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ABSTRACT

Physically Dense Server Architectures

by

Anthony Thomas Gutierrez

Chair: Trevor N. Mudge

Distributed, in-memory key-value stores have emerged as one of today’s most impor-

tant data center workloads. Being critical for the scalability of modern web services,

vast resources are dedicated solely to key-value stores in order to ensure that quality

of service guarantees are met. These resources include: many server racks to store

terabytes—possibly petabytes—of key-value data, the power necessary to run all of

the machines, networking equipment and bandwidth, and the data center warehouses

used to house the racks.

There is, however, a mismatch between the key-value store software and the com-

modity servers on which it is run, leading to inefficient use of resources. The primary

cause of this inefficiency is the overhead incurred from processing individual network

packets, which typically carry small payloads of less than a few kilobytes, and require

minimal compute resources. Thus, one of the key challenges as we enter the exascale

era is how to best adjust to the paradigm shift from compute-centric data centers, to

storage-centric data centers.

This dissertation presents a hardware/software solution that addresses the in-

efficiency issues present in the modern data centers on which key-value stores are

xiii



currently deployed. First, it proposes two physical server designs, both of which

use 3D-stacking technology and low-power CPUs to improve density and efficiency.

The first 3D architecture—Mercury—consists of stacks of low-power CPUs with 3D-

stacked DRAM, as well as NICs. The second architecture—Iridium—replaces DRAM

with 3D NAND Flash to improve density.

The second portion of this dissertation proposes and enhanced version of the Mer-

cury server design—called KeyVault—that incorporates integrated, zero-copy net-

work interfaces along with an integrated switching fabric. In order to fully utilize the

integrated networking hardware, as well as reduce the response time of requests, a

custom networking protocol is proposed. Unlike prior works on accelerating key-value

stores—e.g., by completely bypassing the CPU and OS when processing requests—

this work only bypasses the CPU and OS when placing network payloads into a

process’ memory. The insight behind this is that because most of the overhead comes

from processing packets in the OS kernel—and not the request processing itself—

direct placement of packet’s payload is sufficient to provide higher throughput and

lower latency than prior approaches. The need for complex hardware or software is

also eliminated.

xiv



CHAPTER I

Introduction

We have now entered into an era with unprecedented amounts of data stored in

the cloud. A recent research report from Nasuni estimates that there is now over

one exabyte of data stored in the cloud [69], while Facebook reports an incoming

data rate of approximately 600TB per day [83]. Amazon alone reports that their S3

cloud storage service contains 1 trillion objects—that is 142 objects for each person

on Earth [6]. It is interesting to note that, while there is an estimated one exabyte of

data in the cloud, the average object size is quite small. Figure 1.1 shows a file size

distribution of files stored by a typical user, as reported by Nasuni [1]. Over 77% of

files are one megabyte or less, and over 67% are 100 kilobytes or less. What this tells

us is that not only do cloud services need to store and manage vast amounts of data,

but they also must serve many requests for small, disparate pieces of data. Given

the large cost of building, maintaining, and running a modern data center warehouse,

the key challenge becomes how to best adjust to the paradigm shift to data-centric

computing.

To ensure quality of service (QoS) guarantees are met, cloud services often cache

objects in memory to prevent slow disk lookups for latency-critical requests. The

greater performance of DRAM when compared to disks comes with a cost—higher

prices and far less memory density. The irony of this fact is two-fold: first, because

1



16.8% 1KB

24.6% 10KB

26.2% 100KB

1MB 9.7%

22.2% 10MB

0.4% 100MB 0.1% 1GB

Figure 1.1: File size distribution of files stored by a typical user.

of the vast data sets on which cloud services operate, in-memory caching forces them

to be highly distributed. This removes much of the benefit of using DRAM because

requests must now traverse the network. And second, data centers are typically

constructed using commodity off-the-shelf-hardware, thus adding more DRAM is not

a viable solution for scalability due to its high cost.

1.1 Scaling in the Cloud

Since the emergence of the Web 2.0 era, scaling internet services to meet the

requirements of dynamic content generation has been a challenge—engineers quickly

discovered that creating content for each visitor to a web site generated a high load

on the back-end databases. While it is easy to scale the number of servers generating

HTML and responding to client requests, it is harder to scale the data stores. This

two-tier infrastructure—as shown in figure 1.2a—becomes increasingly difficult to

scale and requires many redundant systems to prevent a single point of failure. In

order to meet the performance and reliability requirements of handling such a massive

volume of data, highly distributed scale-out architectures are required.

Internet services operate on data sets that are more massive than ever before,

2



Client

Client

Client IP Services

Database Server

App Server

App Server

App Server

App Server

Internet

(a) DB handles all reads and writes.

Client

Client

Client IP Services

Database Server

Caching Layer
Key-Value Stores

App Server

App Server

App Server

App Server

Internet

(b) DB handles only reads and writes that miss
in the cache.

Figure 1.2: Two different models for web servers.

and are responsible for servicing many real-time requests to small, disparate pieces of

data. As mentioned, servicing these requests from the back-end databases does not

scale well; fortunately the size and popularity of requested objects exhibit power-law

distributions [3, 17], which makes them suitable for in-memory caching. Figure 1.2b

shows a web server with the addition of in-memory caching. As we enter the peta-

scale era, key-value stores will become one of the foremost scale-out workloads used

to improve the scalability of internet services. As such, vast data center resources

will be dedicated solely to key-value stores in order to ensure that QoS guarantees

are met.

Memcached is one example of a distributed, in-memory key-value store caching

system. Memcached is used as the primary piece of scaling infrastructure for many of

today’s most widely-used web services, such as Facebook, Twitter, and YouTube. Due

to its wide-spread use, and the high cost of data center real estate, it is important

that Memcached be run as efficiently as possible. Today, however, Memcached is

deployed on commodity hardware consisting of aggressive out-of-order cores, whose

performance and efficiency are measured with respect to how well they are able to

run CPU benchmarks, such as SPEC [31].

3



Key-value stores are currently deployed on commodity off-the-shelf hardware,

which is not ideal due to numerous inefficiencies caused by a mismatch with the

application domain. The highly distributed nature of key-value stores requires fre-

quent remote memory accesses, which can be several orders of magnitude slower than

local memory when nodes are connected using commodity networking technology.

Several prior works have shown that key-value store applications do not fully uti-

lize high-end out-of-order (OoO) CPUs—exhibiting poor cache hit rates, and high

branch mis-prediction rates—and do not come close to saturating available memory

or network bandwidth [2, 22, 23, 56]. The primary cause of this inefficiency is the

overhead associated with processing individual network packets, which typically carry

small payloads on the order of kilobytes. The large code footprints associated with

the networking stack and operating system code cause a bottleneck in the instruction

fetch portion of the CPU; and complex, off-chip NICs cause slow data transfers.

As the bandwidth of network interfaces approaches 1Tb/s [87]—matching the

available bandwidth of the CPU’s memory controller—the problem of network packet

processing will be exacerbated. The overhead of relying on the CPU and OS to pro-

cess packets, and get data off chip, will be the limiting factor to fully utilizing available

network bandwidth. To ensure QoS requirements are met, on-chip networking hard-

ware with DMA capabilities—along with lightweight networking protocols—will be

crucial.

1.2 Data Center Trends

Realizing that aggressive out-of-order cores are not an efficient choice for many

classes of server applications, several studies have advocated the use of low-power

embedded CPUs in data centers: [2, 42, 57, 76]. There are challenges with this ap-

proach as well—embedded cores are unable to provide the throughput and latency

guarantees that are required to supply responsive dynamic content. More recently,

4



Lim et al. [54] have shown that mobile cores alone are not enough to improve the

efficiency of distributed key-value store caching systems. Instead, they create a cus-

tom Memcached accelerator, and rely on recent technology scaling trends to closely

integrate their accelerator into a system on a chip (SoC) design they call Thin Servers

with Smart Pipes (TSSP). These approaches may improve overall energy and perfor-

mance, however they do not address density. Dense servers, on the other hand, have

been shown to provide greater efficiency for CPU-bound electronic commerce work-

loads in the past [21], however for workloads that required large amounts of memory,

traditional servers were found to be a better solution.

As the volume of data in the cloud increases, there is a growing trend towards dis-

tributing large data sets across many servers and pushing the compute—e.g., database

queries, key-value GETs, etc.—to the data. The highly distributed nature of these

applications requires that most data accesses must be done over the data center’s

network, which is a source of significant delay [79].

Data centers are provisioned to meet peak demand, ensure low variability for

response times, and provide fault tolerance. Current data centers employ commodity

hardware because of its cost-effective performance. This leads to data center designs

that push the limits of power supplies, warehouse space, and cooling, without fully

utilizing the available compute, storage, or communication resources; data centers

typically operate between 10-50% utilization on average [8].

1.2.1 Opportunities for Improved Efficiency

Researchers have noted the aforementioned issues and there is now a move towards

integration, improved form factor, and higher density. Several trends have emerged:

1. Modular data centers. The idea of modular and portable data centers has

been around for some time. Sun’s Project Blackbox [84] aimed to put data

centers in portable shipping containers; the idea being that a data center could
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be housed in a portable unit at a fraction of the cost of a warehouse, and

without a long term commitment to the location. Google has even patented

water-based data centers [16]. The idea of housing data centers in portable

spaces naturally leads to more compact rack-scale servers. HP’s Moonshot [34]

and current offerings from SeaMicro [19] are examples of such designs. Both

of which recognize the need for dense form factor and integrated networking

technology.

2. Storage-focused data centers. Realizing that the growth of data in the

cloud is far outpacing the ability of disk-based storage to scale, works such as

RAMCloud [72] propose storage entirely in DRAM. The idea of using DRAM

for storing large data sets, has led to works on alternative, storage-focused

data center architectures. Alternative memory technologies such as 3D-stacked

DRAM and non-volatile memory have been proposed for use in data centers to

improve energy efficiency over commodity components [43, 45, 77]. PicoServer

[42] was one of the first works to propose using 3D-stacked memory to improve

energy efficiency and density. Even more exotic 3D-stacked architectures, such

as nanostores [15], put 3D-stacked compute on top of non-volatile memory

layers. Work by Lim et al. even suggests using memory blades : disaggregated

memory servers with minimal compute capabilities [55].

3. Integrated Networking. As data becomes more distributed and the amount

of compute shrinks, the network is becoming the bottleneck for data centers

applications. Deep network stacks, queueing, and off-chip networking devices

become the limiting factor when trying to meet latency and throughput guar-

antees. While commodity NICs provide a cost-effective solution, and protocols

such as TCP/IP and UDP are well supported, there are many unexplored op-

portunities to improve network performance. Binkert et al. demonstrate how
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simple, integrated NIC designs can improve the performance of TCP/IP [11],

while RDMA has become a popular solution for extremely high-bandwidth, low

latency communication for in-memory data center applications [38, 39, 66].

4. The use of ”wimpy” cores in servers. Andersen et al. noted the oppor-

tunity to improve throughput and saving energy with FAWN [2]. FAWN uses

”wimpy” cores and FLASH memory to reduce the amount of energy per opera-

tion density. Felter et al. prototyped Super Dense Servers [21], which combine

low-power cores and a tight form factor as a way to provide fine-grain power

management in response to variations in load. Still others propose using sophis-

ticated schemes to manage power. In PowerNap [60] tasks are delayed to create

idle periods sufficiently long enough to enable cores to be put into deep sleep

modes. Recent work by Lo et al. [58] proposes a power management approach

that utilizes machine learning to manage DVFS in order to improve the power

efficiency of data centers. The common theme in these works is that OoO CPUs

are over provisioned for modern data-centric data center workloads.

Several common themes emerge from the work on data center efficiency: 1) there is

a need for higher levels of integration; 2) current power management techniques are

inadequate; 3) commodity, off-the-shelf hardware—while cost-effective—is not viable

going forward; 4) we need lower overhead networking; and finally 5) storage density

needs to improve. While these problems have been addressed in isolation, and in the

context of current data center designs, we believe a holistic approach is necessary.

1.3 Contributions of this Dissertation

In this dissertation the notion of an efficient, integrated system is taken one step

further to include density as a primary design constraint. First, it explores the design
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of two integrated, 3D-stacked architectures called Mercury and Iridium1. With Mer-

cury, low-power cores similar to ARM Cortex-A7s are tightly coupled with NICs and

DRAM, while maintaining high bandwidth and low latency. Recently, Facebook in-

troduced McDipper [25], a Flash-based Memcached server using the observation that

some Memcached servers require higher density with similar latency targets, but are

accessed at much lower rates. To address these types of Memcached servers, a server

designed called Iridium is introduced, a Flash based version of Mercury that further

increases density at the expense of throughput while still meeting latency require-

ments. These two architectures allow density to be significantly increased, resulting

in more effective use of costly data center space.

Next, simple, integrated networking hardware is added that allows for a low-

overhead—yet general purpose and powerful—networking protocol. This server de-

sign, KeyVault, builds upon the Mercury server design extending it to include simple,

zero-copy NICs along with an integrated switch fabric and a lightweight communica-

tion protocol. In summary, this dissertation makes the following contributions:

• Given data center costs, this work contends that server density should be con-

sidered a first-class design constraint.

• It Mercury, an integrated, 3D-stacked DRAM server architecture which has the

potential to improve density by 2.9×, making more efficient use of costly data

center space.

