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ABSTRACT

Fast Variance Prediction for Iteratively Reconstructed CT with Applications to
Tube Current Modulation

by

Stephen Schmitt

Chair: Jeffrey Fessler

X-ray computed tomography (CT) is an important, widely-used medical imaging

modality. A primary concern with the increasing use of CT is the ionizing radi-

ation dose incurred by the patient. Statistical reconstruction methods are able to

improve noise and resolution in CT images compared to traditional filter backpro-

jection (FBP) based reconstruction methods, which allows for a reduced radiation

dose. Compared to FBP-based methods, statistical reconstruction requires greater

computational time and the statistical properties of resulting images are more difficult

to analyze. Statistical reconstruction has parameters that must be correctly chosen

to produce high-quality images. The variance of the reconstructed image has been

used to choose these parameters, but this has previously been very time-consuming

to compute. In this work, we describe a method for fast prediction of the variance

that can be used to choose these parameters.

We derive an approximation to the local frequency response (LFR) of the op-

eration combining CT projection, statistical weighting, and backprojection. This

approximation is separable into one term that is not weighting dependent and a term

that is weighting dependent but has one fewer dimension. Prior work has provided

this LFR approximation for a limited set of specific geometries; here we extend this

to arbitrary CT geometries.

We apply this LFR approximation to predict the variance of statistically recon-

structed CT images. Compared to the empirical variance derived from multiple simu-

lated reconstruction realizations, our method is as accurate as the currently available

methods of variance prediction while being computable for thousands of voxels per

xi



second, faster than these previous methods by a factor of over ten thousand. We

also compare our method to empirical variance maps produced from an ensemble of

reconstructions from real sinogram data. The LFR can also be used to predict the

power spectrum of the noise and the local frequency response of the reconstruction.

Tube current modulation (TCM), the redistribution of X-ray dose in CT between

different views of a patient, has been demonstrated to reduce dose when the mod-

ulation is well-designed. TCM methods currently in use were designed assuming

FBP-based image reconstruction. We use our LFR approximation to derive fast

methods for predicting the SNR of linear observers of a statistically reconstructed

CT image. Using these fast observability and variance prediction methods, we derive

TCM methods specific to statistical reconstruction that, in theory, potentially reduce

radiation dose by 20% compared to FBP-specific TCM methods.
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CHAPTER I

Introduction

1.1 Problem statement

The methods for X-ray computed tomography (CT) image reconstruction most

often used in practice are filter back-projection (FBP) methods. These methods

are able to reconstruct an image exactly, in theory, but in practice ignore multiple

considerations that give rise to image artifacts.

By alternately modeling these non-ideal effects, such as discretization and obser-

vation noise and posing image reconstruction as a maximum likelihood problem, the

resulting reconstructed images are more accurate, avoiding several classes of artifacts,

such as:

• Cases where the imaged object contains X-ray opaque objects, causing metal

artifacts [67],

• Limited view artifacts, caused by missing views due to e.g., a detector fault [1],

• Artifacts caused by beam hardening [10].

This framework, reconstructing a CT image by treating it as a maximum likelihood

problem, is known as statistical or iterative image reconstruction. It has been used

not just for CT, but also for MRI [58, 3] and terahertz [39, 40, 53] imaging. Sta-

tistical image reconstruction can also reduce noise and improve resolution compared

to FBP-based methods [61, 78]. Using these statistical methods instead of FBP can

thus reduce the X-ray dose required to obtain an equally accurate image. As the

prevalence of CT imaging increases, concerns about radiation dose absorbed by pa-

tients are becoming more and more significant—it has been estimated that as many

as 2% of new cancers in the United States are caused by CT radiation dose [4], and
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several agencies, including governmental agencies, recommend following the “ALARA

principle”, standing for “as low as reasonably achievable”, regarding X-ray radiation

[37, 63, 64].

The downside of statistical image reconstruction is the much higher computational

cost compared to the relatively simple FBP algorithm. Statistical reconstruction

requires iterative methods to maximize the corresponding likelihood, which require

computing a forward- and back-projection of the data for each iteration. Additionally,

statistical reconstruction adds a regularization term that provides more control over

the reconstructed image. This regularizer, though, gives us more parameters that we

must design or select. Simple choices of regularizers can cause non-uniform or non-

isotropic image resolution and fail to preserve edges in the reconstructed image, which

are undesirable effects [55]. Therefore more complicated regularizers are often used,

and having an estimate of the variance of the reconstruction of each voxel helps in

formulating these regularizers in a way that can preserve edges while also eliminating

noise [76, 77, 8].

Tube current modulation is a method for reducing X-ray dose in CT by adaptively

changing the intensity of incident X-rays for different views. It has been verified to

reduce dose both theoretically and empirically for images reconstructed using FBP-

like algorithms [59, 29, 24] as well as for statistically reconstructed images [65, 38],

and is used widely in practice. The tube current modulation strategies currently

used are agnostic to the image reconstruction method used, and so modulate tube

current in a way that is ideal for FBP-like reconstruction, but not necessarily ideal for

statistical reconstruction. Since statistical reconstruction is able to produce higher-

quality images than traditional methods with data that is more constrained in photon

count or view angle, statistically reconstructed images allow a more aggressive dose

modulation and reduction strategy than the tube current modulation strategies used

for FBP images.

Figure 1.1 compares coronal slices of a clinical CT image using three different re-

construction methods. The leftmost image was produced using traditional FBP-based

reconstruction methods. The center image was produced using ASiR, a proprietary

GE Healthcare method that is statistical but not model-based [56]. The rightmost

image was produced using the fully model-based statistical reconstruction methods

that we consider in this work. The images are arranged in order of increasing visual

quality, but also in order of increasing computation time.

2



Figure 1.1: Coronal slices of a CT image using FBP-based (left), ASiR (center), and
statistical (right) reconstruction methods acquired using the same radia-
tion dose. (Figure courtesy of GE)

1.2 Contributions

Predicting the variance map for iteratively reconstructed CT has been researched

before, but previous methods are often computationally intractable for large images.

Methods exist for more quickly generating a variance map for some CT geometries,

including 2D fan-beam CT [76] and 3D step-and-shoot CT with very small steps [77].

In Chapter III, we derive a new approximation for the frequency response of the

combination of projection, weighting, and backprojection, which is the Hessian of the

data-fit term in the cost function for iterative CT reconstruction. This approximation

is the basis for our novel method for fast prediction of the variance map (Chapter

IV), which applies to arbitrary CT geometries, with further approximations for CT

geometries with a small cone angle [50, 51, 52].

To our knowledge, the problem of adapting tube current modulation for statis-

tically reconstructed images was previously an unexplored area. In Chapter V, we

develop fast methods for planning tube current modulation strategies that are par-

ticular to CT scans that will be statistically reconstructed. As part of this, we also

develop fast frequency domain approximations for the performance of several reso-

lution and feature detectability metrics, including the contrast recovery coefficient

(CRC) and SNR for linear image observers.

1.3 Organization

In Chapter II we present a simplified model of X-ray CT systems that we use in

our methods, concluding with a linear system model and model for the noise statistics

3



of observed data. We also describe the existing closed-form methods for CT image

reconstruction using this model. In Chapter III we begin our methods by deriving

an approximation for the frequency response of the Hessian of the data-fit term.

In Chapter IV we apply the results of Chapter III to produce an approximation

of the variance of one reconstructed voxel and refine this approximation for some

specific CT geometries in common use. We also compare the results of these methods

to empirical variance maps produced by an ensemble of simulated reconstructions.

Chapter V applies similar frequency domain methods, using the frequency response

derived in Chapter III, to investigate automatic tube current modulation schemes for

statistically reconstructed images. Finally, Chapter VI summarizes our results and

describes potential ideas for future work.
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CHAPTER II

Background

2.1 X-ray CT systems

A modern X-ray CT system consists of an X-ray source combined with an X-

ray detector mounted on a gantry that rotates around a patient placed between

the source and the detector. The X-ray source acts as a photon source, and emits

photons of energies up to the voltage applied to the X-ray tube (for example, if 100kV

is applied to the tube, photons with energy up to 100keV are emitted). The source is

approximately a point source; in our work, we will model it as a point source, but the

source not being a point is a source of blur that we do not account for. The photons

are then probabalistically absorbed by the material in the scanner, between the source

and detector, and the photons that pass through the scanned object are measured by

the detector. By measuring these unabsorbed photons at many positions along the

rotation of the source and detector, a 2D or 3D image of the X-ray attenuation of the

object can be made.

Figure 2.1 shows a top view of a sample geometry considered in this paper with

the notation used for angles and distances. We consider the origin to be the center

point that the source and detector rotate around. The X-ray source is always the

distance Dso from the origin, and for every ray, the distance from the source to the

detector is Dsd. Note that this requires the detector to be an arc of the circle of

radius Dsd centered around the source. This 2D projection shows the geometry for

2D fan-beam CT. In 3D multidetector row CT, the geometry is the same, except

that the detector is extruded (but not curved) up and down from this plane in the

z direction. With such 2D detectors, we can reconstruct a 3D image of the object.

Here, σ is the angular position of the X-ray source, where the axes are chosen such

that σ = 0 is at the negative x-axis and in increasing σ, the X-ray source travels

5



toward the negative y-axis.1

+x

+y

source

~xj

+s

s = 0

Dso
σ

s(~xj, σ)

Dsd

Figure 2.1: 2D fan-beam CT geometry.

Figure 2.2 (adapted from [18]) shows a view of 3DCT geometry where the detector

is flat. In third-generation CT geometries, the detector is curved along the direction

labeled s.

Source

Dso Dod

z

y

s

t

x

Figure 2.2: 3D cone-beam CT geometry with a flat detector.

Other 3D geometries should be described either because they have been the focus

of prior work or are considered specifically in this work: In 3D step-and-shoot CT,

the source and detector make a rotation around the object in the xy plane, move in

1This particular choice of location for σ = 0 is arbitrary, although conventionally the coordinate
system is chosen to that the X-ray source begins at the +y axis and moves toward the −x axis.
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the z direction, and repeat this process with multiple axial-CT-like shots translated

in the z direction.2 The resulting data can be used to reconstruct a 3D volume with

a longer z-axis than in just axial CT. In 3D helical CT, the source and detector

consistently rotate while also translating in the z-axis. Like step-and-shoot CT, this

can reconstruct a larger volume. 3D axial CT is a special case of both step-and-shoot

CT (with one step) and helical CT (with no z-axis source translation), in which the

source rotates around the object with no translation.

2.2 Background on filter backprojection

Define the ray transform R of a function f(x) : Rn → R as integrals over all lines

in Rn, which are represented as the pair ~θ ∈ Sn−1, a direction on the unit sphere in

Rn, and ~r ∈ ~θ⊥, a point on the subspace perpendicular to ~θ:

(Rf)(~r, ~θ) ,
∫
f(~r + t~θ) dt. (2.1)

The domain of Rf is denoted Tn, where Tn = {(~r, ~θ) : ~θ ∈ Sn−1, ~r ∈ ~θ⊥}. We will

focus primarily on the case of 3D CT, where n = 3. When n = 2, the ray transform

is identical to the Radon transform, which is defined as the integral of f through all

(n− 1)-dimensional hyperplanes.

The Fourier transform of a ray transform g, Fg, is defined across ~r:

(Fg)(~u, ~θ) ,
∫
~θ⊥

exp(−j2π~rT~u)g(~r, ~θ) d~r, ~u ∈ ~θ⊥ (2.2)

The adjoint R∗ of the ray transform, or the backprojection operator is given by:

(R∗g)(~x) =

∫
Sn−1

g(P~θ~x,
~θ) d~θ, (2.3)

where P~θ = In − ~θ~θT is an n× n matrix that projects ~x onto ~θ⊥.

From [41] (pg. 18), we have the following theorem:

(FRf)(~u, ~θ) = (Ff)(~u), (2.4)

2In the CT geometries described here that involve a z-direction translation, in practice often the
patient is moved and not the source and detector gantry. We will consider a coordinate system,
however, in which the origin is fixed relative to the patient. In these coordinates, regardless of
whether the patient or the gantry is moving in physical space, the source and detector are translating.
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that is, the Fourier transform of the ray transform of f is proportional to the Fourier

transform of f . Note that the Fourier operators F are different on each side of (2.4);

the former is in the space of ~θ⊥, as in (2.2) and the latter in Rn.

The Riesz potential Iα is defined in Rn as a multiplication in frequency space:

(FIαf)(~ν) , ||~ν||−α(Ff)(~ν), (2.5)

and in projection space Tn as

(FIαg)(~ν, ~θ) , ||~ν||−α(Fg)(~ν, ~θ). (2.6)

With these definitions, we have the following theorem [41] (pg. 18): If g = Rf ,

f =
1

|Sn−1|
I−αR∗Iα−1g. (2.7)

Note that the first Riesz potential is in the domain of Rn and the second in Tn.

In two dimensions, choosing α = 0 or α = 1 gives two different methods for exact

reconstruction of an image f from its projections g:

• If α = 0, (2.7) specifies the filtered backprojection (FBP) algorithm for 2DCT

reconstruction, which first filters each projection g(·, ~θ) with a ramp filter with

frequency response ||~ω||, and then backprojects (multiplies with R∗).

• If α = 1, (2.7) describes the backproject-filter (BPF) method, which first back-

projects and then filters in the spatial domain with a filter that has a frequency

response of ||ω||, a cone filter.

In practice, implementation concerns with the latter algorithm (BPF) are larger

than those for the former (FBP), and so FBP is used more often in practice. The cone

filter used in BPF amplifies high-frequency noise; this can be fixed by multiplying the

filter in the frequency domain with a window that rolls off higher frequencies. In the

noise-free case, the resulting image would be the original image convolved with the

impulse response of the windowing function. The backprojection R∗g has an infinite

support, so for practical computation of BPF, R∗g must be stored for a very large

area, increasing the computational cost.

The 1D ramp filter used in FBP also amplifies high-frequency noise, and so this is

also apodized like the 2D cone filter. This filter also has a wide support in the spatial

domain but because the signal being filtered has a finite support in the case of the
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1D projection-domain filter, it is more computationally tractable than the 2D cone

filtering of the infinitely supported backprojection.

The problem of 3D reconstruction is much more difficult than in 2D, first because

not all of g is available, and secondly because the Riesz potentials are complicated.

There exists a formula in [45] for exact recovery in 3D of f from a subset of Rf , but

this subset itself as also not always available. The Feldkamp cone-beam algorithm

(FDK) [16] is widely used for approximate 3DCT image reconstruction when the

X-ray source has a circular path.

2.3 3D CT geometry

The Tn coordinates used in the previous section are useful for theoretical analysis

of CT reconstruction, but for our purposes we prefer coordinates that are not specified

in terms of a direction and offset, but rather of a source position σ and detector

position ~s that index the subset of Tn that is observable by an actual CT system.

It is assumed for these coordinates that a source trajectory is already defined as a

function ~ps : Σ→ Rn, that depends on a specific CT geometry, that maps a position σ

along the trajectory Σ = [σmin, σmax] to the spatial coordinates of the X-ray source at

that position. We make an approximation that the source is a point; in practice this is

not true, but it is close to true and greatly simplifies notation. With a source position

σ, a detector position ~s ∈ Rn−1 defines a spatial detector coordinate in ~pd(~s, σ) ∈ Rn

on which a particular X-ray lands. From ~ps and ~pd, the coordinates (~r, ~θ) ∈ Tn

corresponding to (~s, σ) can be found. We denote the space of (~s, σ) ∈ Rn−1×Σ as D.

We define the projection of a function f to be:

(Pf)(~s, σ) , (Rf)(~r(~s, σ), ~θ(~s, σ)).

Since the functions that map (~s, σ) to ~r and ~θ are dependent on geometry, the pro-

jection operator P now depends on the geometry as well. Whereas a change to the

source trajectory or detector shape does not change Rf , it will change Pf . The pro-

jection Pf does not carry any additional information about f than the ray transform;

it is simply a coordinate transformation of a subset of Rf . Under certain conditions

it does contain enough information to analytically invert P . However, within the

statistical reconstruction framework we use, we are only concerned with using the

forward model in reconstruction. We will not attempt to find or use P∗ the way that

(2.7) requires R∗.

9



2.3.1 System discretization

We denote the X-ray attenuation as a function of spatial position ~x and photon en-

ergy E as µ(~x; E). Many system models, though, assume mono-energetic attenuation

for the purposes of simplification, and so we will drop the E and represent the mono-

energetic attenuation as simply µ(~x). We approximate µ as a linear combination of

Nvox spatial functions Ri(~x), j ∈ {1, 2, . . . , Nvox}:

µ(~x) =
Nvox∑
j=1

xjRj(~x). (2.8)

The factors xj are collected as a finite-dimensional vector x ∈ RNvox that describes

the continuous attenuation function µ(~x). In this work, we will primarily consider

regions Rj such that

Rj(~x) = Rbasis(V
−1(~x− ~xj)), (2.9)

i.e., the regions are the same shape, given by a basis region Rbasis, which is then scaled

by the voxel-spacing3 matrix V and positioned at ~xj. Furthermore, we assume that

~xj = V~nj + ~xoffset, (2.10)

where ~nj ∈ Zn is the position of region j specified on an integer grid, so that the

positions of the regions are fixed to a lattice specified by the lattice spacing V, and

the common offset ~xoffset. The most common choice for the voxel-spacing matrix in

2DCT is square pixels on a square lattice, given by V = ∆I2 . In 3DCT geometries

such as axial CT or helical CT where the source rotates around the z axis, the most

common choice is a rectangular grid with voxels that are the same size in the x

and y directions, but optionally differently sized in the z direction. In this case,

V = diag(∆x,∆x,∆z).

2.3.2 Physical X-ray model

For monoenergetic CT, we represent the incident X-ray photon intensity as a

function I(~s, σ), such that with no attenuating object present, the number of photons

that land in a detector region D due to the source radiation is a Poisson random

3This name and notation suggests 3-dimensional CT, but this is in fact general to n-dimensional
CT where V ∈ Rn×n.
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variable with mean:

Ī(D) =

∫
D

I(~s, σ) d~s dσ.

According to the Beer-Lambert law[2], an object with attenuation µ(~x) as a function

of space ~x attenuates the beam in the direction represented by (~s, σ) by a factor of

exp(−(Pµ)(~s, σ)), such that with the object µ present, the number of photons landing

in the detector region D is Poisson with a mean:

Ī(D;µ) =

∫
D

I(~s, σ) exp(−(Pµ)(~s, σ)) d~s dσ. (2.11)

An observation i is represented by a detector support function Di(~s, σ) such that

we approximate the number of photons observed in observation i is Poisson with a

mean:

Īi =

∫
D

I(~s, σ)Di(~s, σ) exp(−(Pµ)(~s, σ)) d~s dσ.

Note that if Di is always equal to 0 or 1 for all (~s, σ), then this is equivalent to

(2.11), with D = Di , {(~s, σ) : Di(~s, σ) = 1}. When Di is between 0 and 1,

the representation of Īi as a Poisson random variable requires Di representing the

probability that a given photon is detected at that location. The mean ratio of

detected photons at observation i to the expected number of photons with no object

present is given by

Īi
Ī(Di)

=

∫
D I(~s, σ)Di(~s, σ) exp(−(Pµ)(~s, σ)) d~s dσ∫

D I(~s, σ)Di(~s, σ) d~s dσ
. (2.12)

It is commonly assumed that Di has a small enough support around a point (~si, σi)

such that (Pµ)(~s, σ)Di(~s, σ) ≈ (Pµ)(~si, σi)Di(~s, σ). That is, that (Pµ) is slowly

varying enough that it is approximately constant within the small support of Di.

This is a common approximation in CT, and the resulting “exponential edge-gradient

effect” on reconstruction has been well-studied [28, 66]. With this approximation,

(2.12) simply becomes
Īi

Ī(Di)
= exp(−(Pµ)(~si, σi)), (2.13)

and (Pµ)(~si, σi), the projection of µ evaluated at one point on the detector and one

11



detector position, becomes:

(Pµ)(~si, σi) = (Rµ)(~r(~si, σi)︸ ︷︷ ︸
,~ri

, ~θ(~si, σi)︸ ︷︷ ︸
,~θi

)

=

∫
R

µ(~ri + τ~θi) dτ = εj +

∫
R

∑
j

xjRj(~ri + τ~θi) dτ

=
∑
j

xj

∫
R

Rj(~ri + τ~θi) dτ

= [Ax]i. (2.14)

The matrix A is a system matrix, with elements defined as

[A]ij =

∫
R

Rj(~ri + τ~θi) dτ = (PRj)(~si, σi). (2.15)

Figure 2.3 shows an example of one of the elements of this system matrix. For the

marked source and detector location pair σi, ~si, and the region Rj (represented as a

box), the element [A]ij is the length of the line segment shown in red.

+x

+y

source

Rj

+s
s = 0

σi

~si

[A]ij

Figure 2.3: Schematic of a system matrix element for 2DCT.

In practice, the exponential edge-gradient effect is often ignored4 for the sake of

the convenience of arriving at the linear expression of (2.14). We define the vector

4e.g., in [55, 60] for CT, analogously [57] for PET
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ȳ , Ax to be the projections of µ, ignoring the exponential edge-gradient effect,

evaluated at these observation points. This notation is chosen since y often represents

a measurement of Ax, and ȳ is then the noiseless, and ideally a mean, measurement.

2.4 Model-based image reconstruction

In general, model-based image reconstruction begins with a probabalistic model

for observations5 Y given data x, such that the pdf of the distribution of Y is

fY|x(Y|x). We could attempt to find the reconstruction x̂ from observations Y using

a maximum likelihood estimator:

x̂(Y) = arg max
x

fY|x(Y|x),

or equivalently, by minimizing the negative log-likelihood function (or data-fit term)

L(x; Y) = − ln fY|x(Y|x):

x̂(Y) = arg min
x
L(Y; x). (2.16)

The reconstruction of (2.16) is usually an underdetermined system, so a regularizer

R(x) is added to capture prior information about the data x and better condition the

problem. Solving the regularized problem

x̂(Y) = arg min
x
L(Y; x) + αR(x) (2.17)

corresponds to the maximum a posteriori estimate of x given a prior on x that is

proportional to fx(x) ∝ exp(−αR(x)).

2.4.1 Data negative log-likelihood

We will assume that the data-fit term can be represented generally as

L(Y; x) =

Nd∑
i=1

Li(Yi; [Ax]i) =

Nd∑
i=1

Li(Yi; ȳi(x)). (2.18)

This formulation implies that the observations Y are independent given an object x,

and that the likelihood is a function of the image only via the projection ȳi. This

formulation captures both of the most common statistical models for the observation

5We use Y here to represent generalized observation of any form to distinguish them from ob-
servations meant to be a linear estimate of the image vector x.
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given the data: the model of observed photons as a Poisson random variable, and the

model of the logarithm of observed photons as a Gaussian random variable.

It is important to note that any mismatch between L in (2.18) and a hypothetical

“true” likelihood L̆ that perfectly matches the true physics of a CT system does

not affect our methods. Even if L is a poor approximation of L̆, and the resulting

reconstruction x̂ is a poor image, our methods can still predict the variance of x̂, so

long as L is correctly characterized. In particular, our method accurately predicts the

variance even in the usual case where there is model mismatch between the system

matrix A and the actual scanner physics. An accurate characterization of the A used

in a particular reconstruction algorithm is much more important to predicting the

variance of that reconstruction than whether A accurately characterizes the physics.

(Of course, the usefulness of the reconstructed image x̂ will depend on the accuracy

of A.)

Poisson Likelihood: A common model used follows from (2.13) if we treat the

observed number of photons at observation i, Ii, to be a Poisson random variable

with a mean of

Īi = Ī(Di) exp(−(Pµ)(~si, σi)) = Ī(Di)e−ȳi .

In this case, the negative log-likelihood term fits the template of (2.18) with

Li(ȳi; Ii) = Īi − Ii ln Īi; (2.19)

note the implicit change of notation from Yi, the generalized observation, to Ii, which

is specifically the observed number of X-ray photons.

