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Preface 
 

This thesis is a compilation of published and unpublished work dissecting the role 

of human Hsp70 nucleotide exchange factors (NEFs). NEFs help guide Hsp70 

biology and are an important component of the proteostasis network. In Chapter 

1, we introduce Hsp70, the various classes of NEFs, and reasons for targeting 

the Hsp70-NEF interaction. A portion of this chapter was published as: Assimon 

VA*, Gilles AT*, Rauch JN*, Gestwicki JE. Hsp70 protein complexes as drug 

targets. Current Pharmaceutical Design. 2013; 19(3):404-17. Chapter 2 

describes the systematic biochemical characterization of two NEF families, 

Hsp105 and the BAG proteins. This chapter represents work published as Rauch 
JN and Gestwicki JE. Binding of human nucleotide exchange factors to heat 

shock protein 70 (Hsp70) generates functionally distinct complexes in vitro. 

Journal of Biological Chemistry. 2014; 289(3):1402-14. In Chapter 3, we move on 

to develop a novel high throughput screening platform to aid in the discovery of 

Hsp70-NEF inhibitors. Work from this chapter was published as Rauch JN*, Nie 

J*, Buchholz TJ, Gestwicki JE, Kennedy RT. Development of a capillary 

electrophoresis platform for identifying inhibitors of protein-protein interactions. 

Analytical Chemistry. 2013; 85(20):9824-31. Then in Chapter 4 we focus on the 

specific NEF BAG3 and its role in bridging two major chaperone families. This 

work is currently in preparation to be submitted as a manuscript. Finally, in 

Chapter 5 we summarize the work provided in this thesis and discuss future work 

needed to expand on the ideas presented here. The appendix contains work that 

was published as Miyata Y*, Rauch JN*, Jinwal UK, Thompson AD, Srinivasan 

S, Dickey CA, Gestwicki JE. Cysteine reactivity distinguishes redox sensing by 

the heat-inducible and constitutive forms of heat shock protein 70. Chemistry & 

Biology. 2012; 19:1391-9. 
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Abstract 
 

Regulation of Human Hsp70 by its Nucleotide Exchange Factors (NEFs) 

by 

Jennifer N. Rauch 

 

Heat shock protein 70 (Hsp70) is an abundant and ubiquitous molecular 

chaperone that is responsible for maintenance of the human proteome. Hsp70 is 

known to play key roles in virtually every cellular process that involves proteins, 

including their folding, stabilization, trafficking, and turnover. Accordingly, Hsp70 

has become an attractive drug target for neurodegenerative and 

hyperproliferative disorders; however it is difficult to imagine strategies for 

inhibiting its pathobiology without impacting its essential roles. Fortunately, 

Hsp70 does not work alone, and instead employs a large network of co-

chaperone proteins, which can tune Hsp70 activity and influence disease state. 

These co-chaperone proteins provide potential handles for targeting Hsp70 

without disrupting overall proteostasis.  

 

One such class of co-chaperones proteins known as the Nucleotide Exchange 

Factors (NEFs), are a particular appealing target. NEFs bind Hsp70 and help to 

facilitate the exchange of ADP for ATP. The biochemistry of the NEF family of co-

chaperones has classically been investigated using the prokaryotic NEF, GrpE, 

as a model. However, the eukaryotic cytosol does not contain a GrpE homolog. 

Rather, there are three main sub-classes of human NEFs: Hsp110, HspBP1, and 

the BAG proteins, all of which are structurally distinct with little sequence 

homology. Consistent with their diverse structures, they also differ in their mode 

of binding to Hsp70 and their roles in guiding Hsp70 biology. For example, BAG2 



 

 xv 

is associated with proteasomal degradation of the Hsp70 substrate, tau, while 

BAG1-Hsp70 is linked to increased tau stability. These observations suggest that 

the formation of specific NEF-Hsp70 complexes may help decide the fate of 

Hsp70-bound substrates. Additionally, these findings illustrate that differential 

disruption of specific Hsp70-NEF contacts might be beneficial in disease.  

 

In this thesis work I have systematically characterized the human Hsp70 NEFs, 

including how they interact with Hsp70, how the influence Hsp70 biochemistry 

and how they can bridge Hsp70 with other classes of chaperone proteins. I have 

used high throughput screening methods to search for chemical matter that can 

modulate Hsp70-NEF interactions, and we have shown that inhibitors of Hsp70-

NEF interactions can be beneficial for treating disease. This thesis work has 

significantly advanced our knowledge of human Hsp70 regulation, and has 

provided groundwork for future studies on other Hsp70 co-chaperones and 

proteostasis components.  
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Chapter 1                                                                                                 

The Nucleotide Exchange Factors (NEFs) of Heat Shock Protein 70 (Hsp70): 

Background and Potential as Drug Targets. 

 
1.1 Abstract 
Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an 

emerging target for multiple diseases. However, competitive inhibition of the 

enzymatic activity of Hsp70 has proven challenging and, in some cases, may not 

be the most productive way to redirect Hsp70 function. Another approach is to 

inhibit Hsp70’s interactions with important co-chaperones, such as J-proteins, 

nucleotide exchange factors (NEFs), or tetratricopeptide repeat (TPR) domain 

proteins. These co-chaperones normally bind Hsp70 and guide its many, diverse 

cellular activities. Complexes between Hsp70 and co-chaperones have been 

shown to have specific functions, such as pro-folding, pro-degradation or pro-

trafficking. In addition, Hsp70 complexes have been shown to be important in 

helping Hsp70 select substrates from the proteome. Thus, one promising 

strategy is to block protein-protein interactions with co-chaperones or to target 

allosteric sites that disrupt these contacts. Such an approach might re-shape the 

proteome and restore healthy proteostasis. In this chapter we focus on a specific 

group of Hsp70 co-chaperones, the NEFs. We discuss what is known about their 

function, disease relevance, and how they could be targeted to influence Hsp70 

biology. 

 
1.2 The diversity of Hsp70 function 
Heat shock protein 70 (Hsp70) is an abundant and ubiquitous molecular 

chaperone that plays a central role in protein quality control [2, 3]. Hsp70 binds to 

protein substrates to assist with their folding [4-6], degradation , transport [9], 
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regulation [6] and aggregation prevention [8]. The capacity of Hsp70 to carry out 

these widely divergent functions arises, in part, from three features. First, 

evolution has given rise to multiple homologous Hsp70 genes in eukaryotes [3]. 

These Hsp70s populate all of the major subcellular compartments. For example, 

the cytosol of human cells has two major isoforms of Hsp70, a stress-inducible 

form (Hsp72/HSP1A1) and a constitutive form (Hsc70/HSPA8). Similarly, BiP 

(HSPA5) is the form in the endoplasmic reticulum and mortalin (HSPA9) in the 

mitochondria. Another source of functional diversity in Hsp70s is cooperation with 

other chaperones, such as Hsp90 or Hsp60 [10, 11]. Cooperation between 

Hsp70 and Hsp90, for example, is critical to the function of nuclear hormone 

receptors [12]. Finally, the full diversity of Hsp70 activities is achieved through 

cooperation with a large network of co-chaperones [11], including J proteins, 

nucleotide exchange factors (NEFs), and tetratricopeptide repeat (TPR)-domain 

containing proteins [11]. These factors bind to Hsp70 and guide its many 

chaperone activities. In addition, each class of co-chaperones includes many 

distinct examples in mammalian cells, such that multiple J proteins, for example, 

compete for binding to the same site on Hsp70.  

 

1.2.1 Structure and Function of Hsp70 and Its Complexes 
Hsp70 consists of two domains, a 45 kDa N-terminal nucleotide binding domain 

(NBD) and a 25 kDa C-terminal substrate-binding domain (SBD) connected by a 

short flexible linker [12]. The NBD of Hsp70 is further divided into two 

subdomains, lobes I and II, that are each divided into an “A” and “B” region 

(Figure 1.1). These lobes form a cleft that binds ATP with a nucleotide-binding 

cassette that is related to hexokinase and actin [2, 13]. Hsp70’s SBD is 

composed of a 15 kDa β-sandwich subdomain with a hydrophobic groove for 

polypeptide binding and a 10 kDa α-helical region which forms a “lid” over the 

polypeptide-binding site [14]. Hsp70 preferentially binds hydrophobic regions of 

proteins and can therefore bind newly synthesized linear peptides or exposed 

regions on partially unfolded proteins [14, 15]. The lack of strong sequence 

specificity allows Hsp70 to bind a variety of client proteins including signal 
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transduction proteins, clathrin, nuclear hormone receptors, and cytoskeletal 

proteins [16]. 

 

The ATPase cycle of Hsp70s has been largely studied in the context of the highly 

conserved, prokaryotic DnaK. In this chaperone, ATP hydrolysis involves critical 

allostery between the NBD and SBD. In the ATP-bound state, Hsp70 has a low 

affinity for substrate and retains an “open” substrate-binding cleft, but conversion 

to the ADP-bound state causes the α-helical lid region to close (Figure 1.2) [18]. 

In DnaK, this crosstalk between the NBD and SBD appears to be bidirectional, 

because substrate binding also promotes nucleotide hydrolysis [18]. Thus, ATP 

hydrolysis in Hsp70s is thought to be a major determinant of their chaperone 

functions. For example, mutations in the ATP-binding cassette have dramatic 

effects on chaperone functions in vitro and in vivo [18]. However, recent 

mutagenesis studies have further shown that the relationship between ATP 

hydrolysis and chaperone functions is indirect [19]. For example, some mutations 

in DnaK that dramatically reduce ATP turnover have only modest effects on 

luciferase refolding. These observations suggest that inhibiting the ATPase 

activity of Hsp70 might not always directly lead to proportional changes in 

functional outcomes, such as reduced client stability. Rather, modifying the 

Nucleotide binding
 domain (NBD)

Substrate binding 
domain (SBD)

linker

IB

IA

IIA

ATP-binding cleft

IIB

2KHO

“High Affinity”“Low Affinity”

ATP

J protein

ADP

NEF

(A)(A)

(B)

Figure 1.1: Hsp70 is composed of two domains. A nucleotide binding domain (NBD) that 
is responsible for binding and hydrolyzing ATP, and a substrate binding domain (SBD) 
that is responsible for binding cl ient proteins. The NBD is divided into four lobes: IA, IB, 
I IA, and IIB. The SBD has a β-sandwich subdomain and an α-helical l id region. 
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interactions with co-chaperones might have a more predictable effect on 

chaperone functions [20]. 

 

1.2.2 Co-Chaperones Regulate Hsp70 Structure and Activity 
The major families of co-chaperones bind to distinct interaction surfaces on 

Hsp70. The J protein co-chaperones bind Hsp70 at lobe IIA of the NBD and 

accelerate the rate of ATP hydrolysis [21]. The NEF co-chaperones bind lobes IB 

and IIB of Hsp70’s NBD and facilitate the release of ADP, which has also been 

shown to accelerate Hsp70’s ATPase rate [22]. By accelerating nucleotide 

exchange on Hsp70, NEFs also cause substrate release from Hsp70. Likewise, 

TPR domain containing co-chaperones bind Hsp70’s C-terminus and have been 

shown to modulate the fates of Hsp70 client proteins [22-24]. Thus, the major 

families of co-chaperones bind Hsp70 to regulate its enzymatic activity, its 

localization and its choice of substrates.  

 

ATP

ADP

ADP

ATP

Folding

Degradation

NEF

J Protein

ADP

ATP

Figure 1.2. Hsp70 in an ATP state binds substrate with low aff inity. J proteins 
accelerate ATP hydrolysis driving Hsp70 to the ADP state and promote a high aff inity for 
substrates. NEFs faci l i tate the exchange of ADP for ATP and reset the cycle for folding 
or degradation. 
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1.2.3 Approaches to Targeting Hsp70 
What is the best way to chemically target Hsp70? One possible approach is to 

inhibit ATPase activity with competitive nucleotide analogs, as has been done 

with Hsp90 inhibitors [24]. The nucleotide-binding cleft of Hsp70 is well defined 

and relatively deep, suggesting that it might be suitable for development of 

inhibitors. However, Hsp70 has a relatively high affinity (mid-nanomolar) for 

nucleotide, 300-fold better affinity than Hsp90 [24-26]. Because the cellular 

concentration of ATP is typically about 1-5 mM, protein targets with a high affinity 

for ADP and ATP are much more difficult to inhibit than those with a lower 

affinity. Further, the ATP-binding cassette in Hsp70 is highly homologous in actin 

and other abundant proteins. Thus, selectivity for the chaperone might be 

challenging. Despite these challenges, innovative work performed by Vernalis 

has produced competitive, orthosteric inhibitors of Hsp70, using structure-based 

design [25]. Consistent with their design, these compounds inhibit cancer cell 

viability [26] and this group has even been successful at selectively targeting BiP 

[25]. However, Massey has reported that the path towards orthostatic, 

competitive inhibitors of Hsp70 is quantitatively more challenging than the 

parallel path to other related targets, such as Hsp90 [26]. Consistent with this, 

allosteric modulators of Hsp70’s NBD have recently gained favorable attention. A 

rational design approach lead Chiosis and colleagues to the small molecule YK5. 

YK5 forms a covalent adduct with a reactive cysteine (C267) in a pocket above 

the ATP-binding cassette, inhibits Hsp70 biochemical function, and promotes 

apoptosis in cancer cells [27]. Likewise, work from our lab has focused on the 

MKT-077 series. These compounds bind below the ATP binding pocket and 

stabilize Hsp70 in an “ADP-like” state [28]. The effects of these small molecules 

on Hsp70 biology will be discussed further in Chapter 5.  

 

Targeting the substrate-binding cleft of Hsp70 is the next logical avenue, given 

the depth of the site and its known affinity for relatively low molecular mass 

peptides. This approach has been taken by Chaperone Technologies in their 

development of antibiotics. For example, a series of 18-20 amino acid peptides, 
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including drosocin, pyrrhocoricin, and apidaecin, are known to interact with DnaK 

[27]. Of these peptides, pyrrhocoricin exhibited broad-spectrum antibacterial 

activity. Competition experiments indicated that this peptide has two binding sites 

on DnaK, one of which is thought to be adjacent to the substrate-binding pocket. 

Interestingly, pyrrhocoricin has activity against bacteria but not mammalian cells 

[29-31], suggesting that the SBD could be leveraged to gain selectivity between 

different isoforms of Hsp70.  Indeed, another natural product, Novolactone, has 

recently been shown to target the SBD of human Hsp70. This compound acts as 

a covalent modifier and shows selectivity for cytosolic and ER localized Hsp70s 

due to the presence of glutamate at position 444 (E444) [29]. While these works 

highlight the efficiency of SBD-targeted compounds, it is unclear whether this 

strategy could be implemented in the development of therapeutics for different 

Hsp70 related diseases. 

 

Given the significant challenges associated with the targeting of either the 

nucleotide- or substrate-binding regions of Hsp70, additional strategies are worth 

pursuing. A number of additional Hsp70 inhibitors have been identified, but their 

mechanisms are not known yet [31-33]. To supplement this collection of 

compounds, targeting the protein-protein interactions (PPIs) between Hsp70 and 

its many co-chaperones may be an effective approach.  

 
1.3 NEFs are an emerging target 
Nucleotide exchange factors (NEF) provide a potential “handle” for targeting the 

Hsp70 chaperone complex. NEFs bind Hsp70 and help to facilitate the exchange 

of ADP for ATP. The biochemistry of the NEF family of co-chaperones has 

classically been investigated using the prokaryotic NEF, GrpE, as a model [31]. 

However, the eukaryotic cytosol does not contain a GrpE homolog. Rather, there 

are three main sub-classes of human NEFs: Hsp110, HspBP1, and the BAG 

proteins, all of which are structurally distinct with little to no sequence homology 

(Figure 1.3). Consistent with their diverse structures, they also differ in their 

mode of binding to Hsp70s and their roles in guiding Hsp70 biology. For 
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example, BAG2 is associated with proteasomal degradation of the Hsp70 

substrate, tau, while BAG1-Hsp70 is linked to increased tau stability [34-37]. 

These observations suggest that the formation of specific NEF-Hsp70 complexes 

may help decide the fate of Hsp70-bound substrates. Also, these observations 

suggest that differential disruption of specific Hsp70-NEF contacts might be 

beneficial for treating disease. For example, members of the NEF family are 

differentially expressed in multiple diseases, including cancer, Alzheimer’s, 

cardiomyopathies, and ischemia [36-39], highlighting the rationale for developing 

chemical modulators of NEF-Hsp70 interactions. 

 

1.3.1 Hsp110 Family 
Heat shock protein 110 (Hsp110) was originally observed and classified as a 

heat shock protein based on the appearance of a 110 kDa band in the lysates of 

Figure 1.3. Structures of Hsp70-NEF complexes. Crystal structure of yeast Hsp110, 
Sse1, and human Hsp70 NBD. Complex formation between Hsp70 and Hsp110 leads to 
a rotation in lobe IIB al lowing nucleotide release. Crystal structure of HspBP1 and lobe 
II of Hsp70's NBD. HspBP1 wraps around lobe IIB displacing lobe I and opening the 
nucleotide cleft.  Crystal structures of Hsp70 NBD in complex with the BAG domain of 
BAG1 and BAG2. Association between Hsp70 and the BAG proteins cause an outward 
rotation of lobe II ,  promoting nucleotide exchange. In al l  f igures Hsp70 is colored in 
orange and NEFs are colored in purple with PDB codes indicated.   

3D2F 

1HX1 

1XQS 

3CQX 
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Chinese Hamster Ovary (CHO) cells upon heat shock [39, 40]. In humans the 

major cytosolic Hsp110 protein is called Hsp105 (HSPH1) and it has two major 

isoforms α and β [41]. Hsp105α is constitutively expressed and upregulated by a 

variety of stressors, whereas the alternatively spliced isoform Hsp105β is only 

induced upon heat shock [41]. The Hsp110 family is evolutionarily conserved 

from yeast to humans [41]. While research has primarily focused on Homo 

sapiens and S. cerevisiae (yeast) Hsp110 proteins, genes for Hsp110 family 

members have been annotated in over 80 species. The high level of 

conservation across species (25% identity from humans to yeast) is indicative of 

the essential function of this group of proteins [43]. 

 

Hsp110 proteins are evolutionary relatives of the Hsp70 family, and in fact were 

originally classified as an Hsp70 sub-family. While sequence conservation 

between Hsp70 and Hsp110 proteins is only ~30%, structural analyses have 

shown they share the same features and are likely derived from ancestral DnaK 

[44]. For example, Hsp110 proteins (like Hsp70s) are composed of two domains, 

a nucleotide binding domain (NBD) and a substrate-binding domain (SBD), which 

are connected by a flexible linker. In addition, Hsp110s also contain a variable C-

terminal extension with little predicted structure. While the overall domain 

architecture is reminiscent of the Hsp70 family, the major structural differences 

are found in the SBD. Unlike Hsp70, Hsp110 members contain an acidic 

insertion in the SBD and their C-terminal extensions tend to be longer (>100 AA). 

Functionally, although Hsp110 has been reported to bind ATP [45], only human 

Hsp110 (HSPH1) has been reported to have intrinsic ATPase activity [43, 45-48]. 

Thus, Hsp110s share some structural similarity with Hsp70s but they differ in 

important ways. 

 

Early studies demonstrated that Hsp110 overexpression was sufficient to confer 

thermal tolerance to cells and prevent aggregation of proteins in vitro [47]. 

Despite the structural similarity to Hsp70, Hsp110 only functions as a holdase 

and has no ability to refold substrates without the help of the Hsp70 machinery 
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[45, 47-50]. Regardless, Hsp110 has been shown to be a very efficient 

chaperone that can bind peptide substrates with low nM affinity and perhaps is 

even more effective than Hsp70 at stabilizing unfolded proteins [47, 51, 52]. 

Studies looking at the substrate binding properties of Hsp110 vs. Hsp70 proteins 

have found that, while both proteins use their respective SBDs to interact with 

clients, they vary in several binding properties including sequence preference, 

binding kinetics, and nucleotide requirements [51]. Interestingly, swapping of loop 

regions within the SBD of either partner was sufficient to confer specificity, as 

well as convert Hsp70 from its normal foldase function to an Hsp110-like holdase 

[53]. This functional difference is important because Hsp110’s holdase activity 

appears to be hijacked by cancer cells. Specifically, Hsp110 stabilizes anti-

apoptotic factors and prevents apoptosis [54, 55]. In line with this thinking, 

Hsp110 is overexpressed in a variety of human tumors [56, 57] and siRNA 

knockdown of Hsp110 or expression of a naturally occurring dominant negative 

mutant, Hsp110ΔE9, have been shown to sensitize cancer cells and induce 

apoptosis in human cancer cells, but not in control fibroblasts [58].	
  

 

As a NEF for Hsp70, Hsp110 has been implicated in various cellular processes, 

including co-translational and post-translational folding [60], stabilization and 

secretion of proteins [61], maturation and signaling of glucocorticoid receptor 

[63], as well as degradation of Hsp70 clients [63, 64]. Overexpression of Hsp110 

has been shown to be protective for various neurodegenerative diseases [65]. 

Likewise, Hsp110 knockout mice exhibit an age-dependent accumulation of 

phosphorylated tau that is associated with the appearance of neurofibrillary 

tangles and neurodegeneration [67, 68].	
  

 

X-ray crystal structures of the S. cerevisiae Hsp110 (Sse1) have been solved 

alone [68], as well as in complex with Hsp70 [69]. The Hsp110-Hsp70 complex 

structure shows that the protein-protein interaction between the two covers a 

large surface area involving both partners’ NBDs (Figure 1.3). An extensive 

network of intermolecular contacts along each partner’s NBD is consistent with 
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the measured stability of the complex. The binding of Hsp110 to Hsp70 causes 

several rotations in Hsp70’s NBD, especially in lobe IIB, allowing ADP release, 

thus providing a structural mechanism for Hsp110’s NEF activity (Figure 1.3) 

 

The large buried surface area between Hsp70 and Hsp110 may make targeting 

this interaction difficult. The problem in PPI systems like this is that binding 

energy is often distributed across a large and complex topology, precluding easy 

inhibition by small (<500 Da) molecules. However, inhibiting PPIs with large 

surface areas is not unprecedented and compounds with potency values in the 

low nM range have been reported [71]. A common feature of previous successful 

strategies is that the small molecules tend to target so-called “hotspots” of the 

PPI, meaning that the inhibitor binds in a region on one partner containing a 

small number of residues that are responsible for the majority of the binding 

strength [72]. Thus, it will be important to identify residues that are critical to the 

Hsp70-NEF interaction. Another common feature of successful PPI inhibitors is 

that they bind in allosteric sites to impact the topology of protein-protein contact 

surfaces from a distance. This approach lets the small molecule bind in a 

relatively concise pocket and impact larger surfaces to block PPIs. It seems likely 

that similar mechanisms will need to be employed to target the Hsp110-Hsp70 

interaction. This will be important based on the genetic findings that the Hsp70-

Hsp110 interface might be a critical anti-cancer target.  

	
  

1.3.2 HspBP1 
Similar issues are important in considering the potential for inhibition of the other 

major classes of NEFs. The Hsp binding protein 1 (HspBP1) was originally 

identified in a yeast two-hybrid screen for Hsp70 interacting proteins using a 

human heart cDNA library [74]. Since then, sequence homologs to HspBP1 have 

been identified throughout the eukaryotic domain, as well as paralogous ER 

proteins in mammals and yeast [75].  
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HspBP1 is a 40 kDa protein that is composed of two structural domains, one N-

terminal domain that is largely unstructured and a C-terminal domain that is 

mostly α-helical and is responsible for HspBP1 binding to Hsp70 [77].  This C-

terminal region has been shown to be sufficient for eliciting Hsp70 nucleotide 

release and inhibiting Hsp70 dependent refolding of luciferase [76]. Insight into 

HspBP1 NEF function came from the crystal structure of HspBP1’s C-terminal 

domain solved in complex with lobe II of Hsp70’s NBD [76, 77]. The armadillo 

repeats of the HspBP1 structure wrap around lobe II of the Hsp70 NBD (Figure 

1.3) and due to steric hindrance cause a large displacement of lobe I relative to 

lobe II [78]. This shift facilitates nucleotide exchange, increases NBD hydrogen 

deuterium exchange, and increases protease susceptibility [78].  

 

While little research has fully examined substrate client fate upon HspBP1 

binding to Hsp70, HspBP1 has been shown to be a potent inhibitor of Hsp70 

refolding activity even at substoichiometric concentrations [80]. Inhibiting Hsp70 

function can obviously have detrimental effects to the cell; however, in tumor 

cells where Hsp70 functions to prevent apoptotic death and promote 

tumorigenesis, inhibiting Hsp70 can be beneficial. In line with this thinking, 

patients who have higher ratios of HspBP1/Hsp70 have been shown to have less 

aggressive tumors and are more susceptible to anti-cancer drugs and 

chemotherapies [79]. Furthermore, anti-cancer drugs themselves have been 

shown to upregulate HspBP1 expression in tumor cell lines [81]. This line of 

evidence suggests that increasing HspBP1 levels and/or activating HspBP1-

Hsp70 complexes could be a potential therapeutic for specific tumor types. 