• By closely coupling DRAM and NICs with low-power Cortex-A7-like cores, it

show that it is possible to improve power efficiency by 4.9×.

• By increasing density, and closely coupling DRAM, NICs, and CPUs, it is pos-

sible to increase requests per second (RPS) by 10× and TPS/GB by 3.5×.

1Mercury, the Roman god, is extremely fast, while the element of the same name is very dense.
Iridium, while not a god, is more dense than mercury.
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• It proposes Iridium for McDipper [25] style Memcached servers, which replaces

the DRAM with NAND Flash to improve density by 14×, TPS by 5.2×, and

power efficiency by 2.4×, while still maintaining latency requirements for a bulk

of requests. This comes at the expense of 2.8× less TPS/GB due to the much

higher density.

• It makes the observation that, in order to achieve maximum performance, it is

not necessary to bypass the CPU and OS completely when processing requests.

Performing zero-copy packet transmission is enough to outperform solutions

that completely bypass the CPU.

• Design an integrated NIC that allows for true zero-copy packet transmission.

• Specify a networking protocol that makes full use of the integrated NICs,

thereby reducing the round-trip time (RTT) of requests, and improving the

max sustainable RPS.

• Design an integrated switching fabric that allows the network links to be shared

amongst several stacks, thereby improving the network link utilization.

• Provide a detailed design space exploration of various 1.5U KeyVault server

designs, contrasted with prior works.

The rest of this dissertation is organized as follows: in chapter II background informa-

tion related to computer networking—particularly in the context of high-performance

data centers—including both traditional TCP/IP networks and modern RDMA net-

works. Background information pertaining to near-data compute technology is also

discussed. In chapter III describes the Mercury and Iridium server designs in detail. It

provides an evaluation of each server design while running Memcached, and performs

a detailed design space exploration. The work presented in chapter III was presented

at ASPLOS 2014 [29]. Chapter IV describes how the design of the Mercury server
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was modified to include an integrated switching fabric, integrated network interfaces

with zero-copy capabilities, along with a low-overhead networking protocol. Finally,

chapter V provides concluding remarks and proposes future research directions.
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CHAPTER II

Background

This chapter outlines some of the fundamental knowledge regarding networking

and near-data compute technology in order to understand the work presented in this

thesis. First, traditional TCP/IP networks are discussed, followed by a discussion of

current high-performance networks that use remote direct memory access (RDMA).

Finally an overview of processing-in-memory technology as well as processing-near-

memory technology is given.

2.1 TCP/IP Networking

Figure 2.1 shows the network stack for the TCP/IP protocol suite. This model

has essentially four software layers on top of the physical layer, and is the most

widely-used protocol suite in computer networking.

2.1.1 Application Layer

The ultimate goal of a computer network is to be able to exchange data between

two communicating processes; this is shown as the top layer in figure 2.1. Data

transmission and retrieval begins at the application layer. In this layer, processes

package the data that is to be transmitted across the network into a packet with a

previously agreed upon format. E.g., the packet may contain headers with information
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Figure 2.1: Network layers for the TCP/IP model.

on the data type, length, format, etc. In this dissertation, the application of interest

is Memcached [62], and its application layer packet contains headers that describe

the type of request—GET, SET, DELETE, etc.—the size of the key and value, and

error checking codes [63].

Packets are sent to the next through the sockets API, which is a buffering layer

that provides support for several transmission protocols via a standard interface. The

sockets layer is responsible for copying data from the application’s memory space to

kernel space and vice versa. The sockets layer can be blocking or non-blocking—

meaning the application may wait on a send or receive operation until space is freed,

or data is available respectively. If the call is non-blocking then it will continue on and

attempt to send or receive data at a later time. The bottleneck in this processes is

the copy of packet data from kernel space to user space, because these reads typically

cause many cache misses. Techniques that place packet data directly into the cache

[35] may not provide as much benefit as they could do to cache interference with

application data.

12



2.1.2 Transport Layer

The next layer in the networking stack is the transport layer, and this layer typ-

ically uses the transport control protocol (TCP) layer [13]. The transport layer is

responsible for establishing a channel between two host machines. This is done by

establishing a virtual connection between two host machines and assigning each a

unique port number. The application layer sends a stream of data to the TCP layer

and it is responsible for diving the data stream up into packets and sending those

packets to the next level in the stack.

Because—as we will see in section §2.1.3—the internet layer does not guarantee

that packets are delivered in order, or even delivered at all, TCP is responsible for

assuring retransmission and reordering of packets when necessary. TCP also provides

some error checking via checksums, flow control, receive acknowledgement, and is able

to detect packet duplication. Because packets are sent to a best-effort network over

lossy links, it is a very heavyweight software layer.

Because TCP is a reliable protocol, it must buffer packets in kernel space memory

to ensure that no packets are dropped at this layer. It uses a sliding window scheme

to ensure that there are never more outstanding bytes awaiting transmission than

there is buffer space at a receiver.

2.1.3 Internet Layer

The internet layer typically uses the internet protocol (IP) [13]. The IP is a

best-effort datagram protocol; it does not guarantee in-order delivery, or even that

packets are delivered at all. The IP also does not prevent packet duplication. The IP

packet contains the IP address of the source and destination, as well as information

indicating which transport layer protocol is being used. This information is used to

route the packets to their destinations. If the packet is larger than the maximum

allowable size, the IP will split the packets up into separate fragments.
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2.1.4 Link Layer

The lowest layer in the TCP/IP suite is the link layer. The link layer consists of

several protocols and is primarily responsible for address resolution via the address

resolution protocol (ARP). At the link layer packets are typically encapsulated in

Ethernet frames. These frames contain the Ethernet addresses—which will be used

by the ARP to convert IP addresses to hardware addresses—for both the source and

destination devices. The link layer interacts with the network interface controller

(NIC) via its device driver.

The NIC driver is responsible for sending packets to the device and signaling that

packets are available to be transmitted, as well as transferring packets that are written

into memory by the device to the application. The driver sets up descriptor rings in

memory where data may be exchanged between the hardware and the software. The

descriptor rings are essentially circular buffers where packets may be read from, and

written to.

When transmitting a packet, the driver places the packet address, or the packet

itself, into an entry in the ring descriptor and updates the ring’s next pointer. It

then signals to the device that a packet is read to send. The NICs direct memory

access (DMA) engines read the packet data from memory and send it over the physical

interface.

Once a packet is received, the device notifies the CPU that a packet is ready to

be read; this is done either by using an interrupt or by polling. The driver will then

read the packet from memory and it will be sent to the network stack for processing,

eventually being copied from kernel space memory to the application’s memory.
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Figure 2.2: The work queues inside an HCA adapter.

2.2 RDMA over InfiniBand

InfiniBand is a high-performance network communications link, primarily used in

data centers and storage servers. It is essentially a high-performance replacement for

Ethernet. InfiniBand uses a switched fabric topology, and each processor contains an

host channel adapter (HCA). The key advantages of InfiniBand over Ethernet are:

its high-speed links, scalable fabric, and RDMA capabilities.

RDMA over InfiniBand uses a message passing protocol to allow for zero-copy

networking—allowing the HCA to directly transfer data to or from the application’s

memory. reads and writes are performed directly by the HCAs using message pass-

ing verbs. The RDMA verbs may either be one-sided—the host CPU is completely

unaware of the data transfer being performed by the HCA—or they may be two-

sided—the host CPU must explicitly receive the data from the HCA. The one-sided

verbs have lower overhead because the CPU is involved, however they may cause

synchronization issues if the host CPU is reading or writing the data as the HCA is

modifying it.
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The HCA maintains several hardware queues for sending and receiving packet

data. Figure 2.2 shows these queues. There are two work queues: a send queue

and a receive queue. Together these queues are known as a queue pair (QP). The

HCA driver prepares a work queue element (WQE) in a dedicated region of the host’s

memory, then it notifies the HCA that a verb is ready to be processed. The WQEs

contain all the information needed to process the verbs. Once the HCA has processed

the verb it stores a completion event into the completion queue (CQ) via a DMA

write.

At the transport layer, RDMA can be connected or connectionless. In the case

of a connected transport, two QPs must be directly connected via a virtual connec-

tion, and communicate only with each other. At the link layer, RDMA packets are

transmitted over a lossless fabric, meaning packets are never dropped due to buffer

overflows.

2.3 Near-Data Compute

This section describes the prior efforts related to integrating compute with mem-

ory, as well as the current state-of-the-art technology used to put compute near mem-

ory: 3D-stacked memory.

2.3.1 Processing in Memory

As far back as the early 90s researchers recognized the potential of putting com-

pute very near to memory, in order to overcome the limitations of the memory wall,

primarily providing enough bandwidth to keep compute units fed for data parallel

workloads. These works proposed mixing compute and memory directly [48, 49, 50].

However, the technology of the time made processing in memory infeasible due to its

high cost and low memory density.
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Figure 2.3: A high-level overview of Micron’s Hybrid Memory Cube technology.

2.3.2 3D-Stacked Memory Technology

Recent technology have advances have made it possible to—through the use of

through-silicon via (TSV) technology—integrated memory and logic vertically. Be-

cause memory and logic are not directly mixed, the cost is not as high as putting

compute in memory; density is also greatly improved. 3D-stacking does, however, al-

low for very high bandwidths, and low latency, while also improving energy efficiency.

Micron’s Hybrid Memory Cube (HMC) [73] and Tezzaron’s Octopus [82] are two

such efforts that seems very promising. Figure 2.3 shows a high-level overview of

Micron’s HMC technology. In this figure we can see that several layers of DRAM

are connected to a logic layer using TSVs. This technology, e.g., can provide over

100GB/s of bandwidth at a fraction of the power of conventional DRAM [73].

Given the promise of 3D-stacked memory, there has been a renewed interest in

processing-near-memory architectures—particularly for big data workloads which,

given their small compute to data ratio, seem well-suited for 3D-stacked architec-

tures. Many recent works have looked at using 3D-stacked memory in the context of

big data workloads with promising results: [15, 29, 42, 43, 45, 75].

Given the promise of utilizing alternative memory and networking technologies,

this dissertation argues that we will need to move away from commodity off-the-shelf
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hardware to build our data centers. The benefits will be improved performance, better

space utilization, and better energy efficiency.
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CHAPTER III

Integrated 3D-Stacked Server Architectures

3.1 Background

3.1.1 Cloud Computing Design

Figure 3.1a shows the design of a standard web server setup. A load balancer

typically has one or more virtual IP (VIP) addresses configured. Each domain is

routed by a DNS to a particular load balancer, where requests are then forwarded

to a free server. After the load balancer a fleet of front-end servers service the web

request. If needed, these web servers will contact a back-end data store to retrieve

custom content that pertains to the user, which means that all servers could connect

to the back-end data store.

VIP
www.ex.com

Database

Client

Client

Client

Web Server

Web Server

Web Server

Web Server

Web Server

(a) The database handles all reads and
writes.

VIP
www.ex.com

DatabaseClient

Client

Client

Web Server

Web Server

Web Server

Web Server

Web Server

Key Value Store

Caching Layer

(b) The database only handles writes and
reads that miss in the cache.

Figure 3.1: Configurations with 2 and 3 layers behind a vip to service web requests.
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In Figure 3.1b a caching layer is added, which can service any read request that

hits in the cache. A request will first be forwarded to the caching layer on any read.

If the requested data is present, the caching layer returns its copy to the client. If the

data is not present, a query will be sent to the back-end data store. After the data

returns, the server handling the request will issue a write to the caching layer along

with the data. Future requests for that data can then be serviced by the caching layer.

All write requests are sent directly to the back-end data store. Updating values in

the caching layer depends on how it is configured. The two most common cases are

that writes are duplicated to the caching layer or a time-to-live is placed on data in

the caching layer.

3.1.2 Scaling in the Cloud

In general, the traffic to a website varies by the time of day and time of year. Data

published by Netflix [71] demonstrates how traffic to their site varies over a three day

period. As their data shows, traffic peaks during midday, and is at its lowest point

around midnight. They also quantify the corresponding number of front-end servers

needed to maintain equal load throughout the day, which tracks closely with the

traffic. While this is easy to do for front-end servers, because they maintain little

state, back-end data stores are not easily scaled up and down. Netflix overcomes this

problem by the extensive use of caching, which is a cheaper solution than scaling

back-end data stores.

While turning on and off servers helps save power, it does not help reduce space

because the servers must still be physically present in order to meet peak demand.

To cope with the physical demands of scaling, new data centers must be built when

a given data center is either over its power budget, or out of space. A recent report

states Google is spending 390 million USD to expand their Belgium data center [74].

Facebook also has plans to build a new 1.5 billion USD center in Iowa[64]. Because
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of this high cost, it is critical to avoid scaling by means of simply building new data

centers or increasing the size of existing ones. This paper focuses on increasing phys-

ical density within a fixed power budget in order to reduce the data center footprint

of key-value stores.

3.1.3 Memcached

In this paper we use Memcached 1.4 as our key-value store. We choose Memcached

as our key-value store because of its widespread use in cloud computing. Memcached

does not provide data persistence and servers do not need to communicate with each

other, because of this it achieves linear scaling with respect to nodes. To date, the

largest Memcached cluster with published data was Facebook’s, which contained over

800 servers and had 28TB of DRAM in 2008 [89].