It is useful to note here for future derivation that

∂2

∂y2
Li(Ii; y)

∣∣∣∣
y=ȳi

= var(Ii)
∂2

∂y∂Ii
Li(Ii; y)

∣∣∣∣
y=ȳi

=
Ii
Ī2
i

. (2.20)

Gaussian Likelihood: The other common model used considers, for an observed

number of photons Ii at observation i,

yi = − ln(Ii/Ī(Di)). (2.21)

This yi is meant to be a measurement of ȳi (the mean of yi, assuming the mean of

Ii is Īi, is very close to ȳi). If Ii is a Poisson random variable and Īi is large, then it

can be approximated as a Gaussian random variable. For this large Īi, the standard
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deviation of Ii is small compared to its mean, so the transformation of (2.21) can be

approximated well by a first-order Taylor expansion. Using this linear approximation,

yi can also be approximated as a Gaussian random variable. A detailed treatment of

the statistics of yi is given in Appendix A, but for the purposes of reconstruction it

is often simply treated as Gaussian, and so for our methods we do the same.

Under this Gaussian approximation, the log-likelihood term Li is given by:

Li(ȳi; yi) =
1

2

(ȳi − yi)2

var(yi)
. (2.22)

Often, var(yi) is not exactly known, and so we choose a weighting wi for each obser-

vation and use the data-fit term:

Li(ȳi; yi) =
1

2
wi(ȳi − yi)2. (2.23)

The sum of the data-fit terms for each view gives the data-fit term for all of the

observations, given the data:

L(y; x) =
∑
i

1

2
wi([Ax]i − yi)2 =

1

2
||y −Ax||2W, (2.24)

where W is a diagonal weighting matrix where [W]ii = wi. The weighting is often

chosen such that wi ≈ 1/ var(yi), since although var(yi) is not known, it can be

estimated from the observation yi. We leave this generalized, though, as wi is also

sometimes chosen deliberately to not approximate 1/ var(yi) [75]. As with the Poisson

case, it is useful here to note for future derivation that:

∂2

∂y2
Li(yi; y)

∣∣∣∣
y=ȳi

= wi, (2.25)

and
∂2

∂y∂yi
Li(yi; y)

∣∣∣∣
y=ȳi

= w2
i . (2.26)

2.4.2 Regularization

The majority of the regularizers used in practice take the form

R(x) =

NC∑
d=1

rd
∑
k

ψ([Cdx]k), (2.27)
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where ψ is some penalty function, Cd is a sequence of NC matrices, and rd is a weight

for the penalty associated with the dth matrix. The penalty function ψ is usually

chosen to be convex so that the term being minimized in (2.17) is convex. Often Cd is

a matrix that takes the first difference between neighboring samples, pixels, or voxels

along directions enumerated by d. For example, in 2D, it is common to penalize the

difference between a pixel and its neighbors to the left, top-left, top, and top-right6,

which would require four differencing matrices C1, . . . ,C4 representing differencing

along these four directions, respectively. However, we may want to penalize the

difference between a pixel and its left neighbor more strongly than the difference

between the pixel and its top-left neighbor, which we represent by making r1 larger

than r2.

When Cd are first-differencing matrices, (2.27) can be equivalently represented as

R(x) =

NC∑
d=1

∑
~n∈Zn

rdψ(x[~n+ ~md]− x[~n]) 1~n∈I,~n+~md∈I, (2.28)

where ~md represents the lattice offset of the dth difference (e.g., in the 2D example

above with 4 differences, ~m1,2,3,4 = {(1, 0), (1, 1), (0, 1), (−1, 1)}). Solely in (2.28), we

reference elements of the image vector by their location instead of their lexicographic

position in x, such that x[~nj] = xj. We define I ⊂ Zn for the purposes of (2.28) to

be the set of locations ~n such that ~n is represented in the reconstructed image.

We will exclusively consider regularizers of the form (2.27) with convex penalties

ψ that are twice-differentiable around zero and scaled such that ψ̈(0) = 1. In this

case, the Hessian of the regularization term is given by

∇2R(x) =

NC∑
d=1

rdC
T
d Ψ̈d(x)Cd, (2.29)

where Ψ̈d(x) is a diagonal matrix of second derivatives of the penalty function, eval-

uated for an image x:

[Ψ̈d(x)]jk ,

ψ̈([Cdx]k), k = j

0, k 6= j
. (2.30)

6The other four neighbors are omitted, since the difference between the pixel of interest and it’s
neighbor to the right will be taken care of when penalizing the difference between the pixel’s right
neighbor and the pixel’s right neighbor’s left neigbor.
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We define the matrix P as:

P ,
NC∑
d=1

rdC
T
dCd. (2.31)

This matrix has significance as the Hessian (2.29) evaluated where the penalty func-

tion is quadratic, i.e. ψ(x) = x2/2, or where the differences are equal to zero,

i.e. Cdx = 0.

2.4.3 Linear statistical reconstruction

In the case where we have a Gaussian penalty (2.24) and regularization of the

form in (2.27) with a quadratic penalty ψ, the total cost function

L(y; x) + αR(x) =
1

2
||y −Ax||2W +

α

2

∑
d

rd||Cdx||22

is quadratic in x, and the resulting (unconstrained) reconstruction x̂(y) is a linear

function of x given simply by:

x̂(y) = (ATWA + αP)−1ATWy. (2.32)

This linear form, while not as common in practice as non-linear reconstruction, is

useful for its simplicity.

2.5 Variance prediction methods

When we consider a statistical reconstruction method of the form given in (2.17),

with a data-fit term of the form given in (2.18) and a regularization term of the form

given in (2.27), the covariance matrix cov(x̂) of the reconstruction x̂ can be found to

a second-order approximation[17] given by:

cov(x̂) ≈ (ATWA + α∇2R(x̆))−1ATŴA(ATWA + α∇2R(x̆))−1. (2.33)

17



Here, the vector x̆ , x̂(Ȳ) represents the reconstruction via (2.17) of noiseless obser-

vations. The diagonal matrices W and Ŵ are defined as:

[W]ii ,
∂2

∂y2
Li(Yi; y)

∣∣∣∣
y=[Ax̆]i

(2.34)

[Ŵ]ii , var(Yi) ·
∂2

∂y∂Yi
Li(Yi; y)

∣∣∣∣
y=[Ax̆]i

(2.35)

The elements of W and Ŵ are given above for the Poisson likelihood model in (2.20),

and for the Gaussian model in (2.25) and (2.26). In the Gaussian case, W is equivalent

to the weighting matrix W in (2.24).

In computing cov(x̂) or expressions derived from it, W and Ŵ as given in (2.34),

(2.35) are not available exactly, since their evaluation relies on noiseless data. How-

ever, (2.33) is not very sensitive to the particular values of W or Ŵ used [49], and so

we will assume in our methods that at any point these matrices may be an estimate.

We can confirm that for the linear reconstruction of (2.32), (2.33) is actually

an equality. Since (2.32) multiplies the observation y by the reconstructing matrix

(ATWA + αP)−1ATW, the covariance of x̂ is the covariance of y multiplied by this

matrix on both sides:

cov(x̂) = (ATWA + αP)−1AT W cov(y)W︸ ︷︷ ︸
=Ŵ

A(ATWA + αP)−1. (2.36)

2.5.1 Computation

The approximation of (2.33) is a useful starting point for producing a map of the

image variance, but is not computationally tractable. The Hessian matrix ATWA +

α∇2R(x̆) is a square matrix with a dimension of the number of image voxels on each

side, and so it is not reasonable to store for any realistic image size, and even less

reasonable to invert. However, there are many approaches in previous work toward

computing subsets of the image covariance in ways that are computationally possible.

2.5.1.1 Single-voxel inversion

We define ej to be the unit vector consisting of all zeros except for a single one at

element j. Define ẽj to be:

ẽj , (ATWA + α∇2R(x̆))−1ej,
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possibly using some estimate for x̆ if it is unknown. The vector ẽj is intractible to

compute exactly, but we can approximate it by solving the system

(ATWA + α∇2R(x̆))ẽj = ej (2.37)

using some method that does not require the inversion of (ATWA + α∇2R(x̆)). We

can use this to compute one element of (2.36) as:

[cov(x̂)]jk = eT
j cov(x̂)ek

= eT
j (ATWA + α∇2R(x̆))−1ATŴA(ATWA + α∇2R(x̆))−1ek

= ẽT
j ATŴAẽk. (2.38)

We can therefore predict the variance of voxel j by solving (2.37) to find ẽj and com-

puting ẽT
j ATŴAẽj. This is perhaps the most accurate of the methods for computing

one element of cov(x̂), but it requires solving (2.37) for each voxel of interest, which

would take an unreasonable amount of computation to produce a variance map for a

full image.

2.5.1.2 Discrete frequency-domain methods — prior work

Previous work has approximately evaluated (2.33) using frequency-domain ap-

proximations to ATWA and P. The basis of these methods is replacing ATWA with

a spatially shift-invariant approximation, which is then diagonalized by the DFT or

DSFT (discrete space Fourier transform).

Suppose that the voxel indices of the image (in Zn) are contained within a finite

volume of size ~N , with volume | ~N | = N1N2 · · ·Nn, such that [~nj]d ∈ {0, 1, . . . Nd− 1}
for each dimension d = {1, . . . , n}. We define E ∈ R| ~N |×Nvox as an operator that

embeds the image vector x into this volume of size ~N . This operator can be seen as

a tall matrix defined such that

[Ex][~n] =

xj, if ~n = ~nj

0, if ~n 6= ~nj for all j
,

where the elements in R| ~N | are indexed not by orthographic position in a vector, but

by their position ~n ∈ ZN1 × · · · × ZNn . The transpose of this matrix, which selects

specific voxel indices in this volume and puts them back in their vector order, can be

defined by [ETz]j = z[~nj].
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We use this embedding matrix to factor the projection matrix A into A = AfE,

where Af ∈ RNd×| ~N | is a matrix that projects the entire volume of size ~N into Np

observations. If AT
f WAf were circularly shift-invariant in this volume, then we could

represent it as

AT
f WAf = FTĤWF, (2.39)

where F is an n-dimensional DFT (the operator � here represents element-wise divi-

sion):

F~k,~̀ = | ~N |−1/2 exp(−2π~k · ~̀� ~N),

and ĤW would be a diagonal matrix representing the spectrum of AT
f WAf . Here,

we index the elements of the matrix by the corresponding positions ~k in discrete

frequency space and ~̀ in image space. When we add the embedding operator on to

each side of (2.39), it becomes

ATWA = ETAT
f WAfE = ETFTĤWFE. (2.40)

We will use this frequency domain representation to approximate the inverse of

ATWA; since (FTĤWF)−1 = FT(ĤW )−1F,

(ATWA)−1 ≈ ETFT(ĤW )−1FE. (2.41)

Even if AT
f WAf were circularly shift-invariant, (2.41) would be an approximation

and not an exact inverse since it approximates ETE = INvox and EET = I| ~N |. This

former claim is indeed true, but the effect of EET is to zero out any voxels in R|
~N |

that are not represented by an element of the image vector. This effect is not the same

as the identity matrix, but for the usefulness of (2.41), we approximate EET ≈ I| ~N |.

The local impulse response (LIR) of ATWA for the voxel j is defined by

hWj , ATWAej, (2.42)

where ej is again defined as the unit vector with a single 1 at position j. This LIR

can be written exactly as the impulse ej operated on by a frequency-domain filter

ĤW
j :

hWj = ETFTĤW
j FEej, (2.43)

where ĤW
j is a filter local to voxel j. This filter is the DFT of the local impulse re-

sponse centered around voxel j. The matrix FTĤW
j F represents performing the same

circular convolution that transforms the impulse ej into the LIR hWj across the entire
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image. Equations (2.42) and (2.43) together suggest the circulant approximation

ATWA ≈ ETFTĤW
j FE, (2.44)

which, in general, is not a reasonable approximation for the entire matrix ATWA,

but is a reasonable for a voxel k near voxel j:

[ATWA]kj ≈ eT
kETFTĤW

j FEej.

Except near edges in the image, the same circulant approximation methods work

for the regularizer Hessian:

∇2R(x) ≈ ETFTR̂FE. (2.45)

With ATWA and ∇2R(x) approximately diagonalized as in (2.44) and (2.45), the

covariance expression in (2.33) becomes:

cov(x̂) ≈ ETFTSjFE, (2.46)

where

Sj , ĤŴ
j (ĤW

j + αR̂)−2. (2.47)

The diagonal matrix Sj is analogous to a local noise power spectrum (LNPS). Pre-

dicting the variance of one voxel from (2.46) becomes:

var(x̂j) = eT
j cov(x̂)ej = eT

j ETFTSjFEej =
1

| ~N |

∑
~k

Sj[~k]

=
1

| ~N |

∑
~k

ĤŴ
j [~k]

(ĤW
j [~k] + αR̂[~k])2

. (2.48)

In practice, the steps for using this method to approximate variance is to compute

the local impulse response ATWAej using some implementation of the projector A,

find the n-dimensional DFT via the FFT of this impulse response, and sum (2.48).

We will refer to these as “DFT-based” methods. These have been used in [47, 19,

57]. Their use is more computationally tractable than (2.38) for approximating the

variance of one voxel of interest, but it requires the computation of ATWAej for each

voxel of interest, which is still very time-consuming for variance approximation over

many voxels.
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2.5.1.3 Continuous frequency-domain methods — prior work

Further acceleration of variance approximation can be found in [76, 77], which ob-

viate the need for computing ATWAej by using direct theory-based approximations

for the local frequency response of ATWA. These methods work in the continuous-

frequency space of the DSFT instead of the discrete-frequency DFT. Analogous to

(2.48), they integrate the continuous local noise power spectrum as opposed to sum-

ming the discrete local NPS, but by changing the coordinates of the integral, these

methods are able to reduce the dimensionality of the NPS integral. This results

in closed-form expressions for var(x̂j) that are much faster to compute than previous

methods. These methods, though, are limited to specific CT geometries; 2D fan-beam

CT in [76] and 3D step-and-shoot CT in [77]. We will take a similar continuous-

frequency approach to [76, 77] to predict variance, but with approximations to the

local frequency response of ATWA that apply in more geometries than that previous

work.

We can analyze ATWA and P in using the DSFT in nearly the same way as in

the previous section. We define an embedding operator E that embeds the image

vector x into the infinite space Zn:

(Ex)[~n] =

xj, if ~n = ~nj

0, if ~n 6= ~nj for all j
; (2.49)

the adjoint of E , a selection operator, is defined as

(E∗x)j = x[~nj]. (2.50)

We use this embedding operator to factor the projection A into A = AfE , where Af
is an operator that projects not just the voxels in x, but the entirety of Zn. Clearly,

Af is not implementable in any form, but it is a useful fiction. If A∗fWAf were

shift-invariant, but unlike in (2.39), not circularly shift-invariant, it is diagonalized

with an n-dimensional DSFT:

A∗fWAf = F∗fD
{
HW

}
Ff , (2.51)

where D is a “diagonalization” operator:

(D {H}X) (~ν) = H(~ν)X(~ν),
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and the full DSFT of Zn and its adjoint are defined as:

(Ffx)(~ν) =
∑
~n∈Zn

x[~n] exp
(
−2π~νT~n

)
(F∗fX)[~n] =

∫
[− 1

2
, 1
2 ]
n

X(~ν) exp
(
2π~νT~n

)
d~ν,

where ~ν has units of cycles per sample. We mark these as the ‘full’ DSFT since we

will also consider the DSFT with just the voxels in the image selected, which we

represent as F :

(Fx)(~ν) =
∑
k

xk exp
(
−2π~νT~nk

)
[F∗X]k =

∫
[− 1

2
, 1
2 ]
n

X(~ν) exp
(
2π~νT~nk

)
d~ν. (2.52)

For these definitions, the limited DSFT (2.52) is equivalent to an embedding followed

by the full DSFT, that is, F = FfE . By adding the embedding and its adjoint to

(2.51), we find that ATWA can be diagonalized by HW :

ATWA = F∗D
{
HW

}
F .

The local impulse response from (2.42) can be written exactly as the impulse ej

operated on by a frequency-domain filter HW
j (~ν):

hWj = F∗D
{
HW
j

}
Fej, (2.53)

where

HW
j (~ν) = exp

(
2π~νT~nj

)
(FhWj )(~ν). (2.54)

The exponential term “centers” the transform at the jth voxel using the shift property

of the DSFT.

We will refer to HW
j as a local frequency response (LFR). Again, in the region near

voxel j, ATWA is typically approximately spatially shift-invariant, in the sense that

A = AfE for an approximately shift-invariant Af . This leads us to the approximation

[ATWA]kj ≈ eT
kF∗D

{
HW
j

}
Fej, (2.55)
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for voxel k near voxel j, which is suggested by (2.42) and (2.53). Except at the edges

of the reconstructed image, P can again also be represented by its frequency response

R(~ν):

P = F∗D {R}F . (2.56)

The regularizers that are representable in the form of (2.28) have a closed-form ex-

pression for R(~ν), given in [77]:

R(~ν) =

NC∑
d=1

4rd sin2 (π~md · ~ν) . (2.57)

We assume for variance prediction that Ψ̈d(x̆) ≈ I, such that ∇2R(x̆) ≈ P. This

assumption is based on the idea that the majority of neighboring-voxel differences

in the reconstruction x̆ from noise-free projection data will be small, since the reg-

ularizer penalizes large neighboring-voxel differences. We hope that for these small

differences, the second derivative of their penalties will be near 1. The utility of

this assumption to our purposes of fast variance prediction is enormous. First, vari-

ance prediction using ∇2R(x̆) requires foreknowledge of the noiseless reconstruction

x̆. For non-phantom applications, x̆ is clearly unavailable. Second, even using a

noisy reconstruction x̂ requires the time to compute x̂, which is much greater than

the computation time of our fast methods. This would diminish the utility of our

methods in application. Third, our methods require precomputation time to produce

lookup tables for a particular shape of the regularization penalty. We could maintain

the utility of our methods if we could, near an edge, approximate ∇2R(x̆) with the

original Hessian P, but scaled by a factor determined by the proximity of the voxel

to an edge. However, the presence of an edge not only scales the Hessian of the regu-

larizer near the edge, but also changes its shape; if the Hessian were isotropic before,

the edge will deform it. In our methods, the edge both breaks the assumption that

∇2R(x̆) is shift-invariant, and our ability to use pre-computation to accelerate our

algorithm. For our derivations, we will assume that ∇2R(x̆) = P.

With both of these matrices diagonalized, (2.33) simplifies, locally to a voxel j, to

cov(x̂) ≈ F∗D {Sj}F , (2.58)

where

Sj(~ν) ,
HŴ
j (~ν)

(HW
j (~ν) + αR(~ν))2

(2.59)
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is the local noise power spectrum (LNPS) of the reconstruction. Note here the dif-

ference between HW
j and HŴ

j ; HŴ
j comes from the same derivation as (2.42)–(2.55),

but with Ŵ substituted for W. As in the DFT case of the previous section, (2.58)

requires approximating E∗E = INvox and EE∗ = I. The former is true, the latter has

the effect of masking out any voxels in Zn not represented in the image vector.

If ATWA were shift-invariant, so that (2.55) were exact and not a local approxi-

mation, (2.59) would be the global NPS. Extracting the variance of one voxel can be

done by left- and right-multiplying the covariance matrix by unit vectors:

var(x̂j) = eT
j cov(x̂)ej;

plugging in the approximation (2.58) to this expression simplifies it to an integral of

the LNPS:

var(x̂j) ≈
∫

[− 1
2
, 1
2 ]
n

Sj(~ν) d~ν, (2.60)

analogous to (2.48).

Chapter III focuses on approximating the LFRHW
j . Chapter IV then explores how

these approximations are able to simplify (2.60) in a way that significantly reduces

the computation needed.
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CHAPTER III

Frequency Response Approximation

In this chapter, we develop an approximation to the local frequency response

defined in (2.54) of ATWA, the projection, weighting, and back-projection operator

crucial to variance prediction and other frequency-domain methods. In (3.7), we find

a Taylor expansion that approximates an arbitrary CT geometry locally as a parallel-

beam geometry with a flat detector. This Taylor expansion allows us to approximate

the correlation of the projections of two nearby voxels using the Fourier-slice theorem.

In (3.6), we translate the effect of ATWA into this CT geometry, approximating its

elements as the correlation of the projections of a pair of voxels, to which we can apply

this Fourier-slice theorem based approximation to the correlation. These methods

culminate in the expression (3.25), which is a separable approximation of the local

frequency response of ATWA, which has the property that the terms dependent on

the scanned image are not dependent on the frequency magnitude, which will prove

useful for accelerating variance prediction methods.

3.1 The ray and projection transforms

We begin by examining one element of hWj , the LIR of ATWA applied to voxel

j. Writing the matrix multiplication that defines this element as a sum over views i

gives: [
hWj
]
k

=
[
ATWA

]
kj

=
∑
i

[A]ik [W]ii [A]ij . (3.1)

Recall the definition of the ray transform operator R, that transforms a function

f into line integrals through it:

(Rf)(~x, θ̂) ,
∫
R

f(~x+ τ θ̂) dτ, (3.2)
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where ~x is a point on a ray and θ̂ is a unit vector representing a ray direction. Also

recall that the projection operator P is simply a rebinning of R:

(Pf)(~s, σ) , (Rf)(~x(~s, σ), θ̂(~s, σ)); (3.3)

this continuous-domain projection Pf is defined over the (n−1)-dimensional detector

position ~s and 1-dimensional source position σ. The function ~x(~s, σ) maps a source

position and detector position pair to a point on the ray that connects the pair.

The function θ̂(~s, σ) maps these positions to a unit vector that lies along the ray

direction. We will also use ~s(~x, σ) to represent the detector coordinate corresponding

to the ray that passes through the source at position σ and the spatial position ~x.

These functions are defined by the geometry of the CT system under consideration,

and are assumed to be known.

With this definition for P , the elements of A are approximated as discretized

samples of the continuous projection:

[A]ik ≈ (PRk)(~si, σi), (3.4)

that is, the ith observation of a Kronecker impulse at voxel k is approximately the

projection of the kth basis voxel, Rk, sampled at one detector position ~si with the

source at one position σi. The approximation (3.4) for one element of the projection

matrix is mismatched from the A that would be used in the implementation of the re-

construction (2.17) in two ways. First, the approximation assumes that the projection

can be measured at exactly one point, which neglects detector blur. Second, (3.4) is

defined to be an exact projection at this particular location, whereas an implemented

system matrix A (e.g., [35]) will use approximations to the integral through a basis

function.

In the same way that we replace A with a samples of a continuous function,

we define w(~s, σ) to denote a continuous (i.e., interpolated) version of the elements

of the weighting matrix W. The actual method used for interpolation is relatively

unimportant, but we assume that w is a function such that w(~si, σi) = [W]ii. With

these continuous analogs for A and W, we rewrite the sum (3.1) as:

[
hWj
]
k

=
∑
i

(PRj)(~si, σi) (PRk)(~si, σi) w(~si, σi). (3.5)

For typical clinical CT scans (but not for sparse view acquisitions), this sum is usually
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sufficiently finely sampled that we can approximate it with an integral over ~s and σ:

[
hWj
]
k
≈
∫
Σ

∫
Rn−1

(PRj)(~s, σ) (PRk)(~s, σ) u(~s, σ) d~s dσ. (3.6)

Here, Σ represents a continuous approximation to the domain of σ for which we collect

observations; for all the system geometries we have examined this is a single interval

[σmin, σmax], but for applications such as gated CT this may be the union of multiple

intervals. The term u in (3.6) is the product of w with a Jacobian term representing

the “size” of a sample in the sum (3.5). In the usual case where the detector pixels

have a constant area ∆~s and the spacing (in radians) between source positions is

a constant ∆σ, then u(~s, σ) = w(~s, σ)/∆~s∆σ. However, for geometries where the

spacing is nonuniform, u will not simply be a scaling of w. The approximation of (3.6)

also includes expanding the domain of detector positions ~s to Rn−1; to compensate

for this we consider the weighting w(~s, σ), and hence u(~s, σ), to be zero in the regions

where we have no observations.

