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Epitaxial CaTi5O11 and TiO2-B Thin Films for High Rate 

Lithium-Ion Batteries 

by 

Kui Zhang 

 

Chair: Xiaoqing Pan 

 

The bronze polymorph of titanium dioxide (TiO2-B) is interesting for many applications 

including high rate energy storage, solar cells, photocatalysis, thermoelectrics and sensing, owing 

to its uniquely layered structure and highly asymmetric unit cell. However, such a metastable 

phase is extremely hard to obtain with high purity and crystallinity, significantly impeding its 

development in these fields. This dissertation is devoted to the waterless synthesis, structural 

characterization and property testing of both TiO2-B and a related novel material, CaTi5O11, in 

the form of highly crystalline thin films, with a specific emphasis on their application as anode 

materials in lithium-ion batteries (LIBs). 

Although known to have advantages over anatase or rutile, high quality bronze phase 

TiO2-B specimens that demonstrate good electrochemical properties thus far have exclusively 

been nano-structured powders prepared by hydrothermal methods, as first synthesized in 1980. 

Aided by first-principles calculation and atomic resolution high-angle annular dark-field 

(HAADF) scanning transmission electron microscopy (STEM), it has been discovered that Ca 
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can stabilize the bronze structure, forming a variant phase CaTi5O11, which has then been 

successfully synthesized in epitaxial single-crystalline thin films by pulsed laser deposition 

(PLD), a completely waterless process. Due to the near-perfect lattice match, the CaTi5O11 film 

can be further used as a template layer to grow high quality, water-free TiO2-B films on top, 

which facilitates the synthesis and application of both materials on a wide variety of substrates, 

including SrTiO3, Nb:SrTiO3, LaAlO3, LSAT and SrTiO3 buffered Si. 

Lithium ion transport in the bronze structure is highly anisotropic. By utilizing substrates 

with a different orientation to align the more open channels with out-of-plane directions, 

extremely high rates of lithium ion transport, up to 600C (1C=335 mA g-1), with extraordinary 

structural stability has been achieved. In a battery half-cell using metallic lithium as counter 

electrode, the orientation-engineered CaTi5O11 film discharged to 155 mA h g-1 at a rate of 60C, 

corresponding to a time of 60 s to fully discharge the capacity, at the 100th cycle, delivering 

specific power of ~20 kW kg-1. Post-mortem examinations by x-ray diffraction (XRD) and 

transmission electron microscopy (TEM) confirmed that both the TiO2-B and CaTi5O11 structures 

were essentially unchanged after aggressively cycling for more than 60 days. 

The results discussed in this thesis provide the basic knowledge needed to realize and 

utilize TiO2-B single crystals, while also supporting theoretical studies with determinate 

experimental data. The ability to accurately control the crystal orientation will be especially 

beneficial to studies focused on surface states, such as in photocatalysis and photovoltaic 

applications. As the methods and equipment required are readily accessible to the extended 

research community, further studies on and applications of these materials, which are attractive 

in realms that extend beyond electrochemistry, may emerge. 
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Chapter 1 

Introduction 

 

1.1 An overview of the TiO2 material 

Titanium dioxide (TiO2) is a wide band-gap (3.0 - 3.2 eV) semiconductor and a focus of 

attention for many applications, including solar energy conversion, lithium-ion battery, 

thermoelectrics, photocatalysis, water splitting and sensors. 1-5 TiO2 generally exists in nature as 

three polymorphs – rutile, anatase and brookite. The bronze polymorph, or TiO2-B, was recently 

found in nature in Valais, Switzerland.6 Additionally, TiO2 may adopt four other crystal 

structures, including TiO2-II (“columbite”), TiO2-III (“baddeleyite”), TiO2-H (“hollandite”) and 

TiO2-R (“ramsdellite”). Among them, TiO2-II and -III were synthesized by a high-pressure 

treatment of anatase or rutile, while TiO2-H and -R were synthesized by topotactic oxidative 

extraction of alkali metal from K0.25TiO2 (hollandite) and Li0.5TiO2, respectively. Structure 

parameters of these distinctive polymorphs are listed Table 1.1. 

Although its commercial production started in the early twentieth century, often found in 

pigments, sunscreens, paints, ointments, toothpaste, etc., research efforts on the TiO2 material 

essentially began to surge since 1972, when Fujishima and Honda discovered the phenomenon of 

photocatalytic water splitting on a TiO2 electrode under ultraviolet (UV) light.1,3 Since then, tens 

of thousands of reports have been published on this material, especially focused on applications 

spread over energy and environmental fields – the top two conundrums the world faces today. 

Utilizing TiO2 for various scientific and technical purposes often depend not only on the 

properties of the material itself, but also on the tuning and modification of the TiO2 host, often 
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via doping, alloying and nano-structuring. 

 

1.2 The structures of TiO2-B and Ca:TiO2-B (CaTi5O11) 

TiO2-B was first synthesized by Marchand et al. in 1980 by ion exchange of K+ for H+ in 

K2Ti4O9 in a hydrothermal process.7 Similar to rutile and anatase, TiO2-B is composed of 

corrugated sheets of edge- and corner-sharing TiO6 octahedra, but the sheets are joined together 

to form a three-dimensional framework,8 forming perovskite-like pathways which potentially 

facilitates facile transport for Li+ into the bulk of the crystal. The TiO2-B structure projected 

along three crystallographic directions is shown in Figure 1.1 (top row). 

The CaTi5O11 phase was first identified as a defect phase inclusion in CaTiO3 thin films 

grown by PLD on SrTiO3 substrates. Systematic optimization in PLD growth has been carried 

out to synthesize this novel phase into highly crystalline thin films with superior purity, which 

were then characterized by atomic resolution HAADF STEM. According to the STEM images, 

we have built the geometric model and then performed first-principles optimization by PW91 

functional implemented in VASP[9,10]. Our more accurate HSE06 method[11] calculations indicate 

that CaTi5O11 (stoichiometry), or Ca4Ti20O44 in a unit cell, is an orthorhombic structure with 

lattice constants of a=12.1702 Å, b=3.8013 Å, c=17.9841 Å,　===90°. The atom positions 

are listed in Table 1.2. Different methods used in the first-principle calculations to relax the 

structure may result in slightly different lattice parameters as well as the symmetry associated, 

but the difference is usually too small to be observed experimentally. In our current working 

model, the CaTi5O11 phase has the symmetry of CMCM (space group no. 63). 

The structure of the CaTi5O11 phase is closely related to the TiO2-B polymorph, 

essentially comprising repeatedly twinned a-b plates of TiO2-B interleaved with one alternating 

Ti-Ca ion layer between every two layers of Ti ions, turning the regular TiO2-B structure into a 

zigzag pattern. Such a structure is compared with TiO2-B in Figure 1.1 (bottom row). Therefore, 

the CaTi5O11 phase is essentially a variant of the TiO2-B structure with extra Ca layers and 

superlattice twinning, and we designate the new phase as Ca:TiO2-B, which is repeatedly used 
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throughout this thesis. 

We discovered the new CaTi5O11 phase on an entirely independent basis. It was at the 

very last stage of publishing this discovery12 when we noticed a patent application published in 

2011 mentioning such a phase for different uses by an Italian cement company.13 Nevertheless, 

we provide the first clear depiction of this phase on an atomic scale, as well as the first waterless 

process to synthesize it with high quality and purity, which in turn benefit a clear interpretation 

of electrochemical testing data. There is no other report on this phase in the literature. 

By visual inspection (Figure 1.1), the channels running along the b-axis appear to be most 

open among the three crystallographic axes in both two structures, and may be a good candidate 

for high Li+ mobility in the crystal. Channels parallel to various other directions can also be 

found by manipulating the model. It is worth noting that more rigorous study than simply 

observing the cross sectional areas of the channel opening is required to determine with relative 

certainty the actual diffusion path that is most energetically favorable for fast Li+ transport,14 as 

the results may be counter-intuitive. The ability to fabricate crystalline thin films of the active 

storage material with well-defined lattice plane on the surface, such as what will be demonstrated 

in this thesis, is therefore of great value to experimentally determine the preferred Li+ pathways. 

 

1.3 TiO2-B in lithium-ion batteries 

Energy storage materials with high capacity and rapid charge/discharge rates hold the key 

to the next breakthrough in lithium-ion batteries (LIBs), expanding the application to high power 

systems such as electric vehicles (EVs) and smart grids.15 On the commercial level, the ability to 

charge and discharge batteries in the matter of seconds, instead of hours, will induce lifestyle 

changes, e.g. to fully charge a smartphone in two minutes, or to charge an electric car in the time 

it usually takes to fill up the tank of an ICE (internal combustion engine) vehicle at the gas 

station. High rate discharge is also essential to enhance the performance of EVs, where a 

powerful acceleration may often be required. 

TiO2-B is an excellent candidate in this regard due to its open structure7 and fast lithium 
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ion transport via a pseudocapacitive Faradaic process, leveraging ultrahigh discharge rates 

comparable to those of supercapacitors while maintaining the advantage of storing energy in the 

bulk.16,17 However, the existing powder/slurry form prepared by hydrothermal methods18-25 

cannot provide clear insight into its fundamental characteristics, due to the limited purity, the 

randomized crystal orientation and the unavoidable presence of lattice water in its structure.26 

This thesis discusses in great detail the discovery and optimization of a waterless process to 

synthesize hetero-epitaxial crystalline thin films of TiO2-B using PLD onto Ca:TiO2-B, which 

serves as a template. 

TiO2 has been extensively investigated as an anode material for the LIB due to its low 

cost, minimal environmental impact, structural stability, high theoretical capacity (335 mA h g-1) 

and inherent safety (a buffer >1.5 V before lithium plating).27,28 Fast lithium storage has been 

demonstrated in anatase, rutile and Li4Ti5O12 nanostructures.29-32 Although known to have 

advantages over anatase or rutile, high quality bronze phase TiO2-B specimens that demonstrate 

good electrochemical properties thus far have exclusively been nano-structured powders 

prepared by hydrothermal methods,23,24,26,33-36 as first synthesized in 1980.7 Being a metastable 

phase, compounded by the fact that TiO2-anatase which rarely fully reacts37 is often used as a 

precursor in existing synthesis methods, phase pure TiO2-B has been extremely difficult to obtain, 

obscuring the interpretation of property testing results. In addition, removal of all H2O, which 

could interfere with Li+ transport, from the final product proves to be difficult, and recent studies 

have suggested that H2O may even be needed to keep it from collapsing into anatase upon 

aggressive heating.26,38,39 

 

1.4 Objectives and organization of this dissertation 

In light of the above, the objectives of this dissertation are: (1) to synthesize high quality 

epitaxial thin films of both TiO2-B and Ca:TiO2-B on various substrates; (2) to characterize the 

microstructures of both materials and the interfaces between them, as well as the interface and 

epitaxial relationship between the thin films and the substrates; (3) to devise a configuration in 
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which the thin films can be assembled in a battery half-cell, and a testing protocol to ensure the 

accuracy of recorded data for analysis; (4) to study the electrochemical properties of these bronze 

thin films; and (5) to enhance the battery performance by manipulating the crystal structure of 

the thin films. 

This dissertation is organized as follows: Chapter 2 explains the experimental methods 

including pulsed laser deposition and electrochemical property testing. Chapter 3 provides a 

detailed description of the systematic study on the new, waterless synthesis route to fabricate 

single-crystalline epitaxial thin films of both TiO2-B and Ca:TiO2-B. The optimization of the 

PLD growth conditions, including target composition, choice of substrates, growth temperature, 

laser energy and O2 partial pressure to achieve the best purity and crystallinity, as well as a 

templating effect between the two phases, is discussed. Chapter 4 presents the effort to test these 

bronze thin films as anode materials in a battery half-cell, including experimental setup and data 

collection protocol. This process is important and creative for measuring such a tiny mass of 

active material, which is rarely seen in this field of study and also instructive for future research 

on this topic. The structural stability and electrochemical properties of the thin films, including 

battery cycling and capacity retention, are explored. In Chapter 5, significant enhancement in 

battery performance is achieved by changing the crystal structure using substrates with a 

different orientation, presenting superior high rate capabilities in polycrystalline Ca:TiO2-B thin 

films. The microstructures in the film and at the film-substrate interface are investigated, and 

further related to the underlying physics of the material’s behavior. The battery cycling results of 

prototype full-cell batteries featuring the polycrystalline Ca:TiO2-B thin film anode and LiFePO4 

or LiMn2O4 slurry cathodes are exhibited in Chapter 6. Finally, conclusions drawn from current 

results and proposals for future work in Chapter 7 conclude the thesis. 
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Table 1.1 Structural parameters of TiO2 polymorphs, summarized from Ref. 27 and Ref. 40. 

 

Phase Space group Density 

(g cm-3) 

Lattice parameters 

Anatase I41/amd 3.79 a=3.78 Å, c=9.51 Å 

Rutile P42/mnm 4.13 a=4.59 Å, c=2.96 Å 

Brookite Pbca 3.99 a=9.17 Å, b=5.46 Å, c=5.14 Å 

TiO2-B C2/m 3.62 a=12.18 Å, b=3.74 Å, c=6.52 Å, =107.05° 

TiO2-II Pbcn 4.33 a=4.52 Å, b=5.5 Å, c=4.94 Å 

TiO2-III P21/c 3.79 a=4.64 Å, b=4.76 Å, c=4.81 Å, =99.2° 

TiO2-H I4/m 3.46 a=10.18 Å, c=2.97 Å 

TiO2-R Pbnm 3.87 a=4.9 Å, b=9.46 Å, c=2.96 Å 
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Table 1.2 Atom positions in the CaTi5O11 structure. 

 

# Atom x y z # Atom x y z 
1 O O1 0.19999 0.93727 0.34267 35 O O35 0.44389 0.43501 0.48876 

2 O O2 0.04096 0.93438 0.98907 36 O O36 0.19931 0.93896 0.49221 

3 O O3 0.23305 0.93649 0.11333 37 O O37 0.54041 0.4367 0.84527 

4 O O4 0.07177 0.93646 0.21254 38 O O38 0.28431 0.43673 0.8422 

5 O O5 0.38543 0.93642 0.24343 39 O O39 0.03923 0.93309 0.84518 

6 O O6 0.7005 0.43782 0.34213 40 O O40 0.78454 0.93558 0.84229 

7 O O7 0.53992 0.43719 0.98906 41 O O41 0.5666 0.93536 0.41677 

8 O O8 0.73327 0.43714 0.11332 42 O O42 0.41789 0.93805 0.91639 

9 O O9 0.57158 0.43772 0.2121 43 O O43 0.91796 0.43314 0.91749 

10 O O10 0.88567 0.43771 0.24335 44 O O44 0.06658 0.43879 0.41808 

11 O O11 0.78487 0.9355 0.99189 45 Ti Ti1 0.22043 0.93658 0.24214 

12 O O12 0.94481 0.93819 0.34546 46 Ti Ti2 0.06116 0.93641 0.09019 

13 O O13 0.75278 0.93744 0.22097 47 Ti Ti3 0.72074 0.43715 0.24147 

14 O O14 0.91413 0.93789 0.12209 48 Ti Ti4 0.56112 0.43659 0.09009 

15 O O15 0.6003 0.93703 0.09083 49 Ti Ti5 0.76538 0.93697 0.09239 

16 O O16 0.28498 0.43691 0.9919 50 Ti Ti6 0.92466 0.93757 0.2442 

17 O O17 0.44504 0.43607 0.34505 51 Ti Ti7 0.26493 0.43673 0.09246 

18 O O18 0.25261 0.43655 0.22121 52 Ti Ti8 0.42448 0.43642 0.24382 

19 O O19 0.41393 0.43555 0.1219 53 Ti Ti9 0.21922 0.93567 0.59265 

20 O O20 0.09999 0.43618 0.0913 54 Ti Ti10 0.06009 0.93443 0.74408 

21 O O21 0.23209 0.93441 0.72099 55 Ti Ti11 0.71913 0.43538 0.59214 

22 O O22 0.07037 0.93436 0.62223 56 Ti Ti12 0.56028 0.43575 0.74408 

23 O O23 0.38436 0.93492 0.59074 57 Ti Ti13 0.26434 0.43449 0.7417 

24 O O24 0.73211 0.43547 0.72103 58 Ti Ti14 0.42346 0.43479 0.58992 

25 O O25 0.57044 0.43497 0.62189 59 Ti Ti15 0.76407 0.93521 0.74178 

26 O O26 0.88417 0.43548 0.59087 60 Ti Ti16 0.9231 0.93527 0.59028 

27 O O27 0.75136 0.93542 0.61322 61 Ti Ti17 0.58362 0.45134 0.41619 

28 O O28 0.2515 0.43522 0.61321 62 Ti Ti18 0.40087 0.42763 0.91679 

29 O O29 0.41305 0.43458 0.71227 63 Ti Ti19 0.90097 0.9446 0.91686 

30 O O30 0.0992 0.43408 0.74361 64 Ti Ti20 0.08325 0.93465 0.41732 

31 O O31 0.91301 0.93537 0.71234 65 Ca Ca1 0.87195 0.43614 0.41755 

32 O O32 0.59921 0.93577 0.74336 66 Ca Ca2 0.37179 0.93857 0.41769 

33 O O33 0.94383 0.9365 0.48925 67 Ca Ca3 0.61261 0.93498 0.91722 

34 O O34 0.69927 0.43558 0.49164 68 Ca Ca4 0.11262 0.43539 0.91721 

 

  



8 
 

 

 

 

 

 

 

 

Figure 1.1 Crystal structures of regular TiO2-B (top row) and Ca:TiO2-B (CaTi5O11, bottom row) 

projected along [100], [010] and [001] directions, respectively. These drawings were produced 

using VESTA. 
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Chapter 2 

Experimental Methods 

 

2.1 Epitaxial growth by pulsed laser deposition 

Epitaxy refers to the deposition of a crystalline overlayer on a crystalline substrate with 

single, well defined, related orientation relationships. Atom bonds usually form at the interface 

between the film and the substrate. 

All thin films or epilayers studied in this work were fabricated by pulsed laser deposition, 

or PLD for short. 

 

2.1.1 An overview of the PLD technique 

The PLD method of crystalline thin film growth consists of three steps: (1) the interaction 

of the laser beam with the target, which is usually either a ceramic target in the form of a sintered 

pellet, or a bulk single crystal (ablation); (2) plasma formation, heating, and initial 

three-dimensional isothermal expansion (often called a ‘plume’), and (3) adiabatic expansion and 

deposition of thin films on the surface of the substrate, which is often maintained at a certain 

growth temperature.41 

PLD is one of the most versatile methods to grow ceramic and metallic thin films. 

Doping is especially convenient in such technique, as the select elements are simply mixed in the 

powder form with calculated mole percentage, which is then sintered at high temperatures. 

Hence, PLD is a very efficient method to synthesize functional thin films, which are often times 

doped or off-stoichiometry, such as superconductor,42  semiconductor43 , 44  and ferroelectric 



10 
 

films.45 

During growth, a high energy pulsed laser beam (commonly from excimer, CO2 or 

Nd:YAG lasers) is focused onto the surface of the solid target. The strong electromagnetic 

radiation leads to rapid evaporation of the target material, exciting ionized species that are 

presented as a glowing plasma plume in front of the target surface, the color of which varies 

depending on the target composition, if the ablation is carried out in vacuum or low pressure 

ambient. As the pressure increases, the energized particles are quickly scattered by the gas 

molecules, resulting in a shorter mean-free path and consequently a weaker plume. 

The most advantageous merit of PLD over other common growth techniques is that it 

allows a direct transfer of stoichiometry from the target to the film, which crystallizes in the most 

energetically favorable phase that matches the surface structure of the substrate under the 

specific thermodynamic growth environment, independent of the phase of the target, as long as it 

has the desired stoichiometry. Therefore, PLD provides rapid growth of almost any material over 

a wide range of deposition conditions, including target composition, choice of substrate, growth 

temperature, laser energy (fluence), laser pulse repetition rate and gas ambient (in partial 

pressure). The major components of a PLD system are a laser, optics, and a vacuum chamber 

equipped with pumps, a substrate holder/heater and a target controller. Many accessories are 

commercially available to expand the system capabilities, such as reflection high-energy electron 

diffraction (RHEED) source and detector which enables in situ monitoring of the film surface 

during deposition. 

A typical PLD system is shown schematically in Figure 2.1. While the high energy laser 

pulses will easily drill a hole on the target surface if it sits still, many systems have a multi-target 

carousel equipped with motors which rotate and raster the selected target, so that the laser 

uniformly ablate the target surface to maximize utilization rate of the target material, as well as 

to ensure that the excited plume is directed toward the substrate, since the plume is always 

perpendicular to the local surface plane where the laser hits the target. For systems without the 

capability to rotate and raster the targets, an oscillating mirror mounted on a stepper motor (as 
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shown in Figure 2.1) is often installed which makes the laser beam scan the target surface. 

The major issue with the PLD technique is the purity of the target. While doping in the 

ceramic target is convenient, the introduction of unexpected elements is difficult to eliminate in 

the meantime. Since the target making process usually starts with mixing chemical powders, 

followed by uniaxial or isostatic pressing and sintering, contamination is also possible. The 

unintentional impurities, if transferred into the deposited films, may cause undesired effects such 

as additional conducting carriers, extra structural defects or excitonic broadening. 

Another limitation of the PLD method is its relatively small yield. The laser plume is a 

cone-shaped plasma which has a larger ion concentration in the center. Therefore, the deposited 

films are usually thicker in the area that is directionally aligned with the center of the plume. 

While such effect may not be significant for small substrates, it will be quite obvious when the 

substrate is larger than 10×10 mm2. Because different ions travel at different speeds from the 

target to the substrate, for even larger substrates, e.g. wafers with a diameter of 3” or above, it is 

very difficult to maintain uniform coverage, layer composition and thickness. Therefore, PLD is 

not a suitable technique for scaling up production, in which case sputtering or various chemical 

vapor deposition (CVD) methods would be more efficient. Nevertheless, the growth mechanism 

and conditions obtained from PLD research are valuable guidelines when transferring to other 

depositions platforms. 

 

2.1.2 Growth conditions in the PLD process 

There are seven main parameters that can be tuned to optimize the deposition process and 

to achieve high quality or specially designed thin films in the PLD method: target composition, 

choice of substrates, target-substrate distance, growth temperature, laser fluence, laser repetition 

rate, and gas backfill pressure. 

(1) Target composition: 

As the starting point of the PLD process, the target composition determines, to a large 

extent, the final outcome of the film structure and properties. For common compounds such as 
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ZnO and SrTiO3, the only concern is the purity, and these targets are often commercially 

available. It becomes much more complicated when designing a new material. For example, 

SrTiO3 could be co-doped with Nb and Pt, where Nb substitutes some Ti ions to increase 

electrical conductivity, while Pt may precipitate as nano-particles embedded in the SrTiO3 matrix, 

which helps reduce the thermal conductivity (see Appendix B). Not only the percentages of the 

dopants need to be carefully measured, the mixing, pressing and sintering recipes also require 

fine tuning because the source materials (SrTiO3, Nb2O5 and PtO2 powders in this case) have 

different physical properties including melting point and compressibility. A uniform distribution 

of the species in the final sintered pellet, usually very dense to avoid cracking upon laser ablation, 

is crucial to the film’s phase forming and long-term repeatability in the research project. 

In many cases, the phase the thin film crystallizes in is sensitive to the composition of the 

target. As will be elaborated in Chapter 3 of this thesis, the phase purity of the Ca:TiO2-B films 

depends heavily on the Ca content in the target. Since target making is a time-consuming task, 

theoretical guidance is of great value in exploring new phases and novel materials than simply 

trying out many different compositions. In this thesis, the optimization of bronze film growth 

benefited extensively from the phase diagrams deduced by first principles calculations. 

While the laser pulses ablate the target, unique phenomena such as melting, ripple pattern 

formation,46 and phase segregation are usually observed on the target surface. The amount of 

material ablated per pulse is deducted from the heat balance equation:41 

௧ݔ∆ ൌ
ሺଵିோሻሺாିா೟೓ሻ

∆ுା஼ೡ∆்
                                                              (2.1) 

where xt is the evaporated thickness of the target, R is the reflectivity of the target material, Eth 

is the energy threshold above which evaporation occurs, H is the volume latent heat, Cv is 

volume heat capacity, and T is the maximum temperature rise, respectively. The energy 

threshold Eth is determined by the interaction between the laser pulse and the target, which 

further includes many factors such as the laser wavelength, pulse duration, plasma losses and 

thermal properties of the target material. Since many of these parameters are material specific, 

the ablation process is different for different targets, or for different species in the same target, 
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which explains the fact that the material flow in the plume is not uniform, especially at the outer 

edge of the cone-shaped plume where ions need to travel a longer path before reaching the 

substrate at a lower energy. Considering the transfer efficiency from the target to the films may 

vary for different elements, compensation on certain elements is occasionally made when mixing 

the source powders. 

(2) Choice of substrates: 

The fundamental rules that dictate the thin film epitaxy on a crystalline substrate are the 

lattice and thermal mismatches. For high quality, single-crystalline thin film growth, substrates 

that are in the same crystal system with similar symmetry as the desired thin film generally result 

in good epitaxy when the lattice mismatch is small. And hence, homoepitaxy, where the film and 

the substrate are the same material, results in films with highest possible quality.  

In case of heteroepitaxy, where the film is a different material from the substrate, the 

difference in thermal expansion coefficients plays an important role. As the films are usually 

deposited at an elevated temperature, the shrinkage of the film will be different from that of the 

substrate during the post-growth cooling. If the thermal expansion coefficient of the film is larger 

than that of the substrate, the film shrinks more than the substrate during cooling and is bent 

concavely under tensile strain; on the contrary, if the film’s thermal expansion coefficient is 

smaller and it shrinks less than the substrate, then the film is bent convexly with compressive 

strain.47 Exceedingly high tensile strain, especially in thick films, may crack the film after 

cooling. The residual strain in the film at room temperature can be estimated from ex situ 

asymmetric XRD measurements.48 As the residual strain slightly alters both short-range and 

long-range lattice arrangement, which in turn change the energy levels and band structure, 

physical properties of the film will also change as a result, e.g. a shift of the photoluminescence 

peak position in a ZnO film grown on Si.43 

The stacking of atoms in the film begins at the surface of the substrate, so the surface 

orientation of the substrate crystal also has a critical influence in the deposited film, which 

crystallizes in phases or orientations best matching the atomic structure of the substrate surface. 
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Later in Chapter 3, we will see that single-crystalline (001) Ca:TiO2-B thin films can be grown 

on SrTiO3 substrates with a (001) surface, while the film becomes polycrystalline in different 

orientations on (110) SrTiO3 substrates. Such epitaxial relationship may be utilized to either 

optimize thin film growth, or to control and sometimes enhance certain properties of the film. An 

example will be presented in Chapter 5, where Ca:TiO2-B thin films comprising rotated grains 

grown on a (110) SrTiO3 substrate deliver significantly enhanced battery performance. 