The ubiquity of Memcached stems from the fact that it is easy to use, because of

its simple set of verbs. Only three details about Memcached need to be understood:

first, it is distributed, which means that not every key will be on every server. In fact,

a key should only be on one server, which allows the cluster to cache a large amount

of data because the cache is the aggregate size of all servers. Second, the cache does

not fill itself. While this may seem intuitive, the software using Memcached needs to

ensure that after a read from the database, the data is stored in the cache for later

retrieval. Entering data in the cache uses a SET, and retrieving data from the cache

uses a GET. Lastly, there are several options to denote when data expires from the

cache. Data can either have a time-to-live, or be present in the cache indefinitely. A

caveat to using Memcached is that data will be removed from your cache if a server

goes down as Memcached does not have persistent storage.
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3.1.3.1 Versions and Scaling

There are several versions of Memcached: the current stable release is 1.4, and

1.6 is under development. Version 1.6 aims to fix scaling issues caused by running

Memcached with a large number of threads. A detailed analysis is presented in [86].

Prior research has shown that Memcached saturates neither the network bandwidth,

nor the memory bandwidth [54], due to inefficiencies in the TCP/IP stack. In this

work, we distribute the work of the TCP/IP stack among many small cores to provide

greater aggregate bandwidth while increasing the storage density. This is possible

because 3D stacking provides higher bandwidth and a faster memory interface.

3.2 Related Work

Prior work has focused on increasing the efficiency or performance with respect

to the RPS of Memcached systems, rather than density. As previously mentioned,

we believe that density should be studied as a first class design constraint due to the

high cost of scaling out data centers.

3.2.1 Characterizing Cloud Workloads

Ferdman et al. have demonstrated the mismatch between cloud workloads and

modern out-of-order cores [22, 24]. Through their detailed analysis of scale-out work-

loads on modern cores, they discovered several important characteristics of these

workloads: 1) Scale-out workloads suffer from high instruction cache miss rates, and

large instruction caches and pre-fetchers, are inadequate; 2) instruction and memory-

level parallelism are low, thus leaving the advanced out-of-order core underutilized;

3) the working set sizes exceed the capacity of the on-chip caches; 4) bandwidth

utilization of scale-out workloads is low.
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3.2.2 Efficient 3D-Stacked Servers

Prior work has shown that 3D stacking may be used for efficient server design.

PicoServer [42] proposes using 3D stacking technology to design compact and effi-

cient multi-core processors for use in tier 1 servers. The focus of the PicoServer is

on energy efficiency—they show that by closely stacking low-power cores on top of

DRAM they can remove complex cache hierarchies, and instead, add more low-power

cores. The improved memory bandwidth and latency allow for adequate through-

put and performance at a significant power savings. Nanostores [15] build on the

PicoServer design and integrate Flash or Memristors into the stack. Both PicoServer

and Nanostores could be used in a scale-out fashion to improve density, although this

was not addressed in the work. This paper builds on their designs to address density,

particularly in the context of Memcached.

More recently, Scale-Out Processors [59] were proposed as a processor for cloud

computing workloads. The Scale-Out Processor design uses 3D stacked DRAM as

a cache for external DRAM and implements a clever prefetching technique[36]. Our

designs differ in that we only use the on-chip DRAM or Flash for storage with no

external backing memory. This is possible because we share the Memcached data

over several independent stacks in the same 1.5U box.

3.2.3 Non-Volatile Memory File Caching in Servers

In addition to Nanostores, several prior studies have proposed using non-volatile

memory for energy-efficiency in servers [44, 46, 78]. They propose using non-volatile

memory (NAND Flash and phase-change memory) for file caching in servers. The use

of a programmable Flash memory controller, along with a sophisticated wear-leveling

algorithm, allow for the effective use of non-volatile memory for file caching, while

reducing idle power by an order of magnitude.
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3.2.4 Super Dense Servers

Super Dense Servers [21] have been shown to provide greater performance and

efficiency for CPU-bound electronic commerce workloads. However, for workloads

that require a large amount of physical memory—such as Memcached—traditional

servers provided a better solution. By utilizing state-of-the-art 3D-stacked memory

technology, we overcome the limitation of Super Dense Servers by providing a very

high level of memory density in our proposed server designs.

3.2.5 McDipper

Memcached has been used at Facebook for a wide range of applications, including

MySQL look-aside buffers and photo serving. Using DRAM for these applications is

relatively expensive, and for working sets that have very large footprints but moderate

to low request rates, more efficient solutions are possible. Compared with DRAM,

Flash solid-state drives provide up to 20× the capacity per server and still supports

tens of thousands of operations per second. This prompted the creation of McDipper,

a Flash-based cache server that is compatible with Memcached. McDipper has been

in active use in production at Facebook for nearly a year to serve photos [25]. Our

Iridium architecture targets these very large footprint workloads which have moderate

to low request rates. We further extend their solution by using Toshiba’s emerging

16-layer pipe-shaped bit cost scalable (p-BiCS) NAND Flash [41], which allows for

density increases on the order of 5× compared to 3D-DRAM.

3.2.6 Enhancing the Scalability of Memcached

Wiggins and Langston [86] propose changes in Memcached 1.6 to remove bottle-

necks that hinder performance when running on many core systems. They find that

the locking structure used to control access to the hash table and to maintain LRU

replacement for keys hinders Memcached when running with many threads. To miti-
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gate the lock contention they use fine grain locks instead of a global lock. In addition,

they modify the replacement algorithm to use a pseudo LRU algorithm, which they

call Bags. Their proposed changes increase the bandwidth to greater than 3.1 MRPS,

which is over 6× higher than an unmodified Memcached implementation.

3.2.7 TSSP

Lim et al. propose TSSP [54], which is an SoC including a Memcached accelerator

to overcome the need for a large core in Memcached clusters. They find that, due

to the network stack, Intel Atom cores would not be able to replace Intel Xeons in

a standard cluster configuration. TSSP is able to offload all GET requests from the

processor to the accelerator. The offload is accomplished by having a hash table

stored in hardware and having a smart NIC that is able to forward GET requests

to the accelerator. After data for a key is found, the hardware generates a response.

Because little work needs to be done by software, an ARM Cortex-A9 is a suitable

processor. The TSSP architecture achieves 17.63 KRPS/Watt.

3.2.8 Resource Contention in Distributed Hash Tables

distributed hash table (DHT) can suffer from issues that arise because there is

not a uniform distribution of requests across resources. Keys in a key value store

are assigned a resource by mapping a key onto a point in a circle. From this circle

each node is assigned a portion of the circle, or arc. A server is responsible to

store all data for keys that map onto their arc. Prior work dealing with resource

contention in DHTs shows that increasing the number of nodes in the DHT reduces

the probability of resource contention, because each node is responsible for a smaller

arc [40, 80]. Typically, increasing the number of nodes has been accomplished by

assigning one physical node to several virtual nodes. These virtual nodes are then

distributed around the circle, which results in a more uniform utilization of resources.
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Because we increase the number of physical cores with Mercury and Iridium, resource

contention should be minimized.

3.2.9 TILEPro64

Berezecki et al. [9] focus on adapting Memcached to run on the TILEPro64. In

this work they cite power consumption of data centers as an important component

for the success of a web service. With this in mind, they aim to improve the efficiency

of Memcached by running it on a TILEPro64. They compare their implementation

to both Opteron and Xeon processors running Memcached, and report an RPS/W of

5.75 KRPS/W, which is an improvement of 2.85× and 2.43× respectively.

3.2.10 FAWN

Andersen et al. design a new cluster architecture, called FAWN, for efficient, and

massively parallel access to data [2]. They develop FAWN-KV—an implementation

of their FAWN architecture for key-value stores that uses low-power embedded cores,

a log-structured datastore, and Flash memory. With FAWN-KV they improve the

efficiency of queries by two orders of magnitude over traditional disk-based systems.

The FAWN system focuses on the key-value and filesystem design, whereas our work

focuses on designing very dense servers.

3.3 Mercury and Iridium

The Mercury and Iridium architectures are constructed by stacking ARM Cortex-

A7s, a 10GbE NIC, and either 4GB of DRAM or 19.8GB of Flash into a single 3D

stack. The MAC unit of the NIC, which is located on the 3D stack, is capable of

routing requests to the A7 cores. A conceptual representation is presented in Figure

3.2a. To evaluate the use of 3D stacks with key-value stores, we vary the number

of cores per stack and measure the throughput and power efficiency for each server
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Figure 3.2: A Mercury server and a single stack. A Mercury stack is made up
of 8 DRAM layers, each 15.5mm×18mm, stacked with a logic layer containing the
processing elements, DRAM peripheral logic, and NIC MAC & buffers. These stacks
are then placed in a 400-pin BGA package. The 1.5U enclosure is limited to 96
Ethernet ports, each of which will be connected to a Mercury stack. Therefore, 96
Mercury stacks and 48 Dual NIC PHY chips are placed in the 1.5U enclosure. Due
to space limitations a separate diagram of Iridium is omitted, however the high-level
design is similar—the only difference being that we use a single layer of 3D-stacked
Flash for the Iridium design.

configuration. We designate the different architectures as Mercury-n or Iridium-n,

where n is the number of cores per stack. We estimate power and area requirements

based off of the components listed in table 3.1.

3.3.1 Mercury

While the primary goal of Mercury and Iridium is to increase data storage density,

this cannot be done at the expense of latency and bandwidth—the architecture would

not be able to meet the service-level agreement (SLA) requirements that are typical

of Memcached clusters. Thus we utilize low-power, in-order ARM Cortex-A7 cores

in our 3D-stacked architecture, and as we will show in §3.5, we are able to service a

majority of requests within the sub-millisecond range.
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3.3.1.1 3D Stack

The proposed Mercury architecture relies on devices from Tezzeron’s 3D-stacking

process [81]. This process allows us to stack 8 memory layers on a logic die through

finely-spaced (1.75µm pitch), low-power TSVs. The TSVs have a feedthrough capac-

itance of 2-3fF and a series resistance of < 3Ω. This allows as much as 4GB of data

in each individual stack.

The 4GB stack’s logical organization is shown in Figure 3.3a. Each 4GB 3D chip

consists of eight 512MB DRAM memory dies stacked on top of a logic die. The orga-

nization of the DRAM die is an extension [27] of Tezzaron’s existing Octopus DRAM

solution [82]. Each 3D stack has 16 128-bit data ports, with each port accessing an

independent 256MB address space. Each address space is further subdivided into

eight 32MB banks. Each bank, in turn, is physically organized as a 64×64 matrix of

subarrays. Each subarray is a 256×256 arrangement of bit cells, and is 60µm×35µm.

Figure 3.3b shows the physical floor plan of each DRAM memory die and the logic

die. The logic die is fabricated in a 28nm CMOS process and consists of address-

decoding logic, global word line drivers, sense amplifiers, row buffers, error correction

logic, and low-swing I/O logic with pads. Each memory die is partitioned into 16

ports with each port serving 1 of the 16 banks on a die. The memory die is fabricated

in a 50nm DRAM process and consists of the DRAM subarrays along with some logic,

such as local wordline drivers and pass-gate multiplexers.

While there are more advanced DRAM processes (e.g. 20nm), TSV yield in ex-

isting 3D-stacked prototypes has only been proven up to the 50nm DRAM process

node [47, 73]. All subarrays in a vertical stack share the same row buffer using TSVs,

and at most one row of subarrays in a vertical stack can have its contents in the row

buffer, which corresponds to a physical page. Assuming an 8kb page, a maximum

of 2,048 pages can be simultaneously open per stack (128 8kb pages per bank × 16
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Component Power (mW) Area (mm2)

A7@1GHz 100 0.58
A15@1GHz 600 2.82
A15@1.5GHz 1,000 2.82
3D DRAM (4GB) 210 (per GB/s) 279.00
3D NAND Flash (19.8GB) 6 (per GB/s) 279.00
3D Stack NIC (MAC) 120 0.43
Physical NIC (PHY) 300 220.00

Table 3.1: Power and area for the components of a 3D stack.

DRAM BW (GB/s) Capacity

DDR3-1333 [73] 10.7 2GB
DDR4-2667 [73] 21.3 2GB
LPDDR3 (30nm) [5] 6.4 512MB
HMC I (3D-Stack) [73] 128.0 512MB
Wide I/O (3D-stack, 50nm) [47] 12.8 512MB
Tezzaron Octopus (3D-Stack)[82] 50.0 512MB
Future Tezzaron (3D-stack)[27] 100.0 4GB

Table 3.2: Comparison of 3D-stacked DRAM to DIMM packages.
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Figure 3.3: Logical organization and physical floorplan of the 3D DRAM.

banks per physical layer). The device provides a sustained bandwidth of 6.25GB/s

per port (100GB/s total).

3.3.1.2 Address Space

The 3D stack DRAM has 16 ports for memory access, this segments the 4GB

stack into 256MB chunks. Each core is allocated one or more ports for memory

access, which prevents Memcached processes from overwriting each other’s address

range. If the Mercury or Iridium architectures increase past 16 cores, additional ports

would need to be added, or cores would need to share ports.