3.2 Linearization of projection transform

If we fix a spatial position ~xj and source position σ, this also fixes a detector

location ~sj,σ , ~s(~xj, σ) and ray direction θ̂j,σ , θ̂(~sj,σ, σ), such that (Rf)(~xj, θ̂j,σ) =

(Pf)(~sj,σ, σ). The coordinate mappings between P and R are usually regular enough

that a first-order Taylor expansion is quite accurate for small perturbations ~∆x:

(Rf)(~xj + ~∆x, θ̂j,σ) ≈ (Pf)(~sj,σ + Bj,σ
~∆x, σ), (3.7)

where

Bj,σ , ∇~x~s(~x, σ∗)|~x=~xj ,σ∗=σ

is a (n− 1)× n matrix that “linearizes” the system geometry, locally to ~xj and σ, to

a parallel-beam, flat-panel geometry. We can also reverse (3.7) to find a spatial shift

that corresponds to a particular detector position shift:

(Rf)(~xj + B+
j,σ
~∆s, θ̂j,σ) ≈ (Pf)(~sj,σ + Bj,σB

+
j,σ
~∆s, σ)

= (Pf)(~sj,σ + ~∆s, σ), (3.8)

where B+
j,σ is the n× (n− 1) pseudo-inverse of Bj,σ.
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We will also need in the QR factorization of Bj,σ:

Bj,σ = Rj,σQj,σ, (3.9)

where Rj,σ is a (n − 1) × (n − 1) matrix and Qj,σ is a (n − 1) × n matrix with

orthonormal rows; each of these rows is also orthogonal to θ̂j,σ.

3.3 Towards local shift invariance

We define

ckj,σ ,
∫

Rn−1

(PRj)(~s, σ) (PRk)(~s, σ) d~s (3.10)

to be the integral over the detector plane of the product of the continuous projections

of the voxel basis functions Rj and Rk for a specific source position σ, and

ŭkj,σ ,

∫
Rn−1(PRj)(~s, σ) (PRk)(~s, σ)u(~s, σ) d~s∫

Rn−1(PRj)(~s, σ) (PRk)(~s, σ) d~s
, (3.11)

so that the approximation to the LIR in (3.6) becomes

[
hWj
]
k
≈
∫
Σ

ckj,σŭkj,σ dσ. (3.12)

Next we simplify each term in the integrand using approximations that remove most

of their dependence on k.

3.3.1 Simplifying cjk,σ

We make the usual assumption that the basis functions for voxels k and j have

the same shape, and differ only by translation, i.e.,

Rk(~x) = Rj(~x− (~xk − ~xj)).
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Given this spatial relationship, their ray transforms are related by translation:

(RRk)(~x, θ̂) =

∫
Rk(~x+ τ θ̂) dτ

=

∫
Rj(~x+ τ θ̂ − (~xk − ~xj)) dτ

= (RRj)(~x− (~xk − ~xj), θ̂). (3.13)

Using the Taylor expansion in (3.7), the projection footprint of nearby voxels are

approximately related by the following translation:

(PRk)(~s, σ) ≈ (PRj)(~s−Bj,σ(~xk − ~xj), σ); (3.14)

that is, for a fixed σ, the projection of voxel k can be approximated as a shift of the

projection of voxel j, so long as ~xk is sufficiently close to ~xj. Using (3.14), we rewrite

the correlation ckj,σ as the autocorrelation of just the projection of the jth voxel:

ckj,σ ,
∫

Rn−1

(PRj)(~s, σ)(PRk)(~s, σ) d~s

≈
∫

Rn−1

(PRj)(~s, σ)(PRj)(~s−Bj,σ(~xk − ~xj), σ) d~s

= (APRj)(Bj,σ(~xk − ~xj), σ) (3.15)

, c̃kj,σ, (3.16)

where A denotes an autocorrelation operator:

(Af)(~x) ,
∫
f(~t)f(~x+ ~t) d~t.

That is, this correlation between the projections of voxels j and k is approximately a

function of the autocorrelation of the projection of just voxel j, and the dependence

on k is only via its location relative to j.

3.3.2 Simplifying ŭ

For a given source position σ, the expression for ŭ in (3.11) is the integral over the

detector of the product of the continuous projections of Rj and Rk with u, normalized

by the integral of just the projections of Rj and Rk. The projections of each of Rj and

Rk have a small support, and so does their product; we can therefore approximate the
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effect of (3.11) as a sifting that selects one value of u much like a Dirac impulse. We

assume that u varies slowly with respect to ~s, which is often true for typical choices of

W. The peak of PRj is located near ~s(~xj, σ), the detector location that corresponds

to a ray originating at the detector at position σ and passing through the center of

the jth voxel location, ~xj. For any other voxel k, if the integrand of (3.5) is non-zero,

the peak of the projection of k must overlap the projection of j, meaning it is close

enough to the peak of the projection of k that we can make the approximation:

ŭkj,σ ≈ ũj,σ , u(~s(~xj, σ), σ). (3.17)

We compute ũ by looking up the value of w for the detector pixel closest to ~s(~xj, σ).

With the approximations (3.15) and (3.17), the LIR in (3.12) becomes:

[
hWj
]
k
≈
∫
ũj,σ(APRj)(Bj,σ(~xk − ~xj), σ) dσ. (3.18)

This is our final “space domain” approximation to the original LIR expression in

(3.1). Next we move to the frequency domain.

3.3.3 Local frequency response of ATWA

We use the form (3.18) for
[
hWj
]
k

to find the empirical LFR, in (3.20) through

(3.24), using (2.54). In (3.20), we take (2.54) and insert the approximation (3.18)

for hWj . In (3.21), we interchange the sum over voxels k and the integral over source

position σ, and move the ũj,σ term out of the sum, as it does not depend on k. In

(3.22), we approximate the sum over k with an integral. This replacement assumes

that, first, the summand term is slowly varying enough that we can make an integral

approximation, and second, that the summand decays rapidly enough beyond a region

of interest that we can replace it with an integral not just over the image support,

but over Rn. This integral is the continuous Fourier transform of (APRj)(Bj,σV~n)

over ~n in Rn, and so in (3.23), we replace it with its Fourier transform. We must be

careful, though, since we are taking the n-dimensional transform of APRj, an (n−1)-

dimensional function. The Rj,σ that appears here comes from the QR factorization

(3.9). Finally, in (3.24), we use the Dirac impulse in (3.23) to sift out only a finite

number of σ values in the integral such that θ̂T
j,σV

−T~ν = 0. We define this set to be

Bj
(

~ν
||~ν||

)
, as follows:

Bj
(

~ν

||~ν||

)
,
{
σ : θ̂T

j,σV
−T~ν = 0

}
. (3.19)

31



Note that Bj depends on spatial frequency variable ~ν only via its direction, ~ν/||~ν||,
and not its magnitude.

HW
j (~ν) = D

{
exp

(
2π~νT~nj

)}
FhWj

= exp
(
2π~νT~nj

)∑
k

[
hWj
]
k

exp
(
−2π~νT~nk

)
≈
∑
k

(∫
ũj,σ(APRj)(Bj,σ(~xk − ~xj), σ) dσ

)
· exp

(
−2π~νT(~nk − ~nj)

)
(3.20)

=

∫
ũj,σ

(∑
k

(APRj)(Bj,σV(~nk − ~nj)) exp
(
−2π~νT(~nk − ~nj)

))
dσ (3.21)

≈
∫
ũj,σ

(∫
(APRj)(Bj,σV(~n− ~nj)) exp

(
−2π~νT(~n− ~nj)

)
d~n

)
dσ (3.22)

=

∫
ũj,σ

det(V) det(Rj,σ)
(Fn−1APRj)(B

+T
j,σ V−T~ν) δ(θ̂T

j,σV
−T~ν) dσ (3.23)

=
∑

σ∈Bj( ~ν
||~ν||)

ũj,σ
det(V) det(Rj,σ)

(Fn−1APRj)(B
+T
j,σ V−T~ν)

(
∂

∂σ
θ̂T
j,σV

−T~ν

)−1

(3.24)

3.4 Final LFR approximation

We further simplify (3.24) by approximating Fn−1APRj. We use the Fourier

identity for autocorrelation:

(FnAx)(~ν) = |(Fnx)(~ν)|2 ,

and a Taylor-expansion-based approximation for Fn−1Pµ shown in (3.28) through

(3.29). Using the approximation (3.29) in (3.24), we find that (3.24) simplifies to the
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following LFR expression:

HW
j (~ν) ≈

∣∣(FnRj)(V
−T~ν)

∣∣2
det(V)

∑
σ∈Bj( ~ν

||~ν||)

ũj,σ det(Rj,σ)(
∂
∂σ
θ̂T
j,σV

−T~ν
)

=

∣∣(FnRj)(V
−T~ν)

∣∣2
det(V) ||~ν||

∑
σ∈Bj( ~ν

||~ν||)

ũj,σ det(Rj,σ)(
∂
∂σ
θ̂T
j,σV

−T ~ν
||~ν||

)
= J(~ν)EW

j

(
~ν

||~ν||

)
, (3.25)

where we define the terms:

J(~ν) ,

∣∣(FnRj)(V
−T~ν)

∣∣2
det(V)2 ||~ν||

(3.26)

EW
j

(
~ν

||~ν||

)
,

∑
σ∈Bj( ~ν

||~ν||)

ũj,σ det(Rj,σ) det(V)(
∂
∂σ
θ̂T
j,σV

−T ~ν
||~ν||

) . (3.27)

(Fn−1PRj)(~u;σ)

exp(2π~uT~sj,σ)
=

∫
Rn−1

(PRj)(~sj,σ + ~∆s;σ) exp(−2π~uT ~∆s) d ~∆s (3.28)

≈
∫

Rn−1

(RRj)(~xj + B+
j,σ
~∆s, θ̂j,σ) exp

(
−2π~uT ~∆s

)
d ~∆s

=

∫
Rn−1

∫
R

Rj(~xj + B+
j,σ
~∆s+ τ θ̂j,σ) exp

(
−2π~uT ~∆s

)
dτd ~∆s

=

∫
Rn

Rj(~xj + B̃−1
j,σ ~w) exp

(
−2π~uTSn−1 ~w

)
d~w

(
~w ,

[
~∆s

τ

]
, B̃j,σ ,

[
Bj,σ

θ̂j,σ

])
= det(B̃j,σ) exp

(
2π~uTBj,σ~xj

)
(FnRj)(B

T
j,σ~u)∣∣(Fn−1PRj)(~u;σ)

∣∣2 ≈ det(Rj,σ)2
∣∣(FnRj)(B

T
j,σ~u)

∣∣2 . (3.29)(
det(B̃j,σ) = det(Rj,σ)

)
We make one last simplification of J(~ν), by assuming that each Rj is equal to a

basis unit voxel Rbasis (for example, a unit cube) scaled by the voxel spacing V and
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shifted by ~xj, that is, Rj(~x) = Rbasis(V
−1(~x− ~xj)). In this case, J becomes:

J(~ν) =
|(FnRbasis)(~ν)|2

||~ν||
.

It is important to note that in the factorization of (3.25), J is independent of

voxel j, the weighting (via u), or even the specific CT geometry used. The EW
j term

depends on all of these factors, but depends only on the frequency via its direction,

not its magnitude. This factorization is key to computational efficiency. To use (3.27),

one must consider the CT geometry of interest, as shown in Section 4.3.
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CHAPTER IV

Variance Prediction

In this chapter, we apply the frequency-domain approximation (3.25) to the fast

evaluation of the variance prediction integral (2.60). This results in a variance pre-

diction method that is much faster to evaluate than frequency-domain methods that

rely on empirical estimates of the local frequency response of ATWA. Because (3.25)

is factored into (3.26) and (3.27), we accelerate the integral (2.60), which for n-

dimensional CT would be an n-dimensional integral, into the (n − 1)-dimensional

form (4.3).

We explore applications of this general form to some specific CT geometries. For

example, for 2DCT, this general form reduces to the form (4.7), which is equivalent to

the previous work shown in [76]. We also show that for 3DCT geometries with a small

cone-angle, we can make further approximations that reduce variance prediction to

the one-dimensional integral (4.10).

4.1 Methods

Representing ~ν in spherical coordinates, such that % , ||~ν|| is the frequency mag-

nitude and ~Θ , ~ν/||~ν|| is the frequency direction, we change the coordinates of (2.60)

into n-dimensional spherical coordinates:

var(x̂j) ≈
∫
Sn

%max∫
0

HŴ
j (%, ~Θ)

(HW
j (%, ~Θ) + αR(%, ~Θ))2

%n−1d%d~Θ, (4.1)

where Sn represents the surface of a sphere in n-dimensions, or equivalently, the set

of all ~Θ that are unit vectors in Rn. In 2D, we will parameterize ~Θ with the mapping
~Θ(Φ) = (cos Φ, sin Φ)T, which turns the integral over S2 into the 1D integral over Φ
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from 0 to 2π. In 3D, we will parameterize ~Θ with the spherical mapping

~Θ(Φ,Θ) =

 cos Θ cos Φ

cos Θ sin Φ

sin Θ

 ; (4.2)

the corresponding integral
∫
S3 f(~Θ) d~Θ becomes

∫ π/2
−π/2

∫ 2π

0
f(~Θ(Φ,Θ)) cos Θ dΦ dΘ.

We rearrange terms in (4.1) so that:

var(x̂j) ≈ α−1

∫
Sn

EŴ
j (~Θ)

EW
j (~Θ)

G(α−1EW
j (~Θ), ~Θ) d~Θ, (4.3)

where G(γ, ~Θ) is a function defined as

G(γ, ~Θ) ,

%max(~Θ)∫
0

γJ(%, ~Θ)

(γJ(%, ~Θ) +R(%, ~Θ))2
%n−1 d%, (4.4)

and where %max(~Θ) is the maximum extent of % in [−1/2, 1/2]n:

%max(~Θ) =
1

2||~Θ||∞
.

In general, G cannot be computed in a closed form, but it is well-behaved and depends

only on voxel shape (which determines Rbasis(~x) and hence J(~ν)) and regularizer

shape (which determines R(~ν)). We precompute a single table of values of G and use

that table to predict variance maps via (4.3) for multiple voxels, any regularization

parameter α, any weighting, any voxel spacing or scan geometry (so long as the

dimensionality n does not suddenly change).

We will also consider the special case where we approximate the voxel shape to be

a point impulse and the regularizer to be a purely quadratic penalty of ||~ν||2. When

the voxel shape is a point impulse, the data-independent frequency response term

J(%, ~Θ) loses its dependence on ~Θ, and is equal to 1/%. When the frequency response

of the regularizer is also isotropic, such that R(%, ~Θ) = R0%
2, G has a closed form for

n ≥ 2 (see Appendix B) of

G(γ, ~Θ) =
%max(~Θ)n+1

γ(n+ 1)
2F1

(
2,
n+ 1

3
;
n+ 4

3
;−R0%max(~Θ)3

γ

)
. (4.5)
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When n = 2, the arguments to the hypergeometric function 2F1 simplify, and 2F1(2, 1; 2; z) =

1/(1− z), leading to the simple form found for 2D fan-beam CT in [76]. For 3DCT,

however, this no longer admits a “nice” expansion, and so the error inherent in the

approximations of the voxel shape as a point impulse and the regularizer as isotropic

are likely not worth the improvement in computational cost, which is smaller than

the form for 2DCT. Surprisingly, (4.5) suggests that this integral would become easy

to evaluate for 5DCT since 2F1(2, 2; 3; z) has a simple closed form, but this is beyond

the scope of our research for now.

The integral of (4.3) has one fewer dimension than the integral of (2.60) or (4.1),

and so it can be computed in significantly less time.

4.2 Application to 2DCT

In this section, we examine the results of simplifying (4.3) in the case of the

common 2D fan-beam CT geometry where the X-ray source rotates circularly around

the isocenter (which will be, in our coordinate system, at ~xisocenter = (0, 0)T), and the

X-ray detector forms an arc with its center located at the X-ray source.

In this geometry, the source position is given by

~ps(σ) = −Dso

(
cosσ

sinσ

)
,

where Dso is the distance from the isocenter to the X-ray source, and σ is the angular

representation of the position of the source. We will represent the position of a pixel

j in question in rectangular and polar coordinates as

~xj =

(
xj,1

xj,2

)
=

(
rj cosφj

rj sinφj

)
.

The ray from the source at σ to the position ~xj of pixel j is then denoted

~̀
j,σ = ~xj − ~ps(σ).

For a given σ the detector position s(~xj), in the geometry where the center of the

X-ray detector arc is the X-ray source, is a function of voxel location ~xj:

s(~xj;σ) = Dsd atan2(`j,2,σ, `j,1,σ)− σ = Dsd∠

(
xj,1 +Dso cosσ

xj,2 +Dso sinσ

)
− σ.
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The matrix Bj,σ is

Bj,σ = ∇~xs =
Dsd

||~̀j,σ||2

(
−`j,2,σ
`j,1,σ

)T

.

In this 2D case, Bj,σ is simply a row vector that is perpendicular to the ray ~̀j,σ that

points in the direction of increasing detector position, with a length representing a

detector magnification factor for this source and pixel combination. This vector has

the QR decomposition B = Rj,σQj,σ, where, in the 2D case, Rj,σ is the scalar length

of Bj,σ and Qj,σ is a unit row vector in the direction of Bj,σ:

Rj,σ =
Dsd

||~̀j,σ||

Qj,σ =
1

||~̀j,σ||

(
−`j,2,σ
`j,1,σ

)T

.

Denote the ~θj,σ = ~̀
j,σ/||~̀σ|| to be a unit vector in the direction of the ray from the

source at position σ to the pixel j. Let the voxel spacing be equal to V = ∆I2. Writing

the frequency vector ~ν in polar coordinates: ~ν = (ρ cos Φ, ρ sin Φ)T, the argument to

the Dirac impulse that appears in (3.23) is equal to

θ̂T
j,σV

−T ~ν

||~ν||
=

1

∆||~̀j,σ||
~̀T
j,σ

~ν

ρ
=

1

∆||~̀j,σ||
(rj cos(Φ− φj) +Dso cos(Φ− σ)) . (4.6)

The set of σ that set the argument in (4.6) equal to zero, as a function of frequency

direction Φ and pixel j, is

Bj(Φ) = Φ± cos−1

(
− rj
Dso

(Φ− φj)
)
.

At σ ∈ Bj(Φ),∣∣∣∣ ∂∂σ θ̂T
j,σV

−T ~ν

||~ν||

∣∣∣∣ =
1

∆||~̀j,σ||
Dso sin(Φ− σ) =

Dso

√
1− rj cos(Φ− φj)

∆||~̀j,σ||
,
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and so EW
j (Φ) from the general form (3.27) simplifies to:

EW
j (Φ) = ∆2

∑
σ∈Bj(Φ)

ũj,σ
Dsd

||~̀j,σ||

(
Dso

√
1− rj cos(Φ− φj)

∆||~̀j,σ||

)−1

= ∆3Dsd

Dso

∑
σ∈Bj(Φ)

ũj,σ√
1− rj cos(Φ− φj)

.

If we make the approximation of J(~ν) = 1/ρ and R(~ν) = R0ρ
2 that lead to (4.5),

we can make the simplification that

G(γ,Φ) =
1

3

ρmax(Φ)3

γ +R0ρmax(Φ)3
.

If we use this form for G in the variance-prediction integral (4.3), in the case where

Ŵ = W,

var(x̂j) ≈
1

3
α−1

2π∫
0

ρmax(Φ)3

α−1EW
j (Φ) +R0ρmax(Φ)3

dΦ

=

2π∫
0

ρmax(Φ)3/3

∆3Dsd

Dso

(∑
σ∈Bj(Φ)

ũj,σ√
1−rj cos(Φ−φj)

)
+ αR0ρmax(Φ)3

dΦ. (4.7)

Except for choices of normalization and notation, (4.7) is equivalent to the single-

integral variance prediction form in [76]. Additionally, we can take this to a parallel-

beam, flat-detector case by taking Dso → ∞ and Dsd

Dso
→ 1. In this case, Bj(Φ) =

Φ± π/2,
√

1− rj cos(Φ− φj) converges to 1, and so

var(x̂j) ≈
1

3

2π∫
0

ρmax(Φ)3

2∆3ũj,Φ + αR0ρmax(Φ)3
dΦ.

The replacement of the sum over Bj(Φ) relies on the fact that, for 2DCT, ũj,σ =

ũj,σ+π, since these two quantities are both functions of the attenuation over the same

line; one is just the attenuation on the line integrating the other direction. Since

ρmax(Φ) = ρmax(Φ + π/2), we can integrate over Φ′ = Φ + π/2 to get the above form.
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4.3 Application to 3D axial and helical cone-beam CT

In a third-generation GE helical CT system, the spatial source position ~ps as a

function of the source angle σ is given by

~ps(σ) =

 −Dso cosσ

−Dso sinσ

p3σ

 ,

where Dso is the source-isocenter distance, Dsd is the source-detector distance, and

p3 is the helical pitch, in units of length per radian; axial CT is a special case where

p3 = 0. We denote the position of voxel j in rectangular and cylindrical coordinates

as

~xj =

 xj,1

xj,2

xj,3

 =

 rj cosφj

rj sinφj

xj,3

 .

The ray from the source at σ to the position ~xj is denoted ~̀j,σ = ~xj− ~ps(σ). The first

coordinate of the detector position s1(~x;σ) is given by s1(~xj;σ) = Dsd atan2(`2,j,σ, `1,j,σ)−
σ. The second coordinate is given by

s2(~xj;σ) =
Dsd

D2,j,σ

`3,j,σ,

where D2,j,σ = || diag(1, 1, 0)~̀j,σ|| is the length of the projection of ~̀j,σ into the xy-

plane. From these coordinates, we find the matrix Bj,σ for this geometry:

Bj,σ = Dsd

 − `2,j,σ
D2

2,j,σ

`1,j,σ
D2

2,j,σ
0

− `1,j,σ`3,j,σ
D3

2,j,σ
− `2,j,σ`3,j,σ

D3
2,j,σ

1
D2,j,σ

 ,
which has a factorization

Bj,σ = Rj,σQj,σ

Rj,σ =

[
Dsd/D2,j,σ 0

0 Dsd||~̀σ||/D2
2,j,σ

]

QT
j,σ =

 −`2,σ/D2,j,σ −`1,σ`3,σ/||~̀σ||D2,j,σ

`1,σ/D2,j,σ −`2,σ`3,σ/||~̀σ||D2,j,σ

0 D2,j,σ/||~̀σ||



40



For 3-dimensional CT, we use (Φ,Θ) for 3D spherical frequency coordinates, such

that

~ν

||~ν||
= ~Θ =

 cos Θ cos Φ

cos Θ sin Φ

sin Θ

 .

If the voxel spacing is equal to the common choice of V = diag(∆x,∆x,∆z), the

argument to the Dirac impulse in (3.23) is equal to

θ̂T
j,σV

−T~Θ =
1

||~̀j,σ||

(
cos Θ

∆x

(r cos(Φ− φ)+

Dso cos(Φ− σ)) +
sin Θ

∆z

(x3 − p3σ)

)
. (4.8)

For typical clinical 3DCT system geometries, the majority of the noise power in LFR

approximations to Sj(~ν) is located in regions of spatial frequency with relatively

small Θ. Since we are particularly interested in the region where Θ is small, and

since (x3 − p3σ) is often small, we make the following approximation to (4.8):

θ̂T
j,σV

−T~Θ ≈ cos Θ

∆x||~̀j,σ||
(rj cos(Φ− φj) +Dso cos(Φ− σ)),

so that Bj(~Θ) ≈ Φ ± cos−1(−rj(Φ − φj)/Dso). This approximation is useful be-

cause (4.8) has no closed-form solution for Bj(~Θ). It also allows us to approximate

EW
j (Φ,Θ) cos Θ ≈ EW

j (Φ, 0). This facilitates using a 1D integral instead of a 2D

integral for variance prediction. Defining:

Jcyl(~ν) , J(~ν) sec Θ

EW
j,cyl(Φ) , EW (Φ, 0) ≈ EW

j (Φ,Θ) cos Θ,

gives:

J(~ν)EW
j (Φ,Θ) ≈ Jcyl(~ν)EW

j,cyl(Φ). (4.9)

With this geometry, the expression EW
j,cyl(Φ) simplifies to

EW
j,cyl(Φ) ≈ D2

sd∆3
x∆z

Dso

∑
σ∈Bj(Φ)

ũj,σ
||~̀j,σ||2

D3
2

| csc(Φ− σ)|.