 

1.3.3 BAG Family 
Additional lessons about how to potentially target the Hsp70-NEF interaction are 

illustrated by the BAG family of co-chaperones, which includes BAG1-6. BAG 

proteins are defined by a characteristic C-terminal BAG domain that binds lobe 

IB and IIB of Hsp70’s NBD and facilitates nucleotide release [20, 82]. This BAG 

domain typically consists of ~100 amino acids and forms a three-helix bundle 
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with the second and third helices providing the binding interfaces for Hsp70 [20]. 

The association between the BAG domain and Hsp70 causes a 14° rotation in 

lobe II, which results in an opening of the nucleotide binding cleft and promotes 

ADP release (Figure 1.3) [22]. Interestingly, while all BAG proteins interact with 

Hsp70 through their conserved BAG domains, their N-terminal region is highly 

variable (Figure 1.4). This diversity is likely to be key for pathway specificity and 

BAG proteins may use these domains to determine the timing and location of 

nucleotide-dependent delivery of Hsp70-bound cargo.  

  

1.3.3.1 BAG1 
BAG1 is the founding member of the BAG protein family. It was initially 

discovered by two independent research groups using immunochemical 

screening methods to identify interacting partners of the anti-apoptotic protein 

Bcl-2 and the glucocorticoid receptor, respectively [83]. The former researchers 

entitled their protein Bcl-2-associated AnthanoGene-1 (BAG1) [86]. Four human 

BAG1 isoforms are expressed through alternative initiation sites and are 

designated BAG1L (p50, Hap50), BAG1M (p46, Rap46, Hap46), BAG1S (p36, 

Hap33), and p29 (Hap29) [87]. BAG1S is the most abundant isoform expressed 

in cells, followed by BAG1L and BAG1M, while p29 is not consistently detected 

[88-90]. BAG1 isoforms share a common C-terminus, containing the BAG 

domain and an Ubiquitin-like (UBL) domain, while their N-termini differ based on 

the translation initiation site (Figure 1.4). Besides their BAG and UBL domains, 

longer isoforms of BAG1 (M & L) also contain TXSEEX repeats, a DNA-binding 

domain (DBD), and BAG1L contains a nuclear localization signal (NLS). These 

various domains help to dictate interacting partners as well as cellular function 

and localization of each BAG1 isoform (for review see [89]).  

 

BAG1 regulates the fate of Hsp70-bound client proteins. For example, the UBL 

domain of BAG1 allows for BAG1-Hsp70 complexes to associate with the 

proteasome and promotes the degradation of specific client proteins such as the 

glucocorticoid receptor, BCR-ABL and huntingtin protein (Htt) [90-92]. However, 
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BAG1 has also been shown to inhibit proteasomal degradation of other Hsp70 

clients, such as tau and CFTR [92]. These observations suggest that chemically 

targeting BAG1-Hsp70 complexes could be used to reshape the proteome. Work 

towards that goal has been reported by Sharp et. al, in which they performed a 

screen for inhibitors of the BAG1-Hsp70 interaction using GST pulldowns. After 

hit validation, NSC71948 (Thioflavin S), was selected for further study [80]. This 

compound inhibits ERK phosphorylation and growth of ZR-75-1 human breast 

cancer cells. This group has further gone on to isolate the active component of 

the complex Thioflavin S mixture (Thio-2), and show that this molecule might 

have therapeutic potential for BRAF inhibitor-resistant cell lines [94]. While these 

studies suggest that targeting a BAG-Hsp70 complex is both feasible and 

beneficial, further studies are still needed. For example, the binding sites and 

mechanisms of these molecules are not yet clear.  

 

Figure 1.4. Domain architecture of BAG proteins. While al l  proteins share a common C-
terminal BAG domain (used to interact with Hsp70), their N-termini are highly variable in 
composit ion and structure. 
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1.3.3.2 BAG2 
The BAG family members BAG2 and BAG3 were identified in a yeast two hybrid 

screen with the NBD of Hsc70 as bait and were named based on their structural 

and functional similarity to BAG1 [95-97]. However, the crystal structure of 

BAG2’s BAG domain revealed that BAG2 does not adopt the canonical three-

helix bundle and instead forms a dimeric structure with each monomer consisting 

of only two long antiparallel helices [96]. Due to these structural differences, the 

BAG2 residues responsible for binding Hsp70 are different than the BAG1-Hsp70 

interface. These differences and how they might be exploited to develop BAG2 

specific modulators will be discussed in Chapter 5.  

 

In regards to BAG2’s NEF duties, like BAG1, BAG2 regulation of Hsp70 function 

has substrate specific consequences. While BAG2 has been shown to stabilize 

various Hsp70 clients (CFTR, PINK1, SCA3) [97-99] and prevent their 

proteasomal degradation, it has also been shown to increase the proteasomal 

degradation of tau in an ubiquitin-independent manner [99]. These mostly 

protective roles of BAG2 suggest compounds that promote Hsp70-BAG2 

association could be clinically relevant. 

 
1.3.3.3 BAG3 
BAG3 is one of the largest BAG proteins and contains multiple protein-protein 

interaction (PPI) motifs. On top of its BAG domain, BAG3 also has a WW domain 

for PPxY protein binding [100], multiple PXXP motifs allowing association with 

SH3 proteins [101], and two IPV motifs used for small heat shock protein (sHsp) 

binding [102-107] (Figure 1.4). Despite having these various PPI regions, BAG3 

has little predicted structure outside of its BAG domain. This is consistent with 

experimental evidence that BAG3 has a large hydrodynamic radius, a low 

sedimentation coefficient, high susceptibility to proteolysis, and elutes early on 

size exclusion columns [103]. The intrinsic disorder of BAG3 may be important 

for its role as a scaffolding protein and this will be discussed further in Chapter 4.  
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BAG3 has gained a lot of attention in the last few years, both for its integral role 

in basic cell biology functions like autophagy, as well as for its ever growing list of 

disease relevant functions and mutations. In a series of remarkable papers, it has 

been shown that BAG3 is essential for selective autophagy of misfolded proteins 

[104-109]. The association of BAG3 with dynein allows Hsp70 substrates, both 

ubiquitinated and non-ubiquitinated, to be targeted to aggresomes. This has 

been investigated for multiple substrates including mutant SOD1 [107], α-

synuclein [102], and polyQ-huntingtin [108]. Aggresome targeting is dependent 

on BAG3 function and BAG3 knockout cells are unable to clear these protein 

aggregates [109]. Indeed, in astrocytes affected by protein aggregation diseases 

BAG3 has been shown to be upregulated [110]. However, it is still unclear if 

upregulation of BAG3 during late stages of neurodegeneration will be effective 

for decreasing disease severity, or if BAG3 is only effective for clearing acute 

forms of stress damage. 

 

In striated skeletal muscle and cardiac tissue BAG3 function is critical. BAG3 is 

highly expressed in these muscle cells and is integral to the maintenance of Z-

discs [111]. Consistent with this BAG3 null mice display no phenotype during 

development, but postnatally show degenerated muscle growth and die before 

week 4 of age [112]. In humans, a whole suite of BAG3 mutations have been 

reported to cause various forms of myopathy, a majority of which fall into known 

PPI regions of BAG3 [113].  

 

In comparison to other BAG proteins, BAG3 is unique in that it is the only 

member induced under stress conditions, mainly through activation of heat shock 

factor 1 (HSF1) [114-118]. HSF1 is required for tumor initiation and maintenance 

in a variety of cancer models, which suggests a role for BAG3 in tumor formation 

[115]. In support of this notion, it has been shown that the BAG3-Hsp70 complex 

stabilizes a number of key oncogenes, suppressing apoptosis [116-120]. 

Accordingly, silencing of BAG3 in multiple tumor lines sensitizes the cells to 

chemotherapy, suggesting that the BAG3-Hsp70 complex is an especially 
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attractive cancer drug target [119]. Work towards inhibiting the BAG3-Hsp70 

interaction will be discussed in Chapter 3. 

 
1.4 Analysis and Prospectus 
There are compelling reasons to target the PPIs between Hsp70 and its co-

chaperones. These contacts help shape Hsp70 activities and, as such, they 

might be targeted to re-direct the protein quality control system. Molecules that 

disrupt the assembly and disassembly of the Hsp70 complex might supplement 

other types of Hsp70 inhibitors, such as competitive inhibitors of ATP and 

substrate binding, providing a more complete suite of chemical probes and 

potential therapeutics. However, the number of PPIs in the Hsp70 complex 

means that there are a large number of contacts yet to be explored.   

 

PPIs are notoriously difficult to inhibit and the specific interactions involved in 

binding to Hsp70 are particularly challenging, given their large buried surface 

areas. What strategies might be used to disrupt these contacts? Based on 

growing evidence from other PPI inhibitors discovery programs [121, 122], it 

seems likely that compounds that are able to bind to allosteric sites might be in 

the best position to target the types of PPIs in the Hsp70 system. Another key 

tool will likely be the development of HTS platforms that are specifically suited to 

finding inhibitors of PPIs. Recent developments in this area, including AlphaLisa, 

flow cytometry protein interaction assay (FCPIA) and gray box screening [121], 

might lower the barrier to uncovering suitable compounds. These possibilities will 

be explored in more detail in Chapter 3. Also, the creation of chemical libraries 

enriched for more complex small molecules (e.g. natural product-like, etc) may 

further accelerate discovery in this area [123]. A clever combination of these 

methods might overcome the challenges associated with targeting the Hsp70 

complex. 

 

One major question that looms large over this field is how the global proteome 

will respond to inhibitors of Hsp70 (both orthostatic and allosteric). This concept 
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has not been rigorously tested and it remains uncertain how cells will respond to 

different types of Hsp70 inhibitors. What will happen to protein stability and 

turnover when Hsp70 function is blocked or even “tuned”? The answers to this 

question may depend on how the molecule works (e.g. competitive inhibitor of 

ATP binding, allosteric inhibitor of NEF proteins, etc.) and whether it is selective 

for specific Hsp70 paralogs. In the case of NEFs, it is still unknown whether the 

structural differences between the major NEF classes can be exploited to 

produce selective inhibitors of the various families. Similarly, can different 

members of the BAG family be individually targeted? Further, it isn’t yet clear 

how many NEF functions are dependent on Hsp70 and how many are 

independent. It seems likely that the only way to address these significant 

concerns is to develop potent inhibitors and then use them to develop empirical 

models.  

 

My thesis is focused on understanding how NEFs interact with Hsp70, how these 

interactions could be targeted, and how inhibitors of the Hsp70-NEF contact 

might influence Hsp70 biology. In Chapter 2, I biochemically characterize the 

interactions between Hsp70 and human NEFs. In Chapter 3, I discuss the use of 

emerging technologies to discover inhibitors of Hsp70-NEF interactions. This 

work was done in close collaboration with the Kennedy laboratory. In Chapter 4, I 

dissect the role of BAG3 in stabilizing Hsp70-sHsp complexes. This work was 

done in collaboration with the Southworth, Conklin, and Kampinga laboratories. 

In Chapter 5, I discuss future work that will enable drug discovery in the Hsp70-

NEF space and potential applications of that work. The appendix describes my 

work dissecting the mechanism of an Hsp70 modulator, methylene blue.  

 

1.5 Notes 
A portion of this chapter has been published as Assimon VA*, Gilles AT*, Rauch 

JN*, Gestwicki JE. Hsp70 protein complexes as drug targets. Current 

Pharmaceutical Design. 2013; 19(3):404-17. (*co-first authors).   
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Chapter 2                                                                                                         
Binding of Human Nucleotide Exchange Factors to Heat Shock Protein 70 

(Hsp70) Generates Functionally Distinct Complexes in Vitro 
 

2.1 Abstract 
As introduced in Chapter 1, proteins with Bcl2-associated anthanogene (BAG) 

domains act as nucleotide exchange factors (NEFs) for the molecular chaperone, 

heat shock protein 70 (Hsp70). There are six BAG-family NEFs in humans and 

each is thought to link Hsp70 to a distinct cellular pathway. However, little is 

known about how the NEFs compete for binding to Hsp70 or how they might 

differentially shape its biochemical activities. Towards these questions, we 

measured binding of human Hsp72 (HSPA1A) to BAG1, BAG2, BAG3 and the 

structurally unrelated NEF, Hsp105. These studies revealed a clear hierarchy of 

affinities: BAG3 > BAG1 > Hsp105 >> BAG2. All of the NEFs competed for 

binding to Hsp70 and their relative affinity values predicted their potency in 

nucleotide and peptide release assays. Finally, we combined the Hsp70-NEF 

pairs with co-chaperones of the J protein family, DnaJA1, DnaJA2, DnaJB1 and 

DnaJB4, to generate sixteen permutations. The activity of the combinations in 

ATPase and luciferase refolding assays were dependent on the identity and 

stoichiometry of both the J protein and NEF, such that some combinations were 

potent chaperones, whereas others were inactive. Given the number and 

diversity of co-chaperones in mammals, these results suggest that combinatorial 

assembly is likely to generate a large number of distinct permutations.  

 

2.2 Introduction 
Heat shock protein 70 (Hsp70) belongs to a ubiquitous and abundant family of 

molecular chaperones that regulates protein quality control and homeostasis [2, 
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3]. Members of this family are thought to play key roles in virtually every cellular 

process that involves proteins, including folding, stabilization, trafficking and 

turnover. Accordingly, Hsp70 has become an attractive drug target for 

neurodegenerative and hyperproliferative disorders [2, 4]; however, it is difficult 

to envision strategies for selectively inhibiting its pathobiology without impacting 

its essential roles [4]. To help guide this process, there is an interest in better 

understanding how Hsp70 is recruited into its various functions. 

 

As discussed in Chapter 1, Hsp70 is a 70 kDa protein that consists of two 

domains: an N-terminal nucleotide binding domain (NBD) responsible for binding 

and hydrolyzing ATP and a C-terminal substrate-binding domain (SBD) that 

binds to “client” proteins. The two domains are allosterically coupled, such that 

when ATP is bound to the NBD, the SBD binds weakly to clients [126]. When 

ADP is bound in the NBD, a conformational change enhances the affinity of the 

SBD for clients [2, 6]. The clients of Hsp70 include a wide range of unfolded, 

misfolded and partially folded proteins [7]. Indeed, Hsp70 has little ability to 

discriminate between polypeptide sequences [129] and it is possible that there 

may be few proteins (or cellular processes) that evade an interaction with Hsp70 

at some stage [2].  

 

A key insight into how Hsp70 might be able to “juggle” its multiple functions 

comes from studies on co-chaperones [9]. Co-chaperones, including the J 

proteins and the nucleotide exchange factors (NEFs), interact with Hsp70 and 

guide its various activities. Specifically, the J proteins are a family of co-

chaperones that bind to Hsp70 in a region between the NBD and SBD [8]. This 

interaction stimulates ATP hydrolysis and promotes client binding [10]. In 

addition, some J proteins interact with clients directly; thus they are believed to 

recruit proteins to the Hsp70 system [11]. Conversely, the NEFs are co-

chaperones that bind the NBD of Hsp70 to accelerate ADP and client release [8]. 

Some of the NEFs act as scaffolding proteins, linking Hsp70 and its clients to a 

variety of cellular pathways [11]. Thus, the co-chaperones of Hsp70 are thought 
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to “tune” the enzymatic activity of the chaperone and help guide its interactions 

with protein clients and other cellular factors.  

 

Much of our mechanistic knowledge of Hsp70 function comes from studies using 

the Escherichia coli orthologs, which include a single Hsp70 (DnaK), a J protein 

(DnaJ) and a NEF (GrpE). Although the major components of the eukaryotic 

system are conserved, the diversity of the system has been greatly expanded 

through evolution. For example, the human genome contains more than 10 

Hsp70s, 13 NEFs and at least 41 J proteins [11-13]. When compared to the 

prokaryotic system, this increase in potential partners has generated an 

enormous number of possible combinations. Some of the reasons for this 

expansion are clear; for example, there are chaperone and co-chaperone 

components designated for localization in the endoplasmic reticulum (ER) and 

mitochondria [133]. However, another pressure propelling this evolutionary 

expansion appears to be functional diversification. Deletion of individual, 

cytoplasmically expressed J protein genes in yeast often produces a phenotype 

[133-135], suggesting that they are not redundant [15]. In mammals, auxilin is a J 

protein that is exclusively dedicated to helping Hsp70 dissociate clathrin 

triskelions [15, 17]. Other J proteins are unable to compensate for loss of auxilin, 

suggesting that some co-chaperones may have “evolved” to recruit Hsp70s into 

specific niche functions.  

 

This concept of functional specialization is further exemplified by the human 

NEFs, especially the BAG domain proteins [137]. Since the identification of 

BAG1 [18-20], six members of the BAG family (i.e. BAG1-6) have been identified 

based on the presence of a ~100 amino acid BAG domain. The BAG domain is 

thought to promote nucleotide release by binding to Hsp70’s NBD (Hsp70NBD). 

This hypothesis is based on structures of human Hsc70NBD in complex with the 

BAG domains of BAG1 or BAG2, which suggest that the co-chaperones may 

help “open” the nucleotide-binding cleft to assist ADP dissociation [22, 84, 96]. In 

addition to their shared BAG domain, the members of the BAG family have 
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additional domains with specialized functions [138]. BAG1, for example, has an 

ubiquitin-like (UBL) domain that targets Hsp70 clients to the proteasome [34, 90, 

91]. BAG1 also binds to the anti-apoptotic kinase, Raf1, and it works with Hsp70 

to stabilize that protein in cancer [25-28]. Conversely, BAG2 has been associated 

with promoting the degradation of large aggregates, such as phosphorylated tau 

[34]. BAG3 has multiple protein-protein interaction motifs that link the Hsp70-

BAG3 complex to the small heat shock proteins, the signaling molecule PLC-γ, 

14-3-3 proteins and the autophagy pathway [101, 106, 108, 139]. Thus, the 

“choice” of which BAG protein is bound to Hsp70 appears to help determine what 

will happen to the Hsp70-bound client. In this context, it becomes important to 

understand the factors that guide the interactions between Hsp70 and these co-

chaperones. 

 

Here, we have explored how the major cytoplasmic Hsp70 family members, 

Hsp72 (HSPA1A) and Hsc70 (HSPA8), interact with the three BAG family 

members that have been most closely linked to chaperone functions: BAG1, 

BAG2, and BAG3. We also measured binding of Hsp72 to Hsp105α, which 

belongs to an evolutionary distinct group of NEFs [140]. We found that these co-

chaperones have an apparent binding hierarchy of BAG3 > BAG1 > Hsp105 >> 

BAG2. The NEF-Hsp70 interactions were sensitive to nucleotide status, with the 

tightest interactions observed when Hsp72 was nucleotide-free (e.g. apo). All of 

the BAG proteins competed for binding to Hsp72 and they all accelerated 

nucleotide and substrate release in the relative order expected from their 

affinities. To understand how this hierarchical binding might influence chaperone 

functions, we reconstituted Hsp72 with the four NEFs and the four major 

cytosolic J proteins: DnaJA1, DnaJA2, DnaJB1 and DnaJB4. Using ATP 

hydrolysis and luciferase refolding assays, we found that some of the 

permutations were strongly active, whereas other combinations were inactive. 

These results show how the biochemical properties of mammalian Hsp70s might 

be diversified by combinatorial assembly with co-chaperones. 
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2.3 Results 
2.3.1 BAG proteins prefer nucleotide-free Hsp70 
To understand how BAG proteins regulate Hsp70 function, we first set out to 

determine how tightly they bind using two different platforms: a flow cytometry 

protein interaction assay (FCPIA) and isothermal titration calorimetry (ITC). In 

these studies, we were interested in whether BAG proteins might have similar or 

different affinities for Hsp70 and whether this affinity was dependent on the 

nucleotide status of Hsp70. Previous studies had shown that BAG1 had a better 

affinity for ATP-bound Hsp70 than ADP-bound Hsp70 [19, 20], but this property 

had not been systematically explored across all of the BAG proteins. For our 

FCPIA experiments, purified Hsp72 (HSPA1A) was biotinylated and immobilized 

on streptavidin coated polystyrene beads. Solutions of fluorescently labeled BAG 

proteins were then incubated with the beads and binding was detected using a 

flow cytometer. We found that BAG3 (11 ± 2 nM) had the tightest affinity for 

Hsp72 in the ATP bound form, followed by BAG1 (17 ± 6 nM) and then BAG2 

(>1000 nM) (Figure 2.1). The BAG proteins had notably weaker affinity for ADP-

Hsp70, with BAG3 binding with a KD of 18 ± 4 nM and BAG1 at 37 ± 12 nM. 

Similar results were observed when ADP was replaced with the non-hydrolyzable 

nucleotide analog, AMP-PNP (Figure 2.1). Surprisingly, we found that all three 

BAG proteins had their best affinity for apo-Hsp70, with the KD values enhanced 
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~ 4 fold compared to the ATP-bound form. Together, these results demonstrated 

that all of the BAG proteins prefer the apo form of Hsp70 and that BAG3 binds 

tighter than BAG1 or BAG2. 

 

2.3.2 BAG proteins compete for binding to Hsp70 
Structural studies suggest that only one BAG protein can bind to Hsp70 at a time 

because they share a similar interaction surface on the NBD [20, 31]. To test this 

model, we labeled each of the BAG proteins with either Alexa Fluor 647 or Alexa 

Fluor 488 and then used the Alexa 488-labeled samples to compete with the 

Alexa 647-labeled samples. In the FCPIA platform, we were able to measure 

both the loss of the Alexa-647 signal and the increase in bound Alexa 488-

labeled protein (see schematic in Figure 2.2). The advantage of this approach is 

that we could simultaneously measure release of the bound BAG protein and the 

binding of the competitor. Using this method, each BAG protein competed with 

itself and with the other BAG proteins (Figure 2.2). Consistent with the previous 

results, BAG3 was the best competitor, followed by BAG1 and then BAG2 

(Figure 2.2). As a control, we attempted to displace BAG1 with the 

tetratricopeptide repeat (TPR) protein, CHIP. CHIP is known to bind Hsp70 in a 

distinct location at the C-terminus [20, 31], so it would not be expected to 

Figure 2.2 BAG proteins compete for binding to Hsp70. Using the FCPIA platform, the 
relat ive abil i ty of Alexa Fluor 488-labeled BAG1–3 to compete for binding with Alexa 
Fluor 647-labeled BAG1–3 was determined. A schematic of the method is shown. 
Experiments were performed in tr ipl icate. Error bars represent SEM.  
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interfere with binding of Hsp70 to BAG proteins. Consistent with this idea, CHIP 

could not compete with labeled BAG1 (Figure 2.3). To further confirm the role of 

nucleotide influence on BAG-Hsp70 interactions, we performed nucleotide 

competition experiments (Figure 2.4A) with ATP and ADP. We found that 

nucleotide was able to displace all the BAG proteins tested with relatively high 

(~10-fold excess) IC50 values. 

2.3.3 BAG proteins exhibit a hierarchy of binding affinities 
Using ITC, we then confirmed the affinities of the BAG proteins for Hsp72 (Figure 

2.4B). These binding studies were performed using the NBD of Hsp72 (residues 

1-394), because this region is thought to be sufficient for binding BAG proteins 

[20] and it is more soluble in the ITC platform. We found that BAG3 bound apo-

Hsp72NBD with the tightest affinity (KD = 3.3 ± 1.0 nM), followed by BAG1 (7.7 ± 

2.4 nM) and BAG2 (170 ± 40 nM). The rank order of the affinity values mirrored 

those obtained using full length Hsp70 in the FCPIA platform, suggesting that the 

NBD is indeed the only region of Hsp70 required for the interaction. To explore 

the minimal region of BAG1 required, we measured binding of Hsp72NBD to the 

truncated BAG domain (BAG1C; residues 107-219). The affinities of BAG1C for 

Hsp72NBD in the apo-, ATP- and ADP-bound states were uniformly weaker than 

the affinities of Hsp72 for full length BAG1. For example, BAG1C bound ATP-

Hsp72NBD with an affinity of 95 ± 16 nM, while full length BAG1 bound 8-fold 
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Figure 2.3 A representative TPR protein, CHIP, does not compete with BAG1 for binding 
to Hsp70. Results are the average of experiments in tr ipl icate and the error bars 
represent SEM. 