In many property tests or device applications, thin films grown on particular substrate 

materials may be desired. For instance, measuring electrical properties by four probe Hall 

method requires a resistive substrate; measuring thermal conductivity by the 3 method prefers 

that the substrate’s thermal conductivity is much higher than that of the film; thin films with 

superior optoelectronic characteristics are often desired on Si substrates for easy integration with 

the current industrial infrastructure, etc. When the lattice and thermal mismatches between the 

films and the preferred substrate are too large for high quality growth, buffer layers are often 

used to mitigate the difference. As an example, single-crystalline ZnO films (hexagonal wurtzite) 

can be grown on Si (diamond cubic) with Lu2O3
49 and Sc2O3

48 buffer layers. Successful 

synthesis of a SrTiO3 buffer layer on Si also opens up numerous opportunities for depositing a 

series of perovskites on top.50 

(3) Target-substrate distance: 

The spatial distance between the target and the substrate is usually adjustable in modern 

PLD systems. Most PLD users place the substrate around the tip of the plume where it is fully 

extended. If the substrate is positioned too close to the target, the species in the plume will reach 

the substrate with very high kinetic energy, which may sputter off the film surface and increase 

its roughness.51 On the other hand, if the substrate is positioned too far from the target, the 

longer distance would allow greater segregation of different species in the plume that are 

travelling at different speeds, changing the stoichiometry when they arrive at the substrate, 

especially at the outer rim of the plume, and eventually causing variation in the thickness and 

chemical composition of the film. 
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(4) Growth temperature: 

The growth temperature refers to the temperature that the substrate is heated to and 

maintained at during deposition. It is a defining factor for the thermodynamic environment in 

which the elements condense into crystals at the substrate surface, and a critical parameter that 

determines the reaction rate. Different phases or different polymorphs of a material may form at 

different temperatures. If the target is heavily doped on a host material, or contains many species, 

phase segregation may occur at some temperatures, while forming a uniform compound phase at 

other temperatures. Hence, phase diagrams are often instructive in choosing a starting point for 

growth optimization, before trying out a range of temperatures. The dependence of the film 

quality on temperature is usually not exceedingly sensitive, so an interval of 50 °C often suffices 

when varying the growth temperature. 

For some PLD systems, the substrate is in direct contact of the heating plate, to which the 

thermal couple is attached, so the reading on the controller is the actual temperature of the 

substrate. For other systems often equipped with a load-lock chamber for convenient substrate 

mounting, which are seen more and more recently, the substrate is separated from the heater by a 

gap of vacuum, and is heated by radiation. In the latter case, the temperature of the substrate 

must be calibrated because it is lower than that of the heater, and varies for different substrates 

due to the difference in emissivity of the material, which is associated with the thermal 

conductivity. The calibration can be performed by attaching a thermocouple to the substrate, or 

by using an optical pyrometer. 

Within a certain temperature range in which the phase of the film does not change 

substantially, a higher temperature generally leads to higher structural quality. This is because the 

higher temperature facilitates a better mobility of the atoms along the film surface on which they 

continue to stack, resulting in a facile surface reconstruction and uniform distribution of the 

elements. In some cases, a higher temperature also helps with strain relaxation and grain growth, 

leading to larger grain sizes, fewer stacking faults, boundaries or other defects, and often times 

lower dislocation density.43,49 
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(5) Laser fluence: 

The laser fluence is defined as: 

Fluence	 ቂ
୎୭୳୪ୣୱ

ୡ୫మ ቃ ൌ
୐ୟୱୣ୰	୮୳୪ୱୣ	ୣ୬ୣ୰୥୷	ሾ୎ሿ

୉୤୤ୣୡ୲୧୴ୣ	୤୭ୡୟ୪	ୱ୮୭୲	ୟ୰ୣୟ	ሾୡ୫మሿ
                  (2.2) 

which should be distinguished from intensity and peak power, the two other terms often used 

with pulsed laser, defined as: 

Intensity	 ቂ
୛ୟ୲୲ୱ

ୡ୫మ ቃ ൌ
୐ୟୱୣ୰	୮ୣୟ୩	୮୭୵ୣ୰	ሾ୛ሿ

୉୤୤ୣୡ୲୧୴ୣ	୤୭ୡୟ୪	ୱ୮୭୲	ୟ୰ୣୟ	ሾୡ୫మሿ
                    (2.3) 

 

Peak	power	ሾWሿ ൌ
୐ୟୱୣ୰	୮୳୪ୱୣ	ୣ୬ୣ୰୥୷	ሾ୎ሿ

୔୳୪ୱୣ	ୢ୳୰ୟ୲୧୭୬	ሾୱሿ
            (2.4) 

Since most PLD systems use similar laser models, such as the COMPex 205 for the work in this 

thesis, which have a pulse duration in the scale of nanoseconds (ns), fluence is the most 

commonly used term to describe the laser pulse energy in the literature. 

The laser fluence determines the amount of material that is ablated from the target surface, 

and the kinetic energy the species carry. Experimentally, higher laser fluence excites a stronger 

and larger plume, and usually increases the film deposition rate until a saturation point governed 

by the crystallization thermodynamics is reached. The bigger plume coverage is also favorable 

for a uniform film growth on a large substrate. Similarly to a small target-substrate distance, 

exceedingly high laser fluence may cause an increase in the film roughness. Furthermore, an 

over-supply of metallic ions may sometimes force the film to crystallize in a different phase. For 

instance, as will be presented in Chapter 3, TiO phase could form instead of TiO2 when the laser 

energy is set too high ablating a target containing TiO2. On the other hand, lower energy fluence 

often results in smoother films with better structural quality, as long as the threshold of species 

energy and respective ion concentrations are met for the desired phase to form. For targets that 

are dense or containing heavy elements such as Pt, the laser fluence required to generate a strong 

enough plume is higher. 

Ultrafast PLD which employ low energy pulses in the picosecond (ps) or femtosecond (fs) 

regimes has also been investigated.51 The major merit of such technique is that the pulse width is 
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shorter than the electron-phonon time scale in solids (typically a few ps), and therefore thermal 

effects in the target can be neglected. However, the high pulse power density (~1015 W/cm2) 

resulting from the brevity of the pulse induces high kinetic energy (~1 keV) species in the plume, 

which likely leads to a large structural disorder and surface roughness in the films. 

(6) Laser repetition rate: 

The repetition rate is the number of pulses emitted per second from the laser, expressed 

with the unit of Hz. Increasing the repetition rate directly increases the amount of material 

ablated from the target in any given time, and is usually an effective method to enhance the 

deposition rate of the thin films, which is conventionally described by Å/pulse, provided that the 

saturation growth rate is not yet reached. Similarly to using high laser pulse energy, a high 

repetition rate may also cause lower structural quality, as the lattice has less time for lateral 

reconstruction and grain growth before its vertical stacking. In practice, PLD users often search 

for a compromise between the deposition rate and the structural quality, and a repetition rate of 

1-10 Hz is mostly applied. 

(7) Gas backfill pressure: 

The gas backfill pressure controls the mean-free path of species composing the plume, 

their respective kinetic energies and the plume angular distribution. For ceramic thin film growth, 

such as many semiconductors or other functional metal-oxides, oxygen is most commonly used 

backfill gas. This is because most ceramic targets are oxygen deficient from the sintering process, 

and more oxygen is further lost during ablation since it is much lighter than the metal ions and 

easily carried away by the vacuum pump suction. An oxygen ambient therefore counteracts the 

deficiency and enhances structural quality of the films. 

Using a higher oxygen partial pressure, other than causing a weaker plume, is essentially 

creating a more oxidizing environment for the films to grow. For instance, in a research work 

included in Appendix B, we have found that from the same Pt doped SrTiO3 target, uniform 

SrTi1-xPtxO3 films were grown under high oxygen pressure, while Pt particle precipitation out of 

the host matrix was observed in films grown under low oxygen pressure. First principles 
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calculations may sometimes suggest the level of redox conditions needed for a desired phase to 

form, which thus provides valuable guidance for experimental investigations. 

Another major effect of the oxygen partial pressure is reflected by the number of oxygen 

vacancies in the thin films. Higher pressure generally leads to fewer oxygen vacancies. For a 

semiconductor thin film, an oxygen vacancy is an n-type carrier, so changing the oxygen 

pressure during growth is actually an effective method to control the electrical properties of the 

film. Apparently, if a p-type film is desired, higher oxygen pressure should be used to avoid 

charge carrier counteraction, while in an n-type film, lower oxygen pressure may help increase 

the carrier concentration and electrical conductivity. If a high concentration of oxygen vacancies 

is preferred provided that the crystal structure still remains stable, an inert gas ambient, such as 

Ar, may be used.52 

After the deposition is finished, the same oxygen partial pressure may be maintained 

during cooling, or the gas supply can be turned off for a vacuum cooling process. Since the 

post-growth cooling is essentially half of an annealing cycle, the choice of whether to keep the 

gas flow should be made according to the purpose. To obtain a film with better structural quality, 

oxygen backfill is often kept to fill up the vacancies. Vacuum cooling followed by another 

thermal treatment may yield different microstructures, while also provides an intermediate stage 

for property testing. 

Besides the chamber pressure as a result of gas backfilling, the directions of the gas flow 

may sometimes have an effect on the deposited film,53 since the flow can change the shape of 

the plume, or affect the paths of various species. In the PLD system that produced most of the 

samples for this thesis, the gas inlet and the port to the turbopump are positioned such that the 

gas flow is skimming the inner wall of the chamber, while the vacuum gauge is placed near the 

substrate and out of the gas flow. Hence the partial pressure reported in this thesis is a more 

accurate reflection of the chamber pressure, and the direction of the gas flow is ignored. 
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2.1.3 The PLD systems 

The TiO2-B and Ca:TiO2-B thin films in this study were grown in two different PLD 

systems that shared a KrF excimer laser. One system was customized with major components 

purchased from Neocera LLC, which produced most of the films discussed in this thesis. The 

rest of the bronze films, as well as the Pt-Nb co-doped SrTiO3 films investigated in Appendix B, 

were fabricated in another system manufactured by Thermionics Laboratory Inc. Photographs of 

the laser, plasma plume and the two PLD systems can be found in Ref. 59, and are provided here 

in Figure 2.2. 

The KrF excimer laser (Lambda-Physik COMPex 205)  emits laser pulses with a 

wavelength of 248 nm and a pulse duration of 22 ns. The beam cross section is 8×22 mm2. The 

laser tube is water-cooled and uses refillable premix gas of krypton-helium-fluorine-neon 

(3.82%-1.68%-0.09%-94.41%). In this study the laser repetition rate was set to 10 Hz and the 

beam energy was in the range of 200-400 mJ for most films. The laser beam is focused by a 

fused silica lens onto the target with a spot size of approximately 1×2 mm2. Considering the 

pulse energy loss in the optics, the effective fluence was ~3.4-6.8 J cm-2. 

The Neocera PLD system consists of a 14.5" diameter stainless steel vacuum chamber 

equipped with a conductive heating substrate stage, a multi-target carrousel, a Varian SH-100 dry 

scroll mechanical pump, and a Varian V-301 turbopump. The 2" flat-top heating stage can heat 

up to 900-950 °C, on which the substrates are held using silver paste as adhesive, so the growth 

temperature control for the substrates is quite accurate with this configuration. The multi-target 

carrousel holds six targets at one time, where two servo motors control the rotation and rastering 

of the targets, respectively. The mechanical fore-pump is used for pre-stage pumping of the 

chamber down to ~50 mTorr. The turbopump further lowers the chamber base pressure to <10-4 

mTorr before deposition. The distance between the target and the substrate is fixed at 6.35 cm in 

this system. During deposition, backfill gases such as O2, N2 and Ar are introduced through a 

needle leakage valve. The gas background pressure is adjusted between vacuum and 100 mTorr. 

A major advantage of this system is that the substrates are glued to the heating stage, so 
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substrates of any size and shape can be used. 

The Thermionics PLD system is an ultra-high vacuum system, which has a stainless steel 

22" diameter cylindrical main chamber evacuated by a Varian V-551 turbopump backed by a 

Varian TriScroll 300 dry-pump. The chamber base pressure is ~10-7 mTorr. A load-lock chamber 

(LLC), sealed by a gate valve, is installed to transfer substrates and targets in and out using a 

magnetic mechanical arm, without having to break the vacuum in the main chamber, thus greatly 

enhancing the workflow efficiency. The LLC is equipped with a Pfeiffer TMU-071P air-cooled 

turbopump backed by a Pfeiffer MVP 035-2 diaphragm pump. The substrate manipulator is 

equipped with an XYZ stage. The XY micrometers allow a ± 0.5" travel and the Acme drive 

allows a Z travel of 4" into and out of the chamber. In addition, the substrate manipulator can 

continuously rotate for 360 °, where it is vacuum-sealed by a two-stage differentially pumped 

rotary seal (RNN) connected to an ion pump. This allows fine positioning of the substrates in the 

vacuum chamber, facing the target at a distance adjustable between 1.5" and 2.5". Substrates are 

radiatively heated by a Pt0.8/Rh0.2 filament integrated in the manipulator. A type-K thermocouple 

is placed closely to the filament to monitor the heater temperature. The maximum filament 

temperature is 1100 °C, while the actual substrate temperature needs to be calibrated by placing a 

second thermocouple directly in contact with the substrate (see Section 2.1.2: Growth 

temperature). The substrate manipulator is also equipped with a motorized feedthrough for 

azimuthal rotation of the substrate during growth, in order to achieve uniform film structure and 

thickness. Hollow substrate holders specially designed for radiative heating accept substrates 

with sizes of 10×10 mm2, 5×5 mm2, and 2" diameter. The target manipulator can hold six targets 

vertically in-line at one time, and is operated on a dual-axis rotary feedthrough. One axis is used 

for vertical clocking of the targets and the other is for spinning. The vacuum level in the main 

deposition chamber is monitored by a Pfeiffer full range Pirani inverted magnetron gauge able to 

measure from 5×10-9 to 1000 mbar. One major merit of the Thermionic system is that the 

substrates are held by Ni clips without any adhesives, so the cross-contamination inside the 

chamber is considerably lower than that in the Neocera system (silver paste). 
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2.1.4 Target and substrate preparation 

In addition to the general considerations for targets and substrates discussed previously in 

Section 2.1.2, more details in the experimental preparation are provided here. 

A smooth surface and a high density are the generally desirable features of a target in 

order to minimize splashing (ejection of molten liquid from the ablation front causing droplets on 

the film surface).46 The ceramic targets used for PLD growth in this thesis were all home-made 

by mixing and thoroughly ball-milling source powders at the designed ratio, which were then 

uniaxially cold pressed into a pellet of 1" diameter under 10000-15000 lb of force (2.205 lb = 1 

kg) and sintered at 1000-1400 °C. The sintering process is for the ingredients in the green body 

to fully mix and react, forming a dense PLD target. The ramp rate was 1 °C/min, for heating and 

cooling, while the dwelling time at the sintering temperature was usually 48-72 hours. In an 

alternative recipe, the cooling process was broken into three parts, where the first part was 

controlled cooling at the set ramp rate (1 °C/min), then the pellet was held at an intermediate 

temperature (e.g. 600 °C) for 1 hour, and finally a natural cooling to room temperature. In certain 

cases this recipe yielded a more uniform, better shaped and crack-free target with flat surfaces as 

the added steps helped with the shrinkage and strain relaxation during cooling in the bulk. 

Although not employed in this study, using a hot press instead of a cold press may further 

improve the target uniformity. Prior to each growth, the target was pre-ablated for a few minutes 

to remove possible surface contaminants and expose the fresh material. After being used for a 

while, the targets were periodically taken out of the chamber and re-polished with SiC grit paper 

for a smooth surface. 

The single crystal substrates used in this study were purchased from MTI Corporation. 

These commercial substrates, other than Si, were single-side polished to epi-ready smoothness, 

and precision-cut to 10×10 mm2 with a 0.5 mm thickness. The single-side polished Si substrates 

(intrinsic and p- or n-doped) were originally 3" wafers (also 0.5 mm thick) and diced into 10×10 

mm2 squares using an ADT-7100 dicing saw. Before dicing, the wafers were spin-coated with a 
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thin layer of photoresist (SPR 220) using a CEE 100CB spinner for protection. After dicing, the 

photoresist was completely removed by acetone. Before being loaded into the PLD chamber, the 

substrates were ultrasonically cleaned in acetone, rinsed in sequence with acetone, methanol and 

de-ionized (DI) water, and finally blown dry with N2 gas. It should be noted that Si substrates are 

especially brittle, and tiny Si splinters may come off of the cutting edges upon vibration and stick 

to the surface, which are very difficult to remove. Therefore the ultrasonic cleaning time should 

be brief, usually 10-30 seconds, for Si substrates, while a few minutes are good for hard 

substrates such as sapphire and perovskites (e.g. SrTiO3). Prior to deposition, the substrates were 

heated up in vacuum to avoid surface oxidation, and oxygen ambient gas was backfilled once the 

set growth temperature was reached and maintained at the same pressure throughout the 

deposition and cooling process. 

SrTiO3 buffered Si substrates were also used, provided by Prof. Darrell Schlom at Cornell 

University. The buffer layers contained 20 or 40 unit cells of SrTiO3 crystal, grown on (100) Si 

by reactive molecular-beam epitaxy (MBE).50 

Crystal information of the substrates used for thin film deposition will be listed later in 

this thesis, where the growth details of particular films are discussed. 

 

2.1.5 PLD growth of the Ca:TiO2-B and TiO2-B thin films 

Thin film growth optimization is a systematic process aimed at finding the optimal 

combination of the parameters, often guided by structural characterization and property tests 

along the way. Chapter 3 depicts such a process in great detail, from first observing the 

Ca:TiO2-B and TiO2-B phases as defects in CaTiO3 films to single crystal fabrication with high 

phase purity. Here a brief preview is offered into that process, and how it is connected to the 

growth conditions discussed above in Section 2.1.2. 

It was not clear at the early stage what the Ca-Ti ratio is in the Ca:TiO2-B phase, so a 

number of targets with different Ca content were made, starting from 10% Ca. The growth 

conditions for CaTiO3 films previously were used as the starting point. A few batches were then 
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grown, with 3-4 different substrates installed in the chamber for every batch, at various 

temperatures in 100 °C steps and under different O2 partial pressure, centering the initial 

parameters. Each film was examined for phase composition and crystal quality using the 

techniques described in Section 2.2. The Ca:TiO2-B phase was observed in a few samples as 

small grains, which concluded the first stage when a rough estimation was achieved on the 

possible conditions for the new phase to form. 

The second stage was aiming at expanding the Ca:TiO2-B grain size until a uniform film 

was obtained. Increasing growth temperature helped the grain growth significantly. Increasing 

the flux of ions from the target to the substrate was another important measure, which was 

executed by raising the laser energy and repetition rate, until undesirable phases started to form 

or the crystal quality began to deteriorate. After a good combination of these conditions is found, 

a longer deposition time was used to produce thicker films. The end result of this stage was a 

uniform Ca:TiO2-B film but containing considerable amount of the TiO2-anatase phase (>10%). 

The third stage was to optimize the bronze phase purity and to further improve the crystal 

quality. By this point, the deposition parameters were narrowed down to small ranges, and the 

structure of the Ca:TiO2-B phase was clear from theoretical calculations. The optimization at this 

stage requires fine tuning of the conditions in small steps, e.g. changing the temperature in 50 °C 

steps or even smaller. The microstructures of every sample should be studied carefully. While 

simple appearance of the Ca:TiO2-B peaks in diffraction patterns would suffice earlier, now the 

strength and width of both the Ca:TiO2-B and anatase peaks need to be tracked, and the causes 

should be clearly understood, for which TEM/STEM images are especially helpful. Reasonably 

higher O2 pressure may help reduce oxygen vacancies in the oxide matrix and thus reduce crystal 

defects, without favoring other phases that prefer highly oxidizing condition; slightly lower laser 

repetition rate may slow down the deposition rate but in return improve the film quality by 

reducing stacking faults. The most effective method to suppress the anatase phase formation was 

found to be an over-compensation of Ca above the stoichiometry content, and single-crystalline 

Ca:TiO2-B films were obtained by using a target containing 20% Ca. 
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Each of the three stages described above took approximately 1/3 of the time in the 

optimization process. This is expected to be roughly true for other material systems as well. 

Once the high quality Ca:TiO2-B growth was achieved, it was not long before we found 

that regular TiO2-B single-crystalline films could be grown on a Ca:TiO2-B template layer, 

simply by using a 100% TiO2 target and exactly the same growth conditions as for Ca:TiO2-B 

(see Section 3.5). 

Now that the conditions are well refined, the fourth and final stage for synthesizing the 

bronze films was to grow them for various practical purposes. The best film quality was achieved 

on (001) SrTiO3 substrates, followed by other similar cubic crystals including LaAlO3 and LSAT 

(see details in Chapter 3). Nb-doped SrTiO3 substrates were used to grow films for 

electrochemical testing, where a conductive current collector was needed (see Section 4.2.1). 

Polycrystalline Ca:TiO2-B thin films with enhanced high rate battery performance were obtained 

on (110) SrTiO3 (see Chapter 5). 

 

2.2 Structural characterization 

Structural characterization of the thin films was carried out by x-ray diffraction (XRD), 

atomic force microscopy (AFM), and transmission electron microscopy (TEM). 

2.2.1 Film thickness measurement 

The bronze film thickness was measured by a Veeco Dektak profilometer, which scanned 

a fine tip along a straight line from an area on the sample where the bare substrate was exposed 

to an area covered with the film, and read the step height. For films deposited in the Thermionics 

system, clips on the substrate holder acted as masks during growth and left small areas on the 

substrate exposed. For films deposited in the Neocera system, the entire substrate was covered 

with the film, so a small piece of the film needed to be gently scraped off the substrate for the 

measurement. Typical films in this study have thicknesses of 50-200 nm. 

Many of the films have been studied by TEM, and the images further confirmed the 
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thicknesses measured by the profilometer. If a discrepancy occurred between the two 

measurements, the value acquired by TEM was used for further analysis, such as in calculating 

the mass of the film and the specific capacity for battery testing. 

 

2.2.2 X-ray diffraction 

All Ca:TiO2-B and TiO2-B films were characterized by two x-ray diffractometers in the J. 

D. Hanawalt X-ray MicroAnalysis Laboratory. The first is a Rigaku Rotaflex rotating anode 

diffractometer operated at 40 kV and 100 mA, designed mainly for -2 scans and pole figures. 

The second is a BEDE D1 triple-axis high resolution diffractometer operated at 40 kV and 40 

mA, which offers precision movement of the sample stage in all six degrees of freedom, 

especially powerful in off-axis XRD experiments such as for -scans (rocking curves) and 

-scans. Both instruments use monochromatic Cu-Kα radiative sources (λ=1.54 Å). 

 

2.2.2.1 -2 scan 

The -2 scans were performed in the Rigaku diffractometer for the bronze thin films. A 

0.5 mm source slit was used to limit the width of the x-ray beam. During the scan, the sample 

was placed vertically and rotated by an angle of , while the detector was simultaneously rotated 

by an angle of 2, with respect to the horizontal incident x-ray beam. The x-ray source was not 

moving. The scanned 2 range was set to 5 ° - 130 °. The scans were set to the continuous mode 

at a speed of 3 °/min and the 2 increment was 0.01 °/step. The thin film samples with a surface 

area ≤1"×1" were fixed by clay on the sample holder. 

Unlike experiments on powder samples, where the particles are randomly oriented and 

the XRD pattern represent a collective effect, for epitaxial films, the crystal orientation is fixed 

and only lattice planes parallel to the film surface will appear in a -2 scan where the Bragg’s 

law is satisfied: 
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ߣ݊ ൌ 2݀ sin  ߠ                                                       (2.5) 

where n is an integer,  is the x-ray wavelength, and d is the spacing between the lattice planes. 

Therefore, prior to the complete scan, the sample surface was first aligned by a pre-scan of the 

substrate surface reflection (e.g. SrTiO3 100 reflection). For high quality single crystal substrates, 

the peak intensity was up to ~5×104 counts on the detector. The XRD pattern of a highly 

crystalline film usually reveals a group of strong peaks corresponding to a series of planes 

parallel to the surface, the intensities of which are not proportional to those in the standard 

powder diffraction files (PDFs). 

It is worth noting that due to such limitation, the -2 scan results cannot provide definite 

and comprehensive insight into the phase composition of the film, since lattice planes, 

sometimes in a tilted grain, which are not parallel to the surface will not show in the -2 

patterns. The investigation of the film structure is thus best aided by the TEM method, or by pole 

figures that are more efficient but less accurate and intuitive. 

 

2.2.2.2 -scan 

The -scan of the epilayers, sometime referred to as -rocking curves, was performed in 

the BEDE D1 diffractometer. A high resolution scan was carried out by limiting the x-ray beam 

width with a channel cut collimator (CCC) crystal and two source slits (1 cm diameter and 0.5 

mm width, respectively). During the scan, the detector was fixed at the 2B Bragg angle of the 

reflection under study (e.g. 006 Ca:TiO2-B) and the vertically placed sample was ‘rocked’ within 

2-3 ° deviation from B. The scan speed was set between 0.1-0.5 °/min and the scan increment 

was 0.005 °/step. The sample was fixed by double-sided tape on the sample holder with its 

surface parallel to the incident x-ray beam, and the position was pre-aligned so the thickness of 

the sample cuts half the width of the x-ray beam by adjusting the triple axes (XYZ) and 

optimizing the tilt angle (-scan) of the sample holder. The diffractometer axes and angles are 

referred to as in Figure 2.3. 

The broadening of the rocking curve, i.e. its full width at half maximum (ω-FWHM), 
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which represents the mosaic misorientation of the XRD reflection, is an important (and usually 

convenient) marker to evaluate the crystalline quality of a epitaxial thin film. For lithium hosts in 

electrochemical studies, where the Li ions changes the lattice structure upon insertion, this 

parameter can also be used to reveal the difference in structural quality before and after lithiation. 

The Ca:TiO2-B and TiO2-B epilayers discussed in this thesis have strong symmetric, out-of-plane 

006 and 001 reflections, respectively, the broadening of which have been measured to compare 

the crystal quality between films grown under different conditions. Though not used in this study, 

such technique may further be used to estimate the degree of the in-plane misorientation, where a 

reflection from planes with higher indices, which are tilted at an angle with the film surface, is 

measured in skew symmetric geometry, where the sample holder is first inclined by a tilt angle 

() equaling to the intersection angle between the surface plane and the measured plane, and then 

rotated by an azimuthal angle () about the normal of the measured plane to satisfy the Bragg 

condition. More details on the skew symmetric -scan can be found in Ref. 59. 

 

2.2.2.3 Pole figure 

The right arm of the Rigaku diffractometer is capable of pole figure measurements, which 

are useful to determine the texture of the thin films, as well as the in-plane orientation 

relationship between the film and the substrate. It is efficient to perform a pole figure 

measurement that automatically sweeps over a range of tilt angles, especially when the film 

structure is largely unknown, in order to identify new phases and locate lattice planes which are 

not parallel to the surface and thus not discoverable in -2 scans. The sample was fixed by clay 

on a round triple-axis rotating plate. 