This approximation is reasonably accurate until |Θ| approaches π/2 minus the largest

cone angle used in the CT system. For the purposes of variance prediction, the
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inaccuracy of the LFR in large-Θ regions has a negligible effect, since for small cone

angle systems, this inaccurate region is a very small fraction of the entire frequency

space that is integrated in (4.3).

Figure 4.1 shows estimates of local projection-weight-backprojection frequency

responses HW
j and the corresponding approximate noise power spectra Sj. Three

cases are shown: the actual local frequency response Fj
{

[ATWA]·j
}

, the spherically

separable approximation (3.25), and the cylindrically separable approximation (4.9).

Comparing the first row of this figure to the second row, the approximate local fre-

quency response in (3.25) closely matches the overall appearance of the DFT-based

frequency response except for large-Θ regions. These are of less importance to ap-

proximating the noise power spectrum, as can be seen in the figures comparing them.

Furthermore, comparing the third row, the result of (4.9) also matches the DFT LFR

except for large Θ, but again this error has a diminished effect on the NPS.

Using approximation (4.9), we rearrange the variance prediction integral (2.60)

by changing from Cartesian coordinates to cylindrical coordinates (ρ,Φ, ν3), to be

var(x̂j) ≈ α−1

2π∫
0

EŴ
j,cyl(Φ)

EW
j,cyl(Φ)

Gcyl(Φ, α
−1EW

j,cyl(Φ)) dΦ, (4.10)

where we define another object-independent function Gcyl:

Gcyl(Φ, γ) ,

ρmax(Φ)∫
0

1
2∫

− 1
2

γJcyl(~ν)

(γJcyl(~ν) +R(~ν))2
ρdν3dρ. (4.11)

In this case, ρmax = 1/(2 max {| cos Φ|, | sin Φ|}). Again, Gcyl has no closed form but

is a well-behaved function of only two parameters that we precompute and tabulate.

We compute this table only once for a given differencing matrix C and voxel shape;

a given image, weighting, system geometry, or regularization parameter α does not

change the table Gcyl. Using the table, variance prediction via (4.10) simply requires

looking up values of Gcyl and numerically integrating them in 1D. This integration

can be evaluated using a coarse discretization of Φ with reasonably accurate predicted

variance, especially given that the integrand is periodic and integrated over one pe-

riod, a case in which numerical integration converges quickly [68]. While the method

of derivation is changed, this is the form for fast variance prediction given in [52, 51],

which also reduces to the form given in [50] for quadratic regularization and an axial

geometry.
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FT−based LFR (log scale)

 

 
FT−based NPS (linear scale)

(a) (b)

Approximated LFR (log scale)

 

 
Approximated NPS

(c) (d)

Approximated LFR, Theta=0 (log scale)

 

 
Approximated NPS, Theta=0

(e) (f)

Figure 4.1: Planes cut through local frequency responses (left) and corresponding
noise power spectra (right)

In each image, the upper-left portion is the (ν1, ν2) plane where ν3 = 0; top-right is
(ν3, ν2), ν1 = 0, and bottom-left is (ν1, ν3), ν2 = 0.

First row (a,b): from (2.54), the Fourier transform of the directly computed LIR
Middle row (c,d): from (3.25), a spherically separable approximation
Bottom row (e,f): from (4.9), a cylindrically separable approximation

Note: In figures (b,d,f), the bottom section (ν2 = 0) is scaled by a factor of 4 for
visibility.

43



For 3DCT geometries where (4.9) is an inaccurate approximation, such as those

where a voxel under consideration has rays passing through it in directions that cover

much of S3, one must revert to (4.3) for fast variance prediction. Since the angles of

the rays that pass through a voxel, though, have a 1-dimensional function (the source

position) underlying them, we suspect that there is a strategy for generalizing the

simplification of (4.3) to (4.10) into a 1-dimensional integral for any source trajectory.

How this general strategy might work is an area of future work, discussed in section

6.2.6.

4.3.1 Spatially varying regularization

In this section we investigate the effect on reconstruction variance of using a

spatially varying regularizer such as that defined in [21] designed to produce a re-

construction with uniform spatial resolution. For first-order differencing matrices Cd,

(2.27) can be equivalently written as

R(x) =
∑
k

∑
`∈Nk

rk`ψ(x` − xk), (4.12)

where Nk is the set of voxels that neighbor k. The term rk` replaces rd in (2.27), and

rk` = rd when the spatial relationship between voxels k and ` is the one represented

by the differencing direction d.

In [21], each voxel j has an associated factor κj representing the ‘certainty’ of the

voxel that multiplies the effect of α, giving a spatially varying regularizer of the form:

Rsv(x) =
∑
k

∑
`∈Nk

rk`κkκ`ψ(x` − xk), (4.13)

This modulates the blurring effect of the regularizer in otherwise less certain regions

to ensure uniform resolution at the cost of increasing the voxel variance. To adapt our

variance prediction method to this situation, we approximate κk ≈ κj and κ` ≈ κj for

voxels k and ` near j. Usually the κ factors are slowly varying as a function of position,

so this approximation is acceptable. Therefore, near a voxel j, we approximate (4.13)
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as

Rsv(x) =
∑
k

∑
`∈Nk

rk`κ
2
jψ(x` − xk)

≈
∑
k

∑
`∈Nk

rk`κ
2
jψ(x` − xk)

= κ2
jR(x). (4.14)

For the purposes of variance prediction near the voxel j, we define a per-voxel effective

regularization parameter αeff , ακ2
j and evaluate (4.10) with this αeff and the spatially

invariant regularizer R(x) rather than Rsv.

For our results, we use κ factors given, for a statistical weighting matrix W, by:

κj =

∑
i[A]ij[W]ii∑

i[A]ij
(4.15)

which is similar to the formula given in [21]; this form is commonly used since it is

easier to compute.

The effect of using κ2
j in the regularizer is intuitive: assuming that the change in

the argument to F is small when αeff is varied compared to the change in the α−1

multiplying the integral, the approximate variance decreases inversely with increasing

certainty κ2
j .

4.3.2 Object support masking

Outside the support of the object there is significant approximation error because

our method ignores the non-negativity constraint that is often used in solving the

reconstruction problem (2.18). The empirical variance outside the object approaches

zero, and so the relative error of our method explodes. We use a method similar to

[25] to identify regions that are outside the support of the object and predict that the

variance in these regions is zero.

4.4 Results

To evaluate our fast variance prediction approach (4.10), we compared it to an

empirical variance map in two cases. In one case, the empirical variance was given

by reconstructions from multiple realizations of simulations of noisy projection data

of an XCAT phantom. In the other case, we repeatedly scanned a physical phantom
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and produced the empirical variance from the reconstructions of these scans.

4.4.1 Simulation data

For the simulation study, we reconstructed a 512 × 512 × 320 voxel section of

the XCAT phantom [54] with voxel size ∆x × ∆z = 0.9764 × 0.625mm that covers

an anatomical section between the neck and mid-lungs. We simulated a GE third-

generation system geometry with a 888 × 64 quarter-offset detector with detector

element size 1.0239× 1.0964mm; the detector went through three turns with a pitch

of 1, taking 2952 views. Each reconstruction used 80 iterations of an ordered-subset

method [14] using 64 subsets. In the regularization used, C was a matrix that takes

3 first differences for each voxel, one each for the next voxel in each axis. These

differences were penalized by a Huber potential function:

ψ(x) =

x2/2, |x| ≤ δ

δ|x| − δ2/2, |x| > δ,
(4.16)

which satisfies our criteria for cost functions. The value of δ was 10 Hounsfield

units. We looked at two separate cases for regularization, one with the spatially

varying regularization described in section 4.3.1, and one without. The regularization

parameter α was equal to 26 in the non-spatially-varying case, and 214 in the spatially

varying case. The weighting W was normalized so that unattenuated rays had a

weight of 1. Noise was applied to each of the 93 simulated projections by realizing a

Poisson random variable with a mean equal to the expected number of photons with

an photon count incident on the phantom of 105 photons per view.

Figure 4.5 shows sample reconstructions of these simulated sinograms. Figure

4.5(a) is a reconstruction with spatially varying regularization and Figure 4.5(b) is a

reconstruction with uniform, spatially invariant regularization.

Figures 4.2(a) (with spatially varying regularization) and 4.3(a) (uniform regu-

larization) show axial, sagittal, and coronal slices of the 3D map of the empirical

standard deviation from our simulated reconstructions. Since the empirical standard

deviation maps were noisy and the ground truth standard deviation is spatially slowly

varying, we blurred the empirical variance maps with a gaussian kernel with a FWHM

of 3 voxels each in each direction. Figures 4.2(b) and 4.3(b) show the corresponding

slices through the 3D predicted standard deviation map from (4.10). Since standard

deviation varies slowly, we computed it once per 4 × 4 × 4 block and used nearest-

neighbor interpolation to fill in the rest. More sophisticated interpolation could be
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used, but the interpolation error is minimal compared to the intrinsic approximation

error of our method. Figures 4.2(c) and 4.3(c) show the absolute magnitude of the

error of our approximated standard deviation compared to the empirical results. The

gray scale in these figures is transformed to better show the dynamic range of the

error. Figures 4.2(d) and 4.3(d) show the empirical and predicted standard deviation

along a one-dimensional axial profile through the image, behind the center of the

spine in the phantom, along with the standard deviation as computed directly from

(2.60) using (2.54) as the LFR Sections near the end of the axial FOV have been

omitted in all images; the empirical variance becomes extreme due to a suboptimal

OS algorithm implementation that is somewhat unstable in regions where the helical

sampling is poor. The OS algorithm in [33] would reduce this instability and reduce

the empirical variance in the end slices.

The computation time of our method for the entire volume using 4× 4× 4 down-

sampling was 1207 CPU-seconds using one core of an Intel Core i7-860 with 16 GB

of memory. The empirical reconstructions took an average of 1.71 days each using

one core of an Intel X5650 processor also with 16GB of memory1.

4.4.2 Real sinogram data

For our real-world dataset, we scanned a model lung phantom with spherical nod-

ules 10 times with a GE Discovery CT750 HD scanner and reconstructed each of the

10 sinograms separately to produce an empirical variance map of the reconstruction.

The geometry of the system is the same as the simulated geometry used in the pre-

vious section, with the exception of performing an axial scan using a 16-row detector

and 984 views. Since we could not ensure that each scan began at the same starting

angle, using multiple realizations of the same helical scan to produce an empirical

variance was not possible with our physical CT scanner. With the axial scans, we

used a projection matrix A that was correctly aligned to the starting angle of each

scan so that each reconstruction was aligned to the same voxel grid. We used two

different tube currents (40mA, 200mA) for a low-dose and a high-dose scan, and in

all cases the tube voltage was 120 kVp and the scan time was 0.5 seconds.

We reconstructed each of the 10 sinograms using statistical reconstruction meth-

ods. The size of the reconstruction was 512 × 512 × 32 voxels with voxel size

∆x × ∆z = 0.9764 × 0.625mm, as in the simulated phantom reconstructions. Each

reconstruction used 100 iterations of an ordered-subset method [14] using 64 subsets.

1In a clinical setting, a reconstruction would use multiple processor cores, requiring much less
than 1.71 days in real time.
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Figure 4.2: Three slices of standard deviation maps for simulated reconstructions
using spatially varying regularization (Hounsfield units); the red line in
(c) indicates the profile used in (d). In (a), (b), and (c), for representing
a 3D volume, the top-left segment is an axial slice of the volume; the top-
right segment is a sagittal slice; the bottom-left is a coronal slice. This
convention will be used in all following images of a 3D volume. In (d),
the thin black line is empirical standard deviation, the thick black line is
predicted by our methods, and the blue line is the DFT-based prediction.
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Figure 4.3: Three slices of standard deviation maps for simulated reconstructions us-
ing uniform regularization (Hounsfield units); the red line in (c) indicates
the profile used in (d). In (d), the thin black line is empirical standard
deviation, the thick black line is predicted by our methods, and the blue
line is the DFT-based prediction.
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We performed the reconstructions using two different choices of regularization. In the

first case, the regularization used a quadratic penalty and was spatially varying using

the method of Section 4.3.1. In the second case, the penalty function used the Huber

potential (4.16) with a threshold δ of 10 Hounsfield units, as used in [61], and was

not spatially varying. In the quadratic-penalty case, the regularization parameter α

was equal to 2−14; in the Huber-penalty case, α = 228. In both cases, the elements

of the weighting matrix W were chosen to correspond to the CT scanner’s estimate

of the inverse of the variance of each ray given the scanner-specific corrections used

[6]. Given that we have several repeated scans of the same object, we could find the

empirical variance of the observations y from this data. Using this empirical observa-

tion variance for the purposes of evaluating variance prediction would be unrealistic,

since in a clinical setting we do not have this data. When we require elements of

the matrix Ŵ for variance prediction, we estimate the observation variance from the

inverse of the scanner-provided weight. Figure 4.4 shows, for a random subsample of

observations, a plot of the scanner-provided weighting element versus the inverse of

the empirical variance of that observation, along with the linear approximation we

use to map scanner weights into predicted observation variance. Figure 4.6 shows

sample reconstructions from one of these sinograms. Figure 4.6(a) is a reconstruction

with quadratically penalized spatially varying regularization and Figure 4.6(b) is a

reconstruction with Huber-penalized spatially invariant regularization.
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Figure 4.4: Scatterplot of scanner empirical observation inverse variance (black) with
estimate for observation variance from scanner weight (red) used in vari-
ance prediction. A low dose scan is shown in (a); a high dose scan is
shown in (b). Both variance estimations use the same scale factor.

Figures 4.7(a) (with spatially varying, quadratic regularization) and 4.8(a) (uni-

form, Huber-penalized regularization) show axial, sagittal, and coronal slices of the

3D map of the empirical standard deviation from our simulated reconstructions. As
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Figure 4.5: Three slices of reconstructions of simulated phantom data; with spa-
tially varying regularization in (a), uniform regularization in (b). Scale
in Hounsfield units, shifted so that 0HU represents no attenuation.
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Figure 4.6: Three slices of reconstructions of real phantom data; with spatially vary-
ing, quadratic regularization in (a), uniform, Huber-penalized regulariza-
tion in (b). Scale in Hounsfield units, shifted so that 0HU represents no
attenuation. Coronal and sagittal slices were stretched in the trans-axial
direction by a factor of two for visualization.
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in the simulated empirical standard deviation maps, the empirical maps were noisy,

so we blurred the empirical variance maps with a 2D gaussian kernel with a FWHM

of 5 voxels each in each direction. Figures 4.7(b) and 4.8(b) show the corresponding

slices through the 3D predicted standard deviation map from (4.10). We computed

the standard deviation once per 4 × 4 × 1 block and used nearest-neighbor interpo-

lation to fill in the rest. Figures 4.7(c) and 4.8(c) show the absolute magnitude of

the error of our approximated standard deviation compared to the empirical results.

Figures 4.7(d) and 4.8(d) show the empirical and predicted standard deviation along

a one-dimensional coronal profile through the center of the image, along with the

standard deviation as computed directly from (2.60) using (2.54) as the LFR.

4.5 Discussion

The presented methods are able to predict the standard deviation of most voxels

in the simulated reconstructed images within an error of one Hounsfield unit in both

the spatially varying regularization case (about 85% within 1HU) and the uniform

regularization case (about 95% within 1HU) in less time than empirical measurement

by a factor of over 20000. Figure (4.9) shows, for the entire CT volume, the percentage

of the image that had an error within a specified bound in both the spatially varying

and uniform regularization cases. Whether the tradeoff for time at the expense of

accuracy provided by our method is acceptable depends on the application. For

the purposes of regularization design or tube current modulation design, which we

will discuss in Chapter V, these methods will be useful. The methods would not

necessarily be as useful for applying confidence intervals to a reconstruction.

Figure 4.7 shows very good qualitative agreement between empirical and predicted

standard deviation, even away from the plane of X-ray source rotation, until the

furthest end slices of the reconstruction, which have insufficient data coverage and

would not be presented in a clinical reconstruction. Inside the phantom, the region

with the highest error is the center-most section. Curiously, the DFT-based method

has trouble with this region as well, although not as much as our prediction. The

reason for this discrepancy is unknown. Figure 4.8 shows good qualitative agreement

between the empirical and predicted standard deviation, except near edges. Except

near the edges, the standard deviation is nearly constant in both the empirical and

predicted reconstructions. The predicted standard deviation has a slight variation in

the profile that we can see that seems like it follows a ground-truth slight variation

that exists away from edges. The prediction slightly overestimates variance in 4.7
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Figure 4.7: Three slices of standard deviation maps for real reconstructions using
spatially varying, quadratic regularization (Hounsfield units). Coronal
and sagittal slices were stretched in the trans-axial direction by a factor
of two for visualization. In (d), the thin black line is empirical standard
deviation, the thick black line is predicted by our methods, and the blue
line is the DFT-based prediction.
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Figure 4.8: Three slices of standard deviation maps for real reconstructions using spa-
tially uniform, Huber-penalized regularization (Hounsfield units). Coro-
nal and sagittal slices were stretched in the trans-axial direction by a
factor of two for visualization. In (d), the thin black line is empirical
standard deviation, the thick black line is predicted by our methods, and
the blue line is the DFT-based prediction.
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and underestimates 4.8; we are not sure what causes this discrepancy. It is possible

that this is a function of the regularization parameter α (which is much higher in

the Huber case, to compensate for the edge-preserving effect), and that for an α

somewhere between these two cases the bias crosses zero.

The comparisons in Figures 4.2(d), 4.3(d), 4.7(d), and 4.8(d) demonstrate that the

majority of the error incurred by our methods occurs in the assumptions of quadratic-

like regularization and local shift-invariance that ultimately lead to (2.60), rather than

our approximations that transform (2.60) into the more computationally tractable

(4.10). There is almost no difference at all between the fast prediction and DFT-based

prediction in the profile in Figure 4.8(d). This is reasonable considering that most

of the error in the approximation (3.25) is in regions of high frequency magnitude

||~ν||, but the regularization frequency response R(~ν) is still accurate. In the case

displayed by Figure 4.8(d), since the regularization parameter is so large, the noise

power spectrum Sj(~ν) tends toward zero in large-||~ν|| regions of the noise power

spectrum.
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Figure 4.9: Cumulative distribution of error of predicted standard deviation vs. em-
pirical standard deviation for simulated reconstructions.

Since our approximation of the regularization requires the penalty function to be

in a quadratic region, it is not surprising that the main locations of error within the

support of the object are near edges, where the quadratic-regularization assumption

is invalid. This effect of edges on noise properties has also been seen for 2D fan-beam

CT in [34], which postulates that the source of the high variance near edges is the

uncertainty of edge position. It may be the case that accurate variance prediction

near edges relies on a priori knowledge of edge location.
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CHAPTER V

Tube Current Modulation for Statistical

Reconstruction

5.1 Background

Reducing X-ray dose is an ongoing concern in CT. Iterative reconstruction tech-

niques allow for reduced tube current, and hence X-ray dose, by producing higher-

quality images from an equivalent dose to FBP-based reconstructions [61, 67, 10].

Other work has explored schemes for dose reduction via automatic tube current

modulation (ATCM) [30]. Tube current modulation changes the current of an X-ray

tube, and hence dose, in the middle of a scan to optimize noise properties. This tech-

nique is used in commercially-available CT scanners, such as GE’s ‘Smart mA’. This

method uses the attenuation data from two initial radiographs to choose a sinusoid-

like modulation of the tube current around a patient. The modulation is chosen

such that it is constrained to a tube current range and produces a given reconstruc-

tion variance in a water phantom. ATCM methods have been shown to reduce dose

when an image is reconstructed with FBP-like methods [59, 29, 24] as well as for

statistically reconstructed images. In Section 5.1, we describe presently-used ATCM

methods that are specific to FBP reconstructions.

Previous ATCM methods have focused on optimizing tube current under the as-

sumption that the resulting sinogram will be reconstructed using FBP-like algorithms.

In this section, we examine methods of improving ATCM that are specific to statis-

tically reconstructed images. Tube current modulation for statistically reconstructed

CT images is a more difficult problem than for FBP-reconstructed images—for FBP,

modulation of the tube current affects the image quality through the noise variance,

and optimization can be done by simply minimizing this noise. For statistical images,

on the other hand, tube current modulation affects both the variance and resolution
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of the resulting image, and the tradeoff must be considered when optimizing tube

current. Because of the complexities of this tradeoff, we will consider multiple meth-

ods for “optimizing” TCM for different metrics. Each of these optimizations produces

different results, and so it is important to consider what metric is appropriate for the

task at hand.

In Section 5.1.2, we investigate tube current modulation methods for statistical

reconstruction with the simple goal of minimizing image variance, as is done for TCM

methods for FBP-reconstructed images. We demonstrate why, unlike for FBP images,

this goal does not work for statistically reconstructed images. In Section 5.2, we derive

fast prediction methods for the resolution of a reconstruction method and apply this to

tube current modulation methods that jointly penalize variance and reward increased

resolution. In Section 5.3, we examine several potential model observers and derive

fast methods for predicting the performance of these observers. In Section 5.4, we take

the predicted observer performance from Section 5.3 and apply this to tube current

modulation schemes that optimize for predicted observer performance in statistically-

reconstructed images. Tseng [62] has used model observer performance to study the

dose reduction potential for statistically-reconstructed images. Finally, in Section 5.5,

we find ATCM methods for the hypothetical case of statistical reconstruction where

the local impulse response of the reconstruction is fixed by the regularizer.

5.1.1 Optimal tube current modulation for FBP

Gies [22] derives an analytic expression for the dose as a function of source angle

that is optimized by minimizing the noise variance in the center voxel (the center

voxel we will denote xcenter) of the backprojection of a sinogram while keeping the

total X-ray dose constant. They consider tube current modulation where the X-ray

source makes one full rotation around the object, and the tube current on the two

opposite sides of the object are equal. For our methods, we will assume an axial

scan where the X-ray source makes one full rotation, and enumerate the views as

{1, 2 . . . , V }. We will denote the number of incident photons at view v as Nv and the

attenuation of the ray in view v that goes through the center voxel as Av, so that the

expected number of photons on the center of the detector at view v is proportional

to Nv/Av. In [22], the variance of the noise of an FBP-based reconstruction at the

center voxel is estimated to be

σ2
center ∝

V∑
v=1

Av
Nv

. (5.1)
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The solution to the variance minimization problem

N∗ = argminN

V∑
v=1

Av
Nv

, s.t.
V∑
v=1

Nv = N0, (5.2)

is given by an incident photon count that is proportional to the square root of the

attenuation:

N∗v ∝ A1/2
v ,

assuming that there are no other restrictions on N, that is, that tube current can

be chosen freely. Since variance is inversely proportional to dose, the total dose can

then be reduced while maintaining the same noise variance that would result from an

unmodulated tube current.

To our knowledge, the problem of combining iterative reconstruction with ATCM

is largely unexplored. We present an analysis of methods similar to [22] adapted

to iterative reconstruction that uses frequency-domain techniques similar to those of

Section IV to make the problem of ATCM tractable.

5.1.2 Variance-reduction methods

Optimizing tube current modulation to minimize the variance at the center voxel

of an axial CT image, as in [22], does not work for iteratively-reconstructed images.

