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CHAPTER 1 

INTRODUCTION 

SPECIFIC AIMS  

In the United States, 30% of adults suffer joint pain, most commonly in the knee. Knee pain can 

severely limit mobility and can often be attributed to injury to the cartilage and underlying bone 

in the joint. Unfortunately, a growing population of young athletes is developing osteochondral 

knee injuries due to repetitive joint stress and sports-related injuries such as meniscus or 

ligament tears. Microfracture and autografts are currently primary treatments for small 

osteochondral defects. However, microfracture results in less resilient fibrocartilage with 

eventual failure, and autografting can cause donor site morbidity and poor integration. To 

overcome these significant drawbacks, material scientists and bioengineers have collaborated to 

design tissue-engineered cartilage-bone grafts as an alternate therapy for small osteochondral 

defects. Recently, we have made significant progress in developing novel nanofibrous, porous 

polymer scaffolds for tissue regeneration. The goal of this project is to optimize scaffold pore 

architecture of a composite scaffold for both cartilage and bone regeneration. Using a 3D 

nanofibrous poly(ʟ-lactic acid) (PLLA) scaffold seeded with bone marrow-derived mesenchymal 

stem cells (BMSCs), the following three specific aims depicted in Fig. 1.1 will be investigated:
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Figure 1.1. Scaffold design investigated for cartilage and bone tissue regeneration. 

Aim 1 is to determine the effect of scaffold pore size on chondrogenic differentiation and 

cartilage formation both in vitro and in vivo.  

Aim 2 seeks to optimize scaffold pore size in an ectopic model to control endochondral 

ossification for bone regeneration.  

Aim 3 is to evaluate how a calcium phosphate electrodeposited on the porous scaffold affects 

bone formation.  

Hypothesis: We hypothesize that chondrogenesis and endochondral ossification can be 

controlled by scaffold pore size and enhanced by the calcium phosphate coating to direct 

cartilage and bone regeneration.  

In the future, the tissue-engineered cartilage and bone graft materials could be combined into a 

one biphasic scaffold for an osteochondral knee graft with two unique pore sizes and biphasic 
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growth factor delivery, as shown by preliminary data. This cell-instructive, biomimetic 

composite material could even serve as a platform to engineer various complex tissues and organ 

systems. 

SIGNIFICANCE 

In a study of 1,000 knee arthroscopies, over 60% of patients had a chondral or osteochondral 

lesion (1). Osteochondral defects are especially common among the young, active population due 

to the stresses placed on the joints during high physical activity (2). Injury to the menisci or 

ligaments in the knee, common in many sports, can also place added stress on the knee (3). This 

repeated loading causes the cartilage volume to decrease and chondral or osteochondral defects 

to form (4). Self-repair of these defects is limited because cartilage is avascular (5). If articular 

cartilage further degenerates and loses its ability to adapt to repetitive stress, osteoarthritis can 

develop. However, osteoarthritis can be prevented in these individuals with proper, early 

treatment of the osteochondral defects. There are currently two treatment options for small 

femoral osteochondral defects - microfracture or autografts (6). While microfracture (drilling 

through cartilage into bone marrow) can relieve pain, resulting fibrocartilage does not have the 

same resiliency of articular hyaline cartilage and can fail over time (5). With autografts, it is 

difficult to exactly match defect geometry, requires multiple surgeries, and can cause donor site 

morbidity (7).  

Due to the significant drawbacks of current treatments, there is a clear need for an alternate 

therapy. A tissue-engineered osteochondral graft could potentially serve as a better solution for 

patients. In cartilage and bone tissue engineering, as in nearly all tissue engineering, scaffolds 

play a pivotal role by serving as an artificial extracellular matrix (ECM) (8). There has been 

active research using biodegradable synthetic polymer scaffolds for osteochondral regeneration 
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(9), showing the promise of this approach. However, the scaffolds developed up to this point to 

construct this complex composite tissue have not been able to replicate the physiological 

properties of both cartilage and bone. The design of synthetic biodegradable scaffolds remains a 

key issue in engineering quality osteochondral grafts. Our novel scaffold design features phase-

separated nanofibers to mimic ECM, previously shown to enhance cell adhesion, proliferation, 

and differentiation of multiple stem cell types (10-16). By tailoring this novel material, we 

believe that a BMSC-seeded, nanofibrous biphasic scaffold with optimized pore size and 

electrodeposited calcium phosphate may functionally regenerate cartilage and bone tissue. This 

approach is innovative because multiple complex technologies never before combined will be 

used to fabricate a composite scaffold to control dual differentiation of bone marrow-derived 

stem cells and modulate the intricate endochondral ossification process for cartilage and bone 

regeneration. 