To set up a pole figure measurement, the sample plate was positioned to the Bragg angle 

(=B) of the desired plane, and the detector was fixed at 2B. For the bronze films studied in 

this thesis, the 2 angle was set at 30.22 ° for Ca:TiO2-B 006 peak, and after the scan starts, the 

sample plate was inclined from =0 ° to =75 ° with a step of 2.5°. A 360 ° -scan, where the 

sample plate rotates about its surface normal with a step of 5 °, was measured at each  angle. An 
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XRD pole figure is drawn by plotting all these -scans plotted on the same polar diagram. 

Conventionally, the label on the polar axis refers to 90 °-. It is very difficult to align the sample 

surface perfectly in position, so the intensities of the poles are usually not homogeneous. 

 

2.2.3 Atomic force microscopy 

The film surface structure was characterized by a Veeco NanoMan AFM located in the 

Lurie Nanofabrication Facility (LNF). The microscope was operated under tapping mode, 

imaging the surface morphology by tracking a small silicon cantilever over the film surface and 

recording the oscillation of the coupled laser signals. The cantilever was pre-tuned before 

imaging, oscillating near the resonance frequency around 300 kHz. The typical scan area for the 

TiO2-B/Ca:TiO2-B films was 5×5 m2, and the images were recorded at a scan rate of 1-2 m/s. 

The scan resolution can be improved by optimizing the scan rate, the proportional gain, and the 

integral gain of the cantilever. The vertical offset induced by artifacts such as sample tilting and 

drifting was removed by a flattening function using the NanoScope Analysis software, which 

also provided the root-mean-square (rms) roughness and 3D image processing. 

 

2.2.4 Transmission electron microscopy 

Microstructures and defects in the bronze films were studied at the atomic scale by 

scanning transmission electron microscopy (STEM) using a JEOL 2100F TEM equipped with a 

spherical aberration corrector, located at the Electron Microbeam Analysis Laboratory (EMAL). 

TEM specimen preparation and imaging were performed by our research group members 

Michael Katz and Sung Joo Kim. 

The JEOL 2100F STEM is an advanced field emission electron microscope equipped 

with a spherical aberration (Cs) hexapole STEM probe corrector (CEOS GmbH). The electron 

beam is accelerated by a voltage of 200 kV. The TEM point-to-point resolution is 0.19 nm. The 

STEM probe size is <0.1 nm. Z-contrast image is obtained in the STEM mode by focusing and 

rastering the electron probe across the specimen while using a Fischione high angle angular dark 
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field (HAADF) detector to collect the scattered electrons. The brightness of atoms in the 

Z-contrast images is approximately proportional to the square of the atomic numbers (Z). 

Preparation of the TEM specimen consists of standard processes of mechanical grinding, 

polishing, precision dimpling, and ion milling, with the end result of an electron transparent edge 

which is then examined in the microscope. High quality TEM imaging also requires little 

artificial damage to the specimen during sample preparation. Detailed information of the 

preparation procedure can be found in Ref. 54. The precise cutting direction, if not immediately 

available from the substrate itself, can be determined by finding the correct azimuthal angle in 

skew symmetric XRD -scan of off-axis reflections.59 

In addition to imaging, TEM/STEM can be used with various spectroscopic techniques in 

order to characterize the physical and chemical nature of the specimen, including x-ray energy 

dispersive spectroscopy (XEDS) and electron energy loss spectroscopy (EELS), each offering a 

way to obtain information on the elemental composition. 

XEDS, sometimes referred to as EDS or EDX, is more commonly used between the two. 

In an XEDS experiment, an atom may absorb from impinging electron beam an energy high 

enough to eject an electron from an inner shell, creating a hole in the core level. An electron from 

an outer, higher-energy shell then fall into the hole, and the difference in energy between the two 

shells is released in the form of an x-ray, which is characteristic to the particular transition, and 

thus to a particular element. The emitted x-ray is collected by a detector and analyzed by 

computer software to produce a spectrum with elemental identification across most of the 

periodic table, while the technique is generally less efficient for elements lighter than carbon. 

The major disadvantage of XEDS is its low collection efficiency, because the detector can only 

cover a small solid angle in the 3D space (~0.05-0.1 steradian) while the x-ray from the 

specimen travels in all directions. Experimentally, a compromise needs to be made between 

moving the detector closer to the specimen and keeping enough distance so it is not shadowed by 

the sample holder. 

EELS has played an important role in identifying the structure of the new Ca:TiO2-B 
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phase in this work. The EELS signal results from an impinging electron interacting inelastically 

with atoms in the specimen, partially losing its energy while continuing down the TEM column. 

The electron taking the energy is either ejected out of the atom, or excited into an unoccupied, 

higher energy orbital. Therefore, the energy that the beam electron loses has a definite value 

which is unique to the specific element, resulting in a characteristic signal, or EELS edge, in the 

spectra. After passing through the specimen, the electron beam now consists of electrons with 

different energies, which are dispersed by a magnetic prism, where lower energy electrons have 

more curved paths through the prism. Eventually the dispersed electrons are focused onto a CCD 

(charge-coupled device) camera acting as the EELS detector. The EELS method is especially 

powerful when the specimen is thin. Since almost all of the inelastically scattered electrons 

continue down the column and get collected in the entrance aperture of the EELS detector, the 

signal-to-noise ratio is very high. However, not all elements produce clear EELS edges. For 

instance, Pd produces a very broad edge that is often damped out. 

When used in conjunction with STEM, which is able to place a sub-Ångstrom probe at 

any point of the specimen, highly localized XEDS and EELS measurements with atomic 

resolution can be realized. For samples discussed in this thesis, XEDS and EELS were performed 

in the TEM instrument described above with XEDS detectors from JEOL and EDAX, and Gatan 

Image Filter EELS system, respectively. 

 

2.3 Electrical characterization 

The electrical properties of the bronze films were characterized by Hall effect 

measurements in the Van der Pauw configuration.55 The National Institute of Standards and 

Technology suggests the preferred, acceptable, and not recommended sample geometries for Hall 

measurements, as shown in Figure 2.4.56 Experimental error increases with increasing size of the 

contacts. The configuration used in this study is Figure 2.4 (b), where the contacts were smaller 

than 0.5×0.5 mm2 in size. For typical 5×5 mm2 and 10×10 mm2 samples, such contact size 

induces about 5-10% relative error. The contacts were made by pressing indium dots on the 
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corners of the sample, bonding with thin gold wires, and annealing at 200 °C in N2 gas flow for 1 

min. For semiconductor thin films with sufficient electrical conductivity, linear dependence of 

current on varying voltage (i.e. I-V curve) between any two contacts should be obtained prior to 

each measurement, which is usually referred to as an Ohmic contact. Unless the film has an 

exceedingly high electrical conductivity in the regime of a semimetal, the contact resistance is 

often neglected. 

Other geometries proposed to improve the accuracy of the Hall effect measurement are 

presented in the book from Putley et al.57 

Hall measurements on the bronze films in this thesis were performed on two different 

systems. The first one is an MMRH-50 Hall Measurement System equipped with a 0.64 T 

permanent magnet, graciously offered for use at IMRA America, Inc. The second one is a 

customized system integrated with the cryostat of the photoluminescence (PL) characterization 

system, equipped with a 0.22 T permanent magnet, a Keithley 220 current source, and a Keithley 

6517A high resistance meter. The closed-cycle cryostat (ARS, Displex, CS-202) is cooled by a 

He gas compressor, and is operated with accurate temperature control between 10 K and 320 K. 

The sample is mounted on the cold finger by conductive copper tape for good heat conduction. If 

the thin film was grown on an conductive substrate, non-conductive double-sided tape is used 

instead, and a longer idle period is adopted every time the temperature setting is changed, 

allowing the sample temperature to reach equilibrium with that of the cold finger. The cryostat is 

first evacuated to a pressure of 10-5 mbar by a Pfeiffer TSH-071E turbopump station, and the He 

compressor is turned on after 15 min, which cools the cryostat to 10 K in about 90 min. A laser 

beam from a He-Cd laser (Kimmon, IK3501R-G, =325 nm, 100mW) is focused on the film 

surface, which excites luminescence in a PL measurement. If used in the Hall measurement, the 

incident laser may also excite more conducting carriers in the sample, changing its electrical 

properties. For example, if the film is an n-type material with a band gap <3.8 eV, the laser 

energy can be absorbed to elevate more electrons into the conduction band, significantly 

increasing the carrier concentration and electrical conductivity. 
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The resistivity () of the sample is determined without a magnetic field (B=0) by 

measuring the voltages (Vij) across two adjacent contacts while running currents (Ikl) through the 

other two contacts. The measurements are repeated eight times by rotating among the four 

contacts and reversing the direction of current each time. The resistivity is thus given by:55 
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݂						ሺ݅, ݆, ݇, ݈ ൌ 1,2,3,4ሻ                      (2.6) 

where RS is the sheet resistance, d is the film thickness, and f is the sample geometry factor 

which takes values between 0 and 1. For a symmetric sample, f=1. More details for determining 

the f value can be found in Ref. 55. The average of eight Vij/Ikl values eliminates potential errors 

caused by non-uniformity of the thin film, misalignment of the contacts, and other possible 

anisotropic effects in the material. 

In Hall voltage measurements, current runs diagonally through the sample (e.g. I13) and 

voltage is measured across the other diagonal twice for +B and -B magnetic fields, respectively 

(e.g. ଶܸସ
ା஻, ଶܸସ

ି஻ ). The measurements are repeated four times by rotating the contacts and 

reversing the current direction. The conduction type of the sample, carrier concentration (n) and 

Hall mobility () are calculated by:56 
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where ns is the sheet carrier density and e is the elementary charge. 

 

2.4 Electrochemical property testing 

2.4.1 Testing techniques 

Electrochemistry deals with the interaction between electrical energy and chemical 

change, which studies the chemical reactions that take place at the interface of an electrode, 
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usually a solid metal or a semiconductor, and an ionic conductor, the electrolyte. These reactions 

involve electrical charges carried by ionic species moving between the electrodes and the 

electrolyte. In the study of an electrode material in lithium-ion batteries, electrochemical testing 

aims at understanding the dynamics of Li+ moving into and out of the electrode, which 

determines its performance in terms of capacity, retention, and rate capability. 

Two basic techniques are generally used in electrochemical investigations: galvanostatic 

cycling (GC) and cyclic voltammetry (CV). The GC method is based on a chronopotentiometry 

action, where a fast-rising current pulse is enforced on the working electrode of an 

electrochemical cell and maintained at a constant level, while the potential of this electrode is 

measured against a reference electrode as a function of time, as schematically shown in Figure 

2.5. The direction of the current is determined by the charging or discharging action of the cell. 

For a continuous cycling, a number of chronopotentiometry actions are connected in sequence, 

reversing the direction of the current at the beginning of each section, with the amplitude of the 

current unchanged. Using this technique, the actual capacity of a battery at that specific current, 

which is more often referred to as the charge/discharge rate, can be obtained by the product of 

the imposed current and the elapsed time between the beginning and the end of a charge or 

discharge process. For instance, the x-axis in Figure 2.5(b) can be converted to discharge 

capacity of the battery through multiplying it by the current amplitude. Many researchers adopt a 

formation cycle method in GC experiments, where the first few cycles, usually at a very slow 

rate, were performed for the organic electrolytes to decompose and for the solid-electrolyte 

interphase (SEI) to form, before starting data acquisition on any measurement of interest. This is 

because the charges passed during these processes are irreversible, resulting in erroneously 

higher capacity than what can actually be repeated. 

In CV, the potential of a battery is controlled by applying a changing voltage on the cell, 

which is a triangular function with respect to time, and the resulting current is measured. It is 

known that current peaks appear in both cathodic and anodic scan direction when an 

electrochemically reversible system is considered. The waveform of the applied voltage and a 
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typical CV curve is shown in Figure 2.6. The peak positions [V, Figure 2.6(b)] indicate the 

potential where redox reactions occur, i.e. when Li+ is inserted into or extracted from the 

electrode, which is the critical information in understanding a battery material. In some 

circumstances, a hold may be desired at the end of the voltage ramp [vertex hold in Figure 

2.6(a)], such as to allow a full lithiation or delithiation in the electrode material. 

The scan rate (or sweep rate), i.e. the slope of the triangular wave in CV [Figure 2.6(a)], 

defined as =dE/dt and usually used with the unit mV/s, is closely tied to the electrochemical 

process in a particular material of interest. For a strictly diffusion-limited irreversible redox 

reaction, the current in amperes at the peak of the CV curve scales with the square root of the 

scan rate , as described by:16 

|݅| ൌ ሺܿܣܨ0.4958݊
஽ఈ௡ி

ோ்
ሻଵ/ଶߥଵ/ଶ                                    (2.10) 

where i is the peak current, n is the number of electrons, A is the electrode area in cm2, c is the 

maximum concentration of Li+ in the accumulation layer, D is the chemical diffusion coefficient 

for Li+ in cm2/s, and  is the transfer coefficient usually taken as 0.5.58 A capacitive current, on 

the other hand, normally follows a linear dependence on the scan rate:58 

|݅஼| ൌ  ߥௗܥܣ                                                         (2.11) 

where ic and Cd are the capacitive current and the double-layer capacitance, respectively. TiO2-B 

is particularly attractive as a battery material because its charge storage is not limited by bulk 

diffusion, but instead by surface processes, so that the overall behavior seems capacitive, 

exhibiting a linear dependence of the current on the scan rate.16,17 

 

2.4.2 Apparatus and procedure 

The bronze films in this study were assembled in the so-called battery half-cells, where 

lithium metal was used as counter electrode with a 1.55 mm thick glass fiber separator between 

the cathode (film) and anode (lithium). Non-aqueous LiPF6 solution was adopted as electrolyte, 

either homemade (1M LiPF6 in ethylene carbonate:dimethyl carbonate 1:1 (v/v), Merck), or 
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commercially purchased (Sigma-Aldrich). 

A typical bronze film in the electrochemical testing was grown on a 10×10 mm2 substrate 

with a thickness of 50-200 nm. Considering the very small mass of the active material, which is 

on the order of a few tens of g, a larger sample is preferred to reduce experimental error. 

Commercial cells (EL-CELL ECC-STD) which can accommodate samples up to 18 mm in 

diameter were assembled in an argon-filled glove box (Innovative Technology Inert Lab) with O2 

and H2O levels below 2 and 1 ppm, respectively, and tested at room temperature on a Princeton 

Applied Research VersaSTAT MC 4-channel system operating in galvanostatic mode. The 

structure of the cell and the testing equipment are shown in Figure 2.7. To ensure a steady power 

supply to the system during long term cycling, a UPS (uninterruptible power supply) unit is 

equipped for the controlling computer and the VersaSTAT. 

The VersaSTAT system employs a five-lead connection geometry. For most investigations 

into batteries, capacitors, resistors, fuel cells and some sensors, a two-terminal connection is used, 

where the working electrode (WE, the material of interest) lead and the sense electrode (SE, 

measures/controls the voltage against the reference electrode) lead are both connected to the 

material at which the desired reactions will occur, while the counter electrode (CE) lead and the 

reference electrode (RE, voltage control against SE) lead are both connected to the material used 

as counter electrode (e.g. lithium). The fifth lead is the ground lead and not ordinarily used in 

most experiments. The two-terminal configuration is schematically shown in Figure 2.8(a). A 

three-terminal connection is used for general aqueous electrochemistry, corrosion experiments, 

and most EIS (electrochemical impedance spectroscopy) experiments, as shown in Figure 2.8(b). 

The voltage at WE/SE is controlled relatively to a stable reference electrode positioned in close 

proximity to the working electrode. All battery cells in this study were connected in the 

two-terminal configuration. 

 

2.4.3 Data acquisition and processing 

The electrochemical testing data on the Ca:TiO2-B and TiO2-B thin films were collected 
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in the VersaStudio software bundled with the VersaSTAT system. The software offers a wide 

variety of basic operations, which can be programmed in sequences or loops to perform 

complicated electrochemical experiments. 

To set up a GC experiment, one should first estimate the 1C current for the sample of 

interest. For example, Ca:TiO2-B has a theoretical density of 3.637 g cm-3 and a specific capacity 

of 294 mA h g-1 (see Sections 3.5 & 4.3), so a 53 nm thick Ca:TiO2-B film grown on a 5×5 mm2 

substrate has a theoretical capacity of: 

53 ൈ 10ି଻	cm ൈ 0.5	cm ൈ 0.5	cm	 ൈ 3.637	
୥

ୡ୫య ൈ 294	
୫୅୦

୥
ൌ 1.41 ൈ 10ିଷ	mAh     (2.12) 

Therefore the 1C current, at which the film completely discharges its capacity in 1 hour, is 1.41 

A for this sample. Figure 2.9 shows the on-screen setup of a continuous cycling performed on 

such a Ca:TiO2-B film at a 10C rate, where the current is fixed at 14.1 A, in a voltage window 

of 1-3 V. It is customary to record 100-500 data points in each half-cycle (charge or discharge), 

so the “Time Per Point” value is set at 1 s in this example for 10C cycling. If the rate is much 

lower, such as C/10, the device is often programmed to record one data point every 10 s or longer. 

It is worth noting that the C unit is defined by the theoretical capacity of the material, which is 

usually not reached in experiments, so the time the sample actually takes to fully discharge its 

capacity at 10C might not be exactly 360 s (1 hr/10), but shorter. 

The raw data recorded in a GC experiment is in the form of potential (V) vs. elapsed time 

(s). A simple script on common programming platforms such as Matlab or Origin can be used to 

sift through the data stream and pick out all the end points of each half-cycle, three of which are 

marked in Figure 2.9 as tn-1, tn and tn+1. Considering a battery half-cell with metallic Li counter 

electrode, from tn-1 to tn, Li ions are inserted into the Ca:TiO2-B thin film, lowering the cell 

voltage, which is a discharge process; and inversely from tn to tn+1, a charge process. The battery 

capacity in each half cycle is calculated via multiplying the respective time period (tn-tn-1 and 

tn+1-tn) by the current, which is then divided by the mass of the film to obtain specific capacity. 

The Coulombic efficiency is defined as: 



37 
 

Coulombic	efficiency ൌ
େ୦ୟ୰୥ୣୱ	୲୦ୟ୲	ୡୟ୬	ୠୣ	ୣ୶୲୰ୟୡ୲ୣୢ

େ୦ୟ୰୥ୣୱ	୲୦ୟ୲	ୣ୬୲ୣ୰	୲୦ୣ	ୠୟ୲୲ୣ୰୷
                    (2.13) 

which can be calculated by the ratio between the discharge capacity and the charge capacity, is 

an important index to gauge the cyclability of a battery material. A Coulombic efficiency closer 

to 1, which suggests almost all Li+ inserted into the active material can be extracted, is desired in 

long term cycling. The charge and discharge capacities, along with the Coulombic efficiency, at 

each cycle are often plotted vs. the cycle number, e.g. Figure 4.13. 

In order to create an intuitive comparison between different cycles or between different 

rates, it is conventional to shift the charge curve in a particular cycle, i.e. the curve from tn to tn+1 

in Figure 2.9, to the left so tn lines up with tn-1, and convert the x-axis to capacity (or charge 

passed/Li content). This way, the voltage profiles (sometimes called load curves) in multiple 

cycles can be overlapped in the same plot to demonstrate capacity retention (e.g. Figure 6.5); or 

those with the same cycle number but at multiple rates to demonstrate rate capabilities (e.g. 

Figure 5.5). Many researchers also adopt a modified version of this plot, where the charge curve 

is mirrored horizontally and the end point of the discharge curve still meets the start point of the 

charge curve. In Figure 2.9, this means tn is fixed while flipping the curve from tn to tn+1 to the 

left. The purpose of such a modified plot is to clearly illustrate the amount of Li inserted into the 

active material that is trapped and cannot be extracted later, i.e. the capacity loss. Most authors 

show one cycle of this plot (e.g. Figure 4.11), while some draw a few cycles connected together 

to demonstrate capacity retention (e.g. Ref. 28). 

The GC experimental data can be further used to generate a differential capacity (dQ/dV) 

plot, which is obtained by taking a derivative of elapsed time with respect to the potential and 

multiplying by the current: 
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The differential capacity plot is very sensitive to plateaus in the voltage profiles (small dV with 

elapsed time), showing them as peaks.33,36 Physically, the peak positions (V) in the dQ/dV plot 

are linked to the potential where redox reactions occur in the electrode material, so they usually 

correspond well with the CV testing results. Therefore, these plots are often used when the CV 
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technique is not available, or when the peaks on the CV curves are difficult to identify. 

The setup for a CV measurement in the VersaStudio software is more straightforward. As 

shown in Figure 2.10, one only needs to add a few basic CV actions into the sequence as desired, 

each set with a specific scan rate (V/s), the number of cycles and the voltage window. No more 

data processing is necessary after the experiment finishes, unless curve smoothing is preferred, 

which can be done by the sampling or smoothing functions available in most data plotting 

software such as Origin. 

The importance of planning should be emphasized in an electrochemical research project, 

since battery cycling experiments usually take a long time. For instance, slow rate cycling is 

necessary to probe the thermodynamic equilibrium state of the battery, which is very useful in 

extracting information on kinetic effects at higher rates; however, at a rate of C/12, one cycle 

takes an entire day. In a CV measurement, one cycle between 1 and 3 V at a scan rate of 0.1 

mV/s takes more than 11 hours. Hence, a complete set of experiments at various rates on one 

sample often need weeks or even months to finish. The researcher should fully utilize the 

multi-channels on the testing device and arrange more samples to be tested at the same time. 
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Figure 2.1 Schematic of a typical PLD system (reproduced and modified from a schematic 

drawing available on http://www.egr.msu.edu/). 
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Figure 2.4 Sample geometries for Van der Pauw resistivity and Hall effect measurements. The 

cloverleaf design will have the lowest error due to its smaller effective contact size, but it is more 

difficult to fabricate than a square or rectangle [from NIST, Ref. 56]. The configuration used in 

this study is (b). 
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Figure 2.10 Screenshot of the VersaStudio software in a cyclic voltammetry experiment on a 
(001) TiO2-B thin film. The voltage window is 1-3 V. 
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Chapter 3 

Epitaxial Growth of High Quality Ca:TiO2-B (CaTi5O11) and TiO2-B 

Thin Films 

 

Being a metastable polymorph, phase pure TiO2-B is extremely hard to obtain with good 

crystallinity, significantly impeding its development both in the fundamental understanding and 

in potential applications. This chapter demonstrates, in great detail, a new waterless synthesis 

route to produce single-crystalline epitaxial thin films of TiO2-B and its more stable variant 

Ca:TiO2-B (CaTi5O11), using pulsed laser deposition (PLD). The growth mechanism and various 

microstructures in the thin films are clearly shown at the atomic scale. These findings can serve 

as guidelines for creating these materials in a controlled form, providing well-defined lattice 

orientation and surfaces for future research efforts. 

 

3.1 Introduction 

The first synthesis of TiO2-B dates back to 1980 by Marchand et al. from the layered 

titanate K2Ti4O9 which was converted to H2Ti4O9 via acid washing and finally dehydrated to the 

layered TiO2-B structure.7 The sample was heated to 500 °C to remove H2O, although it was not 

clear if the removal was complete, as water residual was still likely to be trapped in the structure. 

After more than 30 years, hydrothermal methods are still the dominate route to synthesize 

this material, despite the variations in process parameters and the morphology of the end product. 

TiO2-B, and titania in general suffers from poor electrical and ionic conductivity. Therefore, 

recent research has been focused on nanostructuring, which can help alleviate problems with 
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poor ionic conductivity by shortening lithium diffusion pathways.38 Kogure et al. (1999) 

identified TiO2-B nanocrystallites of 5-10 nm in size in a sol-gel derived SiO2-TiO2 film, 

prepared by mixing acid-hydrolyzed silicon tetraethoxide, Si(OEt)4, in ethanol with titanium 

tetra-n-butoxide, Ti(OnBu)4.
19 The Bruce group at University of St. Andrews, UK, has 

successfully synthesized various TiO2-B nanostructures, including nanowires (2004) with a 

typical diameter of 20-40 nm and a length of 2-10 m, prepared by adding TiO2-anatase to a 15M 

aqueous solution of NaOH at a reaction temperature of 170 °C, and washing with dilute HCl to 

promote complete exchange of Na+ by H+ for the formation of hydrogen titanates;20 nanotubes 

(2004, 2005) with external diameters of 10-20 nm, internal diameters of 5-8 nm, and a length up 

to 1 m, prepared by a similar procedure but using 10M NaOH solution at a reaction temperature 

of 150 °C, which easily convert to anatase upon heating, losing the tubular morphology;20,21 and 

nanoparticulate TiO2-B (2012), where the nanoparticles of ca. 2.5×4.3 nm in size form 

agglomerates of 0.3-3 m, synthesized by dissolving Ti metal in a mixture of H2O2 and NH3 in 

water, adding glycolic acid and finally hydrothermal treatment and calcination.36 Yang et al. 

(2009) fabricated TiO2-B nanofibers covered with a 10-20 nm shell of anatase nanocrystals, 

converted from H2Ti3O7 nanofibers by hydrothermal reaction and heating.61 Beuvier et al. (2010) 

synthesized non-porous nanoribbons around 30 nm large and 1-2 m long by refluxing treatment, 

ionic exchange and thermal treatment of the titanic acid.22 Liu et al. (2011) designed mesoporous 

TiO2-B microspheres comprising of micrometer-sized particles with a diameter of around 1 m, 

uniform mesopores of 12 nm, and nanosized crystal grains of ~6 nm, prepared by a template 

assisted ultrasonic spray pyrolysis method followed by refluxing, ion-exchange and heat 

treatment.23 Zhou et al. (2011) synthesized TiO2 nanobelts by annealing hydrothermally acquired 

H2Ti3O7 nanobelts at different temperatures, resulting in different TiO2 phases including TiO2-B, 

where the nanobelts were typically 20-40 nm thick, 50-200 nm wide, and up to several tens of 

m long.25 Liu et al. (2012) presented a one-step preparation of porous TiO2-B constructed by 

nanosheets with 5-10 nm thickness, 3.6 nm pore size, and petal-like morphology, based on the 

self-assembly of titanium precursor chelated by TiCl4 and ethylene glycol and the subsequent 
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solvothermal condensation in the presence of ammonia.24 Liu et al. (2013) reported an 

additive-free flexible film electrode by anchoring TiO2-B nanosheets on non-woven activated 

carbon fabric, where the 30-40 nm thick nanosheets were deposited by kinetically controlled 

hydrolysis and condensation of the titanium precursor.35 Etacheri et al. (2013) synthesized highly 

mesoporous nanosheet-assembled hierarchical TiO2-B microflowers, where the process involved 

the corrosion of Ti-foil in alkaline hydrogen peroxide solution under hydrothermal condition, 

resulting in microflowers that have a spherical shape with an average diameter of 1.5 mm, 

composed of 5-10 nm thick bundled 2-D nanosheets that uniformly grow perpendicular to the 

center forming a hierarchical morphology.26 

In these representative reports on the TiO2-B material summarized above, nanostructuring 

has indeed brought about excellent photocatalytic and battery performances, where the discharge 

capacity is generally higher than 270 mA h g-1 and up to 332 mA h g-1 (Li0.99TiO2). However, the 

presence of lattice water in the structures prepared by these hydrothermal methods is 

unavoidable, as the end products are likely to include layered hydrogen titanates 

H2TinO2n+1·xH2O, which exhibit features similar to H2Ti3O7, H2Ti4O9·H2O, and other members 

of the hydrogen titanate family.20,21 Residual H2O in the structure may interfere with Li+ 

transport, lowering charge storage capacity, rate capability and capacity retention, or react with 

Li, causing instability to the battery. More significantly, recent studies have suggested that H2O 

may even be needed to keep the bronze structure obtained in this route from collapsing into 

anatase upon aggressive heating.20,26,38,39 Additionally, the precursors, which often times contain 

other more stable TiO2 polymorphs such as anatase or rutile, rarely fully react, also contributing 

to the limited phase purity for TiO2-B. 