3.3.1.3 Memory Access

Other studies have shown that small cores alone are not able to provide the needed

bandwidth to be useful in key-value stores [54]. Mercury differs from this research

because it is coupled with a memory interface that provides higher bandwidth at a
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lower latency through 3D integration. For comparison, Table 3.2 shows the bandwidth

and capacity of several current and emerging memory technologies. Coupling cores

on the 3D stack allows Mercury to forego using an L2 cache, which prior research has

shown to be inefficient [54], and issue requests directly to memory. The 3D DRAM

has a closed page latency of 11 cycles at 1GHz. By having a faster connection to

memory we mitigate the cache thrashing by the networking stack reported in [54].

3.3.1.4 Request Routing

To simplify design and save power we do not use a router at the server level.

Instead, the physical network port is tied directly to a 3D stack. This allows for each

stack to act as a single node, or multiple nodes, without having contention from other

stacks. At the stack, we base our design off of the integrated NIC on the Niagra-2 chip

[7, 51]. The integrated NIC is capable of buffering a packet and then forwarding it to

the correct core. Cores on the same stack will need to run Memcached on different

TCP/IP ports. This simplifies request routing on the stack. The physical (PHY)

portion of the 10GbE is based on the Broadcom design [12] and is not located on the

stack.

3.3.2 Iridium

Due to the high cost of server real estate, physical density is first-class design con-

straint for key-value stores. Facebook has developed McDipper [25], which utilizes

Flash memory to service low-request-rate transactions while improving density by up

to 20×. McDipper has been in use for over a year to service photos at Facebook.

With Iridium we target these low-request-rate applications and explore the tradeoff

between physical density and throughput by replacing the DRAM in a Mercury stack

with NAND Flash memory. This comes at the expense of throughput per GB of
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storage, but is still applicable to low-request-rate high-density Memcached clusters,

such as Facebook’s photo server.

3.3.2.1 3D Stacked Flash

McDipper reported an increase in density by 20× when moving from DRAM

DIMMs to Solid-State drives. Because the Mercury design already improved density

through 3D-DRAM we will not see as significant a gain. To quantify the improve-

ment in the density of the stack we estimate our Flash density using the cell sizes of

Toshiba’s emerging pipe-shaped bit cost scalable (p-BiCS) NAND Flash [41]. Flash

cells are smaller than DRAM cells, offering a 2.5× increase in density. Because p-BiCS

has 16 layers of 3D Flash1, as opposed to 8 layers for 3D-stacked DRAM, this leads to

an overall 4.9× increase in density for Iridium stacks. For our access organization we

maintain Mercury’s 16 separate ports to DRAM by including 16 independent Flash

controllers. The read/write latency values and energy numbers used for simulation

are drawn from [28], which are conservative for 3D-stacked Flash. The power and

area numbers for Flash are shown in table 3.1. In addition, because the Flash latency

is much longer, an L2 cache is needed to hold the entire instruction footprint. Our

results in §3.5.2 will confirm this assumption.

3.4 Methodology

The following sections describe our Memcached setup, as well as our simulation

framework and power models.

1The 16 Flash layers are contained in a single monolithic layer of 3D Flash, and are not 3D
die-stacked.
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1.5U Mercury Server 1.5U Iridium Server
Cores per Stack 1 2 4 8 16 32 1 2 4 8 16 32

A
1
5

1
.5
G
H
z Area(cm2) 635 635 576 331 179 86 635 635 635 363 185 93

Power(W) 449 569 749 750 750 720 328 449 690 740 737 730
Density(GB) 384 384 348 200 108 52 1,901 1,901 1,901 1,089 554 277
Max BW(GB/s) 27 55 99 114 123 118 1 3 6 7 7 7

A
1
5

1
G
H
z

Area(cm2) 635 635 635 496 278 139 635 635 635 595 304 152
Power(W) 401 473 618 745 742 728 281 353 498 750 740 728
Density(GB) 384 384 384 300 168 84 1,901 1,901 1,901 1,782 911 455
Max BW(GB/s) 27 54 108 169 189 189 2 3 6 11 11 11

A
7

1
G
H
z

Area(cm2) 635 635 635 635 635 616 635 635 635 635 635 635
Power(W) 341 353 378 429 529 749 221 233 258 309 410 612
Density(GB) 384 384 384 384 384 371 1,901 1,901 1,901 1,901 1,901 1,901
Max BW(GB/s) 19 37 75 149 299 578 1 3 6 12 22 44

Table 3.3: Power and area comparison for 1.5U maximum configurations. For each
configuration we utilize the maximum number of stacks we can fit into a 1.5U server,
which is 96, or until we reach our power budget of 750W. The power and bandwidth
numbers are the maximum values we observed when servicing requests from 64B up
to 1MB.

3.4.1 Memcached

For our experiments we utilize the latest stable version of Memcached cross-

compiled for the ARM ISA. We modify our simulation infrastructure, which will be

described in the next section, to collect timing information. We do this, as opposed

to using library timing functions such as gettimeofday(), because they do not perturb

the system under test. All experiments are run with a single Memcached thread.

For our client we use an in-house Java client that is based on the work by Whalin

[85]. Because we measure performance from the server-side, the overhead of running

Java is not included with the measurements.

3.4.2 Simulation Infrastructure

To calculate the request rates that Mercury and Iridium are able to achieve, we

used the gem5 full-system simulator [10]. With gem5, we are able to model multiple

networked systems with a full operating system, TCP/IP stack, and Ethernet devices.

We use Ubuntu 11.04 along with version 2.6.38.8 of the Linux kernel for both the

server and client systems. On the client side we use Java SE 1.7.0 04-ea.
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While Mercury and Iridium both utilize ARM Cortex-A7 cores, we also explore the

possibility of using the more aggressive, out-of-order Cortex-A15 core by modelling

both cores in our simulation infrastructure. Simulations use a memory model with a

memory latency varied from 10-100ns for DRAM and 10-20µs for Flash Reads. Our

memory model represents a worst-case estimate as it assumes a closed-page latency

for all requests. To measure the TPS we vary request size from 64B to 1MB, doubling

request size at each iteration. We do not consider values greater than 1MB for the

following reasons: 1) Memcached workloads tend to favor smaller size data; 2) prior

work [54, 86, 4], against which we compare, present bandwidth per watt at data sizes

of 64B and 128B; and, 3) requests that are 64KB or larger have to be split up into

multiple TCP packets.

3.4.3 TPS calculation

To calculate the TPS we collect the RTT for a request, i.e., the total time it takes

for a request to go from the client to the server, then back to the client. Because

we use only a single thread for Memcached, the TPS is equal to the inverse of the

RTT. The RTT for each request is obtained by dumping TCP/IP packet information

from gem5’s Ethernet device models. The packet trace is run through TShark [88]

to parse out timing information. After timing information is obtained from gem5 for

a single core, we apply linear scaling to calculate TPS at the stack and server level.

Linear scaling is a reasonable approach in this context because each core on a stack

is running a separate instance of Memcached. Running separate instances avoids the

contention issue raised by the work of Wiggins and Langston[86]. For the Mercury-32

and Iridium-32 configurations we use the same approach, however we assume two

cores per memory port (as mentioned previously we can fit a maximum of 16 memory

ports on a stack), because Memcached has been shown to scale well for two threads

[86].
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3.4.4 Power Modeling

Table 3.1 has a breakdown of power per component, and Table 3.3 has the cumu-

lative power totals for each configuration of Mercury and Iridium at their maximum

sustainable bandwidths. To calculate the power of an individual stack we add to-

gether the power of the NIC, cores, and memory. The integrated 10GbE NIC is

comprised of a MAC and buffers. The MAC power estimates come from the Niagra-2

design [7, 51], and the buffers are estimated from CACTI [68]. The ARM Cortex-A7

and Cortex-A15 power numbers are drawn from [30], and the 3D DRAM is calculated

from a technical specification obtained from Tezzaron [27]. Because DRAM active

power depends on the memory bandwidth being used, we must calculate the stack

power for the maximum bandwidth that a given number of cores can produce. Similar

calculations are used to obtain NAND Flash power, which use read and write energy

values drawn from [28]. Finally, each stack requires an off-stack physical Ethernet

port. Power numbers for the PHY are based on a Broadcom part [12].

3.4.4.1 Power Budget for 1.5U Mercury System

In calculating the power for the 1.5U server system we multiply the per stack

power by the number of stacks. To determine how many stacks can fit in a 1.5U power

budget, we start with a 750W power supply from HP [32]. First 160W is allotted for

other components (disk, motherboard, etc.), after this we assume a conservative 20%

margin for miscellaneous power and delivery losses in the server. This results in a

maximum power of (750− 160)× 0.8 = 472W for Mercury or Iridium components.
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3.4.4.2 TPS/Watt calculation

When calculating the maximum number of 3D stacks that fit in a system, we used

the maximum memory bandwidth that Mercury and Iridium can produce. How-

ever, for proper TPS/Watt calculation, we estimate power by using the GB/s power

consumption of DRAM and Flash at the request size we are testing.

3.4.5 Area

Area estimates for the 10GbE NIC were obtained by scaling the Niagra-2 MAC to

28nm and the buffers were obtained from CACTI. The area for an ARM Cortex-A7

chip in 28nm technology is taken from [30]. DRAM design estimates for the next

generation Tezzaron Octopus DRAM were obtained from Tezzaron [27]. Given the

available area on the logic die of the Tezzaron 3D-stack, we are able to fit >400 cores

on a stack. However, the memory interface becomes saturated if there are ≥ 64 cores

in a stack. We are further limited, by the number of DRAM ports in a stack, to

16 cores per stack unless cores share the memory controller. In each 1.5U server,

multiple 3D stacks are used to increase the bandwidth and density. Once packaged

into a 400-pin 21mm×21mm ball grid array (BGA) package, each stack consumes

441mm2. Each NIC PHY chip is also 441mm2 and contains 2 10GbE PHYs/chip. If

77% of a 1.5U, 13in×13in motherboard [52] is used for Mercury or Iridium stacks and

associated PHYs, then the server can fit 128 Mercury or Iridium stacks. However,

only 96 Ethernet ports can fit on the back of a 1.5U server [61]. Therefore, we cap

the maximum number of stacks at 96.

3.4.6 Density

We define density to be the amount of DRAM that we can fit in the system. We

then maximize density within three constraining factors: power, area, and network
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connections. As more cores are added to the system, the power requirement for both

core power and DRAM bandwidth will increase, because of this there is a tradeoff

between throughput and density. Each stack can fit 4GB of DRAM or 19.8GB of

Flash and each server can fit up to 128 3D stacks, which gives a maximum density of

512GB of DRAM for Mercury or 2.4TB of Flash for Iridium. Each server can fit a

maximum of 96 network connections, capping the number of stacks to 96 and density

to 384GB of DRAM for Mercury or 1.9TB of Flash for Iridium.

3.5 Results

We evaluate several different 3D-stacked server configurations, which are differen-

tiated based on the number (and type) of cores per stack, and on the type of memory

used. DRAM-based configurations we call Mercury, while Flash-based configurations

are called Iridium (because Iridium is more dense).

3.5.1 Request Breakdown

We first explore the different components of GET and SET requests. Figures

3.4 and 3.5 show a breakdown of execution time for both GET and SET requests

respectively; execution is broken down into three components: hash computation time

(Hash Computation), the time in metadata processing to find the memory location

of the data (Memcached), and time spent in the network stack and data transfer

(Network Stack). These experiments were run using a single A15 @1GHz, with a

2MB L2 cache, and DRAM with a latency of 10ns. We ran these experiments for

various configurations, however the results were similar.
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3.5.1.1 GET and SET requests

Figure 3.4 shows the breakdown of execution during a GET request. For requests

up to 4KB roughly 10% of time is spent in Memcached, 2-3% is spend in hash com-

putation, and a vast majority of the time (87%) is spent in the network stack. At

higher request sizes nearly all of the time is spent in the network stack, which is in

agreement with prior research [54].

Figure 3.5 shows the breakdown of execution during a SET request. As expected,

hash computation takes up the same amount of time for a SET request as it does

for a GET request, however it represents a much smaller portion of the time: only

around 1%. Also as expected, Memcached metadata manipulation takes up more

computation for a SET request: up to 30% in some cases. Network processing is still

the largest component at nearly 70% for some request sizes.

Because the network stack takes up a significant portion of the time, utilizing ag-

gressive out-of-order cores is inefficient. As we will demonstrate, by closely integrating

memory with many low-power cores, we can achieve a high-level of throughput much

more efficiently than traditional servers.

3.5.2 3D-Stack Memory Access Latency Sensitivity

While the focus of this work is on improving density for Memcached servers,

this cannot be provided at the expense of latencies that would violate the SLA. To

explore the effect memory latency and CPU performance have on overall request RTT

we measure the average TPS, which is the inverse of the average RTT for single-core

Mercury and Iridium stacks. The lower the RTT the higher the TPS, thus a higher

TPS indicates better overall performance for individual requests.

Figures 3.6, 3.7, 3.8, and 3.9, show the TPS sensitivity to memory latency, with

respect to GET/SET request size, for a Mercury-1 stack. We evaluate a Mercury-1
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Figure 3.6: TPS for an A15-@1GHz-based Mercury stack with a 2MB L2 cache.
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Figure 3.7: TPS for an A15-@1GHz-based Mercury stack with no L2 cache.
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Figure 3.9: TPS for an A7-based Mercury stack with no L2 cache.
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Figure 3.10: TPS for an A15-@1GHz-based Iridium stack with a 2MB L2 cache.
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Figure 3.12: TPS for an A7-based Iridium stack with a 2MB L2 cache.
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Figure 3.13: TPS for an A7-based Iridium stack with no L2 cache.
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stack for an A15 and an A7, both with and without an L2 cache. We also explored

using an A15 @1.5GHz, which is the current frequency limit of the A15, however

we do not report these results because they are nearly identical to an A15 @1GHz.

