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ABSTRACT

Development of Grid-Based Direct Kinetic Method and Hybrid Kinetic-Continuum
Modeling of Hall Thruster Discharge Plasmas

by

Kentaro Hara

Chair: Iain D. Boyd

Novel computational methods were developed and used to characterize plasma flows and

improve the efficiency of electric propulsion devices. The focus of this doctoral research is

on developing a grid-based direct kinetic (DK) simulation method that is an alternative to

particle-based kinetic methods. The first part of this dissertation describes development

of the grid-based direct kinetic method through verification and benchmarking. The test

cases include a plasma-sheath with and without secondary electron emission from a plasma-

immersed material as well as trapped particle bunching instability in nonlinear plasma

waves. Using a hybrid kinetic-continuum method for the discharge plasma in a Hall effect

thruster, the grid-based DK simulation and a standard particle-in-cell (PIC) method are

compared. It was found that ionization events and hence ionization oscillations are captured

without any statistical noise in the DK simulation in comparison to a particle simulation. In

the second part, mode transition of the discharge oscillations in Hall effect thrusters, which

are known to affect thruster performance, is investigated using the hybrid-DK method, in

which the DK method is used for ions and a continuum method is used for electrons. The

numerical simulations show good agreement with experimental data. In addition, a linear

perturbation theory of ionization oscillations is derived. It is found that electron transport

xviii



and temperature play an important role in such discharge oscillations whereas the common

understanding in the community was that the heavy species are the main contributors.

In addition, a two-dimensional simulation is developed to investigate the multidimensional

ionization oscillation phenomena in the Hall effect thrusters. The effect of ion magnetization

due to the magnetic field is included, showing a swirling effect of accelerated ions. Local

ionization oscillations in the azimuthal direction are observed.
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CHAPTER I

Introduction

In this chapter, the motivation and contributions of the dissertation are summarized

and the organization of the remaining chapters is introduced.

1.1 Problem Statement

Computer simulations of complex gas and plasma flows have become increasingly pop-

ular as computational resources exponentially increases.1 Predictive modeling is required

for practical engineering systems to investigate regions where it is difficult to carry out

experimental measurements, to reduce the cost of testing new concepts and designs, and

to gain deeper understanding of the detailed physical processes of nonlinear, dynamic,

nonequilibrium flows. However, controlling and modeling plasma flows still present a signif-

icant challenge due to the broad physical processes and the associated temporal and spatial

scales.

One of the most important physical mechanisms in gas and plasma flows is collisions.

If there are a significant number of elastic collision events without any inelastic collisions,

then the velocity distribution function (VDF) and/or energy distribution function (EDF)

of gas particles relaxes to a Maxwell-Boltzmann distribution, or often called a Maxwellian

distribution. The collisionality of the gas and plasma flows is characterized by the collision

frequency or mean free path. Whether the flow is collisional or collisionless is determined

1Moore’s Law: The number of transistors in an integrated circuit (IC) chip doubles every two years. For
instance, the computational speed becomes 32 times faster over a 10-year period and 1024 times faster over
a 20-year period.

1



by the Knudsen number:

Kn =
λMFP

L
, (1.1)

where λMFP ∼ vth/ν is the mean free path, vth is the thermal speed, ν is the collision

frequency, and L is the characteristic length of the system of interest. Once the inelas-

tic collisions are activated, the VDFs and EDFs can be non-Maxwellian particularly for

electrons.

The flow is collisional when the Knudsen number is much smaller than unity. Con-

servation equations of mass, momentum, and energy can be used for computational fluid

dynamics (CFD). On the other hand, when the Knudsen number is sufficiently large, the

VDFs and EDFs become a non-Maxwellian distribution. In other words, the flow is in

a nonequilibrium state. Note that the word equilibrium refers to near-Maxwellian and

nonequilibrium is non-Maxwellian in the dissertation. Strictly speaking, there can be non-

Maxwellian distribution functions in a thermally equilibrium state.

The extreme case where Kn→∞ is often called the free-molecular flow. In this regime,

the particles will not experience any collisions at all, which can, for example, occur in high

temperature plasmas as λMFP � L. The most difficult regime to model is the transitional

flow (0.01 < Kn < 1) when the gas or plasma experiences some amount of collisions but not

enough to achieve an equilibrium state. For transitional and free-molecular flows, kinetic

methods that can resolve particle information are required to capture the nonequilibrium

effect.

The primary application considered in this dissertation is a Hall effect thruster (HET),

a type of electric propulsion (EP) device, used for space missions. This device utilizes ion-

ized gas, or a plasma, to obtain thrust. As will be described in Sec. 1.2, the discharge

plasma is known to be in a nonequilibrium state. For instance, ions are accelerated out

of the thruster and generated via ionization simultaneously without any structures, i.e.

grids, that separate the two physical processes. In order to capture such nonequilibrium

phenomena, particle-based kinetic methods have been mainly used in the state-of-the-art

computational simulations. These simulation methods have been successful in predicting

thruster performance, often time-independent or time-averaged data, which is the main in-
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terest in the field from an engineering perspective. However, as advancement in HETs has

been made, the key challenge of the HET physics has become more and more in under-

standing time-varying (dynamic)2, nonequilibrium (kinetic)3, and temporally and spatially

small-scale plasma phenomena. The statistical noise due to the use of macroparticles in par-

ticle simulations may become problematic, making them unable to model all these complex

phenomena.

Although particle methods have been widely used, it has been known that directly

solving the kinetic equations is a more deterministic kinetic approach, which is called the

grid-based direct kinetic method in this dissertation. Such grid-based kinetic methods have

already been developed and used due to their significantly low noise level in other fields,

such as applied mathematics and high temperature plasma physics. While particle methods

are easy to implement, grid-based kinetic methods require more advanced knowledge in

numerical algebra, particularly of hyperbolic partial differential equations (PDEs).4 Such

hyperbolic PDEs have been mainly studied and computational methods have been developed

by the aerospace community, in which a high-fidelity CFD model has been required for

analyzing high speed flows and designing aircraft. In this dissertation, a grid-based kinetic

method, aimed to be used for an EP device, is developed based on advanced computational

algorithms developed in the CFD community.

1.2 Hall Effect Thrusters

In Hall effect thrusters (HETs), ions are accelerated to generate thrust. There are some

magnetized effects on ion motion, including the swirl torque,[8] but HETs are designed such

that ions accelerate out of the channel before a complete ion gyration occurs. On the other

hand, electrons are fully magnetized so that electron transport, i.e. mobility and diffusion,

is suppressed due to the magnetic fields.

2Dynamic (time-varying) vs. static (time-independent)
3Kinetic (nonequilibrium) vs continuum (equilibrium)
4Partially differential equations (PDEs) can be categorized into hyperbolic, parabolic, and elliptic equa-

tions. (1) Hyperbolic: wave equations that describes the advection of a wave. utt − uxx = 0, where
subscripts denote the derivative in either time t or space x. This equation can be reduced into ut ± ux = 0.
(2) Parabolic: heat equations that describes the evolution of a diffusion process. ut − uxx = 0. (3) Elliptic:
time-independent diffusion equations, in which the time derivative in parabolic equations is zero. uxx = 0.
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Magnetization of charged species is characterized by the Larmor radius, or gyroradius,

as well as the cyclotron frequency, given by

rL =
mv⊥
qB

, (1.2)

ωB =
qB

m
, (1.3)

where B is the magnetic field strength and v⊥ is the velocity perpendicular to the magnetic

field lines. The Larmor radius of an ion is much larger than that of electrons due to the

difference in mass. On the other hand, the cyclotron frequency of an ion is much smaller than

that of electrons. The dimensions of HETs satisfy rL,e � L and rL,i � L, where subscripts

e and i denote electrons and ions, respectively. In addition, electrons are magnetized as

ωB,e > νm, where νm is the momentum transfer collision frequency. Ions are nonmagnetized

since ωB,i � νm.

1.2.1 Overview of Electric Propulsion

One of the most important thruster metrics is called the specific impulse, given by

Isp =
vexit
g
, (1.4)

where vexit is the exhaust speed and g is the gravitational acceleration constant. Rocket

engines using chemical propulsion have a large thrust5 level, as they are used for launching

to escape Earth’s gravitational field, but the specific impulse is limited to < 500 s due to

their acceleration mechanism.

EP devices employ electricity to ionize the gas to produce thrust in comparison to

using chemical reactions, i.e. combustion, in chemical propulsion. EP can be categorized

into three categories based on their acceleration mechanisms. First, electrothermal systems

employ an electrical current or radiation to directly heat the propellant and the heated gas

will gain thrust through a nozzle. Examples include arcjets, which generate a plasma via arc

5Thrust is essentially the force or the momentum: F = ma = ṁvexit, where m is the mass, a is the
acceleration, ṁ is the mass flow rate.
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discharge, and resistojets, in which a resistor such as a filament heats the gas. The specific

impulse is comparable to chemical systems but additional gas, i.e. oxygen, is not required for

EP devices. Second, electrostatic devices accelerate ionized propellant through an electric

field without magnetization of the ions. The electric field is generated by acceleration grids

in ion thrusters and potential drop due to reduced electron mobility in HETs, which will

be discussed later. The specific impulse can reach above 3000 sec as vexit increases through

electrostatic forces. Third, electromagnetic thrusters employ the electromagnetic force to

accelerate the plasma. Examples include MagnetoPlasmaDynamic (MPD) thrusters and

helicon discharge thrusters. The specific impulse as well as the thrust can be larger than

electrostatic thrusters.

1.2.2 Basic Principles

The H6 thruster, developed at the Plasmadynamics and Electric Propulsion Laboratory

(PEPL) at the University of Michigan, is shown in Fig. 1.1(a). Also illustrated are the

direction of the electromagnetic fields and E × B drift as well as the two major types of

low-frequency oscillations: axial breathing mode and azimuthally rotating spokes. Figure

1.1(b) illustrates the profile picture of the H6 operating at nominal conditions with magnetic

field stream lines overlaid and discharge channel outlined. The design of the magnetic field is

critical in the electron transport and hence the acceleration and ionization of the propellant.

HETs consist of a set of anode and cathode as well as coils to generate magnetic fields in

the radial direction of an annular channel. As shown in Fig. 1.2, electrons are emitted from

the cathode and some enter the channel due to the more positive potential at the anode,

while others in the plume contribute to neutralizing the ion flow from the channel. The

channel width of HETs is designed to be smaller than the Larmor radius of electrons, so that

they are captured within the discharge channel. Due to the axial electric field and radial

magnetic field, the electrons drift in the azimuthal direction, which is known as the E ×B

drift. The drifting electrons ionize the propellant injected from the anode and generates

the discharge plasma. As soon as the plasma is generated, the ions accelerate through the

electric field.

Dielectric materials are used on the walls for standard HETs due to their high thermal
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resistivity and electric insulation. These thrusters are often called the stationary plasma

thruster (SPT). Another type of HET is the anode layer thruster (TAL) which employs

a shorter acceleration channel and metallic wall materials. The purpose of a TAL is to

increase the electron temperature since the heat flux to the channel walls can be much lower

than SPTs as the rate of electron-induced secondary electron emission of metal materials

is significantly lower than that of insulators.

1.2.3 Challenges

The principal goal of developing HETs is to improve thruster performance metrics such

as thruster efficiency and specific impulse. There are three main problems that must be

investigated in order to achieve this goal: 1) to understand the effects of plasma oscillations

on thruster performance, 2) to improve efficiency by enhancing ionization and acceleration,

(a) HET operation (b) Magnetic eld lines

Figure 1.1: H6 thruster. Reproduced from Refs. 1 and 2.
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and 3) to maximize the lifetime of the thruster.

First, there is a wide spectrum of plasma oscillations ranging from 10 kHz to 1 GHz

in HETs.[9] One of the most important oscillation modes for actual operation is the low-

frequency discharge oscillation, often called the breathing mode.[10, 11] Rotating spokes

or density fluctuations in the azimuthal direction also play an important role in electron

transport.[12] It has been recently observed by Sekerak[7] that thruster efficiency is op-

timized when the low-frequency breathing mode is stabilized depending on the operation

conditions, including discharge voltage, magnetic field strength, and anode and cathode

mass flow rates. It was also found that azimuthally rotating spokes appear in the stable

discharge mode whereas the breathing mode is associated with an axial ionization oscilla-

tion. For a better understanding of these phenomena, the plasma properties such as density

and temperature must be well resolved both temporally and spatially.

Second, the ionization rate of neutral gas and the electric field that accelerates ions are

mainly determined by the electron transport.[13, 14] Specifically, ionization and other reac-

tions depend on the electron energy and the potential profile is determined by electron con-

ductivity. Electrons in an HET experience various physical phenomena, including collisions

Acceleration
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Dielectric wall

Lch
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θ

Figure 1.2: Schematic of HET operation.
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with channel walls,[15, 16, 17] inelastic collisions such as ionization and excitation,[2, 18, 19]

and anomalous diffusion in the presence of a magnetic field.[20, 21, 22] It is very difficult to

experimentally obtain time-resolved properties of electrons due to their high characteristic

speed in comparison to heavy species. Computational modeling of such plasma flows is ex-

tremely useful to investigate small-scale phenomena that cannot be resolved in experiments.

Third, plasma-wall interactions are unavoidable in plasma applications. There are two

main processes that play an important role: sputtering and secondary electron emission

(SEE).[23] Erosion of the wall material, which is often a dielectric material such as boron

nitride in an HET, limits the lifetime of the thruster. The operation of an HET fails when

the magnetic coils and pole pieces covered by the channel walls are exposed to the plasma.

Molecular dynamics simulations of the sputtering process have shown promising results to

accurately estimate the erosion rate.[24, 25] It is also likely that the wall properties, such

as wall temperature, composition, and surface roughness, affect the plasma behavior.[26]

Therefore, understanding of the material itself as well as the plasma-wall interaction is

important for precise control of the discharge plasma. One promising technique is the mag-

netic shielding of HETs demonstrated at NASA Jet Propulsion Laboratory.[27] Sputtering

of the wall material is significantly reduced by controlling the shape of the magnetic fields.

In order to investigate all such phenomena of the HETs, high-fidelity computational

modeling of the discharge plasma would be helpful. The dynamic, kinetic, small-scale nature

of the plasma transport needs to be understood so that the flow can be characterized and

controlled effectively, ultimately to design high-power and highly-efficient thrusters. The

purpose of this dissertation is to develop a noiseless kinetic simulation that can capture

these complex phenomena.

1.3 Plasmas

Plasma is a quasineutral ionized gas that possesses both electromagnetic properties and

characteristics of a gas. The flow characteristics, including the balance between ionization

and diffusion, determine the plasma properties.

Research on low temperature plasmas has primarily started with the work by Irving
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Langmuir, who developed several important devices, including light bulbs, filaments, and

plasma probes. The most common plasma phenomena that we see in daily life may be flu-

orescence lamps, in which ultraviolet photons emitted from excited mercury atoms hit the

fluorescent coating and emit a visible photon. The plasma processing community has devel-

oped various plasma sources, such as capacitively and inductively coupled plasmas, using

a radio frequency power supply. These devices are used for atomic emission spectroscopy,

reactive-ion etching, and deposition. Recently, atmospheric-pressure plasmas have gained

popularity since such plasmas do not require any vacuum system. Plasma jets and dielectric

barrier discharges are being investigated for wound treatment and cancer therapy in the

biomedical sciences.

On the other hand, high temperature plasma physics include astrophysical plasmas and

fusion plasmas. These plasmas can reach up to 10,000 eV and become fully ionized.6 Since

the magnetic field is dynamic in high temperature plasmas, there are strong interactions

between the plasma and electromagnetic forces, which can be described using Maxwell’s

equations. There are two types of fusion plasmas: magnetic confinement fusion (MCF)

and inertial confinement fusion (ICF). The most popular magnetic confinement system is

a tokamak, in which the plasma is confined by toroidal magnetic fields. ICF employs high

power laser beams to ignite high temperature plasmas. One example of an ICF is the

National Ignition Facility at Lawrence Livermore National Laboratory (LLNL).

Most of the electric propulsion devices, including HETs, operate in the low temperature

regime, Te = O(10) eV. However, for instance, it has been shown that increased discharge

voltage can increase the maximum electron temperature to about 60 eV.[28] Other mea-

surements suggest that electron temperature is less than 5 eV in the plume.[29] As can be

discussed in terms of electron temperature, the HET plasma is multiscale and multiphysics

in nature. Plume modeling has been performed by several researchers[30, 31] and it has

been shown that the computational results agree well with experimental data. Part of the

reason is that the plasma is nonmagnetized in this region, while the electron modeling of

the discharge plasma remains challenging. In this dissertation, a new kinetic simulation

6Low temperature plasmas are sometimes categorized as partially ionized gases since neutral atoms are
not completely ionized while high temperature plasmas are fully ionized.
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method is introduced to model such discharge plasmas.

Figure 1.3 shows a summary of various plasmas in nature depending on the electron

density and temperature. Plasmas can be categorized by temperature, i.e. low and high

temperature plasmas, ionization fraction, i.e. fully or partially ionized plasmas, and the

effect of magnetic fields, i.e. magnetized or nonmagnetized. λD is the Debye length, which

is the length scale associated with Coulomb shielding of the plasma, given by,

λD =

√
ε0kBTe
e2ne

,

where ε0 is the permittivity, kB is the Boltzmann constant, e is the elementary charge, and

Te and ne are the temperature and number density of electrons. The Debye number is a

parameter given by the average number of electrons in a Debye sphere: ND = (4/3)πneλ
3
D.

For ND � 1, collective electrostatic interactions from all other particles in the Debye

sphere dominate over binary collisions. The plasmas in this regime are often called weakly

coupled plasmas as opposed to strongly coupled plasmas for ND � 1, in which the binary

electrostatic influence is stronger than the kinetic energy of the particles.7 When the Debye

length is much smaller than the characteristic length, a quasineutral assumption holds as

charge separation only occurs in a short range, e.g. plasma sheaths.

1.4 Research Objectives

This dissertation focuses on development of a grid-based kinetic method that can be

used as an alternative to particle-based kinetic methods. In developing a new simulation

technique or method, there are four important processes to be taken into account.

• Verification: It is necessary to check if the code is correctly implemented. This is

done by comparing the numerical results with analytic (exact) solutions. Only limited

problems have analytic solutions, so it becomes important to understand the test

problems from a mathematical perspective. Once the code is verified, the numerical

solvers can be also used to verify the theory.

7Examples of strongly coupled plasmas include laser ablated plasmas, high pressure arc discharge, white
dwarf, neutron starts, and inertial confinement fusion plasmas.
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Figure 1.3: Summary of various plasmas for a wide range of density and temperature.
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• Benchmarking: There may be a variety of solvers that solve the exact same equa-

tions. It is important to benchmark a code against other codes to understand the

performance of a numerical method. In addition, for development of a grid-based ki-

netic method, it is important to show the similarities and differences with the existing

particle-based methods.

• Validation: Computer simulations can be used to analyze and predict measurements

or experimental observations. While verification is often mathematical as analytic

solutions are required, validation is a process to compare the numerical results with

something that is close to the exact solutions.8 It is important to keep in mind

that experiments also include uncertainties through measurements, making them not

exact.9

• Computational Efficiency: As computation time and memory are finite, it is im-

portant to minimize the computational cost either by improving the numerical scheme

or utilizing large-scale parallel computers. Currently, several parallel computing tech-

niques are available, including distributed-memory10 or shared-memory11 systems.

Recent advancement on graphic processing units12 possesses a large potential in mak-

ing parallel computation faster and cheaper.

In this dissertation, a grid-based kinetic simulation method is discussed. It is important

to test and verify the code before applying it to complex engineering problems. In the

first part of the dissertation, a numerical scheme is chosen by considering its properties and

understanding the problems to solve. Once the solver is developed, verification, benchmark-

ing, and validation can be performed. It is important to note that the key disadvantage of

8Validation can be both ways. There are computational validation of an experiment as well as exper-
imental validation of a computer simulation. For a code development, one validates the simulations with
experiments.

9The main difference between verification and validation is whether the solutions to be compared are
exact or not. These two are often used without any distinctions.

10The most used distributed-memory parallel computation is Message Passing Interface (MPI), in which
multiple cores (processors) on an IC chip (node) communicate among each other. As each processor has its
own memory, the memory is not shared but distributed. A set of multiple nodes is often called a cluster.

11An example of shared-memory systems is Open Multi-Processing (OpenMP). Multiple threads within
a processor share memory and other resources. One drawback is the synchronization, which occurs when
multiple threads in a device perform multiple operations at the same time.

12General-Purpose computing on graphics processing units (GPGPU) includes CUDA and OpenCL. This
is also one type of shared-memory architecture.
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using a grid-based kinetic method has been the large computational cost associated with the

discretized velocity space, which is discussed in Sec.2.3.1. This has been improved by the

use of parallel computation, making large-scale simulations feasible. All of the abovemen-

tioned processes are taken into account in this dissertation to construct a computational

framework using grid-based kinetic methods.

The second part of the dissertation focuses on the physics of Hall thruster discharge plas-

mas. Modeling of such plasmas poses a significant challenge due to the broad spectrum of

physical phenomena as well as the associated temporal and spatial scales. A hybrid kinetic-

continuum method was developed to model heavy species and electrons that have orders of

magnitude difference in their time scales. In addition, the transport of electronically-excited

atoms is taken into account and the multispecies reaction effects are discussed. As recent

advancement of experimental techniques enables accurate measurements on low-frequency

plasma oscillations, computational and theoretical frameworks are developed to investigate

such dynamic plasma transport. The goal of the second part of this dissertation is to under-

stand the mechanism of the low-frequency ionization oscillations in a HET using the hybrid

simulation technique and a perturbation theory.

1.5 Thesis Outline

In Chapter II, an overview of different types of plasmas and plasma modeling techniques

is presented. The development of a grid-based kinetic method is also discussed. Chapter III

discusses the two verification test problems for developing the grid-based kinetic method,

including the plasma-sheath problem and nonlinear plasma waves. Chapter IV focuses

on the hybrid kinetic-continuum method developed to model the Hall thruster discharge

plasma and benchmarking of the grid-based kinetic method with a particle-based simulation.

In Chapter V, mode transition of discharge oscillations in Hall thrusters is investigated

using an improved hybrid kinetic-continuum model. Several improvements in the electron

continuum model are made and detailed multispecies reactions are taken into consideration.

Chapter VI presents a linear perturbation theory of ionization oscillations in Hall thrusters.

The computational and theoretical framework are both compared with experimental data

13



and the mechanisms of discharge oscillations are discussed. Chapter VII describes the

development of a two-dimensional grid-based kinetic model. This is coupled with a two-

dimensional electron continuum model to investigate the ionization oscillations in the axial

and azimuthal directions of a Hall thruster. Finally, in Chapter VIII, conclusions and future

directions of this dissertation are presented.
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CHAPTER II

Numerical Method

In this chapter, an overview of governing equations is presented. Three major plasma

simulation techniques, including particle- and grid-based kinetic simulation and continuum

model, are discussed and compared.

2.1 First-Principles Governing Equations

Kinetic theory of gas and plasma flows describes the time evolution of the phase space

distribution function of particles. The Liouville equation, in which the Hamiltonian dynam-

ics of N particles is considered, can be transformed into a chain of equations of multiple par-

ticle distribution functions, called the Bogoliubov-Born-Green-Krikwood-Yvon (BBGKY)

hierarchy. Detailed derivations and assumptions are described in Ref. 32. The Boltzmann

equation can be derived by assuming that only binary collisions occur1 and the velocities

of two colliding particles are uncorrelated.2 The Boltzmann equation is given by:

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= S, (2.1)

where f is the VDF, v is the velocity, x is the physical space, t is time, a is the acceleration,

which can be written as a = q(E+v×B)/m for nonrelativistic plasmas,3 q is the elementary

charge, m is the mass, E is the electric field, B is the magnetic field, and S is the collision

1Also called dilute gas approximation. Three-body collisions are neglected.
2Molecular chaos assumption. The two-particle distribution function f12 can be written as a product of

one-particle distribution functions: f12 = f1f2
3For relativistic plasmas, a = q[E + (v × B)/γr]/m, where γr is the relativistic factor given by γr =

(1 + v2/c2) with c being the speed of light.
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term. In the plasma community, the collisionless Boltzmann equation is often called the

Vlasov equation: S = 0 in Eq. (2.1).

Macroscopic quantities can be obtained by evaluating moments of the VDFs. For in-

stance, the number density, mean velocity, and mean energy are obtained from

n(x, t) =

∫ ∞
−∞

f(x,v, t)dv, (2.2)

u(x, t) =

∫ ∞
−∞

vf̂(x,v, t)dv, (2.3)

ε(x, t) =

∫ ∞
−∞

1

2
m|v|2f̂(x,v, t)dv, (2.4)

where f̂ is the normalized VDF: f̂ = f/n. Note that the conventional fluid conservation

equations can be derived by taking moments of the collisional invariants in Eq. (2.1) and

by assuming that the VDFs are Maxwellian. The derivation is shown in Appendix A.

Modeling collision terms can be the most challenging component in kinetic modeling.

In particular, elastic collisions are described by the Boltzmann collision integral:

Sboltz =

∫ ∫
gσ(f ′Af

′
B − fAfB)dΩd3v, (2.5)

where g = |vA − vB| is the relative speed between particles A and B, σ = σ(g,Ω) is

the differential cross section, superscript ′ denotes the information after a collision event,

subscripts A and B denote the two particles colliding in this event, and dΩ is the solid angle.

Solving the Boltzmann integral is computationally expensive, so the simplified Bhatnagar-

Gross-Krook (BGK)4 collision operator has also been used to account for some scattering

processes. The BGK operator is given by

Sbgk = ν(f − fM ), (2.6)

where ν is the collision frequency and fM is the Maxwellian with the macroscopic properties,

such as mean velocity and temperature, the same as those obtained from f . It is based on

4This is different from the Bernstein-Greene-Kruskal (BGK) solution for nonlinear plasma waves, shown
in Sec. 3.4
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the assumption that the non-Maxwellian components will eventually relax to a Maxwellian

with conservation of momentum and energy. Another collision model that is important in

plasma physics is the Fokker-Planck collision integral that assumes the effect of charged-

particle interactions such as elastic Coulomb collisions:

Sfp = − ∂

∂v
· (Af) +

1

2

∂

∂v
·
[
∂

∂v
· (Df)

]
, (2.7)

where A and D are the dynamical friction vector and the diffusion tensor, respectively.

Investigation and development of the collision models are reserved for future work.

In the present study, the collision reactions involved in the DK simulation are ionization

processes and charge exchange collisions. For instance, the ion source term via ionization

can be described as

Sion = νionfneutral, (2.8)

where νion is the ionization frequency and fneutral is the neutral atom VDF. The charge

exchange collisions between ions and neutral atoms are modeled as

SCEX = νCEX(fneutral − fion), (2.9)

where νCEX is the charge exchange collision frequency and fion is the ion VDF. This will

be explained later in Sec. 4.3.

2.2 Particle-based Method

In particle simulations, the kinetic equation is not directly solved but the equations of

motion are solved for each macroparticle. The equations of motion for each particle j are

written as

dxj
dt

= vj ,
dvj
dt

= aj . (2.10)

The most common integration scheme used for particle simulations is a leap-frog scheme,

which is a second-order accurate method without any numerical dissipation error.5 The

5In numerical simulations, dissipation error is the magnitude of error, while dispersion error is the phase
error. These errors can be quantified using Von Neumann analysis, where a numerical solution can be written
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macroscopic quantities are obtained by sampling the particle information. For instance, the

number density and the mean velocity can be obtained by

n(ξ) =
1

V

∑
j

s(xj − ξ), (2.11)

u(ξ) =
1

V

∑
j

vjs(xj − ξ), (2.12)

where ξ is the physical coordinate of a cell, V is the cell size, and s is the shape function, or

the particle weight. The statistical noise, εS , due to the use of discrete macroparticles can

be reduced with an increased number of macroparticles Np, i.e. εS ∼ N
−1/2
p , but there is

always statistical noise in the system that may affect estimation of the collision integral and

alter high frequency plasma oscillations. Collision processes are often taken into account

probabilistically using random numbers. The collision probability within a fixed time step

∆t is given by

P = ν∆t, (2.13)

where ν is the collision frequency and P is the collision probability, which is compared with

a random number to determine if the collision event occurs or not.

2.3 Grid-based Kinetic Method

A grid-based kinetic method employs discretized phase space in which the kinetic equa-

tions are solved directly. In this thesis, the grid-based kinetic method is referred to as the

direct kinetic (DK) method. As the collisionless Boltzmann equation is often called the

Vlasov equation in the plasma community, we refer to the collisionless DK simulation as

the Vlasov simulation.

Since Eq. (2.1) is a multidimensional first-order hyperbolic partial differential equation

(PDE), the numerical methods for advection problems developed in the computational fluid

dynamics (CFD) community can be used effectively. In the applied mathematics community,

development of high-order accurate Vlasov simulation technique has also been a popular

as G = exp(−iωt) in simple equations.
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research topic. The first Vlasov simulation developed was a finite difference scheme using

cubic spline interpolation.[33] Since then, many researchers have developed other meth-

ods including semi-Lagrangian methods,[34] Weighted Essentially Non-Oscillatory (WENO)

schemes,[35] Discontinuous Galerkin methods,[36] and finite volume methods using Runge-

Kutta methods for time integration.[37] Other Vlasov models have been used in the plasma

community. For instance, the gyrokinetic approach, in which the gyrophase-averaged Vlasov

equation is solved, is frequently employed in the tokamak plasma community.[38]

2.3.1 Comparison with Particle Methods

Table 2.1 summarizes the comparison of grid-based and particle-based kinetic simula-

tions. In particle simulations, the kinetic equation is not directly solved but the equations

of motion, shown in Eq. (2.10), are solved for each macroparticle. Eq. (2.10) is a set of two

first-order ordinary differential equations (ODE). The macroscopic quantities are obtained

by sampling the particle information. Collision processes are often taken into account prob-

abilistically using random numbers. There is always statistical noise in the system that may

affect estimation of the collision integral and alter high frequency plasma oscillations.

On the other hand, grid-based methods eliminate the statistical noise in particle simula-

tions and calculate the collision integral using discretized VDFs directly. In comparison to

the particle-based kinetic method being a probabilistic approach, the grid-based simulation

is often called a deterministic kinetic method. Particle simulations can also be categorized

as Lagrangian while grid-based methods are Eulerian.

Memory requirements can be larger for grid-based kinetic simulations since the phase

space needs to be discretized in all dimensions. Let us assume that the discretization in the

physical coordinate is identical in grid- and particle-based kinetic simulations. In general,

the total number of cells per one physical cell is Nd
v , where the number of grid points in

the velocity space is Nv and d is the number of dimensions in velocity space. For particle

simulations, each macroparticle has (2d)-dimensional information, so the total number of

degrees of freedom is 2dNp, where Np is the number of particles per cell. The computational

memory required is directly associated with the resolution of the VDFs, which also affects

the macroscopic quantities.
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Table 2.1: Comparison of grid-based and particle-based kinetic simulations

Grid-based Particle-based

Model
Solve for VDFs in phase

space
Solve for motions of

macroparticles

Differential equation Hyperbolic PDE ODE

Specification Eulerian Lagrangian

Macroscopic
quantities

Moments of VDFs
Sampling particle

information

Collision rates Integral of collision operator Collision probability

Computational
memory per physical
cell (d is the number

of dimensions)

Nd
v (Nv: number of grid

points in the velocity space)
2dNp (Np: number of

particles per cell)

Numerical error

Global truncation error:
εT ∼ O[(Nv)

−p] (p is the
order of accuracy of the

scheme)

Statistical noise:
εS ∼ O[(Np)

−1/2]

Finally, the most critical comparison may be the error associated with either kinetic

method. The truncation error is the source of the error in numerically solving a differential

equation system.[39] For instance, consider a first-order differential equation: du
dt = ku. The

analytic solution is u = u0 exp(kt), where u0 = u(t = 0). From another perspective, for a

given level t = t0, the solution at t = t0 + h can be described using Taylor expansion as

u(t0 + h) = u(t0)

[
1 + kh+

∞∑
m=2

km

m!
hm

]
. (2.14)

For numerical calculations, the left hand side must be discretized and we apply a numerical

scheme. For instance, a first-order forward Euler integration method is employed to advance

one numerical step h from the level n to n+ 1.

Un+1 = Un (1 + kh) . (2.15)

It can be seen that the numerical scheme neglects the high order terms in Eq. (2.14) when
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comparing Eqs. (2.14) and (2.15). This is exactly the local truncation error, the numerical

error introduced in one numerical step, of a numerically-discretized scheme: O(hp+1) for a

pth-order method. The global truncation error is the accumulative error through multiple

integration steps, i.e. a sum of many local truncation errors. For a total length of L,6 the

total number of integration steps will be L/h. Hence, the global truncation error, εT , of a p-

th order accurate scheme is on the order of O(hp). Note that there are temporal errors when

integrating the time derivative as well as spatial errors when discretizing spatial derivatives.

In Table 2.1, the numerical error in the grid-based method is shown to be proportional to

O(N−pv ) as the grid size h can be given by h = Lv/Nv for a given system size Lv. The error

level can be reduced by choosing a large number of grid points or a higher order accurate

numerical method.

The numerical error in particle-based methods7 is associated with the statistical noise,

εS , due to the use of discrete macroparticles.[32] The statistical noise arises when sampling

the particle information using averaging techniques and can be reduced with an increased

number of macroparticles Np, i.e. εS ∼ N−1/2
p . The error level can be reduced by increasing

the number of particles for the particle simulations. For a steady-state calculation, as the

flows are static, a large time window can be chosen for particle sampling. This will reduce

the statistical noise since macroscopic quantities can be sampled from a larger number of

macroparticles. Therefore, it can be expected that the grid-based simulation works better

if the flows are dynamically moving and a smaller sampling time is required as there is no

need for sampling in the grid-based methods.

2.3.2 Numerical Scheme

When choosing the numerical scheme for the grid-based solver, several important prop-

erties must be considered.

1. Positivity: VDFs must be positive since the probability of particles in the phase space

is bounded between zero and one. 0 ≤ f̂ ≤ 1, where f̂ is the normalized VDF, i.e.∫
f̂dv = 1.

6L can be either time, spatial length, or any other dimensions that are discretized.
7A leap-frog method used for advancing particle position and velocity is typically second-order in time

and space or velocity.
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2. Mass Conservation: The number of particles must be conserved in the system. Finite

volume methods inherently satisfy conservation of particles whereas other methods

often neglect this property.

3. Accuracy: The accuracy of the scheme should be high enough, usually higher than

first order, to reduce the numerical errors and obtain a converged solution.8

4. Efficiency: Since grid-based kinetic simulations can be computationally expensive,

as discussed in Table 2.1, the computational efficiency should also be improved for

practical use.

5. Momentum/Energy Conservation: Such conservation is important since the collision

rate coefficients are calculated using the VDFs or EDFs. For instance, if the electrons

gain energy from numerical errors, the inelastic collision terms may be calculated less

accurately.

In this thesis, a finite volume DK solver is developed using a modified Arora-Roe

scheme,[40] which gives second-order accuracy, for flux reconstruction. All the properties

except for the momentum/energy conservation are achieved using the present numerical

scheme. Finite volume methods solve for the cell-averaged quantity by estimating the flux

that goes in and out of the cell. An example of the numerical stencil for a finite volume

method is shown in Fig. 2.1. Assume a one-dimensional linear advection equation,

∂u

∂t
+ v

∂u

∂x
= 0, (2.16)

where u = u(x) is the conserved quantity and v is the characteristic speed, which is constant

in a linear advection equation. The discretized equation can be written as

Un+1
j − Unj

∆t
= − 1

∆x
(Fj+1/2 − Fj−1/2), (2.17)

where U is the cell-averaged quantity, F is the discretized flux, ∆t is the time step, ∆x

is the cell size, and superscript n and subscript i denote the indices of time step and cell,

8Solutions obtained from a numerical method should approach the exact solution of the differential
equation when the error level is small enough εT → 0.

22



Figure 2.1:
Stencil of a finite volume scheme. Arrows describe the fluxes at the cell inter-
faces.

respectively.

In order to calculate the flux terms higher than first-order accuracy in Eq. (2.17),

the Monotonic Upwind Scheme for Conservation Laws (MUSCL) is used.[41] Godunov’s

theorem states that no linear numerical scheme that is better than first-order accuracy

(p ≥ 2) can preserve monotonicity.9 The use of nonlinear flux limiter functions in the

MUSCL framework can limit any numerical extrema, i.e. undershoot and overshoot, while

achieving order of accuracy higher than first order. For v > 0, the flux at the cell interface

j + 1/2 can be written as

Fi+1/2 = cUi +
(1− |c|)c

2
(Ui+1 − Ui)Ψ(ri+1/2), (2.18)

where c = v∆t/∆x is the Courant number, or often called the Courant-Freidrich-Lewy

(CFL) number, Ψ(r) is the nonlinear limiter function, and ri+1/2 = (Ui−Ui−1)/(Ui+1−Ui)

is the slope factor, which indicates the smoothness of the neighboring values. In addition to

the modified Arora-Roe limiter employed in this dissertation, various nonlinear flux limiters

are shown in Fig. 2.2. For instance, the harmonic limiter works well for smooth functions,

the superbee limiter tends to capture a discontinuity well due to the steepening of solutions,

9This property can be described by the total variation: TV (Un) =
∑
|Uj+1 − Uj |. A total variation

diminishing (TVD) scheme satisfies TV (Un+1) ≤ TV (Un).
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and the Arora-Roe scheme is based on the third-order accurate discretization:

Ψ3rd(r) =
1 + |c|

3
(r − 1) + 1.

The original Arora-Roe limiter uses

Ψ(r) =


0 r < 0

min
[

2
|c|r,Ψ

3rd(r)
]

0 ≤ r < 1

min
[

2
1−|c| ,Ψ

3rd(r)
]

r ≥ 1.

(2.19)

The limits Ψ = 2r/|c| and Ψ = 2/(1 − |c|) are the strongest conditions for monotonicity,

i.e. satisfying TVD properties. It was found that the tail of a smooth distribution can be

corrupted due to these strong limiters. In this study, a modified Arora-Roe limiter is used,

given by

Ψ(r) =


0 r < 0

min[2r,Ψ3rd(r)] 0 ≤ r < 1

min[2,Ψ3rd(r)] r ≥ 1.

(2.20)

2.3.3 Time Integration

For the time integration on the left hand side in Eq. (2.17), a second-order Runge-Kutta

method or Strang’s time splitting technique is used. A higher order time integration scheme

can be used, but second-order accuracy is sufficient since the spatial discretization of the

flux calculations is second-order accurate. Note that higher order time integration is needed

for collision dominated flows in order to maintain the nonlinearity of the evolution.[42] Let

us assume a time-dependent equation:

du

dt
= L(u),
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Figure 2.2:
Sweby diagram: The Arora-Roe limiters in this figure are for CFL number
|c| = 0.2.

where L(u) is an operator for the quantity u. A second-order Runge-Kutta scheme can be

written as a two-step integration method:

u∗ = un + ∆tL(un),

un+1 = un +
∆t

2
[L(un) + L(u∗)] .

Strang’s time splitting technique works for multidimensional equations. Let us assume a

two-dimensional time-dependent equation:

du

dt
= Lx(u) + Ly(u),

where Lx(u) and Ly(u) are differential operators in the x and y directions. Then, the time

integration can be given by

u∗ = un +
∆t

2
Lx(un),

u∗∗ = u∗ + ∆tLy(u
∗),
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un+1 = u∗∗ +
∆t

2
Lx(u∗∗).

The time step must satisfy the Courant-Freidrich-Lewy (CFL) condition in order to

achieve numerical stability. For a second-order explicit RK integration,

∑
i

(
max |v|i∆t

∆xi
+

max |a|i∆t
∆vi

)
≤ 1 (2.21)

where v is the characteristic velocity, a is the characteristic acceleration, ∆t is the time step,

∆x and ∆v are the cell size in physical and velocity space, and i denotes the dimension.

The time step must be chosen small enough to satisfy Eq. (2.21) for a certain spatial

discretization. Typically, on the right hand side, we can set a safety factor which is less

than 1 in order to satisfy numerical stability. The right hand side is also dependent on

the time integration scheme. For instance, the maximum Courant number is above 2 for a

fourth-order Runge-Kutta scheme. For Strang’s time splitting method, the CFL condition

needs to be satisfied independently in each direction. Note that the source term can be

easily added on the right hand side of Eq. (2.17) for collisional problems.

The challenge of grid-based kinetic simulations lies in the choice of the numerical scheme

to solve the discretized governing equation. Additional important properties include conser-

vation of momentum and energy,[43] which may be critical when including collision terms.

Investigation of other numerical methods is reserved for future work.

2.3.4 Parallel Computing Capabilities

The DK simulation can be used on a signal processor or multiple processors using

Message Passing Interface (MPI). For instance, the 1D1V (one dimensional in physical space

and one dimensional in velocity space) DK simulation partitions the domain and assigns

each of those sub-domains to different processors. Information is sent and received between

the neighboring processors using MPI Send and MPI Recv. As the DK simulation employs a

MUSCL scheme, each processor requires two extra cells from the neighbors. If a higher-order

numerical method is used and a larger stencil is required, then the communication required

in MPI will also increase. The macroscopic quantities can be integrated using collective
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communication routines, such as MPI Allgather and MPI Bcast. When the 1D1V Vlasov

solver is coupled with a Poisson solver, then the Poisson solver runs on a single processor.

For the 2D2V DK simulation, the 2D domain in the physical space is partitioned among

the processors while all processors possess the same 2D velocity space. The macroscopic

quantities can be integrated locally on each processor, and they can be sent to the neigh-

boring processors. MPI communications are used when passing the macroscopic quantities

and VDFs between processors. For a 2D Poisson solver or continuum solver, linear algebra

software can be used. In this thesis, hypre, software developed at LLNL, is used. This is a

library of high performance preconditioners that can be used for parallel computing.

2.4 Continuum Approach

Although kinetic simulations can capture nonequilibrium effects, a CFD-type fluid mod-

eling is also popular since the computational cost is significantly lower than kinetic meth-

ods. Like grid-based kinetic methods, continuum methods avoid the statistical noise asso-

ciated with particle-based methods. Continuum models are useful for equilibrium or near-

equilibrium flows, but become less accurate when modeling strong nonequilibrium flows

such as non-Mawellian and beam distributions.