Furthermore, in spite of the extensive efforts to synthesize this material, especially in the 

past decade, a true bulk of TiO2-B is still lacking, largely due to the fact that it is a metastable 

phase. Though many researchers have used a “bulk” TiO2-B sample in property tests to contrast 

the electrochemical dynamics in nanostructure-engineered electrodes,20,21,36 the “bulk” actually 

stands for large powder particles, or a mechanically pressed, possibly sintered, pellet made from 
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powders, which mimic a longer Li+ transport pathway. Apparently, this is quite different from the 

strict definition of bulk, which refers to a relatively large single crystal. The grain boundaries 

between the powder particles, or the confinement effects depending on the particle sizes, would 

all cloud the fundamental understanding of the material, while complicating property testing data 

analysis because of the lack of a good baseline. Compounded by the random distribution of the 

nanocrystallites, direct association of test results from these nanostructures with theoretical 

studies is often difficult, where the latter simulates a perfect crystal, while adding defects and 

boundaries multiplies the computational complexity exponentially. Specifically for TiO2-B, or 

other battery materials that exhibit the attractive pseudocapacitive behavior, a true bulk is critical 

to distinguish between bulk effects and surface effects. 

In light of the above, a new method to synthesize high quality TiO2-B crystal is highly 

desired. Based on first principles calculations, x-ray diffraction (XRD) and atomic resolution 

high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM),62 

we have observed a stable derivative of the TiO2-B structure, CaTi5O11 (referred to as Ca:TiO2-B 

below), and have demonstrated that it can be used as an anode material in lithium-ion batteries 

with significantly enhanced rate capability via orientation engineering.12 In this chapter, we 

report a thin film growth approach to create high quality new Ca:TiO2-B phase and its role as a 

template for the waterless synthesis of pure TiO2-B. We will discuss the optimization of the PLD 

growth conditions, including target composition, choice of substrates, growth temperature, laser 

energy and O2 partial pressure, to achieve the best purity and crystallinity for the Ca:TiO2-B and 

TiO2-B phases. 

 

3.2 First observation of the Ca:TiO2-B phase 

The TiO2-B phase was first observed unexpectedly as a defect phase inclusion in Pt 

doped CaTiO3 films grown by PLD. A CaTi0.95Pt0.05O3 thin film deposited at 750 °C in 50 mTorr 

O2 showed good epitaxy as grown on a (100) SrTiO3 substrate, which was homogeneous and 

comprised a single perovskite phase, without any second phases observed in STEM. When the 
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film was exposed to reducing conditions (800 °C, 10% H2/N2, 1 h) in order to induce the 

extrusion of metallic Pt from the perovskite matrix,63 Pt clusters 1-2 nm in diameter precipitated 

from the CaTiO3 host, while the oxide itself in the CaTi0.95Pt0.05O3 film also underwent 

significant local phase transformations in the vicinity of the Pt clusters that had nucleated upon 

reduction. Small 2-15 nm regions of second phases formed epitaxially to the surrounding 

perovskite matrix, as shown in Figure 3.1(a).62,64 These phases were identified as the anatase 

phase and TiO2-B, respectively, by their crystal structure as imaged in HAADF STEM and their 

stoichiometry – the absence of Ca relative to the surrounding matrix – as probed by EELS. The 

bronze phase regions are heavily twinned due to the lattice mismatch with the surrounding 

perovskite. 

The Ca:TiO2-B phase was also identified in STEM as another defect phase in the above 

sample, co-existing with TiO2-B, as well as in other samples. Figure 3.2(a) shows a defect phase 

inclusion containing the Ca:TiO2-B structure, where the arrow marks the unique Ti-Ca 

alternating layer. More generally in this sample, Ca:TiO2-B forms out of the perovskite in small 

domains of order 10 nm in diameter, generally with its main crystallographic axes co-directional 

with those of the surrounding perovskite. Within these domains, however, about 1/3 to 1/2 of the 

volume is the simple TiO2-B structure, of which Ca:TiO2-B is a twinned, augmented variant with 

a layer comprising one ion each of Ca, Ti, and O separating each twin plane. It is likely that the 

small size of the domains along with the large size of the Ca:TiO2-B unit cell and its existing 

crystallographic template allows the otherwise slightly more unfavorable TiO2-B to easily form. 

The dashed line in Figure 3.2(a) marks the interface between the two bronze phases. Such 

templating effect has been magnified to create high quality single-crystalline TiO2-B epilayers on 

top of a Ca:TiO2-B template layer, as will be shown later in this chapter. Even larger Ca:TiO2-B 

grains were observed in a Rh doped CaTiO3 (CaTi0.95Rh0.05O3) thin film under the same growth 

and thermal treatment conditions as the above Pt doped film, an example of which is shown in 

Figure 3.2(b) adjacent to a Rh particle precipitate. It is not yet clear whether the Pt and Rh had 

any catalysis effect during the phase formation of TiO2-B and Ca:TiO2-B in these samples. 
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Based on the experimental results, theoretical simulation of phase evolution was focused 

on temperatures between 100 °C and 800 °C, mirroring those accessible during our experiments, 

and in oxygen partial pressures ( ைܲమ) from 0.2 to 1×10-8 atm (152 Torr to 0.0076 mTorr), 

representing oxidizing and reducing conditions, respectively. Pseudo-ternary phase diagrams 

were calculated by minimizing the grand canonical free energies of all compounds reported to 

exist within the Ca-Ti-Pt-O system.62 Phase diagrams were calculated at intervals of 100 °C 

between 100 °C and 1200 °C for ைܲమ=0.2 atm and between 100 °C and 800 °C for ைܲమ=1×10-8 

atm. A selection of these calculated phase diagrams are shown in Figure 3.1 representing 

moderate redox conditions, while the full set of calculation results can be found in Ref. 62, in 

which the Ca:TiO2-B phase always exists until it disappears at 1×10-28 atm, an extremely 

aggressive reducing condition, suggesting that it is a thermodynamically stable phase. 

Guided by these initial observations and theoretical predications, a systematic study to 

grow phase pure Ca:TiO2-B and TiO2-B thin films has been carried out, as will be presented in 

detail below. Progressing parallel to the growth optimization, the atomic model of the new 

Ca:TiO2-B phase has been gradually refined in density functional theory (DFT) calculations 

performed by Dr. Baihai Li, benefiting from the more and more clear STEM images obtained by 

Dr. Mike Katz from the high crystal quality thin films. 

 

3.3 Ca:TiO2-B thin film formation 

Although TiO2-B has the same stoichiometry as the other TiO2 polymorphs, it is far less 

stable in typical PLD growth conditions. Direct ablation from a pure TiO2 target onto a 

perovskite substrate usually results in the anatase or rutile phase, depending on the substrate 

surface structure and growth conditions.65,66 Figure 3.3 shows a (001) TiO2-anatase film grown 

on a (001) SrTiO3 substrate using a TiO2 target by PLD under 700 °C and 50 mTorr O2, well 

corresponding to its atomic structure in Figure 3.3(b). Except for an extended defect, which is 

possibly a grain boundary between two anatase grains that are rotated 90 ° or 180 ° from each 

other about the c-axis (equivalent directions due to symmetry), the pure anatase film is of high 
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crystal quality. 

Informed by the theoretical and experimental results described in Section 3.2, it was 

likely that Ca might help stabilize the bronze structure, forming a new phase. Hence, a target was 

constructed by mixing 90% TiO2-anatase and 10% CaO (mole percent) powders, which was then 

sintered and pressed into a dense pellet. The target was used to grow a thin film on a (001) 

SrTiO3 substrate under 700 °C and 50 mTorr O2 with a laser fluence of 3.4 J cm-2 and a repetition 

rate of 10 Hz. The film, deposited in 20 min, was discontinuous, consisting of small islands on 

the substrate surface, as shown in Figure 3.4. The grains were roughly epitaxial on the substrate, 

about up to ~10 nm tall. Correlating with the atomic model as shown in Figure 1.1, it was clear 

that these were Ca:TiO2-B grains, some of which were viewed along the [100] direction (Figure 

3.4(b)), while others were viewed along the [010] direction (Figure 3.4(c-d)). Therefore, the film 

was approximately (001) oriented, although in many grains the a-b planes were slightly tilted, 

possibly due to certain defect phase formation roughening the interface with the substrate. 

Increasing the growth temperature significantly changed the morphology of the film. 

Grown at 800 °C with other conditions fixed using the same 10% CaO target also in 20 min, the 

film became continuous with a larger thickness of ~26 nm, as shown in Figure 3.5(a). As 

explained in Section 2.1.2, the higher temperature has apparently facilitated the grain growth and 

enhanced the deposition rate, thus increasing the volume of the film both laterally and vertically. 

The film exhibits a co-existence of the Ca:TiO2-B and anatase phases, while different Ca:TiO2-B 

grains are aligned in different orientations. These microstructure features are further discussed in 

the section as follows. 

 

3.4 Growth optimization of the Ca:TiO2-B thin films 

3.4.1 Target composition 

According to the theoretical calculations,62 the Ca:TiO2-B phase in a Ca4Ti20O44 unit cell 

is a thermodynamically stable member of the CaO-TiO2 pseudo-binary system, and its lattice 

constants were previously given in Section 1.2. The CaTi5O11 stoichiometry corresponds to a 
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Ti:Ca ratio of 5:1, or equivalently, 1/6 (by mole) CaO in the powder mixture that was used to 

make the PLD target. Experimentally, we made targets containing 10%, 16.7% and 20% CaO for 

comparison. The targets were installed in the Neocera PLD system with a chamber base pressure 

<10-7 Torr, facing substrates at a distance of 6.35 cm. The laser repetition rate was set at 10 Hz to 

ablate the targets. 

SrTiO3 substrates are intrinsically fitting for growing TiO2 based structures on top, as a 

previous study illustrated that SrTiO3 (001) has a TiO2-rich surface.67 Further, good epitaxy of 

(001) Ca:TiO2-B thin films on (001) SrTiO3 substrates is expected because its in-plane a and b 

cell parameters are nearly integer multiples of the lattice constant of cubic SrTiO3 (3.905 Å), 

presenting a lattice mismatch of ~3.25% (calculated for diagonal mismatch). Figure 3.6 

compares the -2 patterns of the thin films deposited from the targets of different compositions 

onto (001) SrTiO3 substrates at 800 °C in an oxygen ambient of 0.05 Torr, where the laser pulse 

energy was set to 200 mJ (a fluence of ~3.4 J cm-2). With 10% CaO in the target, multiple 00l 

peaks of Ca:TiO2-B are seen at 2 angles well corresponding to the theoretical calculations. The 

insufficiency of Ca caused some grains to crystallize in the anatase phase, the (001) plane of 

which also has a small lattice mismatch (-3.15%) with SrTiO3 (001), evidenced by a prominent 

anatase 004 peak in XRD. Figure 3.5(b) shows a HAADF STEM image taken along the [010] 

direction of the SrTiO3. The film is mainly comprised of the Ca:TiO2-B phase in its signature 

layered bronze structure, with the Ti-Ca interleaved layer turning the regular TiO2-B structure 

into a twinned zigzag pattern (see ref. 12 for atomic model). Since the cubic substrate has four 

equivalent directions on the surface, Ca:TiO2-B grains can form in four different orientations 

with its [100] direction aligned along one of the <100> directions on the (001) SrTiO3 substrate 

surface. As seen in Figure 3.5(b), the [010] direction of the large Ca:TiO2-B grain on the top-left 

side is parallel to the [010] direction of the SrTiO3 substrate, while the small grain outlined in the 

top-right corner is viewed along the [100] direction, presenting a 90 ° (or 270 °) rotation about 

the [001] direction from the neighboring grain. This grain rotation effect is repeatedly observed 

throughout the film, as shown in Figure 3.5(c). Besides the Ca:TiO2-B grains viewed along the 
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[100] direction on the left and right of the image, one other grain in such orientation sits near the 

surface of the film, on top of an extended defect, while approximately maintaining its epitaxial 

relationship with the surrounding grains. The epitaxial relationships at the film-substrate 

interface are depicted in Figure 3.7, consistent with the observations in STEM. A few anatase 

grains growing along its c-axis were also observed (Figure 3.5). Images taken at lower 

magnifications indicate that the anatase phase occupies approximately 5-10% of the volume of 

the film, though it should be noted that most anatase grains are located near the interface with the 

substrate. Once the Ca:TiO2-B phase is formed, it offers a good template for continuous upward 

stacking of the atom layers in the a-b planes, and therefore the film surface is cleanly Ca:TiO2-B. 

As the Ca content is increased in the target, the anatase 004 peak is gradually suppressed relative 

to the Ca:TiO2-B peaks. The target containing 20% CaO resulted in the best films so far with 

strongest 00l reflections from the bronze planes (bottom pattern in Figure 3.6), and only a trace 

amount of anatase. The STEM image in Figure 3.8(a) confirms that the film is ~65 nm thick and 

is almost entirely of the Ca:TiO2-B phase, with a smooth surface. 

Ca is of vital importance in stabilizing the structure. Figure 3.8(b) shows the high 

magnification HAADF image of the film deposited using the 20% CaO target. While the film is 

comprised entirely of the Ca:TiO2-B phase, crystal defects can be identified stemming from 

stacking faults where the Ti-Ca interleaved layer is partially missing, creating a somewhat 

disordered boundary separating two grains, which is possibly caused by slight perturbation of 

material flow in the PLD plasma plume, or inhomogeneity in the target composition. In another 

case, instead of being partially missing, the Ti-Ca layer may be broken up and slightly shifted 

across two adjacent grains, forming an anti-phase boundary as an extended defect, as shown in 

Figure 3.8(c). The fact that the 20% CaO target worked better than the stoichiometric 16.7% 

CaO target indicates that, in this specific thermodynamic environment during growth, Ti in the 

targets has a higher efficiency of transferring into the film than Ca does. Such observation helps 

explain the lower Ca:TiO2-B purity in films grown from targets that have less Ca content, where 

the deficiency of Ca starves a few grains into forming TiO2-anatase. 
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3.4.2 Choice of substrates 

To explore the possibility of growing bronze films on other substrates, a few commonly 

used crystals have been tested, and their lattice structures are listed in Table 3.1.66 The -2 XRD 

patterns of the films deposited on various substrates from a 20% CaO target with growth 

conditions fixed as above are compared in Figure 3.9. Among the five, only LaAlO3 led to the 

formation of the Ca:TiO2-B phase, where anatase is also prominent, and no Ca:TiO2-B formation 

can be identified on the rest. CaTiO3 phase was found on Si and MgO, while TiO2-rutile could be 

identified on YSZ and Al2O3.
66,68 The resultant phases were mostly driven by their epitaxial 

relationship with the substrates. Table 3.2 summarizes the in-plane mismatch at the 

film-substrate interface, where it is clear that the structure which the films eventually crystallized 

in is determined by a combination of small lattice mismatch, similar crystal symmetry and target 

composition. There are a few unidentified peaks, sometimes quite broad, in each XRD pattern, 

which are likely associated with more complicated phases such as Ti4O7 (01-077-1392) or 

CaTi2O4 (04-010-1325) in less crystalline form, although these non-dominant phases were not 

observed in TEM (typical specimens have a viewing area of ~1 m). 

 

3.4.3 Growth temperature, laser energy and O2 partial pressure 

Understanding that (001) SrTiO3 is by far the most suitable substrate for the growth of 

Ca:TiO2-B, the effects of varying growth temperature, laser energy and O2 partial pressure were 

further investigated. In order to monitor the purity of the desired Ca:TiO2-B phase relative to the 

major impurity, anatase, in this study, a target containing 10% CaO was used so that the anatase 

004 peak was usually manifest, as discussed above. If a 20% CaO target was used, the anatase 

peak would generally be much weaker, making it hard to track against varying growth conditions. 

Figure 3.10 compares the XRD patterns of the films grown in the temperature range of 

600-900 °C with other conditions fixed. The existence of anatase was observed in all samples, 

and its 004 peak was strongest at 700 °C. At that same temperature, the Ca:TiO2-B phase started 
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to form showing a broad 006 peak, which became stronger and sharper with increasing 

temperature until the optimal result at 800 °C, and then broadened and weakened again up to 

900 °C. On the other hand, the formation of the Ca:TiO2-B phase was not very sensitive to the 

laser pulse energy, as samples of similar quality were obtained using laser energy around 200 mJ 

(a fluence of ~3.4 J cm-2). However, if the laser pulses were overly powerful, the excess amount 

of Ti in the plasma plume would force part of the film to crystallize in cubic TiO phase rather 

than TiO2, as seen in Figure 3.11(a). The impact of O2 partial pressure on the thin film growth is 

shown in Figure 3.11(b). With no O2 backfilling, anatase formation was prohibited and a faint 

Ca:TiO2-B 006 peak was observed. The increasing pressure of O2 helped fill oxygen vacancies in 

the bronze structure, yielding the best result at 0.05 Torr, beyond which the material flow was 

scattered and ion path shortened with almost no film deposited at 0.1 Torr. 

 

3.5 TiO2-B thin film growth on a Ca:TiO2-B template layer 

It was found through further investigations that Ca:TiO2-B can serve as a template for 

growing regular TiO2-B on top due to the near-perfect lattice match between the two, where their 

mismatch in the a-b plane is -0.075% (Table 3.2).8 The crystal structure of TiO2-B epitaxy on 

Ca:TiO2-B that has been optimized by VASP software10 is shown in Figure 3.12, where the two 

phases align their respective a-b planes with each other, bonded by a layer of oxygen. As a result, 

high quality (001) TiO2-B thin films could be deposited on a (001) Ca:TiO2-B template layer 

using a pure TiO2 target under the same growth conditions as for Ca:TiO2-B, in contrast to the 

(001) anatase film obtained from direct deposition of pure TiO2 on a (001) SrTiO3 substrate.69 

The XRD pattern and a HAADF image of a TiO2-B/Ca:TiO2-B/SrTiO3 heterostructure are 

illustrated in Figure 3.13(a) (top part) and Figure 3.13(b), corresponding well with the atomic 

model in Figure 3.12. The structure parameters of our TiO2-B films are in good agreement with 

values in the literature.8,70 The theoretical densities of Ca:TiO2-B and TiO2-B are determined to 

be 3.637 g cm-3 and 3.616 g cm-3, respectively, approximately 7% lower than that of anatase. 

The templating effect in such a dual layer film is obvious. Depending on the terminating 
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surface in its zigzag structure of the Ca:TiO2-B layer, the TiO2-B phase could be growing along 

two opposite directions in the upward stacking of the atom layers in the a-b planes, as seen in 

Figure 3.13(c). Originating from the defect (indicated by the arrow) of a partially missing Ti-Ca 

interleaved layer, the Ca:TiO2-B phase terminates with different surfaces that are two Ti layers 

apart, resulting in an anti-phase boundary above it where two TiO2-B grains collide. A number of 

variations to such defects also exist, changing the terminating surface of the Ca:TiO2-B template 

layer, so the abutting TiO2-B grains on top may stack away from each other, as shown in Figure 

3.14(a), or may run upwards in the same direction when two Ti-Ca layers are partially missing, 

as shown in Figure 3.14(b). More examples and detailed analysis on these crystal defects and 

their forming mechanism can be found in Ref. 71. 

Crystal quality of the TiO2-B thin films was then examined by monitoring the full width 

at half maximum (FWHM) of the TiO2-B 002 (strongest) peak. The average grain sizes can be 

calculated using the Scherrer equation,72 

߬ ൌ
௄ఒ

ఉ ୡ୭ୱఏ
                                                          (3.1) 

where  is the mean size of the ordered crystalline domains (may be smaller or equal to the grain 

size), K is a dimensionless shape factor with a value close to unity and often taken as 0.9,  is the 

x-ray wavelength (λ=1.54 Å for Cu-Kα radiation),  is the FWHM value after subtracting the 

instrumental line broadening, and  is the Bragg angle. Both the FWHM values and the average 

grain sizes are plotted as functions of the TiO2-B film thickness in Figure 3.15(a). Below ~40 nm, 

the grain size increases proportionally with the film thickness, resulting in a decreasing FWHM. 

As the thickness further increases, the grain size is often limited in the lateral dimension by 

crystal defects such as the anti-phase boundary in Figure 3.13(c), and shows a saturation 

behavior at ~50 nm, corresponding to a FWHM of ~0.162 °. The dependence of TiO2-B 002 

FWHM on the thickness of the underlying Ca:TiO2-B template layer, however, is not significant. 

Except for the relatively large value associated with the smallest TiO2-B thickness, the FWHM is 

almost independent on the template thickness over a wide range, from 10 to 140 nm, as seen in 

Figure 3.15(b). 
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These results suggest that the templating effect can be transferred to other systems for 

TiO2-B applications, as long as a well-defined Ca:TiO2-B (001) surface is formed. For instance, a 

conductive substrate is convenient for current collection when investigating the electrochemical 

properties of TiO2-B as a thin film anode in lithium-ion batteries.12 Using a 0.15 at.% Nb doped 

SrTiO3 (001) substrate (resistivity ~0.08  cm), a high quality dual layer film was also achieved 

(Figure 3.13(a)). Similar results were acquired from another sample grown on (001) LSAT, 

where it was demonstrated that the thicknesses of the two phases can be adjusted by controlling 

respective growth times: deposition time for TiO2-B was doubled (2 hr to 4 hr) while it was 

decreased to 1/6 for Ca:TiO2-B (2 hr to 20 min), producing relatively stronger TiO2-B peaks in 

XRD (Figure 3.13(a)). A substantial amount of anatase existed in the Ca:TiO2-B films grown on 

LSAT, likely caused by the fact that anatase has a smaller in-plane mismatch with LSAT than 

with SrTiO3 (Table 3.2). Similarly, since Ca:TiO2-B proves to have a good epitaxy on (001) 

SrTiO3, the TiO2-B/Ca:TiO2-B dual layer structure may be grown on many other substrates 

where a (001) SrTiO3 buffer layer can be fabricated. As an example, Figure 3.16 show the -2 

XRD pattern of a (001) TiO2-B/Ca:TiO2-B dual layer film grown on a SrTiO3 (20 unit cells) 

buffered (100) Si substrate. The quality of the bronze film is essentially limited by the quality of 

the SrTiO3 buffer, whereas in this experiment, the buffer layer was not a perfect (001) film, as 

SrTiO3 (111) peak was also observed. The ability to grow bronze films on Si suggests great 

potential to integrate the properties of these new materials with existing infrastructure of the 

current semiconductor industry. Scientifically, we have used this sample to investigate the 

Raman properties of the bronze films, because in our test environment, it was much easier to 

isolate the substrate signal from that of the films which were grown on Si rather than on 

SrTiO3.
50,73 Owing to the plate-by-plate growth mechanism of these structures, the Ca:TiO2-B 

film usually has a rather smooth surface with a 1.77 nm root-mean-square (rms) roughness, 

which translates well to the TiO2-B layer above it with an rms surface roughness of 1.76 nm, as 

shown by the atomic force microscopy (AFM) images in Figure 3.17(a-b), where the hills and 

valleys in the morphology are possibly associated with crystal defects that are extending to the 
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surface (e.g. Figure 3.5 and Figure 3.8). 

 

3.6 Summary and conclusions 

In summary, high quality TiO2-B and Ca:TiO2-B thin films with well-controlled lattice 

orientation and smooth surface can be fabricated on various substrates through a completely 

waterless process. Building on guidelines established here, multilayer devices that utilize both 

the bulk and the surface of these attractive materials may prove promising in a wider range of 

applications. Specifically, the following conclusions have been reached: 

(1) High quality single crystalline (001) Ca:TiO2-B thin films with a smooth surface 

can be deposited on (001) SrTiO3 substrates using a (80 mol% TiO2 + 20 mol% CaO) target, 

under the optimal growth conditions of 800 °C, 50 mTorr O2, 3.4 J cm-2 laser fluence and 10 Hz 

repetition rate. 

(2) Relatively high quality Ca:TiO2-B thin films may also be grown on (001) LaAlO3 

and (001) LSAT, where anatase is a major defect phase usually locating near the interface with 

the substrate, due to the small lattice mismatch. 

(3) High quality single crystalline (001) TiO2-B thin films with a smooth surface can be 

deposited on a (001) Ca:TiO2-B template layer using a pure TiO2 target, under the same 

conditions as those used to grow Ca:TiO2-B. The crystal quality of the TiO2-B films is largely 

independent on the template layer thickness. However, the grain size is often limited laterally by 

crystal defects. 

(4) The stacking direction of the TiO2-B phase is determined by the terminating surface 

of the Ca:TiO2-B template layer, resulting in various types of grain boundaries. 

(5) Anywhere a (001) SrTiO3 surface exists, a (001) Ca:TiO2-B thin film can grow on it; 

anywhere a (001) Ca:TiO2-B surface is formed, a (001) TiO2-B thin film can grow on top. 

Therefore, the two bronze phases can essentially be synthesized on a wide variety of substrates, 

including Si, for device applications. 
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Table 3.1 Lattice structures of the phases and substrates involved in this study. 

 

Phase Crystal system Lattice parameters 

Ca:TiO2-B orthorhombic a=12.1702 Å, b=3.8013 Å, c=17.9841 Å 

TiO2-B monoclinic a=12.1787 Å, b=3.7412 Å, c=6.5249 Å, =107.054° 

TiO2-anatase tetragonal a=b=3.7820 Å, c=9.5150 Å 

TiO2-rutile tetragonal a=b=4.5900 Å, c=2.9600 Å 

CaTiO3 pseudocubic a=3.8917 Å 

SrTiO3 cubic a=3.9051 Å 

LSAT a cubic a=3.8680 Å 

LaAlO3 pseudocubic a=3.7913 Å 

Si diamond cubic a=5.4305 Å 

YSZ b cubic a=5.1420 Å 

MgO cubic a=4.2130 Å 

Al2O3 hexagonal a=4.7580 Å, c=12.9910 Å 

a ( LaAlO3)0.3(Sr2AlTaO6)0.7; 
b yttria-stabilized zirconia 
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Table 3.2 In-plane mismatch (calculated on a diagonal basis) between difference phases and the 

substrate surfaces. The preferred phase eventually adopted by the film deposited from a (80% 

TiO2 + 20% CaO) target on each specific substrate is set in bold. 