 

 33 

tighter (12 ± 3 nM) (Figure 2.4B). These results suggest that regions outside the 

BAG domain contribute to binding Hsp72. Finally, the ITC studies also provided 

an estimate of the stoichiometry of the complexes. BAG1, BAG1C and BAG3 all 

yielded N values of ~1, suggesting formation of a 1:1 complex with Hsp72NBD, 

while BAG2 behaved as a dimer (N ~ 0.5), consistent with previous reports [96]. 

Collectively, these studies revealed that BAG proteins have a hierarchy of 

binding to Hsp72 and that nucleotide status is important in controlling their 

affinity. To test whether other Hsp70 family proteins share this characteristic, we 

repeated the FCPIA-based binding studies with the constitutive Hsp70, termed 

Hsc70 (HSPA8). The results were similar to those obtained with Hsp72, with 

BAG3 being the tightest-binding NEF and the apo-state being the most amenable 

for binding BAG proteins (Figure 2.5). Thus, these features appear to be 

Figure 2.5. Binding of BAG1-3 to Hsc70 by FCPIA. The binding hierarchy and nucleotide 
dependence were similar to what was observed with Hsp72 (see Figure 2.1). Results are 
the average of experiments performed in tr ipl icate and the error bars are SEM 0.1 1 10 100 1000
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Supplemental Figure 4. Binding of BAG1-3 to Hsc70 by FCPIA. The binding 

hierarchy and nucleotide dependence were similar to what was observed with 

Hsp72 (see Fig 1). Results are the average of experiments performed in 

triplicate and the error bars are SEM.
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Figure 2.4 Aff inity of BAG1-3 for Hsp72 is dependent on nucleotide status which weaken 
the interaction. (A) The binding of BAG1–3 and BAG1C (100 nM) to Hsp72 was 
measured by FCPIA, and the inhibitory values (Ki) for ATP and ADP are shown. (B) 
Binding of BAG1–3 and the truncated BAG domain of BAG1 (BAG1C) to purif ied 
Hsp72NBD (residues 1–394) was measured by ITC. The results confirmed the relat ive 
hierarchy of aff inity values. Note that BAG2 is a dimer. Thus, the N value of 0.5 
suggests a complex of one BAG2 dimer per Hsp72NBD. 

NEF Apo 1mM ATP 1mM ADP N 

BAG1 7.7 ± 2.4 nM 12 ± 3.0 nM 36 ± 7.0 nM 0.960-1.02 

BAG2 170 ± 40 nM 380 ± 110 nM 930 ± 480 nM 0.503-0.595 

BAG3 3.3 ± 1.0 nM 10. ± 1.0 nM 41 ± 8.0 nM 0.927-1.02 

BAG1C 29 ± 7.0 nM 95 ± 16 nM 110 ± 20 nM 0.967-0.982 

(B) Isothermal calorimetry on Hsp72 binding to BAG1-3 supports a hierarchy 

of affinity values 

NEF ATP ADP

BAG1 1.5 ± 0.3µM 1.5 ± 0.2µM

BAG2 1.1 ± 0.5µM 2.1 ± 0.5µM

BAG3 1.9 ± 0.8µM 0.8 ± 0.5µM

BAG1C 0.6 ± 0.3µM 0.9 ± 0.3µM

(A) Nucleotides weaken BAG1-3 

binding to Hsp72
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conserved between the major cytoplasmic Hsp70 family members. 

 

2.3.4 BAG proteins cause nucleotide dissociation from Hsp70. 
Human BAG1 has been shown to promote release of nucleotide and bound client 

proteins from Hsp70 [83, 143, 144], but the generality of this model hasn’t been 

tested and these activities have not been compared side-by-side to determine 

which BAG proteins are the most potent NEFs. Towards that goal, we employed 

two fluorescence polarization (FP) assays that measure release of fluorescent 

nucleotide (ATP-FAM) [145] and peptide substrate (HLA-FAM) [35], respectively. 

First, we confirmed that ATP-FAM binds Hsp72 with an apparent KD of 1.0 ± 0.1 

µM (Figure 2.6A). Using this data, we selected a concentration of Hsp72 (1 µM) 

and titrated with BAG proteins to determine an EC50 for nucleotide release. The 

results showed that the potency of BAG-induced nucleotide release correlated 

with the relative affinity values (Figure 2.6B). BAG3 was the most efficient NEF 

(EC50 = 210 ± 60 nM), followed by BAG1 and BAG2 (630 ± 190 and 1040 ± 220 

nM, respectively). BAG1C also acted as a NEF (EC50 = 470 ± 80 nM), consistent 

with the importance of the BAG domain (Figure 2.6B). Interestingly, BAG1C was 

not substantially worse than BAG1 in this context, suggesting that any contacts 

outside the BAG domain are not relevant for nucleotide release. As controls, we 

attempted to use unrelated proteins as NEFs and found that none of them: J 

protein (DnaJA2), a model peptide client (NR peptide) nor bovine serum albumin 

(BSA) could promote nucleotide release (EC50 > 10,000 nM). However, ATP and 

ADP could compete with ATP-FAM, as expected [145]. These results show that 
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Figure 2.6 BAG1–3 promote nucleotide release from Hsp72. (A) ATP-FAM binding to 
Hsp72 as measured by f luorescence polarization. Experiments were performed in 
tr ipl icate. Error bars  represent SEM. (B) BAG1–3 and the BAG1C domain both promote 
release of ATP-FAM.  



 

 35 

BAG proteins indeed function as NEFs for Hsp70, and, in general, their relative 

potencies seemed to be linked to their affinities for Hsp70.  

 

2.3.5 BAG proteins cause substrate dissociation from Hsp70 
To investigate whether the BAG proteins also promote release of peptide 

substrates from Hsp70, we employed a fluorescently labeled model peptide 

(HLA-FAM) [11, 38]. Hsp72 bound the probe with a KD of 3.3 ± 1.6 µM in the 

absence of added nucleotide and the affinity increased to 0.27 ± 0.05 µM in the 

presence of excess ADP (1 mM) (Figure 2.7A). As expected, the Hsp72NBD was 

not able to bind HLA-FAM because it lacks the SBD (Figure 2.7A). Using this 

platform, we titrated BAG1, BAG2, BAG3 and BAG1C into full length Hsp72 (1 

µM, +1 mM ADP) and found that all of them could facilitate peptide release. In 

general, the relative potency values tracked with their apparent affinity values 

(Figure 2.7B). However, BAG1C was ~40 fold less efficient than its full-length 

counterpart, suggesting that regions outside the BAG domain are important for 

release of HLA-FAM peptide from Hsp72. The control proteins, BSA and CHIP, 

were unable to accelerate substrate release, whereas NR peptide directly 

competed with the probe, as expected (Figure 2.7B). Together, these results 

suggest that the BAG proteins promote release of substrates from Hsp72 and 

that regions outside the BAG domain might be important for this NEF activity. 
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Figure 2.7 BAG1–3 promote release of peptide cl ients from Hsp72. (A) Binding of an HLA-
FAM peptide to Hsp72 is dependent on nucleotide and the presence of the SBD, as 
measured by f luorescence polarization. Experiments were performed in tr ipl icate. Error bars 
represent SEM. (B) BAG1–3 and the BAG1C domain st imulate peptide release, with relat ive 
potency values (EC50) that mirror their relat ive aff init ies.  
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2.3.6 Specific ratios of BAG proteins and J proteins combine to influence 
Hsp70 ATPase rates.  
Pioneering studies by the Young group showed that Hsp70 is only able to fold 

denatured luciferase when combined with the J protein, DnaJA2, but not DnaJA1 

[80, 133]. These results suggest that some combinations of Hsp70 with its co-

chaperones might have discreet biochemical functions in vitro, so we wondered 

how broadly this concept might be applied. The human J proteins are divided into 

three classes (class A, B and C) [9, 40, 41]. The four major J proteins of the 

cytosol include two members of class A, DnaJA1 and DnaJA2, and two members 

of class B, DnaJB1 and DnaJB4 [148]. Thus, to expand on the observations of 

the Young group, we combined Hsp72, BAG1-3 and DnaJA1, DnaJA2, DnaJB1, 

or DnaJB4 to generate twelve permutations. These combinations were then 

tested for their relative activity in functional assays that measure ATP turnover 

and luciferase refolding. Although there have been extensive studies on the 

ability of prokaryotic J proteins to promote ATP turnover [131, 149, 150], there is 

less known about the human J proteins. DnaJA1 and DnaJA2 are known to 

accelerate nucleotide hydrolysis [13, 42], but this property hasn’t been explored 

for members of the B class and their relative potencies are not yet clear. We 

found that DnaJA1, DnaJA2, DnaJB1 and DnaJB4 all stimulated the steady-state 

ATPase activity of Hsp72, as measured by malachite green assays (Figure 2.8). 

The potencies of all four J proteins were similar, supporting the presumption that 
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Figure 2.8 J proteins st imulate ATPase rate of Hsp70. All  four human J proteins 
st imulate the ATPase activity of Hsp72, as measured by malachite green ATPase 
assays. Experiments were performed in independent tr ipl icates and error bars represent 
SEM. 
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they interact with Hsp72 through their highly conserved J domain in a similar 

manner [32, 43, 44]. None of the BAG proteins strongly stimulated the ATPase 

rate of Hsp72 in the absence of J protein (Figure 2.11), consistent with previous 

reports for a subset of these proteins [143, 152, 153]. Using this benchmark, we 

then titrated Hsp72 (1 µM) with the four J proteins and the three BAG proteins 

and measured ATP turnover. We found that low, substoichiometric 
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Figure 2.9 BAG proteins st imulated ATP turnover at low levels. Low, substoichiometric 
levels of BAG proteins promoted the ATPase activity of various Hsp72-J protein pairs. 
Al l  experiments were performed in independent tr ipl icates. Error bars represent SEM. 
Only representative BAG concentrations are shown, and the ful l  dataset can be found in 
Figure 2.11.  
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Figure 2.10 BAG proteins inhibited ATP turnover at suprastoichiometric levels. High 
levels of BAG proteins inhibited the ATPase activity of various Hsp72-J protein pairs. Al l  
experiments were performed in independent tr ipl icates. Error bars represent SEM. Only 
representative BAG concentrations are shown, and the ful l  dataset can be found in 
Figure 2.11.  
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concentrations of each BAG (e.g 0.125-0.5 µM BAG) could promote the ATPase 

activity of each of the Hsp72-J protein pairs (Figure 2.9 and Figure 2.11). 

Increasing the levels of the BAG proteins (e.g. 4 µM-16 µM BAG) tended to 

switch this behavior (Figure 2.10 and Figure 2.11). Specifically, high levels of the 

BAG proteins tended to inhibit ATPase activity, perhaps because they stabilize 

the apo form of Hsp72. However, in the case of BAG2, the extent of ATPase 

inhibition was dependent on the identity of the J protein. For example, BAG2 (16 

µM) inhibited the ATPase activity of the Hsp72-DnaJA1 system, but it was 

synergistic with the Hsp72-DnaJA2 pair and it was neutral for the Hsp72-DnaJB4 

pair (Figure 2.10). Together (Figure 2.11), these results provide evidence for 

specific combinations of Hsp72 and its co-chaperones acting as biochemically 

distinct complexes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.11 Hsp72 and its co-chaperones combine to shape ATPase activity. Hsp72 
(1µM) was incubated with J proteins and (A) BAG1, (B) BAG2, or (C) BAG3. All  results 
are the average of independent experiments performed in tr ipl icate. For representative 
curves (circled regions) and error analysis, see Figure 2.9 and 2.10. The y-axis is pmol 
ATP/ µM Hsp72 / min. (D) Schematic summary of ATPase results 
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2.3.7 Combinations of Hsp72, J proteins and BAGs generate complexes 
with distinct chaperone functions.  
The ability of Hsp70 to refold denatured clients, such as firefly luciferase, is a 

convenient in vitro method for estimating chaperone function. Hsp70 typically 

requires ATP and a J protein for this activity [11, 38] and BAG1 has been shown 

to inhibit refolding in some studies [80]. However, a systematic approach (in 

which the identity and stoichiometry of the co-chaperones is varied) has not been 

reported. Towards that goal, we titrated Hsp72 with J proteins and BAGs and 

tested the ability of each permutation to rescue denatured firefly luciferase, as 

measured by recovered luminescence. Consistent with previous reports [46], 

DnaJA1 was unable to promote luciferase folding by Hsp72 (1 µM) at any 

concentration tested (Figure 2.12). Addition of BAG proteins was unable to 

rescue this defect, suggesting that DnaJA1 is not competent for client folding 

even in the presence of NEFs. DnaJA2 and DnaJB4 both promoted refolding with 

maximal activity between 0.5 and 1.0 µM (Figure 2.12), while DnaJB1 was 

slightly less potent (maximal activity at 1.0 to 2.0 µM). Thus, although all of the J 

proteins are able to stimulate nucleotide hydrolysis to an identical extent, they 
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Figure 2.12 J proteins have differing abil i t ies to work with Hsp72 in refolding denatured 
luciferase. Individual J proteins have different profi les of luciferase refolding that is 
suppressed in the presence of phosphate (10 mM). The presence of phosphate (10 mM) 
did not inf luence the luminescence signal, as shown by the standard curve. Experiments 
were performed in tr ipl icate. Error bars represent SEM. 
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vary in their ability to promote folding. This result is consistent with the idea that 

ATPase rate and the extent of client refolding are not directly linked [46]. At 

higher concentrations of J proteins, refolding was inhibited, likely because the J 

proteins bind to luciferase and interfere with the folding process [46]. Previous 

work has shown that ATPase and refolding rates of the Hsp70 system can be 

affected by the presence of physiological concentrations of inorganic phosphate 

(Pi) [46]. Indeed when 10 mM Pi was added to the system we saw a dramatic 

reduction in the J protein-mediated refolding effect (Figure 2.12), which has been 

previously attributed to a 5-fold decrease in ADP dissociation [22-28]. When we 

examined the combined effects of J proteins and BAG1-3 with and without Pi 

present, we found that each combination was best described by its own, 

individualized activity profile. For example, in the absence of Pi low levels of 

BAG1, BAG2 or BAG3 suppressed refolding by the Hsp72-DnaJA2 pair, while 

these same levels of BAG1 and BAG3 could stimulate the refolding activity of the 

Hsp72-DnaJB1 pair (Figure 2.13 and Figure 2.14). Thus, certain BAG proteins 

worked synergistically with some J proteins but not others. In addition, the 

stoichiometry of the BAG proteins appeared to be important. This result had been 

suggested by previous work on BAG1 [155] and our results suggest that it is a 

general property. For example, low concentrations (0.05 to 0.1 µM) of BAG3 

enhanced the activity of the Hsp72-DnaJB1 pair, while higher levels of BAG3 (> 
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Figure 2.13 BAG1-3 either promote or inhibit  luciferase refolding, depending on their 
concentration, the identity of the J protein, and the presence of Pi. Mixtures of Hsp72, J 
proteins, and BAG1–3 were used to refold luciferase. See Figure 2.14 for the ful l  
results. For clari ty, only the effects of varying BAG1–3 in the presence and absence of 
10 mM phosphate are shown. J protein concentrations were 0.5 µM DnaJA2, 2 µM 
DnaJB1, and 1 µM DnaJB4. All  experiments were performed in independent tr ipl icates. 
Error bars represent SEM. The y-axis is normalized so that 100% luminescence is the 
amount of signal observed in the absence of NEF. 
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0.5 µM) were strongly inhibitory (Figure. 2.13 and Figure 2.14). In the presence 

of the correct J protein, BAG3 was a more potent stimulator of refolding than 

BAG1, while BAG2 was only inhibitory, regardless of the J protein partner (Figure 

2.13 and Figure 2.14). Interestingly when the experiments were repeated in the 

presence of 10 mM Pi the activity profiles of each BAG were even more 

dramatic. The stimulation of refolding was tremendous, reaching an almost 10-

fold increase in refolding for the BAG3-DnaJB4 combination (Figure 2.13). It is 

important to note that the luminescence values are normalized to lower values in 

the presence of Pi, since the J-protein stimulation is diminished as previously 

described above. Together, these results (Figure 2.14) suggest that only some 

combinations of Hsp72 and its co-chaperones are competent for folding 

luciferase and the presence of Pi plays an important role in both reducing J-

protein mediated effects, as well as enhancing contributions from the NEFs.  

Figure 2.14 Refolding of denatured luciferase by Hsp72 combinations. Luminescence 
was measured after incubation of denatured luciferase with combinations of Hsp72, J 
proteins and (A) BAG1, (B) BAG2, or (C) BAG3. Note that DnaJA1 does not permit 
refolding. Al l  results are the average of independent experiments performed in tr ipl icate. 
The y-axis is raw luminescence with each t ick indicating 10,000 units. 
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2.3.8 Hsp105 binds Hsp70 and acts as a NEF.  
Thus far, we have focused on the BAG family of NEFs because individual 

members of the family are linked to specific biological pathways, such as cell 

survival, the proteasome and the autophagy system [34, 90, 91, 101, 106, 108, 

139]. The Hsp110 family is an evolutionarily distinct category of eukaryotic NEFs 

and less is known about their biological roles. These proteins have a structure 

reminiscent of Hsp70, with an NBD and SBD [50]. The NBD of Hsp110s binds 

nucleotide [51, 52] and the SBD has affinity for peptide substrates [53]. However, 

members of the Hsp110 family lack the ability to refold clients [29, 53] and, 

rather, they have a prominent NEF function on Hsp70s [54]. Recently, human 

Hsp110 (termed Hsp105) has been shown to help coordinate stabilization of the 

cystic fibrosis conductance receptor (CFTR) [62], suggesting that this NEF 

function might be functionally important. However, there is little known about the 

biochemistry of Hsp105 and its relative position in the hierarchy of eukaryotic 

NEFs. The structure of a yeast Hsp110 protein (Sse1p) with yeast Hsp70 (Ssa1) 

shows that the surface involved in the contact is partly overlapping with that used 

by the BAG proteins [57], however it has yet to be shown whether these NEFs 

compete. To better understand Hsp105 and compare it to the BAG family of 

NEFs, we used our battery of assays. In the FCPIA platform, Hsp105 bound 

Figure 2.15 Hsp105α  binds Hsp70 and competes with BAG1–3 (A) Alexa Fluor 488-
labeled Hsp105α  binds to the immobil ized ATP-bound form of Hsp72, as measured by 
FCPIA. The binding to apo-, ADP-, and ATP-bound Hsp72NBD was confirmed by ITC. (B) 
Hsp105 competes with Alexa Fluor 647-labeled BAG1–3, as measured by FCPIA. 
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Hsp72 with an affinity of ~ 250 ± 110 nM in the presence of ATP (Figure 2.15A). 

Consistent with this value, Hsp105 bound ATP-Hsp72NBD with an affinity of 230 ± 

40 nM by ITC (Figure 2.15A), suggesting that Hsp105 binds exclusively to the 

NBD. Similar to what we observed for BAG1-3, Hsp105 had a tighter affinity for 

the nucleotide free Hsp72NBD (KD = 18 ± 3 nM) and binding to the ADP-bound 

form was substantially weaker (KD = 490 ± 80 nM). The tight binding of Hsp105 

to apo-Hsp72 was somewhat unexpected, as binding between the yeast 

orthologs (Sse1 and Ssa1) has been shown to require nucleotide [59]. However, 

there are functional differences between human and yeast Hsp105 orthologs 

[22], so their distinct preferences for nucleotide in Hsp72 might signify broader 

differences between the orthologs. Our ITC studies also suggested that Hsp105 

might bind Hsp72 as a dimer, as the N values were approximately 0.5 under all 

the nucleotide conditions. 

 

2.3.9 Hsp105 competes with BAG proteins for binding to Hsp70 
To test if human Hsp105 could compete with BAG proteins, we immobilized 

Hsp72 on beads and measured binding to labeled BAG proteins. In this FCPIA 

platform, Hsp105 competed for binding of Hsp72 to BAG1, BAG2 and BAG3 

(Figure 2.15B). Consistent with the hierarchy of binding affinities, Hsp105 was 

best able to compete for the weakest NEF-Hsp72 interaction (BAG2 IC50 370 ± 

130 nM). Like the BAG proteins, Hsp105 accelerated release of HLA-FAM 

(Figure 2.16A), confirming that it is a bone fide NEF. However, Hsp105 had the 

intrinsic ability to bind ATP-FAM and hydrolyze ATP (Figure 2.16B) [13], so its 

ability to promote nucleotide release couldn’t be reliably tested. Finally, when we 

combined Hsp105 with Hsp72 and the four J proteins, we found that it was 

unable to significantly promote nucleotide hydrolysis of any of the Hsp72 

combinations (Figure 2.16C), even after correcting for the intrinsic activity of 

Hsp105. Thus, it seems that Hsp105 accelerated client release without directly 

promoting ATPase activity. To test its effects in luciferase refolding experiments, 

we titrated Hsp105 into solutions of Hsp72 and either DnaJA2, DnaJB1 or 

DnaJB4. Hsp105 lacked intrinsic refolding activity, but it strongly inhibited Hsp72-
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mediated refolding (Figure 2.16D) by all three J proteins. These studies show 

that human Hsp105 is a NEF and that it combines with Hsp70 and its other co-

chaperones to expand the diversity of chaperone combinations.   

 

2.4 Discussion 
In eukaryotes, expansion of the number of Hsp70 co-chaperones suggests that 

these proteins might have evolved specialized functions. Indeed, a number of 

studies in yeast and other models have supported this general concept. For 

example, the ER-resident Hsp70, BiP works with a specific J protein (Sec63p) to 

coordinate translocation of clients into the compartment, but it works with another 

J protein (Jem1p) to coordinate ER-associated degradation [22-24]. Likewise, the 

Figure 2.16 Hsp105 acts as a NEF (A) Hsp105 promotes the release of HLA-FAM 
peptide from Hsp72, as measured by f luorescence polarization. (B) Hsp105 has ATPase 
activity independently of Hsp72. This intr insic activ ity was subtracted from subsequent 
ATPase studies. (C) Hsp105 does not appear to strongly promote the ATPase activity of 
Hsp72. The y-axis shows pmol ATP/µM Hsp72/min. (D) Hsp105 strongly inhibits 
luciferase refolding by Hsp72 and J proteins. The y-axis shows raw luminescence, with 
each t ick representing 10,000 units. The error is ~5–10% of the value.  
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J proteins Zuo1 and Jjj1 appear to be specialized for ribosome-associated client 

folding in yeast [135]. Similar to what has been observed with J proteins, NEFs 

appear to be associated with guiding Hsp70 into specific functional roles. BAG1 

is involved in multiple processes, including proteasomal degradation [34, 90, 91], 

while BAG3 is linked to autophagy [11, 38] and BAG2 coordinates removal of 

protein aggregates [34]. These observations all suggest that Hsp70 might 

collaborate with (or “select”) specific co-chaperones to extend its functionality in 

eukaryotes. A handful of studies using purified proteins have also supported the 

idea that co-chaperones might differentially adjust biochemical properties in vitro. 

The clearest evidence comes from the Young group, in which human DnaJA1, 

but not the highly related DnaJA2, was found to work with Hsp70 to refold 

denatured luciferase [60]. Based on these results and our own, an intriguing 

hypothesis is that Hsp70 complexes might not only have distinct cellular 

functions, but that their biochemical properties might also differentiate them.  

 

In this study, we first characterized how the BAG1-3 and Hsp105 proteins bound 

human Hsp72 in vitro. These studies revealed a strong hierarchy of binding, with 

BAG3 being the tightest partner and BAG2 being the weakest. BAG3 is the only 

stress inducible BAG family member [62], so it is possible that this co-chaperone 

might effectively out-compete other NEFs under certain cellular conditions. 

Conversely, BAG2 is the most abundant BAG protein in non-stressed HeLa cells 

[61], so its concentration might partially compensate for its weaker affinity. We 

found that Hsp105 competes with the BAG proteins for binding to Hsp70, 

suggesting that only one NEF (irrespective of which class it belongs to) can bind 

Hsp70 at one time. Recent studies have shown that Hsp70-interacting protein 

(HIP) [62], Hsp70 binding protein 1 (HSPBP1) [54] and some chemical Hsp70 

inhibitors [63] also converge on this same region of the NBD, suggesting that this 

surface is a hub for protein-protein and protein-ligand interactions. Co-evolution 

studies support this notion [54]. HIP binds with an affinity of ~ 8 µM by ITC [63], 

at least 100 to 1000-fold weaker than BAG3. It will be interesting to understand 

how the NEFs and other co-chaperones might use secondary interactions (e.g. 



 

 46 

multivalent contacts with clients or other scaffolding proteins) to better compete 

for binding to the Hsp70NBD, especially if they have relatively poor intrinsic 

affinities. 