Table 2.2: Comparison of kinetic models and continuum approach

Kinetic Continuum (fluid)

Nonequilibrium
effects

Yes
Assumes equilibrium or

near-equilibrium

Velocity space
discretization

Yes No

Computational cost
(Nc is the total

number of cells in
physical coordinate)

NcNv,tot (Nv,tot is the total
degrees of freedom that

represents velocity space)
Nc

Models
PIC, DSMC, Vlasov, DK,

Gyrokinetic
Euler, Navier-Stokes,

Burnet, MHD

For continuum modeling, conservation equations are derived by taking moments of the
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Boltzmann equation in Eq. (2.1). If the gas is not ionized, the flow can be described using

the Euler equations or Navier-Stokes equations. There are also some fluid equations that

takes higher order moments into account, such as the Burnett equations. In the presence of

nonequilibrium effects and electromagnetic forces, the generalized magnetohydrodynamic

(MHD) equations can then be given by

∂n

∂t
+∇ · (n~u) = S, (2.22)

∂

∂t
(mn~u) +∇(mn~u.~u+ p) = q( ~E + ~u× ~B) +∇τ + ~R, (2.23)

∂

∂t
(nε) +∇ · (n~uε+ p~u) = ∇ · ~Q+ qn~u · ~E + Selas − Sinelas + Φ, (2.24)

where m is the mass, n is the number density, ~u is the mean velocity, S is the sum of source

and sink terms for particles, p is the pressure, τ is the viscous stress, ~R is the collisional

friction, ε is the mean energy, ~Q is the conductive heat flux, Selas is the energy source due

to elastic collisions, Sinelas is the energy loss due to inelastic collisions, and Φ is the energy

dissipation function due to viscous stress. For the Euler equations, all of the right hand

sides are zero. The Navier-Stokes equations retain the viscous terms including ∇τ in Eq.

(2.23) and Φ in Eq. (2.24) as well as the heat conduction, ∇ · ~Q. For reactive multispecies

flows, S in Eq. (2.22) is also included. Note that the derivation of the continuum equations

is shown in Appendix A. It can be seen that these equations can be exact at any Knudsen

number if the VDFs of the gas species are known.

For plasma simulations, it is typically assumed that the electromagnetic forces are dom-

inant over the viscous terms. Typically, the source and sink terms in the mass conservation

equation can be given as

S =
∑

reaction

ṅ,

where ṅ is the change in the density due to reactions. The collisional friction term is often

given by a Krook operator:[44, 45]

~R = −mnνm(~u− ~uj),

28



where νm is the momentum transfer collision frequency and ~uj is the mean velocity of a

colliding particle, j. Note that this approximation employs an assumption that the mean

velocity of the flow is much smaller than the thermal speed. To our knowledge, this is only

discussed in Ref. 45. Finally, the energy transfer terms are written as

Selas =
∑
j

2m

mj

3

2
kB(T − Tj)νj ,

Sinelas =
∑
k

n∆εkνk,

where mj and Tj are the mass and temperature of the colliding particle, j, νj is the elastic

collision frequency, and ∆εk and νk are the energy required and collision frequency of

inelastic process, k. The collision frequency can be calculated from

ν = n

∫
f̂(ε)σ(ε)

√
2ε

m
dε,

where n is the number density of the target gas species, f̂(ε) is the energy distribution

function, σ(ε) is the collision cross section, and ε is the energy of the colliding particle.

Collision frequencies can be a function of temperature when the EDF is a function of

temperature, such as a Maxwellian: f(ε) ∼ exp(−ε/T ).

For the momentum equation in Eq. (2.23), the most used approach is called the drift-

diffusion approximation.[46] If the collision terms, electromagnetic forces, and pressure gra-

dient are dominant, the inertial term and the time derivative can be neglected. From the

drift-diffusion approximation, the momentum equation in Eq. (2.23) reduces to an equa-

tion in which a simple form of flux is obtained. This is then inserted in Eq. (2.22) and the

spatiotemporal evolution of the density is solved for.[42] Assuming that the gas species are

in an equilibrium state, the temperature is obtained from Eq. (2.24). Note that the mean

energy is a sum of kinetic and thermal energy. For an isotropic distribution,

ε =
3

2
kBT +

1

2
m|~u|2, (2.25)

where kB is the Boltzmann constant and T is the temperature. In the low temperature
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plasma community, it is common to assume that the kinetic energy is negligible compared

to the thermal energy. This is valid as long as there is no strong directed flow in the plasma

or the drift-diffusion approximation holds. As discussed later, it was recently found that the

kinetic energy of electrons cannot not be neglected in Hall thruster plasmas since a strong

E×B drift exists in the system. As the numerical methods for solving continuum equations

depend on what assumptions are used, they are discussed later in the dissertation.

2.5 Summary

The aim of this research is to develop a grid-based direct kinetic (DK) simulation where

the kinetic equations, such as the Boltzmann equation and Vlasov equation, are solved

directly in discretized phase space. The statistical noise in particle-based methods is essen-

tially eliminated in the DK simulation, making it useful for investigating plasma oscillations

and small-scale physics. In comparison to continuum models, the nonequilibrium nature of

the plasma flow can be obtained more accurately using a kinetic method. The differences

between continuum, particle-based kinetic, and grid-based kinetic simulations are illustrated

in Fig. 2.3.
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Figure 2.3: Computational methods for rarefied flows or plasmas.
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CHAPTER III

Verification of a Grid-Based Direct Kinetic Method

A grid-based direct kinetic (DK) simulation is constructed by first developing a collision-

less Vlasov solver, since analytic solutions can be derived in some particular problems from

the collisionless Vlasov-Poisson equations. In this chapter, code verification is performed

and the verification test problems including plasma sheath and trapped particle instabilities

are discussed.

3.1 Implementation of the Vlasov-Poisson solver

For developing a new kinetic method, it is important to verify the solver. Verification

is a technique where the results obtained from numerical simulations are compared with

analytic solutions of a mathematical model. Inclusion of the source term in kinetic modeling

introduces complexity and it is often difficult to derive an analytic solution. Therefore,

collisionless problems are considered and the Vlasov-Poisson solver is used to verify the

grid-based kinetic method.

Formulation

For a nonmagnetized plasma, the electric field can be written as E = −∇φ, where φ

is the plasma potential. Gauss’s law, one of Maxwell’s equations, reduces to the Poisson

equation. The 1D Poisson equation is given by

− d

dx

(
ε0
dφ

dx

)
= e(ni − ne), (3.1)
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where ε0 is the permittivity, ni is the positively charged ion density, and ne is the electron

density.1 This is a second order elliptic PDE that requires boundary conditions.Three main

boundary conditions include Dirichlet, Neumann, and periodic conditions. The electric field

calculated from the potential, Ex = −dφ/dx, is then used in the Vlasov equation:

∂f

∂t
+ vx

∂f

∂x
+
qEx
m

∂f

∂vx
= 0, (3.2)

where q is the charge. q = −e for electrons and q = +e for positively charged species.

The densities integrated from the VDFs are then used in the Poisson equation. Here, this

simulation is called the Vlasov-Poisson solver.

The Vlasov equation is solved using a finite-volume method with MUSCL framework

using a modified Arora-Roe limiter, as shown in Chapter II. The 1D Poisson equation is

solved using a fast Fourier Transform (FFT) method for periodic boundary conditions and

a Tridiagonal matrix solver is used for the other boundary conditions.

DK/Vlasov Procedure

The 1D1V DK solver is written in C.2 For the DK/Vlasov subroutine, a 1D1V solver

has a 2D array. Strang’s time splitting allows one to separate the 2D advection into a set of

1D advection equations. The 1D1V Vlasov equation becomes a set of two linear advection

equations because the velocity is identical in the same velocity bin for the x-advection and

the electric field is identical in the same physical cell for the v-advection. The procedure of

the kinetic update is as follows.

1. Store the old values. uold[i] = u[i][j] for j, where i = 0, . . . , n with the total number

of cells in one direction, n.

2. Initialize an array for the flux at the cell interfaces. flux[i], where i = 0, . . . , n+ 1.

3. Calculate the flux using the old values. flux[i] = muscl(uold). The CFL number for

the x-advection is v∆t/∆x and that for the v-advection is a∆t/∆v, where a is the

acceleration.
1If negatively charge ions exist, those will contribute to the negative charges as well.
2A Fortran version of the Vlasov solver is also developed.
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4. Update the values. u[i][j] = uold[i]− (flux[i+ 1]− flux[i]) for each j.

5. Repeat for all j.

Boundary Conditions

The boundary conditions for the DK/Vlasov solver are twofold. There are boundaries

for the x-advection and v-advection. The boundary conditions for the v-advection are

straightforward as long as the domain is large enough and there are essentially no VDFs at

the first and last cells in the v direction. Otherwise, there may be particles with lower or

higher velocity outside the domain in the velocity space. If the VDFs at the cell interfaces

of the maximum and minimum velocities are small enough, either a Dirichlet boundary

condition, i.e. specifying a zero value for the ghost cell, or a Neumann condition, i.e.

specifying the gradient of the VDFs to be zero, works.

The boundary conditions for the x-advection require more consideration. First, the

VDFs of v ≥ 0 at x = 0 and those of v < 0 at x = L must be assigned as the characteristics

stem from outside the inner domain. For a non-emitting wall, the VDFs of the emitting

particles at the wall are fixed at zero. Thus, the fluxes at these cell interfaces are zero.

On the other hand, the VDFs of the particles that leave the domain, i.e. v < 0 at x = 0

and v ≥ 0 at x = L, will not be affected by the information outside the domain. The flux

calculation must be performed using only the interior information. Most importantly, it was

found that the order of accuracy for the flux at these cell interfaces needs to be matched to

that of the interior numerical schemes. A Neumann condition for the VDFs only results in

first order accuracy as the flux is calculated from piecewise constant data from the interior

cell adjacent to the boundary. At least a first-order extrapolation is required for the ghost

cells outside the domain for these outgoing particles. This results in second-order accurate

flux calculation at those interfaces.

Parallel Computation

Message-Passing Interface (MPI) is used for parallel computation. A Cartesian mesh is

used for the phase space discretization and partitioned among multiple processors. Typi-
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cally, the partition is performed as shown in Fig. 3.1. The global numbers of cells in the

x and v directions are first defined, from which the cell size is determined, i.e. ∆x and

∆v. The cell-centered VDFs are cell-averaged as a finite volume method is used for the

DK/Vlasov solver.

v

xL0

vmin

vmax

x

v

id=0 id=1

id=15id=14

id=2 id=3

id=4

id=12 id=13

id=9id=8 id=10 id=11

id=5 id=6 id=7

Figure 3.1:
Example of the phase space partitioning in the DK/Vlasov solver when using
16 processors in total.

Each processor has partitioned phase space with 2 ghost cells, which are required due

to the use of a finite volume method. These ghost cells are assigned physical quantities

using a Dirichlet or Neumann condition at the boundaries of the global domain. However,

the quantities from the neighboring processors must be exchanged for the interior region of

the global domain. All processors store the array elements that are sent to the neighboring

processors. Then, the elements are sent using MPI Send. Simultaneously, the processors

receive the information sent to themselves using MPI Recv.

The number density in each physical cell is required for the Poisson solver. Each pro-

cessor calculates the density from the moment of the VDFs and stores it into a local ar-

ray. Then, these local arrays are summed together and stored into a global array using

MPI Allgather or MPI Gather. Typically, the global array that summed the number den-
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sity information from all processors is stored on the root processor, where the potential and

the electric field are calculated. Then, the electric fields are copied to all processors using

MPI Bcast. The flowchart of the Vlasov-Poisson solver is shown in Fig. 3.2.

Input

Poisson solver
- Calculate (x), E(x)

Kinetic solver
- Calculate fi(x,v), fe(x,v)

Output?

Output macroscopic data
Output VDFs 

Iterate?

Input: ni(x), ne(x)

No

Yes

Yes

Stop

Input: E(x)

No

Integrate fi(x), fe(x) 
- Update ni(x), ne(x)

Tridiagonal matrix?
Fast Fourier Transform?

Time integration
Flux calculation

Root proc.

All procs.

- Broadcast E(x)
- Gather ni(x), ne(x)

MPI process

Figure 3.2: Implementation of the Vlasov-Poisson solver.

3.2 Classical Plasma Sheath

A plasma sheath is a boundary layer-type structure near plasma-immersed materials.

When the potential at the material is fixed, then the difference between the plasma potential
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and the wall potential determines the current balance.3 On the other hand, for a material

with floating potential, a plasma sheath will be formed to maintain the charge balance at the

wall. When Te � Ti, where Te and Ti are the electron and ion temperatures, respectively,

more hot electrons collide with the wall, therefore the wall initially becomes negatively

charged, which will attract positive ions until the charges at the wall are balanced. As the

standard HETs employ dielectric materials for the channel wall, the plasma sheath of a

material with floating potential is investigated in this section.

3.2.1 Theory

Ions are assumed to be a monoenergetic beam and have a finite speed entering the

sheath, u0. Primary electrons are assumed to be thermalized, Boltzmann electrons. The

sheath edge is assumed to be at x = L and the wall is at x = 0, where L is the sheath

width. The potential at the sheath edge is assumed to be φ(x = L) = 0. As Te � Ti, we

investigate a positive sheath, where φ(x) < φ(x = 0) = 0. A quasineutral assumption is

used at the sheath edge: ni(x = L) = ne(x = L) = n0, where n0 is a constant. From the

ion continuity and energy conservation equations, the ion density is described as

ni = n0

(
1 +

2eφ

miu2
0

)− 1
2

(3.3)

where φ is the potential, mi is the ion mass, and e is the elementary charge. The ion flux is

simply Ji = n0u0 throughout the sheath as there are no collisions. In addition, the analytic

ion VDFs can be obtained from the Bohm-velocity shifted Maxwellian at the sheath edge,

given by

fi(x, vx) =


n0

(
mi

2πkTi

)1/2
exp

[
− mi

2kTi

(√
v2
x + 2eφ

mi
− u0

)2
]

vx ≤ −
√

2e|φ|/mi

0 vx > −
√

2e|φ|/mi

(3.4)

The number density and flux of electrons can be calculated assuming a Maxwellian VDF

3For instance, when φw � φp, where φw is the wall potential and φp is the plasma potential, the electron
density is significantly smaller near the wall and the ion current will be space charge limited: Ji ∼ V 3/2/d2,
where Ji is the ion flux, V is the potential drop, and d is the sheath width. This is often called the
Child-Langmuir sheath.

37



at the sheath edge. Thus, the electron VDF inside the sheath can be given as,

fe(x, v) =

 n0,e

(
me

2πkTe

)1/2
exp

(
−mv2

2kTe
+ eφ

kTe

)
v ≤ vc

0 v > vc

(3.5)

where vc =
√

2e(φ− φw)/me is the cutoff velocity of the truncated electrons due to the

potential drop in the sheath, me is the electron mass, and φw is the wall temperature. Note

that the potential field obtained from the simulation results can be used for the potential φ

in order to obtain the analytic solutions for ion and electron VDFs in Eqs. (3.4) and (3.5),

respectively. The electron number density and flux can be calculated by taking the moment

of Eq. 3.5:

ne =
n0,e

2

1 + erf

√
e(φ− φw)

kTe

 exp

(
eφ

kTe

)
, (3.6)

Je =
n0,e

4

√
8kTe
πme

exp

(
eφw
kTe

)
(= const.) (3.7)

From Eq. (3.6), ne(x = L) = n0. Note that φ(x = L) = 0 and φw < 0. Thus, in order to

maintain quasineutrality at the sheath edge, strictly speaking, ne0 must satisfy

n0 =
n0,e

2

1 + erf

√
e|φw|
kTe

 . (3.8)

For |eφw/kTe| � 1, it can be seen that the quasineutral assumption holds: n0 ≈ n0,e. Thus,

the electron density in Eq. (3.6) can be approximated as following the Boltzmann relation:

ne = n0 exp(eφ/kTe).

The Bohm condition can be derived by taking the linear perturbation of the Poisson

equation around φ(x = L) = 0 and that of the ion and electron densities. From this linear

perturbation equation evaluated at the sheath edge, u0 ≥ cs, where cs =
√
kTe/mi is the

ion acoustic speed. This is also called the Bohm speed. In addition, the sheath potential
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φw obtained by the flux balance, Ji = Je,
4 can be given by

φw = −kTe
e

ln

(
1√

2πme/mi

)
(3.9)

3.2.2 Boundary Conditions for the Sheath Simulation

At the wall, ions and electrons are absorbed and no particles are emitted or reflected.

The electric field at the wall is determined by the charge accumulated by the ion and electron

fluxes,[47] given by

Ew = E(x = 0) =
Q

ε0
=

e

ε0

∫ t′=t

t′=0
[Jiw(t′)− Jew(t′)]dt′, (3.10)

where Ew is the electric field at the wall, Q is the charge accumulated at the wall, and Jiw

and Jew are the ion and electron fluxes at the wall, x = 0. From Gauss’s law,5 which is

equivalent to the Poisson equation, the electric field at the sheath edge, x = L, and that at

the wall, x = 0, are balanced by the charge inside the sheath region:

ε0(Es − Ew) = e

∫ x=L

x=0
(ni − ne)dx, (3.11)

where subscript s denotes the sheath edge at x = L. Integrating the continuity equation6

both in time and space can be expressed as
∫
ndx =

∫
Jsdt −

∫
Jwdt. Eq. (3.10) can be

substituted into Eq. (3.11) to obtain the electric field at the sheath edge:

Es = − e

ε0

∫ t′=t

t′=0
(Jis − Jes)dt′. (3.12)

Therefore, if one wants to obtain Es(t) = 0 at the sheath edge, the electron and ion fluxes

at the sheath edge need to be adjusted accordingly. This can be done by assigning a

boundary condition in the kinetic solver. At the sheath edge, the outgoing flux from the

sheath region is not influenced by the information outside the domain, but the incoming flux

4Particle flux is J = nu while the current density is j = enu = eJ , which is the flux of the charge. In
addition, the current is jA, where A is the area so that the units are C/s = Amps.

5Gauss’s Law: ∇ · (ε0E) = e(ni − ne)
6Continuity equation: ∂n/∂t = ∇ · J
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needs to be chosen carefully. It can be seen from Eq. (3.12) that the ion and electron fluxes

that come into the sheath from the sheath edge essentially determine the electric field at the

sheath edge. Here, we use a circular boundary condition, a boundary condition proposed by

Shoucri[48] and Kolobov[49], for the electrons at the sheath edge. The boundary condition

for the ions at the sheath edge is a Bohm velocity shifted Maxwellian.

The electric field at the sheath edge has been problematic for previous sheath simula-

tions. Previous numerical results using a fixed ion VDF and a fixed half-Maxwellian electron

VDF have shown that there will be a source sheath type structure at the sheath edge.[50, 51]

The electron VDFs can be more accurately assigned from Eq. (3.12) in order to prevent

the source sheath. The circular boundary condition works well and no source sheath type

structure was found in our simulations, but it has been reported that this boundary condi-

tion does not work for higher order Vlasov methods. The implementation of a generalized

boundary condition that prevents a source sheath will be reserved for future work.

3.2.3 Numerical Parameters

The grid size in the x and v directions are Nx = 400 and Nv = 400, respectively. The

domain size in physical space is L = 40λD. The ion and electron velocity domains are vi ∈

[−5cs, cs] and ve ∈ [−6vth,e6vth,e], respectively, where vth,e is the electron thermal velocity.

The cell size is ∆x = L/Nx = 0.1λD in the physical space, ∆vi = (vi,max − vi,min)/Nv =

0.015cs in the v direction for ions, and ∆ve = (ve,max − ve,min)/Nv = 0.3vth,e in the v

direction for electrons. The time step is ωp∆t = 0.001 and the total time of simulation is

ωpT = 30, ωp is the electron plasma frequency, ∆t is the time step, and T is the maximum

time. Another parameter is the electron-to-ion temperature ratio: Te/Ti. Here, Te/Ti = 10

is assumed. The ions are assumed to be hydrogen molecule, i.e. mi/me = 2β, where

β = 1836 is the proton-to-electron mass ratio. Note that vth,e/cs =
√
mi/me

√
Te/Ti.

In the simulations, a Dirichlet boundary condition is used for the Poisson solver at the

sheath edge, i.e. φ = 0, and a Neumann condition is used at the wall, ∂φ/∂x = −Ew, as

shown in Eq. (3.10). A Thomas Tridiagonal matrix solver is used to solve for the potential.

Second-order central differencing is used to calculate the electric field from the potential.

Note that the electric field interpolation must also employ a higher order differencing method
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if higher order Vlasov simulation techniques are used.

Finally, the velocity, position, potential, and time are normalized by the ion acoustic

speed, Debyle length, primary electron temperature, and electron plasma frequency, respec-

tively.

3.2.4 Results obtained from the Vlasov-Poisson solver

The potential field obtained from the Vlasov-Poisson solver is shown in Fig. 3.3.

The sheath potential is eφw = −3.17kBTe. The difference between the sheath poten-

tial obtained from the Vlasov-Poisson solver and the theoretical prediction in Eq. (3.9),

eφw = −3.18kBTe, is approximately 1 %. This is possibly due to the use of the quasineutral

assumption. In this simulation, quasineutrality is satisfied at the initial condition but not

in every time step. A small density difference (∼ 0.1%) and the discretization error may

yield this small discrepancy in the sheath potential.

Figure 3.3: Steady-state potential obtained from the Vlasov-Poisson solver.

Figure 3.4 shows good agreement between the steady-state ion VDFs obtained from

the Vlasov-Poisson solver and the theoretical predictions from Eq. (3.4), shown as solid
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lines for each location. The theory curves employ the numerically-calculated potential field,

φ(x), which is used in Eq. (3.4). Here, x = 0 corresponds to the wall and x = 40λD is the

sheath edge.7 It can be seen that the numerical results near the wall differ slightly from

the theory. The ion VDFs become narrower as ions are accelerated through the electric

field as the total energy of ions, i.e. the sum of kinetic and thermal energies, needs to be

conserved. There are some discrepancies between the numerical and theoretical predictions

because the VDFs calculated from the Vlasov-Poisson solver become poorly resolved near

the wall due to the fixed discrete phase space. In order to obtain better agreement with

theory, a higher order method and/or smaller grid size can be used so that the numerical

error is reduced.

Figure 3.4:
Ion velocity distribution functions obtained from the Vlasov-Poisson solver in
comparison to the theoretical predictions using the potential field in Fig. 3.3.

The steady-state electron VDFs are shown in Fig. 3.5. Again, the potential field ob-

tained from the Vlasov-Poisson solver is used to calculate the theoretical curves from Eq.

(3.5). Good agreement between the numerical simulations and theory is shown, particularly

7The size of sheath region has been changed but the results are the same for L ≥ 30λD.
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Figure 3.5:
Electron velocity distribution functions obtained from the Vlasov-Poisson solver
in comparison to the theoretical predictions using the potential field in Fig. 3.3.

in terms of the truncation of the EVDFs. The high positive velocity components that are

flowing out of the sheath region are truncated due to the potential barrier. Note that these

VDFs are not time-averaged results. It can be seen that there is no statistical noise in the

simulation.

3.3 Plasma Sheath with Secondary Electron Emission

It has been known that electrons can be emitted from a plasma-immersed surface due

to impacts of ions, electrons, and photons. This phenomenon is called secondary electron

emission (SEE), which plays an important role in lowering the sheath potential and increas-

ing the heat flux to the materials. For a dielectric material at Te = 10-50 eV, it is known

that the rate of electron-induced SEE is dominant over the other SEE processes. Thus, in

this dissertation, electron-induced SEE is investigated.

Hobbs and Wesson[52] proposed a fluid type theory and predicted a space charge limited

(SCL) sheath, which acts as a virtual cathode that prevents excessive SEE from the wall.
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A theory has been recently proposed by Sheehan et al.[51] to investigate the SCL regime

using a kinetic description.

In the fluid and kinetic theories, the SEE coefficient σ is defined as the ratio of the flux

of secondary electrons to that of primary electrons.

σ =
Jsee
Je

(3.13)

Hence, the steady-state flux balance between ions, primary electrons, and secondary elec-

trons can be written as,

Je − Jsee = Ji, (3.14)

where Jsee is the flux of secondary electrons. Ions and primary electrons follow the same

expressions as Sec. 3.2. In Hobbs and Wesson’s theory, secondary electrons are modeled as

a cold electron beam emitted from the wall. In Sheehan’s kinetic theory, they are modeled

as half-Maxwellian with temperature Tw.

3.3.1 Theory with Secondary Electrons

The secondary electron flux is given by the product of the SEE rate and the primary

electron flux that is constant in the sheath. For a monotonically decreasing sheath potential,

the VDF of secondary electrons (SEVDF) can be described as

fsee(x, vx) =

 2nsee0

(
me

2πkTw

)1/2
exp

(
− mv2

2kTw
+ e(φ−φw)

kTw

)
v ≥ vc

0, v < vc

(3.15)

where nsee0 is the number density of secondary electrons at the wall, Tw is the temperature

of the emitted electrons, and vc = [2e(φ− φw)/me]
1/2 is the truncation velocity. Note that

there is a coefficient, 2, in Eq. (3.15) due to normalization. At the wall, the SEVDF is

a half-Maxwellian since φ = φw and vc = 0. The number density and flux of secondary

electrons are given by,

nsee = nsee0 exp

[
−e(φ− φw)

kTw

]1− erf

√
e(φ− φw)

kTw

 , (3.16)
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Jsee = Jsee,wall =
nsee0

2

√
8kTw
πme

(= const.). (3.17)

In order to evaluate nsee0, the relation |Jsee| = σ|Je| at the wall, i.e. Eq. (3.13), is considered.

Using the relation between the primary and secondary electron fluxes in Eqs. (3.7) and

(3.17),

nsee0 = σ
n0e

2
exp

(
eφw
kTe

)√
τ , (3.18)

where τ = Te/Tw. If the temperature of secondary electrons is very small, Tw → 0, then

the SEVDF in Eq. (3.15) reduces to a delta function and the number density at the wall

is infinite. However, it can be shown that the number density from the kinetic description

in Eq. (3.16) reduces to the expression proposed by Hobbs and Wesson[52] in the limit of

Tw → 0, given by

nHWsee =
σ

1− σ
n0

[
meu

2
0

2e(φ− φw)

]1/2

. (3.19)

The derivation is shown in Appendix B. Hobbs and Wesson’s estimate for secondary electron

density in Eq. (3.19) is different from Eq. (3.16) but still works well for small Tw. The

kinetic formulation plays an important role when Tw → Te and for smaller sheath potential,

|φw| → O(1).

3.3.1.1 Bohm Condition

In order to obtain the sheath condition, the electron number density needs to be lin-

earized. Linearization for a quantity Q(x) can be described as Q(x = 0) +xQ′(x = 0). The

linearized natural exponential function for φ� 1 is exp(φ) ≈ 1 +φ and the linearized error

function is erf(φ) ≈ φ[erf(φ)]′, where [erf(φ)]′ = 2 exp(−φ2)/
√
π. From Eqs. 3.6 and 3.16,

the linearized primary and secondary electron number densities can be written as

ne
n0
≈ 1

2

[
1 + erf

√
|Φw|+ ΦH1 +O(Φ2)

] n0,e

n0
, (3.20)

nsee
n0
≈ A

2

[
1− erf

√
|Φw|τ + ΦH2 +O(Φ2)

] n0,e

n0
, (3.21)
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where Φ = eφ/kTe, Φw = eφw/kTe, O(Φ2) represents the higher order terms that are

neglected in the linear perturbation equations, and

A = σ exp [Φw(1− τ)]
√
τ ,

H1 = 1 + erf
√
|Φw|+

exp(Φw)√
π|Φw|

,

H2 = τ

[
1− erf

√
|Φw|τ −

exp (−|Φw|τ)√
π|Φw|τ

]
.

From the linearized number densities of ions from Eq. (3.3), primary electrons in Eq.

(3.20), and secondary electrons in Eq. (3.21), the linearized Poisson equation can be written

as

1

n0

d2Φ

dx2
= −Φ

(
1

2E0
− H1 +AH2

n0/n0,e

)
, (3.22)

where E0 = miu
2
0/2 is the ion energy at the sheath edge. The ion mean velocity at the

sheath edge can be obtained as

u0 ≥ cs
(
H1 +AH2

n0/n0,e

)−1/2

. (3.23)

The minimum u0 is a function of τ and φw. In solving Eq. 3.23, n0/noe must be calculated.

In order to satisfy quasineutrality at the sheath edge, the electron number density there

must be equal to the ion number density. The quasineutral assumption can be written as

nsee(x = L) + ne0 = n0, where x = L is the sheath edge. φ = 0 at the sheath edge is

inserted in Eqs. (3.6) and (3.16) to obtain

n0

n0,e
=

1

2

[
1 + erf

√
|Φw|

]
+
A

2

[
1− erf

√
|Φw|τ

]
, (3.24)

which is a function of φw and τ as well. The maximum value of the function in Eq. (3.23)

is approximately 1.16, which agrees with Hobbs and Wesson’s theory.
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3.3.1.2 Sheath Potential

The sheath potential is calculated from the flux conservation in Eq. (3.14) that can be

written as

n0,e√
2π

exp

(
eφw
kTe

)√
kTe
me

=
1

1− σ
n0u0. (3.25)

Therefore, the sheath potential is given by

φw = −kTe
e

ln

(
n0,e

n0

1− σ
u0

√
2πme/mi

)
, (3.26)

where u0 and n0e/n0 are from Eq. (3.23) and Eq. (3.24), respectively. As the right hand

side of Eq. (3.26) is a function of τ and φw, this needs to be solved using an iterative

solution finder, such as Newton’s method.

There are two correction terms in the sheath potential from Hobbs and Wesson’s theory.

The quasineutrality condition needs to be obtained from Eq. (3.24), and the ion mean

velocity at the sheath edge is obtained from Eq. (3.23). These corrections are very important

to obtain the relation in a very special case when the sheath collapses for σ = 1 and

Te = Tw.[51] The number density ratio cannot be zero or infinity. The numerator in the

logarithm in Eq. (3.26) reaches zero in the limit σ → 1. Using L’Hospital’s rule, u0 needs

to be zero at σ → 1 so that φw has a finite value. Therefore, the Bohm condition is violated

at σ → 1 for Te = Tw.

3.3.2 Electron Velocity Distribution Functions

The numerical setup is similar to Sec. 3.2. The boundary conditions for ions and

electrons in the Vlasov-Poisson solver are kept the same and secondary electrons are added

as an additional species. The boundary condition for SEVDFs is a half-Maxwellian with a

temperature Tw at the wall. There is no electron flux inflow from the sheath edge for the

secondary electrons. In this set of simulations, τ = Te/Tw and σ are varied and the sheath

potential is investigated.

Figure 3.6 shows the VDFs of primary and secondary electrons at the sheath edge with

various SEE rates for τ = 10. It can be seen that the truncation velocity of the primary
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electrons agree with that of the secondary electrons in Eq. (3.15). It can be also seen that

the peak of the SEVDF increases as σ increases. Thus, the number density of secondary

electrons also increases. It was not observed in the simulation, but a larger beam-type

component from the secondary electrons may trigger bump-on-tail type instabilities in the

presheath or bulk plasma.

x

xx

(a) σ=0.6 (b) σ=0.8

(c) σ=0.85

Figure 3.6:
Electron velocity distribution functions for τ = Te/Tw = 10. Black and red
solid lines illustrate primary and secondary electrons, respectively.

3.3.3 Sheath Potential Results

For a SEE rate larger than the critical rate, the secondary electrons are reflected back to

the material in order to satisfy flux conservation inside the sheath. A virtual cathode type

structure can be formed near the plasma-immersed material. This is also often called the
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space charge limited (SCL) sheath. Critical SEE coefficients, where SCL sheath occurs, in

Hobbs and Wesson’s theory[52] are obtained by solving the flux conservation, the integrated

Poisson equation evaluated at the sheath edge and at the wall. There are three equations

to solve for three variables: u0, φw, and σ. Solving the system, the critical values are

u0 = 1.16

√
kBTe
mi

(3.27)

φw,SCL = −1.02
kBTe
e

(3.28)

And, inserting these values into the Eq. 3.14, the SCL SEE rate can be derived as

σSCL = 1− 8.3

√
me

mi

Sheehan et al. found that these values can be corrected using the VDF of secondary electrons

instead of a cold electron beam. As can be seen from Eq. (3.26), the SCL sheath potential

is a function of τ . It was found that the SCL sheath potential decreases as τ = Te/Tw

decreases. In particular, the sheath potential for τ = Te/Tw →∞ is

φw,SCL = −0.87
kTe
e
. (3.29)

Figure 3.7 shows good agreement between the SCL sheath potential obtained from the

Vlasov-Poisson solver and from Sheehan et al.’s theory. There is a larger discrepancy at

higher τ primarily due to the constant grid size. At higher τ , Tw is small and hence the

distribution functions of secondary electrons become more beam-like. The Vlasov simulation

yields more accurate results for VDFs with a wide distribution rather than a narrow beam-

like distribution since the grid size needs to be smaller to resolve a narrow distribution.

The cases for τ < 2 were not studied using the Vlasov-Poisson solver since the Bohm

condition must be modified. The ions no longer require velocities larger than ion acoustic

speed, as shown in Eq. (3.27). In order to study τ → 1, the boundary condition for

ions needs to be changed according to the theory. Otherwise, a simulation that includes the

presheath region is required as the ion Bohm speed is no longer an input parameter, making
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Figure 3.7: Space charge limited sheath potential versus τ = Te/Tw

it possible to investigate whether the Bohm condition is actually satisfied across a wide

range of parameters. However, this also introduces some other physical phenomena, namely,

collisions. It is observed by Oksuz and Hershkowithz[53] that the presheath length is on

the order of the ion-neutral collision mean free path. A DK simulation that includes charge

exchange collisions for ions has been developed and the numerical simulations including the

presheath, sheath, and wall are discussed in Ref. [54]. Further analysis and development

will be reserved for future work.

Figure 3.8 shows the numerically- and theoretically-predicted sheath potential across a

wide range of SEE rates. A good agreement is shown for different τ = Te/Tw, e.g. τ = 10

and 200. The kinetic theory curve for σ < σSCL is almost identical to Hobbs and Wesson’s

theory. This means that the cold electron beam assumption for secondary electrons in Eq.

(3.19) is valid for σ < σSCL. However, the difference appears in the SCL sheath that occurs

at different SEE rates and consequently different sheath potentials. For instance, the theory

and numerical simulations show that the SCL region occurs at lower sheath potential than

Hobbs and Wesson’s theory in Eq. (3.28). The Vlasov-Poisson solver accurately captures
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the transition to the SCL sheath as a function of τ . There is a slight increase in the sheath

potential in the SCL region as σ increases. This is primarily due to the discretization

error since the virtual cathode, i.e. the potential drop between the wall potential and the

minimum potential, is small and may be comparable to the grid size. Although a finer grid

size is required to resolve such small-scale phenomena near the wall, the virtual cathode is

captured well, as shown in the next section.

3.3.4 Virtual Cathode Analysis

As shown in Fig. 3.9, the Vlasov-Poisson solver also predicts a small potential drop near

the wall for a large σ. First, the minimum potential φdrop is determined by the SCL values.

Thus, φdrop = φw,SCL. The virtual cathode potential ∆φ = φw − φdrop is on the order of

the wall temperature Tw, which can be calculated analytically.

The flux balance is illustrated in Fig. 3.10. The secondary electron flux emitted from

the wall J totsee is determined by J totsee = σJe. The primary electron flux is space charge limited

Figure 3.8: Sheath potential versus SEE rate for τ = 10 and τ = 200.
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and determined by φdrop = φw,SCL in Eq. (3.7) for σ > σSCL. Thus, J totsee = σJe,SCL.

However, the secondary electron flux that reaches the sheath edge, Jsee, is determined by

the critical SEE rate σSCL: i.e. Jsee = σSCLJe,SCL. The secondary electron flux that is

reflected back to the material Jrefl.see = J totsee − Jsee can also be calculated by taking the first

moment of Eq. (3.15) from v =
√

2e∆φ/me to v =∞ at the wall, where φ = φw:

Jrefl.see =
nsee0

2

√
8kBTw
πme

[
1− exp

(
− e∆φ

kBTw

)]
,

which has a correction term that reduces the emitted electron flux in comparison to Eq.

(3.17). The relation between nsee0 and n0e in Eq. (3.18) holds for σ and φw is replaced by

Figure 3.9:
Secondary electron velocity distribution functions and potential profile of a vir-
tual cathode near the wall for large σ > σSCL. This case is for τ = 10 and
σ = 1.05. Dashed line represents the virtual cathode position.
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Figure 3.10:
The balance between the ion, primary electron, and secondary electron fluxes
in a space charge limited sheath.

φw,SCL. Therefore,

(σ − σSCL)Je,SCL = σJe,SCL

[
1− exp

(
− e∆φ

kBTw

)]

Hence, the virtual cathode potential drop can be written as,

∆φ =
kBTw
e

ln

(
σ

σSCL

)
for σ ≥ σSCL. (3.30)

In terms of the primary electron temperature,

e∆φ

kBTe
=

1

τ
ln

(
σ

σSCL

)
for σ ≥ σSCL. (3.31)

In the limit of τ →∞, the virtual cathode potential drop is essentially negligible relative

to the sheath potential. It can also be seen that ∆φ = 0 is satisfied for σ = σSCL and the

virtual cathode is typically smaller than the sheath potential. The results shown in Fig.

3.9 are for τ = 10 and σ = 1.05. Thus, e∆φ/kBTe ≈ 0.015 from Eq. (3.31). This agrees

well with the results obtained from the Vlasov-Poisson solver, e∆φ/kBTe ∼ 0.02, as shown

in Fig. 3.9.
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3.4 Nonlinear Plasma Waves

Landau damping has served as a good verification test problem in the plasma community,

both for particle- and grid-based kinetic methods. However, the physics of particle-wave

interactions is quite complicated and is found to be important in laser-induced fusion plas-

mas and astrophysical plasmas. Here, starting from Landau damping, the electron plasma

waves (EPWs), ion acoustic waves (IAWs), and trapped particle bunching instability, a

newly found instability, are investigated using the Vlasov-Poisson solver.

Plasma waves may trap particles in traveling potential wells, leading to instabilities

such as sideband instability.[55] This is found to be important in nonlinear saturation of

scattering light process in laser-plasma interactions and in astrophysical plasmas. For a

sinusoidal electric field, the particle VDFs near the phase velocity can be illustrated as

Fig. 3.11. This stationary, nonlinear wave solution is called the Bernstein-Greene-Kruskal

(BGK)8 wave.[56] The red lines describe the trapped particles while the green lines show

untrapped particles. The black solid line is the separatrix, where the velocity in the wave

frame is zero.
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Figure 3.11:
Bernstein-Greene-Kruskal (BGK) solution in the wave frame for a given sinu-
soidal potential. Black line is the separatrix.

8This is different from the Bhatnagar-Gross-Krook (BGK) collision operator in Sec. 2.1.
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3.4.1 Landau Damping

The Landau damping problem has served as a good verification test case for the Vlasov

simulation community. This is primarily because the problem is easy to setup and the

damping rate can be derived analytically. Landau damping rate, γL, for an arbitrary

distribution can be given by

γL = −π
2

ω2
p

k0

[
v
∂f̂0

∂v

]
v=vφ

, (3.32)

where k0 = 2π/λ0 is the wavenumber, λ0 is the wave length, f̂0 is the initial normalized

VDF, and vφ = ω/k0 is the phase velocity. In the case of a Maxwellian distribution,

γL =

√
π

8

1

(k0λD)3

ω

ωp
exp

[
−1

2

(
ω

k0vth,e

)2
]
, (3.33)

where λD = vth,e/ωp is the Debye length and vth,e is the electron thermal velocity.

Numerically, Landau damping can be tested by allowing a density perturbation. For

simplicity, it is assumed that ions are immobile and the ion density is constant throughout

the domain. The initial condition of the electron VDFs is given by,

f(x, v) =

[
1 +

δn

n0
cos(k0x)

]
fM (v), (3.34)

where δn/n0 is the magnitude of the density perturbation and fM (v) is a Maxwellian

distribution: fM (v) = (2π)−1/2 exp(−v2/2) .

The numerical parameters are δn/n0 = 0.5, k0λD = 0.5, Nx = 128, and ωp∆t = 0.001,

where Nx is the number of cells in the x direction. One wavelength system, L = λ0 =

2π/k0 = πλD, is considered and a periodic boundary condition is used in physical space.

The velocity space is v ∈ [−8vth, 8vth]. For the Poisson equation with a periodic boundary

condition, a fast Fourier transform (FFT) algorithm is used. Landau damping is often

studied by analyzing the total electrostatic energy:

ΣE =

∫
ε0|Ex(x)|2

2
dx,
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which is the integral of the field energy in the plasma wave. Note that the total energy,

the sum of the total kinetic energy and the total electrostatic energy, is conserved. Thus,

particles gain kinetic energy while the plasma wave is Landau damped. As Landau damping

occurs, the total electrostatic energy damps ΣE ∼ exp(γt).

Figure 3.12 shows a direct comparison of the Vlasov-Poisson solver, shown as DK, and

a standard particle-in-cell (PIC) simulation. It can be seen that the initial decay is due

to Landau damping and electrostatic energy increases again due to the bounce motion of

trapped particles. If the initial perturbation is small enough, the trapped particle region

becomes small and Landau damping occurs for a longer time down to a smaller electrostatic

energy.

Figure 3.12:
Nonlinear Landau damping: PIC vs Vlasov, denoted as DK in the figure, with
different number of particles (PIC) and different grid size in velocity space
(Vlasov) while the grid size in physical space is kept constant.

Here, high and low resolution PIC correspond to Np = 1000 and Np = 64, respectively,

where Np is the number of particles per cell. High and low resolution DK correspond to

Nv = 256 and Nv = 32, respectively. The spatial discretization is unchanged: Nx = 128 in

all four cases. Note that Np = 64 is very small for a particle method, but the purpose was
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to compare the same order of degrees of freedom as the Vlasov solver. A good convergence9

of the numerical simulation is shown for the Vlasov simulation. A small number of velocity

space bins can capture the nonlinear trapping phenomena while some deviations can be

seen at later time ωpt ∼ 40.

On the other hand, numerical convergence is not fully achieved by the PIC simulations.