For an axial 3DCT image with a full source rotation iteratively reconstructed via

the minimization of (2.17), the variance at the center voxel of an image, as given by

(4.10), simplifies to

var(x̂center) ≈ α−1

2π∫
0

Gcyl

(
Φ,
KwΦ

α

)
dΦ, (5.3)

where wΦ is the statistical weighting for the rays passing through the center at angles

Φ± π/2, and K is a constant equal to:

K =
2|V|∆x

∆~s∆σ

D2
sd

D2
so

. (5.4)

Denote the incident photon density in view v as Nv and the attenuation of the ray

that goes through the center voxel of the object Av, so that the expected number

of photons on the center of the detector at view v is proportional to Nv/Av. In the

Gaussian statistical model, the variance of this observation is Av/Nv, and so the ideal
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weighting wv = Nv/Av. With this ideal weighting, we can estimate the variance of

the center voxel as

var(x̂center) ≈ α−1 2π

V

V∑
v=1

Gcyl

(
φv,

KNv

αAv

)
, VP(N) (5.5)

where φv is the source angle of view v. For a fixed object, and hence a fixed Av,

we denote this variance prediction as a function of incident photon intensities Nv as

VP(N). The problem of minimizing dose while staying within a given variance bound

σ2 can then be expressed simply as

N∗ = argminN

∑
i

Ni s.t.VP(N) ≤ σ2. (5.6)

However, there is a problem that exists with (5.6) for statistically-reconstructed

images, but not for FBP-reconstructed images; the solution is N∗v = 0! With no

radiation dose, the regularizer is forced to take over and reconstruct the entire image.

This image will be uninformative, but will indeed be noise-free. Therefore, in the case

of statistically reconstructed images, we must consider methods more advanced than

simply minimizing variance.

5.2 Fast resolution prediction

To resolve this issue, one potential method is introducing a resolution penalty that

should greatly penalize reconstructions with a very low resolution, such as the no-

radiation, no-information image that results from (5.6). In this section, we will explore

potential resolution penalties and their effect on designing a tube current modulation

scheme. Similar to the computational issues with variance prediction, many resolution

metrics of interest involve computation times that would be infeasible in a clinical

setting. Consider a CT system that performs a scout scan to determine approximate

attenuations through the patient, then computes a resulting tube current modulation

profile from the scout scan, then performs the main scan; a long computation time in

the middle step would be impractical. For this reason, we develop frequency-domain

methods for the prediction of resolution metrics that we consider that resemble the

methods we used previously for variance prediction.
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5.2.1 Dispersion-based resolution measurement

5.2.1.1 Methods

The dispersion ∆f of a function f : Rn → R is:

∆f ,
inf~x0

∫
Rn ||~x− ~x0||2 |f(~x)|2∫

Rn |f(~x)|2
.

The Fourier uncertainty principle states that (∆f) · (∆Ff) ≥ cn, for a constant cn

that depends on dimension n and the choice of Fourier transform normalization. For

one potential resolution penalty, we would like to penalize the dispersion of the PSF of

an iterative reconstruction. Finding this PSF is a computationally difficult task, but

we can use frequency-domain information, via the Fourier uncertainty principle, to

indirectly infer resolution information. If ec is the unit vector with a 1 representing the

center voxel, and the center voxel is not near an edge (so that locally, its regularization

is effectively quadratic), its reconstruction will be approximately

êc ≈ (ATWA + αP)−1ATWAec. (5.7)

Using the approximation of ATWA and P as local filters as in (2.55) and (2.56)

allows us to represent (5.7) as a filtering of ec by a filter with frequency response FW
c :

êc ≈ F∗D
{
FW

c

}
Fec

FW
c (~ν) =

HW
c (~ν)

HW
c (~ν) + αR(~ν)

. (5.8)

By approximating the dispersion ∆FW
c , we can find a lower bound on the dispersion

of êc, the local PSF.

If we use the approximate factorization (4.9) of HW
c in (5.8), as with variance pre-

diction, we can rearrange terms to approximate the dispersion of FW
c as the fraction

of two sums over each view:

∆FW
c ≈

∑V
v=1 Gcyl,2,2,2(φv, KNv/αAv)∑V
v=1 Gcyl,0,2,2(φv, KNv/αAv)

, (5.9)

where Gcyl,m,n,d is a generalization of Gcyl:

Gcyl,m,n,d(Φ, γ) =

∫∫
(γJ(~ν))n

(γJ(~ν) +R(~ν))d
(ρ2 + ν2

3)m/2ρ dν3 dρ. (5.10)
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Note that Gcyl,0,1,2 = Gcyl. The inverse of ∆FW
c represents this lower bound on the

dispersion of the PSF; we define it as RP(N), a resolution penalty:

RP(N) ,

∑V
v=1Gcyl,0,2,2(φv, KNv/αAv)∑V
v=1Gcyl,2,2,2(φv, KNv/αAv)

(5.11)

Of course, as both an approximation and a lower bound, this provides no guaran-

tees about the PSF resolution; however, we use it as a starting point to improve the

conditioning of (5.6). The formulation that is the easiest to minimize is

N∗ = argminN β VP(N) + λRP(N) +
∑
v

Nv. (5.12)

That is, we consider optimizing the tube current for each view by minimizing a

cost function consisting of terms corresponding to the predicted variance and inverse

resolution at iso-center, and the total incident radiation dose.

For the purposes of evaluating our method, we also define the anisotropy prediction

AP(N), defined as:

AP(N) , vari
Gcyl,0,2,2(φi, KNi/αAi)∑V
v=1Gcyl,2,2,2(φv, KNv/αAv)

. (5.13)

For an isotropic PSF, AP = 0.

5.2.1.2 Results

To evaluate (5.12), we compared the estimated PSF that results from a variety

of ATCM methods. The PSF was estimated using (5.8), with the local frequency

response HW
c estimated as 3D Fourier transform of ATWAec, where the projection

and back-projection are actually performed, not approximated via (4.9). These PSFs

were simulated using an XCAT phantom and a third-generation GE system geometry.

Figure 5.1 shows the estimated PSF of a reconstruction using a uniform tube current.

Figure 5.2 shows the PSF of a reconstruction using a tube current matched to the

attenuation (Nv ∝ Av), which [22] shows for FBP reconstruction should have an equal

variance to the uniform case but an isotropic PSF.

Figure 5.3 shows, over a sampling of 41 views over a π-radian source arc (each of

the remaining views uses the same tube current and has the same attenuation as the

view opposite it), the attenuation of that view (in black), and the tube current that

results from solving (5.12) (in red). On this scale, the uniform tube current is given by
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100, so that the red line represents a percentage of the original tube current. Figure

5.4 shows the estimated PSF from the proposed ATCM scheme shown in Figure 5.3.

Figure 5.5 shows profiles through the center of the PSF for the uniform (black) and

proposed method (red). Table 5.1 shows the predicted variance penalty, resolution

penalty, and anisotropy for each of these modulation methods.

5.2.1.3 Discussion

From Figures 5.1, 5.2, and Table 5.1, we note that the findings of [22] that the

attenuation-matched modulation should produce an image with the same noise vari-

ance as a uniform modulation but with an isotropic PSF are largely confirmed for

iterative reconstruction. The PSF is visibly isotropic, which is also reflected in its

corresponding anisotropy prediction being smaller by orders of magnitude.

The tube current modulation scheme we have proposed seems to work, but only

based on the metrics we have defined—the noise standard deviation is reduced by

about 1/3, while reducing the resolution penalty and cutting the total tube current

to about 1/4 that of the uniform dosage. However, the resulting PSF would be

inappropriate in an image reconstruction, which calls the method and utility of the

metrics into question. By going so far as to effectively turn the tube off for the

3/4 of the scan with the highest attenuation, our method’s “proposed method” for

dose reduction is a severely limited-angle CT that chooses the most efficient limited

angles, which squeezes all of the PSF dispersion into one axis. This is reflected in the

anisotropy prediction for this PSF being nearly an order of magnitude larger than

the uniform PSF.

5.2.2 CRC prediction

5.2.2.1 Methods

Qi [47] measures resolution in statistical reconstructions of PET (although, as

a measure of resolution, this is also applicable to CT images) using the contrast

recovery coefficient (CRC), which is defined in terms of the local impulse response

of the reconstruction. This reconstruction local impulse response (RLIR), not to be

confused with the local impulse response of ATWA, we define here as:

êj(x) , lim
δ→0

E [x̂(y(x + δej))]− E [x̂(y(x))]

δ
, (5.14)
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Figure 5.1: PSF of uniform tube current reconstruction.
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Figure 5.2: PSF of attenuation-matched tube current reconstruction.
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Figure 5.3: Attenuation (black) and proposed tube current modulation (red) for select
views over a π-radian source arc.

Modulation VP (HU) RP (no units) AP (no units)
Uniform 33.0 14.7 0.0206
Attenuation-Matched 31.8 19.1 4.6 · 10−6

Proposed 21.6 7.9 0.152

Table 5.1: PSF Measures for TCM methods; VP defined in (5.5), RP in (5.11), AP
in (5.13).
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Figure 5.4: PSF of proposed TCM reconstruction.
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Figure 5.5: Profiles through the center of PSF profiles of uniform current (black) and
designed TCM (red). Each marked point is one voxel. The top figure is
a vertical profile through the PSF and the bottom figure is a horizontal
profile.

64



where x is a true image, y is the projection data given an image x, and x̂ represents

the statistical reconstruction of x from the projection data y. This RLIR we can think

of as the derivative of the reconstruction x̂ with respect to a perturbation of one voxel

of the original image. Under the assumptions on the form of the reconstruction we

have already made for the purposes of variance prediction, the RLIR simplifies to

êj(x) ≈ (ATWA + α∇2R(x̂))−1ATWAej. (5.15)

We assume that the regularizer has the form of (2.27) with Hessian matrices given

again by (2.29). If we follow this by the approximation that Ψ̈ ≈ I, as in the case

where we simplified (2.29), the RLIR (5.15) becomes simply

êj ≈ (ATWA + αP)−1ATWAej. (5.16)

Under this approximation, the RLIR is no longer a function of the image being

perturbed, since the RLIR is simply a linear function of the image x. We interpret

(5.16) as stating that the effect of a small one-voxel perturbation to the non-linear

reconstruction x̂ of an image x can be approximated as the “reconstruction” of an

impulse ej under a quadratic approximation of the reconstruction algorithm. The

CRC, then, is the peak of this RLIR, assumed to be at the same location of the

impulse:

crcj , êjj (5.17)

This has been used as a measure of resolution by [47], and [36] shows that the CRC

has a significant rank correlation to the detectability of a lesion in an image.

If we apply the local shift-invariant approximation for ATWA and P:

ATWA ≈ F∗D
{
HW
j (~ν)

}
F

P ≈ F∗D {R(~ν)}F ,

then (5.16) becomes simply a filtering of the impulse, exactly as in (5.8):

êj ≈ F∗D
{
FW
j (~ν)

}
Fej (5.18)

FW
j (~ν) ,

HW
j (~ν)

HW
j (~ν) + αR(~ν)

, (5.19)

and measurement of the CRC from (5.18) becomes an integral of the filter over n-
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dimensional frequency space:

crcj ≈
∫

[− 1
2
, 1
2 ]
n

FW
j (~ν) d~ν. (5.20)

Since our approximations for HW
j and R are strictly real and non-negative, it is clear

from the definition of FW
j that crcj is between 0 and 1. In cases where R(~0) = 0,

which includes the case where C is a first-differencing matrix, FW
j (~0) = 1. Since

this DC term of the RLIR is one, a CRC close to one suggests that most of the

RLIR is concentrated at the center voxel, which is desirable for resolution. A lower

CRC suggests that the RLIR must be spread out further from the center and that

consequently the resolution is poorer.

Conveniently, the approximate factorizations of either (3.25) for generic CT ge-

ometries, or (4.9) for small-angle cone beam geometries, make the evaluation of (5.20)

simple. In the general case, we define a generalization of G in (4.4):

Gm,p,q,n(γ, ~Θ) ,

%max(~Θ)∫
0

(γJ(%, ~Θ))p

(γJ(%, ~Θ) +R(%, ~Θ))q
%m%n−1 d%; (5.21)

the G from (4.4) in this notation in n dimensions is the specific case G0,1,2,n of (5.21).

In terms of this function, expanding FW
j and rearranging terms, (5.20) becomes∫

Sn

G0,1,1,n(EW
j (~Θ)/α, ~Θ) d~Θ. (5.22)

In the 3D axial case, if we factor HW
j using (4.9), (5.22) becomes

crcj ≈
2π∫

0

Gcyl,0,1,1(Φ, EW
j (Φ)/α) dΦ. (5.23)

For the center voxel, (5.23) simplifies to

crcc ≈
2π

V

V∑
v=1

Gcyl,0,1,1(φv, KNv/αAv). (5.24)
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5.2.2.2 Discussion

Preliminary results suggested that the tube current modulation scheme that re-

sults from the minimization of (5.12) using the CRC as the resolution penalty in

place of the dispersion-based resolution penalty of (5.11) is overly anisotropic in a

similar way to the results of the dispersion-based penalty. The CRC is somewhat

similar to the dispersion-based penalty in that the PSF is ‘allowed’ to spread out a

lot in one direction without penalizing the modulation scheme too greatly. For this

reason we did not further consider the CRC-based penalty for the purposes of tube

current modulation. However, the forms (5.22) and (5.23) may be useful for future

work where fast prediction of the CRC is required.

5.3 Prediction of model observer performance

5.3.1 Background

The previous sections in this chapter have all focused on minimizing the variance

of a image to improve its quality, although as we have shown in the no-radiation image

reconstruction case, simply minimizing variance is not necessarily the best predictor

of image quality for the purposes of some tasks, such as detection of a particular

feature. As an alternative to measuring image variance and resolution, we consider the

prediction of the performance of linear image observers for the purposes of analyzing

tube current modulation methods, as wall as for other potential statistical analyses.

We are interested in the fast computation of these performance indices using the local

frequency approximations of Chapter III.

The main type of observer that we will evaluate are algorithms (referred to as

model observers to differentiate from human observers) that distinguish which of two

distributions a random vector x was drawn from, where the observer knows some

information about the distributions. The correlation between the performance of

model observers and human observers in detecting whether a known signal (e.g. a

lesion) is or is not present on top of a known background image (e.g. a patient)

has been well-studied. Model observers that show a high correspondence with the

performance of human observers have been used to study many medical imaging

methods without the need of live human observers, who are reportedly more difficult

to use than purely algorithmic observers. For example, [71, 72] apply model observers

to optimize tube current modulation for FBP-reconstructed images. In [62, 46], the

non-prewhitened image observer (which we will use in Section 5.3.3.3) is used to
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quantify the performance and dose reduction potential of statistical reconstruction.

In [23], the performance of model observers is both correlated with that of human

observers, and used to evaluate scatter-correction strategies for SPECT.

We will consider a few specific model observers. In Section 5.3.2, we describe a

ratio test observer, which is the uniformly most powerful test for determining whether

a feature is present, but is not a reasonable model of a human observer. In Section

5.3.3, we consider linear observers, which use a test statistic consisting of a linear

combination of sinogram elements or reconstructed image voxels to determine the

class of the sinogram or image. The primary observer we will apply to tube current

modulation is the non-prewhitened image observer described in Section 5.3.3.3, which

was shown in [23] to have the highest performance correlation with human observers

in their radiological detection task.

5.3.2 Ratio-test observers

We first consider the simple case of a model observer performing a likelihood-ratio

test to discriminate whether z was drawn from one distribution or another (call these

Υ0 and Υ1). Suppose we compare the likelihood-ratio,

Λ(z) ,
fz(z|Υ1)

fz(z|Υ0)
,

to a fixed value η and conclude that z was drawn from Υ1 if Λ(z) > η, and Υ0 oth-

erwise. Assuming this calculation is possible, it will be the uniformly most powerful

test for distinguishing the two classes [42].

Consider the actual CT problem at hand, however. Consider two images, one a

fixed background image z, and the other the background image plus some feature

f to detect. Once projected, these become probabalistic vectors, either a random

vector of sinogram observations y(z) projected from a featureless image, or a vec-

tor y(z + f) projected from the image containing f . Then the problem of detecting

the feature is distinguishing whether the reconstructed image, ẑ(y), which is now

a random variable, was ultimately produced with or without the feature; call these

distributions Υ1 and Υ0, respectively. Since ẑ cannot extract more information from

y than was already present, the likelihood-ratio statistic on the reconstructed im-

ages, Λ(ẑ) = fẑ(ẑ|Υ1)/fẑ(ẑ|Υ0), cannot do better than the likelihood-ratio statistic

produced directly from the sinogram, Λ(y) = fy(y|Υ1)/fy(y|Υ0).

This observer is not the most reasonable model of a human observer, since real-

world human observers do not look directly at the projection data of a CT scan to
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determine the presence of a relevant feature.

5.3.3 Hotelling and other linear observers

5.3.3.1 Background

In this section, we consider observers that produce scalar statistics that are linear

functions of their input data.

Assume that a noisy vector z is drawn from one of two distributions, one of

which has a mean z̄0 and the other, z̄1, and that the covariance matrices of the two

distributions are given by Σ0 and Σ1. We will denote the average of these covariance

matrices Σz = (Σ0 + Σ1)/2 and the difference in their means as z̄∆ = z̄1 − z̄0.

Given the vector

wHot , Σ−1
z z̄∆,

the Hotelling observer statistic t for observed data z is given by:

tHot , wT
Hotz. (5.25)

If both of the distributions that z can be drawn from are multivariate Gaussian

distributions with known and equal covariance matrices, then the log-likelihood-ratio1

statistic is given by:

ln Λ(z) =
1

2
(z− z̄0)TΣ−1

z (z− z̄0)− 1

2
(z− z̄1)TΣ−1

z (z− z̄1)

= z̄T
∆Σ−1

z z + C,

where C is a constant that can be dropped. Consequently, in this case, the Hotelling

observer is equivalent to a likelihood-ratio test, and so is the uniformly most pow-

erful test for distinguishing which distribution z was drawn from [42]. With equal-

covariance multivariate Gaussian distributions for both classes, the area under the

ROC curve for the Hotelling observer test increases with the observer SNR, given by:

SNR2
PWH = wT

PWHz̄∆ = z̄T
∆Σ−1

z z̄∆.

In the previous case we assume that the observer knows Σz; a linear non-prewhitening

(NPW) observer may take the form of (5.25), where the linear combining vector w

1The logarithm is a monotonic function, so any test that compares ln Λ ≷ t is equivalent to the
likelihood-ratio test Λ ≷ et.
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is simply

wNPW , z̄∆,

and the resulting observer statistic is tNPW = wT
NPWz. In this case,

SNR2
NPW =

(z̄T
∆z̄∆)2

z̄T
∆Σzz̄∆

Suppose that we have a human observer with the task of determining whether a

CT image z belongs to one of two classes; one class contains a notable feature and the

other class does not. All of the assumptions in the above derivation of the Hotelling

observer are unreasonable in the context of a human observer attempting to detect

the presence or absence of feature in a CT image. The human observer does not know

Σz, although the visual detection process may involve the unconscious creation of a

noise model. The covariance matrices of the two classes may not be equal. Depending

on the context of the detection process, the human observer may have limited or no

knowledge of the class means.

Even discounting all of the previous objections, with a fully known noise model

and means, a human observer would be unable to linearly synthesize all of an ob-

served image into one statistic simply by visual observation. To aid in modeling the

performance of a human observer, a common modification to the observer is the ad-

dition of channels, a set of linear combinations of the data that better represent the

capabilities of the observer [73]. For example, for images, the channels may be banks

of band-pass filters, as in [23], which are meant to simulate the frequency-selective

nature of the human visual system[5]. Channelized observers that significantly reduce

the dimensionality of the data also make it believable that an observer can estimate

the covariance matrix of the channelized data.

These combinations can be represented simply by a wide matrix U, such that for

a vector z, the observer makes their decision based on the channelized observation

Uz. Based only on these observations, the ideal prewhitened statistic is given by

tCHO , wT
CHOUz, wCHO , (UΣzU

T)−1Uz̄∆,

where CHO is a common abbreviation for channelized Hotelling observer, and the

SNR is given by:

SNR2
CHO = z̄T

∆UT(UΣzU
T)−1Uz̄∆.
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A non-prewhitened analog to the channelized Hotelling observer may take the form

tCNPW , wT
CNPWUz, wCNPW , Uz̄∆, SNR2

CNPW =
(z̄T

∆UTUz̄∆)2

z̄T
∆UTUΣzUTUz̄∆

.

5.3.3.2 Sinogram observers in CT

Consider the same detection problem in CT given in section 5.3.2, where we wish

to distinguish a featureless background image x from a background image plus feature

(x + f). Given our projection model, we will model the two noisy sinogram distribu-

tions as multivariate Gaussian with means Ax and A(x + f), respectively. We will

assume that they have the same known covariance matrix Σy that is approximately

the inverse of the weighting matrix W used in their reconstructions. Echoing notation

used for variance approximation, we will denote Ŵ , WΣyW. Since the weighting

matrix is usually chosen to be the inverse of some estimate for the sinogram covari-

ance, Ŵ ≈ W. The assumption that the covariance matrices are equal is untrue,

since adding the feature f changes the weighting matrix, but for simplicity we will

assume that the effect on f on Σy is small enough to be ignored.

We can examine the effect of an approximately pre-whitened observer, since we

approximately know the noise covariance. Since the difference in sinogram means

is Af , the projection of the added feature, an approximate pre-whitened Hotelling

observer of a sinogram y is:

tS−PW , wT
S−PWy, wS−PW , WAf .

We will abbreviate this as the S-PW observer, as a pre-whitened sinogram observer.

The ideal Hotelling sinogram observer we will denote S-OPW, since it is a sinogram

that is pre-whitened by an oracle that knows the covariance of the sinogram with and

without the feature present. The S-PW observer has an SNR of

SNR2
S−PW =

(fTATWAf)2

fTATŴAf
.

If the covariance is known exactly, such that Ŵ = W, then SNR2
S−PW = fTATWAf .

Interestingly, like the likelihood-ratio test, this bypasses entirely the issue of image

reconstruction. The only factors influencing the SNR of this observer is the sinogram

covariance, which we could influence using tube current modulation, and the quality

of the covariance approximation, which we assume is negligible.

This formulation is not extremely useful for predicting an optimal tube current
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modulation scheme. Suppose we wish to identify a feature represented by an impulse

at voxel j (f = ej) and that the sinogram covariance is known. Then the SNR is

given by:

SNR2
S−PW = [ATWA]jj =

∑
k

[W]kk[A]2kj.

We can then approximate the ideal tube-current modulation by maximizing this SNR

subject to a limit on total incident radiation. Let Nk represent the number of incident

photons in observation k; then [W]kk is proportional to Nke
−[Ax]k . If we can control

the incident radiation in each ray freely, then the solution to

arg max
N

∑
k

Nke
−[Ax]k [A]2kj s.t. Nk ≥ 0,

∑
k

Nk = N0

is to set Nk = N0 if k maximizes e−[Ax]k [A]2kj and Nk = 0 otherwise. How do we

interpret this? The k that maximizes e−[Ax]k [A]2kj is the ray that does the best job of

both passing through voxel j and not getting attenuated. If we know exactly what

the background image looks like and which voxel contains some feature, the best way

to detect the feature’s presence is to allocate all of our alloted photons into what we

know is the clearest view of that one voxel. Even if we restrict the possible range

of tube-current modulation to be one number of photons per angle, and not per ray,

this formulation suggests putting all the radiation into one angle. Clearly, this is an

unrealistic formulation for general CT tube-current modulation.

5.3.3.3 Image observers in CT

We will now look exclusively at linear observers of an image reconstruction x̂,

since this is the actual vector undergoing observation in practice. We will consider

the quadratically-penalized least squares reconstruction

x̂QPWLS(y) = (ATWA + αP)−1ATWy.