 

All of the NEFs that we tested were able to accelerate release of fluorescent 

peptide from Hsp72 and the BAG proteins promoted ATP-FAM release, 

suggesting that all of the human proteins are indeed NEFs in vitro. Further, all of 

the NEFs appeared to use a mechanism that involved stabilization of the 

nucleotide-free form of Hsp72. Thus, although the co-crystal structures 

previously suggested that they might help “open” the NBD and release ADP, our 

results show that all of the NEFs achieve this objective by strongly favoring the 

apo-form of Hsp70. Given the high levels of ATP in the cytosol of most 

mammalian cells, it seems possible that NEF release might be mediated, in part, 

through rebinding of Hsp72 to this nucleotide and subsequent weakening of the 

NEF-Hsp72 interaction. Indeed, we were able to show through competition with 

free nucleotide in the FCPIA platform, that ATP and ADP are both able to 

displace the NEF from Hsp72. These relative affinities provide evidence for an 

elegant cycle of NEF binding, driven by nucleotide exchange. 

 

In most of our studies, the BAG domain appeared to be critical for interaction with 

Hsp72 and for mediating NEF activities. However, results with the BAG1C 

truncation suggested that peptide release, but not nucleotide release, may 

involve regions outside the BAG domain. Consistent with this idea, full length 

BAG1 also bound tighter than BAG1C. It is not currently clear how regions 

outside the BAG domain might interact with Hsp70s or whether other NEFs share 

this feature.  

 

To study the function of the reconstituted chaperone systems, we titrated Hsp72 

with the four NEFs and the four major cytosolic J proteins to generate 16 different 

systems. Using ATP turnover and luciferase refolding as two representative 

chaperone activities, we found that the identity and stoichiometry of each 
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component was important. Some systems, such as Hsp72 plus DnaJA1 and low 

levels of BAG3, were especially potent ATPase machines, while others, such as 

combinations of Hsp72 with DnaJA2 and high levels of BAG1, had negligible 

hydrolysis activity. All of the binary combinations of Hsp72 with J proteins had 

similar ATPase activity, so it appeared that the NEFs were the major determinant 

that differentiated the biochemical functions of each system. For example, the 

ATPase activity of Hsp72-DnaJA2 was activated by high levels of BAG2 and 

inhibited by BAG3 or Hsp105. However, it cannot be ignored that the identity of 

the J protein was important in combination with the NEF. For example, high 

levels of BAG3 were strongly inhibitory to Hsp72-DnaJB4 combinations, but 

relatively less able to act on the Hsp72-DnaJA1 pair. Thus, it was truly the 

combination of the chaperone and both co-chaperones that dictated the 

enzymatic activity of the system. This concept was even more dramatically 

exemplified by the results of the luciferase refolding studies. While Hsp72 could 

refold luciferase in collaboration with DnaJA2, DnaJB1 and DnaJB4, the NEFs 

were all able to suppress this activity at high concentrations. BAG3 is stress 

inducible, so we speculate that it might be advantageous for this protein to 

suppress costly refolding activity during conditions of stress. At lower 

concentrations of NEFs, even more interesting patterns emerged. For example, 

BAG1 and BAG3 could synergize with the Hsp72-DnaJB1 and Hsp72-DnaJB4 

pairs, but not the Hsp72-DnaJA2 combination. When physiological 

concentrations of Pi were added, the NEF influence on refolding was even more 

exaggerated, with all NEF/J combinations now showing activation at low 

concentrations. These results clearly demonstrated that some permutations of 

Hsp72 and its co-chaperones could fold luciferase, whereas others were less 

capable or inactive. Thus, some chaperone combinations can indeed be 

differentiated by their biochemical properties, as well as their cellular functions. 

 

It seems likely that the chaperone systems that we labeled as “inactive” are, 

instead, specialized for a biochemical activity that was poorly represented by our 

choice of in vitro assays. For example, none of the combinations that included 
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Hsp105 were able to fold luciferase in our assays, suggesting that it may assist 

Hsp70 with other functions, such as CFTR trafficking and quality control [64]. 

Based on this idea, it is intriguing to speculate that an impressive number of 

permutations might be generated by combinatorial assembly of human co-

chaperones. Moreover, some of these systems might have emergent 

biochemical properties that make them specialized for a subset of Hsp70 

functions.  

 

2.5 Methods 
2.5.1 Recombinant Protein Production 
Human BAG1S (referred to as BAG1 throughout), BAG2 and BAG3 were 

subcloned into pMCSG7 from cDNA using ligation independent cloning [65] and 

the sequences confirmed by DNA sequencing at the University of Michigan DNA 

Sequencing Core. The Hsp105α construct was a kind gift from Xiaodong Wang 

(U. Toledo), and the BAG1C construct was a gift from Jason Young (McGill). 

Constructs were transformed into BL21(DE3) cells and single colonies were used 

to inoculate TB medium containing ampicillin (50 µg/mL). Cultures were grown at 

37 °C for 5 hours, cooled to 20 °C and induced overnight with 200 µM IPTG. 

BAG1S, BAG1C and BAG2-expressing cells were pelleted, re-suspended in His 

Binding Buffer (50 mM Tris, 300 mM NaCl, 10 mM Imidazole pH 8.0) + protease 

inhibitor tablets (Roche), and then sonicated. Supernatants were incubated with 

Ni-NTA resin for 2 hours at 4 °C, washed with Binding Buffer, His Washing Buffer 

(50 mM Tris, 300 mM NaCl, 30 mM Imidazole pH 8.0) and finally eluted with His 

Elution Buffer (50 mM Tris, 300 mM NaCl, 300 mM Imidazole pH 8.0). BAG3-

expressing cells were pelleted, re-suspended in BAG3 lysis buffer (50 mM Tris, 

100 mM NaCl, 1mM EDTA, 15 mM β-ME, pH 8.0), sonicated, fractionated by 

ammonium sulfate precipitation (0-30% of saturation), re-suspended in His 

Binding Buffer and then applied to the Ni-NTA resin. After Ni-NTA columns, all 

proteins were subjected to TEV cleavage overnight and dialyzed into MonoQ 

Buffer A (20 mM HEPES, 10 mM NaCl, 15 mM β-ME, pH 7.6). Proteins were 

applied to a MonoQ column (GE Healthcare) and eluted by a linear gradient of 
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MonoQ Buffer B (Buffer A + 1M NaCl). Fractions were concentrated and applied 

to a Superdex S200 (GE Healthcare) size exclusion column in BAG buffer (25 

mM HEPES, 5 mM MgCl2, 150 mM KCl pH 7.5). DnaJA1, DnaJA2, DnaJB1, and 

DnaJB4 were purified using a Ni-NTA column, followed by overnight TEV 

cleavage of the His tag and gel filtration on a Superdex S200. Hsp72, Hsp72NBD 

and Hsc70 were purified as described elsewhere [36]. Hsp105a was purified 

using Ni-NTA resin (as described above), the His tag removed by overnight 

incubation with TEV protease and the protein dialyzed into His Binding Buffer 

and then subjected to a second Ni-NTA column. The flow-through was 

concentrated and buffer exchanged into BAG buffer. 

 

To make apo-Hsp72, the protein underwent extensive dialysis; day one (25 mM 

HEPES, 100 mM NaCl, 5 mM EDTA pH 7.5), day two (25 mM HEPES, 100 mM 

NaCl, 1 mM EDTA pH 7.5), day three (25 mM HEPES, 5 mM MgCl2, 10 mM KCl 

pH 7.5). NEFs were labeled with Alexa Fluor® 488 5-SDP ester or Alexa Fluor® 

647 NHS ester (Life Technologies) according to the suppliers instructions. Hsp72 

was biotinylated using EZ-link NHS-Biotin (Thermo Scientific) according to the 

supplier instructions. After labeling, the proteins were subjected to gel filtration to 

remove any unreacted label. Average label incorporation was between 0.5 and 

2.0 moles of label per mole of protein, as determined by measuring fluorescence 

and protein concentration (Amax x MW of protein / [protein] x εdye ). 

 

2.5.2 Flow Cytometry Protein Interaction Assay 
The assay procedure was adopted from previous reports [66, 67]. Briefly, 

biotinylated Hsp72 was immobilized (1h at room temperature) on streptavidin 

coated polystyrene beads (Spherotech), with nucleotide (1 mM) present where 

indicated. After immobilization, beads were washed to remove any unbound 

protein and then incubated with labeled NEF protein at indicated concentrations 

with nucleotide where noted. Binding was detected using an Accuri™ C6 flow 

cytometer to measure median bead-associated fluorescence. Beads capped with 
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biocytin were used as a negative control, and non-specific binding to beads was 

subtracted from signal.  

 

2.5.3 Isothermal Titration Calorimetry.  
NEFs and Hsp72NBD were dialyzed overnight against ITC buffer (25 mM HEPES, 

5 mM MgCl2, 10 mM KCl pH 7.5). Concentrations were determined using a BCA 

Assay (Thermo Scientific), and the experiment was performed with a MicroCal 

VP-ITC (GE Healthcare) at 25 °C. Hsp72NBD (100 µM) in the syringe was titrated 

into a 5-10 µM cell solution of NEF protein. Calorimetric parameters were 

calculated using Origin® 7.0 software and fit with a one-site binding model. 

 

2.5.4 Fluorescence Polarization Assays.  
A fluorescent ATP analogue, N6-(6-Amino)hexyl-ATP-5-FAM (ATP-FAM) (Jena 

Bioscience) was used to measure NEF induced nucleotide dissociation from 

Hsp72. In black, round-bottom, low-volume 384-well plates (Corning), 1 µM 

Hsp72 and 20 nM ATP-FAM were incubated with varying concentrations of BAG 

protein for 10 minutes at room temperature in assay buffer (100 mM Tris, 20 mM 

KCl, 6 mM MgCl2 pH 7.4). After incubation fluorescence polarization was 

measured (excitation: 485 nm emission: 535 nm) using a SpectraMax M5 plate 

reader. For substrate binding/dissociation a commercially available fluorescent 

peptide FAM-HLA (Anaspec), was used as described [146]. Briefly, 1 µM Hsp72 

and 25 nM FAM-HLA were incubated with varying concentrations of BAG protein 

for 30 minutes at room temperature in assay buffer (100 mM Tris, 20 mM KCl, 6 

mM MgCl2 pH 7.4). After incubation, fluorescence polarization was measured 

(excitation: 485 nm emission: 535 nm) using a SpectraMax M5 plate reader.  

 

2.5.5 Malachite Green ATPase Assay.  
Experiments were performed according to previous protocols [68]. Briefly, Hsp72 

(1µM) and various concentrations of NEF and/or J protein were added to clear 96 

well plates and the reactions initiated with the addition of ATP (1 mM). The 

reactions proceeded for 1 h at 37 °C, developed with Malachite Green Reagent, 
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quenched with sodium citrate, and plate absorbance was measured at 620nm. A 

phosphate standard curve was used to calculate pmol ATP/µM Hsp72/min.  

 

2.5.6 Luciferase Refolding Assay.  
Experiments were performed as described previously [164]. In brief, luciferase 

(Promega) was denatured in 6 M GnHCl for 1 h at room temperature, and then 

diluted into a working solution of Hsp72 in buffer containing an ATP regenerating 

system (23 mM HEPES, 120 mM KAc, 1.2 mM MgAc, 15 mM DTT, 61 mM 

creatine phosphate, 35 U/ml creatine kinase, 5 ng/µL BSA pH 7.4). Various 

concentrations of NEF and J protein were added and the reaction initiated with 

the addition of ATP (1 mM). When indicated 10mM Pi was included in each well. 

Assay proceeded for 1 h at 37 °C in white, 96 well plates and luminescence 

measured using SteadyGlo Luminescence reagent (Promega).  

 

2.6 Notes 
A portion of this chapter has been published as Rauch JN and Gestwicki JE. 

Binding of human nucleotide exchange factors to heat shock protein 70 (Hsp70) 

generates functionally distinct complexes in vitro. Journal of Biological Chemistry. 

2014; 289(3):1402-14. 
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Chapter 3                                                                                                

Development of a Capillary Electrophoresis Platform for Identifying 

Inhibitors of Hsp70-BAG3 Interactions 

 
3.1 Abstract 
To better understand the cellular functions of Hsp70-BAG complexes that were 

characterized in Chapter 2, we sought to identify chemical inhibitors. However, 

methods for identifying inhibitors of protein-protein interactions (PPIs) are often 

prone to the discovery of false positives, particularly those caused by molecules 

that induce protein aggregation. Thus, there is interest in developing new 

platforms that might allow earlier identification of these problematic compounds. 

For these reasons, we evaluated capillary electrophoresis (CE) as a method to 

screen for PPI inhibitors using the challenging system of Hsp70 interacting with 

its co-chaperone BAG3. In the method, Hsp70 is labeled with a fluorophore, 

mixed with BAG3, and the resulting bound and free Hsp70 separated and 

detected by CE with laser-induced fluorescence detection. The method used a 

modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-BAG3 

interaction were detected by observing a reduction in the bound to free ratio. The 

method was used to screen a library of 3,443 compounds and results compared 

to those from a flow cytometry protein interaction assay. CE was found to 

produce a lower hit rate with more compounds that reconfirmed in subsequent 

testing suggesting greater specificity. This finding was primarily attributed to two 

features: use of electropherograms to detect artifacts such as aggregators and 

differences in the way that the target proteins were modified. Increases in 

throughput are required to make the CE method suitable for larger primary 
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screens but it is attractive as a secondary screen to test hits found by higher 

throughput methods.  
 

3.2 Introduction 
Protein-protein interactions (PPIs) are involved in key cellular processes [165-

167] and enthusiasm is growing for developing chemical inhibitors of these 

contacts [6]. PPIs were previously considered to be intractable drug targets, but 

recent successes have demonstrated that potent and selective inhibitors can 

indeed be found [6]. More than 100 inhibitors of PPIs have now been reported in 

the literature and some of these molecules have low nanomolar potency [6-9]. 

Interestingly, a recent analysis of known PPI inhibitors suggests that the most 

tractable PPI targets feature a relatively small contact area, with clear energetic 

“hotspots” [73]. Conversely, other PPIs have been more difficult to target, likely 

because they involve large, relatively flat surface areas and/or because the 

interactions are relatively weak [73, 170-172]. Despite these challenges, a 

handful of inhibitors of difficult PPIs have also been reported and it seems likely 

that emerging discovery methods, such as fragment-based screening, will 

continue to expand the categories of PPIs that are considered “druggable” [9].  
 

Often, high throughput screening (HTS) [11] plays a critical role in the discovery 

of chemical PPI inhibitors. The assay platforms used for PPI targets can be 

divided into two general classes: those that measure binding of test molecules to 

one of the proteins and those that directly measure disruption of the protein-

protein contact. The first class of methods relies on the idea that binding of a 

small molecule might potentially disrupt PPIs involving the protein target. The 

techniques used in this type of search include NMR, surface plasmon resonance 

(SPR), differential scanning fluorimetry (DSF), and in silico approaches. These 

strategies have been successful in yielding PPI inhibitors [12-18]. The alternative 

approach is to measure the PPI itself and then screen for compounds that inhibit 

the contact.  Methods such as FRET, AlphaLisa, fluorescence polarization (FP) 

and flow cytometry protein interaction assay (FCPIA) are commonly used in this 
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type of paradigm. While these technologies are powerful, they suffer from high 

false positive rates, often from the presence of “aggregator” molecules [174]. 

Such compounds bind and denature a protein target causing it to aggregate. 

These artifacts are particularly problematic in screens of difficult PPIs because 

flat, poorly soluble molecules tend to interact with the relatively shallow 

topologies of protein-protein contacts. Likewise, intrinsically fluorescent 

compounds are widespread in most commercial compound libraries and 

fluorescent artifacts often need to be carefully removed in secondary screens. 

However, indiscriminate removal of all fluorescent compounds necessarily 

removes molecules with true potential as inhibitors (e.g. false negatives).  

 

In principle capillary electrophoresis (CE) could be used to screen for modulators 

of PPI. A variety of CE methods have been successfully used to probe non-

covalent interactions in vitro [175-181]. We have explored affinity probe CE 

(APCE) [17, 21] for this purpose. In this method, binding partners are mixed 

together and the mixture separated fast enough by CE that the non-covalent 

complex and free partners can be detected as separate peaks. Typically one of 

the binding partners is fluorescently labeled to allow sensitive detection by laser-

Figure 3.1 Schematic for using APCE to detect PPIs. In this method, one protein partner 
is f luorescently labeled, mixed with i ts binding partner and then separated by CE. The 
protein complex and free protein are dist inguished by their electrophoretic mobil i ty.  
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induced fluorescence (LIF) (Figure 3.1). This approach has been used in 

immunoassays [22-24], aptamer assays [185-187], and to detect protein 

aggregation [15, 27], protein-DNA [189] , protein-saccharide [18], protein-protein 

[181], protein-peptide interactions [189, 191, 192]. Binding inhibitors added to 

mixtures can be detected by observing the shift in bound to free peak areas that 

result in electropherograms. This has been used for competitive immunoassays 

[32, 33] and to detect inhibitors in small scale screens of protein-peptide 

interactions [194], e.g. SH2 domains binding to short phosphorylated peptides. 

Extending this approach to interactions of full proteins is of interest because 

many proteins do not have well-defined, linear peptide binding targets and 

allosteric modulation may be an important mode of interaction.  

 

As a screening tool for the discovery of PPI inhibitors, CE has a number of 

potential advantages over currently used screening methods. Namely, this 

method might allow detection of aggregators, based on the appearance of peaks 

different from the complex and free affinity probe. Moreover, CE would allow 

separation of fluorescent test compounds from the complex to prevent 

interference in binding detection. This feature has the potential to identify and 

possibly “rescue” false negatives. CE, especially in microchip format, is also 

compatible with scale up to HTS based on its low sample consumption (~4 nL), 

fast separation speed, high degree of automation and straight forward 

quantification [124, 195]. Indeed, commercial systems are available that use 

microchip electrophoresis for screening enzymatic reactions, e.g. Caliper 

LabChip EZ reader.  

 

The potential application of CE for screening PPIs requires addressing a number 

of specific technical challenges, such as the tendency of some proteins to adsorb 

to CE columns and difficulties with obtaining adequate resolution of bound and 

free protein under non-denaturing conditions. Moreover, this method has yet to 

be tested head-to-head with existing HTS platforms to rigorously uncover 

whether it has any demonstrable advantages. Finally, we consider it important to 
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attempt pilot studies on challenging and physiologically meaningful PPIs to meet 

the goal of adding CE to the arsenal of methods for meeting the specific and 

emerging challenges of difficult PPIs. 

 

Here, we report the first use of CE as a PPI screening platform. As a target, we 

selected the PPI between heat shock protein 70 (Hsp70) and Bcl2-associated 

anthanogene 3 (BAG3). As discussed in Chapters 1, Hsp70 is a molecular 

chaperone that cooperates with BAG3 to regulate protein quality control [124]. 

The BAG3-Hsp70 complex stabilizes a number of key oncogenes, making it a 

promising anti-cancer target [116-120, 195]. However, this complex has a large 

predicted contact interface (>1800 Å2) and work in Chapter 2 showed that it has 

a relatively high affinity, placing it in the category of a challenging PPI [40]. In this 

research, we used APCE to detect formation of the Hsp70-BAG3 complex by 

labeling the Hsp70 with a fluorophore. Further, by modifying the CE column we 

limited undesirable adsorption of Hsp70 and enabled screening of a pilot 

collection of 3,443 small molecules against this target. Concurrently, we 

screened the same library using FCPIA. A comparison between the results of 

these parallel screens revealed strengths and weaknesses of the HTS methods. 

From these studies, we conclude that CE is a promising method for finding 

inhibitors of PPIs and a significant advantage is that it enables early detection of 

aggregators. 
 

3.3 Results 
3.3.1 Development of a CE-based assay for Hsp70 binding to BAG3.  
In APCE, one of the binding partners is normally labeled to allow sensitive 

detection of the complex by LIF. For these experiments we labeled recombinant, 

human Hsp70 (HSPA1A) with Alexa-488, such that there was an average of 0.5 

fluorophores per protein. This modification did not affect the activity of Hsp70 as 

measured by comparing the ATPase activity of unmodified and labeled samples 

(Figure 3.2).  
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Initial experiments were directed at identifying separation conditions that would 

allow detection of Hsp70-488 and its complex with BAG3. Samples containing 

0.5 µM Hsp70-488 or Hsp70-488 and BAG3 mixed at a 1:1 ratio (0.5 µM each) 

were analyzed by APCE.  In this stage of the study, we found that the biggest 

challenge was BAG3 adsorption. For example, when using unmodified fused 

silica for the CE capillary, the Hsp70-488 peak was detected and it decreased 

upon addition of BAG3; however, no complex peak was detected (Figure 3.4A). 

To prevent adsorption, the capillary surface was modified using a perfluorinated 

silane and 0.01% (w/v) Tween-20 was added to the electrophoresis buffer [41] 

(Figure 3.3). Using these modifications, the mixture of labeled Hsp70 and 

unlabeled BAG3 was readily observed as two individual bands with migration 

Figure 3.2 ATPase stimulation and binding to Hsp70 is unaffected by labeling. (A) 
ATPase stimulation by the Hsp70 co-chaperone J protein. (B) Bag3 effect on Hsp70/J 
protein ATPase stimulation. (C) Binding to BAG3 is unaffected by label  
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Figure 3.3 Modif ication of capil lary surface. The capil lary surface was modif ied with 
perf luorinated si lane to prevent BAG3 absorption. Tween-20 (0.01%) was also added to 
the electrophoresis buffer. 



 

 62 

times of 96 and 122 s, corresponding to the complex and the free Hsp70 

respectively (Figure 3.4B). A “bridge” is observed between the complex and free 

peak, which is attributed to Hsp70-488 that dissociated during separation (Figure 

3.4B). 

 

To evaluate whether this method could faithfully recapitulate the known affinity of 

the Hsp70-BAG3 complex, we titrated BAG3 into Hsp70-488 and measured 

formation of the complex by CE. The peak area of complex plus “bridge” 

increased as a function of BAG3 concentration (Figure 3.5A). Plotting this peak 

area against BAG3 concentration and using a non-linear regression yielded a 

binding constant of 23 ± 8 nM (Figure 3.5B), which is in good agreement with 

affinities obtained in Chapter 2, as well as the ~15 nM KD obtained from 

isothermal titration calorimetry (ITC) (Figure 3.2C).  

 

To confirm that the peak attributed to complex was in fact Hsp70-BAG3 and 

demonstrate that we could detect inhibition of this complex, we performed 

Figure 3.4 Electropherograms of Hsp70-488 with and without BAG3 added using (A) 
bare si l ica capil lary; (B) PFOTCS modif ied capil lary. Free Hsp70-488 decreases with 
added Bag3 in (A), but no complex peak is detected suggesting adsorption induced by 
BAG3. A complex peak with dissociation, forming a bridge to the free Hsp70-488, is 
observed with the modif ied capil lary. Separations were performed at 500 V/cm through 
10 cm effective length. 0.5 psi was applied to drive f low and decrease analysis t ime. 
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competition experiments in which unlabeled Hsp70 was added at different 

concentrations to the Hsp70-488 and BAG3 mixture. These experiments showed 

that the complex peak decreased with added Hsp70, confirming the identity of 

the peak. Analysis of the data yielded an IC50 of 0.24 µM (Figure 3.5D), 

suggesting that the PPI was specific and that detection of bound to free ratios 

could be used to detect an inhibitor. 

 

Figure 3.5 Determination of dissociation constant (Kd) and IC50 of binding by CE-LIF. (A) 
Electropherograms of 0.5 µM Hsp70 with increasing concentrations of BAG3; (B) 
Saturation curve from the t i trat ion experiments in Figure 3.4 by plott ing the peak area of 
complex and dissociation bridge against BAG3 concentration. Non-l inear regression 
determined the Kd to be 23 ± 8 nM. (C) Electropherograms of 0.5 µM Hsp70 and BAG3 
with increasing concentration of unlabeled Hsp70. (D) Peak area ratio (bound to free)’s 
response to increasing Hsp70 concentration. IC50 can be determined for unlabeled 
Hsp70 to be 0.240 ± 0.003 µM. 
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3.3.2 Adapting CE to a Screening Format.  
After validating the CE method as an effective platform for monitoring the Hsp70-

BAG3 interaction, we evaluated its potential for screening using automated 

analysis from 96-well microtiter plates. Each CE assay required ~ 6.5 min to 

complete, including 1 min rinsing, 5 s injection and 3 min separation. This 

protocol allowed us to screen 220 samples per day. Thus, while the method is 

not yet practical for screening large (e.g. 100,000) chemical libraries, it is suitable 

for proof-of-principle pilot screens. 

 

The robustness of the CE platform was tested by performing a sequence of 

control assays from a 96-well plate. Each sample contained Hsp70-488 (0.5 µM) 

mixed with BAG3 (0.5 µM). Half of the samples were positive controls (2 µM 

unlabeled Hsp70 added) and half were negative controls (only 1% DMSO 

added). The calculated Z-factor for this experiment was 0.78, well above the 

suggested minimum for HTS (~0.50) [42]. We also tested the robustness of using 

our FCPIA platform (established in Chapter 2) as an HTS method for this PPI. 