Even the low resolution PIC case can capture some of the linear Landau damping effect,

but the nonlinear bounce motion is not obtained accurately. While a qualitative agreement

can be seen from the high resolution PIC and the Vlasov simulations, Np = 1000 may still

not be sufficient for numerical convergence. For instance, the large negative peaks of the

electrostatic energy in the Vlasov results are not captured by the PIC simulations due to

statistical noise. This is because the presence of statistical noise yields a non-zero electric

field. This figure shows the advantage of a grid-based DK method over a particle-based

kinetic simulation, particularly for nonlinear particle trapping in plasma waves.

3.4.2 Electron Plasma Waves

The Vlasov-Poisson solver is compared with an analytic theory of the frequency shift in

nonlinear plasma waves. From the linearized Vlasov equation, the kinetic dielectric function

of the plasma waves can be written as,

εL(k, ω)

ε0
= 1−

∑
species

ω2
p

k0

∫
dv

∂f̂0/∂v

v − ω/k0
. (3.35)

A linear perturbation in the dispersion relation can be taken in terms of a small frequency

shift about the linear frequency, ωL = ωL(k), at which the dielectric function is zero:

εL(k, ωL) = 0. The dispersion relation can be written as εL(k, ω) = εL(k, ωL) + (ω −

ωL)(εL)′ = −
∑

∆εNL, where ∆εNL is the nonlinear correction from each species to the

kinetic dispersion relation due to particle trapping. The nonlinear frequency shift can be

written as

δωNL = ω − ωL = −

[(
∂εL
∂ω

)
ω=ωL

]−1 ∑
species

∆εNL. (3.36)

9Convergence: the numerical solution converges to an exact solution in the limit of h→ 0, where h is the
discretized time step or grid size.
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∆εNL is dependent on how the wave is generated. The two extrema are sudden and adiabatic

distributions.[57] The sudden distribution is when the initial distribution instantly becomes

trapped by the finite amplitude field. The adiabatic distribution occurs when the wave is

driven up and the particles are trapped sufficiently slowly. The nonlinear frequency shift is

then given by

δωNL ≈ −

[(
∂εL
∂ω

)
ω=ωL

]−1 ∑
species

α
ω2
p

k2
0

∆vtr
d2f̂0

dv2

∣∣∣∣∣
v=vφ

, (3.37)

where α = 0.823 is the sudden and α = 0.544 is the adiabatic wave generation, ∆vtr

is the trapping velocity width, and φ0 is the amplitude of a sinusoidal potential. Note

that ∆vtr = ∆vth,e for electrons in the EPW cases, where ∆vth,e = (2eφ0/me)
1/2 and

∆vtr = ∆cs for ions in the IAW cases, where ∆cs = (2eφ0/mi)
1/2. Finally, in order to

estimate the nonlinear frequency shift, ∂εL/∂ω can be calculated from either the fluid or

kinetic dispersion relation. For instance, the dielectric function for thermal electrons is given

by εL(k, ω) = 1− (ωp/ω)2− 3(kvth,e)
2ω2

p/ω
4. Assuming that kλD � 1, the linear frequency

can be written as ω2
L = ω2

p + 3(kvth)2, which is often called the Bohm-Gross relation, and

the derivative of εL can be estimated as,

(
∂εL
∂ω

)
ω=ωL

≈ 2

ωp
. (3.38)

For verification of the Vlasov solvers, a plasma wave can be generated either by using an

external force that mimics the ponderomotive force that occurs due to light wave beating

in ICF plasmas or by assigning a density perturbation to investigate the nonlinear trapping

via Landau damping. For a driven wave, an external force drives the wave, given by

Eext = E0(t) cos(ωextt− k0x), (3.39)

where ωext is chosen from the dispersion relation for a given k0 and E0(t) contains ramp-up,
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constant driver, and ramp-down, given as

E0(t) =


1
2

[
1 + tanh

(
4
{

2t
tr
− 1
})]

if t < tr

1
2

[
1 + tanh

(
4
{

2[(t−td)
tr

− 1
})]

if tr ≤ t < tr + td

0 otherwise

(3.40)

Ramp up and down times, tr, are found to be insensitive to the plasma wave generation10

whereas the time at which the maximum amplitude of the driver is turned on, td, affects

the plasma wave. The shape of the driver is chosen such that the plasma wave is slowly

and adiabatically driven, otherwise some high order harmonic wave may be generated. The

ramp-up and ramp down time of the external driver are ωptr = 25 and the constant driver

time is ωptd = 200. The amplitudes of E0 are varied so that the trapping velocity width

∆vtr varies. All EPW simulations are performed with time step ωp∆t = 2.5 × 10−5, cell

size in physical space ∆x = L/Nx, cell size in velocity space ∆v = (vmax − vmin)/Nv, with

Nx = 1028 and Nv = 4000, L = 2π/k0, and k0λD = 1/3. The frequency of the external

driver is found from the kinetic dispersion relation: ωext = 1.2ωp for k0λD = 1/3. These

simulations are run on Dawson clusters in the Princeton Plasma Physics Laboratory and

Flux clusters in the University of Michigan. A typical simulation on the Flux clusters takes

3 hours using 16 processors.

The nonlinear plasma frequency ωNL = ω − ωL is plotted against the trapping velocity

width in Fig. 3.13 for a driven EPW case. The plasma-wave frequency ω is obtained over

a time window after the driver is turned off and the wave is settled. A Hilbert transform

technique is used to find the frequency. The trapping velocity width is measured from the

magnitude of the potential field obtained from the simulations. For the reference frequency

of the nonlinear frequency shift, ωL is obtained by extrapolating the simulation results to

∆vtr → 0, which is described in Ref. 58.

It can be seen that the numerical results agree with the theoretical estimate of an

adiabatic distribution over a wide range of parameters. This is because the particles are

10There are some high order harmonic waves that can be excited for a very fast ramp up, but typically
such harmonic waves are ω = nωL with n = 1, 2, . . . . As the phase velocity is n times larger than that of
the fundamental frequency, the number of trapped particles is also small since the trapped region is in the
tail of the distribution.
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trapped sufficiently slowly by the external driver. Hence, the trapped particles follow the

adiabatic distribution without any higher order harmonics generated. In addition, the

linear frequency obtained by the extrapolation technique ωL agrees well with the initial

driver frequency ωext within 0.1 %.

Figure 3.14 shows the nonlinear Landau damping case. The magnitude of the initial

density perturbation is varied and the wave frequency and the trapping velocity width are

obtained from the numerical simulations. Simulation results show qualitative agreement

with the theory curve in Eq. (3.37) where a sudden distribution is assumed. The larger

frequency shift is due to the larger number of particles being trapped by the sudden wave

generation. The dispersion relation is significantly modified, and hence the α-parameter in

Eq. (3.37) is larger than that of the adiabatic case.

However, the agreement between numerical simulations and theory for the initial per-

turbation case is not as good as the driven case, possibly due to the higher order nonlinear

plasma waves generated. This can be seen from the calculated electron VDF, as shown

in Fig. 3.15, for δn/n0 = 0.05 and k0λD = 0.425. The trapping region becomes more

∆

ω
ω

ω

Adiabatic

Figure 3.13: Driven EPW for k0λD = 1/3
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Figure 3.14: Initially perturbed EPWs for k0λD = 1/3

complicated than the simple BGK model in Fig. 3.11. For instance, there are more com-

plex structures in the EPW, including bunched trapped particles near the separatrix, small

islands inside the eye region, and also a separate trapped region at higher velocity around

v/vth,e = 3.9.

3.4.3 Ion Acoustic Waves

The dispersion relation in Eq. (3.37) can be extended to include another charged species.

Therefore, IAWs can also serve as a good verification problem for the multispecies Vlasov-

Poisson solvers. IAWs have a much smaller characteristic plasma frequency as vφ = ω/k =

cs, where cs = (kBTe/mi)
1/2 is the ion acoustic speed. Due to the difference in mass, cs

can be more than 40 times smaller than the electron thermal velocity. From Eq. (3.37), the

electron components contribute to positive frequency shift since the second derivative of the

VDF is positive as the phase velocity is smaller than the electron thermal velocity. On the

other hand, the ion components will shift the frequency negatively. As the ion temperature

increases, the negative frequency shift will be larger, as shown in Ref. 58.
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Figure 3.15:
Close-up view of electron VDFs for a sudden case. Here, k0λD = 0.425 and
δn/n0 = 0.05. The physical position is normalized by L = 2π/k0.

The same number of grid points are used for the ion and electron VDFs: Nx = 1028

and Nv = 2000. For the ions, vmax = 6vth,i and vmin = −6vth,i, where vth,i = (eTi/mi)
1/2 =

cs
√
Ti/Te is the ion thermal velocity, which is also related to the electron thermal velocity

by vth,i/vth,e = [(Ti/Te)(me/mi)]
1/2. Electron trapping occurs at low phase velocity, so the

maximum and minimum velocities for electrons are chosen smaller than the EPW cases:

vmax = 5vth,e and vmin = −5vth,e. The ramp-up and ramp-down time are ωptr = 50

and the time at which the driver is constant is ωpt = 1.5 × 104. The simulation ends at

ωpt = 4.5 × 104. The driver amplitude E0 is varied so that the size of the trapping region

varies. A fully-ionized hydrogen plasma is assumed: Z = 1 and mi/me = 1836.

Figure 3.16 shows the numerical results of the IAW for k0λD = 0.3 and ZTe/Ti = 10 in

comparison to several theory curves. In order to excite IAWs, the electrons are first driven

with a frequency that satisfies the kinetic dispersion relation for an IAW: the frequency of the

external driver is given by ωext = 8.032 × 10−3ωp. The sudden distribution and adiabatic

distribution in Eq. (3.37) are plotted, but there is a discrepancy between the numerical
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Figure 3.16: Driven IAWs for Te/Ti = 10 and k0λD = 0.3.

simulations and these theory curves, in which the frequency shift is linearly proportional to

the trapping width. There are two reasons that can explain the discrepancies.

1. Trapped ions shift the phase velocity up and trap more ions. In particular, increased

phase velocity affects the second derivative of the initial VDF in Eq. (3.37). IAWs trap

ions around the acoustic speed, which is not in the tail of the distribution, leading to a

large number of trapped particles in comparison to the EPWs where particle trapping

occurs in the high velocity tail.

2. The nonlinear frequency shift obtained in Eq. (3.37) accounts for the first-order kinetic

effects of trapped particles. It was suggested by Berger et al.[58] that there are fluid-

type effects on top of the kinetic effects, which add second and higher harmonic type

terms into the frequency shift.

As can be seen from Fig. 3.16, the numerical results agree better with the iterated solution

in addition to the second harmonic mode associated with the fluid effects. Note that the

ratio of electron trapping velocity width to the electron thermal velocity, ∆vth,e/vth,e =
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√
2eφ/me/

√
eTe/me =

√
2φ/Te, is equal to that of ion trapping velocity width to the ion

acoustic speed, ∆cs/cs =
√

2eφ/mi/
√
eTe/mi =

√
2φ/Te.

Figure 3.17 shows a close-up view of an ion VDF for the driven IAW case at the final

time step. The initial condition is E0 = 0.009, which corresponds to the case shown at

∆vth,e/vth,e = 0.5 in Fig. 3.16. The velocity and physical location are normalized by the

ion acoustic speed, cs, and L = 2π/k0, respectively. The shape of the trapped region is no

longer like a standard BGK mode in Fig. 3.11 assuming a sinusoidal potential field. It can

also be seen that there are long-lasting structures inside the trapping regions that result in

higher-order fluid-type harmonics.

Figure 3.17:
Close-up view of ion VDFs for a driven IAW at ωpt = 4.5×104 for ZTe/Ti = 10
and k0λD = 0.3. The physical position is normalized by L = 2π/k0.

3.5 Trapped Particle Bunching Instability

Another verification test problem is described in this section. Dodin et al.[59] recently

proposed the negative mass instability (NMI) of a nonlinear plasma wave. Here, the NMI

is called the trapped particle bunching instability. Its mechanism is as follows: trapped
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particles in a traveling potential well perform bounce oscillations with a frequency Ω =

Ω(W ) that decreases with increasing wave-frame particle energy W , i.e. dΩ/dW < 0.

Through Coulomb repulsion, among a set of trapped particles with similar energy W0,

trailing particles in the bounce motion are pushed to lower W and therefore higher Ω by

those leading, and vice versa. The result is a bunching of particles, with respect to their

bounce phase, performing trapped orbits. In Ref. 59, the theory was compared with a PIC

simulation of a magnetic compression plasma. Although the results indicate that there is

particle bunching, it was unclear due to the statistical noise of the PIC simulation and the

numerical setup was not identical to the theory.

3.5.1 Numerical Setup and Diagnostic Tools

To enable direct comparison with theory,[59, 60] simulations are initialized using a freely-

propagating plasma wave whose trapped electron population approximates a delta function

in the wave-frame energy. The algorithm is as follows.

1. One considers an analytically constructed BGK mode[56] in the wave frame with

phase velocity vL, wavelength λL, and an assumed sinusoidal potential of amplitude

φ0. In this study, the frequency ωL ≡ kLvL is chosen from the linear kinetic dispersion

relation[58] with kL ≡ 2π/λL.

2. An adiabatic distribution[57] generated from an initial Maxwellian is considered.

3. All trapped particles from this state are gathered into a narrow Gaussian so that the

trapped particle distribution is ftrap(W ) ' δ(W −W0) where W0 is the wave-frame

energy of the initial BGK mode.

4. The particle distribution is then transformed to the laboratory frame or (x, v) phase

space, ftrap(x, v), and the fraction of trapped particles, ft = nt/np, where nt is the

number density of trapped particles and np is the plasma density, is adjusted iter-

atively such that the relative error between calculated and assumed electric field is

below a tolerance, 0.001 in this case.
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The width of the Gaussian in this process is chosen so that the FWHM of the resulting ring

distribution function occupies at least 3 points on the Vlasov simulation grid. For all cases,

the grid size is ∆x = λL/Nx where Nx = 1024 in physical space and ∆v = (vmax−vmin)/Nv

where vmax = −vmin = 10vth and Nv = 4000. The time step is ωp∆t = 2.5 × 10−5. The

wave frame energy varies from W/(eφ(t)) = −1 to +1, where the potential amplitude varies

in time as φ(t) = (1/2)(max[Φ(x, t)] − min[Φ(x, t)]) with φ0 = φ(t = 0). The discrete

representation in W/(eφ(t)) and θ, for generating Figs. 3.18(b1)-(b6), employ 50 and 45

cells, respectively.

3.5.2 Particle Bunching

Figure 3.18 shows the evolution of particle bunching in phase space (a1)-(a6) and the

results transformed in energy-angle coordinates (b1)-(b6) at ωpt = 0, 600, 900, 1200, 1600,

and 2400, respectively. For kLλD = 1/3, ωL/ωp = 1.2 is chosen from the kinetic dispersion

relation, and hence vL = 3.6vth. The initial wave amplitude is eφ0/Te = 0.04 and the

fraction of trapped particles is ft = 6.66 × 10−5. The energy in the wave frame is W =

m(v − vφ)2/2− eΦ(x, t) and the geometric angle is used: θ = tan−1(V/X), where vφ is the

phase velocity of the wave, Φ(x, t) is the potential in physical space, V = v/∆vtrap and

X = x/λL are the normalized velocity and position in the wave frame, and ∆vtrap/vth '

2
√
eφ/Te is the trapping half-width, defined as the maximum excursion from vL that a

particle may make while remaining trapped where φ is the instantaneous potential well

depth. The plasma frequency obtained at ωpt ∈ [0, 1200] is 1.192ωp, which matches the

initially prescribed frequency within 0.7%. Thus, the phase velocity is assumed to be

constant at vφ ' vL = 3.6vth.

Figures 3.18(a1) and (b1) illustrate the initial condition in phase space and in the

energy-angle coordinates, respectively. The initial ring is a narrow Gaussian in the wave

frame energy and relaxes modestly due to numerical dissipation. Figs. 3.18(a2) - (a4)

clearly show that particle bunching develops in phase space, which can also be seen in the

energy-angle coordinates in Figs. 3.18(b2)-(b4). The uniform distribution function at the

initial time step modulates in energy and angle. As particles with higher W move slower

in angle, those with lower W move faster. At ωpt = 1200 in Fig. 3.18(b4), the distribution
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function that was initially uniform in angle at constant W in Fig. 3.18(b1) is now vertically

oriented. This corresponds to the optimum state in the bounce phase bunching process and

thus to the saturation of the bunching instability.

In the nonlinear stage, as shown in Figs. 3.18(a5) and (a6), the trapped particles form

a macroparticle while spreading out in phase space due to filamentation and their average

kinetic energy in the wave frame 〈W 〉 is higher than the initial W0, which can be seen from

the corresponding plots in energy-angle coordinates. Similar macroparticle formation has

also been observed in beam-plasma instabilities.[61] In Figs. 3.18(b5) and (b6), it can be

seen that filamentation occurs inside the trapped region due to deeply trapped particles that

have the largest bounce frequency. Note that some particles leak through the separatrix

due to numerical dissipation and physical processes, i.e. shearing effect at the discontinuity

leads to phase space mixing.
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3.5.3 Comparison with Theory

Figure 3.19 shows that the envelope of trapped particle kinetic energy in the lab-

oratory frame EK ,trap exhibits an exponential growth, as does the bunching amplitude

B =
√
X2
ave + V 2

ave, where Xave and Vave are the moments of the trapped particle distribu-

tion:

Xave =

∫
(x− 0.5λ0)ftrap(x, v)dx, (3.41)

Vave =

∫
(v − vφ)ftrap(x, v)dv, (3.42)

where ftrap is the trapped particle distributions. Note that EK ,trap and B are both inte-

grated from the bottom of the potential well to 70% of the potential depth, W/(eφ(t)) = 0.4,

in order to exclude the particle leakage through the separatrix. These quantities are only

useful in the linear stage while the trapped particles and those leaking through the separa-

trix are well-separated.

Figure 3.19(b) shows that B is initially very small since the particles are uniformly

distributed in phase space. As the instability develops, a particle bunch rotates in phase

space. The bunching instability growth rate is calculated by extracting the envelope of B

and performing a least-square fit as shown in Fig. 3.19(b). For the case in Fig. 3.18, the

growth rate is γ = 3.29× 10−3ωp, which also agrees with the growth rate obtained from the

envelope of the EK ,trap , shown in Fig. 3.19(a), γ = 3.25× 10−3ωp.

To enable the description of the bunching instability as well, one must account for the

energy dependence of Ω = Ω(W ), or equivalently the dependence Ω = Ω(J) in the action J ,

in the potential wells. We consider a single wavelength system with periodicity, i.e. δk = 0

and thus kn = nkL. The dispersion relation of a trapped particle distribution can be given

as

1 + 2M0ω
2
t

√
J0

∫ Jmax

0

√
JΩ/Ω0

δω2
S − Ω(J)2

F ′(J)dJ = 0, (3.43)

where J = mΩΛ2/2 is the canonical action for deeply trapped particles assuming har-

monic oscillation, F (J) = 2πf(J)/(mnt) is the normalized distribution function, ωt =

(nt/np)
1/2ωp is the trapped particle frequency, nt and np are the number density of trapped

particles and the plasma density, respectively, M0 = 16/(3πkLΛ0) ≈ 1.70/(kLΛ0), J0 =
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Figure 3.19:
Evolution of trapped particle quantities. (a) Total kinetic energy of trapped
particles EK ,trap and (b) the bunching amplitude B = (X2

ave + V 2
ave)1/2 in

logarithmic scale, where Xave and Vave are average normalized position and
velocity of the trapped particles.

mΩ0Λ2
0/2, Ω0 = Ω(J = J0), and Λ0 = Λ(J = J0). The detailed derivation is shown in

Appendix C.

Equation (3.43) can be analytically solved when F (J) = δ(J − J0).[59, 60] Using inte-

gration by parts assuming F (J) = 0 at the limits,

1− (1− α0)β0

w
+

4α0β0

w2
= 0, (3.44)

where w = (δω/Ω0)2 − 1, α0 = α(J = J0), and β0 = M0ω
2
t /Ω

2
0 with α(J) = −J/Ω(dΩ/dJ).

The solution to Eq. (3.44) can be found as δω ' ±Ω0(1 + β0/4) + iγ, where the growth
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rate is

γ = ωt

[
M0α0

(
1− β0

16α0

)]1/2

(3.45)

when α0 > β0/16. If β0 is negligible, γ ' ωt (α0M0)1/2 = (ftα0M0)1/2ωp from which one

can see that the bunching instability growth rate is primarily dependent on ft, W0 = W (J0)

via α0, and M0. We have improved the calculation of the coefficient M0 compared with

Refs. 59 and 60.

Figure 3.20 shows excellent agreement of the growth rates between the Vlasov simula-

tions and theory. The potential amplitude of the initial BGK mode, φ0, and the energy

level of the initially trapped particles, W0, are prescribed for the numerical simulations.

The initial fraction of trapped particles, ft = nt/np, is also shown in Fig. 3.20. The growth

rates obtained from the numerical simulations are primarily dependent on ft over the range

of parameters investigated.
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Figure 3.20:
Comparison of trapped particle bunching instability between theory and
Vlasov simulations for different potential amplitudes. Here, vL = 3.6vth and
kLλD = 1/3.
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The growth rate is calculated from the bunching amplitude B as shown in Fig. 3.19(b).

The theoretical estimate of the growth rate is derived in Eq. (3.45) using M0 = 1.70/(kLΛ0).

Also shown in Fig. 3.20 is the growth rate of Dodin’s single trap model,[59] which assumes

a single potential well in an infinitely long 1D system, no untrapped particles, and the

linearized Vlasov-Poisson equation in the canonical action-angle coordinates. This corre-

sponds to M0 = 2/(kLΛ0) in Eq. (3.45). The results are not shown for W0/(eφ0) > 0 in

Fig. 3.20(a) since the bounce frequency is low due to the small potential amplitude while

γ is high and it is difficult to extract the growth rate. For all other cases, there are at least

three bounce cycles during the linear phase of bunching instability. The results of trapped

particle bunching instability are discussed in Ref. 62.

3.6 Summary

Several verification test problems were used to test the Vlasov-Poisson simulation. The

test problems include plasma sheath with and without secondary electron emission from a

plasma-immersed material, nonlinear plasma waves, and trapped particle bunching insta-

bility. As all of these problems have analytic solutions, the simulation results are compared

with those solutions and good agreement was found for all cases. In addition, the present

Vlasov-Poisson solver is tested for various boundary conditions. The sheath cases employed

Dirichlet and Neumann boundary conditions and the plasma wave simulations use a periodic

boundary condition.
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CHAPTER IV

One-Dimensional Hybrid Kinetic-Continuum Model of a Hall

Thruster Discharge Plasma

4.1 Introduction

The discharge plasma of a Hall thruster is known to be in a nonequilibrium state. Laser-

induced-fluorescence (LIF) measurements for the Hall thruster discharge plasma have shown

that (i) the VDFs ions and neutral atoms in the discharge channel are non-Maxwellian; [63,

64] (ii) the plume jet consists of interactions between multiple ion streams; [65] and (iii) the

VDFs of ions vary spatially and temporally. [66]

Two methods have mainly been used for numerical simulations of a Hall thruster plasma.

A continuum approach solves the conservation equations of mass, momentum, and energy,

and assumes the VDFs are close to a Maxwellian. [15, 24, 67, 68] This method has been well

developed and is relatively efficient in terms of computational cost. The other approach

involves particle methods, such as particle-in-cell (PIC) and direct simulation Monte Carlo

(DSMC), that are able to capture non-equilibrium phenomena. So far, several fully kinetic

simulation methods [16, 21, 69, 70, 71, 72] and hybrid-PIC methods [10, 13, 14, 73, 74, 75, 76]

have been developed. However, due to the use of macroparticles, particle methods suffer

from statistical noise. Possible problems of the numerical noise include the nonlinear effect

on plasma oscillations and the inability to resolve the high energy tail of the electrons.

By comparison, the plasma kinetic equation can be solved directly to obtain the VDFs

without any numerical noise. [49] In the HET community, the first grid-based kinetic simula-

tion was developed by Boeuf and Garrigues.[11] It was briefly mentioned that the calculated
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VDFs had negative values but the details of the method were not described. Fox et al.[77]

developed a full-PIC simulation utilizing the concept of a grid-based kinetic method. The

resolution of VDFs in velocity space was improved by an adaptive mesh technique. These

techniques led to development of a grid-based direct kinetic (DK) method to model the Hall

thruster discharge plasma.

The purposes of this chapter are (1) to show the development of the hybrid-DK simula-

tion method, in which the DK solver is used for ions and neutral atoms while a continuum

model is used for electrons, and (2) to compare the hybrid-DK simulation with a hybrid-PIC

simulation to benchmark the two simulation codes. Benchmarking is performed by using

an identical electron continuum model.

4.2 SPT-100 Hall Thruster

As the present model focuses on the axial transport, the radial and azimuthal transport

of the discharge plasma are not considered, and only the radial magnetic field and axial

electric field are taken into consideration. The configuration of the SPT-100 thruster con-

sidered here is summarized in Table 4.1. The propellant is xenon gas, so the mass of the

neutral atoms and ions is 131 amu, where 1 amu = 1.67 × 10−27 kg. Only singly charged

ions are taken into consideration.

Table 4.1: SPT-100 configuration

Axial length L 4 cm
Inner Radius rin 3 cm
Outer Radius rout 5 cm

Mass flow rate ṁ 5 mg/s
Discharge voltage Vd 300 V
Discharge current Id 4.5 A

Maximum Magnetic field B0 160 G

Garrigues et al. used two different magnetic field profiles for their numerical simulation

and showed that the mean discharge current is similar but the amplitude and shape of the

oscillations vary significantly. [78] Since the main goal of this paper is developing the DK

simulation and demonstrating its capability for application to a Hall thruster, the effect of

the curvature of magnetic field distribution is not considered due to the one-dimensional
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assumption.

4.3 Hybrid Kinetic-Continuum Simulation

The hybrid approach consists of a kinetic solver for ions and neutral atoms, and a

continuum model for electrons. For the ion kinetic component, a DK solver and a standard

PIC solver are used for benchmarking purposes. The electron continuum model is simplified

so that we can make the benchmarking of the two kinetic methods more tractable.

In order to investigate the effects of modeling neutral atoms, two methods are compared:

a DK solver is used or the continuity equation is solved. In the present model, collision

mechanisms such as single-charge ionization and charge exchange are included for heavy

species.

4.3.1 Direct Kinetic Method

The present 1D simulation includes one dimension in both space and velocity (1D1V).

Additionally, the Lorentz force can be neglected for ions in the channel of a Hall thruster

since the magnetic field is chosen so that they are relatively non-magnetized. The 1D

transport equation for the heavy species is given by

∂fs
∂t

+ vx
∂fs
∂x

+
eEs
ms

∂fs
∂vx

= Ss (4.1)

where Es is the electric field, e is the elementary charge, ms is the mass of species s, fs

and Ss are the VDF and the collision term respectively, which are functions of the axial

position, x, the axial velocity vx, and time t. For neutral atoms, due to the absence of

any external forces, the acceleration term in Eq. (4.1) is omitted. Macroscopic quantities,

such as number density and mean velocity, are obtained by calculating the moments of the

VDFs.

Depending on the processes that are accounted for, the collision terms can be calculated

as the sum of each collision process. The rate of change in VDFs due to collisions, the right
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hand side of Eq. (4.1), can be written as

Ss =
∑
c

βṅc(x, t)f̂s′(x, vx, t) (4.2)

where ṅc is the collision rate, f̂s′ is the normalized VDF of species s′ that is involved in

the collision process, c. Here, β is plus or minus depending on the species of interest. For

instance, ions are created (β = ” + ”) and neutral atoms are deleted (β = ” − ”) via an

ionization event. Single-charge ionization and charge exchange collisions (CEX) are included

in the present model. The CEX cross section employs the expression proposed by Pullins

et al.[79] and the ionization cross section is given by Rapp.[80]

Equation (4.1) is solved using Strang’s time splitting,[33] where the position advection

and velocity update are performed separately. The second-order finite-volume MUSCL

scheme with a modified Arora-Roe limiter is used for flux calculation. The stability con-

dition is the most restrictive criterion for solving the left hand side of the plasma kinetic

equation, given by

v∆t

∆x
≤ 1 and

a∆t

∆v
≤ 1, (4.3)

where v and a are the velocity and acceleration. In Ref. 81, a bounded upwind scheme

was used. This employs a cubic spline interpolation method but the numerical method

switches to a first-order upwind method whenever the updated value is negative in order

to preserve monotonicity and positivity. It is found that the numerical dissipation of the

bounded upwind scheme was severe and the ion VDFs obtained is significantly smoothed

out. The DK component is later updated to a second-order MUSCL scheme with nonlinear

flux limiters, and the calculation of VDFs is improved.

4.3.2 Boundary Conditions and Discretization

At the channel exit, there is no influence from outside the domain for the particles

that are leaving. Since the characteristic speed is their own speed, the flux for the outlet

boundary should be calculated using an interpolation from the inner information. It is

found that a zeroth-order condition, i.e. Neumann boundary condition, for the ghost cell
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introduces a large error because the flux at the channel exit essentially becomes always first

order accurate. Therefore, an improved boundary condition where the ghost cell is linearly

extrapolated from the inner cells is used. The flux calculated is second-order accurate,

which matches the accuracy of the numerical scheme for all other interior cells.

Background neutral atoms as well as ions are neglected, so no neutral atoms and ions

enter the channel from the channel exit. For the anode boundary condition, assuming a

diameter of 0.5 mm for the anode orifice and a neutral number density of 1019 m−3, the

Knudsen number is larger than 100. Thus, the inlet neutral flow can be assumed to be in a

free molecular region. A half-Maxwellian VDF is applied at the anode inlet and the neutral-

neutral collisions are neglected. Since the anode sheath is not included in the present model,

the ions require a boundary condition at the anode that represents the actual plasma flow.

Dorf et al. visually observed a plasma jet structure from the anode holes in the presence

of anode coating. [82] Keidar also indicated that the gas ionization inside the anode holes

plays an important role and a plasma jet is generated. [83] A half-Maxwellian VDF is also

applied for ions. It is assumed that the number density of ions is 1015 m−3.

In order to capture the unsteady phenomena of Hall thrusters, where strong plasma

oscillations may occur, velocity space should be discretized carefully. If the domain is too

small in the velocity space, the mean properties calculated by integrating the moments of

the VDFs will be underestimated due to truncated VDFs. Considering the mean velocity of

ions, which is approximately 200 m/s at the anode and 20,000 m/s at the channel exit, the

range for ion velocities must be selected large enough to capture the time-varying VDFs. We

choose the maximum and minimum velocity to be 70000 m/s and -10000 m/s, respectively.

Note that the maximum velocity is too large and usually 35,000 m/s is enough. This already

corresponds to 800 eV, which is significantly larger than the applied discharge voltage, but

the discretization error of the DK simulation generates VDFs at large velocities as will be

discussed later. Most importantly, the size of the velocity bins must be chosen carefully

in order to discretize the VDFs accurately. While satisfying the stability condition, the

phase space must be discretized finely enough such that the VDFs are well resolved. For

the present case, it is found that ∆v ≤ 250 m/s is required.
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4.3.3 Simplified Electron Continuum Model

The cross-field transport in the axial direction for electrons is obtained using a continuum

model. Since the characteristic time scales of electrons are much smaller than those of ions

due to the large difference in mass, the electrons are assumed to be steady state in the time

scale of ions.

For the momentum equation, shown in Eq. (2.23), the left hand side is neglected due

to the small mass of electrons. The pressure term is also neglected to derive a simplified

electron continuum model so that benchmarking of the kinetic solvers is easier. Physically,

the pressure term plays an important role near the anode since the plasma diffuses to

the walls. At the channel exit, there is a density gradient in the axial direction due to

acceleration, but it can be assumed that the electromagnetic forces dominate over the

pressure term. Note that the pressure term is included in Chapter V. As shown later,

the inclusion of the pressure term introduces some noise, possibly physical and numerical.

A simple electron continuum model is assumed, making the benchmarking of ion kinetic

solvers easier. The electric field is calculated by the steady-state momentum equation,

0 = −nµ⊥E + nue, (4.4)

where µ⊥ is the effective electron mobility, n is the plasma density obtained from ion number

density via a quasineutral assumption, and ue is the axial electron mean velocity. Assuming

only singly charged ions and a quasineutral plasma, the charge conservation equation can

be written as

0 =
∂

∂x
Ji +

∂

∂x
Je (4.5)

where Ji = eniui and Je = −eneue are the ion and electron current densities, respectively.

Integrating this equation once over x gives

Jd = Ji + Je, (4.6)

where Jd is the total discharge current density, or the anode current density. Using Eq.
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(4.4), Eq. (4.6) can be further integrated1 to obtain the fundamental relation between the

discharge current and the discharge voltage Vd, given by

Jd =

[∫
1

neµe
dx

]−1(
Vd +

∫
niui
neµe

dx

)
, (4.7)

where ni = ne = n. The electron axial mean velocity and the electric field can be calculated

from Eq. (4.6) once Jd is calculated. Note that electron mobility across the magnetic field

plays an important role in the electron continuum model. The transverse electron mobility

in the cross-field direction follows the classical description and can be written as

µ =
e

meνm

1

1 + ω2
B/ν

2
m

(4.8)

where ωB is the electron cyclotron frequency and νm is the total electron momentum transfer

frequency, which is written as the sum of contributions from electron-neutral collisions and

electron-wall collisions. [11] Note that electron-ion collisions are orders of magnitude smaller

for the electron temperature range, i.e. > 5 eV, in HETs.

The mean electron energy, ε, is obtained from the steady-state energy equation:

5

3

∂

∂x
(nueε) = −enueE − nΓw − nΓc (4.9)

where Γw is the energy loss to the channel wall and Γc is the energy loss due to electron-

neutral collisions. It is assumed that the axial thermal conductivity is negligible. Assuming

the electron energy distribution function to be Maxwellian, the electron temperature and

the mean electron energy are related as ε = 3/2kBTe, where Te is the electron temperature.

The kinetic energy components are neglected.2 The energy loss to the channel wall is

modeled as follows:

Γw = Γw0exp

(
−U0

ε

)
· ε, (4.10)

where Γw0 and U0 are parameters taken to be equal to 0.2×107 and 20 eV, respectively. [11,

1Eq. (4.5) with Eq. (4.4) gives a second order PDE for plasma potential using Ex = −∇xφ. However, it
will be shown in Chapter VII that there are numerical difficulties to solve the PDE.

2The kinetic energy of electrons are included in Chapter V.
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13, 74, 84] The energy loss due to inelastic collisions reads:

Γc = nnξ(ε) · ε (4.11)

where nn is the number density of neutral atoms and ξ is the energy loss coefficient which

consists of contributions from ionization and excitation. The energy loss coefficients are

calculated using the cross sections of Puech and Mizzi. [85]

The mean electron energy at the channel exit is set to 10 eV, i.e. the electron temperature

is 6.7 eV. As can be seen from Eq. (4.9), the steady-state 1D electron energy equation

reduces down to an ordinary differential equation. Hence, a fourth-order Runge-Kutta

method is used to calculate the mean electron energy. The potential is set to 0 V at the

channel exit and the anode potential is equal to the discharge voltage. Note that the anode

sheath and the plume are neglected in this model.

4.3.4 Hybrid-PIC Simulation

A hybrid-PIC simulation, developed by Boeuf and Garrigues,[11, 18] uses a PIC method

for ions, an electron continuum model, and a continuity equation solver for neutral atoms.

The position and velocity of the macroparticles are updated by a leap-frog scheme, which

is second-order accurate. The maximum number of macroparticles used in the hybrid-PIC

simulation is approximately 300,000 particles. The total number of macroparticles is fixed

instead of keeping it constant in each cell. Ions are generated due to ionization when

the total number of macroparticles is smaller than the maximum limit. Otherwise, the

ionization rate is stored and a new ion is generated whenever the number of macroparticles

decreases to a satisfactory level. The number density and ion current are obtained every

time step by integrating the particle information, which are used for the electron continuum

model, discussed in Sec. 4.3.3.

The continuity equation is solved for neutral atoms with constant speed, which is set

equal to the mean velocity of a half-Maxwellian assigned at the anode in the DK simulation.

This is necessary to obtain identical neutral atom density from the inlet as the anode mass

flow is kept the same. It was observed that any discharge oscillations damp when the
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velocity of ions generated via ionization is sampled from a Maxwellian distribution, i.e.

half-Maxwellian or shifted-Maxwellian. This is because slow ions that are sampled from

the VDF stay longer than the fast ions. As the total number of particles is fixed, the

slow ions will be preferentially filled in the ionization region where the electric field is

small. Therefore, in this study, the velocity of the ions generated by an ionization event are

assigned a constant speed.

4.3.5 Flowchart

The implementation of the hybrid-DK simulation is illustrated in Fig. 4.1. The in-

put parameters, domain information, and initial conditions are assigned before the main

iteration.

First, the ion and neutral atom kinetic solvers are called. Here, the input parameters

for the ion kinetic solver are the electric field and the collision terms on the right hand side

of the kinetic equation. For the neutral atom solver, only the collision terms are needed.

Next, the electron continuum module is called. The discharge current is calculated first

from the charge conservation equation along with the drift-diffusion approximation for the

electron momentum equation. Inputs for this module are the ion number density, ion flux

(or the mean velocity), and the electron mobility. Once the discharge current is calculated,

the electric field is calculated. The electron mean velocity can then also be calculated from

the current conservation. The steady-state electron energy equation is solved to obtain the

electron mean energy, ε. In this chapter, the azimuthal electron drift is neglected so the

electron temperature in electron-volts is simply Te = (2/3)ε.

Finally, the ion and neutral atom VDFs obtained from the kinetic solver are integrated to

update the number densities and the velocities. This integration process must be performed

after the electron module so that the input for the electron module is the information at

the old time step.

Data output is performed typically every 500 time steps, i.e. 500 ns. The simulation

stops when the simulation time is 1 ms. Therefore, the hybrid model is iterated for 106

time steps.
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Input

Electron momentum
- Update Id

- Update E(x), uex(x)

Electron energy
- Update ε(x)
- Update Te(x)

Ion kinetics 
- Calculate fi(x,v)
- Add collisions

Neutral atoms
- Calculate fn(x,v)
- Add collisions

Output?

Output macroscopic data
Output VDFs 

Iterate?

Input: ni(x), uix(x), μ(x)

No

Yes

Yes

Stop

Input: E(x), S(x)

No

Integrate fi(x), fn(x) 
- Update ni(x), uix(x), nn(x)

Figure 4.1: Flowchart of the hybrid model for HET discharge plasmas.

4.4 Macroscopic Results

The results obtained from the 1D hybrid-DK simulation are compared with those ob-

tained from the 1D hybrid-PIC simulation. For the hybrid-DK simulation, the time step

82



size used for the xenon particles is 1 × 10−9 seconds and the cell size is [4 × 10−4 m, 200

m/s] in order to satisfy the stability condition. The phase space is divided into 100 × 400

cells in the physical space and velocity space, respectively. The time step and phase space

discretization are chosen to satisfy the stability condition in Eq. (4.3). In order to inves-

tigate the effect of neutral atom modeling, a DK simulation and a continuum model are

employed. The results are described as HDK-DK and HDK-Cont, respectively.

For the hybrid-PIC simulation, a time step smaller than 1 × 10−8 seconds is required

due to the CFL condition in physical space.3 However, a time step of 1 × 10−9 seconds

is used to match the hybrid-DK simulation. The number of cells in the physical space is

fixed at 100, which is the same as the hybrid-DK simulation. The hybrid-PIC simulation is

indicated as HPIC.

4.4.1 Computational Time Comparison

On a 3.2 GHz processor, the HDK-DK completes 1 ms in 3.3 hours while the HDK-Cont

finishes in 1.9 hours. The computational time required for the HPIC case is 3.6 hours using

the same time step. For the time integration of the DK simulation, it is required to

1. store the old values,

2. calculate the fluxes at cell interfaces, and

3. update the VDFs.

Thus, the computational time per velocity bin in DK solvers is about three times more

expensive than that per particle in PIC methods. The ratio of the computational steps

between PIC and DK methods can be estimated as

3000 particles per cell (PIC)

400 velocity bins per cell × 3 steps (DK)
= 2.5. (4.12)

This agrees with the computational time difference: 3.6 / 1.9 = 1.8. Using a DK solver

for neutral atoms will approximately require twice more computational steps as the DK

simulation is used for two species. Therefore, for an identical time step, the ratio of the

3Note that particle methods do not require the CFL condition in velocity space.
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number of particles per cell, Np for the PIC method to the number of velocity bins per cell,

Nv, for the DK method should be

Np = 3Nv (4.13)

in order for the computational wall time to be similar.

4.4.2 Overall Thruster Performance

The thrust, T , specific impulse, Isp, and thruster efficiency, η, are calculated from

T = ṁvexit (4.14)

Isp =
T

ṁg
=
vexit
g

(4.15)

η =
ṁv2

exit

2IdVd
(4.16)

where vexit is the exhaust velocity at the channel exit and g is the acceleration due to gravity

(=9.8 m/s2).

Table 4.2: Thruster performance

HDK-DK HDK-Cont HPIC Experiment [86]

Mean discharge current, Id 3.59 A 4.03 A 3.94 A 4.5 A
Thrust, T 88.7 mN 89.0 mN 90.8 mN 80 mN
Specific impulse, Isp 1810 s 1810 s 1850 s 1600 s
Efficiency, η 0.74 0.67 0.69 0.5

As shown in Table 4.2, the results obtained from the hybrid-DK simulations are in good

agreement with the hybrid-PIC results. However, the simulation results show higher specific

impulse and thrust than the experimental data of Mikellides et al.. [86] It can be seen from

Eqs. (4.14) and (4.15) that the exhaust velocity, or the ion mean velocity at the channel

exit, is overestimated. This is because the potential boundary condition of zero is set at

the channel exit in the current simulation instead of at the cathode. In the real thruster,

the potential drop will extend into the plume so that the ion mean velocity accelerates in

the plume as well as inside the channel. This effect is taken into account in the improved

hybrid-DK simulation in Chapter V. In addition, plume divergence is not included in the
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current 1D model that may impact the thrust performance.

4.4.3 Time-averaged Plasma Properties

Figure 4.2 shows the macroscopic plasma properties averaged over several oscillation

cycles. Although it can be seen that all simulations provide similar trends, the similarities

and disparities in the thruster performance using three different simulation models, seen in

Table 4.2, can be explained by the time averaged plasma results.

First, the potential drop, seen in the bottom part of Fig. 4.2, shows good quantitative

agreement in the acceleration region. This determines the acceleration of ions and provides

similar exhaust velocity. Therefore, the thrust and specific impulse are in good agreement

for all three simulations.