We can think of this as having channels UQPWLS = (ATWA + αP)−1ATW. If

we apply a Hotelling observer to x̂, the effect is essentially the same as using a pre-

whitening observer on the sinogram data, as above, since the ideal linear observer will

just ‘undo’ the multiplication by UQPWLS. The only difference from the pre-whitened

sinogram observer is that this pre-whitened image observer does not have access to

data contained in the nullspace of UQPWLS. In frequency-domain approximations of
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the reconstruction, there are commonly no zeros of the LFR of the reconstruction

filter, and so the prewhitened observers of the image and of the sinogram will be

identical. We will abbreviate the prewhitened observer of the image as I-PW.

One non-prewhitening observer of x̂QPWLS, which we abbreviate I-NPW, is given

by the inner product of the reconstruction and f̂ = (ATWA + αP)−1ATWAf , the

difference in the means of the QPWLS reconstructions of the image with and without

the feature present. The observer statistic is given by

tI−NPW(x̂) = f̂Tx̂.

The I-NPW observer has an SNR given by:

SNR2
I−NPW =

(fTATWA(ATWA + αP)−2ATWAf)2

fTATWA(ATWA + αP)−2ATŴA(ATWA + αP)−2ATWAf

=
f̂Tf̂

f̂TΣx̂f̂
,

where Σx̂ is the reconstructed image covariance. Fast computation of this expression

is possible if we apply frequency-domain approximations for ATWA and P. If the

feature f has a DSFT of F (~ν), then this observer’s SNR is approximately:

SNR2
I−NPW ≈

(∫ |F (~ν)|2HW
j (~ν)2

(HW
j (~ν)+αR(~ν))2

d~ν
)2

∫ |F (~ν)|2HW
j (~ν)2HŴ

j (~ν)

(HW
j (~ν)+αR(~ν))4

d~ν
. (5.26)

Fast computation of (5.26) is complicated by the presence of the arbitrary feature

DSFT F (~ν). However, we can simplify the evaluation of (5.26) for some classes of

features. For example, in Appendix C we derive an approximation for integrals of the

general form ∫
[− 1

2
, 1
2 ]
n

|F (~ν)|2
HW
j (~ν)pHŴ

j (~ν)p̂

(HW
j (~ν) + αR(~ν))q

d~ν (5.27)

for Gaussian bump features, where |F (~ν)| ∝ exp(−τ ||~ν||22). For these features, (5.26)

can be computed by numerically integrating

SNR2
I−NPW ≈

(∫
Sn Ggauss,2,2,n(2τ, R0α/E

W
j (~Θ)) d~Θ

)2

∫
Sn

EŴj (~Θ)

EWj (~Θ)2
Ggauss,3,4,n(2τ, R0α/EW

j (~Θ)) d~Θ
, (5.28)
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where Ggauss,p,q,n is a function that we can pre-compute tables of. When the bump is

specified in terms of its FWHM, τ in (5.28) is equal to (π2/4 ln 2) · FWHM2. Figure

5.6 shows values of the table of Ggauss,p,q,2(9π2/2 ln 2, γ), corresponding to a Gaussian

bump function with a FWHM of 3 pixels, for the six choices of p and q that are

relevant to our methods. The most notable feature common to each of these tables

is that each of them contains a region, for γ < 1, where the function is essentially a

constant that does not depend on γ. This is also the case when q = 0. Both of these

facts are understandable from the definition of the function in (C.3). Also notable is

that in the cases where p, q = 1, 1 and 2, 2, the function is nearly proportional to γ−2/3

for γ ≥ 105; in the cases of p, q = 1, 2 and 3, 4, the function is nearly proportional to

γ−1 for γ ≥ 105.
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Figure 5.6: Values of Ggauss,p,q,2(τ, γ) for a 3-pixel FWHM Gaussian bump.

We also analyze a non-prewhitened observer for which the observer statistic is

tUR−NPW(x̂) = fTx̂.

We abbreviate this observer UR-NPW, for unknown-reconstruction, non-prewhitened.

Some computational observers may know the original feature f , but may be unable to

know or compute the reconstruction f̂ of f . In this case, they may use the UR-NPW

observer. The SNR of this observer is:

SNR2
UR−NPW =

(fTf̂)2

fTΣx̂f
.
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The numerator of the UR-NPW SNR has the approximation

fTf̂ ≈
∫

[− 1
2
, 1
2 ]
n

|F (~ν)|2
HW
j (~ν)

HW
j (~ν) + αR(~ν)

d~ν. (5.29)

The denominator relies on the unknown image covariance, but this has a frequency

domain approximation

fTΣx̂f ≈
∫

[− 1
2
, 1
2 ]
n

|F (~ν)|2
HŴ
j (~ν)

(HW
j (~ν) + αR(~ν))2

d~ν. (5.30)

For a Gaussian F (~ν), we use the table-based approximation from Appendix C to

approximate the denominator (5.31) as

fTΣx̂f ≈
∫
Sn

EŴ
j (~Θ)

EW
j (~Θ)2

Ggauss,1,2,n(2τ, αR0/E
W
j (~Θ)) d~Θ. (5.31)

5.3.3.4 Channelized image observers in CT

Many models of human observers use a channelized Hotelling observer with a

very small number of channels Nc, potentially as few as five. In this case, we will

enumerate the channels, represented as Nc column vectors u1, . . . ,uNc , or in the

frequency domain as filters U1(~ν), . . . , UNc(~ν). When represented in this way, the

channel matrix U is given by:

U =


uT

1
...

uT
Nc

 ,
and the outputs of the channeled observations of x, which has a frequency-domain

representation X(~ν), are equivalently given by either

c , Ux =


uT

1 x
...

uT
Nc

x

 =


∫
U1(~ν)X(~ν) d~ν

...∫
UNc(~ν)X(~ν) d~ν

 ,
where c denotes the channelized observations. The covariance matrix of these chan-

nelized observations, which we will denote Σc, is equal to Σc = UΣxU
T. Given

that this matrix is small, only Nc ×Nc, it is computationally feasible to examine all
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of its elements separately using frequency-domain approximations. If the covariance

Σx can be represented by a noise power spectrum S(~ν), then one element of the

covariance matrix is given by:

[Σc]ij = uT
i Σxuj =

∫
S(~ν)Ui(~ν)Uj(~ν) d~ν. (5.32)

5.3.3.5 Prewhitened channelized image observers

In this section, we describe fast frequency-domain approximations to the perfor-

mance of channelized image observers. While we will not relate these to the problem

of tube current modulation, we will present them for potential future applications of

fast performance prediction.

The idea of a human observer intuitively prewhitening a signal when observing

it becomes more reasonable when we model the observer only needing to estimate

and invert the much smaller Nc × Nc matrix of channel covariances. In our case of

quadratically-penalized CT reconstruction, we will denote the pre-whitened channel-

ized Hotelling observer as C-PW. The C-PW SNR, again for a feature f , is given

by:

SNR2
C−PW = fTATWA(ATWA + αP)−1UTΣ−1

ĉ U(ATWA + αP)−1ATWAf

(5.33)

= f̂TUTΣ−1
ĉ Uf̂ (5.34)

Σĉ = UΣx̂U
T, (5.35)

where ĉ represents the channelized observations of the reconstruction; ĉ = Ux̂. While

this is unwieldy, we can simplify with frequency-domain approximations. One ele-

ment of Σĉ can be found via (5.32), or equivalently from (5.35), with our usual

approximation for the local noise power spectrum:

[Σĉ]ij ≈
∫

HŴ (~ν)

(HW (~ν) + αR(~ν))2
Ui(~ν)Uj(~ν) d~ν. (5.36)

If we compute Σĉ and its inverse, the expression for SNR we can simplify somewhat
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with the summation and frequency-domain approximation:

SNR2
C−PW =

∑
i,j

[
Σ−1

ĉ

]
ij

(
f̂Tui

)(
f̂Tuj

)
(5.37)

≈
∑
i,j

[
Σ−1

ĉ

]
ij

(∫
F (~ν)

HW (~ν)

HW (~ν) + αR(~ν)
Ui(~ν) d~ν

)
·
(∫

F (~ν)
HW (~ν)

HW (~ν) + αR(~ν)
Uj(~ν) d~ν

)
. (5.38)

Some common choices of channels are non-overlapping in the frequency domain, such

that
∫
Ui(~ν)Uj(~ν) d~ν = 0 if i 6= j. In this case, (5.38) simplifies greatly; since Σĉ

becomes a diagonal matrix, the SNR can be approximated by:

SNR2
C−PW ≈

∑
i

(∫
F (~ν) HW (~ν)

HW (~ν)+αR(~ν)
Ui(~ν) d~ν

)2

∫ HŴ (~ν)
(HW (~ν)+αR(~ν))2

Ui(~ν)2 d~ν
. (5.39)

Whether or not the channels are overlapping, our separable approximation to the

frequency response HW
j (~ν) enables rapid computation of either (5.38) or (5.39). First,

we compute the elements of Σĉ, using (5.36):

[Σĉ]ij ≈
1

α

∫
Sn−1

EŴ (~Θ)

EW (~Θ)
Gchan,1,2,ij(~Θ, E

W (~Θ)/α) d~Θ (5.40)

Gchan,1,2,ij(~Θ, γ) ,

%max(~Θ)∫
0

γJ(%, ~Θ)

(γJ(%, ~Θ) +R(%, ~Θ))2
Ui(%, ~Θ)Uj(%, ~Θ)%n−1 d%. (5.41)

Equation (5.40) can be computed quickly using tables for Gchan,1,2,ij, although this

requires N2
c tables, which may become infeasible for a large number of channels. The

matrix Σĉ is small enough that it is tractably invertible. We also make a frequency-

domain approximation to the mean difference in the output of the channels with and

without the feature present:

f̂Tui ≈
∫

Sn−1

Gchan,1,1,i(~Θ, E
W (~Θ)/α;F ) d~Θ (5.42)

Gchan,1,1,i(~Θ, γ;F ) ,

%max(~Θ)∫
0

γJ(%, ~Θ)

γJ(%, ~Θ) +R(%, ~Θ)
F (%, ~Θ)Ui(%, ~Θ)%n−1 d%. (5.43)
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This again allows for pre-computed tables of Gchan,1,1,i, although only Nc of them.

These tables, though, are only valid for one choice of feature spectrum F (~ν), and

must be recomputed for a different feature. We finally compute the SNR using the

approximations in (5.40) and (5.42):

SNR2
C−PW ≈ (Uf̂)TΣ−1

c (Uf̂).

Finally, we consider the non-prewhitened, channelized observer of ĉ = Ux̂, which

we will denote C-NPW. The C-NPW observer statistic is

tC−NPW(x̂) = (Uf̂)Tx̂,

and the SNR of this observer is

SNR2
C−PW =

((Uf̂)T(Uf̂))2

(Uf̂)TΣĉ(Uf̂)
.

This SNR can be approximated in the frequency domain using the same methods as

the C-PW observer. Table 5.2 is a summary of all of the linear observers we have

considered, listing the observer statistic, the SNR, and the corresponding frequency

domain approximation of the SNR.

5.3.4 Evaluation of observers

To evaluate our above frequency-domain methods for the fast computation of the

SNR of the observers we consider, we compared the SNR of the observers computed

by several methods for a scenario where the observer must distinguish whether or not

a known lesion is present in the reconstruction of an image. The system considered for

the test was a simulated 2D fan-beam geometry with one slice of an XCAT phantom

used as the object present. In an edgeless region near the center of the phantom, we

added a small feature represented by a Gaussian bump with a FWHM of 3 pixels and

an amplitude chosen so that at the resulting sinogram noise level, the ideal S-OPW

observer had an AUC of approximately 0.991. Figure 5.7 shows, for this scenario, the

noiseless images with and without this feature present, and one sample reconstruction

with and without the feature.

For each of the considered observers, we computed the SNR for each of these

methods:

1. We computed the SNR given by the matrix-vector product form (the third
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Figure 5.7: Segment of 2D XCAT phantom considered for observer evaluation. Scale
in Hounsfield units. (a) Noiseless phantom without feature; (b) Noiseless
phantom with feature; (c) Sample reconstruction without feature; (d)
Sample reconstruction with feature.

column of Table 5.2). We reconstructed 100 images from simulated noisy scans

of the phantom without a lesion present, and 100 images from scans of the

phantom with the feature. For theoretical SNR computations that require an

image covariance Σx̂, we compute this empirically from these 100 reconstructed

images.

2. We used the DFT-based local frequency response (2.54) to find HW
j and nu-

merically integrated our frequency-domain approximation a of the SNR.

3. We numerically integrated the same frequency-domain representations of the

SNR using the approximation (3.25).

Table 5.3 summarizes the results of the above methods.

5.4 Tube current modulation using model observers

In this section, we apply the methods of the previous section for quickly predicting

the performance of our model observers toward optimizing a tube current modulation
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Observer Statistic SNR2 Freq. Domain Approximation

S-OPW t(y) = fTATΣ−1
y y fTATΣ−1

y Af
∫
|F (~ν)|2HΣ−1

y (~ν) d~ν

S-PW t(y) = fTATWy fTATŴAf

∫
|F (~ν)|2H

W (~ν)2

HŴ (~ν)
d~ν

I-PW t(x̂) = f̂TΣ−1
x̂ x̂ f̂TΣ−1

x̂ f̂

∫
|F (~ν)|2H

W (~ν)2

HŴ (~ν)
d~ν

I-NPW t(x̂) = f̂Tx̂
(f̂Tf̂)2

f̂TΣx̂f̂

(∫ |F (~ν)|2HW
j (~ν)2

(HW
j (~ν)+αR(~ν))2

d~ν
)2

∫ |F (~ν)|2HW
j (~ν)2HŴ

j (~ν)

(HW
j (~ν)+αR(~ν))4

d~ν

UR-NPW t(x̂) = fTx̂
(fTf̂)2

fTΣx̂f

(∫
|F (~ν)|2 HW (~ν)

HW (~ν)+αR(~ν)
d~ν
)2

∫
|F (~ν)|2 HŴ (~ν)

(HW (~ν)+αR(~ν))2
d~ν

C-PW t(x̂) = (Uf̂)TΣ−1
ĉ Ux̂ (Uf̂)TΣ−1

ĉ (Uf̂) [Uf̂ ]i ≈
∫
F (~ν)

HW (~ν)

HW (~ν) + αR(~ν)
Ui(~ν) d~ν

Σĉ = UΣx̂U
T [Σĉ]ij ≈

∫
HŴ (~ν)

(HW (~ν) + αR(~ν))2
Ui(~ν)Uj(~ν) d~ν

C-NPW t(x̂) = (Uf̂)TUx̂
((Uf̂)T(Uf̂))2

(Uf̂)TΣĉ(Uf̂)
(See above)

Table 5.2: Summary of linear observers.

Observer Theoretical LFR Appx. Fast LFR Appx.
S-OPW 11.49 11.56 12.16

I-PW (same as S-OPW)
I-NPW 3.99 4.98 5.31

UR-NPW 4.32 5.09 4.75

Table 5.3: Squared SNR of linear observers compared to frequency domain approxi-
mations.
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scheme. As we have previously noted, sinogram observers and the pre-whitened

image observer are both impractical both in terms of their non-realistic modeling

of a human observer and their simplistic suggestions for a tube current modulation

scheme. Because of this, we will focus our attention on the non-prewhitened observers

(I-NPW and UR-NPW). The I-NPW observer is the same as the “statistical decision

theory model” from [36]. In their study, this model resulted in the highest rank

correlation of detectability between human observers and model observers, given a

task of detecting nylon beads in X-ray images.

5.4.1 Methods

For our two non-prewhitened image observers, I-NPW and UR-NPW, we use

the approximations (5.28), (5.29), and (5.31) to suggest a tube current modulation

scheme. We will analyze the case of optimizing observer performance at the center

voxel of a 2D fan-beam reconstruction with the statistical weighting matrix chosen

correctly so that W = Ŵ.

With a regularization parameter α small or large enough such that the values

of Ggauss,p,q,n fall within the ranges where they are well-approximated by a constant,

γ−2/3, or γ−1, we can derive a tube current modulation scheme in closed form. First,

we examine the case where α is small, such that we approximate Ggauss,p,q,n as a

constant. For this case, the I-NPW performance integral (5.28) simplifies to

SNR2
I−NPW ≈

C∫ 2π

0
1

EWj (Φ)
dΦ
≈ C

2π
V

∑V
v=1

Av
Nv

, (5.44)

for some constant C. As previously, Nv and Av represent the incident number of

photons for the center pixel at view v, and Av represents the attenuation of the ray

passing through the center pixel from view v. Designing the tube current modulation

is performed by the optimization

N∗ = argmaxN SNR2
I−NPW, s.t.

V∑
v=1

Nv = N0, (5.45)

Maximizing the SNR (5.45) can be done by equivalently minimizing
∑

v Av/Nv, which

is exactly the same minimization in [22] for FBP-reconstructed images, and therefore

the optimal incident radiation is given by Nv ∝
√
Av. This is a useful check of the

result if we think of the limit of statistical reconstruction as α → 0 to be similar to

FBP reconstruction. The simplification (5.44) also applies in the same way for the
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UR-NPW observer if we simplify (5.29) and (5.31) for small α, giving us the same

tube current modulation result.

In the case where α is large, we will replace Ggauss,1,1,2 and Ggauss,2,2,2 with γ−2/3,

and Ggauss,1,2,2 and Ggauss,3,4,2 with γ−1. The EW
j terms in the denominator of (5.28)

cancel out, turning the denominator into a constant, and the numerator becomes an

integral of EW
j (Φ)2/3. This simplifies the I-NPW performance integral into

SNR2
I−NPW ≈ C

 2π∫
0

EW
j (Φ)2/3

2

≈ C

(
2π

V

V∑
v=1

(
Nv

Av

)2/3
)2

, (5.46)

where C is a constant (not the same as in (5.44)) that can be dropped. Maximizing

(5.46) is then equivalent to maximizing
∑

v(Nv/Av)
2/3. As a tube current modulation

scheme, to solve the optimization

N∗ = argmaxN

∑
v

(
Nv

Av

)2/3

s.t.
∑
v

Nv = N0, (5.47)

we will use the Lagrangian

Λ(N, λ) ,
∑
v

(
Nv

Av

)2/3

+ λ

(
N0 −

∑
v

Nv

)
,

which has partial derivatives with respect to Ni

∂Λ

∂Ni

=
2

3
A
−2/3
i N

−1/3
i − λ.

Setting this equal to zero and solving for Ni gives

N∗i = cA−2
i , (5.48)

where c = (3λ/2)−3. This result, that the optimal tube current should be proportional

to the inverse of the square of the attenuation, is surprising but possibly understand-

able. It is very contrary to the small-α or FBP result in that it suggests more incident

radiation through less-attenuating views instead of through more-attenuating views;

the inverse being squared also causes even more extreme swings in tube current than

in the square-root-attenuation tube current modulation scheme, which already sug-

gested a modulation more extreme than X-ray tubes can currently carry out. With

a regularization parameter large enough that we operate in this regime, it is possible
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that we are considering reconstructed images where the regularization is essentially

doing all of the work. Regardless, a choice of α so large that we are operating in this

regime produces images that are both not clinically relevant and have a lower SNR

than images with a correctly chosen α.

Most choices of regularization parameter α that produce reasonable images are not

in either this pathologically small or pathologically large region. The combination of

(5.44) and (5.48) seems to indicate that optimal tube current N∗ for reconstructions

in the middle fall into some interpolated middle ground (although not necessarily

N∗v ∝ Apv for some power p). In this case Ggauss,p,q,2 is not easily replaced by a

simple closed-form representation. We turn to numerical methods to design tube

current modulation. We will restrict our attention to optimizing just three parameters

jointly: the regularization parameter α and the amplitude and phase of a sinusoidal

tube current modulation scheme. This both greatly reduces the dimensionality of the

problem and forces us to only consider tube current modulation that would be more

realizable in practice than the large current range of Nv ∝ Apv. We represent possible

continuous sinusoidal tube current modulation schemes as

Nv(A, θ) = N0(1 + A cos(2φv − θ)), (5.49)

where Nv is the number of photons in view v; φv is the angle of view v and N0 is the

number of photons per view in a baseline no-modulation comparison. The amplitude

A is restricted to the range [0, 1], since above 1 results in a negative N ; the phase θ

we will consider to be in the range [0, 2π].

Under this restricted form, we jointly optimize the regularization strength α and

the tube current modulation parameters by solving

α∗, A∗, θ∗ = argmaxα,A,θ SNR2
I−NPW(α,A, θ), (5.50)

using the SNR approximation in (5.28) and tube current modulation of (5.49).

5.4.2 Results

With the fast computation method (5.28), it is reasonable, at least for our analysis,

to find the solution of (5.50) by exhaustive search. Figure 5.8 shows the predicted

squared SNR for the I-NPW given the simulated feature detection problem described

in Section 5.3.4 using a wide range of regularization parameters α and all possible

sinusoidal tube current modulation schemes. Each of the 32 panels represents one
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value of α, in the first (top-left) panel α = 2−2 and the value of α increases by a factor

of 21/2 in each successive panel, until α = 227/2 in the last (bottom-right) panel. In

one panel, the amplitude A varies along the y-axis, from 0 (no modulation) at the

bottom, to 1 (modulation to the point of Nv becoming 0 at 2 points). The phase θ

varies along the x-axis from 0 to 2π.

Figure 5.9(a) shows the panel for the smallest α, and Figure 5.9(b) shows the

tube current modulation scheme from (5.49) representing the amplitude and phase

combination (A = 0.52, θ = π) from this small-α plane corresponding to the highest

predicted SNR (SNR2 ≈ 4.56). Figure 5.12(a) shows a small section of a simulated

reconstruction using this tube current modulation scheme and no feature present, and

Figure 5.12(b) shows another reconstruction realization with the feature present. Fig-

ure 5.12(c) shows the full simulated reconstruction of Figure 5.12(a). Figure 5.12(d)

shows the PSF of the reconstruction.

Figure 5.11(a) shows the panel for the largest α, and Figure 5.11(b) shows the

tube current modulation scheme from (5.49) representing the amplitude and phase

combination (A = 0.98, θ = 0.04 · π) from this large-α plane corresponding to the

highest predicted SNR (SNR2 ≈ 4.49). Figure 5.14(a) shows a full simulated recon-

struction using this tube current modulation with no feature present. Figure 5.14(b)

shows the PSF of the reconstruction.

Figure 5.10(a) shows the panel from Figure 5.8 for the value of α (α = 215/2)

that contained the largest predicted SNR (SNR2 ≈ 7.85) for the entire volume. In

this plane, the amplitude and phase that corresponded to this largest SNR were

A = 0.44, θ = 0; the resulting proposed modulation scheme is shown in Figure

5.10(b). Figure 5.13(a) shows a small section of a simulated reconstruction using this

tube current modulation scheme and no feature present, and Figure 5.13(b) shows

another reconstruction realization with the feature present. Figure 5.13(c) shows the

full simulated reconstruction of Figure 5.13(a). Figure 5.13(d) shows the PSF of the

reconstruction.

We also consider solving (5.50) using a simple gradient ascent algorithm. The

derivative of (5.28) with respect to regularization parameter α, modulation amplitude

A, and modulation phase θ is easy to compute in a similar form using table lookups

given the derivative of Ggauss,n,p,q shown in (C.5). For the feature detection problem

of Section 5.3.4, this gradient ascent finds an optimal regularization and modulation

of α ≈ 209 ≈ 215.4/2, A = 0.51, θ = 0.015 · π, which is very close to the results shown

in Figure 5.10.
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Figure 5.8: Predicted squared SNR of the I-NPW observer by α, tube current mod-
ulation amplitude and phase. Each of the 32 panels represents one value
of α, in the first (top-left) panel α = 2−2 and the value of α increases by a
factor of 21/2 in each successive panel, until α = 227/2 in the last (bottom-
right) panel. In one panel, the amplitude A varies along the y-axis, from
0 (no modulation) at the bottom, to 1 (modulation to the point of N(φ)
becoming 0 at 2 points). The phase θ varies along the x-axis from 0 to
2π.