For each configuration we sweep across memory latencies of 10, 30, 50, and 100ns.

Similarly, figures 3.10, 3.11, 3.12, and 3.13 demonstrate the throughput sensitivity

to memory latency for an Iridium-1 stack. For Iridium-1 we sweep across Flash read

latencies of 10 and 20µs; write latency is kept at 200 µs.

Figures 3.6 and 3.7 show the average TPS for an A15-based Mercury-1 stack with

and without an L2 cache respectively. As can be seen, at a latency of 10ns the L2

provides no benefit, and may hinder performance. Because the DRAM is much faster

than the core, the additional latency of a cache lookup, which typically has poor

hit rates, degrades the average TPS. However, at the higher DRAM latencies the L2

cache significantly improves performance; while the stored values are typically not

resident in the L2 cache, instructions and other metadata benefit from an L2 cache.

Similarly, figures 3.8 and 3.9 report average TPS for an A7-based Mercury-1 stack

with and without and L2 cache. Because of the less aggressive core, the L2 cache

makes less of a difference for an A7-based Mercury-1 stack. The A15-based Mercury-

1 stack significantly outperforms an A7-based Mercury-1 stack by about 3× at the

lower request sizes. If the L2 cache is removed, the A15 only outperforms the A7 by

1-2× at the lower request sizes.

Finally, figures 3.10,3.11, 3.12,and 3.13 report the average TPS for an Iridium-1

stack. Because of the relatively slow read and write latencies of Flash, an L2 cache

is crucial for performance; removing the L2 cache yields average an average TPS

below 100 for both the A7 and A15, which is not acceptable. However, with an L2

cache both the A15 and A7 can sustain an average of several thousand TPS for GET

requests, with a bulk of the requests being serviced under 1ms. For SET requests

the average TPS is below 1,000, however GET requests have been shown to make
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up a bulk of the requests for typical Memcached applications [4]. Because of Flash’s

relatively slow speed, the A15 outperforms an A7 by around 25% on average.

These results demonstrate the tradeoff between core and memory speed and per-

formance. If very low response time is required for individual requests, faster memory

and cores are desired. If, however, throughput and density are first-class constraints,

then less aggressive cores and memory may be used without violating the SLA; as we

will show in the next sections, density and efficiency may be vastly improved.

3.5.3 Density and Throughput

We define the density of a stack to be the total amount of memory it contains.

Figures 3.14 and 3.15 illustrate the tradeoff between density and total throughput for

different Mercury and Iridium configurations. Throughput is measured as the average

TPS for 64B GET requests; prior works have shown that small GET requests are the

most frequent requests in Memcached applications, and base their evaluations on such

requests [86, 4]. Each configuration is labelled Mercury-n or Iridium-n, where n is the

number of cores per stack. For all Mercury configurations we use a DRAM latency

of 10ns, and for all Iridium configurations we use Flash read and write latencies of

10 and 200µs respectively. In each configuration the core contains a 2MB L2 cache.

table 3.3 lists the details of each separate Mercury and Iridium configuration.

The core power (listed in table 3.1) is the limiting factor when determining how

many total stacks our server architecture can support. As figures 3.14 and 3.15 show,

the A15’s higher power consumption severely limits the number of stacks that can fit

into our power budget. At 8 cores per stack we see a sharp decline in density, while

performance levels off. The A15’s peak efficiency comes at 1GHz for both Mercury-8

and Iridium-8 stacks, where we are able to fit 75 stacks (600 cores) and 90 stacks

(720 cores) respectively; Mercury-8 can sustain an average of 17.29 million TPS with

300GB of memory, while Iridium-8 can sustain an average of 5.45 million TPS with
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Figure 3.14: Density and throughput for Mercury stacks servicing 64B GET requests.
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Figure 3.15: Density and throughput for Iridium stacks servicing 64B GET requests.

approximately 2TB of memory.

The A7’s relatively low power allows us to fit nearly the maximum number of

stacks into our server, even at 32 cores per stack. Because of this, the A7-based

Mercury and Iridium designs are able to provide significantly higher performance and

density than their A15-based counterparts. Mercury-32 can sustain an average TPS

of 32.7 million with 372GB of memory, while Iridium-32 can sustain an average TPS

of 16.48 with approximately 2TB of memory.

The A7 provides the most efficient implementation for both Mercury and Iridium
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Figure 3.16: Power and throughput for Mercury stacks servicing 64B GET requests.
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Figure 3.17: Power and throughput for Iridium stacks servicing 64B GET requests.
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stacks, however Mercury-32 provides around 2× more throughput when compared

to Iridium-32; Iridium-32, on the other hand, provides nearly 5× more density. If

performance is a primary concern Mercury-32 is the best choice. If high density is

needed, Iridium-32 provides the most memory and is still able to satisfy the SLA

requirements.

3.5.4 Power and Throughput

The power and throughput tradeoff is shown in figures 3.16 and 3.17. Again, we

measure the throughput of our system while servicing 64B GET requests. Because

we are limited to a maximum of 96 stacks for a single server, the configurations that

contain 1, 2, or 4 cores are well under our maximum power budget of 750W, however

as we add more cores per stack we come close to saturating our power budget. As

power becomes a constraint, the number of stacks we are able to fit into our power

budget is reduced. Thus, there is a tradeoff between total throughput and overall

power. We seek to maximize throughput while staying within our power budget,

therefore we always opt for a system with the maximum number of stacks if possible.

Figure 3.16 shows that, for Mercury, the A15’s power quickly becomes prohibitive,

limiting the number of cores we can fit into a server given our 750W power budget.

The best A15 configuration is a Mercury-16 system that uses A15s @1GHz. An aver-

age of 19.36 million TPS can be sustained at a power of 678W. The max throughput

for a Mercury-32 system using A15s @1GHz uses slightly less power than the Mercury-

16 system, while delivering nearly the same throughput, because less stacks are used.

Using A7s we are able to fit nearly the maximum number of stacks, while staying

well below our power budget. A Mercury-32 system using A7s is the most efficient

design, delivering 32.7 million TPS at a power of 597W.

For Iridium, the A15 is even less efficient, as seen in figure 3.17—the A15’s extra

power does not help performance because it often waits on memory. The throughput
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Mercury Iridium Memcached TSSP
Version n=8 n=16 n=32 n=8 n=16 n=32 1.4 1.6 Bags —

1
.5
U

S
er
v
er

@
6
4
B

R
eq

u
es
t Stacks 96 96 93 96 96 96 1 1 1 1

Cores 768 1,536 2,976 768 1,536 3,072 6 4 16 1
Memory(GB) 384 384 372 1,901 1,901 1,901 12 128 128 8
Power(W) 309 410 597 309 410 611 143 159 285 16
TPS(millions) 8.44 16.88 32.70 4.12 8.24 16.49 0.41 0.52 3.15 0.28
TPS(thousands)/Watt 27.33 41.21 54.77 13.35 20.13 26.98 2.9 3.29 11.1 17.6
TPS(thousands)/GB 21.98 43.96 87.91 2.17 4.34 8.67 34.2 4.1 24.6 35.3
Bandwidth(GB/s) 0.54 1.08 2.09 0.26 0.53 1.06 0.03 0.03 0.20 0.04

Table 3.4: Comparison of Mercury and Iridium to prior art. We compare several
versions of Mercury and Iridium (recall n is the number of cores per stack) to different
versions of Memcached running on a state-of-the-art server, as well as TSSP. The
bold values represent the highest density (GB), efficiency (TPS/W), and accessibility
(TPS/GB).

for an A7-based Iridium-32 system is half that of an A7-based Mercury-32 system

at roughly the same power budget. However, as noted above the Iridium-32 system

provides 5× more density. The power of Iridium is slightly higher than Mercury

because the relatively low power of Flash allows for more stacks.

3.5.5 Cooling

The TDP of a Mercury-32 server is 597W (the same as today’s 1.5U systems) and

is spread across all 96 stacks; in contrast to a conventional server design where all the

power is concentrated on a few chips. This yields a TDP for an individual stack of

6.2W. Thus, we expect the power of each Mercury chip to be within the capabilities

of passive cooling, and an active fan in the 1.5U box can be used to extract the

heat. Prior work on the thermal characterization of cloud workloads also supports

this notion [65].

3.5.6 Comparison to Prior Work

To gauge the performance of Mercury and Iridium we compare their efficiency,

density, and performance to modern versions of Memcached running on a state-of-
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the-art server. Table 3.4 lists the pertinent metrics for the best performing Mercury

and Iridium configurations, and compares them to prior art. As can be seen in this

table both Mercury and Iridium provide more throughput, 10× and 5.2× more than

Bags respectively, primarily due to the massive number of cores they can support. At

the same time, the use of low-power cores and integrated memory provides greater

efficiency: 4.9× higher TPS/W for Mercury and 2.4× more for Iridium. Because of

the speed of memory used in Mercury systems, it can even make better use of its

density yielding an average TPS/GB that is 3.4× higher than Bags. Iridium has

2.8× less TPS/GB on average due to its much higher density. Overall, Mercury and

Iridium provide 2.9 × and 14.8× more density on average, while still servicing a

majority of requests within the sub-millisecond range.

The table also reports the same metrics for TSSP, which is an accelerator for

Memcached. While this work aims to improve the efficiency of Memcached by using

specialized hardware, the 3D-stacked Mercury and Iridium architectures are able to

provide 3× and 1.5× more TPS/W respectively.

3.6 Conclusion

Distributed, in-memory key-value stores, such as Memcached, are so widely used

by many large web companies that approximately 25% of their servers are devoted

solely to key-value stores. Data centers are expensive, a fact which requires that

each unit be used as efficiently as possible. While previous works have recognized the

importance of key-value stores, and the fact that they are inefficient when run on com-

modity hardware, the approach has typically been to try to improve the performance

and efficiency of existing server systems.

In this work we propose using state-of-the-art 3D stacking techniques to develop

two highly-integrated server architectures that are not only able to allow low-power,

embedded CPUs to be used without sacrificing bandwidth and performance, but are
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also able to drastically improve density. This is a crucial component to keeping the

cost of ownership for data centers down. Through our detailed simulations, we show

that, by using 3D stacked DRAM (Mercury), density may be improved by 2.9×,

efficiency by 4.9×, TPS by 10×, and TPS/GB by 3.5× over a current state-of-the-art

server running an optimized version of Memcached. By replacing the DRAM with

Flash our Iridium architecture can service moderate to low request rate servers with

even better density while maintaining SLA requirements for the bulk of requests.

Iridium improves density by 14×, efficiency by 2.4×, TPS by 5.2×, with only a 2.8×

reduction in TPS/GB compared to current Memcached servers.
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CHAPTER IV

Integrated Networking for Dense Servers

4.1 Introduction

Internet services operate on massive data sets and are responsible for servicing

many real-time requests to small, disparate pieces of data. Servicing these requests

from the back-end databases does not scale well; fortunately the size and popularity of

requested objects exhibit power-law distributions [3, 17], which makes them suitable

for in-memory caching. As we enter the peta-scale era, key-value stores will become

one of the foremost scale-out workloads used to improve the scalability of internet

services. As such, vast data center resources will be dedicated solely to key-value

stores in order to ensure that QoS guarantees are met.

Key-value stores are currently deployed on commodity off-the-shelf hardware,

which is not ideal due to numerous inefficiencies caused by a mismatch with the

application domain. The highly distributed nature of key-value stores requires fre-

quent remote memory accesses, which can be several orders of magnitude slower than

local memory when nodes are connected using commodity networking technology.

Several prior works have shown that key-value store applications do not fully utilize

high-end OoO CPUs—exhibiting poor cache hit rates, and high branch mis-prediction

rates—and do not come close to saturating available memory or network bandwidth

[2, 22, 23, 56]. The primary cause of this inefficiency is the overhead associated with
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processing individual network packets, which typically carry small payloads on the

order of kilobytes. The large code footprints associated with the networking stack

and operating system code cause a bottleneck in the instruction fetch portion of the

CPU; and complex, off-chip NICs cause slow data transfers.

As the bandwidth of network interfaces approaches 1Tb/s [87]—matching the

available bandwidth of the CPU’s memory controller—the problem of network packet

processing will be exacerbated. The overhead of relying on the CPU and OS to pro-

cess packets, and get data off chip, will be the limiting factor to fully utilizing available

network bandwidth. To ensure QoS requirements are met, on-chip networking hard-

ware with DMA capabilities—along with lightweight networking protocols—will be

crucial.

In this work we design simple, integrated networking hardware that allows for

a low-overhead—yet general purpose and powerful—networking protocol. We pro-

pose KeyVault, building upon the Mercury server design [29], extending it to include

simple, zero-copy NICs along with an integrated switch fabric and a lightweight com-

munication protocol. In summary, we make the following contributions:

• We make the observation that, in order to achieve maximum performance, it is

not necessary to bypass the CPU and OS completely when processing requests.

Performing zero-copy packet transmission is enough to outperform solutions

that completely bypass the CPU.