Second, HDK-Cont and HPIC results are in good agreement except for the ion number

density in the ionization region. The DK simulation accounts for the neutral atom VDFs

while the PIC simulation employs a constant velocity for the ions generated via an ionization

event. The use of a Maxwellian distribution, for example, for newly generated ions in the

PIC simulation yielded different quantitative results. This is due to the slow ions remaining

in the system in a unphysical manner longer than the fast ions since the total number of

macroparticles is fixed constant.

The discrepancy in the ion number density in the ionization region is mainly due to how

the simulations treat ionization events. The DK simulation handles the collision processes

at each time step and in every velocity bin. On the other hand, in the PIC simulation, the

total number of the macroparticles in the system is fixed so that ions are not created when

there are too many particles due to the computational memory restriction. It is found in our

simulation that ions are not generated in one out of four time steps. Although the particle

weight is calculated properly from the ionization rate, the ionization rate depends on the

number density of the accumulated ions. At the time step that skips the ion production,

the ion number density is slightly underestimated, and so is the ionization rate.

Lastly, the mean discharge current influences the thrust efficiency, in Eq. (4.16). The

second integration in Eq. (4.7) is independent of the number densities since quasineutrality

is assumed. As mentioned previously, the distribution of plasma potential gives a similar

85



Axial position, m

N
e

u
tr

a
l 
n

u
m

b
e

r 
d

e
n

s
it

y
, 
1

0
1

9
 m

3

Io
n

 n
u

m
b

e
r 

d
e

n
s

it
y

, 
1

0
1

8
 m

3

0 0.01 0.02 0.03 0.04

0.5

1

1.5

2

0.5

1

1.5

Axial position, m

P
o

te
n

ti
a

l,
 V

E
le

c
tr

o
n

 t
e

m
p

e
ra

tu
re

, 
e

V

0 0.01 0.02 0.03 0.04

0

50

100

150

200

250

300

350

0

5

10

15

20

25

30

35

40

45

Figure 4.2:
Time averaged results of macroscopic parameters vs. axial position. Dashed
lines: HDK-DK, Solid lines: HV-Cont, Triangles: HPIC

trend for the ion mean velocity so that the second integration does not vary much. Thus,

the first integration mostly determines the total mean current. In the acceleration region,

where the electron mobility is small due to the large magnetic field, the magnitude of the

first integration is mainly determined by the ion number density near the channel exit. As

shown in Fig. 4.3, the ion number density of the HDK-DK case is smaller in comparison to
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Figure 4.3:
Logarithmic plot of electron mobility and ion number density vs. axial position
in the acceleration region. Dashed lines: HDK-DK, Solid lines: HDK-Cont.

the HDK-Cont case. This is due to the lower electron temperature, shown in the bottom

part of Fig. 4.2. Due to a lower ion number density in the acceleration region, the mean

discharge current for HDK-DK is smaller than the other two simulations that employ a

neutral continuity solver. Although the ion and electron transport determine the plasma

behavior as well as the thruster performance, it can be seen that the modeling of neutral

atoms plays an important role.

Figure 4.4 shows the calculated mean velocity from the neutral DK simulation in com-

parison to the continuity solver with constant velocity. The results obtained from the DK

neutral solver (HDK-DK) yield an acceleration of neutral atoms towards the channel exit.

This phenomenon is also observed in the LIF experiments by Huang et al.[64] Their explana-

tions for this phenomenon included (a) the effects of the channel wall, (b) charge-exchange

collisions, and (c) selective ionization in which slower neutrals are more likely to be ionized

than the faster neutral atoms. In the present models, (a) is not included due to the one-

dimensional approximation and (b) is described in Section 4.6.4 and shows that the effect

87



Axial Position, m

N
e

u
tr

a
l 
M

e
a

n
 V

e
lc

o
it

y
, 
m

/s

0 0.01 0.02 0.03 0.04
200

250

300

350

400

450

500

Direct Kinetic
Continuity

Figure 4.4:
Mean velocity of neutral atoms vs. axial position. Dashed line: HDK-DK, Solid
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of CEX is small inside the channel. Therefore, the kinetic simulation results presented here

reinforce the physical mechanism that selective ionization causes the apparent acceleration

of neutral atoms inside the discharge channel.

Selective ionization plays an important role in determining the ion number density. The

lower ion number density produced by the HDK-DK case in the acceleration region is mainly

due to the selective ionization. The ions generated via an ionization event have larger bulk

velocity so that more ions can escape from the domain and the ion number density decreases

near the channel exit. As well as the electron temperature, the kinetic description of neutral

atoms provides another physical mechanism of the smaller mean discharge current in the

HDK-DK results. In addition, selective ionization explains the larger ion number density

produced in the diffusion and ionization regions. As opposed to the acceleration region,

there is a larger amount of slow ions due to the shape of neutral VDFs near the anode.

Since there are more slow ions, more ions stay in that region and the number density

becomes larger than using a neutral continuity solver which assumes constant velocity.
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4.5 Discharge and Plasma Oscillations

Plasma oscillations are observed in the unsteady calculations. All of the simulations

produced ionization oscillations, often referred to as the breathing mode, that are known

to be a low-frequency mode present in Hall thruster operation. For the high-frequency

oscillations, the DK simulation captures the unsteady phenomenon well.
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Figure 4.5:
Discharge current oscillations of a SPT-100 thruster (a: HDK-DK; b: HDK-
Cont; c: HPIC).
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4.5.1 Ionization Oscillations: > 10 kHz

Figure 4.5 shows the discharge current oscillations obtained from the three different sim-

ulations. The mean discharge current matches the values shown in Table 4.2. The overall

shape of the discharge current oscillations looks similar, producing plasma oscillations re-

lated to ionization. This low-frequency oscillation mode is often referred to as the breathing

mode and the oscillations in the number densities of neutral atoms and ions are shown in

Fig. 4.6.

Figure 4.6:
Contour map of the number densities of the heavy species obtained from the
HDK-DK case (a: neutral atoms, b: ions). These results correspond to Fig.
4.5(a). The units of the number densities are m−3.

The frequency of the breathing mode is 19 kHz in the HDK-DK case and 20 kHz in the

HDK-Cont and Hybrid-PIC cases. A simple physical model for breathing mode oscillations

is proposed by Fife [10]:

fB =

√
ViVn

2πLi
(4.17)

where fB is the breathing mode frequency, Vi and Vn are the characteristic velocities of ions
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and neutral atoms, respectively, and Li is the characteristic length of the ionization region.

For Vi = 18, 000 m/s, Vn = 300 m/s, and Li = 0.02 m, the breathing mode frequency from

Eq. (4.17) is fB = 19 kHz. The experiment of Mikellides et al. [86] shows a breathing mode

frequency of 17 kHz. The breathing mode frequencies obtained from the simulations are in

good agreement with the theory and experiment.

The simulation results show that there is another unique mode at the minimum discharge

currents. Its mechanism is due to the diffusion region being filled with neutral atoms that

are injected from the anode and consequently the ionization front moves towards the channel

exit. One period of this cycle is 105 µs from the hybrid-DK results compared to 95 µs from

the hybrid-PIC result. This corresponds to the transit time of neutral atoms in the diffusion

and ionization regions which is given by

τn =
Li
Vn
.

Using the values above, this gives τn = 70 µs and shows quantitative agreement with the

time needed to fill the channel with neutral atoms obtained from the simulations.

There are two different peaks in the mean discharge current from the simulations. In

the HDK-DK case, the larger peak is approximately 7.5 A whereas the smaller peak is

about 5.5 A. The difference in the mean discharge current can again be explained by the

magnitude of the ion number density, as described in the previous section (Section 4.4.3).

In the acceleration region, the ion number density is smaller at the second peak than at

the first peak, seen in Fig. 4.6(b). Although the discharge current is calculated based on

the simplified 1D Ohm’s law and only by using the plasma parameters obtained from ion

transport in the present hybrid simulations, the simulations provide reasonable results.

4.5.2 Transient-time Oscillations: > 100 kHz

As shown in Figs. 4.7 and 4.8, the high-frequency discharge oscillations are well captured

in both simulations. Similar to the ionization oscillations, shown in the previous section, a

high-frequency ionization oscillation mode, which is often referred to as the transient-time

mode, is also present in the Hall thruster discharge plasma. [3, 9]
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Transient-time oscillations have frequencies that correspond to ui/La, or the ion res-

idence time scale, where La is the acceleration characteristic length. [9] For Ui = 10000

m/s and La = 0.01 m, this frequency is 100 kHz. In the example shown in Fig. 4.7,

the transient-time frequency is 350-400 kHz from the simulations. Tilinin showed that the

transient-time oscillations occur in any operation conditions when changing the magnitude

of the magnetic field, mass flow rate, and the discharge voltage. Particularly, in the opti-

mum regime where the Hall thruster operates stably, it is shown that the high-frequency

transient-time oscillations are confined to a region near the maximum magnetic field. [3]
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Figure 4.7:
High frequency oscillations of the discharge current (a: Hybrid-PIC, b: HDK-
DK). The time range is 20 µs.

The numerical results obtained from the hybrid simulations match the experimental

observation that the plasma density fluctuations are confined in the acceleration region.

The HPIC results show numerical fluctuations in the discharge current whereas the HDK-

DK results are smooth even in the short time scale. The maximum peak of the discharge

current again corresponds to the time step at which the ion number density is large in the
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near-exit region. It can be seen that the hybrid-DK simulation resolves the temporal plasma

fluctuations without the statistical noise in comparison to the hybrid-PIC simulation.

Figure 4.8:
High frequency data of ion number density in the ionization and acceleration
regions, corresponding to Fig. 4.7 (a: Hybrid-PIC, b: HDK-DK) The units are
in m−3. The instantaneous number densities are sampled every 0.5 µs (500 time
steps).

In addition to the temporal resolution, the Vlasov simulation provides a better resolu-

tion in physical space. As an example, the PIC simulation shows not only temporal but

also spatial non-smoothness. There are two possible explanations regarding the spatial fluc-

tuations. One is the effect of ionization. As described previously, in order to maintain the

total number of macroparticles in the PIC simulation, ions are not generated at every time

step. During 100 time steps (0.1 µs), the generation of ions is skipped in approximately

26 steps. Secondly, the spatial fluctuation comes from representing particles in a discrete

manner. This is due to the statistical noise in the particle simulations and will be discussed

in the next section.

Since the transient-time oscillations are considered to play an important role in the
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turbulent conductivity of the discharge plasma in Hall thrusters,[3] the DK simulations can

be very useful in understanding the small-scale physics in comparison to particle methods.

In addition, usually in particle simulations, time averaging techniques are commonly used

in order to obtain good statistics. Although no time averaging is used in the current hybrid-

PIC simulation and instead an offset for the ion number density is set to 1015 m−3, either

numerical procedure may alter the plasma physics in the low density regions.

4.6 Microscopic Results

One of the primary objectives of developing a direct kinetic simulation is to obtain a

better resolution for the VDFs of plasma species. In the previous section, statistical noise

in the ion number density predicted by the PIC simulation is observed even when the total

number of macroparticles is set relatively large. In this section, VDFs are constructed from

the information of discrete particles, namely, the location and velocity of each macroparticle,

in the HPIC results. Identical cell sizes are used in the HPIC and HDK-DK cases for the

discretization of phase space.

4.6.1 Time-Averaged Ion Energy Distribution Functions

Figure 4.9 shows the time-averaged energy distribution functions (EDFs) of the ions at

the channel exit compared with the measurements of Bareilles et al.[74]. Good qualitative

agreement between the two kinetic methods and the experimental data is shown. The DK

simulation shows a slightly better agreement with the experimental data than the PIC

simulation.

For both kinetic methods, it can be seen that there are ions exceeding the prescribed

discharge voltage, Vd = 300 V. This is due to the dynamic oscillations generating high

velocity ions and this phenomenon is often referred to as the wave-riding effect.[72, 74] In

the presence of discharge oscillations, the ion distribution functions shift back and forth,

which generates some spread of the ion EDFs around the discharge voltage. Surprisingly,

this spread, particularly the high energy components, can be observed in the experiment.

The HPIC results slightly over-predict the high energy tail of ions, which is possibly due to
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Figure 4.9: Time-averaged ion EDFs at the channel exit.

the statistical noise near the channel exit. The average number of macroparticles for the

HPIC method is 3000, but the number of macroparticles in the cells near the channel exit

is sometimes less than 20. This is due to the ions being significantly accelerated from the

ionization region, where a large number of macroparticles exist. If the statistical noise due

to the small number of macroparticles in the acceleration region feeds back into the electron

continuum model, the electric field may oscillate more strongly due to such numerical errors,

which then can generate high energy ions.

There is a bump in the low energy component obtained from the HDK simulation. This

is due to the ionization that is captured in the low velocity tail of the distribution of ions

near the channel exit. It can be seen in Sec. 4.6.2 that some ionization events are captured

more in the HDK results near the channel exit compared to the HPIC results. These slow

ions are generated during the wave-riding cycle. The low energy ions may be a real physical

phenomenon as a recent experiment by Young et al. detected a slow ion population during

the breathing mode oscillation from an LIF measurement. This is discussed in the next
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section in more detail. In real operation, there may be doubly charged ions generated and

those might be accelerated twice as much as singly charged ions. The high velocity tail of

ions may be due to the doubly charged ions or other species which went through charge

exchange collisions with the doubly charged ions.[87] However, such effects are not captured

in the present simulations. This will be reserved for future work.

4.6.2 Time-Varying Ion Velocity Distribution Functions

Figures 4.10 and 4.11 show the time-varying ion VDFs in phase space at various times.

The indices of five contour figures correspond to the five points shown in the discharge

current plots in Figs. 4.10 and 4.11. The color scale of the two figures is identical.

Figures 4.10(a) and 4.11(a) describe the ion VDFs when the discharge current rises. The

ion VDFs look like a strong double layer since there is another set of slow ions in the region

where the ions are accelerated. This structure has been recently observed in experiments by

a LIF technique by Young et al.[88]. They concluded that the slow ions in the acceleration

region are related with CEX collisions. However, the present simulation results suggest

the slow ion population can occur without CEX. As the discharge voltage is fixed in the

system, whenever there is a strong potential drop, the electric field in other regions must

be reduced. Since ionization still occurs in the acceleration region, slow ions may populate

the region where the electric field is small, which generates the slow ion population near

the channel exit during the discharge oscillation.

The double layer type structure moves and pushes the slow ions out of the channel.

After the slow ions near the channel exit disappear, smooth ion acceleration can be again

achieved, as shown in Figs. 4.10(b)-(e). It can be seen from these figures that the discharge

current oscillations are mainly due to the number density fluctuation rather than the ion

acceleration mechanism. It can also be seen that the plasma near the anode gradually

moves towards the channel exit. As neutral atoms are consumed, the ionization rate drops

and hence the ion density also decreases.

A similar trend is also shown in Fig. 4.11 for HPIC results. The major difference between

the HDK-DK and HPIC results can be seen from the magnitude of the slow ion density near

the channel exit. The ionization events are captured better in the HDK simulations than
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Figure 4.10: HDK-DK: Time-varying results of ion VDFs as well as the discharge current.

in the HPIC results. This can be seen from all the figures that there are empty velocity

bins in the HPIC results in comparison to HDK results, where even rare ionization events
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Figure 4.11:
HPIC: Time-varying results of ion VDFs as well as the discharge current.. Note
that the neutral atom speed is slightly higher than the other results, un = 300
m/s.

are captured in the low velocity region. Also, the slow ion population in Fig. 4.10(a) and

Fig. 4.11(a) shows a clear difference in the magnitude of the ion VDFs. For instance, there

are no particles in the region where ions significantly accelerate, i.e. in the strong double

layer, at x = 0.34−0.36 m in Fig. 4.11(a). Note that the results shown in Fig. 4.11 employ

a slightly different neutral atom velocity in comparison to Fig. 4.5(c). The macroscopic

results are not affected by the neutral atom velocity but the breathing mode frequency is,

as shown in Eq. (4.17).
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4.6.3 Instantaneous VDFs

Figure 4.12 shows the instantaneous VDFs of ions at the channel exit. The time at

which the data are chosen is at a maximum peak of the discharge current. Therefore, the

time corresponds to Figs. 4.10(b) and 4.11(b). The overall shape and the most probable

Figure 4.12:
Instantaneous VDFs of ions at the channel exit obtained from the hybrid-PIC
and HDK-DK simulations. Zero values are not shown since it is a logarithmic
plot.

velocities of the VDFs at the channel exit agree well in both simulations. The most probable

velocities are approximately 20 km/s. One notable feature is that the DK simulation resolves

any level of the VDFs whereas the PIC simulation uses discrete particles with a numerical

weight so that there is a minimum limit in the VDFs that can be resolved. The ion VDFs

obtained from the particle simulation are not well resolved in the low density region as

can be seen from Fig. 4.12 where there are several velocity bins that are empty. This is

also problematic in the near-anode region where the ionization rate is small and there may

be cells that have no macroparticles. The number of ions in one physical cell near the

channel exit can be estimated as N = nA∆x ≈ 1017π/4(0.052 − 0.032)4× 10−3 = 5× 1011.
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Assuming that each velocity bin is ∆v ≈ 100 m/s and the particles are equally distributed

in the velocity space, each velocity bin contains N∆v/vmax = 2.5×109 number of particles,

where vmax = 20000 m/s. Therefore, the velocity bins at low velocities are not likely to be

empty from this estimate.

For hybrid simulations in which quasineutrality is assumed, a number density of zero

crashes the simulation. In order to avoid zero number density, the hybrid-PIC simulation

employs an offset for ion number densities of 1015 m−3. In addition, the hybrid-PIC results

exhibit a steep discontinuity in the velocity space at high energy. The absence of high

energy particles may be attributed to the beam-type VDFs when ions are generated in

the ionization region. For the HPIC simulations, the ions generated via an ionization

event have constant velocity, which is not sampled from a Maxwellian–type distribution.

Assuming initial velocity to be small (∼ 200 m/s), the ion velocity at the channel exit can

be calculated from energy conservation:

v =

√
2eVd
M

The ion velocity is 21,000 m/s for a discharge voltage of 300 V, and this matches the

maximum limit of velocity obtained from the HPIC simulation.

One major disadvantage of the DK simulations is the resolution of the sharp discontinu-

ity in velocity space that particle methods can capture. Although the VDFs obtained from

the DK simulation are smooth and contain no statistical noise, the use of a second-order

finite-volume method and fixed Cartesian grids cause broadening of the VDFs. The high

energy tail of the distribution is mainly due to the numerical dissipation of the scheme used.

For instance, the results shown in this dissertation exhibit great improvement over those

shown in Ref. 81. The high energy tail, for instance, was around 2.8 × 104 m/s in the

previous model whereas it is approximately 2.4 × 104 m/s in the present results. The use

of higher-order numerical methods is reserved for future work. The numerical dissipation

leads to the increase in the temperature, i.e. the width of the VDFs. This was not critical

for the ions, as the collisions depending on the ion temperature are not important in the

Hall thruster discharge, but may become important for electron kinetic modeling.
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It is observed from the present investigation that the effect of the high energy tail of ion

VDFs on the time-averaged and time-resolved macroscopic results is small, particularly in

comparison to other components of the hybrid approach including the electron continuum

model, boundary conditions, and neutral atom solver. The most important region in the

ion VDFs is the peak, as most of the macroscopic quantities lie near the peak of the VDFs.

In addition, several advancements on time-resolved LIF measurements have been made by

Mazouffre et al.[66] and Durot et al.[89]. In those results, the high energy tail of ions is

often observed, which is possibly caused by some physical mechanisms, such as CEX or

beam-type instability, and/or measurement uncertainties. The experimental measurements

suggest that the high energy tail of the ions may be an issue related to not only numerical

errors but also some physical processes.

4.6.4 Effect of Charge Exchange Collisions

The collision frequency due to CEX collisions is given by:

νCEX = nn

∫
f̂if̂n|g|σCEXdv (4.18)

where f̂ is the normalized VDFs and σCEX is the cross section due to CEX collisions. Here,

the CEX cross section employs the expression proposed by Pullins et al.[79]:

σCEX(v) = (a− b log10 v)

(
I

I0

)−1.5

,

where a and b are coefficients fit to the measured data, which are given by a = 188.81±5.64

and b = 23.30 ± 1.02, I/I0 is the ratio of the xenon ionization potential, I = 12.13 eV, to

that of hydrogen, I0 = 13.6 eV.

In the diffusion and ionization regions, the relative velocity of neutral atoms and ions

is small so that the CEX frequency is negligible. CEX collisions become important in the

acceleration region where the ions have larger velocity than neutral atoms. If the VDFs

of ions and neutral atoms are assumed to be a delta function at 20 km/s and 0 m/s,

respectively, at the channel exit, the CEX frequency is νCEX ≈ 1× 104 Hz. CEX collisions
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are known to be important in the plume where the ionization rate is small. An accurate

prediction of the slow ions due to CEX collisions is required for spacecraft integration

in the actual missions and well-resolved VDFs of ions can be used as inputs for plume

simulations. [30]
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Figure 4.13: Velocity distribution function of neutrals at the channel exit

4.7 Summary

The grid-based DK simulation method discussed in Chapter III is now integrated into

a hybrid framework, where an electron continuum model is used and the DK method is

employed for the heavy species. The DK method is compared with a PIC method using the

hybrid kinetic-continuum model as well as experimental data.

Time averaged and time resolved plasma parameters are compared in order to investi-

gate the usefulness of the DK simulation. The breathing mode is observed and its frequency

agrees well with theories and experiments. High frequency oscillations show similar trends

in the DK and PIC simulations yet the DK simulation exhibits the ability of achieving

temporally and spatially resolved plasma parameters. By comparison, the hybrid-PIC sim-
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ulation suffers from inherent statistical noise. Two mechanisms have been greatly improved

in the hybrid-DK simulation:

• The treatment of ionization events, for which the particle simulation is unable to

generate ion particles at each time step and every velocity bin,

• the resolution of VDFs, and hence that of the plasma properties.

The new kinetic approach provides an alternative to particle simulations that contain sta-

tistical noise even when the number of macroparticles is large.

The direct kinetic simulation that achieves a better resolution of VDFs and the plasma

parameters will be implemented for the electrons as well as the heavy particles. One chal-

lenge of a fully-kinetic simulation is the computational cost. Firstly, the spatial discretiza-

tion must be chosen smaller than the local Debye length, which is similar to particle meth-

ods. Secondly, the effect of the magnetic field will be included in the electron DK solver.

Lastly, due to the discrepancy in the masses of electrons and ions, the time step for elec-

trons should be taken much smaller than that for ions. In order to reduce the computational

time, numerical techniques such as GPU computing and adaptive mesh refinement can be

employed. [49]
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CHAPTER V

Mode Transition of Discharge Oscillations in Hall Thrusters

5.1 Introduction

A wide spectrum of oscillation modes exists in Hall thruster discharge plasmas. Under-

standing and controlling the low-frequency oscillation modes is critical for development of

HETs.

Two important types of low-frequency oscillation modes in the range of 10-30 kHz

include an axial breathing mode and an azimuthal rotating spoke mode. The breathing

mode has been observed in several numerical studies[5, 10, 11, 90] but differences between

the oscillation modes have not been discussed. The two low-frequency oscillation modes

have also been observed in experiments using high speed Langmuir probe systems [91]

and high speed camera systems,[1, 92] in which emitted light from the discharge plasma is

measured to analyze the oscillation modes. Excited states of atoms and ions often play an

important role as a different path of ionization and hence nonlinear mechanism of electron

energy loss. Although excited atoms have been modeled in PIC methods,[93] the effect of

excited atoms on discharge oscillations has never been explicitly discussed in the previous

Hall thruster simulation models.

State-of-the-art particle simulations[10, 13, 14, 94] employ time averaging techniques to

obtain smooth macroscopic profiles that may numerically alter the oscillation behaviors.

Additionally, due to restriction of the computational memory, ionization events are often

not captured every time step in such particle methods whereas a DK simulation can model

the ionization at every time step and on every phase space cell.[81] Continuum models
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[5, 68, 90] cannot capture the non-equilibrium nature of the discharge plasma which may

affect the plasma oscillations. Hence, it is expected that a DK simulation can capture

oscillations of the discharge plasma more accurately.

In this chapter, an improved version of the 1D hybrid-DK simulation[81, 95] is developed,

including an improved electron fluid model as well as ground- and excited-state neutral atom

transport models in addition to the hybrid model presented in Chapter IV. Although radial

and azimuthal plasma transport is not solved directly, the characteristics of axial plasma

oscillations that determine the global discharge oscillation can be investigated. The purpose

of this study is to analyze the mode transition that occurs in a standard SPT-type Hall

thruster comparing experimental observations with numerical simulations.

5.2 Previous Research on Mode Transition

The first research conducted on mode transition was by Tilinin[3] in 1977. Figure

5.1 shows the discharge current as a function of magnetic field strength. Note that these

definitions were developed using an older SPT type thruster and the loop oscillations refer

to what are currently called breathing mode oscillations.

Figure 5.1:
Discharge current as a function of magnetic field with constant discharge volt-
age. The operation modes are categorized into six different regimes. Repro-
duced from Fig. 5 of Ref. 3.
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I Collisional (classical) conductivity: The weak magnetic field causes the electron

Larmour radius to be comparable to the effective dimensions of the channel.

II Regular electron drift wave: Dominated by an azimuthal drift wave that propagates

at 0.4−0.8 vE×B.

III Transition: Moderate amplitude loop oscillations due to poor conductivity in the

discharge channel.

IV Optimal: Discharge current and loop oscillations are minimized. The electron drift

wave is detectable, but of lower amplitude.

V Macroscopic instability: Discharge current abruptly increases and loop oscillations

become strong with visible instabilities in the thruster. Drift waves are absent.

VI Magnetic saturation: Discharge is again stabilized and loop oscillations are mini-

mized. Transit time oscillations dominate.

In terms of the actual HET operation, operating in the optimal region (Region IV) is best

because the discharge current and breathing mode oscillations are minimized. Therefore,

research on mode transition has focused mainly on Regions III and IV.

Bechu et al.[96] investigated the operating mode transition of an SPT-100ML thruster.

Four discharge current oscillation modes are identified. Irregular mode at discharge voltage

of 100 V, fluctuating mode at 300 V, oscillating mode at 400 V, and pulsed mode at 600 V.

The effect of discharge current on the oscillation modes has been also shown by Gascon et

al. in Ref. 4.

Gascon et al.[4] studied the discharge current oscillations in an SPT-100ML thruster,

using various materials for the channel wall for the discharge voltage of 300V, as shown

in Fig. 5.2. Regions I and II are not shown and Regions V and VI are not observed due

to the improvements in the design of HETs. The result for borosil in Fig. 5.2(a) shows

a qualitative agreement with Fig. 5.1. The oscillation modes for an alumina channel wall

show a similar trend but the stable discharge region (Region IV) is observed at a lower

magnetic field strength. Silicon carbide and graphite do not exhibit any optimal region in
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the range of magnetic field strengths shown in the figures. The large discharge oscillations

for silicon carbide and graphite were attributed to the short circuit effect near the wall in

Ref. 4.

Figure 5.2:
Discharge current oscillations reported by Gascon et al.. The discharge voltage
is 300 V and the anode mass flow rate is 5 mg/s. Top left: borosil, bottom left:
alumina, top right: silicon carbide, and bottom right: graphite. Reproduced
from Fig. 2 of Ref. 4.

Barral et al.[5] performed a 1D continuum simulation of the Hall thruster discharge

plasma. In Ref. 5, good agreement of the trend of mean discharge current shows with

experimental data and Tilinin’s observations is shown. The discharge current increases as

the electron current increases for a smaller magnetic field. It was indicated that the mode

transition is attributed to the wall effects, namely the space charge limited (SCL) sheath,

or space charge saturated (SCS) sheath as illustrated in Fig. 5.3. In Ref. 5, the amplitude

of discharge current oscillations as well as the breathing mode frequency are not shown and

discussed. Thus, the cause of the mode transition of discharge oscillation is not completely
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understood.

Figure 5.3:
Discharge current oscillations reported by Barral et al. using a 1D continuum
simulation. Reproduced from Fig. 10(b) of Ref. 5.

5.3 Improved Hybrid-DK Simulation

The discharge plasma of a SPT-100 Hall thruster is modeled using a 1D hybrid-DK sim-

ulation. The SPT-100 is chosen for modeling as a typical, well-characterized Hall thruster.

A DK simulation is used for ions, a fluid model which solves the momentum and energy

equations is used for electrons, and neutral atoms are modeled solving the continuity equa-

tion. Singly charged ions and one electronically excited state of xenon atoms are taken into

account in the model. The implementation of the hybrid-DK simulation is identical to that

in Chapter IV as illustrated in Fig. 4.1.

The configuration is identical to the SPT-100ML thrusters.[4, 5] The calculation domain

is taken from x = 0 cm, the anode, to x = 3.5 cm, which is assumed to be the cathode line

where the electron total energy is chosen as 10 eV and the potential is 0 V. The channel

length is 2.5 cm. The discharge voltage is 300 V, anode mass flow rate is 5.0 mg/s, and

the peak magnetic field is varied. Background pressure is not accounted for in the present

model and charge exchange collisions are neglected.

The transport of ground-state and electronically excited atoms are modeled by solving
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the continuity equation.

∂nn
∂t

+
∂

∂x
(nnun) =

∑
reactions

ṅn, (5.1)

where ṅn is the source term due to collisional reactions. The axial neutral atom velocity is

assumed to be constant: un = 250 m/s. For the ground-state neutral atoms, electron-impact

excitation, electron-impact ionization, and wall diffusion are taken into consideration. For

the excited-state neutral atoms, electron-impact excitation, and electron-impact stepwise

ionization are included in the model. The ion diffusion rate to the walls is determined by

ṅiw = n
1

Ro −Ri

√
eTe
mi

,

where Ro and Ri are the outer and inner radii, respectively. The ions are assumed to

approach the sheath edge at the ion acoustic speed, i.e. the Bohm condition. The rate

coefficients of various processes are tabulated assuming a Maxwellian electron distribution

using the cross section data cited in Table 5.1. Note that several assumptions are made in

this model, including neglecting energy loss due to the elastic collisions, resonance radiation

trapping[97], and doubly-charged ions, but it is still an improvement over state-of-the-art

simulation methods. Inclusion of detailed collision models is reserved for future work.

Table 5.1:
Collisions: Xe, Xe∗, and Xe+ are the ground-state atom, excited-state atom,
and ion.

Energy loss

Excitation [85] Xe+ e → Xe∗ + e 8.3 eV
Direct ionization [80] Xe+ e → Xe+ + 2e 12.1 eV
Stepwise ionization [98] Xe∗ + e → Xe+ + 2e 3.8 eV
Radiation [99] Xe∗ → Xe+ hν -
Elastic collisions [100] Xe+ e → Xe+ e -

The pressure term is included in the new electron fluid model. The 1D electron momen-

tum equation is written as

vex = µeff

[
Ex −

1

ne

∂

∂x
(neTe)

]
(5.2)

where µeff is the effective electron mobility and vex is the axial electron drift velocity
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which is obtained from current conservation. The effective electron mobility is determined

by the magnetic field and effective momentum transfer collision frequency, νeff , that is

described as the sum of electron-neutral elastic collisions, electron-impact inelastic colli-

sions, electron-wall collisions, Coulomb collisions, and any contributions from anomalous

transport. Coulomb collisions are not important under the plasma parameters in the Hall

thruster discharge. The momentum transfer collision frequencies due to elastic and inelastic

collisions are obtained from Table 5.1.

In this model, it is assumed that the effective electron mobility has some contributions

from the nonmagnetized mobility, µ = e/mνm, near the anode.

µeff = α µ⊥ + (1− α)µ, (5.3)

where α = x/Lc and µ⊥ = µ(1 + Ω2)−1 with Lc = 0.5Lch, the Hall parameter Ω = ωB/νm,

and the electron gyro-frequency ωB = eB/me. By setting the electron mobility large

near the anode, the electric field and hence the electron heating are reduced. It has been

suggested by Hofer et al.[14] that additional anomalous contributions are required for the

electron mobility near the anode. An anomalous electron collision frequency results in

increased electron mobility so that the electric field decreases. Thus, the nonmagnetized

electron mobility term assumed in this study is similar to the anomalous mobility near the

anode assumed by Hofer et al.

The electron-wall collision frequency is given by

νew =
1

Ro −Ri

√
Te
mi

1

1− σ
(5.4)

where σ is the effective secondary electron emission (SEE) rate, which is a function of

the electron temperature. The SEE model is identical to that of Barral et al.[5, 90] in

which the wall material is borosil and the effective SEE coefficient is assumed to be σ =

max(Te/25, σSCL) where Te is the electron temperature. σSCL = 0.986 is the space charge

limited (SCL) SEE coefficient of a xenon plasma and Te = 24.6 eV is assumed to be the

critical electron temperature that forms an SCL sheath.
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A two-region model is used for the anomalous cross-field mobility.[13, 73] Different

anomalous mobility coefficients are chosen for outside and inside the channel such that

the predicted mean discharge current agrees with the experimental data.

νea,out =
1

16
ωB, νea,in =

1

160
ωB, (5.5)

where νea,out and νea,in are the anomalous mobility outside and inside the channel. It is not

the focus of the present investigation to find the anomalous mobility coefficients that agree

with experimentally measured thruster performance as has been demonstrated for the H6

thruster.[14] The main focus of this study is to investigate the cause of the mode transition

in a Hall thruster under the assumption that the anomalous electron mobility components

remain the same across the mode transition. However, it is worth noting that the mode

transition is observed for different cross-field mobility coefficients in the hybrid kinetic-

continuum model, as discussed in Sec. 5.7. For the mode transition study, the values are

chosen such that the mean discharge current agrees with the experimental results. In order

to fully understand and capture the behavior of the discharge plasma, a self-consistent model

that accounts for the anomalous diffusion without using empirical coefficients is required.

The electron energy equation is described by the balance between convective heat flux,

Joule heating, wall losses, and inelastic collisions.[74]

∂

∂x

(
5

3
nvexε

)
= nevexE⊥ − ne

νew∆εw +
∑
j

νj∆εj

 (5.6)

where ε is the mean electron energy, νew is the electron-wall collision frequency given in Eq.

(5.4), ∆εw is the energy loss to the wall, νj is the collision frequency and ∆εj is the energy

loss due to an inelastic collision, j. The mean electron energy can be decomposed into

ε =
3

2
TeV +KeV (5.7)

where TeV is the electron temperature in electron-volts, KeV = 1
2me(v

2
ex + v2

eθ)/e is the

kinetic energy in electron-volts, and veθ = vexΩ is the azimuthal velocity. The energy loss
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to the wall is given by ∆εw = 2TeV +KeV + |φw| where φw is the sheath potential. As the

experiments by Raitses et al.[101] showed that the effective electron temperature measured

by Langmuir probes can exceed the electron temperature of the SCL sheath, it has been

suggested that there is an anisotropy in the electron temperature. This has also be suggested

by Barral et al.[5, 90]. In the present model, it is assumed that the electron temperature

is isotropic, i.e. Te = Te,⊥ = Te,‖ where Te,⊥ and Te,‖ are the electron temperatures across

and along the magnetic field, respectively. However, it can be considered that the kinetic

energy is the source of the isotropy, as the energy in the parallel direction is not modified

but that in the perpendicular direction contains the kinetic energy due to the E ×B drift.

5.4 Mode Transition Results

Mode transition in the mean discharge current as well as the magnitude of the discharge

current oscillation is observed from the numerical simulation showing good agreement with

experiments. In this study, although the 1D axial simulation cannot capture the azimuthally

rotating structure as described in Ref. 7, the discharge oscillation mode and stable discharge

mode obtained from the simulation are categorized as global and local modes, respectively.

From experiments, it was found that ionization oscillations occur simultaneously in the

entire channel during the global mode whereas the oscillations are localized and propagate in

the azimuthal direction during the local mode. Mode transition when varying the discharge

voltage or the mass flow rate lies outside the scope of the present study.

5.4.1 Comparison with Experiments

Figure 5.4 shows the discharge mean current and the standard deviation of the os-

cillation. The numerical results of the SPT-100 thruster obtained from the hybrid-DK

simulation agree with the experimental data obtained in the H6 and SPT-100 thrusters.

The experimental data of the H6 thruster show the same trend as those of the SPT-100

thruster reported in Ref. 4. It can be seen from the two experiments that global and local

ionization modes correspond to transient and optimal modes, respectively, which are cate-

gorized by Tilinin.[3] The relation between the experimental coil current and the magnetic
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(a) 

(b) 

(c) 

(1) Global mode

(2) Transition region

(3) Local mode

(1) Global mode

(2) Local mode

(1) Global mode

(2) Local mode

Figure 5.4:
Discharge current vs. magnetic field: Red symbol plots are the mean discharge
current and error bars show the standard deviation. (a) Experimental results
of the H6; (b) Experimental data of the SPT-100. Reproduced from Ref. 6; (c)
Hybrid-DK simulation results of the SPT-100.
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field strength is not explicitly given but it is often linearly correlated.

5.4.2 Discharge Current Oscillations

The discharge current oscillations of the global and local modes in both the H6 ex-

periment and the SPT-100 simulation are shown in Fig. 5.5. Figures 5.5(a) and 5.5(b)

(b)

(a) (c)

(d)

Figure 5.5:
Discharge current oscillation: (a) Br/B

∗
r = 0.52 (H6), (b) Br/B

∗
r = 0.61 (H6),

(c) B=120 G (Hybrid-DK), (d) B=180 G (Hybrid-DK).

correspond to Br/B
∗
r = 0.52 and 0.61 shown in Fig. 5.4(a), and Figs 5.5(c) and 5.5(d)

correspond to B = 120 G and 180 G shown in Fig. 5.4(c), respectively. The shape of the

discharge current oscillation exhibits excellent agreement between the two data sets. The

global mode is a non-sinusoidal oscillation in which the maximum current is almost three

times larger than the mean discharge current. In the local mode, the discharge current is

not completely stationary but exhibits a small amplitude oscillation that is a superposition

of several modes. Note that there are high frequency noise present in some regions during

the breathing mode oscillation in the numerical results. These oscillations come from the
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pressure gradient in the electron continuum model as the first derivative of the product of

the number density and the electron temperature is taken and the electric field is calcu-

lated. This may be numerical but can also be physical in that the pressure gradient can

cause acoustic type waves in the system.

Figure 5.6 shows the breathing mode frequency obtained from the discharge current

oscillations of the H6 experiment and the SPT-100 simulation. The frequencies in Fig.

5.6(a) are determined by fitting a Lorentzian[102] to the discharge current power spectral

density in order to identify the peak frequency. The standard deviation of data points to the

averaged frequency versus magnetic field trace is 200 Hz. An agreement of the trend between

the experimental data and the simulation results is shown although the magnitude of the

frequency does not agree due to the difference in the thruster geometry and operational

point. The breathing mode frequency of 20 - 25 kHz from the simulation of the SPT-100

thruster agrees with the previous experiment by Gascon et al.[4]

Figure 5.6: Breathing mode frequency: (a) H6 experiment,[7] (b) SPT-100 simulation.

The breathing mode frequency, first proposed by Fife,[10] is explained as a harmonic

oscillation between the neutral atoms and ions:

ω =

√
ViVn
Li

(5.8)
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where Vi is the ion velocity, Vn is the neutral velocity, and Li is the ionization length. This

expression is also supported by the theoretical work of Barral and Ahedo[90] suggesting that

the standing wave components of both ions and neutral atoms contribute to the breathing

mode oscillation based on their fluid simulations so that a 0D model can be used to explain

the breathing mode oscillation. However, in both papers, the damping or stabilization of

the discharge oscillation mode has not been discussed. In Chapter VI, a linear perturbation

theory is presented and the criteria for mode transition are discussed. In addition, the

present simulation accounts for important physical effects that have been neglected in their

fluid model including noiseless ion kinetic model and the transport of excited state atoms.

The ionization length is difficult to define since the discharge plasma is generated and

confined dynamically due to the balance between ionization and acceleration as well as

diffusion to the wall and the anode in Hall thrusters. In Eq. (5.8), the effect of electron

transport is simplified using the ionization length, which is often considered to be on the

order of the channel length. It is shown that the ionization length becomes smaller as the

oscillations become stable, which is consistent with the observation in Fig. 5.6.

5.4.3 Plasma oscillations

The spatio-temporal evolutions of the global and local oscillation modes are shown

in Figs. 5.7 and 5.8, respectively. The electron total energy is a sum of the electron

temperature and electron kinetic energy as shown in Eq. (5.6), thus it is different from the

electron temperature alone.

In the global mode, a periodic oscillation is exhibited for all of the plasma properties.

The unique feature of the global oscillation mode is that the oscillation is non-sinusoidal.

Ground-state atoms are consumed, shown in Fig. 5.7(a), while excited-state atoms and ions

are generated during the ionization burst, shown in Figs. 5.7(b) and (c). The characteristic

time of ionization and excitation, t ' 20 µs, is shorter than that of resupply of neutral

atoms from the anode, t ' 25 µs. The rate of spontaneous emission, or de-excitation, of

the excited-state atoms, 107 Hz, is much faster than their transport across the channel.

As the ion current at the channel exit increases during the ionization burst, the electron

current toward the anode increases simultaneously in order to balance the total current.
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(a)

(b)

(c)

(d)

(e)

Figure 5.7:
Two oscillation cycles (0.1 ms) of the global oscillation mode at B = 120 G.
Dashed horizontal lines correspond to the maximum discharge current in Fig.
5.5(c). (From top to bottom) Ground-state atom density, excited-state atom
density, ion density, electron axial velocity, and electron total energy.
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After a large electron flux toward the anode and a large ion current toward the channel

exit are generated, the plasma density decreases inside the channel and ionization occurs

to produce electrons. A periodic ionization oscillation occurs due to the balance between

plasma production and transport. Thus, the electron transport inside the channel plays an

important role in the global oscillation mode. Note that the electron total energy is not

continuous at the channel exit (x = 2.5 cm) due to artificially setting different anomalous

mobility coefficients discontinuously inside and outside the channel. The high frequency

oscillations result from the pressure gradient in the electron continuum model, which may

be caused by numerical or physical effects. As can be seen, these oscillations are more

present near the anode than the channel exit.