DISSERTATION OVERVIEW 

Chapter 2 provides a literature review on nanofibrous scaffolds and their use in cartilage and 

bone tissue engineering applications. Three methods for nanofibrous scaffold fabrication are 

described: electrospinning, self-assembly, and phase separation. The positive effects of 

nanofibers on cell function are elucidated, including adhesion, proliferation, and differentiation, 

along with potential mechanisms. Finally, patient-specific nanofibrous scaffolds and controlled 

release of growth factors on nanofibrous scaffolds are discussed. This work was published as a 

portion of: Gupte MJ, Ma PX, “Nanofibrous scaffolds for dental and craniofacial applications.” J 

Dent Res (91) 3: 227-234, 2012. [PMCID: PMC3275331] 
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Chapter 3 focuses on Aim1 and studies the scaffold pore size effect on cartilage formation. We 

compare the chondrogenic differentiation of hMSCs on three-dimensional nanofibrous (NF) 

PLLA scaffolds with small pore size (125-250 µm) or large pore size (425-600 µm) both in vitro 

and in vivo. Following 4 wk chondrogenic culture and 8 wk subcutaneous implantation in nude 

mice, small-pore scaffolds supported avascular cartilage formation, but large-pore scaffolds 

contained only fibrous tissue. Therefore, small-pore scaffolds enhanced chondrogenic 

differentiation in vitro and cartilage formation in vivo compared to large-pore scaffolds.  

Chapter 4 investigates Aim 2 and the effect of scaffold pore size on endochondral ossification in 

an in vivo ectopic model. Three pore sizes, small (125-250µm), medium (250-425µm), and large 

(425-600µm), all supported endochondral ossification in vivo after 4w and 8w. A very small pore 

size (60-125µm) was required to block blood vessel invasion for cartilage formation. 

Chapter 5 explores Aim 3 to determine whether an electrodeposited calcium phosphate (CaP) 

coating on a medium pore size, nanofibrous PLLA scaffold could promote the scaffold’s 

osteoconductivity. This study showed that the electrodeposited calcium phosphate (CaP) on a 

nanofibrous PLLA scaffold seeded with rabbit bone marrow-derived mesenchymal stem cells 

(BMSCs) enhanced mature, mineralized bone formation, compared to a blank scaffold without 

CaP, by promoting stem cell proliferation. The introduction of this chapter was adapted from a 

published book chapter: Smith IO, Gupte MJ, Ma PX, “Polymer/ceramic Composite Scaffolds 

for Tissue Regeneration,” Biomaterials and Regenerative Medicine, Cambridge University Press, 

2014. 

Chapter 6 reveals preliminary work using 1) TGF-β1 delivery for rat knee defect repair and 2) 

the biphasic scaffold shown in Figure 1.1 with two different pore sizes and biphasic controlled 
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release of TGF-β1 and BMP-2 for osteochondral regeneration in an ectopic model. This chapter 

also provides a summary of conclusions of the entire dissertation and discusses future work.  
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 CHAPTER 2 

LITERATURE REVIEW: 

NANOFIBROUS SCAFFOLDS FOR CARTILAGE AND BONE REGENERATION 

ABSTRACT 

Tissue engineering solutions often harness biomimetic materials to support cells for functional 

tissue regeneration. Three dimensional scaffolds can create a multi-scale environment capable of 

stimulating cell adhesion, proliferation, and differentiation. One such multi-scale scaffold 

incorporates nanofibrous features to mimic the extracellular matrix along with a porous network 

for the regeneration of a variety of tissues. This chapter will focus on nanofibrous scaffold 

synthesis/fabrication, biological effects of nanofibers, their tissue engineering applications in 

bone, cartilage, patient-specific scaffolds, and incorporated growth factor delivery systems. 

Nanofibrous scaffolds cannot advance technology for tissue engineered replacements in many 

physiological systems. 

INTRODUCTION 

Hard tissue regeneration is in high demand due to trauma, post-cancer surgery, skeletal disease, 

and congenital malformations. Successful regeneration of affected tissues is necessary to 

reconstruct skeletal support, restore mobility, and protect vital organs. One common approach in 

the field of tissue engineering aims to restore tissue function by growing cells on a designed 

scaffold that creates a three-dimensional microenvironment for cell support.  
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In designing appropriate scaffolding to provide this support, material selection is important. 

Scaffolds have been fabricated using a variety of natural and synthetic biomaterials such as 

proteins, ceramics, and polymers (1). Synthetic polymers are gaining popularity because they can 

be designed to have a high processing capability, mechanical stability, biocompatibility, and 

biodegradability (2). These features allow a polymer scaffold to be integrated into biological 

systems and tailored to mimic the natural cell environment of the extracellular matrix (ECM). 