• Design an integrated NIC that allows for true zero-copy packet transmission.

• Specify a networking protocol that makes full use of the integrated NICs,

thereby reducing the RTT of requests, and improving the max sustainable RPS.

• Design an integrated switching fabric that allows the network links to be shared

amongst several stacks, thereby improving the network link utilization.
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Figure 4.1: 1.5U Server configuration for Mercury and KeyVault servers. By reducing
the need for complex networking hardware, a KeyVault server can fit more memory
and compute into a single 1.5U server box than a Mercury server while improving
throughput and latency.

• Provide a detailed design space exploration of various 1.5U KeyVault server

designs, contrasted with prior works.

The rest of the paper is organized as follows: we motivate the need for physical density

in §4.2; we then describe how our networking hardware and communication protocol

improve the efficiency and performance of dense servers in §4.3 and §4.4; in §4.5 we

provide details about our experimental methodology and evaluation; we discuss and

analyze the results of our evaluation in §4.6; finally, we discuss prior work in §4.7 and

conclude in §4.8.

4.2 A Case for Physically Dense Servers

In this section we describe some of the characteristics of modern data centers that

highlight the need for dense server architectures.
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4.2.1 Warehouse-Scale Computing

Figure 1.2 shows the three-tiered structure of modern internet services. In the first

tier requests are routed by a DNS to a front-end server, which is responsible for HTTP

caching, load balancing, etc. The load balancer schedules requests to be serviced by

the application servers—which generate content—based on queue length, quality of

placement, and the resource requirements of the request. All content is stored in the

back-end database, however alongside the database there is typically an in-memory

caching layer that stores frequently accessed objects in memory. As the volume of

data in the cloud increases, there is a growing trend towards distributing large data

sets across many servers and pushing the compute—e.g., database queries, key-value

GETs, etc.—to the data. The highly distributed nature of these applications requires

that most data accesses must be done over the data center’s network, which is a

source of significant delay [79].

Data centers are provisioned to meet peak demand, ensure low variability for

response times, and provide fault tolerance. Current data centers employ commodity

hardware because of its cost-effective performance. This leads to data center designs

that push the limits of power supplies, warehouse space, and cooling, without fully

utilizing the available compute, storage, or communication resources; data centers

typically operate between 10-50% utilization on average [8].

4.3 KeyVault

In this section we describe the Mercury server architecture as described in [29],

and describe how KeyVault extends that work to increase throughput, reduce latency,

and improve efficiency of the network and memory bandwidth.
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Figure 4.2: The components of a KeyVault server in detail.

4.3.1 Mercury

In [29], the authors propose several server designs—using 3D-stacked memory and

low-power CPUs—in order to improve the amount of memory density and throughput

achievable by a single 1.5U key-value store server. They perform a design space ex-

ploration of two server architectures: Mercury (DRAM-based) and Iridium (FLASH-

based). Their servers are able to fit 96 stacks, each of which contains up to 32 CPUs

3D-stacked DRAM; or a single layer of 3D FLASH in the case of Iridium. Figure 4.1a

shows the layout of a single 1.5U Mercury server. Their results ultimately show that

by using low-power, in-order CPUs along with 3D-stacked DRAM, memory density

can be improved. Moreover, it can achieve a high overall request rate while meeting

a strict SLA.

While their proposed architectures improve the overall throughput, memory den-

sity, and power efficiency of a 1.5U key-value store server, they do not address the

issue of high network overhead, which leaves the 96 10GbE links their servers require

highly underutilized. Their work also does not address the need for expensive, top-

of-rack switches required to facilitate the 96 Ethernet ports on their 1.5U box. The

network overhead also limits the potential latency and throughput improvements that

are available by using fast, 3D-stacked memory.
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4.3.2 3D-Stack Technology

The KeyVault architecture relies on the same 3D-stacking process as Mercury [82].

This process allows us to stack 8 memory layers on a logic die through finely-spaced

(1.75µm pitch), low-power TSVs. The TSVs have a feedthrough capacitance of 2-3fF

and a series resistance of < 3Ω. This allows up to 4GB of data in each individual

stack.

Each 4GB 3D chip consists of eight 512MB DRAM memory dies stacked on top

of a logic die. The organization of the DRAM die is an extension [26] of Tezzaron’s

existing Octopus DRAM solution [82]. Each 3D stack has 16 128-bit data ports, with

each port accessing an independent 256MB address space. Each address space is fur-

ther subdivided into eight 32MB banks. Each bank, in turn, is physically organized

as a 64×64 matrix of subarrays. Each subarray is a 256×256 arrangement of bit cells,

and is 60µm×35µm.

The logic die is fabricated in a 28nm CMOS process and consists of address-

decoding logic, global word line drivers, sense amplifiers, row buffers, error correction

logic, and low-swing I/O logic with pads. Each memory die is partitioned into 16

ports with each port serving 1 of the 16 banks on a die. The memory die is fabricated

in a 50nm DRAM process and consists of the DRAM subarrays along with some logic,

such as local wordline drivers and pass-gate multiplexers.

While there are more advanced DRAM processes (e.g. 20nm), TSV yield in ex-

isting 3D-stacked prototypes has only been proven up to the 50nm DRAM process

node [47, 73]. All subarrays in a vertical stack share the same row buffer using TSVs,

and at most one row of subarrays in a vertical stack can have its contents in the row

buffer, which corresponds to a physical page. Assuming an 8kb page, a maximum

of 2,048 pages can be simultaneously open per stack (128 8kb pages per bank × 16

banks per physical layer). The device provides a sustained bandwidth of 6.25GB/s

per port (100GB/s total).
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4.3.3 KeyVault

The KeyVault architecture builds off the Mercury design—using the same 3D-

stacked DRAM technology—yet aims to eliminate the inefficiencies present due to

high network overheads. KeyVault is able to realize the full potential of the 10GbE

links and 3D-stacked memory, while maintaining all of the density benefits achieved

by Mercury. A detailed diagram of a 1.5U KeyVault server is shown in figure 4.1b.

We remove the need for 96 10GbE ports by including a key-value distributor

(KVD)—an integrated switching fabric that can connect a single 10GbE port to a

cluster of stacks. By doing so we not only remove the need for many expensive net-

working components, we also improve the utilization of the available network links.

Another key component of the KeyVault architecture is the inclusion of an integrated

NIC that is connected directly to the cache hierarchy, and is capable of zero-copy

packet transfer. A simplified communication protocol, discussed in section 4.4, re-

duces per-packet processing overhead, thereby reducing overall request latency.

The individual KVDs—each with its own MAC and IP addresses—are connected

to a single 10GbE port and are able to directly communicate with the stacks in a sin-

gle cluster. Each KVD can communicate with other KVDs to allow stacks in separate

clusters to communicate with each other. We use 10GbE technology in our study for

simplicity, however our designs do not rely on this and could be seamlessly integrated

with other communication links, such as InfiniBand.

4.3.3.1 Key-Value Distributor

The KVD contains a reliable, full-duplex switching fabric. The switch fabric

is implemented as an n×n crossbar, where n is the number of connected stacks, and

buffers packets at the input and output ports. Because the KVD’s ports are hardwired

to stacks, there is no need for costly TCAM lookups to determine the destination port;
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instead stacks are statically assigned stack IDs, and the KVD performs simple packet

inspection on the network layer packets in order to route packets. The NIC and KVDs

operate on standard Ethernet frames.

The KVD contains two primary engines that are responsible for forwarding packets

to their destination: a broadcast engine and a forwarding engine. The broadcast

engine is responsible for packet replication and ensuring that a packet is broadcast

to all connected ports. A special stack ID is designated in order to specify that

a broadcast should be performed. The forwarding engine sends packets from the

receive (Rx) queues of the input ports, to the transmit (Tx) queues of the destination

port. A simple least-recently-granted (LRG) arbitration policy is used to handle

requests that compete for a destination port.

4.3.3.2 Zero-Copy NIC Design

The on-stack NICs and are inspired by previous work on highly integrated NICs [11,

35]. The NICs comprise Rx and Tx DMA engines, a set of memory-mapped registers,

and Rx and Tx buffers. It connects directly to the cache hierarchy, however it does

not respond to snoop requests. This allows zero-copy placement of the NIC’s payload

directly into an application’s user-space buffers, eschewing the need for complex DMA

descriptor rings. The NIC has access to the system MMU and TLB to perform address

translation, and the DMA engines operate on physical addresses.

In order to simplify the communication protocol and improve throughput, our NIC

virtualizes its registers, buffers, and DMA engines on a per-connection basis. Each

open connection to the NIC has a unique connection ID, which is 16 bits in length,

and is used to identify the open file descriptor associated with a particular connection.

The status register contains flags regarding whether or not the device is available to

receive or transmit data: RXREADY and TXREADY, as well as flags to indicate
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Figure 4.3: The HW/SW interface of the integrated NIC.

that a receive or transmit operation has completed: RXDONE and TXDONE. These

flags are primarily used by the poll() system call. There is also a packet offset

field: PKTOFFSET that specifies the offset into the NICs buffer if a packet was

not completely read during a read() system call. Finally, there are registers that

hold the starting address to be read from or written to: RXADDR and TXADDR

respectively. The command register contains two flags: RXGO and TXGO, which

are used to start a receive or transmit operation respectively. The command register

also contains a field that specifies how many bytes are to be read or written. The

NIC can generate interrupts when there is data present for reading, or if buffer space

becomes available after a transmit completes.

4.4 Communication Protocol and Software Layer

User applications send and receive packets via a lightweight software stack that

implements a low-overhead communication protocol. The software library interacts

with the integrated NIC through its driver, which provides support for the standard

file operations: open(), read(), write(), poll(), etc.
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4.4.1 Device Driver

User applications open connections to the integrated NIC via a lightweight net-

working API, which uses the open() system call as a backend. Each open connection

creates a new file descriptor on the integrated NIC—e.g., /dev/kv accel/connection id—

and is associated with its own unique connection ID, which indicates to the driver

which file descriptor a connection belongs to. Each connection has its own set of

virtual registers within the NIC.

Figure 4.3 shows the overall software flow for sending and receiving packets via

the integrated NIC. Memcached uses libevent, which relies on the poll() system

call, to perform non-blocking I/O. When the Memcached client or server start, they

register an event loop that polls on an open connection to determine whether or

not it is available for reading or writing. The device driver reads the status register

of the NIC for a particular connection to determine if it is indeed available, and if

not, puts the polling thread on a wait queue. Once the device’s buffers have data

available for reading, or space is freed up in the case of a write, the device triggers

an interrupt. The driver’s interrupt handler will then wake up any process waiting

on that connection, which triggers a libevent callback to be executed. The callback

then reads or writes data—via read() or write() system calls—and processes any

commands received. On a read or write the driver simply sends the address of the

user space buffer to be read from or written to, and it not responsible for copying

data to or from kernel space buffers. It should be noted that polling is not necessary

to send or receive packets via the integrated NIC; polling just happens to be the way

Memcached implements non-blocking I/O.

Because our NICs are only directly accessing per-connection buffers—and not ac-

tually touching the applications internal data structures—all synchronization can be

handled by the software, which simplifies our zero-copy implementation.
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Component Power (mW) Area (mm2) Parameters

A15-like CPU 1,000 2.82 3-wide, 1.5GHz, 32KB L1, 2MB L2
3D DRAM 210 279 4GB, 10ns R/W
NIC 120 0.43 128KB Rx/Tx buffers
KVD 819 32 1Gbps links, 12 ports, 128KB Rx/Tx buffers
PHY 300 220 10GbE

Table 4.1: Per component descriptions for a KeyVault cluster.

4.4.2 Communication Protocol

KeyVault servers communicate over a simple, connection-based protcol, which

primarily touches the data link, network, and transport layers. The communication

protocol combines aspects from both RDMA over Infiniband as well as traditional

TCP/IP, however there are differences from both as well. In particular, the software

layer assumes that packets are delivered over a reliable switching fabric—this means

that the switching fabric does not drop packets due to full queues. To accomplish

this the fabric must provide some sort of lossless flow control e.g., credit-based flow

control where packets may only be sent over links if it has enough credits to do so; the

number of credits available are based on the available queue space at the other end of

the link. The software layer also creates virtual point-to-point connections—similar

to Infiniband—between endpoints, this ensures that packets will not be reordered

with respect to packets in the same virtual channel. Packets may be reordered over

the physical link with respect to packets from other virtual channels however. The

only errors that can occur are bit errors due to the physical link corrupting bits,

which is extremely rare. To correct for this an error correcting code is used and the

software transport layer handles the error checking and resending of packets, similar

to traditional TCP/IP.
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4.4.2.1 Data Link Layer

Packets are encapsulated in standard Ethernet frames and delivered over our

reliable switching fabric, meaning that packets are not dropped due to full queues. A

sliding window protocol is used for flow control. When the hardware buffers become

full for a given connection, the process to which the connection belongs waits until

space becomes free. Packet loss can only occur when bit errors occur due to hardware

failures, which are rare. Error checking and packet retransmission is handled at the

transport layer.

4.4.2.2 Network Layer

Once a packet is routed to a KVD via its IP and MAC addresses, it is then

forwarded to a stack based on stack ID. The network layer packet’s header contains

the source and destination stack IDs. We use 4 bits for each field— we cap the

number of connected stacks at 12—and addresses 0xE and 0xF are used to indicated

broadcasts and multicasts respectively. As previously mentioned, the KVDs inspect

packets to retrieve the associated stack IDs so they may directly forward packet to

their destination stack.