 

Substrate surface 
Ca:TiO2-B 

(001) 

TiO2-anatase 

(001) 

TiO2-rutile 

(001) 

CaTiO3  

(001) 

TiO2-B  

(001) 

SrTiO3 (001) 3.25% -3.15% 17.5% -0.343% 3.17% a 

LSAT (001) 4.24% -2.22% 18.7% 0.613% 4.16% a 

LaAlO3 (001) 6.35% -0.245% 21.1% 2.65% 6.27% a 

Si (100) 8.58% 4.47% -15.5% 7.50% 7.82% a 

YSZ (100) 14.7% 10.3% -10.7% 13.5% 13.9% a 

MgO (100) -4.30% -10.2% 8.95% -7.63% -4.37% a 

-Al2O3 (0001) -22.6% -11.1% 7.95% -8.48% -22.6% a 

Ca:TiO2-B (001) 0 -6.20% 13.8% -3.48% -0.075% 

a For comparison only. TiO2-B does not grow directly on these substrates in this study. 
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Figure 3.16 XRD -2 pattern of a (001) TiO2-B/Ca:TiO2-B dual layer film grown on a SrTiO3 

buffered (100) Si substrate. 

 

  



 

 

Figure 3

TiO2-B 

substrat

 

3.17 AFM i

film (on t

tes. Scan are

images (tapp

top of a C

ea is 5 m ×

ping mode)

Ca:TiO2-B t

× 5 m for b

81 

 showing th

template), r

both. 

he surfaces o

respectively

of (a) a Ca:T

y, both grow

TiO2-B film

wn on (00

 

m and (b) a 

1) SrTiO3 



82 
 

 

 

Chapter 4 

Epitaxial Ca:TiO2-B (CaTi5O11) and TiO2-B Thin Films as Anode 

Materials for Lithium-Ion Batteries 

 

4.1 Introduction 

Being an efficient energy storage device for portable or mobile electric systems, the 

battery is one of the very cornerstones that construct the modern way of life. There are two types 

of batteries. One is the primary battery, which can be used only once, such as the most common 

alkaline batteries. The other one is the secondary battery, which may be recharged for reuse, such 

as the well-known lead-acid, nickel-cadmium (Ni-Cd), nickel-metal-hydride (Ni-M-H), and 

lithium-ion batteries. The voltage of secondary batteries using aqueous electrolytes is limited by 

the stability of water (1.23 V vs. hydrogen reference), which may not sustain high voltage 

applications.74,75 For instance, Ni-Cd and Ni-M-H batteries have a cell voltage ~1.2 V, and are 

often connected in series to produce a higher voltage.76 

Rechargeable lithium-ion batteries (LIBs) offer several advantages when compared to 

traditional secondary power sources, including a wide range of cell voltages up to >4 V 

depending on the particular cathode and anode materials used,77 high energy density, and long 

cycle life.78 Until most recently, lithium-ion batteries are considered to have no memory effect – 

an effect commonly seen in Ni-Cd or Ni-M-H batteries which lose usable capacity owing to a 

reduced working voltage if recharged repeatedly after being only partially discharged, although 

the memory effect has so far only been observed in LiFePO4.
79 More generally, lithium-ion 

batteries are still far more superior in capacity retention over other rechargeable batteries. 
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Besides enhancing the performance of a LIB in the three core areas, i.e. voltage (P=I×V), energy 

density (specific capacity) and cycle life (capacity retention), it is also crucial to improve the 

safety aspects of this high voltage energy storage system while using more earth abundant and 

low cost materials. In recent years, the focus of research in LIBs has expanded from developing 

capacity alone to enhancing charge/discharge rate capabilities, thus expanding the application to 

high power systems such as smart grids and electric vehicles.15,17 

 

4.1.1 The structure of a lithium-ion battery 

The structure of a LIB is essentially similar to other batteries. In many cases, a battery 

contains several basic cells to obtain the desired voltage and power rate. As shown in Figure 4.1, 

a cell is comprised of a cathode (positive electrode), an anode (negative electrode), and an 

electrolyte. The electrolyte, which can be a liquid or a solid, allows Li+ movement but prohibits 

electron conduction. In the modern compact LIBs, where the cathode and the anode are closely 

packed together, an insulating separator is needed to prevent short-circuit. 

During discharge, when the external circuit is powered by the electron flow, Li ions are 

extracted from the anode at the anode/electrolyte interface, and inserted into the cathode at the 

cathode/electrolyte interface, often reducing the metal ions in the cathode to a lower valence 

state. The most commonly used materials in a commercial LIB cell is LiCoO2 as cathode and 

graphite as anode, and the chemical reactions are: 

LiCoOଶ ⇋ Liଵି௫CoOଶ ൅ Liାݔ ൅  eିݔ                                 (4.1) 

6C ൅ Liା ൅ eି ⇋ LiC଺                                        (4.2) 

The focus of this work is to develop titania-bronze as a high rate anode material. When 

characterizing a new battery material, it is often paired with Li metal as counter electrode in a 

battery cell, often called a half-cell, as compared to the notion of a full-cell such as the above. In 

this case, an anode material of interest actually works as the cathode vs. Li. Since the Li counter 

electrode acts as a zero potential supplier of Li+ and a universal reference point, the material’s 
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electrochemical properties in a LIB is most accurately depicted. The voltage of a proposed 

full-cell can be easily predicted from the difference between the respective potentials of the 

cathode and the anode vs. lithium. 

Most researchers deal with electrode materials synthesized in the powder form. The 

active material, which is the actual host to Li+, is usually mixed with carbon powders as current 

collector and a polymeric binder which holds the mixture together, and forming a slurry which is 

then pasted and dried on a piece of metal, usually Cu or Al, working as a base. Such an electrode 

is then assembled in a battery cell for testing. 

In this thesis, where we work with crystalline thin films, the configuration, as well as 

testing protocols, is quite different from the traditional, and will be presented in detail later in 

this chapter.  

 

4.1.2 Electrode materials 

The pursuit of high cell voltage drove many researchers in the early days on the path 

searching for a cathode material with reversible Li+ insertion and extraction capability. One of 

the earliest reports was in 1976 from Whittingham, introducing TiS2 as the positive electrode 

against lithium in a cell that worked at a voltage exceeding 2 V.80 Unfortunately, Li was reactive 

to the electrolytes used the cell, where various flammable gas species were formed due to the 

decomposition of the electrolyte at its interface with Li,81 creating a major safety issue that 

remains a concern in many battery systems even today. Li was used as the negative electrode, or 

anode, until the discovery of practical lithium-alloy,82 spinel based Li-transition metal oxides,83 

and Li-carbon intercalation hosts.84 

TiS2 was attractive at the time because it forms a layered, two-dimensional (2D) 

framework or a rigid three-dimensional structure (3D).85,86, where the 2D polymorph provides 

better energy density. A shift in focus from sulfides to oxides started not long after, aiming at 

increasing the energy density of the material as well as the cell voltage. Similar to TiS2, some 

transition metal oxides also have a layered 2D form. As a result of higher electronegativity of the 
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oxide anions as compared with those in the sulfides, the oxides have a higher ionization energy, 

and hence lead to a higher cell voltage when used as cathodes,87 as the cell voltage is determined 

by the difference in electron potential between the cathode and the anode. 

The first transition metal oxides considered were known as host solids, which are 

materials synthesized without lithium in their framework. After the synthesis is complete, 

yielding an empty structure, the host solid is then lithiated by a Li intercalation process. Early 

host transition metal oxides investigated for Li+ intercalation included V2O5, MoO3, V6O13,
88 

WO3 and MnO2.
89 

In 1980, Mizushima et al. discovered a new non-host type layered transition metal oxide 

with Li intercalation and deintercalation properties without destroying the oxide framework, i.e. 

LixCoO2 (0<x≤1), which consists of Li+ lamellae between two CoO2 lamellae, prepared by 

electrochemical extraction of lithium from the parent LiCoO2 ordered rock-salt structure.90 Due 

to its high average operating voltage of ~3.7 V vs. lithium, high charge capacity (274 mA h g-1 

theoretical),91 and acceptable electrochemical stability, LiCoO2 is one of the most widely used 

cathode material in LIB technology today. 

Because cobalt is an expensive metal, especially when considered for large scale 

applications, many other materials have been synthesized using alternate transition metals or 

mixtures of transition metals to vary the composition and properties of LiCoO2, while 

maintaining the layered 2D structure. These materials can be generally described as LiMO2 and 

LiMxCo1-xO2,
92-97 where M represents the alternate transition metals such as V, Fe,98,99 Ni,100,101 

and Mn.102-105 Metals (Mg) and non-metals (F) were also proposed in exchange for Li and O, 

respectively, in LiCoO2.
106,107 

The design of an anode material has essentially the same considerations as for the 

cathodes. High energy density, long cycle life, high rate performance, high structural stability 

and low cost are still the ultimate goals. The major difference, however, is that for anode 

materials, different voltage may be desired in different situations. Apparently, for a fixed cathode 

material, an anode with lower potential leads to a higher cell voltage and thus higher power, 
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which is the very reason that graphite, with a potential of 0.1-0.2 V vs. Li and a capacity of 372 

mA h g-1, is the most commonly used commercial anode material. On the other hand, the low 

potential introduces an inherent safety issue: lithium plating. The lower the potential of a 

material is vs. Li, the more easily Li would plate on the surface of that material. To make things 

worse, the electro-deposition of Li occurs in the form of dendritic growth, as shown in Figure 4.2. 

Once the Li dendrite pierces through the separator and reaches the cathode to cause short-circuit, 

the catastrophic failure of the battery may end with a fire or an explosion. Low anode operating 

voltage (<1 V) also causes the electrolyte to decompose and form an unstable SEI layer on the 

anode’s surface, releasing gases that build pressure in the cell and endangering the safety of the 

battery system especially during prolonged cycling. Therefore, when the safety and stability are 

considered as priority over energy/power density,108 higher anode operating voltage is factually 

a beneficial factor over graphite. Although the sacrifice in full-cell voltage may be 

disadvantageous in portable systems, high voltage anodes are excellent candidates for stationary 

energy storage systems that have less stringent weight and space requirements but emphasize 

operation safety, such as grid level applications. 

Table 4.1 and Table 4.2 list a few popular cathode and anode materials, respectively, 

comparing their properties. The TiO2-B and Ca:TiO2-B thin films presented in this thesis are also 

included (Table 4.2). 

For any electrode material, including both the cathode and the anode, the major problem 

with layered transition metal oxides is that, they usually have other more stable phases, e.g. the 

spinel phase for LiCoO2, or anatase for TiO2. The open structure, which is the very reason for 

their high Li+ capacity or fast Li+ transport, is also the weakness of the framework, with the risk 

of collapsing into a more stable polymorph upon Li+ cycling. Both in synthesis and the 

lithiation-delithiation process, there is always a concern to maintain the structural stability as 

well as the full recharge capacity. Another issue with transition metal oxides used as LIB 

materials is that they often have poor electronic conductivity. Lithium transition metal oxides are 

usually p-type semiconductors.109,110 Tukamoto et al. demonstrated that Mg-doping into LiCoO2 
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to form LiMgxCo1-xO2 increased the conductivity by over two orders of magnitude, by partial 

substitution of Co3+ by Mg2+ and compensating hole creation, at the sacrifice of a small reduction 

in capacity associated with a reduction in Co3+ content.109 It was also shown that LiCo1-xNixO2 

has higher electronic conductivity than LiCoO2,
111-113 again at the cost of a loss in energy 

capacity. More generally, manipulating the electronic band structure by doping is the main 

approach to enhance conductivity in battery materials, both for cathodes and for anodes. 

 

4.1.3 Ca:TiO2-B and TiO2-B as anode materials 

The TiO2-B and Ca:TiO2-B materials discussed in this thesis are high voltage anode 

materials with a buffer >1.5 V before lithium plating, offering good inherent safety in a battery. 

The loss in voltage may be compensated by their high rate capabilities, since high rate stands for 

large charge/discharge current, which is the other defining factor in power output (P=I×V); and 

by its low cost, minimal environmental impact and structural stability, which are all important 

aspects in commercialization. 

As introduced in Section 3.1, TiO2-B has been synthesized in various forms of 

nanostructures over the past decade and tested for its electrochemical properties, many 

approaching its theoretical Li+ capacity of 335 mA h g-1. For example, the Bruce group (2005) 

reported a specific capacity of 305 mA h g-1 (Li0.91TiO2) in TiO2-B nanowires,33 and 328 mA h 

g-1 (Li0.98TiO2) in TiO2-B nanotubes.21 As the pseudocapacitive behavior of lithium storage in 

TiO2-B became known,16,38 the research community started to pay more attention to its 

performance at high charge/discharge rates, witnessed by a few representative reports in recent 

years. Mesoporous TiO2-B microspheres prepared by Liu et al. (2011) showed a capacity of 165 

mA h g-1 at 10C and 116 mA h g-1 at 60C, with exceptional retention after 5000 cycles.23 

Nanosheet-constructed porous TiO2-B synthesized by Liu et al. (2012) exhibited a capacity of 

216 mA h g-1 at 10C, with a capacity loss of 7.4% after 200 cycles.24 A flexible film electrode 

made by anchoring TiO2-B nanosheets on activated carbon fabric, which was fabricated by Liu et 

al. (2013) delivered a capacity of 130 mA h g-1 after 2000 cycles at 20C.35 Chemically bonded 
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TiO2-B nanosheet/reduced graphene oxide hybrid electrode prepared by Etacheri et al. (2014) 

showed a high specific capacity of 200 mA h g-1 at 40C, maintaining 80% of the initial capacity 

after 1000 cycles.114 Commonly seen in many of these reports, the charge-discharge voltage 

profiles of the TiO2-B based electrodes are usually in the characteristic sloping shape, which is 

associated with the pseudocapacitive process, and often contain a plateau/plateaus at 1.6-2.2 V 

probably attributable to TiO2-anantase impurities.23,24 

As a variant phase to TiO2-B, Ca:TiO2-B is expected to have similar lithium 

electrochemical reactivity. In the following sections, (001) Ca:TiO2-B and (001) TiO2-B (on a 

thin Ca:TiO2-B template layer) thin films grown on (001) SrTiO3 substrates are studied as anode 

materials for LIBs in battery half-cells. Both the Ca:TiO2-B films and the TiO2-B/Ca:TiO2-B dual 

layer films chosen for this study have fairly smooth surfaces on the a-b plane due to the 

characteristically layered structure of bronze, as shown in Figure 4.3. The films are generally of 

high crystalline quality, although crystal defects including grain boundaries, dislocations and 

stacking faults can be identified, nevertheless with a low density. More detailed investigation 

into various structural features and forming mechanism in these thin films can be found in Ref. 

71. The exposed (001) surface of the test films is the predominate interface with the electrolyte 

for Li+ exchange, since the other crystal facets on the side of the film can be neglected as the 

thicknesses of the films (50-200 nm) are orders of magnitude smaller than the length and width 

(5-10 mm) constituting the surface area, imposing great certainty in data interpretation. 

 

4.2 Electrochemical measurement setup for the bronze films 

4.2.1 Bronze thin film preparation on Nb:SrTiO3 substrates 

Epitaxial (001) Ca:TiO2-B thin films grown on (001) SrTiO3 substrates were first 

synthesized using a CaTi4O9 (nominal composition) target made by mixing 80% TiO2 and 20% 

CaO powders, sintering at 1400 °C, and pressed into a pellet under 10,000-lb of force. The  

laser fluence was ~3.4 J cm-2 at a 10 Hz repetition rate, and the substrate-target distance was set 

to 6.35 cm. The films were deposited at 800 °C in an oxygen ambient of 0.05 Torr. The 
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deposition rate was 0.01-0.02 Å/pulse. Films studied in this work have thicknesses of 50-200 nm 

(typical deposition time of 1-4 hours), which were measured by a Veeco Dektak profilometer and 

confirmed with TEM images. 

Figure 4.4(a) shows the -2 XRD pattern of the epitaxial (001) thin film of the 

Ca:TiO2-B phase, where the film peaks are very strong and sharp, confirming a high quality, 

single crystalline film. No other impurity phases or polycrystalline Ca:TiO2-B peaks were 

detected. A HAADF STEM image taken along the b direction of the structure is displayed in 

Figure 4.4(b), showing the interesting layered, zigzag pattern where every inserted layer of 

alternating Ti and Ca atoms flips the stacking direction of the next two layers of Ti atoms above 

it, consistent with the atomic model in Figure 1.1. Figure 4.4(c) and (d) show the -2 XRD 

pattern and the HAADF image, respectively, of the (001) TiO2-B/Ca:TiO2-B dual layer structure. 

In order to investigate the electrochemical performance of the thin films, a current 

collector is needed. One natural approach was to grow the films on conductive SrTiO3 substrates 

doped with 0.5 at.% Nb (resistivity 0.05  cm), which served as bottom current collectors. 

However, we have found that the crystal quality of the films grown on (001) Nb:SrTiO3 

substrates varies from growth to growth, despite the fixed conditions. Sometimes similar film 

quality to the ones grown on undoped SrTiO3 substrates could be achieved, while other times the 

films contained significant amount of anatase grains at the interface with the substrate, as shown 

in Figure 4.5. Although the reason is yet unclear, it should be associated with certain effects on 

the surface of the Nb:SrTiO3 substrate. Possible explanations include different ion bonding 

dynamics between the film and the substrate through electron cloud overlapping, due to the 

different electrostatic boundary conditions at the surface of a conductive crystal from that of a 

non-conductive crystal; Nb dopant migrating within the SrTiO3 host matrix, resulting in lattice 

deformation near the substrate surface; surface dulling or roughening due to in-air storage, etc. It 

was also noticed that some films grown on Nb:SrTiO3 were delaminated from the substrate 

during TEM sample preparation (grinding and polishing) more easily than those grown on 

undoped SrTiO3. Even different batches of Nb:SrTiO3 substrates, though purchased from the 
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same supplier (MTI Corporation), yielded different results of Ca:TiO2-B film deposition. 

An effective way to increase the success rate of Ca:TiO2-B growth on Nb:SrTiO3, while 

improving the film quality, is to add a SrTiO3 intervening layer on the surface of the substrate. 

Figure 4.6 shows such a film, where a 9 nm thick SrTiO3 layer was homoepitaxially deposited on 

the substrate by using a stoichiometric SrTiO3 target and the same growth conditions as for the 

bronze film (SrTiO3 can be grown over a wide range of oxidizing environment), before 

depositing the Ca:TiO2-B layer. The growth can either end with a Ca:TiO2-B film, or further with 

subsequent growth of a TiO2-B film above the Ca:TiO2-B template (Figure 4.6(a)). The SrTiO3 

buffer layer obviously improves the surface conditions, leading to high quality bronze crystals on 

top (Figure 4.6(b)). 

Although adopting the SrTiO3 buffer layer solves the problem of bronze film growth, it 

introduces new issues at the same time. Pure SrTiO3 is highly insulating, which, even with the 

thickness of merely a few nanometers, creates a high energy barrier for electrons to move 

through, thus defeating the purpose of using Nb:SrTiO3 substrates as current collector in a battery. 

We have found that such an approach may work for slow battery cycling experiments under low 

currents, but the performance is greatly limited in high rate cycling tests. One possible remedy is 

to fabricate a Nb:SrTiO3 buffer layer instead of the insulating SrTiO3 buffer. However there was 

no guarantee that this might be effective, since it was unknown whether the root cause of the 

bronze growth problem was with the substrate surface or the Nb:SrTiO3 material itself. Hence, 

such solution was not tried, while instead, a top current collection configuration has been devised, 

as follows. 

 

4.2.2 Top current collection configuration and data acquisition protocol 

For films grown on non-conductive SrTiO3 substrates, a top current collection geometry 

was fabricated using a grid of Cu wires with line width of 100 m and a thickness of 20 nm 

which were deposited on the film surface in an E-beam evaporator with a Mo mask. On a 10×10 

mm2 test sample, the grid covers <0.8% of the surface area, which should have a negligible 
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influence on the Li+ exchange between the film and the electrolyte. Since the film surface needs 

to be facing the separator, the Cu wire grid should be connected to the back of the sample, which 

touches the stainless steel casing of the test cell that links to the external circuit. A thin Cu foil 

(0.025 mm thick) was wrapped around the sample, with edges touching the ends of the Cu wires 

on top, and a good connection is formed when the entire cell stack is pressed firmly together. 

Such a configuration is shown schematically in Figure 4.7, which presents the situation that a 

TiO2-B/Ca:TiO2-B dual layer film is studied. Obviously when only the Ca:TiO2-B is of interest, 

the TiO2-B layer is absent. 

To study the electrochemical properties of such a small amount of active material is in 

itself a significant challenge. A 50 nm Ca:TiO2-B thin film on a 10×10 mm2 substrate weighs 

only ~18 g, compared to tens of mg of the active material commonly used in a slurry electrode 

for conventional battery studies reported in the literature. Therefore, a new data acquisition 

protocol is demanded to assure the validity of the data recorded from these test cells. Since we 

have two different testing configurations, i.e. bottom current collection (Nb:SrTiO3 substrate) 

and top current collection (Cu wire grid), we may acquire experimental data on the same control 

samples using both techniques and compare the results, so that they may validate each other. 

While using conductive Nb:SrTiO3 substrate as bottom current collector, electrons are 

traveling through the entire substrate to the external circuit, and therefore the electrochemical 

force may drive some Li+ into the substrate. Even though SrTiO3 does not appear to have a high 

Li+ capacity,115 it is important to rule out the contribution from the substrate for determining the 

actual capacity of the film. A bare Nb:SrTiO3 substrate was assembled in a half-cell and tested 

with exactly the same routine and rates as for the thin film samples. The measured capacity of 

the substrate at each rate was then subtracted from the total to obtain the capacity of the film at 

that rate. It should be noted that the voltage window of 1-3 V for bronze film testing is much 

higher than the possible Li intercalation voltage of SrTiO3 (0.07-0.18 V),115 so the substrate 

contribution is very low, as seen in the control test at a 1C rate below in Figure 4.8. Based on 

these results, the electrical charge contribution from a 10×10×0.5 mm3 Nb:SrTiO3 substrate is 
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~0.004 mA h, while the charge capacity of a 50 nm Ca:TiO2-B film is ~0.005 mA h. Therefore, 

the ‘signal-to-noise’ ratio is good enough to assure the accuracy of the capacity data acquired 

from the film itself, after subtracting the contribution from the substrate. 

A similar approach is needed to determine the capacity of the regular TiO2-B phase. Since 

the TiO2-B film has to be grown on top of a Ca:TiO2-B template layer, our procedure for figuring 

its specific capacity was to cycle the Ca:TiO2-B sample and the TiO2-B/Ca:TiO2-B dual layer 

sample of the same sizes using exactly the same routine and rates, determine the specific 

capacity of Ca:TiO2-B at each rate first, calculate the capacity contribution of the Ca:TiO2-B 

layer in the dual layer sample from its thickness obtained by STEM, and finally subtract that part 

as well from the total capacity. 

For thin films grown on insulating SrTiO3 substrates and using the top current collection 

configuration, the substrate is not a part of the electrochemical reaction or the circuit, so its 

contribution to the measured capacity should be minimal and hence was not considered. This 

method provides additional convenience in cyclic voltammetry (CV) measurements, where the 

contribution from the substrate cannot be easily subtracted. 

For the purpose of comparing the effectiveness of these two configurations described 

above, two TiO2-B/Ca:TiO2-B dual layer control samples were grown simultaneously to the same 

thicknesses on a (001) SrTiO3 substrate and a (001) 0.5 at.% Nb:SrTiO3 substrate, respectively. 

XRD and TEM results confirmed that the two films were of almost equal quality. The former 

was processed in a top current collection geometry as in Figure 4.7. Both samples, together with 

a bare Nb:SrTiO3 substrate, were then assembled in half-cells with metallic Li counter electrodes 

and tested under 1C and 10C rates for 100 cycles. The discharge capacities of TiO2-B obtained in 

the two samples are compared in Figure 4.9. It is clear that the two test configurations produced 

similar results, while the capacity values acquired from the top Cu grid method were slightly 

higher. This is due to the fact that Cu metal provides better current collection efficiency than 

Nb:SrTiO3 semiconductor substrate. Such an advantage will become more significant as the rates 

increase beyond 10C. Therefore, results of battery cycling performance reported later in this 
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thesis were all acquired in the top Cu grid collector configuration. 

Recent studies demonstrated that Li plating may occur at the interface of electrolyte and 

Cu current collector,116 which would result in erroneously higher capacity measured for the Li 

storage material in battery cycling tests. To rule out the influence of possible Li plating on the Cu 

grid, a Ca:TiO2-B thin film sample with top Cu grid current collector was charged and 

discharged at the rate of 1000C for 20 cycles, taken out of the cell at a half cycle when the film 

was fully charged with Li+, and examined with an FEI Quanta scanning electron microscope. The 

surface image and the X-ray energy dispersive spectrum from the Cu wire are shown in Figure 

4.10. No obvious Li dendrite formation was observed either on the Cu wire or on the Ca:TiO2-B 

film surface. 

By this point, we have established confidence in the validity of the testing methods and 

the results that will be discussed for the bronze films below. To calculate specific capacity for 

both the Ca:TiO2-B and TiO2-B phases, the mass of active material was determined from its 

theoretical density, measured surface area and thickness. The mass loading of active material was 

~0.036 mg/cm2. 

 

4.3 Cycling performance of the (001) Ca:TiO2-B films 

In Ca:TiO2-B, assuming 5 Li+ is intercalated per CaTi5O11 formula unit, reducing all Ti4+ 

to 3+, its theoretical capacity is estimated to be 294 mA h g-1. We have thus far achieved in these 

(001) Ca:TiO2-B films a capacity of 273 mA h g-1, corresponding to a composition of 

Li4.64CaTi5O11 at the end of discharge, at a rate of 33.5 mA g-1, favorable when compared to other 

non-graphitic anodes currently being studied. Typical charge/discharge voltage profiles are 

shown in Figure 4.11, where the Ca:TiO2-B film exhibit sloped profiles corresponding to a 

pseudocapacitive process of Li+ transport, which is a typical characteristic often observed for 

TiO2-B.24,26,117 These results also support that both the Ca:TiO2-B films have good purity 

without a pronounced amount of other TiO2 polymorphs, which would otherwise create plateaus 

in the profiles.24 Theoretical calculations show that up to 18 Li sites may be filled during 
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intercalation in a Ca4Ti20O44 unit cell,118 corresponding to a composition of Li4.5CaTi5O11, which 

is in good agreement with the experimental data. 