The plasma oscillation is stabilized in the local mode as shown in Fig. 5.8 although

there is still a weak oscillation in the 10-30 kHz range. The discharge current oscillation

is stabilized in comparison to the global oscillation mode as shown in Figs. 5.5(b) and

5.5(d) since the ionization and ion transport are stabilized. In this study, it is assumed that

the SEE characteristics are determined by the electron temperature. The SCL sheath is

observed at larger magnetic fields due to the increase in electron temperature, which is shown

later. As shown in Fig. 5.8(e), the electron total energy exhibits unsteady behavior near the

channel exit. When the SCL sheath occurs due to a large Te, the wall collision frequency

increases due to the small sheath potential so that the electron axial drift increases.

As the electric field (vex ∼ µE) and the electron azimuthal drift increase, Te decreases,

so the SCL sheath does not occur continuously in time and space. The unsteady behavior of

the SCL sheath is also observed in other fully-kinetic simulations.[23, 103] It is worth noting

that the increase in momentum transfer collision frequency due to the SCL sheath does not

directly mean that the electron current increases in the axial direction. As discussed in

Section 5.6.2, the electron axial velocity near the channel exit is determined by the balance

between the magnetic field strength and the momentum transfer collision frequency. As the

magnetic field strength increases and the momentum transfer collision frequency is enhanced

due to the increase in Te, it is suggested that there is a stable electron drift in the axial

direction that results in a wide range of stable mode operation.
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(c)

(d)

(e)

(b)

(a)

Figure 5.8:
The local oscillation mode at B = 180 G. (From top to bottom) Ground-state
atom density, excited-state atom density, ion density, electron axial velocity,
electron total energy. Note that the range of electron total energy is different
from Fig. 5.7(e).
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5.5 Time-averaged Results

The time-averaged results of excited-state atoms and ionization cost are discussed in

this section. The dynamic transport of excited-state atoms has not been performed in

prior state-of-the-art HET simulations. The light intensity calculated from the deexcitation

process exhibits a strong correlation with the plasma oscillations, which has been observed

in experiments. In addition, the ionization cost has been chosen as a constant value in

previous HET simulations, but the inclusion of additional excited-atom species allows one

to examine the effects of such reactions on the global energy loss.

5.5.1 Excited-state Atoms

The excited-state atom density is strongly correlated with the discharge current and

the plasma density as shown in Figs. 5.7(b) and 5.8(b), which indicates the correlation

between light intensity and the discharge current. This agrees with recent experimental

observations in which a strong linear correlation between global light intensity and total

discharge current is observed.[1, 104] This may be of great interest to the experimentalists

since measurement of visible light can be used to analyze the plasma oscillation without

direct measurement. Inclusion of additional electronically excited states will be performed

in future work.

Figure 5.9 shows the correlation between the excited-state atom density integrated over

the channel length and the discharge current oscillation. The peak intensity is twice as large

in the global mode as in the local mode. Assuming the excited-state atom density modeled

in the present numerical simulation correlates with the visible light in the Hall thruster

discharge plasma, the double peak intensity agrees with an experiment of the SPT-100

thruster.[105] In addition, the time-averaged excited-state atom densities are 1.7 × 1016

m−3 and 1.8 × 1016 m−3 in the global and local oscillation modes, respectively. A stable

discharge operation generates excited state atoms as well as ions more efficiently than

the global oscillation mode, which is also observed in experiments. The high frequency

oscillations in the excited-state atom density are likely to be related to the noise in electron

energy due to the pressure gradient in the electron continuum model. However, there are
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Figure 5.9:
Discharge current oscillation and the integrated excited-state atom density: (a)
B=120 G, (b) B=180 G.

also contributions from the collision rate on the right hand side of the neutral atom rate

equations. The decay rate of the excited-state atom density may be too fast in the absence

of radiation trapping,[97] leading to numerical noise in the excited-state atom density.

Figure 5.10 depicts the correlation between the light intensity and discharge current

where a linear correlation is shown by a least squares fit. The light intensity is obtained

from the normalized excited-state atom density (n∗/1× 1016 m−3), where n∗ is the excited-

state atom density. Strong light emission corresponds to a large discharge current. It can

be seen that the correlation coefficient is different in each mode. The global mode exhibits

a larger discharge current than the local mode at the same light intensity. This suggests

that the global mode is less efficient in terms of the thruster performance.

5.5.2 Ionization Cost

Figure 5.11 shows the time-averaged ionization cost in the discharge plasma. In the

literature,[90] a constant ionization cost is usually assigned. The ionization cost is defined
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Figure 5.10:
Correlation between light intensity and total discharge current. The light
intensity: L = nXe∗/1016.

as

ξ =

∑
j Njkj∆εj

Nnkion∆εion
(5.9)

where Nj , kj , and ∆εj are the heavy species atom density, the rate coefficient, and the

threshold energy for reaction, j. The denominator is the energy transfer rate due to direct

ionization. Since the excited-state atom density is smaller than that for the ion density, the

contribution of stepwise ionization is the smallest among the inelastic collisions. Ionization

cost essentially describes the ratio of ionization and excitation collisions that are mainly

determined by the electron total energy. The larger the ionization cost, the larger the rate

of excitation relative to ionization.

The ionization cost is approximately 1.4 in the ionization region where the electron

energy is large. When the electron total energy is below 10 eV, the rate coefficient of exci-

tation becomes larger than that of ionization. Thus, the location where ξ = 2 corresponds

to the electron total energy of 10 eV. Since a small ionization cost corresponds to a large

electron total energy, Fig. 5.11 shows that the stabilization of the global oscillation mode
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Figure 5.11: Time-averaged ionization cost.

is associated with the suppression of electron energy near the anode. The ionization cost

may be too small as only one excited state is considered. In order to obtain an accurate

estimate of the ionization cost, a detailed collision model is required including more excited

states. Ionization is suppressed near the anode (x < 8 mm) and hence the discharge plasma

is confined inside the channel away from the anode. Thus, the ionization length decreases

as the breathing mode oscillation weakens. This is consistent with Eq. (5.8) and with the

increase in the breathing mode frequency as the magnetic field strength is increased, as

shown in Fig. 5.6.

5.6 Cause of Mode Transition

In this section, it is proposed that electron transport is critical to understanding the

mode transition between the global and local modes. First, the electron axial velocity near

the channel exit is neither too large nor too small when a stable operation is achieved. The

stabilization of the global discharge oscillation is associated with the reduction of electron

drift in both the axial and azimuthal directions. This behavior has been also suggested
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by Hofer and Gallimore for the NASA-173Mv2 thruster[106], namely that the electron

current remains unchanged when the discharge oscillation is stabilized. Second, it is shown

that the global mode occurs when the Joule heating exceeds the other electron energy loss

mechanisms. Thus, the electron energy balance is critical to stabilization of the discharge

oscillation. Finally, the transfer between electron kinetic and thermal energy across the

mode transition is discussed.

Barral et al. proposed that the mode transition is attributed to the SCL sheath using

a 1D fluid code.[5] In their work, it was indicated that the mode transition from the local

mode to the global mode is due to the formation of an SCL sheath under the assumption

that the electron total energy including both thermal and kinetic energies contribute to

SEE. This assumption is not necessarily true in that the azimuthal drift may not reach the

wall when there is a large sheath potential formed. Only when the radial component of the

electron drift is larger than the sheath potential can the kinetic energy affect the SEE from

the wall. In addition, their simulation results have been validated in terms of the mean

discharge current, but the amplitude of the discharge oscillation has not been discussed. In

our study, the agreement in mode transition has been shown in terms of the mean discharge

current, the RMS of the discharge current oscillation, and the breathing mode frequency.

In this section, it is shown that electron transport plays an important role in the transition

and stabilization of the discharge oscillation.

5.6.1 Electron Transport

Figure 5.12 shows a comparison of the time-averaged axial electron velocities for the

two oscillation modes. As shown in Figs. 5.7(d) and 5.8(d), the point at which the electron

axial drift is smallest is stationary in local mode whereas it moves periodically about 2 mm

in global mode. In local mode, the location of the minimum electron axial drift at which

the ion density is maximum is shifted away from the anode and thus it is indicated that

the ionization region is more confined. The electron axial drift plays an important role

in electron energy gain via Joule heating (~j · ~E) and the energy loss due to wall collisions

depending on the electron temperature. Note that electron axial velocity is on the order of

0.001 eV, thus the axial component of the electron drift is negligible in the kinetic energy.
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Figure 5.12: Time-averaged axial electron velocity from Figs. 5.7(d) and 5.8(d).

A smaller electron axial velocity was observed for an increases magnetic field strength

by Tilinin.[3] Figure 5.12 supports Tilinin’s observation, Region III in Fig. 5.1, that the

insufficient electron current is related to the oscillatory discharge mode.

5.6.2 Electron Energy Contributions

The time-averaged energy contributions as a function of axial position in the two oper-

ation modes are shown in Fig. 5.13. In the global mode, the convective heat flux, which

is the energy transfer due to the electron axial velocity, is large and balances the Joule

heating. The electrons are poorly confined and the plasma oscillation occurs. In the local

mode, as the magnetic field strength increases, the electron axial drift is reduced and the

convective heat flux decreases such that the wall losses balance the Joule heating. The

plasma-wall interaction plays an important role due to the increase in the electron thermal

energy, as shown in Fig. 5.14. It is worth noting that a large wall loss in the local mode

does not directly mean that the electron energy is smaller since all quantities are deter-

mined nonlinearly and dynamically. As shown in Eq. (5.6), the transport of electron total
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energy is considered rather than that of the thermal energy in a Hall thruster where the

kinetic energy cannot be neglected. Although not shown in this study, it is also observed

that a much reduced electron axial drift results in another ionization oscillation due to the

lack of electron current that provides a stable plasma. It is therefore suggested that the

stabilization of discharge oscillation is associated with the balance between energy gain and

loss and that there is an axial electron drift required for a stable operation mode.

(a)

(b)

Figure 5.13:
Time-averaged electron energy transfer. Each term in Eq. (5.6) is divided by
the electron axial current. (a) B=120 G; (b) B=180 G.

In addition, although the value may be small in Fig. 5.13, the contribution of inelastic

collisions is also important particularly near the anode. The inelastic collision contribution

is about 2% of the wall loss near the channel exit but is on the same order near the anode.

The locations at which the energy loss from inelastic collisions is largest are x = 9 mm

and x = 11.5 mm in the global and local modes, respectively. Thus, it is indicated that

the diffusion region, in which electron-impact excitation dominates over ionization near the
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anode, contributes to confinement of ionization and stabilization of the plasma oscillations.

This observation is consistent with the ionization cost shown in Fig. 5.11.

5.6.3 Electron Energy Balance

Although the global oscillation mode is a low-frequency oscillation that results in the

transport of slow neutral atoms interacting with ions and electrons, the ionization oscillation

is strongly associated with the electron transport and hence the electron energy.

Figure 5.14 shows the time-averaged kinetic and thermal energy distributions in the

global and local modes. The electron kinetic energy is largest near the channel exit inside the

channel where the E×B drift is strongest. As the electric field weakens inside the channel,

the electron kinetic energy due to the azimuthal drift decreases. The sharp transition of the

kinetic energy near the channel exit is due to the artificial two-region anomalous mobility

(a)

(b)

Figure 5.14:
Time-averaged kinetic energy and thermal energy components in two modes.
(a) B=120 G; (b) B=180 G. Vertical axis is shown in terms of effective elec-
tron temperature: Te,eff = 2

3ε. Horizontal dotted line is the critical electron
temperature that forms a SCL sheath.
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model allowing a smaller electric field in the plume outside the channel. The time-averaged

electron temperature is below 25 eV, which is the critical electron temperature, since the

SCL sheath is not formed stationary as discussed in Sec. 5.4.3.

In the acceleration region, assuming that the effect of thermal pressure can be neglected

relative to the electric field and the Hall parameter is large, Eq. (5.2) reduces to

|uex| ∼ µeE ∼
m

eB2
νeffE. (5.10)

As the magnetic field decreases, in the global oscillation mode, the electron axial and az-

imuthal drift velocities increase. Since Te decreases due to the increase in kinetic energy,

a normal sheath is formed on the channel walls. A normal sheath below the SCL region

has a large potential drop that reduces the energy loss to the channel walls in the radial

direction. In this situation, the sheath potential is φw ' 2− 5Te.

On the other hand, the local mode is achieved when the contribution from Te increases

near the channel exit and the SCL sheath is likely to be formed: φw ' Te. When the

SEE effect is large, the momentum transfer collision frequency increases as described in

Eq. (5.4) and the energy loss due to the wall increases as discussed in Fig. 5.13. As Te

increases and the SCL sheath forms, the time-averaged thermal energy approaches but is

below its threshold energy due to the unsteady behavior as explained in Sec. 5.4.3. In

addition, as can be seen from Eq. (5.10), the larger SEE effect enhances νeff which cancels

out the increased magnetic field strength (B) so that uex stays unchanged in the local mode.

Thus, the local mode is achieved due to the optimized electron flow over a wide range of

magnetic fields. It is also suggested that the plasma-wall interaction plays an important

role in formation of the azimuthally rotating spokes. However, this is out of the scope of

the present investigation and will be investigated in future work.

5.7 Sensitivity Analysis

Several sensitivity analyses are performed in order to gain deeper understanding of the

effects of the collision frequencies, i.e. the spontaneous emission rate of the excited-state

atoms as well as the anomalous electron mobility terms, on the transition of discharge
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Figure 5.15: Discharge current oscillation with various spontaneous emission frequencies.

oscillation modes.

5.7.1 Emission Rate

The spontaneous emission frequency from the excited-state to the ground-state atoms

is chosen to be ν = 1× 107 s−1 from Ref. 99 for the mode transition study. In this section,

the sensitivity of the emission rate is analyzed to study the effect of excited-state atoms on

the discharge oscillations.

As shown in Fig. 5.15, large discharge oscillations are observed for a small rate of

spontaneous emission, which is a deexcitation process of excited-state atoms to ground-state

atoms that involves emission of photons. When the emission rate is small, the excited-state

atoms can live long inside the channel. Since the energy required for stepwise ionization

from Xe∗ to Xe+ is smaller than that for direct ionization from Xe, the ions can be more

easily generated, which will result in consumption of neutral atoms. Thus, it is likely that

a breathing mode oscillation occurs.

On the other hand, a higher spontaneous emission rate can stabilize the plasma oscilla-
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tions. This is mainly due to the electron energy being consumed more via the excitation-

deexcitation process. When the spontaneous emission rate is large enough, the excited-state

atoms generated via electron-impact excitation will immediately turn back into the ground

state. Thus, the deexcitation process essentially serves as an energy sink for the electrons,

which is discussed in Sec. 5.5.2. In the local mode, where the discharge oscillations are

stabilized, the ionization cost increases, meaning that the electron energy is lowered near

the anode region, in comparison to the global mode.

This illustrates the importance of multispecies plasma reactions in HETs. Simply mod-

eling ground-state atoms and ions may not simulate the discharge plasma accurately. There

are multiple electronically excited states for xenon neutral atoms as well as those for the

ions. Including other excited states and the detailed reactions is reserved for future work.

5.7.2 Anomalous Electron Mobility

It was found that the mode transition of discharge oscillations can occur for a wide

range of anomalous electron mobilities. The three cases shown here are (1) νea,in = ωB/64

and νea,out = ωB/16, (2) νea,in = ωB/160 and νea,out = ωB/16, and (3) νea,in = ωB/160 and

νea,out = ωB/64. The second case, in Fig. 5.17, is the baseline anomalous mobility model

used for the mode transition study.

Figure 5.16 shows the first case. The inner anomalous electron mobility is larger than

the baseline case, making it less sensitive to the fluctuations of other frequencies, such as

wall collisions and inelastic collisions. Therefore, the discharge oscillations are stabilized

across a wide range of magnetic field strengths.

Figure 5.17 shows the baseline case. Although not shown in Fig. 5.4(c), the baseline case

yields another discharge oscillation mode at higher magnetic fields, B > 200 G. This has

not been observed in the H6 and SPT-100 thrusters with a boron nitride material for walls.

However, the second ionization oscillation mode has been reported in older thrusters[3]

and for other materials.[4] The present numerical simulations suggest that this mode is

associated with the plasma diffusion and acceleration toward the anode. For instance, ions

and electrons become more confined as the magnetic field strength increases even near the

channel. The ion velocity toward the anode can be about 2000 to 4000 m/s from the present
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Figure 5.16: Mode transition: νea,in = ωB/64 and νea,out = ωB/16

Figure 5.17: Mode transition: νea,in = ωB/160 and νea,out = ωB/16

simulations. Such phenomena might contribute to the ionization and discharge oscillations.

Another possibility of the second ionization oscillation mode may be explained from the

balance of source and sink terms for the electron energy. Figure 5.18 shows the energy gain

and loss terms for the baseline case. Due to the large E × B drift in the azimuthal drift,

the axial electron velocity is also likely to increase at smaller magnetic field strengths as
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vex = veθ/Ω ∼ Eνm/B
2. Thus, the Joule heating increases as the magnetic field strength

decreases. On the other hand, the wall loss is small since the electron thermal energy is

small as shown in Fig. 5.14. The imbalance between the source term, i.e. Joule heating, and

the sink term, i.e. wall heat loss, is likely to be responsible for additional energy transfer

via convective heat flux, as discussed in Fig. 5.13.

Magnetic field, B (G)

E
n

e
rg

y
 c

o
n

tr
ib

u
ti

o
n

 (
1

0
2

5
 V

/(
m

3
s

))

100 120 140 160 180 200

0

1

2

3

4

5

Joule heating

Total loss 

Wall loss

Ionization + Excitation 

Figure 5.18: Global energy balance for νea,in = ωB/160 and νea,out = ωB/16

As the magnetic field increases, the electron thermal energy increases as the electron ki-

netic energy decreases since the E×B drift weakens. If the source term is much smaller than

the sink term, then there needs to be an additional process to heat the plasma. Convective

heat flux may be responsible for such a heating process. In addition, the gyro-frequency

ωB = eB/me increases and the Larmor radius rL = mv⊥/eB decreases. Therefore, the

electron transport via magnetization becomes a small-scale phenomenon, which may lead

to turbulence. If turbulence occurs, it is expected that there is an additional source term

in the momentum equation, e.g. Reynolds stress due to the high frequency oscillations.

In order to resolve the small-scale phenomena, a direct numerical simulation (DNS) type

simulation is required.

Finally, Fig. 5.19 shows the third case where the outer anomalous electron mobility is

smaller than the baseline case. The qualitative trend of the mode transition is obtained, i.e.
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discharge oscillation mode at low B, stable mode at intermediate B, and another oscillation

mode at high B. However, the stable discharge oscillation mode occurs at lower magnetic

field strength in comparison to Fig. 5.17.

Figure 5.19: Mode transition: νea,in = ωB/160 and νea,out = ωB/64

It is also likely that the anomalous electron mobility contribution varies as the structure

of the plasma discharge may change as the magnetic field strength increases. In order

to understand the effect of plasma properties on the anomalous mobility, a deterministic

electron mobility model or a high-fidelity simulation that can resolve small-scale phenomena

is required.

5.8 Summary

The transition of oscillation modes in a Hall thruster is investigated using a hybrid-DK

simulation. The numerical results are validated against published experimental results of

the SPT-100 in Ref. 4 and experimental data of the H6. Comparisons in the mean discharge

current, the RMS of the discharge current oscillation, and the breathing mode frequency

are shown. It is suggested that the mechanisms of stabilization of the global mode include

the reduction of electron drift as well as suppression of ionization near the anode.

First, in the local mode, the ionization cost increases and the electron total energy de-
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creases near the anode so that ionization is stabilized. When the electron total energy is

smaller than 10 eV, electron-impact excitation is dominant over ionization. Since sponta-

neous emission of the excited-state atoms is a fast process, the excited atoms deexcite back

to the ground-state more frequently and hence results in damping of the global oscillation

mode. Therefore, it is suggested that electronically excited state atoms play an important

role in the ionization oscillation.

Second, the electron energy balance also varies during the mode transition. In the global

mode, convection of the electron energy due to a large electron axial velocity balances the

Joule heating. On the other hand, the electron axial drift is reduced while the wall loss

increases due to the increase in the electron thermal energy in the local mode.

Finally, it is indicated that the SCL sheath is not the direct cause of the mode transition

but the stable discharge oscillation mode is supported by the formation of a SCL sheath

over a wide range of magnetic field strengths. The momentum transfer collision frequency

increases due to wall collisions and balances the increase in the gyro-frequency so that the

electron axial velocity is stabilized as the magnetic field is increased. If the momentum

transfer is not enhanced, the electron axial velocity can be much smaller, the heating of

electron energy is not enough to sustain a stable plasma, and another ionization oscillation

may occur.

The sensitivity analysis on the deexcitation rate of excited-state atoms suggests that

inclusion of excited states of atoms and even ions is required for the discharge plasma

modeling. In addition, an empirical coefficient for the anomalous electron mobility is used

in this dissertation. A deterministic high-fidelity model that can calculate the anomalous

mobility is required to fully understand the electron transport mechanism.
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CHAPTER VI

Perturbation Theory of Ionization Oscillations in Hall

Thrusters

6.1 Introduction

In Chapter V, mode transition of discharge oscillations in HETs was discussed using a

hybrid-DK simulation with comparison to experimental data.[2, 7] In this section, a theo-

retical framework is constructed to investigate the damping and excitation of such discharge

and plasma oscillations.

Although several theoretical frameworks have been developed,[10, 90, 107] no complete

theoretical justification and explanation of the discharge and plasma oscillations have been

made. Yamamoto et al.[107] have extended the predator-prey model proposed by Fife[10]

and allowed perturbation in the electron current. Barral et al.[90, 108] have developed a

theoretical framework in which the growth rate of the discharge current is inherently as-

sumed so that the criteria for growth and damping effects cannot be discussed. Peradzyński

et al.[109] have developed a simplified theory and shown implications that instability may

be excited when including perturbation in the electron temperature.

6.2 Predator-prey model

The mechanism of ionization oscillations in HETs has been explained by insufficient

neutral flow.[10, 11, 110] Theory has been formulated using the transport of heavy species,

i.e. neutral atoms and ions. In the HET community, the predator-prey model,[10] of which
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the simplest form is also known as the Lotka-Volterra model, has been widely used and it

has often been attempted to obtain a more correct scaling of the ionization length.[111, 112]

In this section, we review the predator-prey model.

6.2.1 Formulation

The predator-prey model assumes that the plasma is contained in an ionization box

whose length is L and the spatial variation is neglected, i.e. ∂/∂x ∼ 1/L. The ionization

rate coefficient ξion and the velocities of ions and neutral atoms are constant in time. There is

no ion flux entering the box and no neutral flux escaping the box. Using these assumptions,

the continuity equations are written as

∂Ni

∂t
+
NiUi
L

= NiNnξion (6.1)

∂Nn

∂t
− NnUn

L
= −NiNnξion, (6.2)

where N and U are the number density and mean velocity, and subscripts i and n denote

ions and neutral atoms, respectively. To study the linear perturbation, a quantity follows

the form: Q = Q0 + Q′ exp(−iωt), where Q0 and Q′ are equilibrium and perturbation

quantities, respectively. The equilibrium quantities can be derived as

Ui
L

= Nn,0ξion (6.3)

Un
L

= −Ni,0ξion, (6.4)

where subscript 0 denotes the equilibrium quantities. Using this first-order perturbation,

an equation that exhibits a harmonic oscillation can be derived as

∂2N ′i
∂t2

= −Nn,0Ni,0ξ
2
ionN

′
i , (6.5)

and the harmonic oscillator frequency is given by

ω = (Nn,0Ni,0ξ
2
ion)1/2. (6.6)
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Using the zeroth-order equilibrium condition, one obtains ω = (UiUn)1/2/L, where Ui =

(eVD/Mi)
1/2 is a function of the discharge voltage VD. Although ionization oscillations

depend on other parameters such as the mass flow rate, magnetic field topology, and channel

wall material, it is assumed that these are incorporated into the ionization length L.

6.2.2 Time-varying Analysis

Figures 6.1 and 6.2 show the Lotka-Volterra model for two different initial conditions.

For the equilibrium quantities, Nn0 = 1× 1019 m−3 and Ni0 = 1× 1017 m−3 are considered.

From Eqs. (6.3) and (6.4), Ui/L and Un/L can be calculated for a given ionization rate

coefficient, which is assumed to be ξion = 2 × 10−13 m−6s−1. The predator-prey model

gives oscillations as long as the initial conditions differ from the equilibrium values. Thus, a

perturbation in the ion density is prescribed in the figures. In Fig. 6.1, the initial ion density

is 1.5Ni0 while the initial neutral atom density is Nn0. It can be seen that neutral atoms are

initially consumed due to the excess in ion (electron) density. As the neutral atom density

decreases, the ionization process weakens. The ion density (predator) increases again as the

neutral atoms (prey) repopulate. The initial density perturbation is not too large so that

the evolution of the predator and prey follows a sinusoidal. It can be seen from Fig. 6.1 that

Ni ∼ cos(t) while Nn ∼ − sin(t). Thus, there is a 90 degree phase shift. The frequency from

Eq. (6.6) is 31.8 kHz, or ω = 2 × 106 rad/s. The frequency obtained from the numerical

integration also yields 31.8 kHz, as there are almost 7 periods during 0.22 ms.

In Fig. 6.2, the initial ion density is 5Ni0, so the initial deviation from the equilibrium

density is large. Neutral atoms are consumed quickly and the ion density decreases. Once

the neutral atoms repopulate, the ionization process starts again and thus the phenomenon

occurs periodic in time. However, the major difference from the small initial perturbation

case in Fig. 6.1 is that the time evolution of ion and neutral atom densities is non-sinusoidal.

The non-sinusoidal discharge oscillation is identified as a nonlinear mode in comparison to

the small perturbation case that yields sinusoidal discharge oscillations is linear mode in

Ref. 90. The frequency obtained from the numerical integration is 27.3 kHz, as there are

only 6 periods during 0.22 ms. This disagrees with Eq. (6.6), which is obtained by assuming

a linear perturbation exp(−iωt). It can be considered that in a strongly perturbed case, the
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Figure 6.1: Lotka-Volterra model: Initial ion density is 1.5Ni0.
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Figure 6.2: Lotka-Volterra model: Initial ion density is 5Ni0.
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evolution is no longer linear, thus higher order perturbation quantities must be included.

Although the predator-prey model may capture some of the discharge and plasma oscil-

lations in HETs, the source of the oscillation is due to the initial condition that differs from

the equilibrium values. From the predator-prey model, the excitation and stabilization of

the discharge oscillations cannot be discussed.

In order to model the discharge oscillation of HETs more accurately, there are two

assumptions that need to be reconsidered. First, as pointed out by Barral and Ahedo,[110]

the neutral inflow rate in the actual HET operation is fixed at the anode and the outflow

varies, so Eq. (6.2) is inaccurate. The meaning of Eq. (6.2) is simply to satisfy the

predator-prey model. Second, L is not well-defined and is often assumed to be on the order

of the channel length. Therefore, a more complete model must be considered to study the

mechanism of the ionization oscillation.

6.3 Complete Perturbation Theory

A 0D (zero-dimensional) model is useful to investigate the time evolution of a spatially-

averaged quantity, which may not capture all of the detailed physics but provides a low

order estimate. In the low temperature plasma community, a global model is often used

to calculate the number densities of all chemical species.[113] Such models account for

chemical reactions and some of the important physical phenomena, including diffusion, gas

flow, and power input. In this section, a framework similar to global models is constructed to

perform a perturbation analysis to investigate the excitation and stabilization of ionization

oscillations in HETs.

6.3.1 Heavy Species Transport: Ion and Neutral Atom Continuity Equations

In order to construct the correct theory of ionization oscillations, we first define the

geometry. Figure 6.3 shows a simplified HET schematic used in the present model. The

discharge plasma is assumed to be confined inside the discharge channel. Although the one-

dimensional flow in the axial direction is of interest, the radial plasma diffusion also plays

an important role. One can take an approach similar to a finite-volume method in which
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Figure 6.3: Schematic of the Hall thruster discharge region.

the state variables are volume averaged and the fluxes at interfaces are modeled. Without

employing the undefined ionization length, ion and neutral continuity equations are more

correctly given by

∂Ni

∂t
+
NiUi
Lch

+
2NiUi,w
R∆

= NiNnξion (6.7)

∂Nn

∂t
+

(Nn −Nint)Un
Lch

= −NiNnξion, (6.8)

where Nint is the number density of neutral atoms at the anode, Ui,w = (eTe/mi)
1/2 is the

ion acoustic speed, Lch is the channel length, and R∆ is the channel width. Ion diffusion

toward the channel walls is taken into account assuming that Bohm’s condition is satisfied at

the sheath edge near the channel walls. Any spatial variations are neglected inside the box

due to the zero-dimensional assumption. Since there is no radial diffusion for the neutral

atoms, their transport can be described only by accounting for the axial transport.

The first thing that can be noted is that the ionization length L in the predator-prey

model can be described by relating the ion continuity equation in Eq. (6.7), where geometric
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parameters are used, and Eq. (6.1) that assumes a hypothetical 1D ionization box:

L = Lch

(
1 +

2Ui,w
Ui

Lch
R∆

)−1

. (6.9)

Ionization length in the predator-prey model is now defined using the geometric parameters

and plasma properties for the first time. Eq. (6.9) shows that L decreases when Te increases

since the plasma diffusion becomes stronger, i.e., Ui,w increases for given Ui, Lch, and R∆.

Thus, L is a function of Te and the geometry of the channel.

From Eqs. (6.7) - (6.9), the equilibrium densities of ions and neutral atoms are given

by

Nn,0 =
Ui
Lξion

(6.10)

Ni,0 = (Nint −Nn,0)
Un
Ui

L

Lch
. (6.11)

Equation (6.10) is identical to Eq. (6.3). Both Nn,0 and Ni,0 are a function of Te because

ξion = ξion(Te). Eq. (6.11) provides the first condition to have a steady-state plasma

generated in the channel, i.e. Ni,0 > 0 or Nint > Nn,0 must be satisfied. From Eq. (6.10),

Nintξion︸ ︷︷ ︸
Maximum ion production

>
Ui
L︸︷︷︸

Ion acceleration

, (6.12)

where the left hand side is the ionization frequency when ionizing all the inflow neutral gas

and the right hand side is the characteristic frequency due to ion acceleration. For instance,

the ionization rate needs to be sufficiently large to sustain a steady-state plasma when the

ion outflow is fast. Given all the other parameters, the minimum Te (= Te,min) can be

calculated when the two terms in Eq. (6.12) are equal. It can be seen from Eq. (6.12) that

an increased Ui (via discharge voltage) or decreased Nint (via anode mass flow) increases

Te,min. Thus, the condition of having a steady-state plasma becomes more severe.

Figures 6.4 and 6.5 show the results of Te,min and L for a wide range of operation

parameters. The expression for the ionization rate coefficient ξion of ground-state xenon
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atoms proposed by Goebel and Katz[112] is used

ξion ≈ [AT 2
e +B exp(−C/Te)]

(
8eTe
πm

)1/2

, (6.13)

where A = −1.0 × 10−24, B = 6.386 × 10−20, and C = 12.13. The configuration of

an SPT-100ML thruster[4] is assumed: Lch = 2.5 cm, R∆ = 2 cm. For instance, the

minimum electron temperature required to have a steady-state plasma is Te,min = 12.4 eV

for VD = 300 V and Nint = 1.6× 1019 m−3.

Minimum Electron Temperature

As shown in Fig. 6.4, a higher electron temperature is required to sustain the discharge

plasma for higher discharge voltage and/or lower mass flow rate. This is because the

ionization rate coefficient must be larger for a decreasing Nint and increasing Ui, as can be

seen from Eq. (6.12).
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Figure 6.4:
Minimum Te required to sustain a plasma. Ni,0 > 0 from Eq. (6.11). The
geometric parameters of a SPT-100 thruster are considered: Lch = 2.5 cm,
R∆ = 2 cm.

One notable trend is that Te,min is more sensitive to the inflow neutral atom density, i.e.

the anode mass flow, than the discharge voltage. High power HETs are being designed in-
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cluding the High Voltage Hall Accelerator (HiVHAC) at NASA Glenn Research Center[114]

and the magnetically shielded HETs at NASA Jet Propulsion Laboratory.[27] Figure 6.4

suggests that the anode mass flow rate needs to be increased as a higher discharge voltage

is used. However, this discussion only indicates the electron temperature required to have

a steady-state discharge plasma. It will be shown from the complete perturbation theory

that ionization oscillations can be excited even when the discharge plasma can operate in a

steady state.

Ionization Length

Figure 6.5 shows the ionization length as a function of discharge voltage and electron

temperature under the same geometric configuration as Fig. 6.4. The ionization length

decreases as Te increases due to the enhanced plasma diffusion via Ui,w in Eq. (6.9). On

the other hand, the axial ion velocity Ui increases as the discharge voltage VD increases,

so L/Lch increases. Note that L/Lch in Eq. (6.9) is not dependent on the neutral atom

density.

In Fig. 6.5, Te,min to sustain a steady-state plasma is obtained assumingNint = 1.6×1019

m−3. If the inflow neutral atom density, i.e. the anode mass flow rate, decreases, Te,min will

be larger, as shown in Fig. 6.4. In this situation, it can be seen that the operation condition

to have a steady-state discharge plasma will be more severe. Furthermore, if Te,min is very

large, there may not be any operation condition that produces a steady-state discharge

plasma depending on the maximum threshold of the electron energy due to any physical

effects, e.g. plasma-wall interactions. It is likely that the discharge plasma enters a pulsed

mode rather than a continuous plasma flow. The breathing mode is due to discharge and

ionization oscillations when a steady-state discharge plasma is produced. Mathematically,

this corresponds to an unstable solution from the linear perturbations around a steady-state

equilibrium solution.

143



VD, V

T
e
,
e
V

L/L ch

Te,min

0
.4
5

0
.5

0
.5
5

0.
6

0.
65

100 200 300 400 500
10

15

20

25

30

0.45

0.5

0.55

0.6

0.65

Figure 6.5:
Ratio of ionization length and channel length for various VD and Te obtained
from Eq. (6.9). Same geometric parameters as Fig. 6.4 is used. Nint = 1.6×1019

m−3 is considered for Te,min in solid line. Dashed line illustrates Te,min for
Nint = 1× 1019 m−3.

Linear Perturbation

The first-order perturbation equations of Eq. (6.7) and (6.8) can be described as a

system of equations

 −iω −Ni,0ξion

Ui
L −iω + Nint

Nint−Nn,0Ni,0ξion

 · ~Q = O (6.14)

for ~Q = [N ′i , N
′
n]T . The wave frequency can be calculated by solving the determinant of the

matrix:

− ω2 − iω Nint

Nint −Nn,0
Ni,0ξion +Nn,0Ni,0ξ

2
ion = 0. (6.15)

The frequency can be written as the real frequency and the growth rate as ω = ωr + iγ,

where ωr and γ are always real numbers, assuming the perturbation to follow exp(−iωt).
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The solution to Eq. (6.14) is given by

ωr = ±
(
Ni,0Nn,0ξ

2
ion − γ2

) 1
2 (6.16)

γ = −1

2

Nint

Nint −Nn,0
Ni,0ξion. (6.17)

If γ = 0, Eq. (6.16) reduces to the predator-prey model in Eq. (6.6). Under the same

condition as Fig. 6.5 the real part of the solution is 0 < ωr < 2×105 rad/s for Te,min(= 12.4

eV) < Te < 30 eV when VD = 300 V. Most importantly, Eq. (6.17) shows that the growth

rate of the oscillation is always negative, i.e. the imaginary part of the oscillation contributes

as damping, since Nint > Nn,0 to have a steady-state plasma. Therefore, only solving the

two continuity equations shows that the oscillation is always damped.

6.3.2 Including Ion Momentum and Electron Energy Equations

It is shown from Eqs. (6.16) and (6.17) that ionization oscillations always damp when

there is no perturbation in the ionization rate coefficient ξion, or equivalently the electron

temperature Te. In addition to the continuity equations for ions and neutral atoms, the

perturbations in ion momentum and electron temperature are now taken into consideration.

First, using the relation in Eq. (6.9), the ion momentum equation in the axial direction

is given by

∂

∂t
(NiUi) +

NiU
2
i

L
=

e

Mi
NiE, (6.18)

where E is the electric field. The pressure term is neglected since the ions are assumed to

be cold, i.e. Ti ≈ 0. Next, the electron energy equation is taken into consideration.

∂

∂t

(
3

2
NeTe

)
+

5

2

NeUeTe
L

= Sjoule − Swall − Scoll, (6.19)

where Sjoule = −NeUeE is the energy gain due to Joule heating, Swall = Neεw(Te)νw(Te)

is the energy loss due to the channel walls, and Scoll =
∑

j NeNnξj(Te)εj denotes inelastic

collisions, j, that contribute to energy loss. For simplicity, the contributions from electron

pressure and heat conductivity are neglected. The convective energy flux at the exit is

carried into the system since the electron velocity Ue is negative in HETs and it is assumed
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that the electron energy is sufficiently low at the anode so that there is no convective flux

towards the anode. In the present model, it is also assumed that the electron mobility and

the electric field are constant in time and the electron kinetic energy is negligible although

the effect of the kinetic energy should be included in HETs where the E×B drift is strong.[2]

Finally, a quasineutral assumption is used Ni = Ne.

In order to investigate the perturbation in the right hand side of Eq. (6.19), we introduce

models for each term. The wall collision frequency[90] is given by

νw =
1

R∆

√
eTe
Mi

1

1− σ
, (6.20)

where σ is the effective secondary electron emission (SEE) rate, which is identical to Eq.

(5.4). The energy loss to the wall[112] is written as

εw = 2Te + (1− σ)φw, (6.21)

where φw = −Te log[(1 − σ)/(2πme/Mi)
1/2] is the sheath potential. Only singly charge

ionization and excitation from the ground state atoms are considered. Scoll is further as-

sumed as Scoll = χNiNnξion(Te)εion, where χ is the ionization cost that includes the effect

of excitation and εion is the ionization energy loss. Since the expression for the ionization

rate coefficient is complicated as can be seen from Eq. (6.13), the perturbation form of that

is assumed to follow ξion(Te) ≈ ξion,0(Te/Te,0)κ for simplicity, where Te,0 is the equilibrium

electron temperature and ξion,0 is the ionization rate coefficient for Te,0 given in Eq. (6.13).

This form has been chosen due to the monotonic increase in ξion(Te) for the range of Te

that is considered, e.g. 5 < Te < 30 eV.

For simplicity, the perturbations of L, χ, and σ are neglected, i.e. frozen. The first-order

terms of the quantities above are given by

(νw)′ =
1

2
νw,0

T ′e
Te,0

(6.22)

(εw)′ =

[
2 + (1− σ)

φw,0
Te,0

]
T ′e (6.23)

(ξion)′ = κξion,0
T ′e
Te,0

(6.24)
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Using the quasineutral assumption, the perturbation equations for ~Q = [N ′i , N
′
n, U

′
i , T
′
e]
T

can be written as



−iω −Ni,0ξion
Ni,0
L −Ni,0

Ui,0
L

κ
Te,0

Ui
L −iω + Nint

Nint−Nn,0Ni,0ξion 0 Ni,0
Ui,0
L

κ
Te,0

−iωUi,0 0 Ni,0

(
−iω +

2Ui,0
L

)
0

−iω 3
2Te,0 Ni,0ξionχεion 0 Ni,0

(
−i3

2ω + Λ
)


· ~Q = O,

(6.25)

where Ni,0 > 0 to have a steady-state plasma, and

Λ =
3

2

εw,0
Te,0

νw,0 +
Ui,0
L

κ

Te,0
χεion +

5

2

Ue
L

(6.26)

is the effective electron energy relaxation frequency that has contributions from the energy

loss mechanisms such as wall loss, inelastic collisions, and the convective energy flux.

In the present study, Te,0 is taken as a parameter as well as Ue instead of the operational

parameters such as B and VD. The balance between the loss mechanisms and the Joule

heating determines Te,0 dynamically and non-locally in actual HETs.[2] Also, κ = 1 is

assumed. The determinant of Eq. (6.25) can be written as

− ω4 + iω3F1 + ω2F2 + iωF3 + F4 = 0, (6.27)

where the coefficients Fk (k = 1, 2, 3, 4) are functions of the plasma parameters. Since

it is difficult to derive the solutions analytically, we analyze the stability criteria using

representative values of the flow in a SPT-100 thruster in the next section.

6.4 SPT-100 Results

In addition to the values used in Sec. 6.3.1, the SEE model proposed in Refs. 90 and

2 is used. σ = max(σmax, Te/25), where σmax = 0.986 is the SCL SEE coefficient. A SCL

sheath is assumed to form at Te = 24.6 eV. The nominal conditions are Nint = 1.6 × 1019

m−3 and VD = 300 V. In order to investigate the stability of ionization oscillations in the

SPT-100 thruster, Ue is varied from 0 to −Ui and Te is varied from Te,min = 12.4 eV to 25
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eV.

Ue is related to the current utilization efficiency ηc ≡ Ii/ID, where Ii is the ion current

and ID is the total discharge current. Assuming only singly charge ions and quasineutrality,

ηc =
Ui

Ui + |Ue|
=

(
1 +
|Ue|
Ui

)−1

. (6.28)

From the literature, 0.72 < ηc < 0.86 for the NASA-173Mv2 thruster[106], 0.70 < ηc < 0.92

for the 6kW laboratory Hall thruster at the University of Michigan[115] and 0.68 < ηc < 0.85

for the BHT-2000 thruster[116] across a range of parameters. While these thrusters exhibit

50 - 70% total efficiency, SPT-100 thrusters exhibit total efficiency of 35 - 50%,[18, 117, 118]

so it can be extrapolated that ηc becomes worse than that for NASA-173Mv2 or BHT-2000

thrusters. In fact, it has been reported in Ref. 119 that the current utilization efficiency

for a SPT-100 thruster is ηc ≈ 0.6 at optimal operation and can decrease down to ηc ≈ 0.4

at lower discharge voltage. In this dissertation, the range for Ue considered is from −Ui to

0, which corresponds to 0.5 < ηc < 1 from Eq. (6.28).

6.4.1 Growth Rate

As shown in Fig. 6.6, there is an undamped oscillation solution, i.e. γ > 0, when

including the perturbation in electron temperature. The results without the electron energy

perturbation only have damped solutions as shown in Eq. (6.17). Although not shown in

this study, only including the ion momentum equation in addition to the two continuity

equations results unconditionally in damping as well. For convenience, the two stable regions

are labeled as Regions I and II as shown in Figs. 6.6 and 6.7.