4.4.2.3 Transport Layer

The primary fields in the transport layer’s header are the source and destination

connection IDs—each of which is 16 bits long—and a 32 bit request ID that is asso-

ciated with outstanding requests at a sender connection. The header also contains

a 32 bit checksum. Once the packet reaches the NIC of its destination stack, the

on-stack NIC inspects the packet once again in order to determine the connection for
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which it is bound. The packet is placed into the hardware buffer associated with the

destination connection. If necessary, an interrupt is generated to let the driver know

that a connection has received a packet.

At the destination node, the networking software performs a checksum on the

packet and sends an appropriate response to the sending connection. In the case

of a bit error, a reply is sent to the source node requesting a retransmission of the

packet. The destination for the reply packet is determined based on the sender’s

connection and stack IDs, as well as its IP and MAC addresses. At the sender , each

request has an associated request ID, which is used to determine which request a re-

sponse is acknowledging. The destination’s stack and connection ID are determined

by performing a simple hash on the request’s key.

4.5 Experimental Methodology

We evaluate an entire KeyVault system—and replicate the Mercury design—using

detailed full-system simulation. Client and Server machines are modeled.

4.5.1 Key-Value Store Software

We use Memcached—a popular, open-source key-value store implementation—in

all of our experiments. Memcached performs a few simple operations on the cache,

the primary operations being GET, SET, and DELETE. The Memcached software

itself performs little computation, and operates on relatively small in-memory objects.

We compile Memcached version 1.4.15, and libevent version 2.0.21, for the ARMv7.

Libevent is a library that uses the poll() system call as a backend. Memcached uses

libevent to perform non-blocking I/O. We modify the Memcached source to use our

networking API, as opposed to the Berkeley sockets API. The changes required are

minimal as we only need to modify the code responsible for the management of sock-

ets.
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4.5.2 Memcached Client

For our client we use the Memcached client that is included in CloudSuite [22].

The Memcached client uses a popularity distribution of object sizes to generate re-

quests. A user can specify a desired RPS value—which is the number of requests the

client will attempt to send each second—as well as the ratio of GETs to SETs. The

number of client connections and threads can also be specified. The client generates

requests in an open-loop fashion, meaning it does not wait for a response before send-

ing additional requests. The client outputs several important metrics: the achieved

RPS, the average request latency, and the tail latencies. The client assumes a strict

SLA that requires 95% of all requests be satisfied within 10ms.

To generate requests we use two workloads: the FriendFeed and MicroBlog work-

loads as described in [56]. Both workloads use an object size distribution that is

based on a sample of ”tweets” collected from Twitter, and is available as part of

CloudSuite. These workloads represent the objects that are typically cached by pop-

ular social networking sites such as Twitter and Facebook. The messages are usually

brief—a max of 140 characters in the case of Twitter—leading to an average object

size of approximately 1KB. The FriendFeed and MicroBlog workloads use the same

object distribution, as prior work has shown that Facebook status updates and Twit-

ter tweets have similar object sizes and popularity distributions [3]. The FriendFeed

workload, however, uses MULTI-GET requests, which are central in Facebook’s Mem-

cached implementation [20]. As with the Memcached server software, we modify the

client software to use our networking API in place of Berkeley sockets and compile

for the ARM v7 ISA.

4.5.3 Simulation Infrastructure

To evaluate the performance of a KeyVault server, and compare it to the Mer-

cury server, we use the gem5 full-system simulator [10]. gem5 is capable of modeling
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multiple networked systems with detailed CPU, memory, and device models. It is

capable of running full operating systems and networking stacks. Table 4.1 shows a

detailed breakdown of the components on a single KeyVault stack. For each stack

modeled in gem5, we use the O3CPU model in a Cortex-A15-like configuration. We

implement our integrated NIC and the KVD in gem5, and all networking devices are

connected with 10Gbps network links. The Mercury stack is modeled nearly identi-

cally with the exception of the on-stack NIC. KeyVault uses our custom integrated

NIC design, while the Mercury stack has a standard Ethernet NIC and uses the Intel

e1000 network driver. The Mercury stacks also have dedicated 10GbE links, whereas

our KeyVault stacks share a single 10GbE port through the KVD.

In all of our experiments we have a single client system and one or more server sys-

tems. We fast-forward through the kernel boot process and warmup the Memcached

server with functional simulation. We then switch to the detailed O3CPU model and

simulate for 60 seconds, taking a sample of the sustained RPS, and average latency

values every second. We sweep through a variety of attempted RPS values, from

1,000 RPS to 5 million RPS.

4.5.4 Operating System

The client and server software are run on Ubuntu server version 11.04, with version

3.3.0-rc3 of the Linux kernel, both built for the ARM v7 ISA. PCIe support is added

to the kernel via the patch on the gem5 website. We used this kernel in all of our

simulations and our NIC driver is built against its source.

4.5.5 Power Modeling

To calculate the total power budget for a KeyVault server we first assume a 750W

power supply from HP [33]. We allocate 160W for miscellaneous components and the

motherboard. We then assume a 20% margin for power and delivery losses, which is a
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conservative estimate. This leaves a total power budget of 472W for a 1.5U KeyVault

server, including KVDs, cores, memory, etc.

We list the total power for each component of a KeyVault server in table 4.1. The

total power of a KeyVault server is the sum of the power of each component in the

1.5U box: CPUS, memory, NICs, and KVDs. The on-stack NIC power estimates are

drawn from the Niagara-2 design [7, 51], while the 10GbE PHY power is based on

a Broadcom part [12]. To obtain power estimates for the KVD switching fabric, we

implement its design in HDL and synthesize it in ST’s 28nm FDSOI process. The

power estimates for the buffers in all networking hardware come from CACTI [68].

The Cortex-A15 power is obtained from [30], and the 3D-stacked DRAM power is

calculated from a technical specification obtained from Tezzaron [26]. The amount of

power consumed by the 3D-stacked DRAM is dependent on the bandwidth utilization,

therefore the power number reported in table 4.1 is per GB/s.

4.5.6 Area Estimation

The area of the on-stack NIC is obtained by scaling the Niagara-2 NIC to 28nm.

For the KVDs, we synthesize an HDL model in ST’s 28nm FDSOI process. The

buffer area for all of the networking hardware is obtained from CACTI. The area

of the Cortex-A15 CPU is taken from [30], and the area estimates for the Tezzaron

Octopus DRAM were obtained from Tezzaron [26]. We can fit several hundred cores

on a single stack, over 400, however we limit the number of cores on a stack to 16

because the 3D-stacked DRAM has 16 ports.

In a single 1.5U server we place as many clusters of KeyVault stacks and KVDs as

we can fit into our power and area budget. Each stack is packaged in a 441mm2 BGA

package, and two PHYs are packaged into a single 441mm2 BGA package. Due to pin

counts, the KVDs must be placed into 1,225mm2 BGA packages. If we assume 75%

utilization of a 1.5U, 13in×13in motherboard for KeyVault stacks and KVDs—and
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Figure 4.4: Average RPS vs. attempted RPS for the FriendFeed workload.
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Figure 4.5: Average RPS vs. attempted RPS for the MicroBlog workload.
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Figure 4.6: Average request latency vs. attempted RSP for the FriendFeed workload.
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Figure 4.7: Average request latency vs. attempted RSP for the MicroBlog workload.
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Figure 4.8: 95% Latency vs. attempted RSP for FriendFeed and MicroBlog on Key-
Vault.

12 stacks per KVD—then we can fit roughly 144 stacks in a single 1.5U server.

4.5.7 Cooling

The TDP of a KeyVault stack is roughly 600W, which is similar to current 1.5U

systems, and is spread across all stacks. This yields a TDP of under 5W per stack.

We expect that the power dissipated by each stack will be well within the capabilities

of passive cooling, while a fan is used to extract heat from the 1.5U box. Prior work

on thermal characterization of cloud workloads also supports this [65].

4.6 Results

In order to make a direct comparison with Mercury, we do a stack-to-stack com-

parison of a single KeyVault stack and a single Mercury stack, both containing a

single CPU. We then compare the maximum achievable performance of a complete

KeyVault server—including the KVD and clustered architecture—and a complete

Mercury server.
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4.6.1 Request Throughput

We first find the average sustainable request throughput for both a single Key-

Vault and Mercury stack containing a single CPU. In this experiment we run a

sweep for a variety of attempted RPS, up to several million, however the sustain-

able RPS saturates at less than 100,000 RPS for both the KeyVault and Mercury

stacks. Figures 4.4 and 4.5 show the average sustainable RPS for the FriendFeed

and MicroBlog workloads respectively, over a variety of attempted RPS. The x-axis

represents the throughput the client attempts to achieve, and the y-axis represents

the actual throughput that is achieved on average. The peak average throughput

that is sustainable for both the FriendFeed and MircoBlog workload is around 85,000

RPS on a KeyVault stack, when queueing becomes the limiting factor. Both work-

loads have a maximum average sustainable throughput of around 61,000 RPS on a

Mercury stack. The highly integrated NIC—with its zero-copy capability—on the

KeyVault stack allows for a throughput that is approximately 40% greater than that

of a Mercury stack.

4.6.2 Request Latency

While throughput is an extremely important metric, the average latency—as well

as the tail latency—of requests remains an important metric for evaluating QoS [18].

Scale-out workloads generally try to reach a target throughput while still meeting

specific latency, sometimes referred to as a SLA. We compare the the average RTT

for requests on a KeyVault stack against the average RTT of requests on a Mercury

stack, we then report the 95th percentile latency of a KeyVault stack.

Figure 4.9 shows the amount of time, on average, spent in the network stack, hash

computation, or miscellaneous Memcached code for a single request in the MicroBlog

workload when attempting 50 thousand RPS. When compared to figure 3.4 we can

see that the amount of time spent in the network stack decreases from over 90%—for
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Figure 4.9: Percentage of time spent in the networking stack, performing the hash
computation, or executing miscellaneous Memcached code on average for a single
request.

the 1k requests, which is the average size of requests in the MicroBlog workload—to

around 66%. Because the network stack dominates, this near 25% decrease in the

time spent in the network stack on average, we a see a near 2X reduction in overall

RTT.

4.6.2.1 Average Latency

Figures 4.6 and 4.7 show the average request latency the FriendFeed and MicroBlog

workloads respectively. Because the Mercury stack peaks at an attempted RPS of

approximately 61,000 these graphs only show up to an attempted 70,000 RPS. For

both workloads the KeyVault stack is able to provide several times better latency, and

at peak the RTT of requests on a Mercury stack is 2.3× higher than on a KeyVault

stack. These results show just how much overhead is incurred due to the TCP/IP

protocol stack and OS code.

72



Requested RPS (Thousands)

1

2

5

7.5

10

12.5

15

17.5

Workload

FriendFeed

MicroBlog

0

0.5

1

1.5

2

2.5

3

1 5 10 15 20 30 40 50 60 70 80 90

9
5

th
 %

 R
T

T
 (

m
s)

Attempted RPS (Thousands)

FriendFeed MicroBlog

Figure 4.10: 95% Latency vs. attempted RSP for FriendFeed and MicroBlog on
KeyVault.

4.6.2.2 95th Percentile Latency

The 95th percentile latency for both the FriendFeed and MicroBlog workloads

is shown in figure 4.10. Both workloads exhibit very low tail latency for requests

when run on a KeyVault stack. Latency increases at about 50,000 RPS when the

queue length begins to increase, however even at peak throughput the 95th percentile

latency for both workloads is well within the latency specified by the SLA, which is

assumed to be 10ms.

4.6.3 Network Link Bandwidth

One of the key sources of inefficiency when running Memcached is network band-

width utilization. Figures 4.11 and 4.11 show the network bandwidth in Mbps for

the FriendFeed and MicroBlog workloads respectively. By reducing the per-packet

overhead and providing very fast NICs with zero-copy capabilities, a KeyVault stack

is able to achieve about 60% higher network bandwidth when compared to a Mercury

stack. This is a substantial increase, but the primary benefit comes with the addition

of the KVD. By sharing a single 10GbE link amongst several KeyVault stacks, we
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Figure 4.11: Sustained network bandwidth for the FriendFeed workload.
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Sustained network bandwidth for the MicroBlog workload.

can achieve nearly 100% link utilization per link—as we will see in section 4.6.5—and

reduce the number of 10GbE links required, without sacrificing throughput.

4.6.4 Memory Bandwidth

Memory bandwidth is also underutilized by Memcached. In figures 4.12 and 4.13

we report the memory bandwidth for both the FriendFeed and MicroBlog workloads

respectively. The bandwidth is reported in MB/s. Because of the reduced amount

of processing time spent on executing network code, more requests can be sent to

the stack’s memory in a KeyVault server when compared to a Mercury server. This
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Figure 4.12: Sustained memory bandwidth for the FriendFeed workload.
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Figure 4.13: Sustained memory bandwidth for the MicroBlog workload.
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leads to a 4.5× improvement in bandwidth for a KeyVault stack at peak throughput

when compared to a Mercury stack. While the overall memory utilization remains low

on a KeyVault stack, the large amount of bandwidth available from the 3D-stacked

memory comes at a low cost. We could also explore the option of reducing the 3D-

stacked memory’s maximum bandwidth in order to acquire additional power savings,

but that is beyond the scope of this work.

