniques into our connectome-based disease prediction framework.

In particular, there is a recent trend in neuroimaging research to combine multiple image

modalities for multivariate pattern analysis (Uludag and Roebroeck, 2014; Zhu et al., 2014),

where the idea is to enhance prediction performance by leveraging the complementary

information available from different modalities. For example, Alzheimer’s disease and

mild cognitive impairment are known to be related with symptoms such as brain atrophy

and neuro-metabolic alterations, which can be measured from modalities such as structural

MRI, PET, and cerebrospinal fluid. Recent researches demonstrated that when classifying

patients with Alzheimer’s disease from healthy controls, the prediction performance can be

substantially improved by training over these modalities (Liu et al., 2014; Zhang and Shen,

2012; Zhang et al., 2011). In the context of connectomics, it would be interesting to see if

combining other modalities such as EEG and structural connectomes (typically constructed

from DTI) can improve prediction performance and give more precise estimates of

connectivity-based biomarkers.

As an overall remark, there are several remaining questions that still must be addressed

before an automated neuroimaging-based diagnostic system to enter the clinical realm, and

new statistical modeling techniques are in critical need.
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