Briefly, Hsp70 was biotinylated and immobilized on streptavidin coated 

polystyrene beads, while BAG3 was fluorescently labeled with Alexa-Fluor 488. 

The two partners were then incubated together and analyzed using an Accuri 

flow cytometer to measure bead-associated fluorescence [43]. This platform 

yielded a Z-factor of 0.86. Together, these experiments established two platforms 

for screening of the Hsp70-BAG3 complex. 

 
3.3.3 Screening and Selection of PPI inhibitors.  
Using these conditions, we screened a pilot library of 3,443 compounds by CE 

using the workflow shown in Figure 3.6. A comparable workflow was used for a 

FPCIA screen. In the CE screen, each well produced an electropherogram which 

was then integrated and the peak area ratios (bound Hsp70-488 to free Hsp70-

488) were used to identify putative inhibitors [42]. Ratios were used instead of 

single peak areas to minimize artifacts from variations in injection volume, light 

source instability or sample evaporation effects. This approach also allowed the 
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results from each individual microtiter well to be submitted to the screening 

database as a convenient single point data; however, the full electropherograms 

were stored and could also be retrieved. Test compounds in both the CE and 

FCPIA screens were screened at a single concentration (20 µM) and those that 

blocked the PPI with a percentage of inhibition that was ≥ 3 standard deviations 

(SD) from the negative controls were considered “hits”. Using this criterion, CE 

identified 79 primary hits (2.3%), while FCPIA identified 117 (3.4%) as shown in 

Figure 3.7. Active molecules from the CE screen were further triaged based on 

visual inspection of the raw electropherograms. This analysis readily identified 

aggregator molecules and compounds with high intrinsic fluorescence because 

of irregular electropherograms (see Figure 3.9). Removing these artifacts 

reduced the number of putative inhibitors to 48 (1.4%). Interestingly, only 6 

primary hits were common between the two assays, suggesting a large number 

of false positives and/or negatives. 

 

Select compounds from both lists of confirmed inhibitors were then repurchased 

from commercial sources: 14 compounds from the CE screen and 18 from the 

Figure 3.6 I l lustration of workflow for the CE screen. Library compounds were placed in 
96 well plates along with controls. After CE separation, peaks were integrated and 
bound:free ratio for Hsp70-488 was measured. Hits were defined as those compounds 
that perturbed the ratio by more than 3 standard deviations. 
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FCPIA screen including 2 shared inhibitors. Only hits that were available from 

different commercial sources and were deemed to have potential for further 

development as drugs or chemical probes were selected for retesting. 

Repurchased compounds were tested by dose response curves (DRC) in the 

original screening platforms, and eight were reconfirmed from each list. These 

Figure 3.7 Results from screens of 3,443 compounds using CE and FCPIA. (A) 
Campaign view of CE screen. Negative controls (DMSO) are shown in blue, posit ive 
controls (4µM Hsp70) are shown in red, and compound wells are shown in green. 
Average plate Z’ score was 0.58. (B) Campaign view of FCPIA screen. Negative controls 
(DMSO) are shown in blue, posit ive controls (1µM Hsp70) are shown in red, and 
compound wells are shown in green. Average plate Z’ score was 0.86. (C) Summary of 
tr iage and confirmation of hits for CE and FCPIA HTS. 
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results suggest that some of the hits are due to degraded compounds or other 

artifacts from the library, a common observation in screening. 

 

The eight confirmed hits from each assay were tested by DRC on the other 

assay. Interestingly, all (8/8) repurchased compounds that reconfirmed in CE 

were also confirmed in FCPIA; however, only 50% (4/8) of the compounds that 

showed activity in FCPIA were considered inhibitors in the CE platform. (DRC 

from cross testing are shown in Figure 3.8.) 
 

Of the 4 compounds found by FCPIA that reconfirmed by CE, two were detected 

and two were missed in the original CE screen. The two inhibitors overlooked by 

CE were confirmed at a concentration 5 times higher than the concentration used 

for the screen. The use of lower concentrations during the screen combined with 

lower Z-factor of the CE assay led to their being missed in the original screen. Of 

Figure 3.8 DRCs of confirmed FCPIA hits using (A) CE, (B) FCPIA and CE hits using (C) 
CE, (D) FCPIA. Only 4 compounds are shown (A) because other FCIPIA hits showed no 
activity at 100 ⎧M in the CE assay. Error bars are the range for two replicates.  
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the 8 compounds found by CE that reconfirmed by FCPIA, 6 were missed in the 

original FCPIA screen. Two of these, celastrol [43] and myricetin [42], are known 

modulators of Hsp70. These results suggest that CE gave fewer false negatives. 

Nevertheless, it is apparent that the screens complement each other.  
 

3.3.4 Evaluation of the CE Platform and Opportunities for Further 
Optimization.  
Compared to the standard screen by FCPIA, CE produced lower hit rates with a 

higher percentage of compounds that were eventually confirmed by retesting 

using multiple techniques. We suspect that the enhanced reproducibility and 

specificity of CE might derive from the use of the electropherogram to triage 

molecules, which allowed streamlining of the hit selection process at multiple 

stages. For example, molecules that induce Hsp70-488 aggregation were readily 

identified by the appearance of sharp spikes corresponding to insoluble 

particulates (Figure 3.9B). Removal of these aggregators from future 

consideration greatly streamlined the subsequent confirmation steps. CE also 

allowed direct detection of intrinsically fluorescent compounds, which might 

Figure 3.9 Sample electropherograms of 0.5 µM Hsp70-488 and 0.5 µM Bag3 with (A) 15 
µM Epigallocatechin gallate (EGCG), a confirmed PPI inhibitor; (B) 20 µM haematoxylin, 
identif ied as an aggregator; (C) 20 µM calcein added, identif ied as a f luorescent 
compound that interferes with detection of free Hsp70-488. 
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otherwise give false positives in a fluorescent screening assay and require 

secondary screens for their removal (Figure 3.9C). In principle, these compounds 

could be further evaluated in screens by CE. 

 

Another difference between the assays is that the CE assay used labeled Hsp70 

and allowed interaction in free solution. In contrast, the FPCIA used labeled 

BAG3 and immobilized Hsp70. This difference may have also yielded some 

differences in the results such as the 4 hits confirmed by FPCIA but not detected 

by CE and the rank order of IC50s. A label or surface immobilization may yield 

subtle changes in protein conformation, affect access to the binding site or inhibit 

allosteric mechanisms. Thus, in principle the lower degree of protein modification 

required by CE would be advantageous.  
 

3.4 Discussion 
Despite these advantages, the application of CE to screening PPI is still in its 

infancy and several issues need to be addressed. We observed that peak area 

ratios began to drift after about 500 injections. This was attributed to deterioration 

of the surface coating because switching to a new capillary restored the original 

bound to free ratio. This effect may have contributed to the lower Z-factor of the 

CE method and it might have caused us to overlook some active compounds. 

More stable coatings are likely to help this effect. Of course, not all proteins will 

require coatings. Another limitation is the current requirement for covalent 

labeling with fluorophores, which has the potential to interfere with the PPI itself 

depending on the system. Use of post-column derivatization, native protein 

fluorescence, and/or label-free detection methods are alternatives that may 

eliminate this requirement.  

 

At the throughput enabled by a commercial CE instrument, this assay is best 

suited as a secondary screen to test hits found by higher throughput methods. 

Use of novel microchip systems [43, 44] or adoption to commercial microchip 
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electrophoresis, e.g. Caliper LabChip EZ reader, will be required to make this a 

tool suitable for screens of larger chemical collections.  

 
Recent interest in PPI inhibitors has driven a search for new methodologies that 

are suitable for HTS. In particular, HTS methods that permit screening of 

relatively weak or transient interactions are becoming an area of need. The 

experiments with CE described here provide a framework for development of this 

method as a robust tool for the discovery of new inhibitors of PPIs that 

complements existing techniques. 

 

In terms of Hsp70-BAG3 biology, this method provides an initial set of molecules 

that could be optimized to generate chemical probes. As part of the broader goal 

of this thesis work, it would be important to identify molecules that disrupt binding 

of Hsp70 to BAG3. While this work was being performed, studies by other 

members of the Gestwicki laboratory identified a promising scaffold for this 

purpose [28]. Using FCPIA we were able to determine that these molecules 

inhibit Hsp70-NEF interactions [45, 46], and this platform has become critical for 

driving structure-activity relationships (SAR) in this series. Furthermore, this 

compound series has provided valuable insight into Hsp70-BAG3 biology, 

specifically in the context of cancer signaling networks. Future work expanding 

on these compounds will be discussed in Chapter 5. 

 

3.5 Methods 
3.5.1 Protein Purification and Labeling.  
Human Hsp70 (HSPA1) was purified as previously described [47] using a N-

terminal 6xHis tag and Ni-NTA column, followed by overnight TEV Protease 

cleavage of the His tag and lastly an ATP-agarose affinity column. Human N-

terminal 6xHis-tagged BAG3 was purified based on previous reports [49]. Briefly, 

BAG3 was purified by ammonium sulfate (0-30% of saturation) followed by a Ni-

NTA column and overnight TEV cleavage of the His tag. BAG3 was dialyzed 

overnight into Buffer A (25 mM HEPES, 10 mM NaCl, 15 mM β-mercaptoethanol, 
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0.1mM EDTA, pH 7.6) and subjected to ion-exchange chromatography on a 

Mono-Q HR 16/10 column (GE Healthcare). Finally, BAG3 was subjected to size 

exclusion chromatography on a Superdex 200 gel filtration column (GE 

Healthcare). Hsp70 and BAG3 were labeled with Alexa Fluor® 488 5-SDP ester 

(Life Technologies) according to the suppliers instructions. Hsp70 was 

biotinylated using EZ-link NHS-Biotin (Thermo Scientific) according to the 

supplier instructions. After labeling, the proteins were subjected to gel filtration to 

remove any unreacted label. 

 

3.5.2 Capillary Surface Modification.  
The inner surface of a 30 cm long fused silica capillary (Polymicro Technologies; 

Phoenix, AZ) with 50 µm inner diameter and 360 µm outer diameter was 

activated for derivatization by pumping the following through the capillary at 30 

psi for 1 h each: 1) methanol at room temperature; 2) RCA solution 

(NH4OH:H2O2:H2O v:v:v = 1:1:5) at 120 °C; 3) 0.1 M HCl at 90°C. Temperature 

was maintained by an oil bath. After activation, the residual liquid was purged out 

of the capillary and the capillary inner surface was dried under dry nitrogen flow 

at 165 °C overnight. 10% (volume percent) 1H, 1H, 2H, 2H-

perfluorooctyltrichlorosilane (sigma, St. Louise, MO) in toluene was continuously 

infused for 3 h at 120 °C.  The derivatized capillary was rinsed with toluene and 

methanol before purging with nitrogen and drying in an oven at 80 °C overnight.  

 

3.5.3 Capillary Electrophoresis.  
A Beckman Coulter MDQ/PACE was used for CE experiments unless otherwise 

noted. The capillary was mounted to have a separation length of 10 cm. Capillary 

temperature was kept at 25 °C for all experiments. Separation buffer was 10 mM 

sodium phosphate adjusted to pH 7.5 with 0.01% Tween 20 (w:v). All separation 

buffers were made fresh every day from 5X stock solution. All buffer solutions 

were made using water purified and deionized to 18 MΩ resistivity using a Series 

1090 E-pure system (Barnstead Thermolyne Cooperation, Dubuque, IA) and 

then filtered through a 0.2 µm pore size membrane (Whatman, GE). The 
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separation method consisted of three steps: 1) 1 min rinsing using with 

separation buffer; 2) pressure injection at 0.3 p.s.i. for 5 s; 3) separation at 500 

V/cm with normal polarity resulting in current of 14.0 µA. 0.5 p.s.i. pressure was 

applied during separation to generate flow in the same direction of EOF to 

decrease separation time to 3 min. LIF detection was accomplished using a 20 

mW optically pumped semiconductor Sapphire laser (Coherent, Santa Clara, CA) 

coupled to the Beckman Coulter MDQ/PACE LIF detection module through an 

optical fiber. The LIF was equipped with λex/λem filters of 488 nm/520 nm. All data 

were collected by 32 Karat software and exported as ASCII files, which were 

further processed using software written in house [45, 48]. 

 

3.5.4 Small Molecule Libraries.  
The chemical library of 3,443 distinct compounds was assembled at the 

University of Michigan’s Center for Chemical Genetics (CCG) from several small 

libraries. The MicroSource MS2000 library contains 2000 bioactive compounds 

with a minimum of 95% purity. The collection contains 958 known therapeutic 

drugs, 629 natural products and natural product derivatives, 343 compounds with 

reported experimental biological activities and 70 compounds approved for 

agricultural use. The CCG Focused collection includes ~1000 small molecules 

that target specific activities (e.g., Wnt Pathway) and natural products. The CCG 

Biofocus NCC library is an NIH Clinical collection that contains ~450 small 

molecules that have a history of use in human clinical trials including some FDA 

approved drugs. The activity of promising compounds was confirmed with 

repurchased samples from commercial sources including Sigma-Aldrich, Enzo 

Life Sciences, Cayman Chemical, Acros Organics, Alfa Aesar, and MP 

Biomedicals.  

 

3.5.5 Screening by Capillary Electrophoresis.  
Binding reactions were performed in 96-well conical bottom PCR plates (ISC 

BIoexpress). A stock solution of Alexa Fluor® 488 labeled Hsp70 (Hsp70-488) 

and unlabeled BAG3 was prepared fresh daily in assay buffer (25 mM HEPES, 
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10 mM KCl, 5 mM MgCl2, 0.3% Tween-20 pH 7.5) so that the final concentration 

of both proteins was 500 nM in the assay. Compounds and DMSO were dry 

spotted in plates prior to protein addition using a Mosquito liquid handler (TTP 

Labtech). Assay buffer (5 µL) was added to each well except for positive control 

wells that received 5 µL of unlabeled Hsp70. Hsp70-BAG3 solution (10 µL) was 

then added to each well. All additions were added using a Matrix Electronic 

Multichannel pipette (Thermo Scientific). Plates were incubated for at least 15 

min and then analyzed on the CE system.  

 
3.5.6 High-throughput Flow Cytometry Protein Interaction Assay. 
The assay procedure was adopted from previous reports[162]. In brief, 

biotinylated Hsp70 was incubated with streptavidin coated polystyrene beads 

(Spherotech) for one hour prior to assay for immobilization. A stock solution of 

Alexa Fluor® 488 labeled BAG3 was prepared in assay buffer (25 mM HEPES, 

10 mM KCl, 5 mM MgCl2, 0.3% Tween-20 pH 7.5) so that the final concentration 

of BAG3 was 30 nM in the assay. Assay buffer (5 µL) was added to each well of 

a black 384 well plate (Thermo Scientific), followed by compound or DMSO 

addition (0.2 µL) using a Biomek HDR (Beckman). Positive control wells received 

5 µL unlabeled Hsp70 instead of assay buffer. BAG3 solution (10µL) was then 

added to each well, followed by Hsp70-bead addition (5 µL). All components 

other than compounds were added using a Multidrop dispenser (Thermo Fisher 

Scientific).  Plates were incubated for 15 min then analyzed using a Hypercyt 

liquid sampling unit in line with an Accuri® C6 Flow Cytometer. Median bead 

associated fluorescence was calculated using Hyperview software for each well 

and data was uploaded to the Mscreen database.  

 

3.5.7 Malachite Green ATPase Assay.  
Assay was performed as described previously [1]. All assays used 1µM Hsp70 

and 0.25µM DJA2 was added for BAG3 ATPase activity. Plates were incubated 

for 1 hour at 37°C and inorganic phosphate was detected using Malachite Green 

reagent.  
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3.5.8 Isothermal Titration Calorimetry.  
BAG3 and Hsp70 were dialyzed against 25mM HEPES, 5mM MgCl2, 10mM KCl 

pH 7.5 (ITC Buffer). The experiment was performed with a MicroCal VP-ITC at 

25°C by titrating 5µL injects of Hsp70 (85µM) into a 5µM solution of Bag3. 

Calorimetric parameters were calculated using Origin® 7.0 software and fit with a 

one-site binding model.  

 

3.6 Notes 
A portion of this chapter has been published as Rauch JN*, Nie J*, Buchholz TJ, 

Gestwicki JE, Kennedy RT. Development of a capillary electrophoresis platform 

for identifying inhibitors of protein-protein interactions. Analytical Chemistry. 

2013; 85(20):9824-31. (*co-first authors) 
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Chapter 4                                                                                                           

BAG3 is a modular scaffolding protein that links the molecular 

chaperone Hsp70 to the sHsp system 

 
4.1 Abstract 
BAG3 is a multi-functional protein implicated in many cellular processes. In 

Chapter 2, we examined the role of BAG3 as a nucleotide exchange factor (NEF) 

for Hsp70 and in Chapter 3 we screened for small molecules that could disrupt 

the BAG3-Hsp70 interaction. In this Chapter, we assess the role of BAG3 as a 

modular scaffolding protein that links Hsp70 to the small heat shock protein 

(sHsp) system. Previous work had identified that BAG3 contains two IPV motifs 

that can interact with different sHsps, however the full scope of these interactions 

was unknown and their implications on sHsp structure was uncertain. In this work 

we show that BAG3 binds a large range of human sHsps, using both of its IPV 

motifs to form a 2:1 stoichiometric complex (sHsp:BAG3). BAG3 is competitive 

with sHsp-sHsp self-self interactions and can reduce sHsp oligomer size. 

Furthermore, we go on to show that BAG3 uses its BAG domain to interact with 

Hsp70 and that it can bridge a ternary complex between sHsps and Hsp70. All 

together, this data indicates that BAG3 is situated at the interface of the Hsp70 

and sHsp systems, and could potentially regulate client transfer between them. 

 

4.2 Introduction 
As introduced in Chapter 1, Bcl-2 Associated Anthanogene-3 (BAG3) is an 

Hsp70 co-chaperone that has gained attention for its ever-growing roles in 

disease [3-5]. BAG3 is a relatively large protein that, on top of its established 

activity as a NEF for Hsp70, also contains many additional protein-protein 
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interaction (PPI) motifs. In its N-terminus, BAG3 has a WW domain (see Figure 

4.4A) that has been shown to be important for binding PPxY motif proteins, such 

as RAPGEF6 [6] and SYNPO2 [7]. The PXXP region of BAG3 has been 

implicated in interactions with various SH3 domain-containing proteins, such as 

Src [5] and PLC-γ [8]. Finally, BAG3 contains two IPV motifs separated by ~100 

amino acids. IPV or IXI/V motifs are known to be important for binding small heat 

shock proteins (sHsps) [9-11] and have been reported to be important for linking 

BAG3 to various sHsps [12]. 

 

Together, these PPI motifs in BAG3 allow it to act as a scaffolding protein that 

might link Hsp70 to important pathways. Indeed, mass spectrometry studies have 

estimated the BAG3 “interactome” to include >300 proteins [13]. This implicates 

BAG3 in a diverse range of cellular processes such as signal transduction [14], 

transcription [7], apoptosis [15, 16], and autophagy [17, 18]. However, it isn’t yet 

clear how BAG3 supports the assembly of these multi-protein complexes.  

 

The interaction between BAG3 and sHsps was particularly interesting to us, 

because sHsps are a large and enigmatic class of molecular chaperones. In 

humans, there are ten members of the sHsp family, denoted HSPB1 through 

HSPB10 [19]. Unlike Hsp70, sHsps do not possess any enzymatic function; 

instead, sHsps function as “holdases”, binding to denatured or non-native protein 

folds and preventing their aggregation [20, 21]. sHsp expression is induced by 

stress, and they are thought to act as a first line of defense in suppressing 

protein aggregation. 

 

Individual sHsps range in size from 12 to 43 kDa and they are defined by the 

presence of a conserved α-crystallin domain that is flanked by variable, 

disordered N- and C-terminal domains (Figure 4.1). The structure of the α-

crystallin domain of Hsp27 has been solved by NMR and it features an anti-

parallel beta-sheet that mediates stable dimerization (Figure 4.1) [22, 23]. In 

addition, the α-crystallin domain contains two highly conserved beta sheets, 
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termed β4-β8, that form a hydrophobic groove. In some sHsps, such as Hsp27 

and αB crystallin, an IXI motif in the C-terminus binds to this groove and 

stabilizes higher order oligomers (Figure 4.1) [1, 24] [9, 11]. This groove can 

even support hetero-oligomers between different sHsp family members [25]. The 

oligomers are typically polydisperse and range in size from 12 to 40 dimer 

subunits [25, 26].  

 

While it is well accepted that sHsps bind unfolded proteins and prevent their 

aggregation, it is not yet clear how they interact with clients. Moreover, it isn’t 

clear how they cooperate with other members of the molecular chaperone 

network. One attractive model suggests that the sHsp oligomers dissociates in 

the presence of clients, and then re-form into a new oligomeric form containing 

bound client [27, 28]. This idea is supported by electron microscopy [29] and 

mass spectrometry studies [30] analyzing sHsp-substrate complexes. 

Furthermore, it has been suggested that smaller oligomeric forms of sHsp are 

more potent holdases in vitro [31]. All of this data suggests a model wherein 

sHsps stabilize a reservoir of denatured proteins that can then be passed on to a 

Figure 4.1 Structure and domain architecture of sHsps. sHsps are typical ly ~200 amino 
acids in length, composed of an N-terminal domain containing 3 phosphorylat ion sites, 
an α-crystal l in domain, and an IXI/V motif  in the C-terminus. The α-crystal l in domain 
creates the dimer interface, and the IXI/V motifs al low dimers to stack up into ol igomers. 
Solution NMR structure of the dimer is courtesy of the Klevit lab, and the 24-mer model 
is from [1, 2].  
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refolding system like Hsp70. This is an exciting model because it would suggest 

the first direct link between two major “arms” of the protein homeostasis network. 

However, the mechanisms and requirements for this “hand-off” mechanism are 

entirely unknown. 

 

In Chapter 2, I characterized the interaction between BAG3 and Hsp70 and 

determined that the BAG domain is likely primarily responsible for the interaction.  

BAG3 has been proposed to interact with sHsps through its IXI motifs [12, 32, 

33], mimicking the intra-molecular interactions that normally occur in the β4-β8 

grooves.  Based on these findings, we hypothesized that BAG3 could potentially 

be a scaffolding protein that links Hsp70 with the sHsp system. To test this 

model, we generated a suite of BAG3 constructs with individual PPI domains 

mutated or deleted. We found that BAG3 interacts with multiple sHsps through its 

IPV motifs. Interestingly, we found that BAG3 preferred binding to smaller 

oligomers and that binding reduced oligomer size. This finding is exciting 

because it suggests that BAG3 is not only a scaffolding factor for sHsps, but that 

it actively remodels them. Lastly, we were able to show that indeed BAG3 can 

bridge sHsps and Hsp70, perhaps providing the missing link for substrate hand-

off between these major players of the proteostasis network. 

 

4.3 Results 
4.3.1 BAG3 binds multiple sHsps 
To study the interactions with BAG3, we selected four members of the sHsp 

family that are ubiquitously expressed in all human tissues [19]: Hsp27 (HSPB1), 

αB crystallin (HSPB5), Hsp20 (HSPB6), and Hsp22 (HSPB8). Of these proteins, 

Hsp20, Hsp22 and αB crystallin have been reported to interact with BAG3 by 

pulldown studies [12, 33], however, the affinities and stoichiometries of these 

interactions were not known. Therefore we employed a flow cytometry protein 

interaction assay (FCPIA) to assess binding of sHsps to BAG3. FCPIA was 

introduced in Chapter 2 as a workhorse method for studying protein-protein 

interactions. Briefly, sHsp was biotinylated and immobilized on streptavidin 
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coated polystyrene beads. Binding was then detected using fluorescently labeled 

BAG3. Using this platform, we found that BAG3 bound to Hsp27, Hsp20, Hsp22 

and αB crystallin with affinity constants in the low- to mid-nanomolar range 

(Figure 4.2A). We next asked how oliogomerization affects binding to BAG3 

using two additional Hsp27 variants. Hsp27-3D is a phospho-mimetic mutant that 

is reported to form smaller oligomers in solution [31]. Hsp27c is a truncated form 

that contains only the core α-crystallin domain and exists as a dimer in solution 

[34]. Using the FCPIA platform, we found that Hsp27c bound with the lowest 

Figure 4.2 BAG3 binds mult iple sHsps. (a) FCPIA of BAG3 and various sHsps. sHsps 
were immobil ized on beads and binding was detected using f luorescently labeled BAG3. 
Non-specif ic binding of BAG3 to control beads was subtracted. Curves were f i t  with a 
non-l inear regression with aff init ies reported in the table. Experiments were performed 
in tr ipl icate and the error reported is SEM. (b) Representative ITC graphs of BAG3 
t i trated with different Hsp27 constructs. Experiments were performed in duplicate, 
aff init ies are reported in the table and the error is SEM. Representative graphs for the 
other sHsp can be found in Figure 4.3. (c) Co-IP of Hsp27 and BAG3 from HEK293 cells. 
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affinity (KD ~ 4 nM), followed by Hsp27-3D, and then Hsp27. These results 

suggest that larger oligomers have the weakest affinity for BAG3, at least in the 

case of Hsp27.  