The damped region for smaller Te,0, Region I in Fig. 6.6, is possibly due to the combina-

tion of the reduced energy source as well as the small ion number density. The growth rate

decreases as |Ue/Ui| decreases for all Te,0. From Eq. (6.26), the wall heat flux and inelastic

collision terms serve as an energy sink, while the convective heat flux is a source. A large

|Ue| can provide more energy into the HET discharge channel while a smaller |Ue| results

in a smaller energy source at constant Te,0. In addition, the ion number density decreases

as the electron temperature decreases. Therefore, it is likely that the ionization oscillations
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are damped due to the large energy sink with respect to the small ion number density.

Region II in Fig. 6.6 is mainly due to the energy loss due to the wall heat flux, Swall in

Eq. (6.19). For a large energy loss, any perturbation in the ionization oscillations may be

damped. This will be further discussed in Sec. 6.5.1.

6.4.2 Real Frequency

The corresponding real frequency in the unstable region is shown in Fig. 6.7. It can

be seen that ωr increases as Te,0 increases but decreases after there is a maximum peak

for a constant Ue particularly in large |Ue/Ui|, or small ηc. However, for small |Ue/Ui|, the

increase in ωr with increasing Te,0 is rather monotonic.

The magnitude of the oscillation frequency agrees with the results from the previous

predator-prey models and experimental observations. ωr = (1− 2)× 105 rad/s corresponds
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Figure 6.6:
Growth rate in units of rad/s for various (Te,0, Ue). The region where γ < 0 is
not shown since the ionization oscillation is damped. VD = 300 V and Nint =
1.6× 1019 m−3. The two stability regimes are labeled as I and II.
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Figure 6.7:
Real frequency in units of rad/s for various (Te,0, Ue). Same condition as Fig.
6.6.

to f = 16 to 31.8 kHz. For instance, the SPT-100 simulation results in Fig. 5.6(b) show the

breathing mode frequency from 21 to 25 kHz, which is within the range of the theoretical

predictions. With these predictions of the growth rates, we can discuss the cause of the

discharge oscillation mode transition and the direct cause of discharge oscillations in HETs.

6.5 Discussion

The cause of discharge oscillation is discussed in terms of the electron energy relaxation

frequency. Although the electron energy relaxation frequency Λ, shown in Eq. (6.26), is

one or two orders larger than the ionization oscillation frequency, ionization oscillations

can be excited and/or stabilized depending on the high-frequency components. Qualitative

agreement with experimental observations are also shown.
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6.5.1 Cause of Discharge Oscillations
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Figure 6.8:
Electron energy relaxation frequency Λ in units of s−1 for various (Te,0, Ue).
White region corresponds to Λ > 1.5 × 107 s−1. Same condition as Figs. 6.6
and 6.7. Red line indicates γ = 0 as shown in Figs. 6.6 and 6.7.

The cause of the ionization oscillations in HETs has often been explained by insufficient

neutral atom flow using the predator-prey model,[9, 11, 110] in which electron transport has

been neglected. In the present study, it is shown that the ionization oscillations in HETs

are strongly related to electron energy perturbations, in particular the electron energy

relaxation frequency Λ as shown in Fig. 6.8. This framework can be used to estimate the

stability region of ionization oscillations in HETs although it is difficult to obtain a simple

analytic formula due to the complexity of the equations as shown in Eq. (6.27).

The present theory supports the observation in a recent numerical simulation of the mode

transition,[2] which is compared with experiments of the SPT-100[4] and H6 thrusters.[7]

As shown in Figs. 6.6 and 6.7, increased wall losses via increased Te,0 result in damping

151



of the ionization oscillations in Region II. From the simulation results in Ref. 2, |Ue| is

reduced and Te approaches the SCL regime as the discharge oscillation stabilizes when

increasing the magnetic field strength B. Since |Ue| is usually a decreasing function of B,

the increase in B results in a decrease in |Ue|. The mode transition observed in Ref. 2

corresponds to the mode transition from the linearly unstable region to Region II in Figs.

6.6 and 6.7. However, in order to directly compare experiments and the present theory, the

internal electron temperature profile and the electron current need to be known in detail.

The values of Ue (or ηc) and Te,0 need to be examined in the experiments since the mode

transition of the ionization oscillation is determined by the electron transport. For instance,

a small change in the cathode mass flow may also change the mode transition.[120] This

phenomenon can be related to the change in Ue from the plume into the channel.

6.5.2 Electron Energy Relaxation Frequency

As can be seen from Figs. 6.6 - 6.8, smaller Λ corresponds to larger γ. However, Region

I predicts damping of the ionization oscillations at small Te and small |Ue|, which is possibly

due to the small convective heat flux and small plasma density. Note that the region where

Te < Te,min is unstable since the steady-state plasma is not satisfied. The other damped

solution, Region II, appears when the heat loss due to plasma-wall interaction increases

so that Λ increases as Te,0 increases. The relaxation of the electron energy is fast enough

to damp other frequencies in the system so that there will be no low-frequency ionization

oscillations.

Most importantly, Fig. 6.8 shows that the stability condition for Regime II corresponds

to Λ ≈ 1×107 s−1. This boundary is almost a straight line indicating that Te,0 mainly plays

an important role for the stability. The electron temperature for γ = 0 is approximately 23

eV, which is slightly below the electron temperature for the space charge limited sheath,

Te ≈ 24.6 eV.

Similar concepts as the electron energy relaxation frequency in the present study have

been used in the low temperature plasma community to discuss the effect of nonequilibrium

electrons.[121, 122] However, the discharge plasma in the HETs and other low temperature

plasmas can be significantly different. The discharge plasma in HETs is more complicated
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since there is electron flow, heat loss through the channel walls, and inelastic collisions

whereas the electrons mainly undergo diffusion and inelastic collisions in low temperature

plasma systems and the energy relaxation length is often defined as λε ∼ (De/νeff )1/2 where

De is the diffusion coefficient and νeff is the effective collision frequency. In this study, Λ has

contributions from the electron convective heat flux, wall heat flux, and inelastic collisions.

6.5.3 Comparison with Experiments

Here, the results from the perturbation theory are compared with Ref. 7 and some

discussions are made for the observations in Ref. 4.

Increasing Discharge Voltage and Anode Mass Flow Rate

Sekerak[7] observed that the range of magnetic field strength for a stable discharge

operation mode becomes narrower as the discharge voltage is increased as well as the anode

mass flow rate, as shown in Fig. 6.9. For a given magnetic field strength, it can be seen that

the discharge oscillation can be excited when increasing the discharge voltage and anode

mass flow rate, particularly at Br/B
∗
r = 0.5− 0.7.

Some aspects of the present theoretical framework can explain the experimental obser-

vations. Figure 6.10 illustrates the growth rate for two cases: higher discharge voltage and

higher neutral atom density at the inflow.

First, an increased VD requires Te,min to be larger so that a steady-state plasma discharge

can be generated, as shown in Figs. 6.4 and 6.5. Thus, the first condition for a steady-state

discharge is more severe, i.e. narrower, than the baseline case in Fig. 6.6. In addition, even if

the electron temperature stays constant when increasing VD, the axial electron velocity |Ue|

is likely to increase. If the magnetic field strength is constant, the electric field increases,

the E×B drift in the azimuthal direction increases, so |Ue| ≈ |(E/B)Ω−1| increases as well.

Thus, the operation point is likely to shift down in Fig. 6.10(a), meaning that the growth

rate can be larger compared to Fig. 6.6.

Second, the theoretical prediction for the larger anode mass flow rate case is shown

in Fig. 6.10(b). Although Te,min decreases, i.e. the condition for a steady-state discharge

plasma is larger, the instability region, where γ > 0, is wider than Fig. 6.6. The two
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(a) Discharge voltage

(b) Anode mass flow rate

Figure 6.9:
Measurements of discharge current oscillation amplitudes in the H6 thruster.
Reproduced from Figs. 4.2 and 4.3 of Ref. 7:

stable regions, Regions I and II, are both narrower. In addition, even when the operation

point, Ue/Ui and Te0, is kept the same when increasing Nint, the growth rate increases.

For instance, at (Te,0, Ue/Ui) = (20 eV, −0.4), γ = 3 × 104 rad/s in Fig. 6.10(b) whereas

γ = 1.2× 104 rad/s in Fig. 6.6. These observations indicate that the stability condition is

more severe for increased VD and Nint, which agrees qualitatively with the experiments.
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unstable region due to Ni,0 < 0.
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(b) Vd = 300 V, Nint = 2.2× 1019 m−3.

Figure 6.10:
Perturbation theory results for different conditions. Note that the electron
temperature range (horizontal axis) is different.
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Discharge Oscillation Mode at Larger Magnetic Field

In Ref. 4, discharge oscillations also have been observed when further increasing the

magnetic field after a stable discharge mode. This can be also seen from Fig. 6.9 that the

discharge oscillation amplitudes increase for larger Br/B
∗
r . It was discussed in Ref. 95 that a

different strong ionization oscillation may be related to plasma diffusion towards the anode.

The plasma diffusion or acceleration to the anode has not been taken into consideration in

this model. Including this effect into the model is reserved for future work.

In addition, the theory can be applied when changing the propellant. For instance,

lighter noble gases such as argon and krypton are used in some thrusters. The mass of

the heavy species can alter the ionization length in Eq. (6.9), the inelastic collision rate

coefficients in Eq. (6.13), and the wall heat flux in Eqs. (6.20) and (6.21).

6.5.4 Nonlinear Saturation of Ionization Oscillations

The non-sinusoidal shape of the discharge current can be explained from the growth

rate of the linearized oscillation wave. Some examples of the discharge current oscillations

can be found in Refs. 4, 7, and 2.

When the growth rate of the linear perturbation of the ionization oscillation is posi-

tive, the perturbation in all quantities will grow exponentially, and the perturbed values

may reach some threshold value, say Ni,0 > 0 and Nint > Nn,0 > 0. This results in so-

called avalanche ionization.[90] After the avalanche ionization, the decay is also exponential.

Therefore, the shape of the discharge current becomes an exponential rise and then expo-

nential decay. In addition, as the avalanche ionization is a fast process, the plasma needs to

wait for the depleted neutral atoms to fill in the ionization box, which is the slowest process

in the system, and is similar to the Lotka-Volterra model in Fig. 6.2.

The growth rate of the linear perturbations in the present study may not exactly predict

the behavior of discharge oscillations in HETs since the plasma parameters of the ioniza-

tion oscillations can change dynamically and the oscillations are likely to be a nonlinear

phenomenon. However, the significance of this analysis is the observation of the unstable

solutions from the linear perturbations in the discharge plasma of HETs. Linear instabil-
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ity grows and nonlinearity can play an important role for γ > 0 whereas a linearly stable

system, γ < 0, will damp any ionization oscillations. In actual operation, the plasma has

some spatial structure inside the ionization region. The growth rate of an ionization oscil-

lation may be large in some area while it might be damping in other areas. The discharge

oscillation, i.e. the global ionization oscillation, will be determined globally in the thruster.

6.6 Time-Varying Analysis

In this section, a matlab code is developed to investigate the ionization oscillations,

similar to Figs. 6.1 and 6.2. Equations (6.7) and (6.8) are solved with and without pertur-

bation in the ionization rate instead of solving the electron energy equation. The simplified

equations can be written as

∂Ni

∂t
+
NiUi
L

= NiNnξion[1 + Ξ cos(ωr0t)] (6.29)

∂Nn

∂t
+

(Nn −Nint)Un
L

= −NiNnξion[1 + Ξ cos(ωr0t)], (6.30)

where Ξ is the magnitude of ionization rate perturbation and ωr0 is the prescribed oscillation

frequency, which is not needed when Ξ = 0.

6.6.1 Damping due to Heavy Species Transport

Figure 6.11 shows the heavy species transport model with a constant ionization rate.

Thus, Ξ = 0 in Eqs. (6.29) and (6.30). The oscillation frequency will be found naturally

without prescribing ωr0. The equilibrium values are Ni0 = 1×1017 m−3, Nn0 = 1×1019 m−3,

and ξion = 2×10−13 m6s−1, which are the same as those employed for Figs. 6.1 and 6.2. The

initial conditions are the same as Fig. 6.2, where a strong ionization oscillation is observed

using the Lotka-Volterra model: Ni = 5Ni0 and Nn = Nn0. The inflow neutral atom density

Nint is added in Eqs. (6.29) and (6.30), which is chosen to be Nint = 2Nn0 = 2× 1019 m−3.

It can be seen that the first oscillation cycle is similar to the Lotka-Volterra model. The

large ion density yields a large ionization rate and the neutral atoms are consumed rapidly.

The ion density also reaches a very small value. After one cycle, it can be already seen that
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Figure 6.11:
Heavy species transport model with constant ionization rate. Similar condition
as Fig. 6.2: Initial ion density is 5 Ni0, but Nint = 2× 1019 m−3 is also used.

the ionization oscillations start to damp. This is due to the fixed neutral atom density at

the inlet Nint. Then, the ion and neutral atom densities relax to the equilibrium values.

6.6.2 Excitation of Ionization Oscillations

Instead of solving the electron energy equation, shown in Eq. (6.19), a perturbation in

the ionization rate is allowed. Thus, Ξ 6= 0 in Eqs. (6.29) and (6.30). The values used

are Nint = 2Nn0 = 2 × 1019 m−3, Ni = 2Ni0,Nn = Nn0, and ωr0 = 2 × 105 s−1. The

perturbation of ionization rate is chosen to be Ξ = 1× 10−3, 0.01, and 0.05.

In Fig. 6.12, the ionization oscillations are damped for Ξ = 1 × 10−3. The results are

similar to Fig. 6.11. The neutral atom density of the inlet is fixed and damps the ionization

oscillations that occur due to the initial conditions. It can be considered that the ionization

oscillations are essentially damped although the ionization oscillations are not completely

damped due to a finite Ξ.

Figure 6.13 shows the ionization oscillations for a moderate perturbation of the ioniza-

tion rate, Ξ = 0.01. The results look very similar to Fig. 6.1, in which a small perturbation

is allowed in the Lotka-Volterra model. Sinusoidal oscillations are observed for both the ion
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Figure 6.12: Heavy species transport model with perturbation of ionization rate: 0.1 %.

and neutral atom densities. The magnitude of the ionization oscillations is approximately

50 %, which is significantly larger than Ξ = 0.01. Thus, it can be concluded that the per-

turbed ionization rate excites an ionization oscillation. The most striking result of Fig. 6.13

is that the ionization oscillations can be excited with a small perturbation in the ionization

rate, or equivalently the electron temperature.

Figure 6.14 shows the ionization oscillations for a strong perturbation of the ionization

rate, Ξ = 0.05. The results look very similar to Fig. 6.2, in which a strong perturbation

is prescribed in the Lotka-Volterra model. The ion and neutral atom densities oscillate in

a non-sinusoidal manner. The magnitude of the ionization oscillations exceeds that of the

initial perturbation. Although the electron energy perturbation is not solved for in this

analysis, the non-sinusoidal oscillations are likely to occur when the growth rate is large for

the perturbation theory.

These examples show that the Lotka-Volterra model, i.e. the predator-prey model, is

valid as long as the ionization oscillation exists and the growth rate of the linear perturba-

tion of the discharge plasma is large enough. The significance of the perturbation theory

presented in this chapter is that the growth and damping of the ionization oscillations are

understood by taking the perturbation of electron energy into account.
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Figure 6.13: Heavy species transport model with perturbation of ionization rate: 1 %.
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Figure 6.14: Heavy species transport model with perturbation of ionization rate: 5 %.

6.7 Summary

A complete perturbation theory of the ionization instability in HETs is developed includ-

ing the ion and neutral continuity, ion momentum, and electron energy equations. There

are three observations in comparison with the previous predator-prey type models.
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• Without perturbations in electron energy, the ionization oscillations are always damped.

The fixed neutral atom flow from the anode contributes to damping of the oscillation.

• The ionization length L, which is frequently used in the literature, is defined using

the plasma and geometric parameters.

• The minimum electron temperature to sustain a steady-state discharge plasma is

obtained from the continuity equations of ion and neutral atom.

It is further shown that the ionization oscillations in HETs are caused by the perturba-

tion in the electron energy. This significantly advances the understanding of the breathing

mode, for which only heavy species transport has been considered in the literature. Inclusion

of the electron energy perturbation allows an undamped solution for the linear perturba-

tions of the ionization oscillation wave. The parameters discussed in the present model are

Ue (or ηc) and Te. In addition, the present theory suggests the stabilization mechanism

of ionization oscillations. Reduced electron transport and increased electron temperature

yields a transition from an undamped oscillation mode to a stabilized mode. This theoretical

observation supports recent numerical simulation results in Ref. 2. In order to investigate

the ionization oscillations in experiments of HETs, the electron transport properties such

as the electron current and electron temperature must be measured.
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CHAPTER VII

Two-Dimensional Hybrid Modeling of Plasma Transport in

Hall Thrusters

7.1 Introduction

A variety of two-dimensional (2D) simulation techniques have been developed for the

Hall thruster discharge plasma. One of the first was by Komurasaki and Arakawa[123],

who developed a steady, 2D formulation using an ion flux-tube method with an electron

continuum model.

Unsteady, 2D Hall thruster models have been developed by many researchers. A hybrid-

PIC model, called HPHall, by Fife and Martinez-Sanchez[10] has been used the most in the

HET community. A 2D PIC method is used for ions and neutral atoms and a quasi-1D

continuum approach is used for electrons. HPHall was further extended by Parra et al.[94]

to include the Bohm condition on the ion flow. Cheng and Martinez-Sanchez[124] further

coupled an erosion model to HPHall to investigate the life time of Hall thrusters. Koo

and Boyd[13] developed a similar 2D model in order to investigate the effects of anomalous

electron transport on the discharge plasma. A 2D hybrid-PIC simulation, based on the 1D

hybrid-DK type simulation by Boeuf and Garrigues[11], was further developed by Hagelaar

et al.[73], which uses a similar formulation as HPHall.

2D fully continuum models have been developed due to their simplicity and low compu-

tational cost. Keidar et al.[15] developed a 2D continuum simulation with a detailed plasma-

wall interaction model and investigated the effect of secondary electron emission (SEE) on

the discharge plasma. Mikellides et al.[68] have developed a 2D continuum model, called

162



Hall2De. This method is primarily used to model the magnetically shielded Hall thrusters.

A magnetic field aligned mesh is used and the domain can be extended into the far-field

plume because of the reduced computation cost compared to particle methods. Geng et

al.[125] revisited the thermalized potential assumption used in the state-of-the-art hybrid-

PIC simulations, in which they suggested that a full 2D potential solver is required.

2D full-PIC methods have also been used to model small-scale turbulence effects and

plasma-wall interactions. One of the first developments was by Hirakawa and Arakawa.[126]

Szabo[69] developed a fully-PIC/DSMC simulation in the radial-axial directions. Cho [71]

also presented a similar full-PIC method analyzing the effects of artificial mobility and

permittivity. A 2D axial-azimuthal simulation by Adam et al.[21] showed that a high fre-

quency turbulence type oscillation exists at the exhaust of the thruster. A similar numerical

simulation was recently presented by Coche and Garrigues.[72]

In this section, a 2D hybrid-DK simulation is constructed. A 2D axial-azimuthal hybrid-

PIC simulation was recently presented by Lam et al.,[76] but it was shown that there were

numerical instabilities that made the solver stop at 0.1 µs, which is too short to discuss

any low-frequency oscillations. A 2D continuum model was used for the electrons in their

model. One advantage of using DK simulation is that the statical noise in PIC is eliminated,

so the hybrid-DK simulation may generate numerically stable results. The validity of the

2D electron continuum model presented in Ref. 76 is discussed and a new quasi-1D type

approach is proposed in this section.

7.2 Azimuthal Oscillations

In addition to the discharge oscillations that result from ionization oscillations in the

axial direction, the azimuthal ionization instability is considered to play an important role

in electron transport.

7.2.1 High-Frequency Rotating Spokes

Rotating spokes have become an interesting topic as many radial-axial (r − z) Hall

thruster studies[10, 13, 74] suggest that anomalous electron mobility is one of the key
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processes that determine the entire discharge plasma. One of the first experimental obser-

vations was by Janes and Lowder[127] that the anomalous diffusion contributes to the elec-

tron transport as collisional diffusion alone cannot explain the measured electron currents

across magnetic fields. Such anomalous mobility is considered to be strongly dependent on

the plasma fluctuations in the azimuthal direction. Yoshikawa and Rose[128] showed that

plasma fluctuations can contribute to the anomalous electron transport across magnetic

fields. In a cross-field device, this is often the electric field in the E ×B direction.

One of the first azimuthal simulations shown in the HET community was the work of

Hirakawa.[126, 129] It was suggested that azimuthally oscillating electric fields can con-

tribute to the axial electron transport. Coche and Garrigues[72] showed that the electron-

cyclotron drift instability, in the range of MHz and wave number on the order of 3000

rad/m,1 is formed in the region of the negative gradient of magnetic fields. Their 2D sim-

ulation was compared with an earlier full-PIC simulation by Adam et al.[21] and a theory

proposed by Ducrocq et al.[130]

7.2.2 Low-Frequency Rotating Spokes

Several experiments have successfully observed low-frequency rotating spokes in Hall

thrusters. Parker et al.[131] showed the correlation between plasma density, light emission,

and electron currents, using high-speed cameras and Langmuir probes. It was also observed

that the spoke rotates in the E × B direction with a speed of 1200− 2800 m/s, which is

significantly smaller than the E×B drift. Ellison[12] measured the electron current induced

by rotating spokes using a segmented anode in cylindrical Hall thrusters. It was concluded

that over half of the total current is conducted by the spoke. Through the use of high-speed

Langmuir probe systems[111] and high-speed cameras,[92] azimuthally rotating spokes have

been investigated by Sekerak at the University of Michigan.[7] One example from Ref. 7 is

shown in Fig. 7.1. It can be seen that the emitted light intensity oscillates coherently in

the azimuthal direction. In addition, m = 1 spoke modes are observed in cylindrical HETs

whereas m > 2 are observed in the H6 annular thruster.

1kθ = 3000 rad/m corresponds to a wavelength of L = 2π/kθ = 2 mm. For a standard SPT-100 thruster,
the azimuthal length is approximately 25 cm. Therefore, the spoke order m is m = 125, which can be
considered as small-scale azimuthal oscillation waves.
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Figure 7.1:
Low-frequency azimuthally rotating spokes. Shown is the normalized spoke
surface processed from the light intensity obtained from images from a FastCam
video. Reproduced from Fig. 5.2 of Ref. 7.

A full-PIC simulation of Boeuf[132] on the rotating spokes in a magnetron discharge

showed that a rotating structure moves in the direction of E × B drift due to a ”moving

sheath”, i.e. a double layer. This simulation was in the radial-azimuthal (r − θ) directions

as the electric field is in the radial direction and the magnetic field is in the axial direction

in a magnetron. Similar to plasma-sheaths, the ions are accelerated to the ion acoustic

speed at the sheath edge, then enter a non-neutral region, where charge separation occurs.

It was shown that the speed of the rotating structure is on the order of the ion acoustic

speed. Another possible mechanism of rotating spokes is the critical ionization velocity

hypothesis.[133] It is postulated that a strong increase in the ionization rate occurs if the

ion velocity across the magnetic field, v0,⊥, exceeds the critical ionization velocity, vc:

v0,⊥ > vc =

√
2eUi
mi

,

where Ui is the ionization potential. For a Xenon plasma, Ui = 12.1 eV and mi = 131 amu,

hence vc ≈ 4200 m/s. This is higher than experimental observations in HET discharges.

165



7.2.3 Hypotheses for Low-Frequency Spokes

Sekerak made two hypotheses about the low-frequency rotating spokes in Ref. 7. It was

indicated that the rotating spokes are an oscillation wave that results from (1) stabilization

of the ionization front and (2) interaction with the outer channel wall.

The first hypothesis is supported by the observation that local ionization oscillations

in the azimuthal direction disappear when global ionization mode, i.e. breathing mode,

occurs. The second is supported by another observation in magnetically shielded Hall

thrusters, where azimuthal spokes are not seen despite the stronger magnetic field strengths

compared to conventional thrusters. It was shown that the only occasion for the spokes to

appear is when the magnetic shielding is imperfect and the hot plasma touches the (outer)

wall at high magnetic field strengths. In addition, several dispersion relation analyses were

performed in Ref. 7, but all the high-frequency oscillations related to electron transport

disagree with the spoke characteristics. The low-frequency oscillations suggests that the

oscillation frequency is heavily dependent on the slow neutral atom flow, similar to the

breathing mode oscillations discussed in Chapter VI.

A hypothesis that can be answered using the 2D hybrid kinetic-continuum model is

whether an azimuthally rotating spoke is generated by a local ionization oscillation event.

As shown in Fig. 7.2, the ions move axially and electrons move azimuthally. The observed

spoke velocity in Ref. 7 was 1500 − 2200 m/s in the azimuthal direction whereas the E×B

drift of electrons is on the order of 106 m/s at maximum. Sekerak[7] proposed a simple

mechanism of the azimuthally rotating spokes as an ambipolar diffusion from the energy

balance. Ambipolar diffusion sets an electric field that accelerates ions to the Bohm velocity,

which is the ion acoustic speed. In this case, it can be assumed that the electron energy is

dominated by the E ×B drift, so

vθ =

√
1
2mev2

E×B
mi

≈
√
me

mi
vE×B

A similar mechanism was also suggested by Boeuf[132]. The spoke velocity is explained as

critical ionization velocity. Ions gain energy across the moving sheath that is on the order
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Figure 7.2:
Possible mechanism of the rotating spokes. Diagram of z−θ plasma of discharge
channel shown exaggerated ionization front. Reproduced from Fig. 5.19 of Ref.
7.

of the ionization potential for xenon atoms. vθ = (2e∆φ/mi)
1/2, where ∆φ is the ionization

potential, e.g. ∆φ ≈ 12.1 eV for xenon atoms.

Note that the spoke velocity is not equal to the ion mean velocity in the azimuthal

direction. This is supported by an experimental observation in Ref. 8. It was indicated that

the ion swirl velocity, i.e. the ion mean velocity in the azimuthal direction, is approximately

250 m/s, which is much smaller than the rotating spoke velocity obtained from experiments.

In addition, in this situation, the spoke velocity must be a strong function of magnetic field

strength, but Sekerak’s experiment showed that spoke velocity and magnetic field strengths

are uncorrelated.

Finally, the use of a 2D axial-azimuthal simulation is justified by the observations that

spokes fill the channel radially from the inner wall to the outer. Thus, the plasma structure

can essentially be averaged in the radial direction. The experiments in Ref. 7 showed that

the azimuthal spokes have wave numbers in the range of kθ = 30− 80 rad/m. It was stated

by Sekerak[7] that “What is needed is a z − θ simulation, either kinetic, fluid, PIC or a

hybrid of any of these, that can resolve time steps of 1 µs or less (in order to resolve 10’s kHz

oscillation) and wave numbers less than 100 rad/m. The domain should be from the anode

167



out at least one channel width downstream of the exit plane for a time duration of several

hundred micro-seconds. Finally, in the limit of 1D in the z-direction, it should recover the

10-30 kHz axial breathing mode.” The purpose of the present 2D hybrid-DK simulation is

to fulfill these criteria and observe low-frequency, low wavenumber oscillations.

7.3 2D Kinetic Model

The axial-azimuthal domain in a cylindrical coordinate is approximated as a 2D planar

domain. This significantly reduces the computational cost, as the third dimension in velocity

space (here, the radial direction) can be neglected. If the total number of discretized phase

space elements for a 2D2V simulation is N4V , then it is N4VNV for a 2D3V simulation,

where NV is the number of velocity bins in the extra dimension. Thus, the computational

cost increases by at least a factor of NV when adding another dimension.

Before coupling the DK simulation with a 2D continuum model, the DK simulation is

tested with a collisionless, nonmagnetized, neutral atom flow. Without any electric field

and source terms, the neutral atom DK solver is compared with MONACO,[134] a DSMC

solver, for benchmarking purposes. The problem chosen is an effusion type problem, where

neutral atoms are injected from a hole (3D) or a slit (2D). Good agreement of the two

kinetic simulations is shown in Appendix D.

7.3.1 2D Axial-Azimuthal Kinetic Simulation

The schematic diagram of the 2D axial-azimuthal simulation is shown in Fig. 7.3. Figure

7.3(a) shows the cylindrical coordinates in a Hall thruster discharge channel. The radial

direction pointing outwards follows the magnetic field orientation. In the 2D domain, shown

in Fig. 7.3(b), the axial and azimuthal coordinates correspond to the x and y directions,

respectively. Therefore, the Ex × Br drift is in the y direction, vxBr is in the y direction,

and vyBr is in the −x direction.

The 2D kinetic equation can be written as

∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
+

e

mi
(Ex − vyBr)

∂f

∂vx
+

e

mi
(Ey + vxBr)

∂f

∂vy
= S. (7.1)
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Figure 7.3:
The 2D setup. (a) Cylindrical Coordinates in an annulus, representing a Hall
thruster discharge channel. The dashed line in (a) is the plane of interest,
expanded into 2D in (b).

The anode is set at x = 0 m and the domain exit is x = 0.035 m. The y direction uses

a periodic boundary condition. In addition, the Lorentz force can be turned on and off in

order to investigate the effect of the gyromotion of ions in the 2D domain. The centrifugal

force due to the radial transport is neglected. Equation (7.1) is based on a magnetic field

line pointing outwards of the channel. However, this direction of the magnetic field can also

be flipped so that Br < 0.

7.3.2 Discretized 2D DK Model

For the 2D DK model, there are four dimensions, i.e. 2D2V. Strang’s time splitting

becomes more complicated and requires more intermediate time steps for a four dimensional

system. The next obvious choice is to split the physical and velocity update, which is similar

to a leap-frog scheme in particle methods. This will yield second order accuracy in time

integration, but would require 2D and 2V updates to be second order accurate. The time

integration used in the dissertation is a second-order accurate Runge-Kutta method without

169



any dimensional splitting. Equation (7.1) without the source term can be written as

∂f

∂t
+ L[f(x, y, vx, vy)] = 0,

where L[f(x, y, vx, vy)] consists of the physical and velocity advection terms. Then, a second-

order Runge-Kutta method can be written as

f∗ = fn + ∆tL(fn),

fn+1 = fn +
∆t

2
[L(fn) + L(f∗)] .

The discretized VDF can be written as fix,iy,jx,jy where ix, iy, jx, and jy are the cell

numbers in the x, y, vx, and vy directions, respectively. Then, the discretized flux terms

can be written as

vx
∂f

∂x
=

vx
∆x

(fix+1/2,iy,jx,jy − fix−1/2,iy,jx,jy),

vy
∂f

∂y
=

vy
∆y

(fix,iy+1/2,jx,jy − fix,iy−1/2,jx,jy),

ax
∂f

∂vx
=

ax
∆vx

(fix,iy,jx+1/2,jy − fix,iy,jx−1/2,jy),

ay
∂f

∂vy
=

ay
∆vy

(fix,iy,jx,jy+1/2 − fix,iy,jx,jy−1/2),

where ax = e(Ex − vyBr)/mi and ay = e(Ey + vxBr)/mi. The subscripts +1/2 and −1/2

denote the cell interfaces. For each flux evaluation, the finite volume method with a modified

Arora-Roe limiter is used. Note that ax and ay are independent of vx and vy, respectively.

The time step is restricted by the CFL condition. For the 2D2V DK model using a

second-order Runge-Kutta time integration, the time step must follow:

max

(
vx∆t

∆x
+
vy∆t

∆y
+
ax∆t

∆vx
+
ay∆t

∆vy

)
≤ α, (7.2)

where α is the safety factor. In this model, α = 0.9 is used. Equation (7.2) needs to be

satisfied for numerically stable integration. Thus, if the left hand side is above α, the time

step is reduced as ∆t = ∆t/NCFL, where NCFL is the left hand side of Eq. (7.2) divided
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by α. For instance, if the left hand side of Eq. (7.2) is 1.5, NCFL = 2 and thus the time

step is reduced in half. The collision term is added after the left hand side of Eq. (7.1) is

updated.

The domain size and discretization are provided in Table 7.1. The axial discretization

is chosen small enough similar to the 1D hybrid model in Chapters IV and V. However, the

azimuthal discretization can be larger as the main interest is to capture low-frequency large

scale oscillations.

Table 7.1: Discretization of 2D DK simulation
Axial domain length Lx 3.5 cm

Channel length Lch 2.5 cm
Inner Radius rin 3.5 cm
Outer Radius rout 5 cm

Azimuthal length Ly π(rin + rout) = 26.7 cm
Velocity space in axial direction [vx,min, vx,max] [-15000 m/s, 35000 m/s]

Velocity space in azimuthal direction [vy,min, vy,max] [-10000 m/s, 10000 m/s]
The number of cells in physical space [Nx, Ny] [70, 32]
The number of cells in velocity space [Nvx, Nvy] [200, 100]

Cell size in physical space [∆x,∆y] [0.5 mm, 8.3 mm]
Cell size in velocity space [∆vx,∆vy] [250 m/s, 200 m/s]

7.3.3 2D Ion Simulation with a Static Electric Field

Here, a static electric field is prescribed and the effect of magnetic fields on the ion

acceleration is investigated. For this test case, the source term is neglected: S = 0 in Eq.

(7.1). The orientation must be kept the same for electrons.

Electric Field

The prescribed electric field in the x direction is given by.

Ex =
7Vd
Lx

(
x

Lx

)6

, (7.3)

and the electric field in the y direction is zero: Ey = 0. This corresponds to

φ = Vd

[
1−

(
x

Lx

)7
]
,
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where φ is the plasma potential. In the simulations, Vd = 300 V is assumed. The ions

enter the domain at the anode x = 0 with a half-Maxwellian. Note that assigning a half-

Maxwellian at the ghost cell adjacent to the anode yields a biased-Maxwellian at the anode

plane because the probability of particles is shifted with their own velocity. The inlet

number density is n0 = 1015 m−3 and the ion mean velocity is u0 = (πkBT/2mi)
1/2. For

T = 750 K and xenon singly charged ions, i.e. mi = 131 amu, the ion mean velocity is 273

m/s at the anode.

Magnetic Field

The magnetic field in these simulations is inward pointing, i.e. Br < 0. The shape of

the magnetic field is the same as the 1D simulations:

Br(x) = Bmax exp

[
−
(
x− Lch

∆L

)2
]

Four different cases are tested: Bmax = 0, 120, 240, and 400 G.

Analytic Solutions

The macroscopic quantities can be calculated analytically. The ions follow a biased-

Maxwellian at the anode region and are accelerated through the potential field. Therefore,

the analytic VDFs at the anode are given by

fi(x = 0, vx, vy) = n0

(
mi

2πkBT

)1/2 mi

kBT
vx exp

[
− mi

2kBT

(
v2
x + v2

y

)]
,

for vx > 0. Note that fi(x = 0, vx, vy) = 0 for vx ≤ 0. The analytic solution for the

ion VDFs at any location inside the domain can be obtained from energy conservation:

1
2miv

2
x0 = 1

2miv
2
x + e∆φ, where ∆φ = φ − Vd < 0. Then the ion VDFs at an arbitrary

position x can be written as

fi(x, vx, vy) = n0

(
mi

2πkBT

)1/2 mi

kBT

(
v2
x +

2e∆φ

mi

)1/2

exp

[
−
mi

(
v2
x + v2

y

)
+ e∆φ

2kBT

]
, (7.4)
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for vx > (2e|∆φ|/mi)
1/2. However, since the macroscopic quantities are difficult to obtain

analytically from Eq. (7.4), the ion density and mean velocity are calculated by assuming

cold ions with zero temperature. The number density can be written as

n = n0

(
1 +

2e∆φ

mi

)−1

where ∆φ = φ − Vd is the potential drop from the anode. The ion mean velocity in the x

direction can be written as

uix =

(
u2

0 −
2e∆φ

mi

)1/2

.

It can be expected that there are discrepancies between the numerical simulations and

the analytic formulae using the cold-ion assumption but these analytic solutions work well

near the anode (inlet) and the outlet. At the outlet, due to the ion acceleration, the ion

temperature will decrease and essentially form a beam.

Results

Figure 7.4 shows the steady-state ion number density and mean velocity in the x direc-

tion obtained from the DK simulation. Good agreement between the numerical simulations

and theory is shown. The effects of the magnetic field on these macroscopic results are

small. It can be also seen that there are some discrepancies near x = 0.01 m. The rel-

ative error can be given by |∆e| = |un − ua|/|ua|, where u is the solution and subscripts

n and a represent numerical and analytical, respectively. The maximum relative error in

0.007 < x < 0.012 m can be as large as 8 % for both the ion density and mean velocity.

However, it is found that the relative error reduces to within 0.5% in the region at x > 0.015

m.

The ion mean velocity in the y direction is shown in Fig. 7.5. It can be seen that the

magnetization yields the ion mean velocity up to 550 m/s at the domain exit. This suggests

that a helical structure can be formed for the ion flows in the presence of a radial magnetic

field. Such helical structure is reported in Hall thrusters by Sekerak[7] and Smith[135] as

well as in a helicon discharge by Siddiqui.[136]
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(a) Ion number density

(b) Ion mean velocity in the x direction

Figure 7.4: Static electric field case using the DK simulation.
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Figure 7.5:
Ion mean velocity in the y direction for the static electric field case using the
DK simulation. Note that the azimuthal velocities are negative because the
direction of the magnetic field lines is pointing inwards.

The ion VDFs at the inlet, i.e. x = 0 m, and the domain exit, i.e. x = 0.035 m, are

shown in Fig. 7.6 for B = 0 G and B = 400 G. The ion VDFs are symmetric in the

vy for the nonmagnetized case and shifted downwards for the magnetized case due to the

Lorentz force. Although not shown in the figure, the ion VDFs at the inlet will have some

negative vx components due to the magnetization. The force in thex direction is given by

Fx = vyBr. In other words, the Lorentz force acts as a rotation in the phase space, as shown

in Figs. 7.6(b) and 7.6(c). The helix angle or pitch angle is approximately 1.5◦. Note that

the ion distributions become wider, particularly in vx direction, due to the numerical error

associated with the finite-volume MUSCL method. However, despite the wider distribution

function, the ion mean velocity in the x direction agrees well with the theoretical curve.

As discussed in Chapter IV, the numerical error in the DK simulation contributes to a

wider distribution, i.e. an increase in temperature, but does not alter the mean velocity. As

collisions related to the ion temperature are not important for the Hall thruster discharge

plasma, the DK simulation works well for the ion kinetic modeling.
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(a) At the inlet: B = 0 G

(b) At the domain exit: B = 0 G

(c) At the domain exit: B = 400 G

Figure 7.6:
The steady-state ion VDFs at the inlet, x = 0 m, and the domain exit, x = 0.035
m. The color bars are in logarithmic scales. Note that the range of the color
bar is different in (a) from the other two.
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7.4 2D Electron Continuum Model

In order to capture the low-frequency oscillations in the axial and azimuthal directions

of the discharge plasma, the present model neglects the effect of radial transport. Hence,

a two-dimensional assumption is used. Detailed derivation of the 2D electron continuum

model is provided in Appendix E.

The electron continuum model is very sensitive to the discharge plasma. The use of

a quasineutral assumption is valid for the ion time scales but not for electrons. Some

discussions are made on the validity of the quasineutral assumption in Appendix F. There

are two equations that are not needed to be solved by using the quasineutral assumption:

the electron continuity equation and the Poisson equation. Instead, ions and electrons

are related to each other through the charge conservation equation assuming only singly-

charged ions and electrons.2 The Poisson equation can no longer be used to calculate the

electric field or the plasma potential as the right hand side of the Poisson equation is zero.

Thus, the electric field needs to be calculated from the charge conservation equation that

requires a linear dependence of the electron momentum on the electric field. The most

common technique in the low-temperature plasma community is to use a drift-diffusion

approximation.3 Once the nonlinearity of electron momentum, e.g. inertia,4 is introduced,

then the charge conservation equation with the nonlinear electron momentum cannot be

solved. In this situation, a time-dependent solution to the nonlinear equations may become

the only option, which will be discussed in Chapter VIII.

Another concern in the 2D axial-azimuthal simulation is the validity of the continuum

model. As discussed in Chapter I, continuum models are inaccurate for a large Knusden

number flow. The collision frequency must be larger than the characteristic frequency of

the flow so that the distribution functions relax to a Maxwellian. If the flow speed is faster,

nonequilibrium effects will be present and continuum models may not be accurate.

2Charge conservation equation is derived by the ion and electron continuity equations.
3Drift-diffusion approximation works if the diffusion effects are dominant in the system and the spatial

profile of electron current or flux is smooth.
4The inertial term plays an important role when the electron mean velocity has non-smooth profile, such

as discontinuity.
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7.4.1 Electron Momentum

The electron momentum equation also needs to be taken into account. The electron

flux is required for the charge conservation equation in order to solve for the electric field,

or the plasma potential, when using a quasineutral assumption.

Validity of Continuum Approach

The validity of the continuum approach is determined by the Knudsen number, as

discussed in Chapter I. The Knudsen number is again given by

Kn =
λMFP

L
,

where λMFP is the mean free path and L is the characteristic length. One important spatial

scale in plasmas is the Debye length λD = (ε0kBTe/e
2n0)1/2. As can be seen from Fig. 1.3

in Chapter II, the Debye length in a Hall thruster is on the order of 0.1 mm to 1 µm. Thus,

if the Debye length is resolved, a fully-kinetic approach must be taken due to the large

Knudsen number. On the other hand, if the Debye length is not resolved, a continuum

model can be used as long as Kn is small.

As the electron transport is significantly reduced in the axial direction due to the radial

magnetic fields, λMFP in that direction can be considered very small. The electrons can

drift in the azimuthal direction for a while and then move in the axial direction by collisions

or other mechanisms, such as turbulence type anomalous transport. Thus, it is likely that

λMFP is much smaller than any characteristic length in the axial direction. This suggests

that a continuum approach can be applied for axial transport.

However, for the azimuthal transport, the electrons may undergo a significant E × B

drift, particularly in the region where the magnetic field strength is at maximum. The

E ×B drift can be on the order of 106− 107 m/s. The collision frequency is determined by

ν = nn < σg >, where nn is the neutral atom number density, σ is the collision cross section,

and g is the relative velocity between electrons and other species, which is essentially equal to

the electron velocity. In the azimuthal direction, the electron velocity can be approximated

as a beam due to the E × B drift, so ν = nnσ(v)v. Thus, λMFP = [nnσ(v)]−1, where v
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is the E × B drift. The cross section of electron-neutral collisions is on the order of 10−19

m2[16] and nn in the Hall thruster discharge channel is on the order of 1018 − 1019 m−3.