4.6.5 Maximum 1.5U Server Performance

Here we provide a design-space exploration for several 1.5U KeyVault server con-

figurations. We contrast these with equivalent 1.5U Mercury server configurations.

4.2. We look at several different versions of each server—based on the number of cores

per stack—with the goal of fitting as much compute and memory into a single server

as possible, while remaining within the power budget described in section 4.5.5.

The columns of table 4.2 each represent the maximum performance we can ex-

tract from a 1.5U server box with n cores per stack, where n ∈ 2, 4, 8, 16. We can see

that as we increase the number of cores per stack the total throughput delivered by

the a 1.5U server increases for both the KeyVault and Mercury servers, however the

smaller core counts deliver much higher memory density, while still maintaining rela-

tively high throughput. This is primarily due to power limitations; as the core counts

increase, power becomes a limiting factor and the number of stacks we can fit in our

power budget decreases. For example, when we have 16 cores per stack we are limited

to 25 stacks in a 1.5U KeyVault server. In this scenario it is more advantageous to

have each stack directly connected its own 10GbE port, foregoing the use of a KVD.

The added throughput we achieve comes at the cost of sacrificed memory density and

network bandwidth utilization. The Mercury servers also sacrifice memory density

as they scale up cores. Because we are primarily concerned with memory density, we

choose the design point with two cores per stack as our desired configuration.
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Mercury KeyVault
Version n=2 n=4 n=8 n=16 n=2 n=4 n=8 n=16

1
.5

U
S

er
v
er

Stacks 96 87 50 27 144 90 48 25
KVDs — — — — 12 15 16 0
Cores 192 348 400 432 288 360 384 400
10 GbE Ports 96 87 50 27 12 15 16 25
Memory(GB) 384 348 200 108 576 360 192 100
Power(W) 570 749 749 748 728 748 725 738
RPS(millions) 11.93 21.63 24.86 26.85 24.79 30.99 33.05 34.43
RPS(thousands)/Watt 20.92 28.86 33.20 35.90 34.01 41.45 45.62 46.66
RPS(thousands)/GB 31.08 62.15 124.31 248.61 43.04 86.07 172.14 344.39
Memory BW Utilization 0.08% 0.17% 0.34% 0.67% 3.96% 3.96% 3.96% 2.64%
Network BW Utilization 5% 11% 20% 40% 96% 96% 96% 64%

Table 4.2: Comparison of various KeyVault and Mercury server configurations. A
single KeyVault server is able to provide 2× the throughput of a Mercury server.
Memory density is improved over a Mercury server by 50%. This improved perfor-
mance comes while simultaneously improving power and bandwidth efficiency.

Mercury KeyVault Commodity MICA HERD TSSP

RPS 12 million 25 million 3.15 million 8.6 million 5 million 0.3 million
RPS/W 21 thousand 34 thousand 11 thousand 3.6 thousand 17.63 thousand
RTT 3µs 90µs 300µs 52µs 5µs 20µs

Table 4.3: Comparison of KeyVault to several prior works.

A 1.5U KeyVault server with two cores per stack has a 50% larger memory capac-

ity, and over 2× higher sustained throughput compared to Mercury. Power efficiency

is also improved as a single 1.5U KeyVault server has 63% higher RPS/W than a

Mercury server. Memory bandwidth is approximately 45× higher, and network link

bandwidth improves from approximately 5% to nearly 100%.

4.6.6 Comparison to Prior Works

In figure 4.14 we compare the total throughput available in a single KeyVault

server—for several different configurations of cores per stack—against several priors

works. HERD [39] is the most recent, and highest performing, RDMA-based solution;

Thin Servers with Smart Pipes (TSSP) [56] is a hardware key-value store accelerator;
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Figure 4.14: Comparison KeyVault to prior works.

and the the commodity server is based on the work in [86], where the authors run an

enhanced version of Memcached on a commodity server design. Our workload uses

a popularity distribution with requests that have an average value of approximately

1kB. HERD, TSSP, and the commodity server’s throughput numbers, however, are

based on fixed-size requests of 1kB, 128B, and 64B respectively.

By providing integrated, lightweight networking, along with servers designed for

density, we can provide approximately 5× the throughput of HERD, 8× that of a

commodity server, and nearly two orders of magnitude more that TSSP. The average

RTT of requests on a KeyVault server is around 90µs. The average RTT is approxi-

mately 5µs, 20µs, and 300µs on HERD, TSSP, and the commodity server respectively.

The HERD work only reports the latency number for 48B fixed-size requests. Ad-

ditionally, TSSP’s RTT does not take into account the effects of queueing. While

it is difficult to directly compare throughput and latency with drastically different

request sizes, it is likely that the latency would increase for the other solutions if

larger request sizes are used.
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4.7 Related Work

In order to provide a comprehensive rack-scale solution for efficient data centers,

KeyVault builds on many concepts presented in prior works. Here we detail the

pertinent works and how they relate to KeyVault.

4.7.1 Improving Key-Value Stores

Lim et al. design a key-value accelerator for use in an alternate architecture

for Memcached [56]. TSSP builds on prior work that puts a similar Memcached

accelerator on an FPGA fabric [14]. In TSSP a hardware GET accelerator interacts

with the NIC, and essentially acts as a UDP offload engine. Because GETs make

up the vast majority of requests for most workloads—and to avoid synchronization

issues—only GETs are accelerated. The NIC inspects packets and if a GET request

is found, the request is offloaded to the GET accelerator. The GET accelerator

directly accesses the software-owned cache, without any software involvement. The

GET accelerator owns the in-memory hash table; it performs a hash on the key and

if found, fetches the data and builds a reply packet. KeyVault differs from TSSP

by providing both integrated, intelligent network interfaces, as well as a simplified

networking protocol. By simplifying the network protocol we allow the software to

perform all request processing, which simplifies synchronization and improves the

performance of all requests, as opposed to only GETs.

Andersen et al. propose a cluster architecture, called FAWN, for efficient key-value

stores [2]. In their work they use a large number of ”wimpy” cores along with FLASH

memory to improve the density and energy efficiency of key-value store applications.

Their work primarily focuses on enabling FLASH memory, i.e., file system design.

They design a log structured file system that mitigates FLASH wear out. KeyVault

focuses on using 3D-stacked memory to enhance density and energy efficiency, while

improving performance via highly integrated networking.
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MICA [53] proposes a holistically designed key-value store. MICA is designed to

overcome the bottlenecks present in typical key-value store deployments by focusing

on the following design goals: fast parallel data access, low overhead networking

software, and optimized data structures. The most relevant portion of the MICA

work with respect to this dissertation is the low-overhead networking stack. MICA,

however, utilizes direct NIC access from userspace software, which limits the size of

the requests it can service. This is ok for MICA’s design goals, which aim to optimize

for very small key-value pairs. However, for more general key-value deployments this

solution is not ideal.

Pilaf [66] and Herd [39] propose using RDMA to reduce the networking overhead

for key-value requests. Pilaf uses single-sided RDMA READs to completely bypass the

CPU when processing GET requests. Because they are completely bypassing the CPU

each request requires multiple trips across network links and require a sophisticated

synchronization scheme. HERD, on the other hand, uses RDMA writes to put a

request’s payload directly into memory, which is similar to our design. However,

our design provides for tighter integration, which allows for greater throughput and

network density.

4.7.2 Remote Memory Access

Scale-Out NUMA (soNUMA) [70] is a recent work that aims to reduce the over-

head incurred by performing remote memory accesses in rack-scale systems. soNUMA

provides an RDMA-like programming model, and a message passing communication

protocol that relies on a Remote Memory Controller (RMC)—a memory controller

that is integrated directly into the cache hierarchy. soNUMA is designed for rack-scale

workloads, and is built on top of a NUMA fabric, because of this it requires that its

system provide the appearance of a global address space. To simplify their protocol

and hardware design, they only transfer objects a single cache line at a time. For
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rack-scale deployments they are able to achieve remote memory reads that are within

a few times that of local reads. With KeyVault servers, we target internet services

in particular—where many processes are attempting to access memory remotely, and

a single global address space is difficult to achieve. We imagine a deployment where

accesses can come from many different networks. Our networking protocol is also able

to transmit much larger data objects—packets are encapsulated in standard Ethernet

packets at the data link layer—which is more suitable for internet services.

4.7.3 Integrated Networking

Several works have investigated reducing the network overhead by providing in-

tegrated networking hardware. Mukherjee et al. [67] proposed one of the earliest

examples of integrating networking with the cache hierarchy. They propose coher-

ent network interfaces (CNI), which utilize a cacheable device register—a cacheable

region shared by the NIC and the CPU—to transfer status, control or data infor-

mation quickly. Direct Cache Access (DCA) [35] provides a method that allows the

I/O controller to directly insert packet information into a processor’s cache, thereby

reducing latency, improving throughput, and lowering cache miss rates. SINIC and

V-SINIC [11] simplify the NIC and integrate it closely with the CPU, while work

that is traditionally done by the NIC is pushed into the software. This allows for op-

timizations that are better suited for software, as well as true zero-copy receives. All

of these works are done in the context of the TCP/IP stack. With KeyVault servers

we advocate rethinking the entire networking stack to enable higher performance and

throughput.

4.7.4 Scale-Out Server Design

Several prior studies have explored using 3D-stacked memory as a means to im-

prove density and energy efficiency. PicoServer [42] utilizes 3D stacking technology to
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design compact and efficient multi-core processors for tier 1 internet services. Their

primary focus is on energy efficiency. By introducing 3D-stacked memory into their

design they remove the need for complex cache hierarchies, and add more CPUs,

thereby improving throughput while saving energy. Nanostores [15] builds on the

PicoServer design by introducing FLASH or Memristor memory technology into the

stack. NDC [75] explores the use of 3D-stacked memory with MapReduce workloads.

While these works focus primarily on improving throughput and energy efficiency,

our work recognizes the trend of internet services operating on massive, distributed

data sets and considers density a first-class design constraint. We try to fit as much

compute and memory as possible into a single KeyVault server, while providing fast

access via highly integrated networking.

More recently, Scale-Out Processors [59] were proposed as a solution for cloud

computing workloads. They propose clustering groups of cores into pods—each with

their own coherence domain—and connecting each pod together using a fast intercon-

nect. Our KeyVault servers use a pod-like organization as well, but supplement the

server design with 3D-stacked DRAM and highly integrated networking to further

improve density and throughput.

3D-stacked memory has also been produced for use as a cache. Footprint Cache

[37] uses 3D-stacked DRAM caches along with a clever prefetching scheme to improve

performance and reduce energy. In KeyVault servers we propose using 3D-stacked

DRAM as the primary source for memory, while focusing on compute and memory

density.

4.8 Conclusion

In this work we present KeyVault, a server architecture that aims to provide

a complete solution for modern data center workloads. By integrating 3D-stacked

DRAM, low-power CPUs, and networking hardware—along with a simplified net-
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working protocol—we are able to achieve a throughput of approximately 25 million

RPS in a single 1.5U enclosure at a latency of less than 100µs. As the amount of

data in the cloud grows, commodity servers can no longer scale, and are not a viable

option going forward. We believe that a holistic approach that specializes hardware

and software together will enable further scalability, and have explored this with our

KeyVault design.
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CHAPTER V

Conclusion

This dissertation makes a case for the use of physically dense servers. It presents

the physical design of a dense server in chapter III. I detailed design space exploration

is provided showing the benefits of such designs for big data workloads. The primary

benefits being improved memory density and power efficiency, while maintaining QoS

guarantees. However, physical density is shown to not be enough because the network

bottleneck remains. Big data workloads—and key-value stores in particular—service

many requests to small disparate pieces of data.

In order to overcome the networking bottlenecks present for key-value stores, chap-

ter IV presents the design of physically dense servers with integrated networking. By

including integrated NICs and an integrated switching fabric, a lightweight network-

ing stack may be used. The insight is that—unlike prior approaches on accelerating

key-value stores, which try to process requests entirely without CPU involvement—

zero-copy packet placement is sufficient to remove the networking bottleneck.

Going forward, the amount of data in the cloud will grow, as will the num-

ber of users making requests on that data. Commodity off-the-shelf hardware has

been shown to be inefficient when running modern cloud services. In order to scale

the cloud, and to ensure its operation remains cost-effective, alternative technologies

should be utilized.
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5.1 Future Research Directions

This work has explored the design of physically dense servers using state-of-the-

art 3D-stacked memories, in particular DRAM and Flash. There are several other

types of memory technologies, such as Phase-change RAM, that may provide further

benefits in terms of density, performance, and efficiency. Exploring these various

memory technologies to determine which is best-suited for physically dense server

design is one line of further research we may wish to explore.

In this work we have assumed a simple system-level design for our 3D-stacks—

the CPUs are not kept coherent and contain only private, per-core caches. While

this approach provides simplicity, and is effective for key-value stores, there may be

more appropriate designs for more general server applications. Exploring alternative

system-level designs is something we may also explore.

One final aspect of physically dense server design that will be explored is the

design of system-level software. Given our unique server design, and use of NVRAM

as primary memory, we may explore file-system and operating system software that

takes into account both density and the reliability of NVRAM cells.
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