 

To confirm these results, we also tested binding by Isothermal Titration 

Calorimetry (ITC). The affinities of the PPIs were similar to those obtained by 

FCPIA, although the values tended to be higher in this solution-based platform 

(Figure 4.2B and Figure 4.3C). This difference is not unusual and likely reflects 

differences in affinity from fluorophore labeling and multivalency effects at the 

bead surface. Nevertheless, the overall rank ordering of affinities were consistent 

between the two platforms. ITC also revealed the stoichiometry of the 

sHsp:BAG3 interaction as 2:1. This was an intriguing result because BAG3 

contains two IPV motifs, so it could potentially interact across the dimer interface 

engaging both β4-β8 grooves.  

 

The interaction with Hsp27 was slightly surprising, because a previous report 

using co-imunoprecipitation had suggested that BAG3 does not bind to Hsp27 in 

HeLa cells [35]. When we repeated the pull-downs in HEK293 cells with 

endogenous protein, we found that Hsp27 co-immunoprecipitated with BAG3 

(Figure 4.2C). Furthermore, we were able to use NMR on our Hsp27c construct 

to show that BAG3 interacts specifically with the β4-β8 groove of Hsp27c (Figure 

4.3A), as has been previously reported for other sHsps [12]. These results are 

consistent with the high conservation of the β4-β8 binding groove (Figure 4.3B).  
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4.3.2 BAG3 uses IPV motifs to interact with sHsp 
It had been proposed that BAG3’s IPV motifs are critical for sHsp interactions, 

but the effects of IPV mutations or deletions had not been quantitatively 

measured. To address this question, we generated BAG3 variants in which 

individual domains were systematically deleted: ΔWW, Δ87-101, Δ200-213, Δ87-

101&Δ200-213, ΔPXXP, ΔBAG and BAG3C (Figure 4.4A). We assayed these 

proteins for binding to Hsp27c using FCPIA and ITC and found that deletion of 

the WW, PXXP, or BAG domain had no effect on binding affinity. The BAG3C 

Figure 4.3 BAG3 interacts with β4-β8 groove of Hsp27c (a) Interaction surface for ful l  
length BAG3 binding to Hsp27c. The changes in backbone amide peak intensit ies 
exceeding 2 standard deviations (dotted l ine in histogram) are plotted onto the cartoon 
representation of Hsp27c in blue. Intensity changes between 1.5 and 2 standard 
deviations are plotted in marine. Locations of the β4 and β8 strands are indicated above 
the histogram. (b) Al ignment of β4 and β8 sheets from indicated sHsps using COBALT  
(c) Representative ITC graphs for αB crystal l in, Hsp20 and Hsp22. Aff init ies are 
reported in Figure 4.2. 
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construct also showed no interaction (Figure 4.4B), as expected. Deletion of 

individual IPV motifs (Δ87-101, Δ200-213) or mutation of either IPV motif (IPV to 

GPG), reduced affinity by 2- to 5-fold (Figure 4.4C & 4.4F). When both IPV motifs 

were deleted (Δ87-101&Δ200-213) or mutated (IPV1&2) the affinity was reduced 

dramatically (Figure 4.4C & 4.4F). These results were further amplified in the ITC 

platform, where no binding could be detected for the double IPV 

Figure 4.4 Deletion/mutation of IPV motifs affect binding to sHsps. (a) Schematic of 
BAG3 domain architecture. (b) Domain deletions outside IPV motifs do not affect binding 
to Hsp27c as measured by FCPIA. (c) Deletion of both IPV motifs drastical ly reduces 
binding of BAG3 to Hsp27c (d) ITC results show that mutation/deletion of individual IPV 
motifs reduces stoichiometry from 2:1 to 1:1 (Hsp27c:BAG3) (e) IPV mutations/deletions 
affect binding to Hsp27 as measured by FCPIA. (f) Full  table of FCPIA results for al l  
sHsp and IPV constructs with fold loss in aff inity indicated. All  experiments were 
performed in tr ipl icate and the error reported is SEM.  
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deletions/mutations (Figure 4.4D). Interestingly, when individual IPV motifs were 

removed, the stoichiometry of the interaction was reduced from 2:1 to 1:1 

(Hsp27c:BAG3), suggesting that BAG3 uses both of its IPV motifs to engage an 

Hsp27c dimer. 

 

We next generated IPV mutations and deletions in full-length sHsp proteins. 

Consistent with the results from the Hsp27c model system, we found that double 

IPV deletion profoundly disrupted binding to BAG3 (Figure 4.4F). Interestingly, 

Hsp27 seemed to show a preference for the second IPV motif over the first, 

because mutation/deletion of the second motif had a more dramatic effect than 

mutation or deletion of the first (Figure 4.4E & 4.4F). This result perhaps 

indicates co-operativity of IPV motifs when binding Hsp27. However, other sHsp, 

such as Hsp20, showed no motif preference and were only substantially affected 

by double mutation/deletions (Figure 4.4F). 

 

4.3.3 BAG3 reduces oligomeric size of Hsp27 
Knowing that BAG3 uses its IPV motifs to interact with sHsps and that sHsps 

also use these same motifs to regulate their oligomer size, we wondered if BAG3 

in fact could influence sHsp oligomerization. To test this hypothesis, we used 

size exclusion chromatography with multi-angle light scattering (SEC-MALS). 

This technique allows absolute molecular weight determination of a sample 

based on the intensity of light scattering as a function of angle. SEC-MALS can 

differentiate samples from 200Da to 1GDa, making it appealing for use in 

studying sHsp oligomers. Injection of Hsp27 (30 µM) alone yielded an SEC-

MALS trace with a suggested mass of 402 ± 15 kDa (Figure 4.5), indicating an 

average of 18 monomeric subunits that is consistent with literature values [36]. In 

addition, the Hsp27 peak was broad, suggesting a polydisperse ensemble of 

oligomers that has been observed previously [37]. To dissect the role of BAG3 in 

oligomerization, we added increasing amount of BAG3ΔPXXP to a constant 

concentration of Hsp27. BAG3ΔPXXP was used in these experiments because 

we had previously determined that it showed no binding deficits to sHsps (Figure 
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4.4) and it was well behaved in the SEC-MALS system (Figure 4.5). Increasing 

the concentrations of BAG3ΔPXXP effectively reduced oligomeric size of Hsp27 

from 402 kDa to 301 kDa. This represents a drop in average subunit size from 18 

monomers to 13 monomers. This estimate is conservative because it is likely that 

the new peaks contain BAG3ΔPXXP protein as well. Another striking feature was 

the increase in polydispersity of the sample after treatment with BAG3ΔPXXP 

(Figure 4.5). This result supports the hypothesis that BAG3 can disassemble 

oligomers of Hsp27, likely by competing with the intra-molecular IPV motifs that 

normally hold together the oligomers. 

 

4.3.4 BAG domain is essential for Hsp70 NEF function 
In Chapter 2, we performed a detailed characterization of Hsp70 interactions with 

its various NEFs. We found that, of the human NEFs, BAG3 has the tightest 

interaction with Hsp70 (KD ~10 nM) and that it was a potent stimulator of ADP 

and client release. However, we had not previously explored whether regions 

Figure 4.5 BAG3 reduces ol igomer size of Hsp27. Hsp27 was incubated with increasing 
concentrations of BAG3ΔPXXP and analyzed by SEC-MALS. Increasing amounts of 
BAG3ΔPXXP reduced the average molecular weight of the Hsp27 peak and increased 
the polydispersity of the sample. Experiments were repeated in duplicate and average 
MW is reported with SEM and the average number of subunits reported.  
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outside the BAG domain might contribute to Hsp70 binding. Our results with 

BAG1 had suggested that while the BAG domain was sufficient for nucleotide 

release, alternate contacts might contribute to affinity and substrate release 

(Chapter 2). To explore this idea for BAG3, we measured binding of the BAG3 

deletion mutants to Hsp70. Using FCPIA and ITC we first confirmed that the BAG 

domain is essential for binding to Hsp70 (Figure 4.6A & 4.6B). Much like BAG1, 

we found that the BAG domain alone bound weaker than the full-length protein, 

with an affinity ~3 fold lower (Figure 4.6A & 4.6B). These results suggest that, 

although the majority of the binding energy originates from the BAG domain-

Hsp70 interaction, there are additional contacts in other regions.  

 

To test the functional importance of these interactions, we turned to the ATP 

release assay introduced in Chapter 2. We found that all of the domain deletion 

constructs were capable of releasing nucleotide from Hsp70 (Figure 4.6C), with 

the exception of the ΔBAG construct. Likewise, ATPase and luciferase refolding 

activities did not appear to be affected by any deletions outside of the BAG 

domain (Figure 4.7). Again, the BAG3C construct was less potent than its full-

length counterpart (Figure 4.7A & 4.7C), suggesting that regions outside the BAG 

domain might be important. The Gestwicki laboratory is working with Professor 

Erik Zuiderweg to further explore the structural basis for these secondary 

contacts. 

Figure 4.6 BAG3 deletions do not affect Hsp70 interactions. (a) Deletion of domains 
outside of the BAG domain do not affect binding to Hsp70 as measured by FCPIA. (b) 
ITC results confirm that only deletion of the BAG domain affects binding to Hsp70. (c) 
Al l  BAG3 deletions can release nucleotide from Hsp70, except for ΔBAG as measured 
by f luorescence polarization. All  experiments were performed in tr ipl icate and error 
reported is SEM. 
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4.3.5 Hsp70-BAG3-sHsp form a ternary complex 
After characterizing the individual, binary interactions between BAG3-sHsp and 

BAG3-Hsp70, we set out to determine if a ternary Hsp70-BAG3-sHsp complex 

could be formed. The results of the binding studies thus far suggested that BAG3 

is a highly modular scaffolding protein, leading to the prediction that binding to 

Hsp70 would not impact binding to sHsp and vice versa. To ask this question, we 

immobilized sHsps on streptavidin beads, incubated with a constant 

concentration (50 nM) of Alexa Fluor 647 (AF647) labeled BAG3, and then added 

increasing amounts of Alexa Fluor 488 (AF488) labeled Hsp70 (Figure 4.8B). If 

Hsp70 could compete with sHsp for binding to BAG3, we would expect to see a 

decrease in AF647 signal upon titration. However, we observed no decrease in 

AF647 fluorescence in the presence of Hsp70 (Figure 4.8A). Moreover, since we 

labeled BAG3 and Hsp70 with different fluorophores, we were also able to 

confirm both proteins were bound at the same time. Finally, the affinity of the 

Figure 4.7 BAG3 deletions do not affect Hsp70 NEF function. (a) BAG3 stimulates ATP 
hydrolysis at low concentrations and inhibits ATP hydrolysis at high concentrations. 
BAG domain alone shows reduced activity and ΔBAG has no activity (b) Deletions 
outside of the BAG domain have no effect on ATPase activity. (c) BAG3 stimulates 
refolding of luciferase at low concentrations and inhibits at high concentrations. BAG 
domain alone shows reduced activity and ΔBAG has no activity (d) Deletions outside of 
the BAG domain have no effect on refolding activity. Al l  experiments were performed in 
tr ipl icate. Error is SEM. 
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Hsp70 interaction was unchanged compared to the binary interaction (15 ± 3 

nM), suggesting that sHsp does not interfere with (or promote) binding (Figure 

4.6, also see Chapter 2 and Chapter 3). In control studies, we found that Hsp70 

and sHsp did not bind to each other in the absence of BAG3 (Figure 4.8A). Thus, 

BAG3 appears to be a modular scaffolding protein for these two chaperones. To 

confirm this idea, we used size exclusion chromatography and SDS-PAGE 

(Figure 4.8C). In ongoing work, the Gestwicki laboratory is collaborating with the 

Southworth and Andrews laboratories to visualize this complex by electron 

microscopy and map the interactions by crosslinking and mass spectrometry. 

 

4.4 Discussion 
Hsp70 and the sHsps constitute an ancient system for protecting unfolding 

proteins under conditions of proteotoxic stress. To understand the links between 

these important chaperone machines, we wanted to probe their structure, 

dynamics, and physical interactions. sHsps are capable of binding and stabilizing 

unfolded/denatured proteins in refolding competent forms [21]. Due to their lack 

of intrinsic refolding ability, sHsp must collaborate with refolding machineries, like 

Figure 4.8 Hsp70-BAG3-sHsp form a ternary complex. (a) Alexa Fluor 488-labeled 
Hsp70 NBD was t i trated against a solution of Alexa Fluor 647-labeled BAG3 in the 
presence of sHsp coated beads. Binding was detected using a f low cytometer. 
Experiments were performed in tr ipl icate and error is SEM. (b) Schematic of binding 
experiment in (a). (c) SEC and SDS-PAGE gel analysis of Hsp22-BAG3-Hsp70 
(12µM:6µM:6µM) in complex and as individual traces.  
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the Hsp70 system, to restore proper proteostasis [38]. Indeed, it has been shown 

both in vitro and in vivo that sHsp substrates can be refolded by the Hsp70 

chaperone system [39-42]. However, a mechanistic understanding of how sHsps 

communicate with the Hsp70 system has been elusive, until now. 

 

In order to examine the link between sHsps and the Hsp70 system, we focused 

our efforts on the Hsp70 NEF, BAG3. BAG3 had been reported to interact with 

sHsp [32, 33], but regulation of these interactions was not well understood. In this 

study, we first examined which sHsps could interact with BAG3. We found that all 

of the sHsp tested bound to BAG3 and formed a 2:1 (sHsp:BAG3) stoichiometric 

complex. This data (combined with the mutational analysis on BAG3’s IPV 

motifs) allows us to propose that BAG3 uses both of its IPV motifs to engage the 

two β4-β8 grooves present in the obligate sHsp dimer, especially in the case of 

the dimeric Hsp27c. In the case of full length sHsps, which are known to form 

higher ordered oligomers, this does not rule out the possibility of 4:2, 8:4 or even 

16:8 complexes, only that an overall ratio of 2:1 is likely to persist.  

 

Affinity for smaller oligomeric sizes was evident in both binding platforms tested. 

Hsp20 and Hsp22 both lack their own IPV motifs and have reported to form 

smaller oligomers in solution [32, 43], and of the full length constructs tested 

displayed the highest affinity for BAG3. In the case of Hsp27, BAG3 preferred 

binding to Hsp27c, followed by Hsp27-3D and finally Hsp27. Again, pointing to 

oligomeric size, and overall accessibility of binding site as a main determinant for 

affinity. To further explore this point, we accessed the BAG3-Hsp27 complex size 

using SEC-MALS. As expected, incubation of full length Hsp27 with increasing 

amounts of BAG3 lead to an overall decrease in oligomeric size as well as 

increased the overall polydispersity of the complex.  

 

To understand individual domain contributions we made a large suite of mutants 

and deletion constructs within the BAG3 sequence. We found that the IPV motifs 

provided the complete interaction surface for sHsps, and in some cases mutation 
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of four single residues (IPV to GPG in both motifs), was sufficient to completely 

kill binding. On the Hsp70 side, only deletion of the BAG domain affected BAG3’s 

Hsp70 dependent activities. Like our previous work on BAG1, we observed 

reduced affinity with our BAG3C construct. Future work will be needed to 

determine if alternative contact sites on Hsp70 exist. Finally, since we had 

determined that BAG3 uses non-overlapping regions to interact with both 

proteins we asked if we could visualize a ternary complex. Using both FPCIA and 

SEC we saw that all three proteins can interact in one complex, and that this 

complex is indeed mediated by BAG3.  

 

All of this data leads us to propose a model for substrate client hand off between 

the sHsp and Hsp70 chaperone systems. Under stress conditions when 

substrate proteins are destabilized and begin to unfold, sHsps are able to bind 

these partially or completely unfolded substrates and keep them in a folding 

competent state. The physiologic ensemble of sHsp oligomers are activated by a 

shift to a higher content of smaller oligomeric species. Upregulation of BAG3 and 

Hsp70 expression, then allows association of sHsp with BAG3 and an active 

pass to the Hsp70 chaperone system. Substrates can then under go cycles of 

concerted refolding or can be targeted for autophagic clearance via BAG3’s 

association with dynein.  

 

Folding

Degradation

sHsp

BAG3

Substrate Hsp70

Figure 4.9 Model for BAG3 regulation of sHsp-Hsp70 substrate hand off.  sHsps exist in 
large ol igomeric ensembles in the cel l .  Under t imes of stress, sHsps can dissociate and 
bind unfolded substrates, protecting them from aggregation. BAG3 can promote small 
chaperone active forms of sHsps. When stress subsides BAG3 actively scaffolds sHsp-
substrate complex with Hsp70 to promote active refolding of cl ient proteins or promote 
autophagic clearance of terminally misfolded cl ients.  
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4.5 Methods 
4.5.1 Cloning and Recombinant Protein Production.  
All domain deletion constructs were subcloned from the BAG3 pMCSG7 parent 

vector using appropriate primers and confirmed with DNA sequencing. Mutations 

were constructed using standard mutagenesis protocols. Constructs for Hsp27, 

Hsp27c, Hsp27-3D, and αB crystallin were all received from the Klevit laboratory. 

Hsp22 was a kind gift from Jean-Marc Fontaine, and Hsp20 was received from 

the Conklin laboratory and subsequently cloned into the pMCSG7 vector.  

 

All constructs were transformed into BL21(DE3) cells and single colonies were 

used to inoculate TB medium containing ampicillin (50 µg/mL). Cultures were 

grown at 37 °C for 5 hours, cooled to 20 °C and induced overnight with 200 µM 

IPTG. BAG3 full length and IPV mutants were purified as previously described 

[44].  BAG3 deletion constructs were pelleted and re-suspended in His Binding 

Buffer (50mM Tris, 300mM NaCl, 10mM imidazole, pH 8.0) + 3M Urea. Samples 

were sonicated and then applied to the Ni-NTA resin. After Ni-NTA columns, all 

proteins were subjected to TEV cleavage overnight, concentrated and applied to 

a Superdex S200 (GE Healthcare) size exclusion column in BAG buffer (25 mM 

HEPES, 5 mM MgCl2, 150 mM KCl pH 7.5). Hsp72 and Hsp72NBD were purified 

as described elsewhere [45]. sHsp in plasmids containing an N-terminal His tag 

(Hsp27-3D, αB crystallin, Hsp22, and Hsp20) were all purified using a His column 

and subsequent SEC on a Superdex S200 in BAG buffer or PBS. Hsp27 and 

Hsp27c were in tagless vectors, so they were purified using a two step 

ammonium sulfate precipitation followed by MonoQ and SEC. Briefly, ammonium 

sulfate was added to a final concentration of 16.9% (w/v), centrifuged, pellet 

discarded, and then an additional 16.9% (w/v) ammonium sulfate was added to 

the supernatant to precipitate the protein from solution. Precipitated protein was 

brought up and dialyzed into MonoQ Buffer A (20mM Tris, pH 8.0) overnight, 

followed by a MonoQ column (0-1M NaCl gradient), and finally an SEC on a 

Superdex S75 (Hsp27c) or Superdex S200 (GE Healthcare) equilibrated in 

50mM NaPi, 100mM NaCl, pH 7.5 buffer.  
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Proteins were labeled with Alexa Fluor® 488 5-SDP ester or Alexa Fluor® 647 

NHS ester (Life Technologies) according to the suppliers instructions. Hsp70 and 

sHsp were biotinylated using EZ-link NHS-Biotin (Thermo Scientific) according to 

the supplier instructions. After labeling, the proteins were subjected to gel 

filtration to remove any unreacted label.  

 

4.5.2 Flow Cytometry Protein Interaction Assay (FCPIA) 
The assay procedure was adopted from previous reports. Briefly, biotinylated 

sHsp or Hsp70 was immobilized (1h at room temperature) on streptavidin coated 

polystyrene beads (Spherotech). After immobilization, beads were washed to 

remove any unbound protein and then incubated with labeled BAG3 protein at 

indicated concentrations. Binding was detected using an Accuri™ C6 flow 

cytometer to measure median bead-associated fluorescence. Beads capped with 

biocytin were used as a negative control, and non-specific binding to beads was 

subtracted from signal.  

 

For ternary complex formation experiments, sHsps were immobilized on beads 

with constant concentration (50nM) of Alexa Fluor 647-labeled BAG3 present. 

Increasing concentrations of Alexa Fluor 488-labeled Hsp72 NBD were titrated 

against the sHsp-BAG3 solution and fluorescence was measured using an 

Accuri™ C6 flow cytometer. Again, beads capped with biocytin were used as a 

negative control, and non-specific binding to beads was subtracted from signal. 

 
4.5.3 Isothermal Titration Calorimetry (ITC) 
BAG3 constructs, Hsp72NBD and sHsps were dialyzed overnight against ITC 

buffer (25 mM HEPES, 5 mM MgCl2, 100 mM KCl pH 7.5). Concentrations were 

determined using a BCA Assay (Thermo Scientific), and the experiment was 

performed with a MicroCal VP-ITC (GE Healthcare) at 25 °C. Hsp72NBD (100 µM) 

or indicated sHsp (200 µM) in the syringe was titrated into a 10 µM cell solution 
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of BAG3 protein. Calorimetric parameters were calculated using Origin® 7.0 

software and fit with a one-site binding model. 

 
4.5.4 Co-immunoprecipitation 
HEK293 cell extracts were prepared in M-PER lysis buffer (Thermo Scientific) 

and adjusted to 5mg of total protein in 1mL of extract. Equal 500µL samples were 

incubated with either a mouse monoclonal α-BAG3 (Santa Cruz sc-136467) or 

Goat IgG (Santa Cruz sc-2028). Samples were gently rotated overnight at 4°C, 

followed by a 4 h incubation with protein A/G-Sepharose Beads (Santa Cruz). 

The immunocomplexes were centrifuged at 1000 x g, washed 3 times with PBS 

pH 7.4, and eluted with SDS loading dye. Samples were run on a 4-15% Tris-

Tricine gel (Bio-rad) and transferred to nitrocellulose membrane. The membranes 

were blocked in nonfat milk (5% milk in TBS, 0.1% Tween) for 1 h, incubated with 

primary antibodies for Hsp27 (Santa Cruz sc-59562) and BAG3 (Santa Cruz sc-

136467) overnight at 4°C, washed, and then incubated with a horseradish 

peroxidase-conjugated secondary antibody (Anaspec) for 1 h. Finally, 

membranes were developed using chemiluminescence (Thermo Scientific, 

Supersignal® West Pico).   

 
4.5.5 Nucleotide Release Assay 
A fluorescent ATP analogue, N6-(6-Amino)hexyl-ATP-5-FAM (ATP-FAM) (Jena 

Bioscience) was used to measure BAG3 induced nucleotide dissociation from 

Hsp72. In black, round-bottom, low-volume 384-well plates (Corning), 1 µM 

Hsp72 and 20 nM ATP-FAM were incubated with varying concentrations of 

BAG3 protein for 10 minutes at room temperature in assay buffer (100 mM Tris, 

20 mM KCl, 6 mM MgCl2 pH 7.4). After incubation fluorescence polarization was 

measured (excitation: 485 nm emission: 535 nm) using a SpectraMax M5 plate 

reader.  
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4.5.6 Size Exclusion Chromotography 
Solutions of BAG3 (6µM), Hsp72 (6µM), Hsp22 (12µM), and BAG3-Hsp72-Hsp22 

(6µM:6µM:12µM) were examined using a Superdex S200 (GE Healthcare) size 

exclusion column. Indicated fractions were collected and analyzed using SDS-

PAGE gel analysis. Samples were run on a 4-15% Tris-Tricine gel (Bio-rad) and 

stained with Coomassie Blue Reagent. Image color was changed to B&W to 

provide clarity. 

 
4.5.7 Nuclear Magnetic Resonance (NMR) 
HSQC spectra were acquired at 30C on a Bruker DRX500 with a QCl Z-axis 

gradient cryoprobe, running Topspin version 1.3. Spectra were acquired on 

samples containing 150-200µM Hsp27c in 50mM NaPi, 100mM NaCl, pH 7.5. 

Processing and spectral visualization was performed using rNMR [46] and 

Sparky. 