The term ‘pseudocapacitance’ stems from the characteristically sloped voltage profiles, 

observed in a few materials including TiO2-B and T-Nb2O5.
17 In a constant-current experiment, 

the cell potential E changes with the extent of charge Q: 

ܳ ൌ  ܧΔܥ                                                           (4.3) 

where Q is the charge passed (Coulombs), E is the potential change (V) and C is the 

pseudocapacitance (F). Apparently for a standard capacitor, where C is a constant, the voltage 

profile is a straight line with a fixed slope. However, a capacitor cannot have a high capacity 

since it only stores electrical charge on the surface. Pseudocapacitive battery materials, on the 

other hand, have the ability to store energy in the bulk, and to release and restore that energy in a 

process much faster than traditional battery materials, at ultrahigh rates comparable to those of 

supercapacitors (high power delivery).15 The charge/discharge voltage profiles of these materials 

are thus shaped in between the cases of a capacitor and a conventional battery, as schematically 

shown in Figure 4.12. Presently, the prevailing point of view for pseudocapacitive behavior is 

that they usually emerge in materials with a loose, layered structure, where facile 2D Li+ 

diffusion pathways exist without much obstruction, so the atomic structure does not undergo 

phase transformations on Li+ intercalation.17 These 2D pathways, often called open channels, 

may act as secondary surfaces, so the charge storage that behaves as a quasi-2D process exhibits 

similar behavior to 2D surface adsorption reactions,119 and hence the sloped voltage profiles 

which are typically associated with surface effects. 

 Capacity retention has been examined for this material. 10C (1C=294 mA g-1) cycling 

results in 100 cycles are shown in Figure 4.13. The capacity loss and the lower Coulombic 

efficiency in the first 20 cycles reflect the poor electrical conductivity characteristic of pure 

Ca:TiO2-B.33 From cycle 20 to 200, however, the loss was only 0.2% per cycle, and the 

Coulombic efficiency close to 1. The major cause for the capacity loss is the much longer Li+ and 

e- transport paths in the bulk of the film than in typical powder particles or nanostructures often 
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seen the literature reports.  

 

4.4 Cycling performance of the (001) TiO2-B films 

As explained earlier, since the regular TiO2-B films needed to be grown on a Ca:TiO2-B 

template, the capacity of the TiO2-B film was calculated by subtracting the contribution from the 

Ca:TiO2-B layer. The samples were processed in the top current collection geometry (Figure 4.7). 

The insertion reaction of Li+ into TiO2, regardless of various polymorphs, can be expressed as:120 

TiOଶ ൅ Liାݔ ൅ eିݔ ⇋ Li௫TiOଶ                              (4.4) 

The charge/discharge voltage profiles of a (001) TiO2-B thin film at a rate of C/10 

(1C=335 mA g-1) is shown in Figure 4.14(a), again in a sloped shape, similarly to those of 

Ca:TiO2-B. The film almost discharged to its theoretical capacity, recording 334 mA h g-1 at the 

end of discharge, corresponding to a Li content of Li0.997TiO2. Capacity retention was examined 

at a slow rate of C/12, and the film maintained a high capacity close to 300 mA h g-1 after 18 

cycles, as exhibited in Figure 4.14(b). The capacity loss was again caused by the poor electrical 

conductivity of the TiO2-B material. 

Cyclic voltammograms (CV curves) of the TiO2-B thin film sample were recorded at scan 

rates from 0.1 to 1 mV s-1 as shown in Figure 4.15(a). A pair of redox peaks at 1.54 V and 1.69 V 

was observed, which represents the signature pseudocapacitive Li+ storage behavior of 

TiO2-B.17,24 No other redox peaks can be identified on the CV curves, confirming the excellent 

phase purity of the TiO2-B film.23,35 The CV curves encompass a larger area at a higher voltage 

scan rate. The change in the shape and encompassed area of the CV curves originates from the 

pseudocapacitive charging process, which is a specific characteristic of TiO2-B, as described 

below:16,17 

݅ ൌ
ୢொ

ୢ௧
ൌ ܥ

ୢா

ୢ௧
ൌ  ߥܥ                                                 (4.5) 

where  is the scan rate and C is the pseudocapacitance. Therefore as the scan rate increases, the 

CV loops grow bigger. Other than the areas these curves encompass, the shapes of the CV curves 
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(Figure 4.15(a)) are actually similar at different scan rates. 

The slight shift of redox peak position with increasing sweep rate reflects the charge 

transport kinetics in the material. The peak shift of our TiO2-B thin films is similar to, if not 

smaller than, literature reports of TiO2-B electrodes where the CV curves were also taken at the 

same scan rates.24 

An important factor to consider is that for the highly crystalline films studied here which 

are 50-100 nm thick, Li+ exchange and current collection occur only at the surface, so the Li 

transport path in battery cycling is much longer than that of many high efficiency TiO2-B 

nanostructures (usually powders heavily mixed with carbon black as current collector) in the 

reports, for instance, 6 nm average grain size in mesoporous microsphere,23 or 5-10 nm thickness 

in nanosheets.24 The fact that our films showed comparable charge storage kinetics is likely a 

result of the water free, high quality structures. 

Each CV loop is comprised of two CV curves sweeping from 1 to 3 V and from 3 to 1 V. 

During every sweep of the voltage, the electrical power exerted by the battery can be calculated 

by integrating the CV curve, and an average current can be deduced: 

௜ܲ௡௧௘௚ ൌ ׬ ݅dܧ                                                        (4.6) 
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                                                                      (4.7) 

where E is the range of the voltage window, or 2 V in this case. Combining (4.5) and (4.7), the 

pseudocapacitance, which represents the charge capacity of the pseudocapacitive material, can be 

calculated as: 

ܥ ൌ
ప̅

ఔ
                                                                (4.8) 

We have calculated the specific capacitance by integrating the CVs and found the 

capacitance is almost the same from either the oxidation or the reduction curve, regardless of 

scan rate, which also corresponds well with the specific capacity obtained from galvanostatic 

cycling, as shown in Figure 4.15(b). Such result offers additional proof that the TiO2-B film, 

though thin, was actually being lithiated during cycling, because if the electrical charge was only 
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stored on the surface, the capacitance would vary at different scan rates as in a capacitor. 

 

4.5 Structural stability of the Ca:TiO2-B and TiO2-B films 

The materials’ response to the intensive cycling was examined by XRD and TEM. XRD 

patterns of both the TiO2-B and Ca:TiO2-B structures before and after being cycled for over 40 

days are essentially unchanged (Figure 4.16). Atomic resolution TEM analysis confirmed that all 

the bronze structures stayed intact without any signs of significant degradation or collapse into 

other TiO2 polymorphs. The film surfaces were also clean, without any observation of SEI layer 

formation or Li plating. 

Relatively subtle changes, however, were observed by comparing the images before and 

after cycling in these horizontally oriented (001) films. Figure 4.17(b) shows a region near the 

interface between TiO2-B and Ca:TiO2-B template in an as-grown dual layer film on (100) 

SrTiO3. A straight, inclined anatase “wall” ~3 nm wide stems from the interface and extends to 

the surface, separating two TiO2-B grains. The interface is formed between the TiO2-B (2ത01) 

plane and the anatase (103) plane.6 Upon lithiation, the anatase phase experiences a volumetric 

increase along the wall, while the TiO2-B grain undergoes a contraction along its c-axis,121,122 

and consequently creates a small fracture at the interface, as shown by the HAADF image in 

Figure 4.17(b). Such fractures were seen repeatedly in the post-cycling sample along the anatase 

walls. Figure 4.18 shows a wider area of the same film, where such fracturing always occurs 

along the inclined anatase walls throughout the film, some at the interface of TiO2-B and 

Ca:TiO2-B and others inside the TiO2-B phase. Therefore, this should be an actual effect of the 

Li+ insertion and extraction rather than an incidental event. A longer fracture could form between 

two parallel anatase walls. Because of the layered structure of TiO2-B, all fractures are parallel to 

the a-b planes. 

To argue the fractures are actually caused by volume expansion of anatase upon lithiation, 

which is ~4%,27 while the thickness of anatase is only 3 nm, requires a process of elimination, 

explained as follows: 
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(1) These fractures were not observed in as-grown films, but only appeared after 

cycling throughout the film, as seen in Figure 4.18. So this must be an effect of the cycling. 

(2) This effect must be related to a certain mechanic force that is not uniform for 

different phases in the film. 

(3) The fractures occur not only at the interface of Ca:TiO2-B and TiO2-B layers, but in 

the TiO2-B phase itself as well. So this is not due to the inhomogeneity between these two 

phases. 

(4) The fractures are always touching the anatase phase. They do not exist in the 

Ca:TiO2-B layer where there are no such inclined anatase walls. Therefore it is really between 

the anatase phase and the TiO2-B phase. 

(5) Both the anatase and TiO2-B phases are quite insulating, so it is unlikely to be 

induced by current flow, or a dielectric/piezoelectric effect at room temperature. 

(6) We have monitored the cell temperature during cycling, which was not obviously 

higher than room temperature. So this is not an effect of heating/thermal expansion. 

In light of the above analysis, volume expansion due to Li intercalation is the most likely 

cause for the fractures, which is also supported by the literature reports. The anatase phase in 

Figure 4.17(b) is extending on its b-axis, which experiences an increase along the wall upon 

lithiation.27 In contrast, TiO2-B is grown along its c-axis, which undergoes a contraction.121 In 

this 1D system along the out-of-plane direction, this anatase wall, though thin, may still result in 

a significant amount of stress load at its phase boundary with TiO2-B, especially at one tip end, 

and hence the peeling type of shearing in Figure 4.17(b). 

In an effort to confirm that Li+ was actually inserted into the bronze films during cycling, 

fine XRD scans were performed on a (001) Ca:TiO2-B film grown on a (100) SrTiO3 substrate 

around the strongest available diffraction peak, 006, before and after charging with Li+ at a rate 

of C/10. The results are shown in Figure 4.19(a). Using the SrTiO3 substrate peaks as reference, 

the 006 peak of the lithiated film has shifted to lower 2 angles, indicating a lattice expansion in 

the out-of-plane direction from cCa:TiO2-B=17.98 Å to 18.04 Å. By fitting the experimental data, it 
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is also clear that the peak has broadened as the inserted Li+ disturbs the crystallinity of the lattice 

structure. The broadening is mainly caused by local straining within the thin film as the unit cell 

undergoes an asymmetric deformation upon lithiation. Structural defects such as dislocations and 

stacking faults may also contribute to straining effects in close regions and thus to the peak 

broadening. The fractures observed in the cycled films (Figure 4.18) contribute to the broadening 

as well, as some planes are pushed slightly out-of-place by the cracks. If the crack is large 

enough, it essentially reduces the grain size and results in an XRD peak broadening. 

The same experiments were performed around the TiO2-B 001 peak of a (001) 

TiO2-B/Ca:TiO2-B dual layer film grown on a (100) SrTiO3 substrate. Figure 4.19(b) shows that 

cTiO2-B exhibits a slight contraction of ~0.21% upon lithiation, which is in good agreement with 

the literature,121 where neutron diffraction results revealed a contraction in cTiO2-B of 0.18% - 

0.49%, depending on the Li content. An obvious peak broadening was again observed. Changes 

in the other lattice constants were not examined. 

It should be noted that the lattice constant changes we observed with this post-mortem 

procedure may not correspond to fully lithiated films. The thin films have a large surface and a 

small mass, so an unknown amount of Li charged into the film could be lost to more stable 

lithium oxides forming on the surface when the sample was exposed to air and the electrode was 

examined.123 Although this might also happen in the more typical powder samples of TiO2-B, 

the much larger amount of active material used there may ensure that more of the Li is retained 

in the sample. Such a difference in sample geometry may help explain the discrepancy between 

our observation and the reported values in the literature. Water and anatase impurities may also 

have an effect on the values reported for TiO2-B in the literature. 

 

4.6 Summary and conclusions 

In summary, high quality (001) Ca:TiO2-B and (001) TiO2-B (with a thin Ca:TiO2-B 

template) films were investigated as anode materials for lithium-ion batteries, using a specially 

designed testing configuration and data acquisition/processing protocol. The following 
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conclusions have been reached: 

(1) The top current collection configuration with a Cu wire grid and the bottom current 

collection configuration with a conductive Nb:SrTiO3 substrate generated similar and proven 

valid test results, with the former performing better at higher charge/discharge rates. 

(2) Both Ca:TiO2-B and TiO2-B exhibit Li electrochemical reactivity, with a 

pseudocapacitive intercalation behavior where the voltage profiles are sloped. No 

well-developed plateau is observed in the voltage profiles. 

(3) Ca:TiO2-B has a theoretical capacity of 294 mA h g-1, and experimentally 

discharges to 273 mA h g-1, agreeing with theoretical calculations that 18 Li sites may be filled 

during intercalation in a Ca4Ti20O44 unit cell. 

(4) TiO2-B has a theoretical capacity of 335 mA h g-1, and experimentally discharges to 

334 mA h g-1 at a rate of C/10. A pair of redox peaks is observed on the CV curvs at 1.54 V and 

1.69 V. The specific capacitance calculated by integrating the CVs is independent of the voltage 

scan rate, confirming that the thin film is actually being lithiated during battery cycling, and that 

the contribution to charge capacity is Faradaic, referred to as a ‘pseudocapacitive Faradaic 

process’ in the literature.16 

(5) Capacity retention is good for both Ca:TiO2-B and TiO2-B, with major loss 

resulting from the poor electrical conductivity of the materials. 

(6) Structural stability is excellent for both Ca:TiO2-B and TiO2-B, without any signs of 

phase transformation in the films, or SEI layer formation or Li plating on the surface. Small 

fractures are observed in post-cycling TiO2-B films caused by thin layers of anatase defects. 

(7) The bronze structures undergo small deformation during Li intercalation: a slight 

increase in the c-axis lattice constant of Ca:TiO2-B and a slight decrease in that of TiO2-B. A 

broadening of the XRD peaks is also observed in both structures as the inserted Li+ causes local 

straining. Limited by the thin film geometry, changes in the other lattice constants were not 

examined for this study. 
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Table 4.1 List of a few popular cathode materials. 

 

Material Capacity (mA h g-1) 

Theoretical/Experimental 

Potential 

(V vs. Li/Li+)

Notes Ref. 

LiCoO2 -layered 273/160 3.9 Good rate capability, 

stable cycling properties; 

toxic, expensive 

[91] 

Li(CoxNiyMnz)O2 ~270/150-180 ~3.8 Cheaper, stable [94,95, 

101-105] 

LiMn2O4 -spinel 148/130 4.1 Cheap, green; lower 

capacity 

[124] 

LiFePO4 -olivine 170/166 3.45 Cheap, green, ultrafast 

charging/discharging 

[15, 125 ,

126] 
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Table 4.2 List of a few popular anode materials. 

 

Material Capacity (mA h g-1) 

Theoretical/Experimental 

Potential 

(V vs. Li/Li+)

Notes Ref. 

Graphite 372/370 0.1-0.2 LiC6, excellent stability, 

volume change ~11% 

[127] 

Si (composite) 4200/~1000-2500 <0.5 Severe volume changes 

(>300%), poor cycling 

[128,129,

130] 

Li4Ti5O12 -spinel 175/170 1.55 High voltage, negligible 

volume change 

[32,131] 

TiO2 

(anatas/rutile) 

335/100-250 1.7-2.1 Cheap, small volume 

change (~4%) 

[29,30] 

TiO2-B 335/334 1.6 Open structure, high rate 

capability 

This work 

Ca:TiO2-B 

(CaTi5O11) 

294/293 1.5 Superfast charging with 

orientation engineering 

This work 
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Figure 4.2 Dendritic growth of lithium during its electro-deposition. [From Ref. 132] 
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Figure 4.4 Structural characterization of Ca:TiO2-B and regular TiO2-B. (a) XRD pattern of a 

(001) Ca:TiO2-B thin film grown on a (001) SrTiO3 substrate at 800 °C by PLD. The 

hetero-epitaxial relationship is [100](001)Ca:TiO2-B || [100](001)SrTiO3. (b) HAADF STEM image of 

the Ca:TiO2-B phase. (c) XRD pattern of a regular (001) TiO2-B thin film grown on top of a thin 

Ca:TiO2-B template layer on a (001) SrTiO3 substrate under the same PLD conditions. (d) 

HAADF STEM image of the dual layer structure. [TEM image credit: Michael B. Katz] 
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Figure 4.8 Cycling performance of a bare Nb:SrTiO3 (001) substrate at a 1C rate for 100 cycles 

in a voltage window of 1-3 V versus Li metal. 
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Figure 4.11 Voltage profile with Li content at the 8th cycle of a (001) Ca:TiO2-B thin film grown 

on a (001) SrTiO3 substrate versus Li metal at a rate of 33.5 mA g-1 between 1.0-3.0 V. 
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Figure 4.12 Schemes showing idealized voltage and differential capacity (dC/dV) profiles for 

three basic charge storage mechanisms. [From Ref. 38] 
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Figure 4.13 Cycling performance and Coulombic efficiency of a (001) Ca:TiO2-B thin film 

grown on a (001) SrTiO3 substrate at 10C (1C=294 mA g-1) for 100 cycles. The voltage window 

is 1-3 V. 
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Chapter 5 

Enhanced High Rate Performance in Ca:TiO2-B Thin Films Grown 

on (110) SrTiO3 

 

5.1 Introduction 

The TiO2-B material has attracted intensive interest in its application as a battery material 

specifically because of its high rate performance, a result from its open structure and the 

pseudocapacitive lithium intercalation process.23 A few key reports of theoretical and 

experimental studies on the anisotropic Li+ transport in the bronze structure have led the way for 

the continuous improvement of TiO2-B’s rate capabilities. Zukalova et al. (2005) stated that “the 

key effect seems to be fast Li+ transport in the open channels running parallel to the b-axis”.16 

Panduwinata et al. (2009) concluded that “the more favorable pathway for diffusion lies close to 

the center of the more open channel structure, parallel to the b axis of the material in accordance 

with experimental observations”.133 Arrouvel et al. (2009) published results that revealed “a low 

energy (∼ 0.3 eV) pathway for Li ion diffusion along the b-axis channel in the [010] direction 

indicating high Li ion mobility.”134 Okumura et al. (2011) proposed that “in lithiated LixTiO2-B, 

the lithium ions are inserted into the five-fold coordinated sites and/or distorted octahedral sites 

distributed at the vicinity of O layers parallel to the ab plane for x ≤ 0.5, while the lithium ions 

are accommodated into the five-fold coordinated site distributed at the vicinity of TiO2 layers 

parallel to the ab plane for x > 0.5”.135 

These findings have pointed out that, Li+ access into the TiO2-B crystal is expected to be 

easier in the a-b plane, i.e., through the well-aligned channels along the a-axis between layers of 



123 
 

atoms (Figure 1.1, Figure 4.4(b) and (d)) as well as the possibly even faster channels along the 

b-axis, than in the perpendicular c-direction. For the novel Ca:TiO2-B phase, no theoretical 

predictions on its Li+ transport anisotropy are currently available. However, since it shares the 

similar layered structure to that of the regular TiO2-B phase along the a-b planes, the natural 

deduction is that Ca:TiO2-B may also have fast Li+ transport channels within the a-b plane or 

along its b-axis. Future development in the studies of this new material will help clarify the issue. 

Previously, we have discussed the electrochemical properties of the (001) Ca:TiO2-B and 

TiO2-B thin films, where the possibly fast Li+ transport channels in the a-b plane or along the 

b-axis are all buried in-plane. Since the Li+ exchange with the electrolyte occurs on the surface of 

the film, the rate capability may have been significantly limited. In this chapter, an effort to 

create fast channel openings on the film surface, and the performance enhancement as a result, 

will be presented. Owing to the well-defined lattice orientation, the interpretation of the 

performance data, compared along different crystallographic axes, is more definitive and better 

supports theoretical studies. 

 

5.2 Polycrystalline Ca:TiO2-B films grown on (110) SrTiO3 

In principle, to have the preferable open channels exposed at the film surface to increase 

the rates of lithium ion transport can be achieved by utilizing substrates with a different 

orientation, provided that the epitaxial relationship between the film and the substrate is 

maintained. Hence, instead of growing on (001) SrTiO3, (110) SrTiO3 substrates were used to 

deposit Ca:TiO2-B films under the same growth conditions. 

Figure 5.1(a) shows a STEM image of a Ca:TiO2-B film deposited on a (110) SrTiO3 

substrate from a (80% TiO2 + 20% CaO) target. Contrary to the films grown on (001) SrTiO3 

which usually have a smooth surface, the surface of this film is quite rough as the Ca:TiO2-B 

grains are now inclined. Similar to films grown on (001) SrTiO3, anatase grains were again 

observed near the interface, constituting a small percentage of the volume. Since (001) 

Ca:TiO2-B films were grown on SrTiO3 (001) surface, it was originally expected that stacking on 
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top of the SrTiO3 (110) plane, the atom layers in the a-b planes of these Ca:TiO2-B grains would 

be parallel to any equivalent SrTiO3 plane in the {100} family, all at a 45 ° angle with respect to 

the interface between the film and the substrate. This seemed to be the case at the first glance. As 

seen in Figure 5.1(c), five Ca:TiO2-B grains with different orientations can be identified, where 

grains 2 and 3 exhibit a 90 ° rotation about the [010] direction from grain 1, and there is also a 

90 ° rotation about the [001] direction between grains 1 and 4, or between grains 3 and 5, 

according to the atomic model in Figure 3.7. Such rotations seem to originate directly from the 

interface with the substrate, while creating crystal defects when two grains meet. 

However, the truth is more complicated. A careful examination of the angles between the 

a-b planes of different grains and the substrate surface, as shown in Figure 5.1(b) and (c), reveals 

that the angles are not exactly 45 °, but a few degrees off. It should be noted that the angles may 

not be accurate because these STEM images (acquired on a JEOL 2100F) are known to have 

small x/y distortions. The pole figure obtained on this film with the 2 angle set at 30.22 ° for 

Ca:TiO2-B 006 peak is shown in Figure 5.2(a). Six reflections are relatively strong at  angles 

(Figure 5.2(b)) ranging from ~40-50 °, instead of being located exactly at 45 °, consistent with 

the TEM observations. Additional input from theoretical calculations has indicated that it is 

difficult to build the model of the Ca:TiO2-B (001) plane deposited in 45 ° on the SrTiO3 (110) 

surface with matching bond angle and bond length at the interface.136 Therefore, it is believed 

that the interface between Ca:TiO2-B and SrTiO3 (110) does not conform to a direct epitaxy. 

The mystery was solved by a close-up study at the film-substrate interface in TEM. A tiny 

amount of cubic CaTiO3 phase could be identified at the interface, often manifesting itself in 

near-triangular shapes likely bounded by its (110) plane and {100} family planes, as shown in 

the STEM image in Figure 5.3(b). To illustrate the relative size of these CaTiO3 grains, one grain 

is marked by a triangle in Figure 5.1(c). Hence, the growth mechanism of Ca:TiO2-B on (110) 

SrTiO3 is that pseudo-cubic CaTiO3 grains form first on the substrate surface, and their {100} 

facets provide, again, a (001)-equivalent perovskite plane for the a-b planes of Ca:TiO2-B to 

build upon. Such an epitaxial relationship is established because the lattice mismatch between 
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the Ca:TiO2-B (001) plane and the CaTiO3 (001) plane is small, ~3.5% (Table 3.2). Figure 5.3(a) 

schematically explains such a mechanism. Adjacent to the CaTiO3 grains, a few layers of regular 

TiO2-B without Ca were found before the Ca:TiO2-B growth resumed on top (Figure 5.3(b)). 

This is possibly because the CaTiO3 phase, which has a Ti:Ca ratio of 1:1, took much Ca away 

from the PLD plume and forced the film to crystallize in the regular TiO2-B phase. From another 

point of view, the TiO2-B phase seems to act as a template for the growth of Ca:TiO2-B, 

reversely from what has been presented in previous chapters. Since the growth of the 

polycrystalline Ca:TiO2-B film occur on facets of numerous small CaTiO3 islands, which are of 

different sizes and often joining each other at the edges, the large Ca:TiO2-B grains on top 

exhibit slight variations of their tilting angles from exactly 45 °. Due to the nature of its growth, 

this film contains many grain boundaries (between Ca:TiO2-B grains), interphase boundaries 

(between Ca:TiO2-B, TiO2-B, CaTiO3 and TiO2-anatase), and other crystal defects. These 

interfacial microstructures and defects are detailed in another study.71 

 

5.3 Enhanced battery performance in Ca:TiO2-B films grown on (110) SrTiO3 

Figure 5.4(b) shows the HAADF image of a Ca:TiO2-B film deposited on a (110) SrTiO3 

substrate under the same growth conditions as for the (001) Ca:TiO2-B films on (001) SrTiO3 

substrates. Instead of being parallel to the surface, the a-b planes are now inclined, with channels 

along the a- and b-axes reaching the surface. Figure 5.4(a) clearly displays a region near the 

boundary between two such grains, where one grain (right) has channels parallel to the a-axis 

running to the surface, and another grain (left) is rotated about the a-b plane normal having 

channels parallel to the b-axis running to the surface. Figure 5.4(b) shows the polycrystalline 

nature of the film. It was found, however, that such a Ca:TiO2-B film does not serve as a good 

template layer for the subsequent growth of uniform TiO2-B on top, due to the lack of a 

continuous, high quality Ca:TiO2-B (001) plane at the surface. 

To study their electrochemical properties, the thin films were assembled in half-cells with 

metallic Li as counter electrode. The experimental designs and procedures are detailed in Section 
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4.2. For Ca:TiO2-B, assuming 5 Li+ is intercalated per CaTi5O11 formula unit (making all Ti 3+), 

its theoretical capacity is estimated to be 294 mA h g-1. For simplicity and comparison with 

TiO2-B, we define in this chapter 1C=335 mA g-1. Superior charge/discharge rate capability was 

observed in the Ca:TiO2-B film grown on (110) SrTiO3 with open channels extending to the 

surface. Starting at 1C, the battery half-cell was charged and discharged between 1 and 3 V for 

50 cycles at each of several rates up to an extreme of 600C, ending again at 1C immediately 

following the last cycle at the highest rate for additional 20 cycles to examine the structural 

stability. Figure 5.5(a) shows the voltage curves of the 5th cycle at each rate. At 1C, the film 

discharges to a specific capacity of 293 mA h g-1, over 99.6% of the theoretical capacity. The 

capacity reduced to 248 mA h g-1 at 10C, 61.4 mA h g-1 at 120C, and 28.8 mA h g-1 at 600C, 

likely because only a fraction of the film close to the surface and the current collector was 

actually lithiated at higher rates. When the rate was lowered back to 1C, the capacity was 

immediately restored to 284 mA h g-1, showing outstanding endurance of the material under 

extreme conditions. The majority of the capacity occurred in the sloped regions of the voltage 

profiles, while the specific capacity obtained by integrating the cyclic voltammograms was 

almost the same regardless of the scan rate (Figure 4.15), expressing the pseudocapacitive 

Faradaic behavior of Li storage in this material. 