Thus, the Knudsen number in the azimuthal direction is on the order of 1 − 10, which is

in a transitional regime between a fully equilibrium state and a nonequilibrium state. A

continuum approach may be invalid for the electron transport in the azimuthal direction.

Axial-Azimuthal Momentum Model

The axial momentum equation can be written in a continuum form as

mn

[
∂uex
∂t

+ uex
∂uex
∂x

+ uey
∂uex
∂y

]
= −∂p

∂x
− en(Ex − ueyBr)−mnuexνm. (7.5)

Based on the consideration that continuum approaches are invalid, the azimuthal momen-

tum equation is written as

0 = −euexBr −mueyνm. (7.6)

The drift-diffusion approximation is assumed, so the left hand side of Eqs. (7.5) is zero.

For the azimuthal transport, this approximation is essentially identical to assuming Ey +

1/(en)∂p/∂y ≈ 0, in a continuum formulation. Therefore, the axial and azimuthal electron

momentum equations can be written as

uex = −µ⊥
(
Ex +

1

en

∂p

∂x

)
(7.7)

uey = −Ωuex = +µ⊥Ω

(
Ex +

1

en

∂p

∂x

)
, (7.8)

where µ⊥ = µ(1 + Ω2)−1 is the cross-field electron mobility, µ = e/mνm is the electron

mobility, and Ω = eBr/mνm is the Hall parameter. Note that Eq. (7.8) reduces to

uey =
1

B

(
Ex +

1

en

∂p

∂x

)
,

for Ω � 1. The azimuthal electron mean velocity is the sum of the E × B drift and the

diamagnetic drift, which can be derived from the collisionless guiding center theory. Note

that the drift velocities calculated from the guiding center motion are already time-averaged

179



quantities.5 It is further assumed that the spatial derivative of the electron momentum in

the y direction follows

∂

∂y
(nuey) '

n

B

∂

∂x

(
Ey +

1

en

∂p

∂y

)
≈ 0, (7.9)

so that the electron momentum in the y direction can be neglected in the 2D charge con-

servation equation.

7.4.2 Reviewing the One-Dimensional Case

In the 1D axial case, the quasineutral assumption is used. This formulation shown

in Chapter IV is based on an integration technique to evaluate the electric field. From a

continuum perspective, the 1D charge conservation equation with a quasineutral assumption

yields

0 =
∂Jix
∂x

+
∂Jex
∂x

,

where Jex can be given as Jex = nuex = nµ⊥Ex for simplicity. Thus, using Ex = −∂φ/∂x,

the 1D charge conservation equation can be written as

∂

∂x

(
nµ⊥

∂φ

∂x

)
=
∂Jix
∂x

, (7.10)

which is now a 2nd-order elliptic PDE that can be solved using linear algebra methods. In

discrete form, this equation can be written as

1

∆x

(
aiφi+1 − biφi

∆x
− biφi − ciφi−1

∆x

)
= Si,

where ai, bi, and ci are the coefficients, φi is the potential, and Si is the source term at

point i. The coefficients are ai = (nµ⊥)i+1, bi = (nµ⊥)i, and ci = (nµ⊥)i−1, which are the

product of ion number density and the transverse electron mobility. In a vector form, this

5For instance, consider an electric field in x direction, a magnetic field in the y direction, the E × B
drift is in z direction. The velocity components can be written as vy = v‖, vx = v⊥ cos(ωBt + A), and
vz = vE×B + v⊥ sin(ωBt + A), where v‖ and v⊥ are the parallel and perpendicular velocities, ωB is the
electron gyrofrequency. Therefore, < vz >= vE×B is the time averaged electron velocity in z direction
averaged over gyro motions.
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can be written as

A~φ = ~S, (7.11)

where A consists of ai, bi, and ci.

Condition number

The condition number of a matrix defines how well- or ill-conditioned the matrix is.

Ill-conditioned matrix means that the matrix is closer to a singular matrix, so it is difficult

or impossible to find the solutions. This is characterized by the condition number, typically

given as

cond(A) =
λmax

λmin
, (7.12)

where λmax and λmin are the maximum and minimum eigenvalues of the A matrix. When the

condition number is large, the matrix is more ill-conditioned. In this situation, the matrix

should not be solved in the form shown in Eq. (7.11). For instance, in the Hall thruster

discharge plasma, an integration technique is used. The spatially integrated information is

used so that the total current and the discharge voltage can be related.

Consider a simple case in which the shape of magnetic field strength and ion density is

assumed to follow ∼ exp{−[(x−Lexit)/∆L]2}, where Lexit = 0.025 m and ∆L = 0.0125 m.

In calculating the condition number, Bmax = 0.018 T and ni,max = 1018 m−3 are used. In

addition, the momentum transfer collision frequency is assumed to be constant at νm = 107

s−1. The transverse electron mobility is given by

µ⊥ =
e

meνm

[
1 +

(
ωB
νm

)2
]−1

,

where ωB = eB/me is the gyrofrequency. Figure 7.7(a) shows the input conditions to

calculate the condition number of the matrix in Eq. (7.11). It can be seen that the electron

mobility can be very small for ωB � νm, which occurs in the regions where the magnetic

field strength is at maximum. On the other hand, the electron mobility near the anode can

become orders of magnitude larger than that near the channel exit.

It can be seen from Fig. 7.7(b) that the condition number is over 10,000, which is very
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Figure 7.7:
Example of a 1D axial case. (Top) Prescribed magnetic field and assumed
ion density. Bmax = 0.018 T and ni,max = 1018 m−3 are assumed. (Bottom)
Eigenvalues estimated using the MATLAB EIG function assuming Dirichlet
Boundary conditions for potential. The Condition number is 13,240.

large for a matrix. This means that a small perturbation around the maximum eigenvalue,

e.g. 10−4, can result in a larger perturbation, e.g. ∼ O(1) around the minimum eigenvalue.

The condition number is calculated using the EIG function in MATLAB. The result suggests

that Eq. (7.11) cannot be converged to obtain a solution. The coefficients of matrix A are

orders of magnitude smaller near the channel exit than those near the anode. Therefore,

a small change (error) of the potential near the anode can lead to a large change of the

potential calculation near the channel exit.6

6With added collision frequency near the anode, the matrix A in Eq. (7.11) becomes more well-
conditioned so that the elliptic PDE can be solved. Hall2De[27, 68, 137] uses an anomalous electron frequency
near the anode and solves the 2D electron momentum equation in the r − z directions.
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The inability to find numerical convergence can also be explained from a physical per-

spective. If nµ⊥ is large, the electron axial velocity |Ue| can be large even with a small

electric field. Then, the expression for the electron flux is no longer valid because the Ue

can have a strong axial spatial gradient: ∂Ue/∂x 6= 0. The assumption that the left hand

side of the momentum equation can be neglected becomes incorrect. Adding the inertia

term can also be beneficial from the numerical perspective because the inertial term can

essentially serve as an additional collision frequency. However, evaluation of the inertial

term is truly nonlinear and is difficult without including the time derivative term.7

Integration Method

Instead of solving the second-order elliptic PDE, an integration technique, explained in

Chapter IV, can be useful for solving the system. As there are no issues related to condition

numbers, the electron momentum equation can be solved with any values of coefficients in

Eq. (7.11). In particular, the quasi-1D approximation in the state-of-the-art computational

methods, such as in HPHall and other 2D models, essentially use a similar integration

technique. Equation (7.10) can be integrated once over the axial direction to obtain

Jix + Jex = Jd,

where Jd is the total current or the sum of ion and electron currents at the anode. Another

integration yields

VD = Jd

∫
1

nµ⊥
dx−

∫
Jix
nµ⊥

dx,

which is identical to Eq. (4.7).

7.4.3 2D Charge Conservation Equation

The charge conservation equation can be given by

∂σ

∂t
+∇ · J = 0. (7.13)

7This suggests that a time-varying magnetohydrodynamic (MHD) type simulation where a quasineutral
assumption is not used is required to accurately model the electron dynamics. This will be further discussed
in the future work section in Chapter VIII .
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where σ = ni− ne is the charge and J = Ji− Je is the total flux. This can be derived from

ion and electron mass conservation equations under the assumption that the right hand side

is identical, which is only valid when single-charged ions are considered.

Model Proposed by Lam et al.[76]

In a 2D system, using only the quasi-neutral assumption for Eq. (7.13) yields

∂

∂x
(Jix − Jex) +

∂

∂y
(Jiy − Jey) = 0. (7.14)

It can be seen that any small error, either numerical or physical, of ∂Jey/∂y can act as a

source term for the other three terms due to Jey � Jex ∼ Jix > Jiy. This makes the 2D

matrix very ill-conditioned, for the same reason as Fig. 7.7.

In addition, in Lam’s model, the electron momentum equation in the azimuthal direc-

tion is explicitly used without assuming an ambipolar type diffusion instead of Eq. (7.6).

Therefore, Ey is added in to Eq. (7.14) and a 2D elliptic PDE is solved.8

New Model

Assuming Jix � Jiy, the ion flux component in the y direction can be neglected. Another

assumption is ∂Jey/∂y ≈ 0 from Eq. (7.9). Thus, Eq. (7.14) reduces to

∂

∂x
[Jix(x, y)− Jex(x, y)] = 0. (7.15)

One-step integration over the x direction gives

Jix(x, y)− Jex(x, y) = Jd(y)

Therefore, Eq. (7.15) can be solved for each y coordinate using an integration technique.

The anode current, Jd, is calculated as a function of y and the total anode current can be

8This model was first implemented in the 2D hybrid-DK simulation but the electron continuum model,
namely the electron momentum component, had difficulty achieving convergence for the elliptic PDE. This
is the reason why an integration type method is used for the hybrid framework in this dissertation.
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calculated as

Jtot =

∫
Jd(y)dy. (7.16)

7.4.4 Electron Energy

The electron energy equation is given by

∂

∂t
(nε) +∇ · [(nε+ p)ue] = ∇ · (κe∇Te)− enue ·E− Si − Sw, (7.17)

where κe is the heat conductivity, Si is the electron energy transfer due to inelastic collisions,

including electron-impact ionization, stepwise ionization, and excitation, and Sw is the wall

collision term, given by

κe = 2.4 · nTeV kB
µ

1 + Ω2

Si =
∑
j

nνj∆εj

Sw = nνw∆εw.

Note that elastic collision transfer is assumed to be negligible. The total energy is given

as the sum of the electron thermal energy, i.e. the electron temperature, and the kinetic

energy

ε =
3

2
TeV +KeV ,

where KeV is the kinetic energy. Here, one approximation is employed. The electron pres-

sure gradient and the electric field in the azimuthal direction are neglected in the momentum

equation. As the electron velocity in the azimuthal direction is much larger than that in the

axial direction, even a small electric field in the azimuthal direction can lead to a significant

heat source.9 Therefore,

∂

∂t
(nε) +∇ · (nεue) +

∂puex
∂x

= ∇ ·
(
κe∇

2

3
ε

)
− enuexEx − Si − Sw (7.18)

9Physically speaking, Joule heating may not be applicable in the azimuthal direction due to its large
Knudsen number.
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is solved. Note that the thermal conductivity term is assumed to follow the effective electron

temperature including the effect of kinetic energy instead of the actual electron temperature.

The right hand side is explicitly obtained using the variables at the current time step. In the

present model, the conductive flux and the convective heat flux are assumed to be implicit

and the other terms are explicit in time. In addition, the convective heat flux employs

first-order upwind discretization.

Assuming ∂n/∂t = 0, Eq. (7.18) can be written as

∂ε

∂t
= F (ε) +G(ε),

where F (ε) is the operator that uses a time-implicit method and G(ε) is solved in a time-

explicit manner. Specifically,

F (ε) =
1

n

[
−∇ · (nεue) +∇ ·

(
κe∇

2

3
ε

)]
,

G(ε) =
1

n

[
−∂puex

∂x
− enuexEx − Si(ε)− Sw

]
,

where the inelastic energy loss term is a function of ε but is chosen to be frozen in time.

The 2nd-order Crank-Nicolson’s method can be written as,

εn+1 − εn

∆t
=

1

2

[
F (εn) + F (εn+1)

]
+G(εn).

Then, an equation with a matrix can be constructed, given by

(
1− ∆t

2
F

)
~εn+1 = ~b(εn),

where the matrix F contains the coefficients of F (εn+1). The left hand side of the equation

consists of a matrix and the vector solution for the electron energy whereas the right hand

side is a vector.

In the 2D simulation, hypre, a linear algebra library developed at LLNL, is used to

solve for the system of equations. The Generalized Minimal Residual (GMRES) method
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with a multigrid preconditioner is used for convergence. Tolerance is set to 10−14 and the

maximum number of iteration is 50. However, convergence for the time-implicit electron

energy equation usually only takes less than 5 iterations.10 Thus, the computational cost

for the linear algebra subroutine for the electron continuum model is much smaller than the

ion kinetic module. Note that in a 1D setup, a tridiagonal matrix solver can be used.11

7.4.5 Summary of 2D Electron Continuum Model

The equations to be solved are

uex = −µ 1

1 + Ω2

[
Ex +

1

n

∂nTeV
∂x

]

uey = µ
Ω

1 + Ω2

[
Ex +

1

n

∂nTeV
∂x

]

Jd(y) =

(∫
1

nµ⊥
dx

)−1 [
VD +

∫
Jix
nµ⊥

dx

]
,

∂

∂t
(nε) +∇ (nεue) +

∂puex
∂x

= ∇ ·
(
κe∇

2

3
ε

)
− enuexEx − Si − Sw

with

Ω =
ωb
νm

=
1

νm

eB

m

νm = νen + νei + νw + νB

µ =
e

meνw

The plasma density and ion fluxes are calculated from the ion kinetic solver. The potential

is obtained as

Ex =
JD
niµ⊥

− 1

ni

∂(niTeV )

∂x

φ(x, y) = −
∫
Exdx

10Note that numerical convergence of the elliptic PDE for the plasma potential was very severe for the
2D drift-diffusion approximation both in the axial and azimuthal directions.

11Before starting the 2D simulation, the 1D hybrid-DK simulation is updated. Mode transition is repro-
duced again.
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Ey = −∂φ
∂y

In addition, the total anode current is given by

Jtot =

∫
Jd(y)dy,

which will be plotted against time in order to investigate the discharge current oscillations.

7.5 Test Cases

Table 7.2 shows the four test cases performed using the 2D hybrid-DK simulation. The

notation G and L denote the global and local oscillation modes for B = 120 G and B = 180

G, respectively. The effect of ion gyromotion on the discharge plasma oscillation is first

investigated by turning on and off the Lorentz force.

Table 7.2: Test cases performed using the 2D hybrid-DK simulation

B = 120 G B = 180 G
Global mode Local mode

1D Hybrid-DK 1D-G 1D-L
With v ×B G-yes L-yes

Without v ×B G-no L-no

The 1D hybrid-DK simulations are the baseline cases. As shown in Chapter V, the mode

transition of the discharge current is well captured by the axial 1D simulation. It is thus

expected that the 2D hybrid-DK simulations will capture the azimuthal transport or oscil-

lations while observing the same mode transition phenomena as the 1D hybrid simulations.

Due to the use of a time-dependent electron energy solver, some updates are made for

the hybrid-1D simulation.

• The anomalous electron mobility12 is evaluated using νea,in = ωB/64 and νea,out =

ωB/16. Higher anomalous mobility was required to obtain similar mode transition

when changing the electron energy equation from a steady-state model used in Chap-

ters IV and V to a time-implicit model in this chapter.

12The old model employed νea,in = ωB/160.
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• The discontinuity in the anomalous electron mobility near the channel exit is alleviated

by assuming a linear increase from νea,in to νea,out

• The region of nonmagnetized electron mobility near the anode is extended. µ =

(1− α)µ‖ + αµ⊥ for x < 0.6Lch, where α = x/(0.6Lch).

• The conductive heat flux at the anode, qa is included for the boundary condition:

dTe/dx = −qa/κe, where qa = 2TeJe, Je = nc̄e/4 is the mass flux, and c̄e =

(8kBTe/πme)
1/2 is the thermal velocity.

Using these updates in the electron continuum model, the 1D hybrid-DK simulation captures

the mode transition of discharge current across various magnetic field strengths. Thus, these

conditions are used in the 2D electron continuum model as well.

7.6 Mode Transition Results

Here, the mode transition of discharge oscillations is studied comparing the 1D hybrid-

DK simulation used in Chapter V and the present 2D hybrid-DK simulation. Similar to

Chapter V, the results for two magnetic field strengths B = 120 G and B = 180 G are

compared.

7.6.1 1D Hybrid-DK Simulation

The 1D hybrid-DK simulation results serve as the baseline for the 2D hybrid-DK sim-

ulations. The main purpose of the 2D simulations is to capture the mode transition and

investigate azimuthally rotating structures.

Figure 7.8 shows the mode transition results obtained from the 1D hybrid-DK simu-

lation. It can be seen that the discharge current oscillations are strong for B = 120 G

and stabilized for B = 180 G. The mean discharge current is about 20 % larger than ex-

perimental data of the SPT-100 thruster, which is due to the anomalous electron mobility

terms used in the simulations. Although the time-averaged numerical results differ from

the experiments, the mode transition is well captured by the 1D hybrid-DK simulation.
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(a) Case 1D-G, B = 120 G (b) Case 1D-L, B = 180 G

Figure 7.8:
Discharge oscillations obtained from the 1D hybrid-DK simulation. Note that
y-axis is from Id = 0− 20 A.

7.6.2 Results Including Ion Magnetization

Figure 7.9 shows the discharge current oscillations obtained from the 2D hybrid-DK

simulation with ion magnetization included. The differences between the present 2D simu-

lation and the previous 1D simulation are ion 2D transport in physical space and velocity

space, including the electric field and Lorentz force, the 2D electric field structure, and the

azimuthal heat flux in the electron energy equation.

(a) Case G-yes, B = 120 G (b) Case L-yes, B = 180 G

Figure 7.9:
Discharge oscillations obtained from the 2D hybrid-DK simulation with Lorentz
force. Note that y-axis is from Id = 0− 40 A.
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In comparison to the 1D hybrid-DK simulation, the discharge oscillations are slightly

larger in the 2D hybrid-DK simulation. For instance, the maximum and minimum currents

obtained from the 1D cases are 17 A and 4 A, whereas those from the 2D cases are 30A

and 2 A, respectively, at B = 120 G. A similar trend is observed at B = 180 G. However,

the results for B = 180 G exhibit stabilization of the discharge current compared to the

results for B = 120 G while some high-order oscillatory modes are present. Thus, it can be

concluded that mode transition of discharge oscillations are captured with the 2D hybrid-

DK simulation. The plasma oscillations are discussed in more detail in the next section.

7.6.3 Results Without Ion Magnetization

Figure 7.10 shows the discharge current oscillations when only the ion Lorentz force is

turned off in the 2D hybrid-DK simulation. One notable observation is that the discharge

current oscillations are stronger at both magnetic field strengths compared to Fig. 7.9. The

results strongly suggest that ion magnetization plays some role in the discharge and plasma

oscillations in the axial and azimuthal directions in HETs.

(a) Case G-no, B = 120 G (b) Case L-no, B = 180 G

Figure 7.10:
Discharge oscillations obtained from the 2D hybrid-DK simulation without
Lorentz force. Note that y-axis is from Id = 0− 40 A.

Note that the discharge oscillations at B = 180 G are also observed without the ion

Lorentz force when a different number of processors is used. Thus, the possibility of MPI

or parallel partitioning producing any oscillations is eliminated. One possibility is that
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the Lorentz force, i.e. rotation in phase space, serves as a diffusion type effect. Diffusion

in phase space may help coupling the plasma transport between the azimuthal and axial

directions.

7.7 Plasma Oscillations

The low-frequency plasma oscillations are investigated in this section for the global

and local oscillation modes at B = 120 G and B = 180 G. The results shown are the 2D

hybrid-DK simulations with ion magnetization on, i.e. Cases G-yes and L-yes listed in Table

7.2.

7.7.1 Global Oscillation Mode

Discharge current oscillations are due to the ionization oscillations in the Hall thruster

discharge channel. Figures 7.11 and 7.12 show the ion number density and ground-state

neutral atom density at two different time steps. t = tid,max corresponds to the time at

which the discharge current is at maximum while t = tid,min is when the discharge current

is at minimum. For instance, tid,min = 0.03 ms and tid,max = 0.047 ms in Fig. 7.9(a).

An increase in the ion density is associated with depletion of neutral atoms when the

discharge current is at maximum. As the ions are accelerated out of the channel and also

diffuse to the anode walls, the ion density inside the channel decreases. The ion density is

almost an order of magnitude smaller at t = tid,min compared to that at t = tid,max. It can

be seen that the neutral atoms fill up the ionization region at t = tid,min.

Some examples of the ion VDFs are shown in Fig. 7.13 for the global oscillation modes.

The three locations chosen are x = 0, x = Lch = 0.025 m, and x = Lx = 0.035 m. These are

all at y = Ly/2 ≈ 0.13 m. It can be seen that the ions near the anode diffuse or accelerate

to the anode. At the channel exit, the ions are not fully accelerated. The peak of the VDFs

is approximately 14 − 15 km/s, i.e. 150 eV. The small populations due to the ionization

inside the channel are resolved in the low vx components. At the domain exit, the peak of

the ion VDFs is observed around 20−21 km/s, i.e. 300 eV, which also agrees with the 1D

simulations.
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(a) t = tid,max (b) t = tid,min

Figure 7.11:
Ion number density in global oscillation mode: B = 120 G. The units are in
m−3.

(a) t = tid,max (b) t = tid,min

Figure 7.12:
Ground-state neutral atom density in global oscillation mode: B = 120 G. The
units are in m−3.

The ion VDFs shown in Figs. 7.13(e) and 7.13(f) are shifted in the positive-vy direction.

This is due to the local azimuthal electric field, illustrated in Fig. 7.14. The azimuthal

electric field is generated due to the difference in the potential, determined by the axial

electric field due to the electron continuum model used here. When the discharge current

is at maximum, the azimuthal electric field can increase up to 6 − 8 kV/m. Note that the

direction of the azimuthal electric fields at y = 0.13 m in Fig. 7.14 is consistent with the
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(a) At x = 0 m, t = tid,max (b) At x = 0 m, t = tid,min

(c) At x = Lch, t = tid,max (d) At x = Lch, t = tid,min

(e) At x = Lx, t = tid,max (f) At x = Lx, t = tid,min

Figure 7.13:
Examples of ion VDFs at y = Ly/2 in global oscillation mode and B = 120 G.

velocity shift in the vy direction in Figs. 7.13.

A 2D PIC simulation by Coche and Garrigues[72] showed that the azimuthal electric

field can be as high as 30 kV/m. It was suggested in Ref. 72 that the high-frequency

azimuthal instability is due to the resonant coupling of electron Bernstein modes with an

ion acoustic wave. From their analysis, the most unstable mode of such instability occurs

at kyVE×B = nωB, where ky is the wave number, vE×B is the azimuthal drift velocity, n

is an integer, and ωB is the electron cyclotron frequency. For instance, B = 120 G and

vE×B = 2× 106 m/s yield the most unstable modes at ky ≈ 1000n rad/m. The first mode

for this instability occurs at ky = 1000 rad/m, which corresponds to a wavelength of 6 mm.
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The grid size in this simulation is ∆y = 8.3 mm, as shown in Table 7.1. Therefore, such

instabilities cannot be captured by the present 2D hybrid-DK simulation.

(a) t = tid,max (b) t = tid,min

Figure 7.14:
Azimuthal electric field in global oscillation mode: B = 120 G. The units are
in V/m.

The azimuthal electric fields shown in Fig. 7.14 are large-scale phenomena, m ≈ 7,

where m is the spoke order. However, such azimuthal modes are not important in a global

ionization mode because the low-frequency plasma oscillations in the axial direction due to

heavy species, i.e. ion and neutral atoms, dominate in the discharge channel.

Shown in Fig. 7.15 are the axially-integrated ion number densities as a function of the

cell numbers in the azimuthal direction, i.e. the y direction, at four different time steps.

There are some azimuthal structures, particularly at t = tid,max, that can also be seen from

the 2D contour map in Fig. 7.11(a). However, these azimuthal oscillations may not be

important in the global oscillation mode since ionization oscillations occur globally inside

the channel and dominate any azimuthal fluctuation. It can also be seen that the number

density level at t = tid,min + ∆T is on the same order with that at t = tid,max + ∆T ,

where ∆T = 0.5(tid,max − tid,min) is half of the time difference between tid,max and tid,min.

This agrees with the discharge current oscillation that is almost symmetric in time around

t = tid,max.
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∆

∆

Figure 7.15:
Axially-integrated ion number density for each azimuthal location at four dif-
ferent time steps. Note that ∆T = 0.5(tid,max − tid,min) is half of the time
difference between tid,max and tid,min.

7.7.2 Local Oscillation Mode

Figure 7.16 shows the ion number densities at the four time points, namely t = 0.02,

0.04, 0.06, 0.08 ms in Fig. 7.9(b). The number density stays mostly unchanged over time

with a slight fluctuation, particularly at t = 0.06 ms. An increased ion density corresponds

to an increase in the discharge current. One notable result is that a low-frequency ionization

oscillation in the azimuthal direction cannot be directly observed from these results.

The transition between the global mode and local mode in Ref. 7 was discussed exten-

sively using a so-called spoke surface plot. The spoke surfaces are calculated from the light

intensity obtained from images using a FastCam video, pixelating the images and converting

them into a contour map. Then, the post-processed plots (see Fig. 7.1 in this dissertation)

look like a 2D contour map of the light intensity with horizontal axis being time and vertical

axis being the azimuthal locations.

Here, the time evolution of axially-integrated ion density profiles obtained from the 2D

hybrid-DK simulation is shown in Fig. 7.17. Although this may not be exactly the same as
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(a) Point 1: t = 0.02 ms (b) Point 2: t = 0.04 ms

(c) Point 3: t = 0.06 ms (d) Point 4: t = 0.08 ms

Figure 7.16: Ion number density in local oscillation mode: B = 180 G. The unit is m−3.

the experimental data, it can be assumed that the ion density fluctuations are correlated

to the light intensity, which is discussed in Ref. 2.

It can be seen from Fig. 7.17 that the axial ionization oscillations are reduced in local

mode compared to global mode, which agrees with the stabilization of discharge current

oscillations. However, no characteristic azimuthal oscillation waves can be observed. One

further assumption that can be made is that the axial oscillation needs to be significantly

suppressed in order to observe the azimuthal spokes. This also agrees with Sekerak’s ob-

servations that it was difficult to observe the rotating structures in the presence of a strong

global oscillation. It can be considered that a strong axial oscillation mode can hinder the
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(a) B = 120 G (b) B = 180 G

Figure 7.17: Surface plot of the axially-integrated ion number density.

azimuthal oscillations.

Therefore, the relative intensity of the ion number densities can be investigated assuming

that axial global oscillations are stabilized. The relative intensity of a quantity Q can be

defined as

ΣQ(J, t) = 2
Q(J, t)−Qmid(t)
Qmax(t) −Qmin(t)

, (7.19)

where Qmax, Qmin, and Qmid are the maximum, minimum, and average of the maximum

and minimum of the signal Q, and Q is a function of time t and the azimuthal cell number

J . This essentially transforms ΣQ between -1 to 1, which is similar to the method used

to obtain the normalized spoke surface plots in Refs. 138 and 7. An example is shown

in Fig. 7.1 here, where the red and blue contours correspond to bright and dim regions,

respectively.

Figure 7.18 shows the relative intensity of the axially-integrated ion number density

calculated from Eq. (7.19). A dashed line is manually drawn indicating an azimuthally

rotating structure. The speed of the rotating structure calculated from the slope is ap-

proximately 650−800 m/s, which is smaller than that of the azimuthal spokes observed in

Sekerak’s experiments, i.e. 1500 − 2200 m/s. This disagreement is likely due to the geo-

metric difference as the SPT-100 thruster is assumed in the simulation whereas Sekerak’s

experiment used the H6 thruster.
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Figure 7.18:
Normalized surface plot of local mode obtained from the 2D hybrid-DK simu-
lation. A line is manually drawn that indicates an azimuthal structure.

It can be noted that the direction of the rotation is in the −E×B drift since +y direction

is the direction of the E×B drift. Experiments on the cylindrical HET by Parker[131] and

on the H6 by Sekerak[7] both showed that the azimuthal spokes propagate in the +E ×B

direction. However, it may be worth mentioning that there are observations of the rotating

structures in the −E ×B direction in another E ×B device.[139]

The rotating spokes can be explained by gradient-drift waves, which occur when spatial

gradients exist in plasma properties. The simplest gradient drift wave is the interaction

between a density gradient, ∇n, and the magnetic field, B. Since a drift wave will be

generated in the ∇n×B direction, any gradient based drift wave will be in the direction of

E ×B if ∇n ‖ Ex. Note that Frias et al.[140] showed that the gradient drift instability can

occur when the axial electric field is negative for ∇(n/B) < 0. Here in the simulations, it

was found that the axial electric field is negative locally in the region where the ion density

at maximum and the region of the maximum ion density is inside the channel, e.g. x = 0.015

m. It has been observed from experiments, for instance, in internal measurements of the
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H6 by Reid,[29] that the maximum ion density peak is still inside the channel but much

closer to the channel exit. Therefore, it is likely that the direction of the density gradient

is the cause of the azimuthal spokes rotating in the opposite direction in the hybrid-DK

simulation.

7.8 Discussion

The results of the test cases are shown in Table 7.3. It can be seen that the effect of ion

Lorentz force on the discharge plasma is not negligible. Although the discharge oscillations

are not completely stable, they become much more stabilized in local mode at B = 180 G

in comparison to B = 120 G.

Table 7.3: Results of the 2D hybrid-DK simulation

B = 120 G B = 180 G
Global mode Local mode

1D Hybrid-DK Oscillatory Very Stable
With v ×B Oscillatory Stable

Without v ×B Oscillatory Oscillatory

Global oscillation mode and stabilization of the global oscillations are both obtained

by the hybrid-DK simulation. The low-frequency azimuthally rotating spokes are captured

by taking the relative intensity of the axially-integrated ion number density. It is assumed

that global modes are completely stabilized. The propagation of the azimuthal structure is

in the −E × B direction, but this is attributed to the density gradient in the simulations

being opposite from experimental observations.

One improvement from the 2D hybrid-PIC simulation by Lam et al. is that the simula-

tion never ends due to the numerical instability issue that was reported in Ref. 76. This is

due to the use of a simplified electron continuum model, which essentially reduces the 2D

system into 1D axial transport. Derivation of the present electron model suggests that a 2D

model in the azimuthal direction is numerically difficult as the matrix of the constructed

elliptic PDE becomes ill-conditioned, which means that either a different numerical method

must be used, such as an integration method, or the physical model must be changed.

Although some low-frequency azimuthally rotating structures are captured by the 2D
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hybrid-DK simulation, there are still remaining questions about rotating spokes. Boeuf

[141] showed low-frequency rotating spokes in a magnetron discharge using a 2D full-PIC

simulation. It was suggested that the rotating spoke is a double layer, i.e. sheath, in the

azimuthal direction. A strong charge separation occurs at the edge of the spokes. In

addition, it was observed that a small region near the inner wall (the cathode in their

simulations) carries a large amount of azimuthal electron current where the spoke is absent.

Sekerak[7] also hypothesized that spokes are associated with plasma-wall interactions. It was

found that spokes occur only when the discharge plasma was exposed to the outer channel

wall in some extreme cases. Although the present 2D hybrid-PIC simulation indicates the

existence of a low-frequency azimuthal oscillation, the previous observations suggest that a

kinetic simulation taking the channel walls into account is required even for a low-frequency

large wavelength azimuthal oscillation wave.
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CHAPTER VIII

Summary

8.1 Conclusions

Due to complex operational mechanisms, the discharge plasma in a HET is known

to be in a nonequilibrium state. Although several numerical methods such as continuum

and particle methods have been developed in order to model the detailed physics of such

a plasma, a high-fidelity kinetic simulation that captures the small-scale phenomena and

the nonequilibrium effects is needed. In the dissertation, a grid-based direct kinetic (DK)

simulation, in which kinetic equations are directly solved on discretized phase space, is

developed.

8.1.1 Part I: Development of a Grid-based DK Solver

First, verification test problems, including the plasma-sheath and nonlinear plasma

waves, are presented. Good agreement between the numerical results obtained from the

collisionless DK (Vlasov) solver and theoretical predictions is shown for both cases. In

particular, the plasma-sheath in the presence of secondary electron emission is investigated

and a virtual cathode due to a space charge limited sheath is observed near the wall. Non-

linear plasma waves including electron plasma waves and ion acoustic waves are studied in a

one-wavelength long system and compared with a theoretical nonlinear dispersion relation

due to particle trapping. Furthermore, a novel trapped particle instability is investigated

by constructing a solver to generate a BGK solution, developing new diagnostic tools, and

reformulating the theory to obtain improved estimates of the growth rates.
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Second, the DK simulation is benchmarked against a standard PIC simulation using

a hybrid framework in a Hall thruster discharge plasma. A simplified electron continuum

model is compared and the two kinetic methods are used for benchmarking purposes. It is

shown that ionization events can be captured more accurately, at every time step and in

every velocity bin by the DK approach. Statistical noise in the PIC simulation can prop-

agate nonlinearly through the electron continuum model and generate significant plasma

oscillations. This is shown in the time-averaged ion energy distribution functions in com-

parison to experimental data. Both hybrid-DK and hybrid-PIC simulations captured the

so-called wave-riding effect, where the ion energy becomes larger than the prescribed dis-

charge voltage. The ionization events in the low-velocity regions also are captured without

any numerical noise in the DK simulation as can be seen from the empty velocity bins in

the hybrid-PIC simulation. Through this benchmarking study, the difference between the

DK and the PIC simulations are better understood, and thus it was decided to use the

hybrid-DK simulations to study discharge plasma oscillations in the HETs in detail.

8.1.2 Part II: Hybrid-DK Simulations of Ionization Oscillations in Hall Thrusters

Mode transition of the low-frequency discharge and plasma oscillations in HETs is inves-

tigated using the hybrid-DK simulation. The motivation of this series of work is based on

the experimental effort by Sekerak [7], in which the mode transition in discharge oscillations

is observed. Two major improvements from the old hybrid simulation are that the electron

continuum model differentiates electron kinetic energy from the thermal energy and that

the time evolution of electronically-excited neutral atoms is explicitly taken into account.

At smaller magnetic field, the E × B drift is larger so the wall heat flux is reduced. This

yields an imbalance in the electron energy transfer as the Joule heating is large but the

wall heat flux is small. Therefore, conductive heat flux is required to balance the energy

source and sink. It is found that the electron transport and electron temperature play an

important role in the discharge oscillations.

This observation is further supported by the constructed perturbation analysis of ion-

ization oscillations in HETs. The common explanation of discharge current oscillations was

an insufficient neutral atom flow. However, the mode transition experiments and numerical
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simulations suggest that electron transport triggers or stabilizes the ionization oscillations

as the oscillation mode can significantly change when varying the magnetic field strength

while keeping the discharge voltage and anode mass flow rate the same. It is observed from

the perturbation theory that adding linear perturbation of the electron energy yields an

unstable solution, i.e. positive growth rate, of the ionization oscillations. The ionization

oscillations cannot be excited when the electron energy perturbation is zero or small. The

ionization oscillations are also shown using the time-varying analysis where a small pertur-

bation in the electron energy is allowed in the heavy species transport. The significance

of the linear perturbation analysis is that the excitation and stabilization of the ionization

oscillations, and hence the discharge oscillations, can be discussed in terms of the growth

rate of a linear perturbation. Although the nonlinear mode of the instability cannot be

obtained, the growth rate suggests how quickly the nonlinear mode can occur.

Finally, a 2D hybrid-DK simulation is constructed to analyze the low-frequency large-

scale oscillations in HETs, namely the axial and azimuthal ionization oscillations. As Chap-

ters V and VI discuss the axial ionization oscillations in detail, a 2D model is required to

investigate the azimuthal oscillations. The major assumptions in the electron continuum

model are that: a continuum formulation is (1) valid in the axial direction, and (2) not

valid in the azimuthal direction. It was assumed that the electron momentum is uniform in

the azimuthal direction so that the 2D charge conservation equation can be reduced to a

quasi-1D formulation. A 2D DK simulation is tested using a neutral atom solver compared

with a DSMC solver and an ion solver with prescribed electric field compared with ana-

lytical solutions. The ion DK simulation demonstrates that the ion magnetization can be

captured since the azimuthal ion mean velocity increases as a function of the magnetic field

strength. The 2D hybrid-DK simulation captures the global oscillation mode and stabiliza-

tion of the global mode. Although low-frequency large-wavelength spokes are not observed

clearly, the surface plots obtained from relative intensity show some promising structure in

the azimuthal direction. As other studies suggest that a quasineutral assumption cannot be

used for azimuthal spokes, development of a fully-kinetic simulation is reserved for future

work.
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8.2 Contributions

The key contributions of the research efforts represented in this thesis include

• development of a grid-based direct kinetic simulation and code verification for basic

plasma phenomena including plasma-wall sheath and nonlinear plasma waves;

• construction of a hybrid kinetic-continuum method and benchmarking the grid-based

kinetic method against a particle-based method for the discharge plasma of HETs;

• investigation of discharge oscillations in HETs using a hybrid kinetic-continuum method

with a novel electron continuum model and a linear perturbation theory of ionization

oscillations in HETs; and

• development of a two-dimensional grid-based kinetic simulation and demonstration of

the multidimensional hybrid method for HET discharge plasmas.

The research topics are mainly focused to gain understanding of Hall thruster discharge

plasmas in this dissertation but several test cases consider other plasma phenomena, includ-

ing plasma sheaths and nonlinear plasma waves. The capability of the grid-based kinetic

simulation is not limited to EP plasmas, but can also be applied to other low and high

temperature plasma physics.

8.3 Future Work

8.3.1 Improving the Kinetic Method

The present kinetic method is second-order accurate in time and space. As shown in the

broadening of the ion VDFs through an electric field in both 1D and 2D calculations, the

accuracy of the kinetic method needs to be improved. The benefit of higher-order numerical

schemes is that a similar error level can be achieved with a small number of grid points

compared to a lower-order scheme. Therefore, higher-order schemes may be beneficial in not

only obtaining more accurate results but also reducing the computational cost. However, the

difficulty of high-order methods is that numerical wiggles, i.e. undershoots and overshoots,

are often generated, which violates the positivity preserving requirement.
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In the dissertation, the DK simulation is used for ions and neutral atoms for the Hall

thruster simulations. Ion-ion and neutral-neutral collisions are neglected as the Knudsen

number of the ion and neutral atoms flows is relatively large. However, as suggested in Sec.

2.1, an electron DK simulation requires more types of collisions including electron-neutral

elastic collisions, inelastic collisions, and possibly Coulomb collisions. Implementation of

such collision models is required for a full-DK simulation.

No scalability test has yet been performed for the 2D DK simulation. As speed up may

not be ideal, this needs to be investigated. The physical space of the domain is partitioned,

but velocity space can also be partitioned among processors for a better speed up. This is

required when performing much larger-scale computations using the DK simulation method.

8.3.2 Plasma Sheath and Presheath Simulations

A generalized boundary condition for the sheath edge is proposed in Sec. 3.2.3. This is

likely to resolve the source sheath problem that has existed for a while.[50] In the disser-

tation, a circular boundary condition that resembles this novel boundary condition is used.

The proposed boundary condition should work for DK simulations as well as PIC methods.

In order to investigate the effects associated with the Bohm condition, e.g. it is pre-

dicted that classical sheaths collapse under a strong SEE,[23, 51] a simulation that includes

presheath and bulk plasma regions is required. Preliminary calculations of a presheath-

sheath simulation are performed in Ref. 54. The boundary condition uses a circular type

boundary condition at the interface of the bulk plasma and presheath, but an easier condi-

tion is to set two walls for the boundary or cut the domain in half so that one boundary is the

wall while the other is at the channel center. Plasma-wall interactions can be investigated

in detail using a detailed presheath simulation.

8.3.3 Chemistry Models of Hall Thruster Discharge Plasma

In the Hall thruster simulations discussed in Chapter V, electron-impact ionization, ex-

citation, stepwise ionization, spontaneous emission from the excited state, and wall diffusion

are taken into account. In order to investigate the transport of the electronically excited

neutral atoms, only one state is assumed for simplicity.
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There are more states and reactions involved in a Xenon plasma. For instance, doubly

and triply charged ions as well as the electronically excited state of the ions exist in the

system. One major assumption used in the present analysis is that the spontaneous emis-

sion from the electronically excited state neutral atom corresponds to the light observed in

experiments, but the photon emission from excited Xenon atom is in the frequency range

that is not visible to the naked eye. The blue light emitted from the Xenon plasma corre-

sponds to photons with a wavelength of 450-500 nm and there are no persistent lines due to

the electronically-excited Xenon neutral atoms in that range. Therefore, the excited states

for Xenon ions must also be taken into account.

8.3.4 Hall Thruster Performance Study

The hybrid-DK simulation can be used to study the Hall thruster performance with

different wall materials, anode mass flow rate, and magnetic field structure and strengths.

As shown in Chapter IV, the DK simulation works well for neutral atom flows as well as

low VDF regions in the phase space. The background pressure inside the vacuum chamber

is known to affect the thruster performance as the number density is at least one order of

magnitude smaller than that inside the channel. For instance, the number density can be

calculated as n = p/(kBT ) using the ideal gas law. For 1×10−5 Torr and 300 K, the number

density is n = 3.2× 1017 m−3, which is smaller than the number density inside the channel,

e.g. ≈ 1019 m−3. The effects of background neutral atoms can be investigated using a DK

simulation.

8.3.5 Ionization Oscillation Theory

The perturbation theory of ionization oscillation shown in Chapter VI can be extended

to include more realistic phenomena, including ion diffusion and one-dimensional spatial

information. It can be also applied to investigate the azimuthally rotating spokes by taking

the azimuthal transport into account. Similar to a kink instability that occurs in tokamak

plasmas, the growth rates of the instability depending on the spoke order, m, in the az-

imuthal direction can be investigated. Although ionization oscillations are rarely observed

in other devices, the formulation of the perturbation theory can be applied to other related
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phenomena.