  

4.5.8 SEC-MALS 
Samples were resolved by analytical size exclusion chromatography on a 

Shodex 804 column on an Ettan LC (GE Healthcare). Molecular weights were 

determined by multiangle laser light scattering using an in-line DAWN HELEOS 

detector and an Optilab rEX differential refractive index detector (Wyatt 

Technology Corporation). The column was equilibrated overnight in BAG buffer 

prior to analysis. Samples were run at the indicated concentrations. 

 

4.5.9 ATPase/Refolding Assay 
Experiments were performed according to previous protocols [47, 48]. Briefly, 

Hsp72 (1µM) and J protein (DnaJB4, 0.25 µM) and various concentrations of 

BAG3 protein were added to clear 96 well plates and the reactions initiated with 

the addition of ATP (1 mM). The reactions proceeded for 1 h at 37 °C, developed 

with Malachite Green Reagent, quenched with sodium citrate, and plate 

absorbance was measured at 620nm. A phosphate standard curve was used to 

calculate pmol ATP/µM Hsp72/min.  
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4.5.10 Luciferase Refolding Assay.  
Experiments were performed as described previously [49]. In brief, luciferase 

(Promega) was denatured in 6 M GnHCl for 1 h at room temperature, and then 

diluted into a working solution of Hsp72 (1µM) and DJB4 (0.5µM) in buffer 

containing an ATP regenerating system (23 mM HEPES, 120 mM KAc, 10mM Pi, 

1.2 mM MgAc, 15 mM DTT, 61 mM creatine phosphate, 35 U/ml creatine kinase, 

5 ng/µL BSA pH 7.4). Various concentrations of BAG3 were added and the 

reaction initiated with the addition of ATP (1 mM). Assay proceeded for 1 h at 

37°C in white, 96 well plates and luminescence measured using SteadyGlo 

Luminescence reagent (Promega).  

 

4.6 Notes 
The work described here was done in collaboration with Leah Makley and 

Rebecca Freilich of the Gestwicki Laboratory. Likewise, future work determining 

the structure of sHsp-BAG3-Hsp70 complexes is being completed in 

collaboration with Eric Tse from the Southworth Laboratory.  
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Chapter 5                                                                                                
Conclusions and Future Directions 

 

5.1 Conclusions 
Nucleotide exchange factors (NEFs) of Hsp70 are an interesting and diverse 

class of co-chaperone proteins. Human Hsp70 NEFs are involved in diverse 

biological pathways and the literature suggests their roles in a number of 

diseases [1-4]. As introduced in Chapter 1, there are three families of NEFs: 

HspBP1, Hsp110, and the BAG family. This thesis has focused on examining the 

biochemistry and function of the Hsp110 and BAG families. In choosing this topic 

for my thesis work, I wanted to better understand how the NEFs bind Hsp70, how 

they regulate chaperone function and how they might link Hsp70 to other 

pathways in the cell. 

 

In Chapter 2, we showed how Hsp105 and the BAG family of NEFs regulate 

Hsp70 functions in vitro. Previous work had provided scattered examples of 

affinity constants and roles in Hsp70’s ATPase and refolding activities. However, 

I wanted to take a systematic approach, allowing side-by-side comparisons of 

these NEFs. From my results, we identified a hierarchy of binding affinities, 

especially between BAG family members, indicates a striking layer of regulation 

that is likely exploited to promote specific Hsp70-NEF complexes in cells. The full 

diversity of Hsp70 chaperone function is further expanded with addition of the J 

protein co-chaperones. We have shown that individual complexes of Hsp70-

NEF-J protein, can lead to distinct biochemical functions (i.e. ATPase stimulation, 

refolding activity). Thus, not all co-chaperones are created equal. Genetic studies 

(e.g. knockdowns, etc.) had suggested individual roles of specific co-chaperones 

in Hsp70 biology, but my results show that these functional differences are 
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manifested in vitro as well. An important implication of this paradigm is the 

prediction that chemical interruption of specific co-chaperones could provide 

discrete phenotypes that could be beneficial in treating disease. Further, the 

different biochemical properties of the complex might be helpful in identifying 

such molecules and/or optimizing their selectivity.   

 

In Chapter 3, we expanded on this idea by screening for small molecules that 

could disrupt Hsp70-BAG3 complexes. Protein-protein interactions (PPIs) are 

notoriously hard to inhibit, so we developed a novel-screening platform, Capillary 

Electrophoresis (CE), that proved to be robust in PPI inhibitor detection. We used 

CE and a parallel screening platform, FCPIA, to identify molecules that were 

potent Hsp70-BAG3 inhibitors. Future work in the lab will likely explore these 

molecules as starting points for Hsp70-NEF modulators (see below). In addition, 

the CE method is expected to provide a powerful platform for studying additional 

PPIs and larger, multi-protein complexes.  

 

Finally, in Chapter 4 we tackled an important question in NEF function; namely, 

by describing how BAG3 links Hsp70 to the small heat shock proteins (sHsps). 

Using BAG3 mutants and truncations, we were able to identify the specific 

regions that interact with sHsps and Hsp70. Beyond just passively binding to 

these partners, we found that BAG3 is an active member of the ternary complex. 

BAG3 is a potent NEF for Hsp70, regulating its ATPase and substrate binding 

activities. Moreover, we found that BAG3 can also regulate sHsp oligomer size, 

preferring smaller and presumably more active forms. Together, this data 

suggests that BAG3 bridges the Hsp70 and sHsps systems, potentially mediating 

client transfer between them and acting to activate both chaperones. These are 

exciting results that provide new insight into how different cellular chaperone 

systems communicate. 

 

Overall, this thesis has advanced our understanding of human Hsp70 NEFs. This 

work has revealed important aspects of the chaperone system that were 
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previously unknown, including the first link between Hsp70 and the sHsps. 

Further, this work helped launch the first chemical inhibitors of the Hsp70-BAG3 

PPI, generating powerful chemical probes for future studies.   

 

5.2 Future Directions 
5.2.1 Role of Hsp70-NEF complexes in disease 
As summarized in Chapter 1, NEFs are involved in many human diseases. Some 

of the most striking examples include the overexpression of BAG3 and Hsp105 in 

multiple cancer types [5-8], the dual regulation of tau by BAG1 and BAG2 [9, 10], 

and genetic evidence that BAG3 mutations causing various myopathies [11, 12]. 

In most of these cases Hsp70 involvement is essential for disease manifestation, 

however, some of these functions may be independent. Future work should focus 

on elucidating which NEF functions are dependent on Hsp70. This knowledge 

will be important in understanding when and where to deploy inhibitors of Hsp70-

BAG PPIs. Likewise, function of NEFs that are independent of Hsp70 might 

provide new opportunities for targeting PPIs between BAGs and other factors. An 

intriguing example of this is exemplified by BAG3. BAG3 has been reported to 

promote autophagic clearance of proteins, even in the absence of its BAG 

domain [13]. This activity seems to be dependent on specific phosphorylation 

events and interactions with 14-3-3 proteins/dynein [14]. Therefore, further work 

exploring this interaction, particularly which kinases are responsible for 

phosphorylating BAG3, may be an interesting route to understand BAG3 

dependent autophagy. The hope is that the methods, ideas and framework 

provided here will accelerate these discoveries.  
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5.2.2 Future development of the CE platform to identify Hsp70-NEF 
inhibitors 
In Chapter 3, we used two parallel high throughput screens to find molecules that 

could disrupt BAG3-Hsp70 interactions. We focused on a handful of the most 

active molecules, but further work is needed to fully characterize these 

molecules. Using Differential Scanning Fluorimetry (DSF), I found that some of 

these active molecules bound Hsp70 (Figure 5.1A). Additionally, they appeared 

to inhibit all of the major BAG and Hsp105 proteins with similar potency (Figure 

5.1B). These studies suggest that the compounds from that screen act similarly 

to MKT-077 analogs to block Hsp70-NEF interactions (see below). However, 

future work will be needed to increase their potency and understand whether 

they are allosteric or orthosteric inhibitors. Another future direction for this project 

is the discovery of inhibitors that act on specific NEFs and not others. For 

example, a BAG3-selective inhibitor would be a useful tool for chemically 

disrupting this PPI. Although the screen in Chapter 3 did not achieve this goal, 

the CE platform appears to be well suited for asking this question. I propose that 

BAG1, BAG2 and BAG3 could be labeled with individual fluorophores and that 

their independent binding to Hsp70 could be monitored. Then, small molecules 

that preferentially disrupt one Hsp70-NEF complex, but not others could be 

selected as actives. This approach would require a multi-color CE instrument and 

considerable optimization of the conditions to allow all three complexes to form. 

Figure 5.1 Hit compounds from Chapter 3 HTS are pan NEF-inhibitors. (A) Thermafluor 
experiments with Hsp70 and compound displayed a dose dependent decrease in melt ing 
temperature (Tm) compared to a DMSO control. This suggests that compounds bind and 
destabil ize Hsp70. (B) FCPIA experiments showed that hit  compounds were capable of 
inhibit ing various Hsp70-NEF complexes. One representative compound is shown. 
Experiments were performed in tr ipl icate and error is SEM. 
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However, it is a feasible concept and the Gestwicki laboratory is actively working 

towards this objective with the Kennedy group.  

 

5.2.3 Use of the FCPIA platform to characterize Hsp70-NEF inhibitors. 
In a series of papers published by our lab we have found that analogs of the 

MKT-077 molecule are potent NEF inhibitors (Figure 5.2A). This molecule (and 

its analogs) stabilize Hsp70 in an ADP-like state [15]; prolonging interactions with 

Hsp70 substrates, and inhibiting NEF induced substrate release/nucleotide 

turnover (Figure 5.2B). These molecules do not show selectivity among different 

NEF family members (Figure 5.2A). However, they have promising activity in a 

variety of disease models [16-19]. For example, the MKT-077 analog, YM-01 

inhibits NEF interactions in cells (Figure 5.2C). In collaboration with Michael 

Sherman’s group (Boston University), we have used YM-01 to show that Hsp70-

BAG3 is a promising new cancer target because this complex is required for 

stability of multiple oncogenes, including FoxM1 and survivin [20]. YM-01 was 

A B 

C 

Figure 5.2 MKT-077 Analogs inhibit  Hsp70-NEF interactions. A) YM-01 and JG-98 
eff ic iently compete various Hsp70-NEF interactions in an in vitro  FCPIA assay. 
Experiments were performed in tr ipl icate over three independent experiments, which 
were normalized and combined; the error bars represent the SEM. B) YM-01 reduces 
BAG3 effects in an in vitro  luciferase refolding assay. Experiments were performed in 
tr ipl icate and the error bars represent SEM C) Co-immunoprecipitat ion assays of Hsp70 
in HeLa lysate show that YM-01 and JG98 decrease the amount of Hsp70-BAG3 
complex formed. Experiments were repeated in tr ipl icate, with a representative gel 
shown. Quantitat ion of al l  experiments is shown to the r ight.  
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toxic to MDA-MB-231 and MCF7 breast cancer cells, with an EC50 around 4 µM. 

These results are interesting because the same molecules are not cytotoxic to 

normal fibroblasts (EC50 > 50 µM). Thus, cancer cells seem to be particularly 

“addicted” to the Hsp70-BAG3 complex. All of this data suggests that NEF 

inhibition may be a viable therapeutic approach in some disease indications. 

More broadly, the methods developed in this thesis provide a way to test, 

optimize and advance this chemical series. Hao Shao, a current postdoctoral 

fellow in the Gestwicki group, is pursuing this avenue. 

 

Work towards Hsp70 inhibitors with new scaffolds is an active program in the 

Gestwicki laboratory (Figure 5.3B). In addition to the molecules found in Chapter 

3 and the MKT-077 scaffold described above, work in the lab has also focused 

on new chemical matter. In all of these studies, the FCPIA assay is proving to be 

a workhorse method for rank-ordering compounds. Additionally, the fundamental 

binding constants and structural information in this thesis is helping guide 

decisions about which scaffolds to pursue. For example, Hao Shao and Izzy 

Taylor in the group have recently developed compounds JG2-10 and compound 

R and used the FCPIA platform to test their ability to inhibit the Hsp70-BAG1 

interaction (Figure 5.3). Similarly, Hao Shao is using peptides derived from BAG1 

as potential inhibitors (Figure 5.3), with the eventual goal of building 

Figure 5.3 Various scaffolds inhibit BAG-Hsp70 interactions. (A) FCPIA shows that 
various small molecules and BAG1 derived peptides can inhibit Hsp70-BAG1 
interactions. (B) Chemical structures of small molecules in (A). 
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peptidomimetics. While these peptides are still weak inhibitors, they may 

eventually progress to be useful probes. Additionally, they may provide a starting 

point for a fluorescence polarization (FP)-based high throughput screening effort. 

Our lab has used FP as a screening platform before [21], and while screening 

Hsp70 with BAG1 peptides might not lead to BAG1 specific inhibitors it could 

provide new chemical scaffolds worth pursuing. 

 

5.2.3 Mutational analysis of BAG proteins suggest hotspots for targeting 
specific BAG-Hsp70 interactions 
Structural information on BAG1-Hsp70 and BAG2-Hsp70 interactions has 

provided great starting points for mutational analysis of the BAG-Hsp70 complex. 

We have made a large suite of mutations on both the Hsp70 and BAG interfaces 

(Figure 5.4A) that disrupt or hinder binding. All residues on Hsc70 that we’ve 

analyzed can inhibit binding across the BAG family (Figure 5.4B – residues in 

red). However, overlaying the crystal structures of BAG1 and BAG2, we can 

highlight specific regions that may be key to developing BAG1/2 specific 

inhibitors (Figure 5.4B – yellow:BAG1 purple:BAG2). While both BAG1 and 

BAG2 share similar regions of binding on Hsc70 (red), alternative secondary 

interaction sites could be targeted to provide specificity. We have already shown 

that a peptide derived from the secondary BAG1 interaction site (Peptide 4), can 

Figure 5.4 Mutagenesis and peptides provide clues on selective inhibit ion. (A) Table of 
various mutations that have been made in Hsc70 & BAG1-3. The shade of red indicates 
degree of inhibit ion with the darkest red indicating complete loss in binding and l ight 
pink with l i t t le to no loss in aff inity. (B) Crystal structure of Hsp70 (PDB: 3AY9) with 
residues from (A) shown in red. Secondary sites of interaction for BAG1 (yel low) and 
BAG2 (purple) provide potential sites for selectivity. (C) BAG1 derived Peptide 4 can 
inhibit BAG1-Hsc70 interactions. Peptide 2 is composed of residues that bind in the red 
region of (B) and Peptide 4 is composed of residues that bind in the yel low region of (B) 
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indeed inhibit the BAG1-Hsc70 interaction (Figure 5.4C), albeit not as potent as 

the primary site (Peptide 2). Further testing will be needed to see if Peptide 4 is 

unable to compete a BAG2-Hsc70 interaction, whereas Peptide 2 would be 

predicted to be just as effective. Likewise, slightly below the primary binding site 

of both BAG proteins, lies an interaction surface that BAG2 seems to take 

advantage of, but is untouched in the BAG1 crystal structure. Mutagenesis of this 

site will be needed to test this hypothesis. 

 

5.2.4 Targeting BAG proteins themselves  
While targeting of Hsp70 is a proven strategy, another useful approach may be to 

target binding sites on NEFs instead. Within the BAG family, BAG2 shares very 

little sequence conservation among family members and as previously 

mentioned interacts down the backside of lobe II, instead of across the top of the 

NBD like BAG1. On top of this lack of conservation, attempts at making a 

functional BAG2 BAG domain have fallen short. Suggesting that unlike BAG1 

and BAG3, BAG2 NEF activity may be dependent on regions outside of its BAG 

domain. This data, compiled with the inherent weak affinity of BAG2, implies that 

BAG2 may be the lowest hanging fruit on the Hsp70-NEF tree. Chemical matter 

that could specifically target a BAG2 would be useful as a chemical probe, since, 

in spite of being the most highly expressed BAG protein, very little research has 

focused on understanding BAG2’s role in the cell.  

 

5.2.5 Targeting BAG3 disease relevant mutants as therapies for 
cardiomyopathies 
In Chapter 4 we performed a dissection of individual PPI domains in BAG3. 

BAG3 is a very interesting BAG protein due to its numerous roles outside of its 

basic NEF function. Site-specific mutations in BAG3, especially within various 

PPI regions, provide genetic support for targeting BAG3. One specific mutation 

that our lab has explored is BAG3P209L. This mutant causes a severe dominant 

myofibrillar myopathy [22]. Interestingly, this disease mutation occurs in the 

second IPV motif responsible for sHsp binding. Characterization of this mutant, 
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showed that while P209L shows no loss in Hsp70 binding affinity, sHsp 

stoichiometry drops and binding is dramatically affected (Figure 5.5A). Mutational 

scanning of this residue showed that while mutation to a hydrophobic at this 

position was detrimental, hydrophilic or neutral changes only showed modest 

losses in affinity with no stoichiometric change in binding (Figure 5.5B). Further 

analysis determined that a hydrophobic mutation was likely to cause β-sheet 

character in this region, and likely provided an interface for oligomer formation. 

This is in well agreement with previous work, noticing BAG3 positive puncta 

formation in BAG3P209L cells [23]. Our work, and others [24], would suggest 

that a monomeric version of BAG3P209L could still be functional in a cellular 

context. Now that we understand the biophysical properties of this mutant, it is 

possible that we could find chemical matter that could stabilize and promote 

monomerization. 

 

5.2.6 Structural and functional analysis of sHsp-BAG3-Hsp70 complex 
In Chapter 4 we laid out a potential model for substrate hand off between the 

sHsp and Hsp70 chaperone systems. Further work will be needed to explicitly 

test this model. In particular, electron microscopy (EM) will be essential for 

understanding spatial constraints on a ternary complex of sHsp-BAG3-Hsp70. 

Figure 5.5 Hydrophobic mutations in IPV motifs of BAG3 reduce aff inity and 
stoichiometry of sHsp binding. (A) BAG3P209L shows reduced binding to Hsp27c, but 
no deficits in binding to Hsc70 as determined by FCPIA. (B) ITC results show that 
hydrophobic mutations result in loss in aff inity as well as a drop in stoichiometry, while 
non-hydrophobic mutations are able to retain a 2:1 stoichiometry.  
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Understanding how these proteins are oriented in respect to one another in the 

presence and absence of substrates will continue to drive our knowledge 

forward. Currently, we are collaborating with Eric Tse in the Southworth 

Laboratory to address these questions.  

 

Likewise, developing a functional biochemical or cellular assay to study client 

handoff will be necessary. The Gestwicki laboratory is actively pursuing multiple 

avenues including, collaboration with the Conklin Laboratory at UCSF to look at 

BAG3’s role in cardiomyocyte development, as well as exploring the microtubule 

associated protein tau as a potential client. Sue-Ann Mok and Rebecca Freilich 

are leading efforts to understand tau’s association with both sHsp and Hsp70 

using NMR and in vitro aggregation assays. Preliminary evidence suggests that 

sHsps can delay aggregation of disease relevant tau mutants and future work will 

determine if BAG3 can promote aggregation suppression. Furthermore, Rebecca 

has focused on developing classical chaperone substrate assays, like malate 

dehydrogenase (MDH) refolding, to focus on sHsp-Hsp70 hand off and to 

determine if BAG3 or BAG3 derived peptides can influence sHsp activity.  

 

5.3 Notes 
Some figures from this Chapter have appeared in the following manuscripts:  

Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S, Matchuk OH, 

Smirnova SG, Orlova NV, Zamulaeva IA, Garcia-Marcos M, Li X, Young ZT, 

Rauch JN, Gestwicki JE, Takayama S, Sherman MY. Hsp70-Bag3 Interactions 

Regulate Cancer-Related Signaling Networks. Cancer Research. 2014; 74(17):1-

10. 

 

Li X, Colvin TA, Rauch JN, Acosta-Alvear D, Kampmann M, Dunyak B, Hann B, 

Aftab BT, Murnane MR, Cho M, Walter P, Weissman JS, Sherman MY, 

Gestwicki JE. Validation of the Hsp70-Bag3 Protein-Protein Interaction as a 

Potential Therapeutic Target in Cancer. Molecular Cancer Therapeutics. 2015. 

[epub ahead of print] 
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Appendix A                                                                                               

Cysteine Reactivity Distinguishes Redox Sensing by the Heat Inducible and 

Constitutive Forms of Heat Shock Protein 70 (Hsp70) 

 

A.1 Abstract 
The heat shock protein 70 (Hsp70) family of molecular chaperones has important 

functions in maintaining proteostasis under stress conditions. Several Hsp70 

isoforms, especially Hsp72 (HSPA1A), are dramatically upregulated in response 

to stress; however, it is unclear whether these family members have biochemical 

properties that are specifically adapted to these scenarios. The redox-active 

compound, methylene blue (MB), has been shown to inhibit the ATPase activity 

of Hsp72 in vitro and it promotes degradation of the Hsp72 substrate, tau, in 

cellular and animal models. Here, we report that MB irreversibly inactivates 

Hsp72 but not the nearly identical, constitutively expressed isoform, heat shock 

cognate 70 (Hsc70; HSPA8). Mass spectrometry results show that MB oxidizes 

Cys306, which is not conserved in Hsc70. Molecular models suggested that 

oxidation of Cys306 exposes Cys267 to modification and that both events 

contribute to loss of ATP binding in response to MB. Consistent with this model, 

mutating Cys267 and Cys306 to serine made Hsp72 largely resistant to MB in 

vitro and over-expression of the C306S mutant blocked MB-mediated loss of tau 

in a cellular model. Further, mutating Cys267 and Cys306 to the pseudo-
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oxidation mimic, aspartic acid, mirrored MB treatment: the C267D and C306D 

mutants had reduced ATPase activity in vitro and over-expression of the 

C267/306D double mutant significantly reduced tau levels in cells. Together, 

these results suggest that redox sensing by specific cysteine residues in Hsp72, 

but not Hsc70, may be an important component of the chaperone response to 

oxidative stress, protecting unfolded substrates from oxidation.  

 

A.2 Introduction 
Reactive oxygen species (ROS), such as free radicals and peroxides, are 

produced as the result of normal metabolic and signaling processes [1-3]. 

However, an abundance of ROS is also implicated in oxidative damage to lipids, 

nucleic acids and proteins, contributing to pathology in a number of diseases [4-

6]. Thus, to control the accumulation of ROS, organisms are equipped with 

several scavengers, such as glutathione and ascorbate [7], and redox-sensitive 

transcription factors, including HIF1α [8], NF-κB [9] and HSF1 [10], that 

coordinate cellular adaptation to ROS. Another important cellular response is to 

protect the proteome from acute denaturation and aggregation, which could 

cause proteotoxicity. This type of ROS protection is often provided by a 

molecular chaperone that contains a reactive redox sensor (e.g. cysteine 

residue) linked to a system for protecting other proteins from oxidative unfolding. 

For example, the prokaryotic heat shock protein 33 (Hsp33) contains cysteine 

residues that are selectively oxidized in response to redox stress, which induces 

a conformation with high chaperone activity [11].  
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The heat shock protein 70 (Hsp70) family is a series of highly conserved 

molecular chaperones that are well known for their activity in maintaining global 

proteostasis. Hsp70s are involved in most steps in the life of a protein, including 

the folding of nascent polypeptides, protein trafficking and degradation [12]. 

Members of the Hsp70 family specifically interact with unfolded substrates 

through a C-terminal, substrate-binding domain (SBD). In addition, Hsp70s also 

have a conserved N-terminal nucleotide-binding domain (NBD), which binds and 

hydrolyzes ATP. These two domains are allosterically coupled, such that ATP 

hydrolysis within the NBD causes conformational changes in the SBD that 

enhance affinity for unfolded substrates [13]. In turn, binding of Hsp70s to 

unfolded proteins protects them against aggregation and assists with their 

refolding. However, if this process fails, Hsp70s are also involved in triage, 

shuttling misfolded proteins to the proteasome for turnover [14]. Through these 

activities, Hsp70s have been linked to diseases associated with aberrant protein 

quality control, such as cancer and neurodegenerative disease [15, 16]. 

 

In humans, the cytosol contains at least six Hsp70 isoforms, including the 

constitutively expressed Hsc70 (HSPA8) and the major stress inducible isoform, 

Hsp72 (HSPA1A) [17]. Hsp72 and Hsc70 have very high sequence similarity 

(85% identical and 94% similar). However, the levels of Hsp72 are typically low 

under normal conditions and they are only highly induced in response to stress, 

including redox imbalance [18]. Thus, Hsp72 belongs to a subfamily of Hsp70s, 

including HSPA6, HSPA7 and HSPA4, which is characterized by elevated 
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expression in response to stress. One important question is whether the different 

family members, such as the stress-inducible forms, have any specialized 

biochemical functions that might distinguish them from the constitutive ones. 