It should be noted that, an extremely high rate of 12000C was tested during the 

experiments, and a discharge capacity of 11.5 mA h g-1 was achieved. Even though the capacity 

seems low, it is still believable that at least a portion of the film was lithiated while there was 

simply not enough time for Li ions to travel far into the bulk of the material, because the capacity 

was calculated using the entire mass of the film, and it is unlikely that all these electrical charges 

are stored on the surface alone with exceedingly high density. 

To examine its capacity retention characteristics, the battery half-cell containing a 62 nm 

Ca:TiO2-B film grown on (110) SrTiO3 was continuously charged and discharged for 200 cycles 

at 60C and 80C, as shown in Figure 5.5(b), delivering discharge capacities of 155 mA h g-1 and 

102 mA h g-1 at the 100th cycle, respectively. The capacity loss and the lower Coulombic 
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efficiency in the first 10 cycles reflect the poor electrical conductivity characteristic of pure 

Ca:TiO2-B.33 From cycle 10 to 200, however, the loss was only 0.1% per cycle, and the 

Coulombic efficiency close to 1. For long term cycling performance, the battery was further 

tested for 2000 cycles at a 60C rate, and the result is shown in Figure 5.6. Similarly to the above, 

the Coulombic efficiency was close to 1 other than the first few cycles, and the capacity loss 

from cycle 10 to 2000 was even lower, at ~0.02% per cycle. 

Furthermore, post-cycling examination of the Ca:TiO2-B film has revealed its 

extraordinary structural stability after aggressive cycling for more than 60 days, including testing 

at 12000C charge/discharge rates, as seen in the HAADF STEM image in Figure 5.4(c). No 

significant structural degradation or phase transformation, either on the surface or in the film, 

was observed. 

Taking advantage of the clearly defined lattice orientation, we can now experimentally 

demonstrate the presumed preference for Li+ transport along certain crystal directions. The rate 

capability of Ca:TiO2-B thin films grown on (110) SrTiO3 with channel openings on the surface 

is compared with both Ca:TiO2-B and TiO2-B grown on (100) SrTiO3 with channels along a- and 

b-axes running parallel to the surface. Considering the impaired electron transport in these 

materials, all three samples were grown to almost the same thickness in order to ensure a fair 

comparison. Slow cycling tests at a C/10 rate previously shown in the inset of Figure 5.7 were 

performed on the two (001) films that have in-plane a- and b-channels, where TiO2-B and 

Ca:TiO2-B discharge to 334 (Li0.997TiO2) and 273 mA h g-1 ( Li4.64CaTi5O11), respectively. As the 

rate increases (Figure 5.7), TiO2-B delivers higher capacities than Ca:TiO2-B at every rate, 

indicating that Li+ transport along the out-of-plane direction is faster in TiO2-B than in 

Ca:TiO2-B, because the difference in theoretical capacity alone is unlikely to account for such 

discrepancy. On the other hand, the Ca:TiO2-B film with exposed a- and b-channels exhibits far 

superior rate capabilities to both of the above, suggesting a better efficiency of inserting and 

extracting Li+. The superiority becomes more and more significant with increasing rates. For 

example, its capacity at 60C is even higher than the 10C capacity of TiO2-B and the 1C capacity 
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of the same Ca:TiO2-B phase in the different crystal orientation. These results suggest that Li+ 

transport into the bulk of the material is indeed much faster in the Ca:TiO2-B film on (110) 

SrTiO3, either because channels within the a-b plane are more favorable for Li+ transport than the 

ones along the c-axis, or due to certain effects associated with the polycrystalline structure and 

grain boundaries. 

A preliminary attempt to explain the difference in rate capabilities between the films with 

different crystal orientations was carried out by EIS (electrochemical impedance spectroscopy) 

measurements on two Ca:TiO2-B films grown on (110) and (100) SrTiO3, respectively. 

Experimental data were recorded in a frequency range from 100 kHz to 10 mHz with an AC 

perturbation of ±10 mV. Nyquist plots are presented in Figure 5.8, where a semicircle at the high 

frequency region and a straight line at the low frequency region are seen for both. The 

experimental data has been fitted to the equivalent circuit shown in the inset. The charge transfer 

resistance (Rct) in the film with inclined a-b planes is 30% lower than that of the other film, 

consistent with the enhancement in rate capability (Figure 5.7). Cyclic voltammograms were 

collected for the Ca:TiO2-B film grown on (110) SrTiO3 at scan rates from 0.1 to 1 mV s-1, as 

shown in Figure 5.9. A pair of redox peaks at 1.42 V and 1.58 V was attributed to Ca:TiO2-B, 

while the other two faint peaks at 1.72 V and 2.34 V were identified as anatase peaks, resulting 

from the contribution of the small anatase phase impurities (Figure 5.1).23 Compared with (001) 

TiO2-B’s redox peaks at 1.54 V and 1.69 V (Figure 4.15), the polycrystalline Ca:TiO2-B film 

requires less energy to lithiate. 

In addition to moving along a certain direction, Li+ transport in such a polycrystalline 

Ca:TiO2-B film may also adopt a more complicated pattern combining various diffusion paths. 

For instance, Li+ may hop between different sites in the 3D space along the a-c plane in one 

grain, followed by a hopping parallel to one of the crystallographic axes, and then enter an 

adjacent grain and move along yet another direction (Figure 5.4(a)), until the film is lithiated in 

its entirety. Grain boundaries might have played an important role in the high rate performance in 

this film, as they could act as diffusion channels for Li ions due to potentially low Li+ migration 
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barriers because of structural disorder and incomplete bonding. One might also have noticed that 

the maximum recorded capacity in the Ca:TiO2-B film grown on (110) SrTiO3 (293 mA h g-1 at 

1C) is higher than that of the film grown on (100) SrTiO3 (273 mA h g-1 at C/10), which could 

possibly be attributed to additional Li sites at the crystal defects. To elucidate the underlying 

physics of Li+ storage and transport in Ca:TiO2-B, a new material largely unknown, more 

in-depth, systematic theoretical and experimental investigations into both single- and 

poly-crystalline thin films are required. First principles calculations taking into consideration the 

effects of grain boundaries (with a finite width) and possibly other defects for Li intercalation 

and migration, instead of simply simulating an infinite, perfect crystal, are currently being 

conducted.118 

 

5.4 Summary and conclusions 

By depositing on (110) SrTiO3 substrates under the same growth conditions as optimized 

in Chapter 3, polycrystalline Ca:TiO2-B thin films were grown and characterized. In the absence 

of a direct epitaxial relationship between Ca:TiO2-B and the SrTiO3 (110) surface, it was found 

that small pseudo-cubic CaTiO3 islands in near-triangular shapes formed first at the interface, 

before the Ca:TiO2-B grains started to crystallize with their a-b planes aligned parallel to the 

(001)-equivalent perovskite facets. Due to the inhomogeneous distribution of these CaTiO3 

islands, the a-b planes in the Ca:TiO2-B grains are a few degrees off from being exactly 45 ° with 

respect to the substrate surface. 

By aligning the material to a preferred orientation, superior rate capabilities and capacity 

retention performance were obtained in the Ca:TiO2-B films grown on (110) SrTiO3 with 

excellent structural stability. At 1C, the film discharges to a specific capacity of 293 mA h g-1, 

over 99.6% of the theoretical capacity. A discharge capacity of 155 mA h g-1 was achieved at 60C 

after 100 cycles. In a long-term retention test at 60C, the capacity loss was ~0.02% per cycle 

from cycle 10 to 2000. 
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Figure 5.6 Long term cyclability of a 62 nm polycrystalline Ca:TiO2-B thin film vs. Li metal at a 

60C rate. The voltage window is 1-3 V. 
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Figure 5.7 Rate capability comparison: discharge capacity at the 20th cycle of both TiO2-B and 

Ca:TiO2-B with different orientation at increasing rates. Respective film thicknesses are labeled. 

Solid lines are guides for the eyes. Inset: potential profiles at the 5th cycle of (001) TiO2-B and 

Ca:TiO2-B films at C/10 rate (33.5 mA g-1). 
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Figure 5.8 EIS spectra comparison between two Ca:TiO2-B films grown on (110) and (100) 

SrTiO3, respectively. The experimental data (open symbols) has been fitted to the equivalent 

circuit in the inset, which includes solution resistance (Rs), an RC circuit representing charge 

transfer, and a Warburg impedance representing ion diffusion. 
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Figure 5.9 Cyclic voltammetry measurements for a polycrystalline Ca:TiO2-B thin film grown 

on (110) SrTiO3 at different scan rates. Three cycles are shown for each rate, demonstrating good 

repeatability of the measurement. 
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Chapter 6 

High Rate Full-Cell Batteries Containing a Polycrystalline 

Ca:TiO2-B Anode and LiFePO4 or LiMn2O4 Cathodes 

 

6.1 Introduction 

Having established thus far that the new Ca:TiO2-B phase, when grown in polycrystalline 

form on (110) SrTiO3 substrates, has superior high rate capabilities, it is of interest to further 

demonstrate its performance in a real-life situation as an anode material in a full-cell lithium-ion 

battery. Two cathode materials were chosen for this study: LiFePO4 and LiMn2O4. LiFePO4 is a 

well-known ‘fast’ material that has exhibited ultrafast charging/discharging capability at a rate up 

to 400C,15 which may pair up with the high rate performance of the Ca:TiO2-B films. LiMn2O4 

was chosen because it has a high voltage versus Li, thus partially compensating the voltage loss 

on the Ca:TiO2-B anode. As discussed earlier, although the high voltage of the Ca:TiO2-B anode 

(~1.5 V vs. Li) lowers the overall cell voltage, the intrinsic safety is improved in the meantime, 

combined with other important advantages including low cost, low toxicity, and good cycle life. 

The main purpose of this chapter is a proof of concept, so the cathode materials have not 

been particularly optimized. Nevertheless, both LiFePO4 and LiMn2O4 were synthesized in 

powder form and processed into slurry electrodes, and therefore had much larger mass of active 

materials than the Ca:TiO2-B thin films. Even though their specific capacities, which is the 

passed electrical charge divided by the mass of active material, are not as high as that of 

Ca:TiO2-B, the cathodes still have larger total charge capacities than the anode. Since the 

capacity of the full-cell is essentially limited by the anode, the battery cyclability as well as the 
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rate capabilities reported in this chapter are all calculated using the mass of the Ca:TiO2-B thin 

film. Due to the difference in mass, when a fixed electrical current flows through the battery, a 

high C rate for Ca:TiO2-B anode is actually a lower C rate for the cathode, which alleviates the 

issue that the cathode materials were not optimized for high rate performance. A rate of nC 

corresponds to a full discharge of the battery in 1/n hours. In this case of a limiting anode, the C 

rate for the whole battery is equal to the C rate for the Ca:TiO2-B thin films. 

 

6.2 Polycrystalline Ca:TiO2-B thin film anode vs. LiFePO4 slurry cathode 

The homemade LiFePO4 power was prepared from Li2CO3 and FePO4·2H2O 

(Aldrich >99%) following the reaction below: 

0.5LiଶCOଷ ൅ FePOସ ∙ 2HଶO
୼	ଽହ%	୅୰ାହ%	ୌమ
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ LiFePOସ ൅ 0.5COଶ ൅ 2HଶO     (6.1) 

The mixture was heated at 750 °C for 3 hours and dried on a hot plate set at 120 °C in an Ar gas 

flow for 1 day to remove the water content. The LiFePO4 phase formation in the reaction product 

was confirmed by XRD and TEM. 

The LiFePO4 powder was mixed with carbon black as the current collector and PVDF 

(polyvinylidene difluoride) binder at a weight ratio of 80%:10%:10% to form slurry, which was 

then pasted on Al disks and dried to a solid state. 

The LiFePO4 slurry electrode was first tested in a battery half-cell vs. Li metal with LiPF6 

electrolyte. Its cycling behavior at a rate of 47.4 mA g-1 in a voltage window of 2.7-4.2 V is 

shown in Figure 6.1. The discharge capacity is on average ~65 mA h g-1, which is fairly low for 

LiFePO4 with a theoretical capacity of 170 mA h g-1. This is likely due to the fact that the 

LiFePO4 powder composition has not been optimized which may contain impurities and 

unreacted precursors, while the particle sizes are rather large (m level), creating longer 

diffusion paths for Li ions.137 Furthermore, computational studies have derived that in LiFePO4, 

the smallest Li migration energy lies along the [010] 1D tunnel with the continuous chain of 

edge-sharing LiO6 octahedra.14,138 If the [010] channels are not well exposed in the powder 
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particles, the cycling performance will also be limited. Nevertheless, the characteristic 

intercalation and deintercalation voltages and the small polarization (120.8 mV) of LiFePO4 have 

been observed in the charge-discharge voltage profiles and cyclic voltammograms (Figure 

6.2),137,139 illustrating that the active material is indeed storing electrical charges as desired, 

without obvious contribution from other possible impurities. 

A polycrystalline Ca:TiO2-B thin film grown on a (110) SrTiO3 substrate was assembled 

in a top current collection configuration (Figure 4.7) as the anode, which was then stacked with 

the LiFePO4 slurry cathode, liquid LiFP6 electrolyte and a 1.55 mm thick glass fiber separator to 

form a full-cell battery. Because of the much larger mass of the LiFePO4 phase in the cathode 

than that of the Ca:TiO2-B phase in the anode, LiFePO4 is not the limiting factor of the battery, 

and hence the battery performance largely reflects the electrochemical properties of Ca:TiO2-B. 

The high rate cycling results of the Ca:TiO2-B-LiPF6-LiFePO4 battery are presented in Figure 6.3, 

where the battery discharges to the specific capacity of 168.6 mA h g-1 and 155.1 mA h g-1 in the 

100th cycle, at rates of 20C and 40C (1C=294 mA g-1), respectively. Such results are consistent 

with the outstanding high rate performance of the polycrystalline Ca:TiO2-B thin film as 

discussed in Chapter 5. In the 40C cycling experiment (Figure 6.3(b)), a segment of increasing 

capacity is observed approximately from cycle #350 to cycle #450, and again approximately 

from cycle #700, instead of the usual capacity fade as the cycle number increases. The 

fluctuation in capacity may have originated from the formation of an SEI layer on either one of 

the metal oxide electrodes. For instance, the generation of LiOH and  its subsequent reversible 

reaction with Li to form Li2O and LiH may contribute extra capacity.140 

Unlike the half-cells containing Ca:TiO2-B and Li metal where the Coulombic efficient is 

close to 1 other than the first few cycles (Figure 5.5(b)), in the Ca:TiO2-B-LiPF6-LiFePO4 battery 

the discharge capacity is constantly ~5% lower than the charge capacity at 20C, and the 

difference increases at 40C (Figure 6.3). Since the Li ions are extracted from the anode and 

inserted into the cathode during the discharge process (Figure 4.1), the data suggests that at such 

high rates, the Li ions are moving out of Ca:TiO2-B rather fast, but are not being inserted into 



142 
 

LiFePO4 as efficiently. The LiFePO4 electrode, in its currently less than optimal state, is the rate 

limiting factor of this battery. The effect is even more significant as the rate further increases. In 

a long term capacity retention test at 80C for 2000 cycles, as shown in Figure 6.4, the discharge 

capacity drops far below the charge capacity after 1200 cycles, exhibiting a difference of ~30%. 

At higher rates, the capacity also decreases faster in the first few cycles, likely due to the poor 

electrical conductivity both in Ca:TiO2-B and in LiFePO4. 

The 1D curved Li diffusion path imposes strong dimensional restriction of Li motion in 

LiFePO4. Therefore, the very high rate operation has only been possible through the efficient 

formation of small particles and/or a conductive carbon network.14,141-143 On the present stage, a 

LiFePO4 cathode with specifically modified crystal structure is needed to further enhance the 

high rate performance of the Ca:TiO2-B-LiPF6-LiFePO4 battery. 

The electrochemical voltage profiles from the 1st to the 100th cycle between 0.5 V and 2 

V for the Ca:TiO2-B-LiPF6-LiFePO4 battery at a 10C rate based on Ca:TiO2-B are shown in 

Figure 6.5. Since the voltage profile of the LiFePO4 cathode (vs. Li) has a well-developed 

plateau, while the voltage profile of the Ca:TiO2-B anode (vs. Li) is sloped showing a 

pseudocapacitive characteristic (Figure 5.5(a)), the full-cell voltage as the difference between the 

two also poses in a sloped profile. The discharge capacity changes from 257 mA h g-1 at the first 

cycle to 189 mA h g-1 at the 50th cycle, and to 172 mA h g-1 at the 100th cycle under this rate. 

 

6.3 Polycrystalline Ca:TiO2-B thin film anode vs. LiMn2O4 slurry cathode 

The LiMn2O4 power was prepared and made into slurry electrodes on Al disks by Prof. 

Bart Bartlett’s research group at the Department of Chemistry. The voltage profiles of the 

LiMn2O4 electrode vs. Li metal are shown in Figure 6.6. Except for an irreversible capacity loss 

at the 1st cycle,117 the material presents good capacity retention at ~100 mA h g-1, and the 

characteristic plateaus around 4.1 V.77 

Similarly to the above, a polycrystalline Ca:TiO2-B thin film grown on a (110) SrTiO3 

substrate assembled in a top current collection configuration as the anode was stacked with the 
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LiMn2O4 slurry cathode, liquid LiFP6 electrolyte and glass fiber separator to form a full-cell 

Ca:TiO2-B-LiPF6-LiMn2O4 battery. The high rate cycling results of are presented in Figure 6.7. 

Since LiMn2O4 has a higher voltage vs. Li, the voltage window is moved up to between 1.2 and 

3 V. At 20C and 40C, the battery discharges to the specific capacity of 165.8 mA h g-1 and 150.6 

mA h g-1 in the 50th cycle, respectively. Unlike LiFePO4, LiMn2O4 is less selective on Li+ 

intercalation pathways, and therefore the Li ions are inserted into the cathode more efficiently 

during discharge, which directly leads to an improvement on the Coulombic efficiency compared 

with the Ca:TiO2-B-LiPF6-LiFePO4 battery. An obvious difference between discharge and charge 

capacities is seen when the rate is increased to 80C (Figure 6.8), where the discharge capacity is 

generally ~8% lower than the charge capacity. 

The capacity retention of this battery is good. As seen in Figure 6.8, the discharge 

capacity loss is only 0.03% per cycle from cycle 1 to 1000. It should be noted, though, this 80C 

long term cycling test was immediately following the cycling at 40C. Hence the 1st cycle here is 

not factually the first in an independent test, and the initial irreversible loss was already 

accounted for in the 40C cycling (Figure 6.7(b)). 

The electrochemical voltage profiles from the 1st to the 100th cycle between 1.2 V and 

2.7 V for the Ca:TiO2-B-LiPF6-LiMn2O4 battery at a 10C rate based on Ca:TiO2-B are shown in 

Figure 6.9, presenting again a sloped line shape due to the pseudocapacitive energy storage in 

Ca:TiO2-B. Even though the plateaus in LiMn2O4’s voltage profiles are not as fully extended as 

those of LiFePO4, the voltage of the cathode does not vary much anyway in cycling because the 

mass of the active material in the cathode is at least ten times larger than that of the Ca:TiO2-B 

phase. As a result, these voltage profiles are very similar to the ones in Figure 6.5 with LiFePO4, 

with a major difference in the higher operation cell voltage, in addition to the better capacity 

retention. The discharge capacity of the battery is 256 mA h g-1 at the first cycle, which reduces 

to 212 mA h g-1 at the 50th cycle, and to 189 mA h g-1 at the 100th cycle under this rate. 
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6.4 Summary and conclusions 

Polycrystalline Ca:TiO2-B thin films grown on (110) SrTiO3 substrates have been tested 

as anodes in full-cell batteries against LiFePO4 and LiMn2O4 cathodes with LiPF6 electrolyte. In 

both cases, the battery cells exhibited high rate performance up to 80C (based on Ca:TiO2-B) and 

good capacity retention up to 1000 cycles. 

The Ca:TiO2-B-LiPF6-LiFePO4 battery works in the voltage window of 0.5-2 V, and 

delivers a discharge capacity of 257 mA h g-1 at 10C. The Ca:TiO2-B-LiPF6-LiMn2O4 battery 

works in the voltage window of 1.2-3 V, and delivers a discharge capacity of 256 mA h g-1 at 

10C. The capacity loss in long term cycling from cycle 20 to 1000 is 0.03% per cycle with 

LiFePO4, and 0.02% per cycle with LiMn2O4. 

Because the Ca:TiO2-B thin film anode is the limiting factor in the full-cell, which has  

distinctive sloped voltage profiles, the rate capabilities and electrochemical voltage profiles for 

the two batteries are actually similar at different rates using either LiFePO4 or LiMn2O4 as 

cathode. The major differences are that LiMn2O4 provides a 0.7 V higher cell voltage (and 

consequently a higher battery power), and that the Coulombic efficiency is higher with LiMn2O4 

than with the non-optimized LiFePO4, where the latter requires dedicated structural engineering 

to expose its preferred Li+ diffusion channels at the surface of the powder particles in order to 

achieve superior rate performance. 
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Figure 6.1 Cycling performance of the homemade LiFePO4 slurry electrode vs. Li counter 

electrode at a rate of 47.4 mA g-1. The voltage window is 2.7-4.2 V. 
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Figure 6.4 Long term capacity retention of the Ca:TiO2-B-LiPF6-LiFePO4 battery at a 80C rate 

(1C=294 mA g-1). The voltage window is 0.5-2 V. 
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Figure 6.5 Electrochemical voltage profiles at different cycles between 0.5 V and 2 V for the 

Ca:TiO2-B-LiPF6-LiFePO4 battery at a 10C (1C=294 mA g-1) rate based on Ca:TiO2-B. 
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Figure 6.6 Charge-discharge voltage profiles of the LiMn2O4 slurry electrode vs. Li counter 

electrode at 1C rate from the 1st cycle to the 150th cycle. [Figure courtesy: Frances Venable and 

Prof. Bart M. Bartlett] 
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Figure 6.8 Long term capacity retention of the Ca:TiO2-B-LiPF6-LiMn2O4 battery at a 80C rate 

(1C=294 mA g-1). The voltage window is 1.2-3 V. 
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Figure 6.9 Electrochemical voltage profiles at different cycles between 1.2 V and 2.7 V for the 

Ca:TiO2-B-LiPF6-LiMn2O4 battery at a 10C (1C=294 mA g-1) rate based on Ca:TiO2-B. 
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Chapter 7 

Conclusions and Future Work 

 

7.1 Thesis conclusions 

This thesis focuses on the first completely waterless synthesis of high quality TiO2-B and 

Ca:TiO2-B (CaTi5O11) thin films, and their application in high rate lithium ion batteries, 

including a demonstration of high power full-cell battery prototypes. The entire process from 

epitaxial growth and structural characterization to property testing and performance enhancement 

has been presented in great detail, with an emphasis on understanding and utilizing the 

structure-property relationship. The following conclusions are drawn. 

 

7.1.1 Epitaxial growth of (001) Ca:TiO2-B and (001) TiO2-B thin films 

Single-crystalline (001) Ca:TiO2-B thin films with superior quality and smooth surfaces 

were achieved on (001) SrTiO3 and doped conductive (001) Nb:SrTiO3 substrates. The crystal 

structure matches very well with first principles calculations, where Ca stabilizes the bronze 

structure and forming a variant phase of TiO2-B. The Ca content in the PLD target is critical to 

the crystallization of such a new phase, with best film quality obtained using a CaTi4O9 (nominal) 

target. Deficiency of Ca in the target leads to TiO2-anatase grains forming near the interface 

between the film and the substrate. 

Ca:TiO2-B may be grown on other substrates with small lattice mismatch and similar 

crystal symmetry to SrTiO3. Ca:TiO2-B film deposition was observed on (001) LaAlO3 and (001) 

LSAT, however anatase is a major defect phase. Ca:TiO2-B could also be grown on other 
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substrates if a (001) SrTiO3 intervening layer can be fabricated as a buffer. A Ca:TiO2-B thin film 

grown on SrTiO3 buffered (100) Si was achieved and used for Raman studies. 

Due to the near-perfect lattice match along the a-b plane, high quality single crystalline 

(001) TiO2-B thin films with smooth surfaces can be synthesized on a (001) Ca:TiO2-B template 

layer using a pure TiO2 target. The crystal quality of the TiO2-B films is largely independent on 

the template layer thickness. Depending on the terminating surface in its zigzag structure of the 

Ca:TiO2-B layer, the TiO2-B phase could be stacking upwards along two opposite directions. 

Therefore, partially missing Ti-Ca alternating layer in the Ca:TiO2-B structure at the interface 

result in extended defects in the TiO2-B film. 

 

7.1.2 Electrochemical properties of the Ca:TiO2-B and TiO2-B thin films 

Both Ca:TiO2-B and TiO2-B exhibit Li electrochemical reactivity, and can be used as 

anode materials for lithium ion batteries, with a voltage ~1.4-1.7 V. 

Ca:TiO2-B has a theoretical capacity of 294 mA h g-1, with redox peaks located at 1.42 V 

and 1.58 V on CV curves. A discharge capacity of 273 mA h g-1 was achieved in a (001) 

Ca:TiO2-B film. The capacity loss is 0.2% per cycle from cycle 20 to 200 at a 10C rate. 

TiO2-B is known to have a theoretical capacity of 335 mA h g-1, and a discharge capacity 

of 334 mA h g-1 was achieved in a (001) TiO2-B film at a rate of C/10. The electrochemical redox 

reactions occur at 1.54 V and 1.69 V. 

Both Ca:TiO2-B and TiO2-B show a pseudocapacitive intercalation behavior with sloped 

voltage profiles during Li intercalation and deintercalation. No well-developed plateau is 

observed in the voltage profiles. The major loss in capacity during battery cycling, especially in 

the first few cycles, is from the poor electrical conductivity of these materials. 

Structural stability is excellent for both Ca:TiO2-B and TiO2-B, without any signs of 

phase transformation in the films, or SEI layer formation or Li plating on the surface after long 

time aggressive cycling. Small fractures are observed in post-cycling TiO2-B films caused by 

thin layers of as-grown anatase defects. Small crystal deformation upon Li intercalation was 
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identified in both materials: a slight increase in the c-axis lattice constant of Ca:TiO2-B and a 

slight decrease in that of TiO2-B. A broadening of the XRD peaks was also observed in both 

structures as the inserted Li+ causes local straining. 

 

7.1.3 Polycrystalline Ca:TiO2-B thin film with enhanced high rate performance 

Polycrystalline Ca:TiO2-B thin films can be synthesized on (110) SrTiO3 substrates. 

Instead of a direct epitaxial growth, small pseudo-cubic CaTiO3 islands in near-triangular shapes 

form first at the interface, before the Ca:TiO2-B grains crystallize with their a-b planes aligned 

parallel to the (001)-equivalent perovskite facets. As a result, the a-b planes in the Ca:TiO2-B 

grains are positioned at an angle of roughly 45 ° with respect to the substrate surface. 