8.3.6 2D Axial-Azimuthal or Radial-Azimuthal Simulation

Sekerak[7] suggested that rotating spokes are related to plasma-wall interactions. Boeuf[132]

also showed that a large electron current can pass near the walls in the presence of spokes in

magnetron discharges. A radial-azimuthal simulation that accounts for plasma-wall inter-

actions in a cross-field setup is required to investigate such effects. However, in actual HET

operation, it can be expected that axial transport cannot be neglected. For instance, the

plasma properties averaged over the axial coordinate may not capture the electron transport

accurately.

As Boeuf[132, 141] suggested that rotating spokes are moving sheaths, i.e. double layers,

one-dimensional kinetic simulation in the azimuthal direction can also be useful to simulate

such phenomena. Iizuka et al.[142] showed that double layer formation is due to the Bune-

man instability, namely electron-ion two stream instability, as well as the Pierce instability,

which traps ions in potential wells, in the presence of a strong current. The ion trapping

then leads to the formation of a double layer. As the present DK simulation is useful for

investigating instabilities, investigation of instabilities associated with the formation of a

double layer can serve as a good test case for the full-kinetic simulation. In addition, a the-

ory proposed by Smolyakov et al.[17] investigated a similar phenomenon in a wall bounded

system. It was shown that ion acoustic waves can be unstable in the presence of a strong

E × B drift and the cross-field electron transport can be enhanced by such instabilities.

These problems can be tested using a full-DK or hybrid-DK simulation.

8.3.7 2D Radial-Axial Hybrid-DK Simulation

The community needs a high-fidelity radial-axial simulation that can resolve low-frequency

oscillations. The detailed electron transport may be due to the azimuthal components, but it

is more important to have a predictive model to obtain the thruster performance accurately

for engineering purposes. One of the most used state-of-the-art radial-axial simulations

is HPHall, in which a quasi-1D approximation is used for the electron transport and no

parallel computing capabilities exist.
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It has been understood that the quasi-1D approximation in the electron continuum

model cannot capture the electron transport accurately. For instance, see Refs. 68 and 125.

A 2D electron continuum model coupled with either a continuum, PIC, or DK simulation

for ions is therefore required.

8.3.8 Multidimensional Time-Varying MHD solver

As discussed in Sec. 7.4.2, a drift-diffusion approximation, which gives a linear relation

between the electron momentum and the electric field, is used extensively for low tem-

perature plasmas. This can be coupled with the charge conservation equation to obtain an

elliptic PDE for the plasma potential, by using a quasineutral assumption. The only variable

that can be adjusted is the collision frequency, which is exactly why additional anomalous

collision frequencies are required.[137] In the dissertation, it is briefly mentioned that the

PDE obtained from the electron continuum model can be ill-conditioned. It is mathemati-

cally impossible to solve an ill-conditioned matrix, which suggests that the physical model

is incorrect. One example is the electron axial velocity near the anode. The strong inertia

effect cannot be included using the quasineutral assumption and drift-diffusion approxima-

tion because the inertia term is a nonlinear term. The only option to include the nonlinear

effects of electron transport is to develop a time-varying electron continuum model.

Although this is not a kinetic method and equilibrium assumptions still need to be

used, a time-varying magnetohydrodynamic (MHD) type solver will be useful to investigate

macroscopic turbulence type effects that may exist in Hall thrusters. The time-varying

MHD solver must be tested with other problems where the drift-diffusion approximation is

valid. After benchmarking or validation test cases are performed, the Hall thruster discharge

plasma can be investigated in small temporal and spatial scales.
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APPENDIX A

Derivation of Conservation Equations from the Boltzmann

Equation

Moments of the Vlasov equation

The Vlasov equation is given by

∂f

∂t
+ v · ∂f

∂x
+

q

m
(E + v ×B) · ∂f

∂v
= 0. (A.1)

Conservation of mass, momentum, and energy can be analyzed by taking moments of Eq.

(A.2). Specifically, the moment of a VDF is given by

〈Q(x)〉 =

∫ ∞
−∞

Q(x)f(x,v)dv, (A.2)

for an arbitrary function Q.

For the zeroth moment equation, n =
∫
fdv and nu =

∫
vfdv. Note that

∫
(∂f/∂v)dv =

[f ]∞−∞ = 0.

For the first moment equation, consider v as a sum of the mean velocity u and the

thermal (random) velocity v′. The first moment involves directionality, so assume v =

(v1, v2, v3). The spatial convective term becomes
∫
mvivf(v)dv = m

∫
vi(u + v′)f(v)dv =∑3

j=1mnuiuj + p, where p =
∫
mv′iv

′f(v)dv =
∫
m(v′i)

2f(vi)dvi is the pressure1. The last

1Pressure is a macroscopic force due to the thermal spread of the particles.
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term in Eq. (A.2) can be written as
∫
~Qv(∂f/∂v)dv =

∫
~Qfdv = n~Q.

For the second moment equation,
∫
m|v|2f(v)dv = mn|u|2+3p because

∫
m|v′|2f(v)dv =∑3

i=1

∫
m(v′i)

2f(vi)dvi = 3p when the isotropic condition is satisfied.
∫
|v|2vf(v)dv con-

tains convective, compression, and conductive heat fluxes. (1/2)
∫
|v|2(∂f/∂v)dv =

∫
vfdv =

nu. Finally, v · (v ×B) = 0.

Then, the conservation equations can be written as

∂n

∂t
+∇ · (nu) = 0, (A.3)

∂

∂t
(mnu) +∇ · (mnuju + p)− qn(E + u×B) = 0, (A.4)

∂

∂t

(
1

2
mn|u|2 +

3

2
p

)
+∇ ·

[(
1

2
mn|u|2 +

3

2
p

)
u + pu + q

]
− qnu ·E = 0. (A.5)

The u · E term in the energy equation is often called Joule heating but is a collisionless

heating as opposed to collisional (resistive) heating, which is shown later. The total energy

is often written as ρe = ρ|u|2/2 + (3/2)p in the Euler equations, where ρ = mn is the gas

density. Note that the Euler equations can be derived by neglecting the electromagnetic

forces and the conductive heat flux, q.

First, Eq. (A.4) can be written in terms of the mean velocity instead of the flux as

mu

[
∂n

∂t
+∇ · (nu)

]
+mn

∂u

∂t
+mnu(∇ · u) +∇p− qn(E + u×B) = 0.

From Eq. A.3, the momentum equation can be given as the equation for the mean velocity:

mn

(
Du

Dt

)
+∇p− qn(E + u×B) = 0, (A.6)

where D/Dt is the total derivative term that consists of the time derivative and spatial

inertial term.
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Next, the energy conservation equation can be written as

1

2
m|u|2

[
∂n

∂t
+∇ · (nu)

]
+ u ·

[
mn

(
∂

∂t
+ u · ∇

)
u +∇p− qn(E + u×B)

]
+

[
∂

∂t

(
3

2
p

)
+∇ ·

(
3

2
pu + q

)]
+ p∇ · u = 0.

(A.7)

Therefore, the total energy conservation equation can be written in terms of the thermal

energy conservation, or temperature, as

[
∂

∂t

(
3

2
p

)
+∇ ·

(
3

2
pu + q

)]
+ p∇ · u = 0, (A.8)

which can be also written as

[
∂

∂t

(
3

2
p

)
+∇ ·

(
5

2
pu + q

)]
− u · ∇p = 0. (A.9)

Moments of the Boltzmann equation

Here, the conservation equations including the collision terms are discussed. The equa-

tions shown here are the conservation equations for electrons experiencing ionization, mo-

mentum exchange, and inelastic collisions. Note that all viscous terms are neglected.

∂n

∂t
+∇ · (nu) = S, (A.10)

∂

∂t
(mnu) +∇ · (mn|u|2 + p)− qn(E + u×B) = R, (A.11)

∂

∂t

(
1

2
mn|u|2 +

3

2
p

)
+∇ ·

[(
1

2
mn|u|2 +

3

2
p

)
u + pu + q

]
− qnu ·E = Se − Si, (A.12)

where each term will be explained further.

Mass conservation

The source term is given by

S =

∫ (
∂f

∂t

)
coll

dv,
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where (∂f/∂t)coll contains the collisions that contribute to a change in the mass density.

Some physical processes that should be taken into account include chemical processes, such

as inelastic collisions and recombination.

Momentum conservation

The right hand side of the momentum conservation equation is due to collisional friction.

Fast particles may collide with other slow particles, which may decrease their velocity. The

total collisional friction term can be written as

R =

∫
v

(
∂f

∂t

)
coll

dv,

where v = u + ur where u is the mean velocity and ur is the thermal (random) velocity,

which is related to the thermal energy (temperature). Then, the total collision friction can

be written as

R = u

∫ (
∂f

∂t

)
coll

dv +

∫
ur

(
∂f

∂t

)
coll

dv = Qu + M,

where M is the momentum exchange due to thermal particles. Note that decoupling u

and ur only works when the mean velocity, i.e. directed velocity, is much smaller than the

thermal component, i.e. random velocity. An additional assumption is that the velocity

distribution function is isotropic. Now, instead of Eq. (A.6), the momentum conservation

equation becomes

mn

[
∂u

∂t
+ u(∇ · u)

]
+∇p− qn(E + u×B) = M (A.13)

where the momentum exchange rate due to electron-neutral collisions is assumed to follow

Krook’s operator:

M ≈ −mn(u− uN )νm ≈ −mnνmu

and νm(T ) is the momentum exchange collision frequency as a function of temperature,

which is from the random velocity components, and uN is the velocity of the neutral atoms.

For electron-neutral collisions, the neutral atom velocity can be neglected since it is much
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smaller than electron velocity. Note that Krook’s operator is a first order estimate of the

collision term. Higher order corrections can be derived, as shown in Ref. 45.

Energy conservation

The total energy equation includes kinetic and thermal energies.

∂

∂t

(
1

2
mn|u|2 +

3

2
p

)
+∇ ·

[(
1

2
mn|u|2 +

3

2
p

)
u + pu + q

]
− qnE · u = Se − Si, (A.14)

where Se and Si are the rates of energy transfer due to elastic and inelastic collisions,

respectively.

Similarly to Eq. (A.7), the total electron energy can be written in the presence of

collisions as

1

2
m|u|2

[
∂n

∂t
+∇ · (nu)

]
+ u ·

[
mn

(
∂

∂t
+ u · ∇

)
u +∇p− qn(E + u×B)

]
+

[
∂

∂t

(
3

2
p

)
+∇ ·

(
3

2
pu + q

)]
+ p∇ · u = Se − Si.

(A.15)

Then, the continuity equation in Eq. (A.10) and the momentum equation in Eq. (A.13)

can be substituted into Eq. (A.15):

[
∂

∂t

(
3

2
p

)
+∇ ·

(
5

2
pu + q

)]
− u · ∇p = Se − Si − u ·M− 1

2
m|u|2Q. (A.16)

The source of the electron temperature is now due to collisional friction u ·M instead of

the Joule heating u ·E in the total energy equation. It can be seen that there are a couple

of terms on the right hand side of Eq. (A.16) added from Eq. (A.9).

Note that the kinetic energy equation can be derived from the momentum equation in

Eq. (A.13):

n

[
∂Ekin
∂t

+ u · ∇Ekin
]

= −u · ∇p+ qn
[
u ·E +���

���u · (u×B)
]

+ u ·M, (A.17)

where Ekin = (1/2)mu2 is the kinetic energy. Here, it can be seen that the kinetic energy is

determined from the balance between the heating due to the electric field and the pressure
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gradient as well as the collisional friction heat source. For a nonmagnetized case where

B = 0, the right hand side of Eq. (A.17) is zero. Thus, kinetic energy is unchanged and

zero in a nonmagnetized plasma, which means that the total energy can be approximated

only using the thermal energy, or the temperature.
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APPENDIX B

Reduction of Kinetic Description to Hobbs and Wesson’s

Theory for Secondary Electrons

Here, we prove that the secondary electron VDF in the limit of Tw → 0 reduces to an

electron beam, which is assumed in Hobbs and Wesson’s theory. In particular, the number

density of secondary electrons is written as

nsee = nsee0 exp

[
−e(φ− φw)

kTw

]1− erf

√
e(φ− φw)

kTw

 , (B.1)

in Eq. (3.16) for a half-Maxwellian with temperature Tw, where

nsee0 = σ
n0e

2
exp

(
eφw
kTe

)√
τ , (B.2)

which is identical to Eq. (3.18). In the limit of Tw → 0, or τ = Te/Tw → ∞, Eq. (B.1)

must be consistent with the number density assuming a cold electron beam. The limit for
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the following function can be given, using L’Hospital’s rule, as

lim
X→∞

X exp(X2) [1− erf(X)]

= lim
X→∞

X [1− erf(X)]

exp(−X2)

= lim
X→∞

(
[1− erf(X)]−��2X√

π��
���

�
exp(−X2)

)
−(((((

((
2X exp(−X2)

=
1√
π
. (B.3)

Let us define normalized quantities: Φ = eφ/kTe, Φw = eφw/kTe, and τ = Te/Tw. Eq.

(B.1) can be written as

nsee = σ
n0e

2
exp (Φw)

√
τ exp[−(Φ− Φw)τ ]

[
1− erf

√
(Φ− Φw)τ

]
. (B.4)

Using X = (Φ− Φw)τ ,

nsee = σ
n0e

2
exp (Φw)

1√
Φ− Φw

X exp(−X2) [1− erf(X)] . (B.5)

Finally, in the limit of τ →∞, Eq. (B.3) can be used to evaluate Eq. (B.5).

lim
τ→∞

nsee = σ
n0,e

2
exp(Φw) [π(Φ− Φw)]−1/2 . (B.6)

From the current conservation equation: n0u0/(1 − σ) = n0e(kTe/2πme)
1/2 exp(eφw/kTe),

Eq. (B.6) reduces to the formulation of Hobbs and Wesson in Eq. (3.19)

nHWsee =
σ

1− σ
n0

[
meu

2
0

2e(φ− φw)

]1/2

. (B.7)
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APPENDIX C

Derivation of Trapped Particle Theory

Consider linear perturbations about a stationary nonlinear wave, namely, a BGK mode

that is characterized by ωL and kL.[60, 143, 144] Here, a periodic system is considered.

Decomposition of the Vlasov and Poisson equations in Fourier series leads to Bloch-type

modes, the superposition of Fourier components δEn with frequency ωn = δω + nωL and

wavenumber kn = δk + nkL for integers n = 0,±1,±2, . . . . The corresponding effective

eigenvalue problem is given by

∑
n′

εn,n′(δk, δω)δEn′ = 0, (C.1)

with the dielectric coupling matrix element, εn,n′(δk, δω) = δn,n′ + χn,n′(δk, δω), where

χn,n′(δk, δω) is the susceptibility coupling matrix elements. The susceptibility has con-

tributions from untrapped χun,n′ and trapped particles χtn,n′ . The untrapped particles are

assumed to be highly passing and have contributions only for n = n′, i.e. χun,n′ = χunδn,n′ .

The susceptibility of trapped particles can be given as[60, 145] χtn,n′ = q2Itn,n′/(mε0λL) with

Itn,n′ =

∞∑
p=1

∫
2τ(pΩ)2

δω2
S − (pΩ)2

Cp(knΛ)

kn

C∗p(kn′Λ)

kn′
f ′dW, (C.2)

where δωS = δω − δkvφ is the frequency in the wave frame, Ω is the bounce frequency,

τ = 2π/Ω is the bounce period, Λ(W ) is the amplitude of the trapped particle trajectory

in physical space, and f ′ = df(W )/dW for the unperturbed trapped distribution function
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f(W ). Approximating the potential wells as harmonic, the coefficients Cp are expressed in

terms of Bessel functions Jp of order p, Cp = ipJp(kΛ), and cos(Λ) = −W/(eφ). Including

only the leading order Bessel function p = 1, the summation in Eq. (C.2) is removed. For

a sufficiently narrow trapped particle distribution, one can approximate χtn,n′ by a dyadic

form: χtn,n′ ' ZnZn′ , with Zn = (χtn,n)1/2. This relation is exact in the limiting case where

f ′ has zero width, which is the case considered here. From Eq. (C.1),

ε̄nδEn + Zn
∑
n′

Zn′δEn′ = 0, (C.3)

where ε̄n is defined as ε̄n = 1 + χun. Multiplying Zn/ε̄n and taking the summation over n,

(
1 +

∑
n

Z2
n

ε̄n

)∑
n′

Zn′δEn′ = 0. (C.4)

Finally, one obtains the dispersion relation

1 +
∑
n

χtn,n
ε̄n

= 0, (C.5)

with χtn,n = Z2
n. For the simplest model describing the sideband instability,[143, 144] Ω

is assumed constant in Eq. (C.2) and only n = ±1 are retained in Eq. (C.5) as the

corresponding Fourier components nearly satisfy the dispersion relation of Langmuir waves.

To enable the description of the NMI as well, one must account for the energy dependence

of Ω = Ω(W ), or equivalently the dependence Ω = Ω(J) in the action J , in the potential

wells. We consider a single wavelength system with periodicity, i.e. δk = 0 and thus

kn = nkL. Assuming, as can be verified a posteriori, 1/ε̄n + 1/ε̄−n ≈ 2, the dispersion

relation can be written from Eq. (C.5) as 1 + 2
∑

n>0 χ
t
n,n = 0. In order to calculate

the dispersion relation correctly, it is important to note that Λ is a function of W , i.e.

Λ = Λ(W ), so that
∑

n>0[Cp=1(knΛ)/kn]2 is performed before the integration over W in

Eq. (C.2). Furthermore, due to the deeply trapped assumption kLΛ� 1, a good estimate

for this sum is given by (Λ/kL)
∫

[Cp=1(ξ)/ξ]2dξ, where ξ = nkLΛ. The integral is performed

from ξ = 0 to∞, and one obtains
∫

[Cp=1(ξ)/ξ]2dξ = 4/(3π) since C2
p = J2

p , where Jp is the
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Bessel function. Hence, the dispersion relation can be given as

1 + 2M0ω
2
t

√
J0

∫ Jmax

0

√
JΩ/Ω0

δω2
S − Ω(J)2

F ′(J)dJ = 0, (C.6)

where J = mΩΛ2/2 is the canonical action for deeply trapped particles assuming har-

monic oscillation, F (J) = 2πf(J)/(mnt) is the normalized distribution function, ωt =

(nt/np)
1/2ωpe is the trapped particle frequency, nt and np are the number density of

trapped particles and the plasma density, respectively, M0 = 16/(3πkLΛ0) ≈ 1.70/(kLΛ0),

J0 = mΩ0Λ2
0/2, Ω0 = Ω(J = J0), and Λ0 = Λ(J = J0).

Equation (C.6) can be analytically solved when F (J) = δ(J − J0).[59, 60] Using inte-

gration by parts assuming F (J) = 0 at the limits,

1− (1− α0)β0

w
+

4α0β0

w2
= 0, (C.7)

where w = (δω/Ω0)2 − 1, α0 = α(J = J0), and β0 = M0ω
2
t /Ω

2
0 with α(J) = −J/Ω(dΩ/dJ).

Note that the numerical values of Ω and α in a sinusoidal wave field with amplitude φ0 are

explicitly shown in Ref. 60:

Ω(W ) = Ωdeep
π

2

1

K(µ)
(C.8)

α(W ) =
[E(µ) + (µ− 1)K(µ)]2

µ(1− µ)K2(µ)
(C.9)

where Ωdeep = kL(eφ0/m)1/2 is the deeply trapped bounce frequency, K(µ) =
∫ π/2

0 (1 −

µ sin2 θ)−1/2dθ and E(µ) =
∫ π/2

0 (1 − µ sin2 θ)+1/2dθ are the complete elliptic integral of

the first and second kind, respectively, and µ = (W + eφ0)/(2eφ0). Due to the deeply

trapped assumption, α � 1. Therefore, the solution to Eq. (C.7) can be found as δω '

±Ω0(1 + β0/4) + iγ, where the growth rate is

γ = ωt

[
M0α0

(
1− β0

16α0

)]1/2

(C.10)

when α0 > β0/16. Note that the difference between Eq. (C.10) and the growth rate when

including (1 − α0) term in Eq. (C.7) is negligible for the simulations considered here. If
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β0 is negligible, γ ' ωt (α0M0)1/2 = (ftα0M0)1/2ωpe from which one can see that the NMI

growth rate is primarily dependent on ft, W0 = W (J0) via α0, and M0. We have improved

calculation of the coefficient M0 compared with Refs. 59 and 60.
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APPENDIX D

2D Collisionless Kinetic Simulation Compared to DSMC

Collisionless neutral atom simulations are performed using the present DK simulation

and MONACO,[134] an implementation of the direct simulation Monte Carlo (DSMC)

developed at the University of Michigan. As MONACO has been used for various neutral

atom flows,[146, 147] comparison of the DK simulation with MONACO serves as a good

benchmarking test case. For the DK simulation, the 2D kinetic equation can be simply

written as

∂f

∂t
+ vx

∂f

∂x
+ vy

∂f

∂y
= 0,

without the electromagnetic force. The domain is assumed to be 2D planar.

Diffuse reflection is assumed for the particles that collide with walls. The diffuse reflec-

tion means that the VDFs of the particles follow a Maxwellian with the wall temperature

after a collision event. The particles that approach the walls will not have any effect from

the wall until they collide. Therefore, the boundary conditions for the VDFs on the wall

are (1) an outflow boundary condition for vn̂ ≥ 0 and (2) a half-Maxwellian for vn̂ < 0,

where vn̂ is the velocity normal to the wall. Another type of reflection is called specular, or

mirror reflection, where the direction of the particle velocity normal to the wall is flipped

in sign without any change in magnitude of the velocity as well as the tangential velocity

parallel to the wall.

The neutral atom flow from a slit at (X,Y ) = (0 m, 0.04m)1 and diffuse reflection at

1Here, the units for the X and Y locations are further dropped.
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all walls are assumed. Y = 0 is the centerline, so any particles crossing that plane are

reflected back. Outlet boundary condition is used at X = 0.09 and Y = 0.08, i.e. particles

will leave the domain and no background atoms are introduced. Anode mass flow rate of 5

mg/s is assumed to leave the slit which is 2 mm wide, i.e. 2 cells. The cell size in physical

space is ∆X = ∆Y = 1 mm. For the DK simulation, the cell size in velocity space is

∆vX = ∆vY = 30 m/s for vX ∈ [−1000, 2000] m/s and vY ∈ [−1500, 1500] m/s. The time

step is ∆t = 10−7 s and the simulation stops at 1 s. For MONACO, a grid size similar to

that of the DK simulation is used. The main difference is that a Cartesian mesh is used in

the DK simulation but triangular cells are used in MONACO. The number of particles per

cell required to obtain good statistics is approximately 20 for MONACO. Streamlines are

shown in black solid lines with arrows on top of the number density contours.

Figure D.1 shows that the DK simulation captures the neutral atom flow well, par-

ticularly inside the discharge channel where the neutral atom density is large. The most

important difference between the two kinetic simulation is that the DK results are obtained

from only 1 time step whereas the MONACO results are time-averaged over a number of

time steps. Therefore, a true steady-state solution can be obtained from the DK simulation

without any numerical noise.

However, it can be seen that there is a decrease in the density in the plume near the

channel centerline at Y = 0.04 in the DK results. This is due to the discrete velocity space.

The neutral atoms far from the slit will have a much narrower distribution function in the

Y direction. As shown in Fig. D.2(a), the VDFs in the Y direction integrated over the

X-velocity, i.e. g(vX) =
∫
f(vX , vY )dvY , at X = 0.04 and X = 0.08 are very narrow and

are almost like a dirac delta function. This is because finite Y-velocity components near

the slit advect in the Y direction and the only particles that reach the channel centerline

are beam-like with a velocity of vY = 0. For instance, consider a slit that is infinitesimally

small at (X,Y ) = (0, 0) and a domain without any walls. At a point (X0, Y0), the particles

that reach that point must satisfy VX/VY = X0/Y0 for Y0 6= 0 and ∀VX > 0, VY = 0 for

Y0 = 0. Note that the number density decreases as the flow expands into a larger domain.

Also shown in Fig. D.2(a) is the VDF at the cell adjacent to the slit. The VDF is

fairly close to the theoretical distribution, i.e. a full-Maxwellian, because the VDF of the
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(a) DK solver

(b) MONACO (DSMC)

Figure D.1: Collisionless neutral atom simulation.
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Figure D.2:
The VDFs as a function of Y-velocity averaged over X-velocity obtained from
the collisionless DK simulation at (X,Y ) = (0.001, 0.04), (0.039, 0.04), and
(0.08, 0.04) m. Theory curve is a Maxwellian.

Y-velocity is a full-Maxwellian at the slit. The calculated VDF shows a slight deviation

from the full-Maxwellian as the VDF is measured at the cell-center of the first cell, not

the plane from which particles are injected. The cell-center position of the cell is (X,Y ) =

(∆X/2,∆Y/2 + 0.04) not at the plane of the slit. Because the cell is shifted by ∆Y/2 from

the centerline of the slit, the positive Y-velocity components agree with the full-Maxwellian

better than the negative Y-velocity components. In addition, the VDFs at X = 0.04 consist

of a beam type distribution, mentioned above, as well as a full-Maxwellian distribution due

to the diffuse reflection inside the channel. Any particles that collide with the walls inside

the channel will be thermalized to a Maxwellian.

Figure D.3 shows the VDFs as a function of X-velocity averaged over Y-velocity. h(vX) =∫
f(vX , vY )dvY . At X = 0, there are particles with negative velocity, meaning that some

particles are approaching the slit from the domain X > 0. This is because the diffuse

reflection at the wall can yield particles generated downstream that come back to the anode.
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Figure D.3:
The VDFs as a function of X-velocity averaged over Y-velocity obtained from
the collisionless DK simulation at (X,Y ) = (0.001, 0.04), (0.039, 0.04), and
(0.08, 0.04) m. Theory curve is a Maxwellian biased with the X-velocity.

The theory curve shown in Fig. D.3 is a Maxwellian biased with the X-velocity: ∼

vX exp[−m(v2
X + v2

Y )/(2kBT )]. The VDFs obtained from the DK simulation in the down

stream, e.g. X = 0.08, exhibit good agreement with the theory curve since the particles

ejected through the slit will have the biased-Maxwellian. Particles with higher velocity will

have higher probability of being ejected. In addition, no particles with negative velocity or

zero velocity will escape from the slit. The Y-velocity averaged VDFs agree well with the

theoretical curve because there are no effects from the walls in the plume. On the other

hand, the VDFs inside the channel show a distribution not like the biased-Maxwellian due to

the wall effects. The particles that collide with the wall follow a Maxwellian, i.e. isotropic

in all directions. Therefore, the particles moving in Y direction are likely to have small

X-velocity. Thus, the VDFs are shifted more towards a slower velocity inside the channel.
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APPENDIX E

Axial-Azimuthal Electron Continuum Model

Electron Momentum Equation

Let us normalize the momentum equation in the axial-azimuthal direction. Consider

the electron conservation equations in Eq. (A.13) in the time scale of ions. ñ = n/n0,

Ũx = Ux/Ux0, Ũy = Uy/Uy0, ∇̃ = ∇/(1/L), T̃e = Te/Te,0, φ̃ = φ/φ0, B̃ = B/B0, and

t̃ = ωpit = (e2n0/miε0)1/2t. The quantities in different directions shall be considered

separately. Here, electrons are considered so q = −e. Raizer[46] simply states that the

left hand side of the momentum equation can be negligible since the electron mass is much

smaller than the ion mass. Here, we try to do a more careful analysis.

1. Time derivative:

mn0Ux0ωpiñ
∂Ũx

∂t̃
=

[(
Ux0

Uth

)(
ωpiLx
Uth

)
n0kTe0
Lx

]
ñ
∂Ũx

∂t̃

mn0Uy0ωpiñ
∂Ũy

∂t̃
=

[(
Uy0

Uth

)(
ωpiLy
Uth

)
n0kTe0
Ly

]
ñ
∂Ũy

∂t̃

where Uth = (kTe/m)1/2 is the electron thermal velocity.

2. Inertial terms:

n0kTe0
Lx

{[(
Ux0

Uth

)2
]
ñŨx

∂Ũx
∂x̃

+

[(
Ux0

Uth

)(
Uy0

Uth

)
Lx
Ly

]
ñŨy

∂Ũx
∂ỹ

}
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n0kTe0
Ly

{[(
Ux0

Uth

)(
Uy0

Uth

)
Ly
Lx

]
ñŨx

∂Ũy
∂x̃

+

[(
Uy0

Uth

)2
]
ñŨy

∂Ũy
∂ỹ

}

where x̃ = x/Lx and ỹ = y/Ly. Lx and Ly are the characteristic length.

3. Pressure gradient:

∂p

∂x
=
n0kTe0
Lx

∂p̃

∂x̃

∂p

∂y
=
n0kTe0
Ly

∂p̃

∂ỹ

where p = nkTe.

4. Electric field:

qnEx = −
[
n0kTe0
Lx

qφ0

kTe0

]
ñ
∂φ̃

∂x̃

qnEy = −
[
n0kTe0
Ly

qφ0

kTe0

]
ñ
∂φ̃

∂ỹ

where E = −∇φ.

5. Lorentz force:

qnUyBr =

[
n0kTe0
Lx

Uy0

Uth

ωBLx
Uth

]
ñŨyB̃0

qnUxBr =

[
n0kTe0
Ly

Ux0

Uth

ωBLy
Uth

]
ñŨxB̃0

6. Collision terms:

−mnνmUx = −
[
n0kTe0
Lx

Ux0

Uth

νm0Lx
Uth

]
ñν̃mŨx

−mnνmUy = −
[
n0kTe0
Ly

Uy0

Uth

νm0Ly
Uth

]
ñν̃mŨy

229



Normalized Momentum Equation

The normalized momentum conservation equation is

[
Ux0

Uth

ωpiLx
Uth

]
ñ
∂Ũx

∂t̃
+

[(
Ux0

Uth

)2
]
ñŨx

∂Ũx
∂x̃

+

[
Ux0

Uth

Uy0

Uth

Lx
Ly

]
ñŨy

∂Ũx
∂ỹ

= −∂p̃
∂x̃

+

[
eφ0

kTe0

]
ñ
∂φ̃

∂x̃
−
[
Uy0

Uth

ωBLx
Uth

]
ñŨyB̃0 −

[
Ux0

Uth

νm0Lx
Uth

]
ñν̃mŨx (E.1)

[
Uy0

Uth

ωpiLy
Uth

]
ñ
∂Ũy

∂t̃
+

[
Ux0

Uth

Uy0

Uth

Ly
Lx

]
ñŨx

∂Ũy
∂x̃

+

[(
Uy0

Uth

)2
]
ñŨy

∂Ũy
∂ỹ

= −∂p̃
∂ỹ

+

[
eφ0

kTe0

]
ñ
∂φ̃

∂ỹ
+

[
Ux0

Uth

ωBLy
Uth

]
ñŨxB̃0 −

[
Uy0

Uth

νm0Ly
Uth

]
ñν̃mŨy (E.2)

1. Axial direction:

Several assumptions can be made from physical observations, as shown below.

• The pressure gradient and electric field terms are O(1).

• The time derivative term can be neglected depending on the fluctuation level of

Ux. Electron transport over a time scale larger than ion time scales follows ion

transport.

• Ux0/Uth � 1, thus, the inertial term in the axial direction is negligible.

• The azimuthal inertia term can be potentially important. A spatial variation

of the axial drift in the azimuthal direction can lead to an additional collision

frequency, given by

νrot =
Uy
Ux

∂Ux
∂y

,

which has been never considered in Hall thruster simulations. However, this

can be important in the presence of rotating spokes. As discussed by Ellison[12],

spokes can carry electron currents, so there are possibilities that the axial electron

mean velocity has some azimuthal variation.

• Uy0ωB � Ux0νm0. This is equivalent to Ω(Uy0/Ux0) � 1. Therefore, the axial

transport equation suggests that the axial electric field and pressure gradient
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terms determine the electron azimuthal velocity Uy. Accordingly, Ux0 will be

much smaller

Neglecting the axial and azimuthal inertia effects, the axial transport can be written

as

0 = −∂p
∂x
− en(Ex + UyBr)−mnνmUx. (E.3)

Strictly speaking, the collision frequency term can be comparable to the axial and

azimuthal inertia terms. Consider Ux0 = O(104 m/s), Uy0 = Uth = O(106 m/s),

νm0 = O(107 1/s), Lx = O(10−2 m), and Ly = O(10−1 m). The axial inertia term

is on the order of O(10−4), the azimuthal inertia term is O(10−3), and the collision

term is O(10−3). Therefore, a time-varying simulation is required. In other words, the

anomalous collision frequency assumed in the electron continuum model also includes

the effects of such inertial nonlinear transport.

2. Azimuthal direction: It is discussed that the continuum approach may be invalid

in the azimuthal direction in Sec. 7.4.1. If there are no collisions, the equations of

motion or individual particles can be given by

m
dvx
dt

= −e(Ex − vyBr),

m
dvy
dt

= −e(Ey + vxBr),

which yield vx = v⊥ cos(ωBt) − Ey
Br

and vy = v⊥ cos(ωBt) + Ex
Br

. Therefore, the time-

averaged guiding center velocities can be given by

ux = 〈vx〉 = −Ey
Br
,

uy = 〈vy〉 =
Ex
Br

,

which neglect the pressure gradient in both directions. Here, it is shown that the

guiding-center type solution can be recovered from the continuum model. Consider
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the following equations:

0 = −e(Ex − uyBr)−
1

n

∂p

∂x
−muxνm,

0 = −e(Ey + uxBr)−
1

n

∂p

∂y
−muyνm,

where the drift diffusion approximation is used in both axial and azimuthal directions.

Then, the axial and azimuthal velocities can be calculated as

ux = −µ⊥
[(
Ex +

1

en

∂p

∂x

)
+ Ω

(
Ey +

1

en

∂p

∂y

)]
, (E.4)

uy = −µ⊥
[(
Ey +

1

en

∂p

∂y

)
− Ω

(
Ex +

1

en

∂p

∂x

)]
. (E.5)

Note that Lam et al.[76] explicitly used Eqs. (E.4) and (E.5) with the charge conserva-

tion equation. However, the issue related to the large condition number of the elliptic

PDE is discussed in Sec. 7.4.2. In the limit of Ω� 1, assuming Ey+(1/en)∂p/∂y ≈ 0

gives

ux = −µ⊥
(
Ex +

1

en

∂p

∂x

)
, (E.6)

uy =
1

Br

(
Ex +

1

en

∂p

∂x

)
, (E.7)

which is similar to the guiding center equation for the azimuthal velocity while the

axial velocity is written in a continuum form. This formulation is chosen due to

Sekerak’s suggestion,[7] namely to construct a 2D model that can be reduced to a 1D

model.

3. Considerations for Azimuthal transport: Assuming that the continuum equa-

tions are valid in the azimuthal direction, some assumptions can be made from physical

observations.

• The axial inertia term can be comparable to the Lorentz force and the collision
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term. The axial inertia term can be characterized by

νshear =
∂Uy
∂x

.

This corresponds to the shear assumed in Scharfe’s shear-based model.[148]

• The azimuthal drift may also be on the same order as the pressure and electric

field because Uy0 ≈ Uth. Using a continuum approach suggests that the Knudsen

number is small enough. If this is the case and Uy0/Uth = O(1), then it is likely

that a shock occurs.

Eq. (E.7) can be recovered when assuming that (1) the time derivative, (2) the

inertia terms, (3) the pressure, and (4) the electrostatic force can be neglected in the

full continuum formulation.

Electron Energy Equation

Instead of separating out the energy equation into kinetic and thermal energy equations,

one should solve the total energy equation since the right hand side cannot be separated

out clearly. From Eq. (A.14),

∂

∂t
(nε) +∇ · [(nε) u + pu + q] = qnu ·E + Se − Si. (E.8)

In the 2D hybrid-DK model, Eq. (E.8) is solved in a 2D domain. Several models are

reviewed here.

The assumptions used in Hara et al. in Ref. 2 are that (1) the electron thermal energy

is calculated from the total energy and kinetic energy to evaluate the wall heat flux, (2)

∇ · q = 0 in the axial and azimuthal directions but ∇ · q = Sw in the radial direction that

accounts for the wall heat flux, (3) Se ≈ 0 since Se ∼ me/Mi = O(10−6), (4) the average

mean energy is ε = (3/2)Teff , and (5) the time derivative of the electron energy density is

zero, i.e. frozen in the ion time scale.
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�
�
�
�∂

∂t
(nε) +

∂

∂x

(
5

3
nεux

)
= qnuxEx − Si − Sw. (E.9)

Further assume ∂(nux)/∂x = 0,

nux ·
∂

∂x

(
5

3
ε

)
= −enuxEx − Si − Sw. (E.10)
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APPENDIX F

Validity of the Quasineutral Assumption

General Case

In order to evaluate the quasineutral assumption, the Poisson equation is considered:

ε0∇2φ = −eσ, (F.1)

or equivalently Gauss’s law:

ε0∇ ·E = eσ. (F.2)

• Local Thermal Equilibrium: Charge, potential, and space can be normalized by

a characteristic density variation δn, electron temperature kBTe/e, and the charac-

teristic length R, respectively. If an equilibrium number density n0 is assumed and

using the Debye length λD = (ε0kBTe/e
2n0)1/2, the normalized Poisson equation can

be written as (
λD
R

)2

∇̃2φ̃ = −δn
n0
σ̃.

The quasineutral assumption is valid as long as λD � R so that δn � n0. This

equation also suggests that quasineutrality is not valid in the plasma-sheath, where

the characteristic length R ∼ λD. As the potential drop is also on the order of Te,

δn ∼ n0. Another observation of the quasineutral assumption is that the electric field
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must be on the order of ∼ kBTe/eR, which is valid when ambipolar type diffusion

occurs.1

• Drifting Plasma: The other situation is when the drift current is greater than the

diffusion current. u ' µeE (P.32 in Ref. 46). Here, the diffusion across magnetic fields

is neglected. From the Einstein relation D = (kBTe/e)µe, where D is the diffusion

coefficient, E ∼ (kBTe/e)u/D. For the velocity that satisfies thermal velocity: u2 ∼

Dν = kBTe/m, the energy relaxation length can be written as Λu = u/ν = D/u.

Therefore, the normalized Gauss’s law can be given by

(
λD
R

)(
λD
Λu

)
∇̃ · Ẽ =

δn

n0
σ̃.

Therefore, the quasineutral assumption can become invalid if Λu � λD. Λu can be

small when u is small and ν is large.

Evaluation of the length scale becomes less clear for magnetized cases. However, quasineu-

trality is likely to hold when simulating a large-scale phenomena as the characteristic length

R, typically determined by the cell size in simulations, is much larger than the Debye length.

2D Axial-Azimuthal Transport

The quasineutrality assumption in the 2D axial-azimuthal electron continuum model is

discussed. The charge conservation equation can be derived using Ampere’s law:

∇×B = µ0

(
j + ε0

∂E

∂t

)
, (F.3)

where µ0 is the permeability of free space and j = eJ is the current density. Taking the

divergence of Eq. (F.3), the left hand side is zero: ∇·∇×B = 0. Then, the right hand side

of Eq. (F.3) can be written as e∇ · J + ε0[∂(∇ ·E)/∂t] = 0. From Gauss’s law in Eq. (F.2),

ε0[∂(∇ · E)/∂t] = ε0[∇ · (∂E/∂t)] = e(∂σ/∂t). These two relations reduce to the charge

1For situations when the pressure gradient is balanced with the electric field and u ≈ 0, from E ∼
(kBTe/e)(∇n/n), the density gradient satisfies ∇n = O(n/R).
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conservation equation, given by

∂σ

∂t
+∇ · J = 0, (F.4)

where σ = ni − ne is the charge and J = Ji − Je is the total flux. First of all, neglect

∂Jiy/∂y as the ion rotation speed will be much smaller than other drift velocities. The

charge, the currents of ion and electrons in the x-direction, the electron current in the y-

direction, time, and space are normalized by a characteristic charge density δn, the anode

current density JD, the current density due to the E × B drift JE×B, the characteristic

frequency of non-neutral plasma to become neutral ωT , and the characteristic length L,

respectively. Assume that the anode total current density and the E × B current density

follow JD = n0uD and JE×B = n0uE×B, where n0 is the equilibrium number density, uD is

the characteristic velocity in the x-direction, and uE×B is the E ×B drift speed. Thus,

uD
LxωT

∂

∂x̃
(J̃ix − J̃ex) +

uE×B
LyωT

∂

∂ỹ
(− ˜J)ey = −δn

n0

∂σ̃

∂t̃
. (F.5)

Here, let us define

Cx =
uD
LxωT

,

Cy =
uE×B
LyωT

,

as the normalization coefficients in each direction. Depending on the temporal and spatial

scales, one can discuss whether the quasineutral assumption is valid or not.

Small-scale phenomena

In a Hall thruster discharge channel, it is known that uE×B � uD. If the characteristic

lengths in the x and y directions, i.e. Lx and Ly, are on the same order, the y-direction

components will yield a strong non-neutral plasma. The spatial scales are Lx = Ly ' λD =

O(10−5) m and the associated time scale is ωT = ωpe = O(1011) rad/s. For instance, using

uD = O(104) m/s and uE×B = O(106) m/s,

Cx = O

(
104

10−5 × 1011

)
= O(10−2)� 1,
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Cy = O

(
106

10−5 × 1011

)
= O(1).

Thus, the quasineutral assumption is no longer valid for small-scale plasma oscillations,

particularly in the azimuthal direction. It can be seen that the axial transport still can

be described using a quasineutral plasma for the given parameters only if the azimuthal

transport is neglected or averaged.

Large-scale phenomena

In the present simulation, the targeted phenomenon is a low-frequency oscillation that is

on the order of 10 kHz. From a physical perspective, the characteristic frequency of charge

neutrality is no larger than the ion plasma frequency. Thus, ωT ∼ ωpi = (e2n0/miε0)1/2 =

O(108 − 109) rad/s. It can be assumed that the electrons will follow the ion oscillations

in this time scale. The characteristic length of the low-frequency phenomenon in the x-

direction is Lx = (10−2) m, as the characteristic length of breathing mode oscillations is

on the order of the channel length, and that in the y-direction is Ly = O(10−1) m because

the dominant spoke modes are m = O(1). Using the same velocity range as the small-scale

phenomena, the normalization coefficients can be calculated as

Cx = O

(
104

10−2 × 108

)
= O(10−2)� 1,

and

Cy = O

(
106

10−1 × 108

)
= O(10−1) < 1.

Therefore, δn/n0 < 1 and the quasineutrality assumption can be used.
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