 

Previously, we identified methylene blue (MB) as an inhibitor of the ATPase 

activity of Hsp72 in a high throughput chemical screen [19]. This compound has 

been shown to reduce the levels of some Hsp72 substrates, such as tau, 

polyglutamine fragments and Akt, in cells [19-22]. MB also improves cognitive 

functions in mouse models of Alzheimer’s disease (AD) [20, 23] and it has been 

explored in Phase IIb clinical trials in AD patients [24]. Although MB is a highly 

promiscuous compound, it has an enviable safety record and is used clinically for 

multiple indications [25]. For these reasons, we decided to further explore the 

mechanism by which it might inactivate Hsp70s. Specifically, we hypothesized 

that MB might prevent ATP turnover in Hsp72 by oxidizing cysteine residues [26, 

27], because MB has been shown to oxidize sulfhydryls in other targets [28]. 

Here, we report that Hsp72 is indeed oxidized by MB and that treatment with 

either MB or hydrogen peroxide irreversibly inactivates ATP turnover in vitro. 

Based on modeling studies and mutagenesis, this inhibition appears to be 

caused by oxidation-induced conformation changes in the NBD that block ATP 

binding. However, during the course of these studies we also made the 

unexpected observation that the constitutive Hsp70 family member, Hsc70, is 

entirely resistant to irreversible inhibition by MB. Mass spectrometry and point 

mutants revealed that two reactive cysteines, C267S and C306S, are sufficient to 
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distinguish the special sensitivity of Hsp72 to MB in vitro and in cells. 

Interestingly, Cys306 is also highly conserved in the other stress-inducible Hsp70 

isoforms, but it is absent from constitutive forms, supporting the idea that this 

residue is important in stress-related redox signaling. Thus, these finding suggest 

a major difference between closely related Hsp70 isoforms, which may be 

important in redox signaling and protecting cells from oxidative stress. Moreover, 

this work may provide insight into one mechanism by which MB reduces tau 

accumulation in cells, animals and AD patients. 

 

A.3 Results 

A.3.1 MB and H2O2 irreversibly inhibits Hsp72 but not Hsc70 
Because MB has been known to directly oxidize sulfhydryls [28], we 

hypothesized that the inhibition of Hsp70’s ATPase activity by MB [19, 29].  may 

involve oxidation of cysteines. To test this idea, Hsp72 was treated with MB (200 

µM) at 37 oC for 1 hour and then dialyzed to remove any remaining compound. 

The remaining ATPase activity in the MB-treated Hsp72 sample was then 

measured using a malachite green assay [30]. Because Hsp72 is a weak 

ATPase, the stimulatory co-chaperone, DnaJ, was added to enhance nucleotide 

turnover in these experiments. Using this approach, we found that MB-treated 

Hsp72 had dramatically reduced ATPase activity (Figure A.1a). Hsp72 was also 

inhibited by treatment with hydrogen peroxide (100 µM) under similar conditions, 

suggesting that the loss of activity was due to oxidation (Figure A.1A). Cysteine 

residues in proteins can be progressively oxidized to sulfenic, sulfinic and then 

sulfonic acids [31], but only sulfenic acids are readily reversible by glutathione or 
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DTT [32]. The ATPase activity of MB-treated Hsp72 was only partially recovered 

after exposure to DTT (1 mM), suggesting that MB irreversibly oxidizes most of 

the protein. 

Initially as a control, the effects of MB on the ATPase activity of Hsc70 were 

evaluated. Unexpectedly, we found that MB had no effect on Hsc70 (Figure 

A.1B). The chemical differences between these two well-conserved (85% 

identical and 94% similar) Hsp70 isoforms were then more closely examined. 

Figure A.1 The ATPase activity of Hsp72, but not Hsc70, is sensit ive to oxidation. (A) 
Purif ied Hsp72 (0.6 µM) was incubated with either MB, peroxide (H2O2) or a mock 
control and the remaining compound removed by extensive dialysis. The st imulation of 
ATPase activity by the model J co-chaperone, DnaJ, was then measured. Results are 
the average of three experiments performed in tr ipl icate. Error bars are standard error 
of the mean (SEM). (B) Human Hsc70 is resistant to oxidation. Experiments were 
performed as described for panel A. (C) The locations of cysteine residues (red) in 
Hsp72 are shown using the crystal structures of the NBD (pdb # 3JXU) and the SBD 
(pdb # 1DKX). In the insets, identical residues are shown in yel low, conserved residues 
in gray and the posit ions of cysteines are red. Alignments were prepared in Vector NTI 
(Invitrogen). 
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Sequence alignments of the human proteins showed that Hsp72 has five 

cysteine residues (three in the NBD and two in the SBD) whereas Hsc70 has 

only four (two each in the NBD and SBD). Thus, one difference between these 

isoforms is that Hsp72 has a unique Cys306, which is an asparagine in Hsc70 

(Figure A.1C). The sequences of a number of inducible or constitutive human 

Hsp70 family members were then examined, revealing that Cys306 is exclusively 

found in stress inducible Hsp70s but not in any of the constitutively expressed 

family members (Figure A.2). Moreover, C267 is conserved in 4 of 5 inducible 

family members and only 2 of 5 constitutive forms (Figure A.2), suggesting that 

Figure A.2 Stress inducible, but not constitut ive forms of the Hsp70 family contain a 
unique, reactive cysteine at posit ion 306. (a) Sequence al ignment of select human 
Hsp70 family members, showing conservation of cysteine 306 in stress inducible, but 
not constitut ive forms. The 267 and 306 numbers are derived from human Hsp72 
(HSP1A1). For more information see Fujikawa et al.  (2010) Cell  Stress Chaperones 
15:193-204. (b) Representative trypsin fragment of human Hsc70 treated with MB (200 
µM), as in Fig. 2, showing that Cys17 is not oxidized. In addit ion, no other fragments in 
the Hsc70 sequence were oxidized. As discussed in the text, the fragment containing 
267 was not observed in the spectra.  
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both of these residues may be important. Together, these results suggest that 

MB might selectively compromise ATPase by oxidizing at least one cysteine in 

Hsp72, but not Hsc70.   

A.3.2 MB oxidizes Cys306 of Hsp72 
To map which cysteines in Hsp72 were oxidized by MB, a well-established mass 

spectrometry (MS) method using dimedone (5,5-dimethyl-1,3-cyclohexanedione) 

was employed. Briefly, dimedone is known to react with oxidized cysteines to 

form stable thioethers that are readily observed in the MS spectra as a +138 Da 

shift in molecular mass (Figure A.3A). Accordingly, MB-treated Hsp72 was 

treated with dimedone and unreacted thiols were capped with carbamidomethyl 

groups. Subsequent trypsin digestions and analysis by LC-tandem MS/MS 

Figure A.3 Hsp72 is oxidized by MB at specif ic cysteine residues. (A) Schematic of the 
specif ic reactions of iodoacetimide with free thiol and dimedone with sulfenic acid, 
producing a mass shift  of +57 or +138 Da, respectively. (B) Select region of the MS/MS 
spectra focused on the region including the C306 fragment (CSDLFR 306-311). This 
fragment is 797.39 Da in the mock treated control ( indicating iodoacetamide capping) 
and 878.43 Da in the MB treated ( indicating dimedone conjugation). (C) Summary of the 
mass spectrometry f indings, showing that MB only oxidized C306 in Hsp72. n.d. = not 
detected. n.a = residue not conserved. 
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revealed that the mass of the fragment containing Cys306 in Hsp72 was oxidized 

(Figure A.3B). No other residues were modified, although it is important to note 

that the fragment containing Cys267 was not detected (likely because the nearby 

region is highly charged) (Figure A.3C). As expected from the ATPase 

experiments, Hsc70 treated with MB was resistant to modification by dimedone 

(Figure A.3C and Figure A.2B). Thus, Hsp72 differs from Hsc70 in reactivity of its 

cysteines at positions 306 and perhaps 267. 

 

A.3.3 Hsp72 Cys to Ser mutations confer resistance to MB  
The mass spectrometry studies suggested that MB-based oxidation of specific 

cysteines might be responsible for the compound’s effects on Hsp72’s ATPase 

activity. To test this idea, Cys306, Cys267 or both residues were mutated to 

serine by site-directed mutagenesis and the resulting mutant proteins were 

purified. These substitutions did not change the global structure (Figure A.4) or 

ATPase activity of the mutant chaperones (Figure A.5A-C). However, the 

ATPase activities of C267S (Figure A.5A) and C306S (Figure A.5B) were 

Figure A.4 Serine point mutants Hsp72 C267S and C306S and the double mutant 
C267/306S) are properly folded, as measured by circular dichroism.  
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partially resistant to MB (50 µM) and the double mutant (C267/306S) was 

completely resistant (Figure A.5C). Thus, MB appeared to exert its inhibitory 

effect on Hsp72 ATPase activity via oxidation of these cysteines and both 

residues appeared to be involved. 

MB is known to reduce tau levels in cells through a mechanism dependent on 

Hsp72 [19]. Thus, the over-expression of the C306S, C267S and C267/306S 

mutants may de-sensitize cells to MB. In fact, when HeLaC3 cells were stably 

transfected with Hsp72 C306S, MB no longer reduced the levels of 

Figure A.5 Serine mutants of Hsp72 are resistant to MB treatment in ATPase and cell-
based assays. (A) C267S mutation confers part ial resistance to MB (50 µM). (B) C306S 
confers part ial resistance to MB (50 µM). (C) C267, 306S double mutation confers 
resistance to MB (50 µM). All  of the ATPase experiments were performed at least twice 
in tr ipl icate and error bars are SEM. (D) Over-expression of the C306S mutation blocks 
MB-mediated clearance of tau. HeLaC3 cells were transfected with vector, Flag-tagged 
WT Hsp72 or C306S Hsp72 mutant for 48 hours and then treated with MB for 10 
minutes. Samples were analyzed by western blot and the results are representative of 
experiments performed in duplicate. 
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phosphorylated (pS396/404) or total tau (Figure A.5D). Together, these results 

strongly suggest that MB acts on Hsp72 by oxidizing Cys267 and Cys306, and 

that this activity is important in regulating the levels of tau. 

A.3.4 C267D mutation causes a conformational change and disrupts 
nucleotide binding 
To gain some insight into the structural basis of these observation, the NBD of 

Hsp72 containing a C267D mutation was modeled using Robetta [33], using the 

structure of human Hsp72 NBD in the ADP form (3JXU) as a starting point [34]. 

An aspartic acid substitution was used because it sterically and electronically 

mimics oxidized cysteine [35]. A comparison of the structures of the wild type 

Hsp72 NBD and the C267D Hsp72 NBD showed that they were globally very 

similar, with an RMSD of 1.55Å and a TM-score of 0.94 (Figure A.6A). However, 

several residues that are specifically involved in nucleotide binding were 

predicted to be significantly shifted. For example, Gly339, which makes a 

hydrogen bond interaction with the alpha phosphate group of ADP, was shifted 

away from the nucleotide by 1.0 Å, likely preventing the formation of this 

important bond (Figure A.6B). Further, Arg272, which interacts with the adenine 

ring by pi-stacking, is significantly pulled away by regional rotations in the 

backbone (Figure A.6C). Collectively, these changes and others resulted in side 

chain displacements totaling more than 25Å in the nucleotide binding cleft. Very 

similar results were seen with the C306D mutant, suggesting that these residues 

might both contribute to conformational rearrangements (Figure A.7A). 

Interestingly, oxidation of C306 is predicted to swivel residue C267 into the 

solvent-exposed cleft above nucleotide in the NBD (Figure A.7B), perhaps 
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making it more accessible to oxidation by MB. Together, these in silico 

observations suggest that oxidation of Cys267 and Cys306 in Hsp72 might 

damage nucleotide binding and inactivate ATP turnover. Further, these results 

Figure A.6 Modeling of Hsp72 C267D reveals structural changes in residues that contact 
nucleotide. (A) Overal l  al ignment of the NBDs of Hsp72 (yel low: pdb entry 3JXU) and 
Hsp72 C267D Model (red: modeled from template 3JXU using Robetta Server). In the 
C267D model, (B) Gly339 is shifted away from the a-phosphate of nucleotide and (C) 
Arg272 is shifted away from the adenine r ing. In total,  C267D caused structural changes 
total ing 25Å. Similar results were seen in the C306D mutant. (D) Purif ied C267D and 
C306D mutants do not bind nucleotide. Purif ied mutants and wild type Hsp72 (5 µM) 
were treated with 1 mL of ATP-agarose, washed with 3 mL of Buffer A (25 mM HEPES, 
10 mM KCl, 5 mM MgCl2, pH 7.5) and f lowthrough (FT) col lected. Following three 
addit ional washes, the remaining protein was collected in the eluant (E) by washing with 
3 mL of Buffer A containing 3 mM ATP. Fractions were analyzed on 1-20% Tris-Tricine 
gels using a polyclonal anti-Hsp72 antibody (Enzo). 
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suggest that sequential oxidation of C306 and then C267 may reinforce and 

promote these conformational changes (Figure A.7C). 

 

Figure A.7 Homology model of Hsp72 C306D NBD. (A) Pseudo-oxidation of residue 306 
does not produce global changes in the NBD fold, similar to what was seen with the 
C267D mutant. Green is C306D. Yellow is wild type (PDB 3JXU). The C306D and C267D 
models are nearly identical, with C306D also causing an ~25 Å total displacement of 
residues associated with nucleotide binding. (B) Close up that i l lustrates how C306D 
increases the solvent exposure of Cys267, potential ly enhancing its oxidation. C267 
moves by ~3 Å in the C306D model. (C) Model for init ial oxidation at Cys306, leading to 
synergist ic oxidation of C267 and reduced ATP binding. 
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A.3.5 Cys to Asp mutations “phenocopies” MB treatment in vitro and in 
cells 
To test this model, Cys267 and Cys306 of Hsp72 were mutated to the pseudo-

oxidation residue, Asp, and the resulting mutant proteins were purified. Initial 

attempts to purify the mutants on ATP agarose immediately revealed that they 

had significantly reduced affinity for nucleotide (Figure A.6D), consistent with the 

models. Switching to size exclusion, the mutants were purified and found to have 

normal circular dichroism (CD) spectra (Figure A.8A), suggesting that the global 

Figure A.8 C267D and C306D mutants have impaired ATP binding and are more f lexible. 
(A) Circular dichroism results indicate that the mutants have similar global structure to 
the wildtype. Likewise, MB treatment does not cause major changes in structure, as 
determined by this method. All  proteins were used at 2 µM in 50 mM NaF buffer. (B) 
Hsp70 variants (6 µM) were treated with nucleotide (5 mM) for 30 minutes and then 
digested with trypsin for 30 min at rt .  Reactions were quenched with loading dye, bands 
separated on 10-20% Tris-Tricine gels and imaged by Coomasie stain. Results are 
representative of experiments performed in duplicate. (C) Hsp72 and DJA2 could 
robustly refold denatured luciferase, but Hsp72 treated with MB (50 µM) or Hsp72 with 
Asp mutants had greatly reduced activity. Results are the average of at least three 
independent experiments performed in tr ipl icate. Error is SEM.  
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structure was not significantly disrupted by the Asp mutations. However, partial 

proteolysis showed that the mutants were more prone to digestion (Figure A.8B), 

suggesting that they may be more flexible. Interestingly, MB-treated wild type 

Hsp72 is also prone to proteolysis (Figure A.8B), further enforcing the similarities 

between the Asp point mutants and the oxidized wild type. 

 

To further explore this possibility, enzymatic activities of the Hsp72 pseudo-

oxidation mutants were examined using ATPase assays, showing that the 

C267D and C306D mutants had dramatically decreased enzymatic activity 

(Figure A.9A). These mutants essentially behaved like Hsp72 that had been 

treated with MB. We next tested the ability of Hsp72 and the mutants to refold 

denatured firefly luciferase. These experiments showed that Hsp72 treated with 

MB and the C267D, C306D and C267/306D double mutants all had reduced 

refolding activity (Figure A.8C). Taken together, these studies suggest that the 

Asp mutants phenocopy some aspects of MB-treated Hsp72. 

Figure A.9 Pseudo-oxidation mutants phenocopy MB treatment. (A) The DnaJ-stimulated 
ATPase activit ies of purif ied Hsp72 mutants were reduced, resembling MB-treated wild 
type. These experiments were performed at least three t imes using two independently 
prepared samples. Error bars represent the standard error of the mean (SEM). (B) Over-
expression of wild type Hsp72 had l i t t le effect on tau levels, but the C306D and 
C267/306D mutants reduced tau. The gels show two independent replicates and the 
quantif ication of band intensit ies includes SEM. 
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In HeLaC3 cells, over-expression of the C306D mutant produced modest (~40%) 

reductions in total tau levels and no significant effect on phosphorylated tau 

(Figure A.9B). Over-expression of the double mutant (C267/306D) substantially 

(>70%) reduced both tau and phosphorylated tau levels (Figure A.9B). Together, 

these findings provide strong support for MB acting through oxidation of specific 

cysteine residues in Hsp72 to reduce tau levels.  

 

A.4 Discussion 
One “arm” of the cellular response to redox stress likely involves the acute 

protection of proteins from oxidation-induced unfolding and aggregation. Here, 

we were specifically interested in understanding how the Hsp70 family of 

chaperones, especially the stress inducible forms, might be linked to these types 

of redox responses. We found that Hsp72, but not Hsc70, was sensitive to 

oxidation by either MB or peroxide. A recent large-scale proteomic study 

positively identified Hsp72 as sensitive to oxidation by peroxide in HeLa cells 

[36], consistent with this finding. Our mass spectrometry, modeling and point 

mutagenesis results suggest that oxidation of Hsp72 occurs selectively at two 

cysteine residues, Cys267 and Cys306. Importantly, Cys306 is uniquely 

conserved in the stress-inducible Hsp70 family members and is absent from the 

constitutive ones. Although it might be initially surprising for such highly 

homologous proteins to have different biochemical properties, Goldfarb, et al. 

recently demonstrated that Hsp72 and Hsc70 have opposing effects on the 

surface expression of murine epithelial sodium channel [37], further suggesting 
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that even highly conserved Hsp70 isoforms can sometimes have distinct 

functions. Together, our findings suggest that Hsp72, and possibly other stress-

inducible Hsp70 family members, are specially adapted for sensing and 

responding to redox stress. Based on the observed effects on tau stability, this 

redox response may involve switching the triage decision to favor degradation of 

misfolded Hsp72 substrates, perhaps clearing the cytosol of folding intermediates 

that are particularly prone to oxidative damage.  

 

What is the molecular mechanism linking oxidation of Hsp72 to a loss of ATPase 

activity? We propose a model in which oxidation of the unique and solvent 

exposed Cys306 leads to re-arrangement of Cys267, such that this residue is 

now also sensitive to oxidation. Thus, although Hsc70 has Cys267, it lacks the 

critical initiator (i.e. residue Cys306) and, therefore, treatment with either MB or 

peroxide does not inactivate it. This model further suggests that oxidation of both 

Cys267 and Cys306 causes numerous, subtle re-arrangements in residues that 

normally contact nucleotide. These changes destabilize a number of key 

contacts, including hydrogen bonds with ATP, hydrogen binds with the 

phosphate, and a number of hydrophobic interactions. Consistent with this idea, 

the purified mutants, C267D and C306D, lacked the ability to bind ATP in vitro. 

Thus, we propose a model in which a cascade of oxidations severely damages 

the binding of Hsp72 to nucleotide. How this re-arrangement favors degradation 

of bound substrates, such as tau, is not yet clear. 
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Another goal of this work was to better understand the mechanism by which MB 

reduces tau levels in cellular and mouse models of AD [19, 23]. Although MB is 

clearly a promiscuous compound that lacks a classic “drug-like” profile, it is 

remarkably non-toxic and, thus, it is used in humans for the treatment of a variety 

of indications, including inherited and acute methemoglobinemia, prevention of 

urinary tract infections, ifosfamid-induced neurotoxicity, vasoplegic adrenaline 

resistant shock and pediatric malaria [25]. Because of MB’s particular promise as 

an AD therapeutic, we were interested in understanding whether any of its effects 

on tau accumulation may be mediated by oxidation of Hsp72. In this work, we 

found that mutating Hsp72 Cys267 and/or Cys306 to serine blocked the ability of 

MB to reduce tau levels in cells. This is an important finding because it strongly 

links Hsp72 oxidation to effects on tau accumulation. To further enforce this idea, 

over-expression of the corresponding C267/306D pseudo-oxidation mutant was a 

strong “dominant negative” and it dramatically reduced tau levels. Together, 

these results suggest that Hsp72 oxidation is one important way by which MB 

reduces tau accumulation in AD models. These findings may aid in the discovery 

of additional AD therapeutics that take advantage of this under-explored 

mechanism. 

 

Treatments with high levels of MB are tolerated in cells [38] and, moreover, it is 

relatively non-toxic in humans [25]. On first glance, the global inactivation of 

Hsp70s might be hypothesized to be acutely and dramatically toxic, given the 

proposed roles of this chaperone family in “housekeeping” activities. However, 
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another point of view is that the stress-inducible Hsp72 isoform is specifically 

concerned with degrading only the substrates that have been damaged or 

misfolded in response to stress [39], protecting the cytosol from the accumulation 

of proteotoxic intermediates. In normal cells, the levels of Hsp72 and such 

misfolded substrates may be low due to the action of other components of the 

protein quality controls system. Thus, MB may have low toxicity because of its 

unusual selectivity for the stress-inducible Hsp70 family members. This is an 

important finding in the continued search for Hsp70-modifying compounds with 

low toxicity and favorable therapeutic benefits. 

 

A.5 Methods 

A.5.1 Proteins and reagents.  
Unless otherwise specified, reagents were purchased from Sigma (St. Louis, 

MO) or Fisher Scientific (Pittsburgh, PA). Human Hsp72, Hsc70 and E. coli DnaJ 

were purified according to published schemes [40]. Site directed mutagenesis 

primers were designed based on previous reports [41] and mutagenesis of 

Hsp72 was carried out following the user manual for the QuickChange site-

directed mutagenesis kit (Stratagene, La Jolla, CA). The Hsp72 C267S, C306S 

and C267/306S mutants were expressed and purified using the same protocol as 

Hsp72 (42). The Hsp72 C267D and C306D mutants were expressed as 

previously described (42) and purified using nickel-nitrilotriacetic acid His·Bind® 

resin (Novagen, Darmstadt, Germany), then buffer exchanged into a 25mM 

HEPES buffer (10mM KCl, 5mM MgCl2 pH 7.5).  
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A.5.2 Oxidation of Hsp72/Hsc70.  

Protein (10 µM) and MB (5 mM) were incubated at 37 °C for 1 hour. For H2O2 

oxidation, protein sample (10 µM) was incubated with 1 mM H2O2 at 37 °C for 1 

hour. Treated protein samples were subsequently dialyzed against buffer A (100 

mM Tris-HCl, pH 7.4, 20 mM KCl, 6 mM MgCl2) at 4 oC.  

A.5.3 ATPase activity.  
ATPase activity was measured according to the previously published method 

[30]. Briefly, malachite green-based assays were used to measure phosphate 

release from purified Hsp72, Hsc70 or mutants (1 µM). Reactions were initiated 

with 1 mM ATP, performed for 60 minutes and quenched before measuring 

absorbance. Absorbance readings were converted to pmol of ATP using a 

phosphate standard curve.  

A.5.4 Preparation of dimedone-modified Hsp70s. 

MB-treated or untreated Hsp70s (10 µM) were incubated with 5 mM dimedone 

(5,5-dimethyl-1,3-cyclohexanedione) in buffer A (100 mM Tris-HCl, pH 7.4, 20 

mM KCl, 6 mM MgCl2) at room temperature for 1 hour. The samples were 

analyzed by SDS-PAGE and stained with colloidal Coomassie blue (Invitrogen, 

Carlsbad, CA). Bands corresponding to Hsp72 were excised and stored at -20 °C 

until use.  

A.5.5 Mass spectrometry.  
In-gel digestion was performed as previously described [42]. After reduction (10 

mM DTT) and alklylation (65 mM iodoacetamide) of the free cysteines at room 

temperature for 30 minutes, proteins were digested overnight with trypsin 
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(Promega). Resulting peptides were resolved on a nano-capillary reverse phase 

column (Picofritcolumn, New Objective) using a 1% acetic acid/acetonitrile 

gradient at 300 nL/min and subjected to LC-tandem MS using LTQ Orbitrap XL 

mass spectrometer. MS/MS spectra were searched against the database 

considering either carbamidomethyl- or dimedone-modified cysteine. 

 

A.6 Notes 
A portion of this work was published as Miyata Y*, Rauch JN*, Jinwal UK, 

Thompson AD, Srinivasan S, Dickey CA, Gestwicki JE. Cysteine reactivity 

distinguishes redox sensing by the heat-inducible and constitutive forms of heat 

shock protein 70. Chemistry & Biology. 2012; 19:1391-9. (*co-first author) 
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