5.4.3 Discussion

In the plane of Figure 5.9, the value of α is small enough that these reconstruc-

tions approach the FBP-like reconstruction regime, so it is not surprising that the

resulting tube current modulation scheme is near the optimal square-root-attenuation

scheme, as far as sinusoidal modulation allows. On the other end, for values of α high

enough, as in Figure 5.11, such that we are within the regime where the SNR is

approximately given by (5.46), it appears that the suggested modulation is indeed

nearing the inverse-squared-attenuation modulation of (5.48). The highest point of

the suggested tube current in 5.11(b) is about 100 times larger than the lowest point;

for comparison, the highest squared attenuation is about 120 times larger than the

smallest squared attenuation. Of course, the image produced by this TCM, shown in

Figure 5.11, is not clinically useful.

It appears that the predicted optimal modulation scheme does transition smoothly

between these two extremes; for example, in Figure 5.8, the rightmost panel of the

second row represents α = 211/2, for this regularization strength, no tube current

modulation is perhaps best. For the highest predicted SNR in our entire search range,
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Figure 5.9: (a): Plane of Figure 5.8 for small (FBP-like) α; (b): Tube current mod-
ulation corresponding to the largest value (SNR2 = 4.56) on this plane.
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Figure 5.10: (a): Plane of Figure 5.8 for α containing the largest SNR; (b): Tube
current modulation corresponding to the largest value (SNR2 = 7.85) on
this plane.
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Figure 5.11: (a): Plane of Figure 5.8 for large α; (b): Tube current modulation cor-
responding to the largest value (SNR2 = 4.49) on this plane.
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Figure 5.12: 2D phantom reconstructed using the tube current modulation of Figure
5.9(b); (a): Segment without feature, (b): Segment with feature, (c):
Full image, (d): Reconstruction PSF.
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Figure 5.13: 2D phantom reconstructed using the tube current modulation of Figure
5.10(b); (a): Segment without feature, (b): Segment with feature, (c):
Full image, (d): Reconstruction PSF.
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the suggested modulation is inversely related to attenuation, as opposed to ideal

modulation for FBP-reconstructed images, but not inversely related to the extreme

of Figure 5.11(b).

The resulting reconstruction shown in Figure 5.10, as we would predict via the

SNR, does appear to have a visible increase in attenuation at the location of the

feature in Figure 5.10(b) compared to Figure 5.10(a). However, this demonstrates

some of the limitations of jointly designing regularization strength and tube current

modulation via maximizing SNR2
I−NPW. First, without prior knowledge of both the

background image and the location and shape of the feature, the difference between

the reconstructions with and without the feature would be indistinguishable. There

is clearly a mismatch between the process of a human looking for a particular feature

in an image with the location unknown, and the model of this process as a linear

observer with a known background and known signal. In [36], the I-NPW SNR

was found to correlate with human observers, but this was specific to the task of

finding the presence and position of a known feature in one of 25 known locations.

In the case where a feature is within some region, and the observer must find its

location, we could potentially use the methods of [74]. Secondly, the resulting image

is too blurry, due to over-regularization, compared to typical clinical images. This

is particular to our choice of feature. If we knew beforehand in a signal detection

task that we are to find a Gaussian bump with a 3 pixel FWHM, the image that

is best for this task may be this blurry to match the resolution of our feature; the

regularization and tube current modulation that we designed takes this into account.

Figure 5.15 shows the regularization and tube current resulting from optimizing (5.50)

for a range of feature full-width-half-maxima. Two features are evident from Figure

5.15(a). When the FWHM tends toward zero, converging toward a feature that is

an impulse, the optimum regularization strength α∗ tends toward a constant (in this

case, α∗ ≈ 5.7) that is particular to the base tube current N0. When the FWHM

tends toward infinity, the ideal α∗ seems to be proportional to FWHM3; the source of

this cubic behavior is unknown. However, we are often interested in finding features

for which the resolution is unknown. Figure 5.15(b) shows that the designed tube

current modulation amplitude transitions smoothly from approximately 0.7 in the

small-feature case to 0.5 in the large-feature case. Figure 5.15(c) shows that the

phase does not change appreciably between the two feature sizes, for all feature sizes

the phase is chosen so that the tube current is larger for views with lower attenuation

and smaller for more attenuating views. In fact, the range of θ∗ is small enough that

the noise resulting from the table-based approximations to SNR2
I−NPW is visible.
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Figure 5.14: 2D phantom reconstructed using the tube current modulation of Figure
5.10(b); (a): Full image, (b): Reconstruction PSF.
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Figure 5.15: Optimized tube current modulation schemes as a function of feature
FWHM. (a): regularization strength, (b): TCM amplitude, (c): TCM
phase.
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Figure 5.16: Objects used for SNR tests. (a): 3 pixel FWHM Gaussian bump; (b):
impulse; (c): difference of (a) and a 1 pixel FWHM bump.
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Traditional Proposed, optimized for:
Uniform FBP Opt. 3 FWHM Impulse DOG

A 0 −0.52 0.51 0.70 0.99
θ — 0.02π 0.015π 0.02π 0.04π

O
b

je
ct

3 FWHM 7.63 6.78 7.86 7.82 7.55
α (a) 118 (d) 65.7 (g) 209 261 382

Impulse 26.84 23.20 28.42 28.57 27.99
α (b) 3.25 (e) 2.17 4.87 (h) 5.73 7.67

3,1 DOG 7.72 6.44 9.02 9.64 10.85
α (c) 2.85 (f) 1.46 5.25 6.24 (i) 7.20

Table 5.4: Predicted squared SNR of the I-NPW observer for no TCM, TCM op-
timized for FBP images, TCM optimized for a 3-pixel FWHM gaussian
bump, and TCM optimized for an impulse. Features tested were a 3-pixel
FWHM bump, an impulse, and the difference between a 3-pixel and a 1-
pixel gaussian bump. Letters in parenthesis refer to corresponding PSFs
in Figure 5.17. Largest SNR for each object is displayed in bold.
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Figure 5.17: PSFs for the regularization and TCM parameters shown in Table 5.4.
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Table 5.4 shows the squared SNR for the I-NPW observer for several choices of

tube current modulation and regularization parameters and several test features: the

Gaussian bump with a 3 pixel FWHM considered previously, a one-pixel impulse,

and the difference between the 3 pixel FWHM Gaussian bump and a 1 pixel FWHM

bump. These features are shown in Figure 5.16. In the first column, we measure the

squared SNR for uniform (no) tube current modulation for each of these features.

In the second column, we measure the squared SNR for the sinusoidal tube current

modulation chosen to best match the square root of the attenuation. That is, A and

θ are chosen to minimize

A∗, θ∗ = argminA,θ
∑
v

Av
1 + A cos(2φv − θ)

,

minimizing the variance at the center voxel of a hypothetical FBP-based reconstruc-

tion, as in (5.2), using tube current modulation restricted to be sinusoidal, as in

(5.49). In the last three columns, the tube current modulation is chosen simulta-

neously with the regularization parameter α to optimize detection for a particular

feature, the same three as those shown in Figure 5.16. In each case, the regulariza-

tion parameter is optimized with the tube current modulation parameters fixed and

displayed below the shown SNR. For some of the combinations of regularization and

tube current modulation parameters, we show the corresponding PSF in Figure 5.17.

Table 5.4 emphasizes the importance of foreknowledge of the feature to optimizing

tube current modulation for I-NPW observer detection. In each case, the TCM

and regularization parameters jointly optimized for detection of a particular feature

provided the highest SNR for detection of the same feature. Parameters optimized for

a different feature give, in almost all cases, a higher SNR than uniform tube current

modulation. Only in the case of detection of the 3-pixel FWHM bump where the

TCM parameters are optimized for the difference of Gaussians object is the resulting

SNR lower than no TCM. The TCM amplitude in the DOG-optimized case is very

high, however, contributing to the poor performance with other features. In all cases,

the traditional TCM optimized for a hypothetical FBP-based reconstruction gave a

lower SNR than no tube current modulation.

The PSFs in Figure 5.17 demonstrate that, as is the case for FBP-reconstructed

images, the FBP-optimized TCM (shown in Figure 5.17 (d)–(f)) results in a PSF that

is more isotropic than the PSF given by uniform TCM, and our proposed TCM results

in a PSF more anisotropic than uniform TCM. This is similar to the anisotropic PSF

results of Section 5.2.
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5.5 Variance minimization with fixed resolution

In this section, we consider optimization of TCM via minimizing the variance of

a particular pixel or voxel of interest using a hypothetical regularizer designed to

produce a particular local impulse response of the reconstruction. For example, for a

statistical reconstruction we may choose the regularization parameter α to pick the

resolution that we want in terms of FWHM and use a regularizer designed to make

the LIR isotropic, as in [8, 7].

We again approximate the local impulse response of the effect of the statistical

reconstruction by the filter FW
j (~ν) given in (5.19). Suppose that we knew the exact

form of HW
j (~ν) and we designed a regularizer RW

j,design(~ν) such that the effect of re-

construction is filtering by a desired target filter F̂j,target(~ν). In this case, we can solve

(5.19) for the regularization filter:

αRW
j,design(~ν) = HW

j (~ν)
1− Fj,target(~ν)

Fj,target(~ν)

If we plug this designed regularizer into the frequency-domain expression for the local

noise NPS in (2.59), we find that

Sj(~ν) =
HŴ
j (~ν)

(HW
j (~ν) + αRj,design(~ν))2

= Fj,design(~ν)2
HŴ
j (~ν)

HW
j (~ν)2

. (5.51)

We then apply the approximate factorization (3.25) and integrate (5.51) as in (2.60)

to find an approximate variance:

var(x̂j) ≈
∫

[− 1
2
, 1
2 ]
n

F 2
j,design(~ν)

HŴ
j (~ν)

HW
j (~ν)2

d~ν ≈
∫

[− 1
2
, 1
2 ]
n

F 2
j,design(~ν)

J(~ν)

EŴ
j (~Θ)

EW
j (~Θ)2

d~ν

=

∫
Sn−1

EŴ
j (~Θ)

EW
j (~Θ)2

%max(~Θ)∫
0

Fj,design(%, ~Θ)2

J(%, ~Θ)
%n−1 d% d~Θ (5.52)
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Alternatively, for 3DCT, using the cylindrical factorization (4.9) gives

var(x̂j) ≈
∫

[− 1
2
, 1
2 ]
n

Fj,design(~ν)2
HŴ
j (~ν)

HW
j (~ν)2

d~ν ≈
∫

[− 1
2
, 1
2 ]
n

Fj,design(~ν)2

Jcyl(~ν)

EŴ
j,cyl(Φ)

EW
j,cyl(Φ)2

d~ν

=

2π∫
0

EŴ
j,cyl(Φ)

EW
j,cyl(Φ)2

 1/2∫
−1/2

ρmax(Φ)∫
0

Fj,design(~ν)2

Jcyl(~ν)
ρ dρ dν3

 dΦ

=

2π∫
0

EŴ
j,cyl(Φ)

EW
j,cyl(Φ)2

fj,cyl(Φ) dΦ (5.53)

?
=

2π∫
0

1

EW
j,cyl(Φ)

fj,cyl(Φ) (5.54)

Where fj,cyl(Φ) is a function that depends on the designed local frequency response,

but not the tube current:

fj,cyl(Φ) ,

1/2∫
−1/2

ρmax(Φ)∫
0

Fj,design(~ν)2

Jcyl(~ν)
ρ dρ dν3. (5.55)

The approximation (5.54) comes from (5.53) if we assume that the weighting matrix

is chosen to be the ideal weighting, in which case EŴ
j = EW

j .

As in [22], we will consider the center voxel specifically, for which EW
j (Φ) = KwΦ,

where K is the constant defined in (5.4), and as in (5.3), wΦ is the statistical weighting

for the rays passing through the center at angles Φ±π/2. In this case, (5.54) simplifies

to

var(x̂c) ≈
2π

KV

V∑
v=1

Av
Nv

fc,cyl(Φv). (5.56)

The solution to the variance minimization problem,

N∗ = argminN var(x̂c), s.t.
V∑
v=1

Nv = N0,

for the approximate var(x̂c) in (5.56), is:

N∗v ∝
√
Avfc,cyl(Φv). (5.57)
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If the desired local impulse response Fj,design(~ν) is cylindrically isotropic, i.e., inde-

pendent of Φ, then (5.57) approximately becomes

N∗v ∝
√
Av, (5.58)

since Jcyl(~ν) is itself nearly isotropic, making fc,cyl(Φ) no longer dependent on Φ.

This is the same result for optimal tube current modulation presented for FBP-

reconstructed images in [22], suggesting that that tube current modulation method,

at least from the perspective of minimizing the variance with fixed resolution, is also

suitable for statistically reconstructed images. However, (5.57) generalizes this to the

option of non-isotropic resolution. We can interpret fj,cyl(Φ) as roughly (ignoring Jcyl)

the dispersion of the desired frequency response on the plane of a fixed Φ. If we want

a local impulse response that is more concentrated along one axis, its corresponding

local frequency response will have a higher dispersion, and (5.57) suggests increasing

N∗v in the views perpendicular to that axis. This makes some intuitive sense, and

(5.57) provides a quantitative result for the tube current modulation as a function of

the desired LFR dispersion.

5.6 Discussion

Tube current modulation for statistically reconstructed CT images is a more dif-

ficult problem than for FBP-reconstructed images. This is because for FBP, modula-

tion of the tube current affects the image quality mostly through the noise variance,

and optimization can be done by minimizing this noise. For statistical images, though,

TCM affects both the variance and resolution of the resulting image, and the tradeoff

must be considered when optimizing tube current. The results that we have found

for tube current modulation can be divided into two broad classes, largely defined by

whether or not a feature to be detected is known.

In Section 5.2, we investigated optimizing TCM by introducing resolution metrics

that we can predict quickly and simultaneously optimizing for noise variance and these

resolution metrics. In Section 5.4, we optimized TCM for the task of algorithmically

detecting the presence of an a priori known feature in a known background, using

the fast observer performance predictions developed in Section 5.3. In both of these

formulations, optimizing for these metrics causes the tube current to be higher for

less attenuating views and lower for more attenuating views, which is counter to the

optimum TCM for FBP images. These two formulations are more connected than
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they would seem at first. The CRC resolution metric in Section 5.2 is equivalent

to maximizing the performance of the UR-NPW observer used in Section 5.3 if the

known feature to be detected is an impulse. The UR-NPW observer, in turn, is very

similar to the I-NPW observer.

The results of Section 5.3.3.2 suggest that, for the problem of detecting whether

or not an impulse at a known location is present in a known background, the ideal

photon allocation is all in one beam passing through the impulse’s location in the

least attenuating direction. In both Section 5.2 and Section 5.3, the resulting TCM

is more like a one-view radiograph or tomosynthesis, a method for very limited-angle

tomography [43], than traditional CT. Features in images reconstructed via tomosyn-

thesis are more identifiable in the plane perpendicular to the rays corresponding to

the views used, but the resolution along the rays is very limited. This is consistent

with the PSF shown in Figure 5.4. In the horizontal direction, which is perpendicular

to the direction of the incoming X-rays (the peak in Figure 5.3) the PSF is sharp; in

the vertical direction, the PSF is not.

In practice, however, it is not a common scenario that we have the prior knowledge

required to use either of these previous methods. If the feature is unknown, radiol-

ogists generally would be unlikely to prefer an anisotropic PSF that distorts shapes.

In Section 5.5, we found ATCM methods for the hypothetical case of statistical re-

construction where the local impulse response of the reconstruction is fixed by the

regularizer. In this case, we are not optimizing for detectability of a known feature,

either explicitly (as in Section 5.4) or implicitly (as in Section 5.2). Because we no

longer control the resolution, detectability of any feature is generally maximized using

the tube current modulation that minimizes the reconstructed variance, and this is

achieved, as in the FBP case of [22], with tube current proportional to the square

root of the attenuation (when an isotropic PSF is desired).
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CHAPTER VI

Conclusion

6.1 Summary

In this work, we have investigated a local frequency response approximation to

ATWA, the Hessian of the data-fit term in a statistical CT image reconstruction,

that is separable into a data-independent term and a data-dependent term that has

a lower dimensionality. This LFR approximation applies to the Hessian with arbi-

trary CT geometries. We have made further approximations to this separable form

that are particular to 2D fan-beam, 3D axial, and 3D helical CT that reduce the

data-dependent term to a function of only one dimension. We have shown that this

LFR approximation is largely accurate for 3D helical CT, except in regions near the

frequency-domain axis acorresponding to the axis around which the X-ray source ro-

tates. We have shown that the LFR approximation, when applied to the expression

for the local noise power spectrum, closely matches the local NPS derived from the

DFT of the local impulse response of the Hessian ATWA.

We have used the LFR approximation in the integral of the noise power spectrum

to produce variance predictions for a statistically reconstructed CT image in a much

faster time for 3D axial and helical geometries than any previous method. These

variance predictions are very accurate when compared to the frequency-domain vari-

ance predictions produced by the DFT of the LIR of ATWA, and mostly accurate

compared to the empirical variance of an ensemble of reconstructions, depending on

the particular reconstruction methods used. Our variance predictions are very accu-

rate for quadratically regularized reconstructions, and accurate for non-quadratically

regularized reconstructions in regions not near edges.

Finally, we used the LFR approximation, along with the variance predictions de-

rived from it, to produce tube current modulation schemes specific to statistically re-

constructed images. We have found results particular to this model-based framework
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that suggest a tube current modulation design that may improve the detectability

of certain features while simultaneously reducing dose. What form the results take

depend on the choice of observer, but for many model observers often considered in

practice to model human observers, we have derived a corresponding tube current

modulation scheme.

6.2 Future Work

6.2.1 Verification of LFR approximation for broader geometries

In Chapter III, we derive an approximation to the local frequency response of

ATWA for arbitrary CT geometries and compare the result of this approximation to

the LFR of a simulated helical CT geometry. While the simulated helical CT geometry

accounts for a wide range of CT geometries used clinically, there are other geometries

for which we have not verified the applicability of the approximation. For example,

CT using sparse views would disrupt the approximation used in (3.6) to replace a sum

over views as an integral. We have also not verified the approximation for limited-

angle methods such as tomosynthesis, although this is likely to be less harmful to

the result as sparse views. For other geometries like those provided by a C-arm, in

which the source trajectories can have a much wider range than the more fixed helical

geometries, our methods may be more difficult to verify. Future work could verify the

use of our LFR approximation for variance prediction by finding empirical variance

maps using real sinograms from geometries beyond those we specifically considered.

6.2.2 Extension of methods to edge-preserving regularization

In Section 2.5.1.3, we use the assumption commonly held in prior work that the

frequency-domain representation of the regularizer in (2.57) holds, even near edges in

the image. As mentioned previously, this is not true both because the assumption of

spatial shift-invariance and the approximation of the regularizer hessian as the closed

form matrix P break down. As a result, our methods work only away from edges in the

image. For some applications, this is undesirable. Potential methods for fixing this

limitation in future work could be finding approximations for the exact reconstruction

distribution in [20] or adapting the methods of [47], used for statistically reconstructed

PET images.
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6.2.3 Other applications of detectability indices

In Section 5.4, we demonstrate the use of fast approximations to model observer

performance for joint optimization of regularization strength and sinusoidal tube cur-

rent modulation. This is a fairly specific usage of the fast approximations in Section

5.3, but is also useful as an example of potentially broader usage of these detectability

measures. A widening of the scope of Section 5.4 to more general tube current modu-

lation schemes is a potential direction of future work. Alternatively, we could consider

other possible domains of tube current modulation that more accurately capture the

capabilities of specific scanners.

We could also consider the joint optimization of tube current modulation and more

generalized regularization design. The tube current modulation scheme that results

from (5.12), that has the PSF shown in Figure 5.4, is “optimized” using a particular

regularizer R(~x) and regularization strength in mind. It is possible that by also

considering the optimization over both the regularization parameter α and the relative

per-direction penalties of the regularization (labeled rd in (2.27)) we could better

reduce the dose while making the resulting PSF less pathological. The tube current

modulation found from maximizing (5.28) considers joint optimization over α, but

again does not change the relative strength rd of the regularization directions. Since

tube current modulation changes the way in which the resulting PSF is anisotropic,

regularization design is a strong candidate for a potential way to even out the effect

of tube current. In the other extreme, however, where we have full control of the

regularization for each voxel of interest, we find ourselves in the situation of Section

5.5.

One other potential use for our observability approximations is a direct statistical

usage. For example, if a human observer is looking for a known feature in an image,

we may consider providing an “AUC map” for detection of the feature similar to the

variance maps we show in Chapter IV.

There are also likely other possible uses for fast prediction of observer performance

measures that we have not considered.

6.2.4 Extension to unknown-background or unknown-location tasks

The derivations in Section 5.3 for observer performance are specific to an observer

in the task of finding a known signal at a known location in known background.

Although this is correlated to human observer performance for detecting a signal

at an unknown location, this correlation is specific to a task where the potential
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unknown locations are very spatially separated, so that their noise is nearly uncor-

related. Yendiki [74] provides potential methods for extending our results to fast

approximations for performance in the task of localizing a feature where potential

locations do not necessarily have uncorrelated noise.

6.2.5 Using SNR prediction for dose reduction

Optimizing tube current modulation by posing it as a problem of maximizing

SNR, as we have done in (5.50), does not directly apply to reducing X-ray dose, as it

does in [22]. In FBP-based reconstruction, a scheme to modulate tube current that

decreases variance while maintaining the same average tube current can be easily

transformed into a method for dose reduction while maintaining equal feature de-

tectability. However, in statistical reconstruction the relationship is not as simple. A

modification of (5.50) that would be more ideal for reducing dose would be:

α∗, A∗, θ∗, N∗0 = argminN0 s.t. SNR2
I−NPW(α,A, θ,N0) ≥ SNR2

min. (6.1)

That is, we wish to find the minimum average tube current N0 such that we can find

a potential tube current modulation that maintains an SNR above some minimum.

We have at least one simple method to transform an SNR increase into a dose

reduction, even if it is suboptimal compared to the result of (6.1). If we maintain the

same TCM method but scale N0, the SNR scales as:

SNR2
I−NPW(α,A, θ, c N0) = c · SNR2

I−NPW(α,A, θ,N0). (6.2)

We can achieve a minimum SNR by reducing dose by choosing c = SNR2
min/SNR2

I−NPW(α,A, θ,N0)

and then using an average current level of cN0. The higher an SNR2
I−NPW we can find,

the smaller c becomes and the lower the dose becomes. While this may not be the

optimal solution to (6.1), it is a conversion from an SNR improvement into a dose

reduction.