Such crystal orientation creates possibly fast Li+ migration channel openings on the 

surface of the film, which significantly enhances the rate capabilities and capacity retention of 

the thin film electrode, delivering specific power of ~20 kW kg-1 at 60C and ~35 kW kg-1 at 

600C. Post-cycling examinations proved extraordinary structural stability under extreme 

condition including cycling at 12000C. The superior high rate performance may have benefited 

not only from the well-aligned lattice orientation, but also from the polycrystalline structure and 

grain boundaries, where Li+ transport follows a mixed pattern. 

The outstanding performance was further exploited in prototype full-cell batteries vs. 

LiFePO4 and LiMn2O4 cathodes, presenting excellent cyclability up to 80C (calculated based on 

Ca:TiO2-B) and 2000 cycles. Between the two, LiMn2O4 produced better results due to its 0.7 V 

higher voltage and less selective Li+ insertion pathways. The Ca:TiO2-B-LiPF6-LiFePO4 battery 

is also promising for super high rate batteries with fine-tuned LiFePO4 electrode. 

 

7.1.4 Impact of this work 

After more than 30 years since the discovery of the TiO2-B material, this work reports the 

first water-free synthesis route to fabricate this attractive material in highly crystalline and phase 

pure form with well-defined lattice orientation and surface, while in the meantime discovered the 
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conditions for its variant phase, Ca:TiO2-B, to crystallize. 

By clearly illustrating the growth mechanism and various microstructures in the thin 

films at the atomic scale, our findings can serve as guidelines to create these materials in a 

controlled form for future research efforts. Further optimized growth conditions, transferring 

onto other deposition platforms such as molecular beam epitaxy (MBE), faster deposition rates to 

gain larger yield, morphology engineering such as nanostructuring, may be possible. Building on 

the investigation of their electrochemical properties provided here, the perspective to further 

enhance the battery performance is promising. 

Although this thesis has emphasized on the application of these materials as strong 

candidates for high power lithium ion battery anodes, their potential applications extend far 

beyond electrochemistry. The large unit cells of Ca:TiO2-B may warrant good thermoelectric 

properties. The clean surface is especially beneficial to studies focused on surface states, such as 

in photocatalysis and photovoltaic devices. 

Compared with other reports on TiO2-B synthesized by hydrothermal methods into 

powder forms, the unparalleled advantage of the crystalline thin films is a determinate 

relationship between structure and property, thus providing a solid baseline for experimental data 

interpretation and association with theoretical studies. This in itself is a significant step forward 

in understanding the fundamental science of these materials. 

 

7.2 Future work 

Many aspects of the titania-bronze materials, from the structure to underlying physics and 

chemistry, especially for the novel Ca:TiO2-B phase, are currently uncharted waters. The high 

quality single crystals offer unique opportunities to answer these questions. A few 

recommendations for immediate next steps are introduced below. 
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7.2.1 Thicker films 

In the growth of the TiO2-B (001) films, it was noticed that the deposition rate slows 

down significantly after about 2 hours of growth. Within a 100 nm, the thickness increases 

roughly proportional to growth time. However, further increasing the deposition time up to 6 

hours did not result in obvious addition to the film thickness. So far, no one film has a thickness 

above 250 nm. 

Preliminary analysis indicates a critical thickness due to unrelaxed strain. Being a 

metastable phase, the building blocks of TiO2-B might stop to stack when the internal strain 

reaches a threshold. One possible solution is to insert more layers of Ca:TiO2-B in a multilayer 

structure. Ca:TiO2-B seems to be a more stable phase than TiO2-B, and hence positioning the two 

phases in an alternating manner layer by layer may lead to counter-balance of unrelaxed strain 

and eventually a thicker film. Depending on the purpose, the thicknesses of respective layers 

could vary. 

Thick films may be desired in certain device application or in the effort to scale up 

production. The multilayer structure may also be of interest for studies on interfacial effects. 

 

7.2.2 Band structure analysis 

One of the most important steps in investigating a new material for electrical applications 

is to understand its electronic band structure. Theoretical calculations are very instructive in this 

area. Prof. Emmanouil Kioupakis’s group has calculated the band structure of the TiO2-B phase, 

revealing an indirect fundamental gap of 4.7±0.1 eV. The band gap for Ca:TiO2-B is expected to 

be ~0.3-0.5 eV lower than that of TiO2-B due to the incorporation of Ca, while the complete 

band structure will take a longer time to calculate as the structure is much more complicated. 

Some of the preliminary results are shown in Appendix A. 

Such high band gaps poses particular challenges to experimental study. An attempt on 

exciting photoluminescence in both Ca:TiO2-B and TiO2-B using a 325 nm He-Cd laser did not 

produce any strong band edge emissions, confirming that the optical band gap for both materials 
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is higher than 3.8 eV. Lasers with wavelength shorter than 248 nm are usually gas lasers with 

high power (e.g. the KrF laser used in PLD) which would easily destroy the sample, so 

photoluminescence is not the suitable for this study. Shining deep UV light on the sample may 

result in spectrum response, however whether the luminescence is strong enough for the detector 

is yet unknown. 

The possible solution is to utilize a synchrotron beam line, which is often employed in 

band structure analysis for high band gap materials. The collected data can be compared with, or 

guide theoretical calculations. 

 

7.2.3 Increasing electrical conductivity 

The poor electrical conductivity of the bronze materials is the major roadblock in 

improving their battery performance, causing low current collection efficiency and capacity loss. 

Hall measurements revealed that the resistivity of both Ca:TiO2-B and TiO2-B is on the scale of 

104-105  cm with carrier concentration of 1010-1011 cm-3, as listed in Table 7.1. It should be 

noted that for such highly resistive films, the experimental error may be larger than usual. One 

mysterious fact is the change of carrier type between the two phases. It is likely that both n- and 

p-type carrier groups exist in the bronze structures, and the measurements present the averaged 

effects resulting from the competition among these groups. Magneto-transport investigation 

which involves varying temperature and magnetic field is powerful in clarifying such 

characteristics, but it often requires higher carrier concentration and conductivity to be accurate. 

As a common problem in metal oxide battery materials, the prevailing solution is to 

reduce the particle size for better contact with the current collector (e.g. carbon powder), or to 

encompass the particles with a conductive coating. Another more direct solution, which is also 

more difficult to achieve, is to increase the intrinsic conductivity of the material itself. 

Doping is the most effective method to increase electron concentration or even lower the 

band gap by introducing defect or impurity energy levels. As unique phases difficult to 

synthesize in the first place, doping into Ca:TiO2-B and TiO2-B while maintaining their lattice 
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structures will not be easy. Theoretical calculations may again provide valuable directions. Dr. 

Baihai Li’s DFT calculations have predicted a possible TiPtO4 phase, which has essentially the 

same structure as TiO2-B but with half of the Ti ions replaced by Pt ions. If such a new phase can 

be indeed synthesized, it should have a different band structure from that of TiO2-B, and 

potentially a higher electrical conductivity. 

 

7.2.4 Origin of the pseudocapacitance 

The single crystals of TiO2-B and Ca:TiO2-B offers a new opportunity to formulate an 

experimentally validated theory of nano-thermodynamics. The sloping regions in voltage at the 

end of charge and discharge (Figure 5.5(a)) are frequently seen in the literature for TiO2-B 

materials. Although it is often attributed to a pseudocapacitive process, the respective roles of 

surface and bulk are largely unknown. Since the majority of the published work is focused on 

various nanostructures where large surface area is an advantage, while the thin films discussed in 

this report are less than 200 nm thick, it is probable that certain surface capacitive effects 

contribute to the voltage behavior as well as to the measured capacity. 

Having thus demonstrated this waterless synthesis of the bronze materials with high 

crystalline quality, we are for the first time equipping the field with a method to isolate surface 

effects from bulk effects. A systematic study of electrochemical properties on phase pure films 

ranging from a few monolayers to m thickness would reveal the differences between regimes of 

surface-dominant versus bulk-dominant, clarifying the nature and origin of pseudocapacitance. 

 

7.2.5 Divalent ion batteries 

A few measures can be taken in further improving the performance of the batteries 

containing titania-bronze or understanding the electrochemical process. The full-cell prototypes 

discussed in Chapter 6 used cathode materials that had much larger mass than the anode. 

Matching the active material mass in the two electrodes will provide more information on the 

battery reactions, while reducing the total cell weight in real-life applications. Pairing the 
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polycrystalline Ca:TiO2-B films with optimized fast cathode materials such as coated LiFePO4
15 

will create a battery with ultrahigh rate capabilities. If a thin film cathode with high capacities is 

used, a solid state battery can be made with a solid electrolyte. 

The bronze structures may be open enough for other ion species than Li+ alone. Cycling 

the battery with Na+ instead of Li+ will enable researchers to track the heavier Na ions and 

observe the charge/discharge process with better clarity in techniques such as TEM and EELS. 

Furthermore, examining the possibility of a divalent ion battery is very interesting, as the open 

channels in the bronze crystals may allow 2+ ions to pass with considerable mobility, such as 

Mg2+ and Ca2+. Although it is known that the electrochemistry is different for 2+ ions,144 the 

Ca:TiO2-B phase, already containing Ca ions, is a promising candidate for Ca2+ migration 

through its matrix. 

 

7.2.6 Related new phases 

In the attempt to modify the bronze structures, we have observed the formation of other 

novel phases as well. A single-crystalline (230) MgTi2O5 film was grown on (001) SrTiO3, while 

its crystal orientation rotates when deposited on (110) SrTiO3, resulting in a (200) film. This 

material is interesting for various properties,145 including increased compressibility146 and 

lithium reactivity.147 

During thermal treatment of a Pt doped CaTiO3 thin film, small grains of a CaTi2O5 phase 

were observed in TEM, along with Ca:TiO2-B grains under different redox conditions. It seems 

to have the same lattice structure as MgTi2O5, but with the Mg ions replace by Ca ions. 

To the best of my knowledge, this is the first synthesis of single-crystalline MgTi2O5 thin 

films, while the CaTi2O5 phase has not be reported scientifically, other than the only reference in 

a patent application.13 The growth optimization, band structure study, property testing and 

electrochemical reactivity including in possible 2+ ion batteries of these novel phases are brand 

new topics of research interests. 
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Table 7.1 Electrical properties of a (001) Ca:TiO2-B film and a (001) TiO2-B/Ca:TiO2-B dual 

layer film both grown on (001) SrTiO3 substrates at 800 °C. 

 

Film Thickness (nm)  ( cm) n (cm-3) Type 

Ca:TiO2-B 65 8.89×104 5.77×1010 n 

TiO2-B / Ca:TiO2-B 25 / 20 5.99×104 2.18×1010 p 
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Appendix A 

TiO2-B Band Structure by First Principles Calculations 

 

The band structure of the TiO2-B phase has been calculated by Dylan Bayerl in Prof. 

Emmanouil Kioupakis’s group. The band structure calculations of the Ca:TiO2-B phase is more 

complicated and still underway.  

The first principles methodology is based on density functional theory (DFT) and 

many-body perturbation theory in the GW approximation. DFT provides single-particle states 

and eigenenergies to which we apply quasiparticle corrections from the GW method to obtain 

predictions of electronic band gaps. The DFT+GW methodology predicts band gaps in very good 

agreement with experiment for most material systems, while the precision of our calculations is 

estimated at ±0.1 eV. Our DFT+GW calculations allow us to interpolate the electronic band 

structure using maximally-localized Wannier functions, yielding high-resolution band structures 

from first-principles. 

The band structure calculation of the TiO2-B polymorph (Figure 1) reveals an indirect 

fundamental gap of 4.7 eV (±0.1 eV). The fundamental transition is between the conduction band 

minimum at Γ and low-symmetry valence band maxima near the N-point. Analysis of atomic 

orbital projections confirms that conduction band edge states are primarily of titanium d-orbital 

character, whereas valence band edge states have predominantly oxygen p-orbital character. For 

Ca:TiO2-B (CaTi5O11), which is essentially a twinned, augmented variant of TiO2-B with an extra 

Ti-Ca interleaved layer, preliminary theoretical investigation of the calcium-enriched TiO2-B 

phase suggests that calcium incorporation slightly reduces the band gap of the bronze polymorph 

by 0.3 to 0.5 eV. We speculate that the gap is reduced by a combination of Brillouin zone folding 
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from breaking crystalline symmetry and introduction of near-edge calcium levels, though the 

exact mechanism has not yet been identified. 
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Appendix B 

Enhanced Thermoelectric Properties in a Metal-Perovskite System 

 

This appendix is intended to document a separate project performed during the PhD 

studies. Although the topic is different from the focus of this thesis, the experimental methods are 

largely the same as detailed in Chapter 2. 

 

B.1 Introduction 

Precious metal nanoparticles precipitating from and dissolving into perovskite structures 

in redox conditions opened up new opportunities for catalysis applications. It is also well-known 

that nano-inclusions may help enhance the figure of merit in thermoelectric materials by 

reducing the thermal conductivity. However, these inclusions, in many cases, create scattering 

centers that reduce electron mobility and electrical conductivity. Here we demonstrate the first 

experimental proof that Pt nano-inclusions can precipitate in heavily Nb-doped SrTiO3 thin films 

with a single step of deposition, presenting ultrahigh electrical conductivity on the order of 104 

S/cm, while in the meantime reducing the thermal conductivity, resulting in a significant 

enhancement of the figure of merit. Beyond thermoelectrics, the Pt-SrTiO3 system may also be 

of interest for photocatalytic applications. 

Oxide materials are attractive for thermoelectric applications due to their stability at 

elevated temperatures, which is especially valuable in high temperature environment such as 

exhaust gases and industrial catalytic reactors. The figure of merit which gauges the energy 

conversion efficiency, defined as ZT=T(S2)/, where T is the absolute temperature,  is the 
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electrical conductivity, S is the Seebeck coefficient (also known as the thermopower), and  is 

the thermal conductivity, is difficult to enhance in many material systems as the effects are often 

intertwined. Increasing carrier concentration by doping usually leads to an increase in electrical 

conductivity and a decrease in mobility (), characterized by =en, where e is the elementary 

charge, while in the meantime lowering the thermopower, expressed by 

S=[(82kB
2)/3eh2]m*T(/3n)2/3 for metals or degenerate semiconductors (parabolic band, 

energy-independent scattering approximation),148 where kB is the Boltzmann constant, h is the 

Planck constant, m* is the effective mass of the charge carrier and n is the carrier concentration. 

Therefore, the effort to improve ZT is often two-fold: decreasing the thermal conductivity , or 

maximizing the power factor defined as PF=S2, which is often a compromise between  and S, 

since higher carrier concentration typically leads to higher electrical conductivity but lower 

Seebeck coefficient. 

Precious metal movements into and out of perovskite oxides between a solid solution and 

metallic nanoparticles under oxidizing and reducing conditions, respectively, have been proposed 

as self-generating catalysts, which were demonstrated in various material systems including 

Pd-LaFeO3, Rh-CaTiO3 and Pt-CaTiO3.
149-152 Besides their applications in automotive emissions 

control and photocatalytic hydrogen production,153 nano-inclusions serving as phonon-scattering 

centers in a host matrix may also be utilized to lower the thermal conductivity of bulk 

thermoelectric materials,154,155 thus increasing ZT. The challenge in such an approach is to avoid 

electron-scattering by the nano-inclusions which leads to decreasing electrical conductivity. In 

this Appendix, we report that Pt nanoparticles precipitating in Nb-doped SrTiO3 (STO) thin films 

grown by pulsed laser deposition (PLD) can reduce the thermal conductivity by ~20%. Further 

increasing the carrier concentration by heavy Nb doping and adding oxygen vacancies by 

switching the growth atmosphere to Ar result in an ultrahigh electrical conductivity of 1.62×104 

S/cm, and a power factor of 1.25 mW K-2 m-1 at 300 K, which exhibits a 350% increase over the 

film grown in O2 with no Pt nano-inclusions. 
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B.2 Experimental methods 

The PLD targets were constructed by mixing SrTiO3, Nb2O5 and PtO2 powders with 

specific mole percentage of metal ions, sintering at 1400 °C and cold pressing into dense pellets. 

In the STO host, both Nb and Pt substitute Ti ions, and thus the general chemical formula for the 

series of thin films discussed in this Appendix can be expressed as SrTi1-x-yNbxPtyO3 (STNPO). 

The PLD vacuum chamber has a base pressure <3.8×10-9 Torr. A 248 KrF excimer laser with a 

pulse duration of 22 ns was used for the deposition at a repetition rate of 5-10 Hz, and the 

substrate-target distance was set to 6.35 cm. Purified O2 or Ar gas was backfilled into the 

chamber to a particular partial pressure during growth, which was maintained in the cooling 

process to room temperature (RT). The films studied in this work have thicknesses of 

100-200nm, which were measured by a Veeco Dektak profilometer and confirmed with 

transmission electron microscopy (TEM) images. Microstructures of the films were studied with 

a Rigaku rotating anode diffractometer using Cu K radiation, and a JEOL 2100F TEM 

equipped with a spherical aberration corrector. Electronic transport properties were measured 

using SQUID (superconducting quantum interference device) in Hall-bar configuration. Thermal 

conductivity was measured at 300 K by employing the 3 method,156 which requires that the 

substrate has a significantly higher thermal conductivity than that of the film under investigation 

for accurate measurement, so the STNPO films discussed in this study were grown on Si (100) 

substrates with a 20 unit-cell STO buffer layer.157 Since most of the Nb-doped STO films are 

highly conductive, which is invalid for the 3 method, each sample had a replica grown at 

identical conditions but with an additional insulating STO layer (700 °C, 50 mTorr O2) ~10 nm 

thick on top for the thermal conductivity measurement. 

 

B.3 Results and discussion 

A SrTi0.75Nb0.20Pt0.05O3 film was first grown at 800 °C in 50 mTorr of O2. The ~8 nm 

STO buffer layer on the Si substrate absorbs most of the mismatch strains, benefiting the 
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homoepitaxial growth of the STNPO thin film on top. As a result, the film was very uniform 

with a smooth surface. The -2 X-ray diffraction (XRD) patterns (not shown) confirmed that 

the STNPO film is single crystalline, (001) oriented, without any impurity peaks detected. Fitting 

the 00l family peak positions to the Bragg’s law yields a lattice constant of a=3.961 Å, a 1.4% 

increase from that of the pure STO (3.905 Å), as the Nb and Pt ions which have larger ionic radii 

than Ti4+ expand the lattice. No Pt nanoparticles were observed in the as-grown film, indicating 

that Pt is well dispersed in the STO matrix. Hall measurement reveals that the film is n-type but 

quite resistive, exhibiting a carrier concentration of n=1.49×1010 cm-3 and an electrical 

conductivity of =8.19×10-6 S/cm at RT, which is very low for a 20% Nb doped STO film.158 

This is because the film was grown in an oxidizing condition, while significant changes were 

obtained through thermal treatment. After annealing in 10% H2 (in N2) at 800 °C for 40 min, the 

RT carrier concentration and electrical conductivity have increased by several orders of 

magnitude to n=3.86×1019 cm-3 and =6.30 S/cm, respectively, due to the generation of oxygen 

vacancies in the reduction process. No metallic Pt particles were observed in the reduced film. 

The thermal treatment did not have an apparent influence on the thermal conductivity, which was 

4.60±0.44 W m-1 K-1 at RT [measured by Dr. Gun-Ho Kim in Prof. Kevin Pipe’s group at 

Department of Mechanical Engineering]. One may notice that such a value is much lower than 

the thermal conductivity of bulk STO (11.2 W m-1 K-1), which has been previously attributed to 

the relatively higher defect density in STO films grown by PLD using ceramic targets.159 

The absence of metallic Pt precipitation in the reduced STNPO film may be because the 

reducing condition was inadequate for the Pt-STO system,150 or that the film surface was 

effectively shielding out the reduction gas from reacting with the bulk of the film. To change the 

redox environment as the film is being deposited, the O2 partial pressure during growth was 

lowered substantially, and the effect was immediate. Figure B.1(a) shows the high-angle annular 

dark-field (HAADF) STEM image of a SrTi0.75Nb0.20Pt0.05O3 film grown in 0.01 mTorr O2 

instead of 50 mTorr (other conditions fixed), where Pt particles generally 1-3 nm in diameter are 

uniformly distributed throughout the film, many of which are exposed on the surface, as shown 
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in Figure B.1(c). The face-centered cubic (fcc, a=3.924 Å) structure of the Pt nanoparticle is 

clearly seen (Figure B.1(b)), which manifests itself as a near-perfect epitaxial cluster embedded 

in STO due to the close lattice parameters, imposing no obvious strain on the host matrix. The 

low oxygen atmosphere has also enhanced the electrical properties to n=3.30×1020 cm-3 and 

=77.7 S/cm, both another order of magnitude higher than those of the previous film grown in 

50 mTorr O2 and reduced after, suggesting that pushing the growth conditions in the reducing 

direction is more effective than post-growth reduction treatment. Further annealing of this film in 

10% H2 for 2 hr had no significant effects on either its electrical properties or the morphology of 

the Pt nanoparticles. As expected, these metallic nano-inclusions have reduced the thermal 

conductivity of the STNPO film by 20%, to 3.66±0.20 W m-1 K-1. Though proposed from earlier 

calculations,151 this is, to the best of our knowledge, the first experimental proof that Pt particles 

may form out of a STO perovskite host. 

In order to further improve the electrical conductivity, two different approaches were 

taken: increasing the Nb-doping, and introducing more oxygen vacancies by growing the films in 

Ar gas instead of O2. Figure B.2(a) shows the comparison of carrier concentration in STNPO 

films grown under different combinations of Nb doping level (20% or 30%) and growth 

atmosphere (0.01 mTorr O2 or 20 mTorr Ar). All four films contained 5% Pt, which has 

precipitated as metallic particles embedded in the STO matrix. It is clear that both approaches 

have increased the carrier concentration considerably. With 30% Nb doping and Ar growth, the 

carrier concentration is 1.71×1022 cm-3 at 10 K and 1.89×1022 cm-3 at 300 K, resulting in an 

exceedingly high electrical conductivity of 1.62×104 S/cm at 300 K, as shown in Figure B.2(b). 

Among the four samples, only the film with 20% Nb grown in O2 exhibits semi-conductive 

behavior, while the other 3 all show metallic behavior. 

Besides the electrical properties, the deposition atmosphere also influences the 

morphology of the Pt nanoparticles. In some areas of a SrTi0.65Nb0.30Pt0.05O3 film grown in 0.01 

mTorr O2, the Pt nanoparticles may extend along the growth direction, forming nanorods instead 

of round particles, an example of which is shown in Figure B.3(a). Energy dispersive 



171 
 

spectroscopy (EDS) results corroborate that these nano-inclusions are indeed Pt (Figure B.3(b)), 

ruling out the possibility of metallic Nb precipitation in a heavily doped film. When the 

deposition atmosphere is switched to 20 mTorr Ar, these nanorods essentially extend over almost 

the entire thickness of the film and reach the surface, as shown in Figure B.3(c), where the Pt 

rods are 1-2 nm wide and >110 nm long. A close examination at the interface revealed that the 

nanorods are not in direct contact with the substrate, but ~10 nm away from its surface. Within 

that area, small round-shaped Pt particles can still be identified, suggesting that these nanorods 

may be growing on the basis of nucleation cores along with the film. Since the films grown in Ar 

contain significantly more oxygen vacancies than the ones grown in O2, it is plausible that the 

stretching effect of the Pt particles/rods is linked to the higher concentration of oxygen 

vacancies, which are essentially crystal defects in the STO host matrix that allow foreign 

metallic clusters to expand over the course of growth. 

To investigate the effects which the Pt nano-inclusions may impose on the carrier 

transport properties in the STNPO films, a SrTi0.70Nb0.30O3 (STNO) film was grown in 20 mTorr 

Ar, with no Pt doping during PLD target fabrication. As expected, the STNO film is uniform and 

in high crystal quality, without any nanoparticles forming internally. The transport properties of 

this film are then compared with the SrTi0.65Nb0.30Pt0.05O3 film grown under the same conditions 

over a temperature range of 3-300 K, as shown in Figure B.4. Both films have ultrahigh 

electrical conductivity on the order of 104 S/cm, which is slightly higher in the STNO film than 

in the STNPO film. The difference is larger at low temperature, where electron scattering on the 

boundaries between the STO matrix and the metallic Pt clusters dominates the conduction 

characteristics. As the temperature increases, inelastic electron-phonon scattering caused by 

lattice thermal vibration gradually takes dominance, overwhelming the influence from the Pt 

nano-inclusions, resulting in very close values of electrical conductivity in the two films above 

250 K.160 Having Pt or not, the Hall mobility is almost the same in the two films over the entire 

tested temperature range, indicating that electron scattering at Pt-STO boundaries is elastic in 

nature without noticeable energy loss, and that the potential barrier between the Fermi levels of 
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the heavily Nb-doped STO and the Pt metal is high enough to prevent a significant amount of 

electron from entering or being trapped in the Pt nano-inclusions.161 This is also evidenced by 

the fact that the carrier concentration in the STNPO film is <4% lower than that in the STNO 

film, and the difference is only larger at low temperature, when the electrons have less kinetic 

energy and are easier to be captured by trapping centers such as crystal defects or dangling bonds 

surrounding the Pt nano-inclusions. The smaller carrier concentration has, however, contributed 

to an increased Seebeck coefficient (absolute value, S∝Tn-2/3ሻ in the STNPO film, where the 

difference is greater at higher temperatures, as seen in Figure B.4(d). 

The increase of the Seebeck coefficient is magnified in the power factor (PF=S2). As 

shown in Figure B.5, the PF of the SPNO films, either grown in Ar or O2, is only slightly higher 

below 50 K, due to the higher electrical conductivity at low temperature (Figure B.4(a)). With 

increasing temperature, the higher Seebeck coefficient consequently leads to higher PF in the 

STNPO films containing Pt nano-inclusions grown in both ambient gases. Benefiting from the 

ultrahigh electrical conductivity, the SrTi0.65Nb0.30Pt0.05O3 film grown in Ar with Pt nanorods has 

a PF=1.25 mW K-2 m-1 at 300 K, a 3.5× enhancement comparing with the SrTi0.70Nb0.30O3 film 

grown in O2, and ZT is estimated to be ~0.10. Considering the thermal stability of both the 

perovskite STO host and the Pt nano-inclusions, it is expected that as the temperature increases, 

the thermal conductivity decreases and the Seebeck coefficient further increases,162,163 and hence 

these STNPO films will exhibit significantly larger ZT at higher temperatures. 

 

B.4 Conclusions 

Pt nanoparticles can precipitate in STO thin films under reducing conditions, which may 

elongate into nanorods when the film is grown in Ar atmosphere. The Pt nano-inclusions reduce 

the thermal conductivity of the thin films by ~20%, without substantially affecting electronic 

transport. Nb doping and adding oxygen vacancies enhance the electrical properties regardless of 

Pt precipitation, leading to a significant increase of the power factor. 
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Figure B.5 Temperature dependent power factor in four 30% Nb doped STNPO films. At 300 K, 
the film containing Pt nanorods grown in Ar shows a 3.5× increase of PF from the film with no 
Pt grown in O2. 
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