Another consideration here is that N0, the average tube current, is not directly

proportional to the X-ray dose absorbed by a patient. We could consider using more

advanced methods for approximating the absorbed dose, such as [11]. Using these

advanced methods, we could develop formulations more advanced than (6.1) for tube

current modulation, possibly toward minimizing metrics such as potential patient

harm (as some organs are more sensitive to radiation) rather than dose.
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6.2.6 Generalized single-integral form

Recall that, prior to sifting an integral over Σ, our form for the local frequency

response of ATWA is given by:

Hj(~ν) ≈ C|V|
∣∣∣(FnR̂)(~ν)

∣∣∣2 ∫
Σ

w̃j,σ|B̃j|δ(~θj(σ)TV−T~ν) dσ, (6.3)

that, analogously to (3.25), we can factor into two terms, one of which remains with

this integral un-sifted:

Hj(~ν) ≈ J(~ν)EW
j (~Θ)

J(~ν) ,

∣∣∣(FnR̂)(~ν)
∣∣∣2

||~ν||

EW
j (~Θ) , C|V|

∫
Σ

w̃j,σ|B̃j|δ(~θj(σ)TV−T~Θ) dσ

In section 4.3, we make approximations specific to certain 3DCT geometries that

allow us to reduce the inherently (n−1)-dimensional integral of (4.3) into the (n−2) =

1-dimensional integral of (4.10). However, we speculate that, by delaying this sifting,

there may be a general 1-dimensional integral form, where the integral is over Σ,

that does not require the inelegant approximation (4.9). We begin by making some

definitions to break EW
j (~Θ) apart further:

EW
j (~Θ) =

∫
Σ

fWj (σ)δ(~vj(σ)T~Θ) dσ (6.4)

fWj (σ) , C|V|w̃j,σ|B̃j|

~vj(σ) , V−1~θj(σ)
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In this case, we can use the first steps of (4.3), but then re-expand EŴ
j as (6.4):

var(x̂j) ≈
∫
Sn

%max∫
0

J(%, ~Θ)EŴ
j (~Θ)

(J(%, ~θ)EW
j (~Θ) + αR(%, ~Θ))2

%n−1d%d~Θ

= α−1

∫
Sn

EŴ
j (~Θ)

EW
j (~Θ)

G(α−1EW
j (~Θ), ~Θ) d~Θ,

= α−1

∫
Sn

∫
Σ

f Ŵj (σ)δ(~vj(σ)T~Θ) dσ

 G(α−1EW
j (~Θ), ~Θ)

EW
j (~Θ)

d~Θ. (6.5)

Now we wish to sift this impulse with respect to ~Θ instead of σ:

var(x̂j) = α−1

∫
Σ

f Ŵj (σ)

∫
Sn

G(α−1EW
j (~Θ), ~Θ)

EW
j (~Θ)

δ(~vj(σ)T~Θ) d~Θdσ. (6.6)

If we define an orthonormal matrix

D =
[

~vj(σ)

||~vj(σ)|| ~vj(σ)⊥
]
,

where ~vj(σ)⊥ ∈ Rn×(n−1) is a basis for the subspace perpendicular to ~vj(σ), then the

inner integral of (6.6) can be written as an integral over Sn−1, the sphere in one fewer

dimension:∫
Sn

g(~Θ)δ([DT~Θ]1) d~Θ =

∫
Sn

g(D~Λ)δ([~Λ]1) d~Λ
(
~Λ = DT~Θ

)

=

∫
Sn−1

g

(
D

[
0

~Ω

])
d~Ω

(
~Λ =

[
Λ1

~Ω

])

=

∫
Sn−1

g
(
~vj(σ)⊥~Ω

)
d~Ω.

Applying this to (6.6) gives:

var(x̂j) = α−1

∫
Σ

f Ŵj (σ)

∫
Sn−1

G(α−1EW
j (~vj(σ)⊥~Ω), ~vj(σ)⊥~Ω)

EW
j (~vj(σ)⊥~Ω)

d~Ωdσ.

From here, we hope that this inner integral can be simplified further, but this is a

topic for future work. In its current form without simplification, this is actually more
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computationally intensive than (4.3), since it is also an (n− 1)-dimensional integral,

but Σ is “larger” than an additional dimension to the sphere, since in helical CT it

can traverse a space larger than [0, 2π].

6.2.7 Validation of tube current modulation with human observers

In Chapter V, we derive tube current modulation schemes that optimize feature

detectability with respect to model observers. The performance of some of these

model observers correlate well with the performance of human observers, but human

observers are still what are used in practice when detecting a feature in medical

imaging. The best standard, then, for a proposed tube current modulation combined

with a regularizer, would be human performance in detecting a feature. Compared

to our other potential directions for future work, validating proposed tube current

modulation with human observers is more far-fetched, but it would provide a very

strong justification for our methods.
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APPENDIX A

X-ray photon detector statistics

Compound Poisson Model While much previous work has been done in statis-

tical reconstruction assuming that the number of measured photons has a Poisson

distribution that can be measured directly (e.g. [31, 27]), X-ray CT detector el-

ements are unable to directly count photons to measure Ij, and instead measure

current created by lower-energy photons released by a scintillator. For a monoener-

getic incident X-ray spectrum, [13, 69, 70] suggest a compound-Poisson distribution

for the measurement of the detector caused by incoming x-ray photons. Specifically,

if the number of X-ray photons incident on the detector is a Poisson random variable

I, as above, and each incident photon i creates Xi lower energy photons, where

I ∼ Poisson
[
Ī
]

(A.1)

Xi ∼ Poisson
[
X̄
]
, (A.2)

then the total number V of low-energy photons is

V =
I∑
i=1

Xi. (A.3)

We can use moment-generating function for V given in [13] or the law of total

expectation and the law of total variance to determine that

E [V ] = ĪX̄ (A.4)

var(V ) = ĪX̄(1 + X̄). (A.5)
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If we instead hope to estimate the number of incident photons I as V/X̄, this

estimate is also a random variable Z, with

E [Z] = Ī (A.6)

var(Z) = Ī(1 + X̄−1), (A.7)

which is the same mean as I, and the same variance plus a correction term of Ī/X̄.

This correction term is related to the Fano factor [15], where it appears in several

contexts involving charges produced secondary to high-energy photons, e.g. [48].

We hope to show that for a large enough Ī and X̄, that V can be approximated

by N
(
ĪX̄, ĪX̄(1 + X̄)

)
and thus Z can be approximated by N

(
Ī , Ī(1 + X̄−1)

)
, by

investigating the similarity of the cumulants of V to the cumulants of a normal dis-

tribution.

Derivation of Compound-Poisson Cumulants The moment-generating func-

tion MV (t) of V can be found:

MV (t) = E
[
etV
]

(A.8)

=
∑
i

P (I = i)E
[
etV |I = i

]
; (A.9)

noting here that by definition of V , and the known mgf of a Poisson distribution,

E
[
etV |I = i

]
= E

[
etX
]i

= exp
(
i ln E

[
etX
])

= exp
(
iX̄(et − 1)

)
, (A.10)

and so

MV (t) =
∑
i

P (I = i) exp
(
iX̄(et − 1)

)
(A.11)

= EI

[
exp

(
IX̄(et − 1)

)]
(A.12)

= EI

[
euI
]∣∣
u=X̄(et−1)

(A.13)

= exp
(
Ī
(
exp(X̄(et − 1)− 1)

))
. (A.14)

The logarithm of the moment generating function for V ,

h(t) , Ī
(
exp(X̄(et − 1))− 1

)
, (A.15)
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can be used to find cumulants. Define j(t) , et − 1, k(t) , X̄(et − 1), so that

h(t) = Ī(j ◦ k)(t). We can then use Faà di Bruno’s formula [26] to evaluate arbitrary

derivatives of (j ◦ k)(t) at zero:

(j ◦ k)(n)(0) =
∑

π∈Π(n)

j(|π|)(k(0))
∏
B∈π

k(|B|)(0) (A.16)

=
∑

π∈Π(n)

∏
B∈π

X̄ (A.17)

=
∑

π∈Π(n)

X̄ |π| (A.18)

=
n∑
i=1

{
n

i

}
X̄ i. (A.19)

In (A.16), Π(n) is the set of partitions of the labeled set {1, . . . , n}, and π is one

of these partitions. B are the parts in the partition π. For example, one element

π of Π(4) is the partition {{1}, {2}, {3, 4}}, and one element B of this π is {2}.
We can then simplify this significantly by noting that k(0) = 0, and |π| ≥ 1, and

j(1,2,3,...)(0) = 1, and that |B| ≥ 1, k(1,2,3,...)(0) = X̄. Applying these values in (A.16)

gives us (A.17). In (A.19) this is simplified to be in terms of Stirling numbers of the

second kind.

Curiously, the nth cumulant of V divided by Ī,

κV,n
Ī

=
n∑
i=1

{
n

i

}
X̄ i (A.20)

is equal to the nth moment of a Poisson distribution with mean X̄ [32].

If we define Z = (V −X̄Ī)/Ī1/2X̄, so that Z has zero mean and near-unit variance,

with the intention of approximating Z with a normal distribution, the cumulants of

Z are

κZ,n =
Ī

Īn/2X̄n

n∑
i=1

{
n

i

}
X̄ i = Ī1−n/2

n−1∑
j=0

{
n

n− j

}
X̄−j, n ≥ 2. (A.21)

We now want to see whether the series κZ,n diverges. In the worst case, when

X̄ = 1, then

κZ,n = Ī1−n/2Bn, (A.22)
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where Bn is the nth Bell number. An asymptotic limit for the Bell numbers is given

in [9] as

lnBn

n
= lnn− ln lnn− 1 +

ln lnn

lnn
+

1

lnn
+

1

2

(
ln lnn

lnn

)2

+O

(
ln lnn

(lnn)2

)
, (A.23)

which, as n increases, will exceed

− ln Ī−n/2

n
=

1

2
ln Ī , (A.24)

which is fixed. Therefore, Bn will grow more rapidly than Ī1−n/2 can shrink, and the

cumulants κZ,n diverge. However, many of the low-order cumulants are vanishingly

small, since initially Ī1−n/2 shrinks much faster than Bn grows. The effects of the

high-order cumulants are yet to be investigated; for now, we assume for convenience

that they don’t significantly affect our gaussian approximation.
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APPENDIX B

Closed-form integral of G and its properties

In this section we wish to derive a closed-form expression for the integral∫
xn

(1 + x3)2
dx.

From the series (1− z)−2 = 1 + 2z + 3z2 + . . ., plugging in z = −x3 and multiplying

by xn gives the formal power series

xn

(1 + x3)2
= xn

∞∑
k=0

(−1)kx3k(k + 1) = xn
(
1− 2x3 + 3x6 − 4x9 + . . .

)
.

Integrating each term gives:∫
xn

(1 + x3)2
dx =

∞∑
k=0

k + 1

3k + n+ 1
(−1)kx3k+n+1

= xn+1

∞∑
k=0

k + 1

3k + n+ 1
(−x3)k

=
xn+1

n+ 1

∞∑
k=0

ak(−x3)k

where ak = (k+1)(n+1)
3k+n+1

. In general, when a0 = 1 and

ak+1

ak
=

(k + A)(k +B)

(k + 1)(k + C)
,
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The sum of akz
k is the hypergeometric function [44]:

∞∑
k=0

akz
k = 2F1(A,B;C; z).

In our case
ak+1

ak
=

(k + 2)(k + (n+ 1)/3)

(k + 1)(k + (n+ 4)/3)
,

and so: ∫
xn

(1 + x3)2
dx =

xn+1

n+ 1
2F1

(
2,
n+ 1

3
;
n+ 4

3
;−x3

)
.

From here it is trivial algebra to show that

L∫
0

γxn

(γ +R0x3)2
dx =

Ln+1

γ(n+ 1)
2F1

(
2,
n+ 1

3
;
n+ 4

3
;−R0

γ
L3

)
.

We may wish to use the following series for 2F1 around z = 0 and z =∞:

2F1

(
2,
n+ 1

3
;
n+ 4

3
;−z3

)
= 1− 2

n+ 1

n+ 4
z3 +O(z6)

=
1

zn+1
Γ

(
n+ 4

3

)
Γ

(
5− n

3

)
+O(z−6), n ≤ 4.

For example,

lim
R0L3/γ→∞

L∫
0

γxn

(γ +R0x3)2
dx =

γ(n−2)/3

R
(n+1)/3
0

1

n+ 1
Γ

(
n+ 4

3

)
Γ

(
5− n

3

)

is useful when γ ≈ 0 (when the statistical weighting is very small or regularization

parameter very large), and

lim
R0L3/γ→0

L∫
0

γxn

(γ +R0x3)2
dx =

Ln+1

γ(n+ 1)

is useful when γ is large, i.e., when the statistical weighting dominates the regular-

ization.
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APPENDIX C

Table-based evaluation for observer performance

In this section we consider evaluation of integrals of the form

∫
[− 1

2
, 1
2 ]
n

|F (~ν)|2
HW
j (~ν)p−p̂HŴ

j (~ν)p̂

(HW
j (~ν) + αR(~ν))q

d~ν,

as given in (5.27), for Gaussian bumps where |F (~ν)| = exp(−τ ||~ν||22) and rectangular

voxels. We make the approximations that R(~ν) ≈ R0%
2 and J(~ν) ≈ (1 − c%2)/%,

where c = π2/3. This contains the second-order Taylor expansion of |(FnRbasis)(~ν)|2

for rectangular voxels, which is

|(FnRbasis)(~ν)|2 =
n∏
i=1

sinc2(νi).

The second-order Taylor expansion of sinc2(νi) is 1− cν2
i +O(ν4

i ), and collecting the

second-order terms of
n∏
i=1

(1− cν2
i +O(ν4

i ))

gives 1 − c
∑n

i=1 ν
2
i = 1 − c%2. Since Gaussian bumps roll off very quickly, in many

cases this second-order approximation for J and the second-order approximation for

R are cut off by the decay of |F | before their error grows too large.
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With these approximations, evaluating (5.27) begins:

∫
[− 1

2
, 1
2 ]
n

|F (~ν)|2
HW
j (~ν)p−p̂HŴ

j (~ν)p̂

(HW
j (~ν) + αR(~ν))q

d~ν =

∫
Sn

%max(~Θ)∫
0

e−τ%
2 J(%)pEW

j (~Θ)p−p̂EŴ
j (~Θ)p̂

(J(%)EW
j (~Θ) + αR(%))q

%n−1 d% d~Θ

=

∫
Sn

(
EŴ
j (~Θ)

EW
j (~Θ)

)p̂

EW
j (~Θ)p−q

%max(~Θ)∫
0

e−τ%
2 J(%)p

(J(%) + (α/EW
j (~Θ))R(%))q

%n−1 d% d~Θ.

(C.1)

We then focus on the integral over % above. We first replace its upper limit, %max(~Θ),

with ∞, under the assumption that |F | rolls off well before the upper limit of the

integral. In doing this, the integrand is entirely independent of ~Θ:

∞∫
0

e−τ%
2 J(%)p

(J(%) + (α/EW
j (~Θ))R(%))q

%n−1 d% ≈
∞∫

0

e−τ%
2 (1− c%2)p

(1− c%2 + γ%3)q
%n−1+q−p d%

∣∣∣∣∣∣
γ=R0α/EWj (~Θ)

= Ggauss,p,q,n(τ, R0α/E
W
j (~Θ)), (C.2)

where Ggauss,p,q,n is defined as

Ggauss,p,q,n(τ, γ) ,

∞∫
0

e−τ%
2 (1− c%2)p

(1− c%2 + γ%3)q
%n−1+q−p d%. (C.3)

As we have done previously with functions for variance prediction, we precompute

Ggauss,p,q,n for a range of potential τ and γ. The integral of (C.1) then becomes, in

terms of this function,

∫
[− 1

2
, 1
2 ]
n

|F (~ν)|2
HW
j (~ν)p−p̂HŴ

j (~ν)p̂

(HW
j (~ν) + αR(~ν))q

d~ν ≈
∫
Sn

(
EŴ
j (~Θ)

EW
j (~Θ)

)p̂

EW
j (~Θ)p−qGgauss,p,q,n(τ, R0α/E

W
j (~Θ)) d~Θ.

(C.4)

Computing the integral of (5.27) then becomes this lookup-based numerical integral

(C.4).

We can get away with only needing a one-dimensional table if we use an impulse
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basis for the voxels instead of a rectangular basis, in which case J(~ν) = 1/%, and

%max(~Θ)∫
0

e−τ%
2 J(%)p

(J(%) + (α/EW
j )R(%))q

%n−1 d% ≈
∞∫

0

e−τ%
2

%n−1+q−p(1 + γ%3)−q d%

∣∣∣∣∣∣
γ=R0α/EWj (~Θ)

= τ−(n+q−p)/2

∞∫
0

e−z
2

zn−1+q−p(1 + γz3/τ 3/2)−q dz

= τ−(n+q−p)/2G(1D)
gauss,p,q,n(γ/τ 3/2),

where

G(1D)
gauss,p,q,n(a) ,

∞∫
0

e−z
2

zn−1+q−p(1 + az3)−q dz.

For the purposes of tube current optimization, tables of the value of the derivative

of Ggauss,p,q,n with respect to its second argument γ are useful. Conveniently, we can

use existing tables:

G(γ)
gauss,n,p,q(τ, γ) ,

∂

∂γ
Ggauss,p,q,n(τ, γ) =

∞∫
0

e−τ%
2 (1− c%2)p

(1− c%2 + γ%3)q+1
(−q)%3%n−1+q−p d%

(C.5)

= −q Ggauss,p,q+1,n+2(τ, γ). (C.6)

We represent the derivative of Ggauss,p,q,n as G
(γ)
gauss,p,q,n when we wish to emphasize

that the derivative is being used, but will evaluate the derivative using (C.6).
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[41] F. Natterer and F. Wübbeling. Mathematical methods in image reconstruction.

Soc. Indust. Appl. Math., Philadelphia, 2001.

[42] J Neyman and ES Pearson. On the problem of the most efficient tests of statis-

tical hypotheses. Philosophical Transactions of the Royal Society, 231:289–337,

1933.

[43] Loren T Niklason, Bradley T Christian, Laura E Niklason, Daniel B Kopans,

Donald E Castleberry, BH Opsahl-Ong, Cynthia E Landberg, Priscilla J Slan-

etz, Angela A Giardino, Richard Moore, et al. Digital tomosynthesis in breast

imaging. Radiology, 205(2):399–406, 1997.

[44] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST

Handbook of Mathematical Functions. Cambridge University Press, New York,

NY, 2010. Print companion to [12].

[45] S. S. Orlov. Theory of three-dimensional reconstruction II. the recovery operator.

Sov. Phys. Crystallogr., 20:429, 1976.

[46] Julien G Ott, Fabio Becce, Pascal Monnin, Sabine Schmidt, François O Bochud,

and Francis R Verdun. Update on the non-prewhitening model observer in com-

puted tomography for the assessment of the adaptive statistical and model-

based iterative reconstruction algorithms. Physics in medicine and biology,

59(15):4047, 2014.

[47] J. Qi and R. M. Leahy. A theoretical study of the contrast recovery and variance

of MAP reconstructions from PET data. IEEE Trans. Med. Imag., 18(4):293–

305, April 1999.

[48] Victor V. Samedov. Theoretical basis for the experimental determination of the

intrinsic resolution of a strip detector. X-Ray Spectrometry, 40(1):7–11, 2011.

[49] K. Sauer and C. Bouman. A local update strategy for iterative reconstruction

from projections. IEEE Trans. Sig. Proc., 41(2):534–48, February 1993.

[50] S. Schmitt and J. A. Fessler. Fast variance computation for quadratically penal-

ized iterative reconstruction of 3D axial CT images. In Proc. IEEE Nuc. Sci.

Symp. Med. Im. Conf., pages 3287–92, 2012.

[51] S. M. Schmitt and J. A. Fessler. Fast variance computation for iterative recon-

struction of 3D helical CT images. In Proc. Intl. Mtg. on Fully 3D Image Recon.

in Rad. and Nuc. Med, pages 162–5, 2013.

119



[52] S. M. Schmitt and J. A. Fessler. Fast variance prediction for iteratively recon-

structed CT images. IEEE Trans. Med. Imag., 2015. In revsion.

[53] S. M. Schmitt, J. A. Fessler, G. D. Fichter, and D. A. Zimdars. Model-based,

one-sided, time-of-flight terahertz image reconstruction. In Proc. SPIE 9020

Computational Imaging XII, page 90200N, 2014.

[54] W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W. Tsui. Realistic

CT simulation using the 4D XCAT phantom. Med. Phys., 35(8):3800–8, August

2008.

[55] H.R. Shi and J.A. Fessler. Quadratic regularization design for 2-D CT. Medical

Imaging, IEEE Transactions on, 28(5):645 –656, may 2009.

[56] Alvin C Silva, Holly J Lawder, Amy Hara, Jennifer Kujak, and William Pavlicek.

Innovations in CT dose reduction strategy: application of the adaptive statis-

tical iterative reconstruction algorithm. American Journal of Roentgenology,

194(1):191–199, 2010.

[57] J. W. Stayman and J. A. Fessler. Regularization for uniform spatial resolu-

tion properties in penalized-likelihood image reconstruction. IEEE Trans. Med.

Imag., 19(6):601–15, June 2000.

[58] Bradley P Sutton, Douglas C Noll, and Jeffrey A Fessler. Fast, iterative image

reconstruction for MRI in the presence of field inhomogeneities. Medical Imaging,

IEEE Transactions on, 22(2):178–188, 2003.

[59] D. Tack, V. De Maertelaer, and P. A. Gevenois. Dose reduction in multidetector

CT using attenuation-based online tube current modulation. American Journal

of Roentgenology, 181:331–4, 2003.

[60] J-B. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh. A recursive filter for

noise reduction in statistical iterative tomographic imaging. In Proc. SPIE 6065,

Computational Imaging IV, page 60650X, 2006.

[61] J-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh. A three-dimensional statis-

tical approach to improved image quality for multi-slice helical CT. Med. Phys.,

34(11):4526–44, November 2007.

[62] Hsin-Wu Tseng, Jiahua Fan, Matthew A Kupinski, Paavana Sainath, and Jiang

Hsieh. Assessing image quality and dose reduction of a new X-ray computed

120



tomography iterative reconstruction algorithm using model observers. Medical

physics, 41(7):071910, 2014.

[63] United Kingdom Health and Safety Executive. ALARP “at a glance”.

http://www.hse.gov.uk/risk/theory/alarpglance.htm.

[64] United States Nuclear Regulatory Commission. Code of Federal Regulations,

Title 10, Section 20.1003. Last amended December 2009.

[65] Varut Vardhanabhuti, Robert Loader, and Carl A Roobottom. Assessment of

image quality on effects of varying tube voltage and automatic tube current

modulation with hybrid and pure iterative reconstruction techniques in abdom-

inal/pelvic ct: a phantom study. Investigative radiology, 48(3):167–174, 2013.

[66] J. G. Verly and R. N. Bracewell. Blurring in tomograms made with X-Ray beams

of finite width. Journal of Computer Assisted Tomography, 3(5):662–78, october

1979.

[67] G. Wang, M. W. Vannier, and P. C. Cheng. Iterative X-ray cone-beam tomog-

raphy for metal artifact reduction and local region reconstruction. Microscopy

and Microanalysis, 5(1):58–65, January 1999.

[68] J. A. C. Weideman. Numerical integration of periodic functions: A few examples.

The American Mathematical Monthly, 109(1):pp. 21–36, 2002.

[69] B. R. Whiting. Signal statistics in X-ray computed tomography. In Proc. SPIE

4682, Medical Imaging 2002: Med. Phys., pages 53–60, 2002.

[70] B. R. Whiting, P. Massoumzadeh, O. A. Earl, J. A. O’Sullivan, D. L. Snyder, and

J. F. Williamson. Properties of preprocessed sinogram data in X-ray computed

tomography. Med. Phys., 33(9):3290–303, September 2006.

[71] A. Wunderlich and Frederic Noo. Evaluation of the impact of tube current

modulation on lesion detectability using model observers. In Proc. Int’l. Conf.

IEEE Engr. in Med. and Biol. Soc., pages 2705–8, 2008.

[72] Adam Wunderlich and Frédéric Noo. Image covariance and lesion detectability in

direct fan-beam X-ray computed tomography. Physics in medicine and biology,

53(10):2471, 2008.

121



[73] Jie Yao and Harrison H Barrett. Predicting human performance by a channelized

Hotelling observer model. In San Diego’92, pages 161–168. International Society

for Optics and Photonics, 1992.

[74] A. Yendiki. Analysis of signal detectability in statistically reconstructed tomo-

graphic images. PhD thesis, Univ. of Michigan, Ann Arbor, MI, 48109-2122,

Ann Arbor, MI, 2005.

[75] K. Zeng, B. De Man, and J-B. Thibault. Correction of iterative reconstruction

artifacts in helical cone-beam CT. In Proc. Intl. Mtg. on Fully 3D Image Recon.

in Rad. and Nuc. Med, pages 242–5, 2009.

[76] Y. Zhang-O’Connor and J. A. Fessler. Fast predictions of variance images for

fan-beam transmission tomography with quadratic regularization. IEEE Trans.

Med. Imag., 26(3):335–46, March 2007.

[77] Y. Zhang-O’Connor and J. A. Fessler. Fast variance predictions for 3D cone-

beam CT with quadratic regularization. In Proc. SPIE 6510, Medical Imaging:

Phys. Med. Im., pages 65105W:1–10, 2007.
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