The ECM is the nanofibrous protein network that surrounds cells in all tissues to support their 

many functions (1) and can be emulated with a nanofibrous polymer scaffold. The nanofibers 

can be designed to promote cell functions such as adhesion, proliferation, differentiation, and 

tissue neogenesis. In addition to nanofibers, the scaffold should have an internal 

interconnected porous network, a common scaffold design requirement, to allow cellular 

integration into the scaffold among other functions (3). It can even be designed to release 

growth factors to tailor tissue development (4).  

Many cell types have been cultured on nanofibrous materials to regenerate hard tissues. 

Embryonic stem cells and mesenchymal stem cells, such as bone marrow stromal cells and 

adipose stem cells, are attractive cell sources due to their ability to differentiate to multiple 

lineages and self-renew. Differentiated cells have also been utilized to form the single tissue type 

in which they are found: osteoblasts for bone and chondrocytes for cartilage (5). Each of these 

cell sources can be successfully implemented to promote desired tissue formation with adequate 

support of cell function. 3D porous, nanofibrous scaffolds have been used to regenerate many 

hard and soft tissues with several stem cell and differentiated cell sources. However, this review 

will focus the use of the nanofibrous scaffold on bone and cartilage regeneration. 
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NANOFIBROUS SCAFFOLD SYNTHESIS AND FABRICATION 

Many methods have been developed to synthesize scaffolds for tissue engineering applications; 

however, only a limited number of methods can generate the nano-scale features necessary to 

mimic the extracellular matrix. Nanofibrous scaffolds have been fabricated using three 

techniques: electrospinning, self assembly, and phase separation. 

Electrospinning 

The electrospinning process creates polymer nanofibers by applying a high voltage to a syringe 

needle filled with a polymer solution. The applied voltage creates an electric field, which causes 

a jet stream of polymer solution by creating a force greater than the surface tension of the 

solution. The jet then bends and elongates due to electrical instability, causing a spiraling motion 

and smaller diameter jet. The solvent then evaporates, leaving only a charged polymer nanofiber. 

The nanofiber is attracted to a grounded collector, where it solidifies into a nonwoven mat.  The 

collector can be rotated to produce a desired fiber orientation (6).  

Several parameters of this method must be controlled in order to achieve nanofibers with desired 

morphology including voltage, motor speed, distance from needle to collector, syringe pump 

flow rate, external temperature, and polymer solution concentration. For example, increasing 

temperature can decrease fiber diameter due to reduced viscosity of the polymer solution and 

increased conductivity. Conversely, increasing polymer solution concentration can greatly 

increase fiber diameter (7). Therefore, these parameters must be optimized to achieve polymer 

nanofibers. 

Electrospinning can be used for many synthetic and natural polymers and can produce scaffolds 

to which many cell types can adhere. In the dental field, electrospinning has been used to form a 
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gelatin membrane for periodontal tissue regeneration. When seeded with periodontal ligament 

cells, the electrospun gelatin membrane showed good cell attachment and proliferation over 7 

days (7). This process also supports creating copolymers such as PLGA (8) or polymer blends 

such as PVA with collagen (9) by using a copolymer or polymer blend solution at an optimal 

ratio. In addition, the electrospun scaffold can be composited with biological molecules such as 

growth factors (10) or minerals (8, 9, 11). Electrospinning is the most commonly used technique 

to produce synthetic and natural polymer fibers due to its ease; however, it often cannot produce 

true nanofibers that are at the order of 100 nm or less with frequently used biodegradable 

polymers. More importantly, electrospinning cannot produce complex 3D scaffolds with 

designed pore geometry. 

Self Assembly 

Self assembly is the autonomous organization of components into a specific structure. This 

important process occurs naturally with the self-assembly of nucleic acids and proteins like 

collagen, a main extracellular matrix protein of many tissues (bone, cartilage, blood vessels, skin, 

tendons, etc.). Collagen self-assembles when molecular interactions cause three polypeptides to 

form a triple helix, which organizes into a fibril, and many fibrils bundle together to form a 

collagen fiber (12). This natural self-assembly process for collagen can be mimicked to form 

nanofibrous polymer scaffolds from engineered self-assembling peptides. These peptides can be 

designed to form a stable organized structure through spontaneous organization of molecules due 

to non-covalent interactions (13). 

Many groups have used this approach to fabricate hydrogels, commonly used for cell 

encapsulation (14). Self assembly can often produce nanofibers of a much smaller diameter than 

electrospun fibers. They can also be useful in injection applications as the self assembly process 
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can occur in vivo following injection. However, self-assembled hydrogels do not allow control 

over internal pore shape and can have poor mechanical strength, making them unsuitable for 

many tissue engineering applications. Self-assembly peptides are also susceptible to enzymatic 

degradation, which can affect scaffold degradation rate in an uncontrolled fashion. These issues 

need to be addressed, especially when utilizing self-assembling scaffolds for tissue engineering 

applications. 

Phase Separation (Used in this Dissertation) 

Phase separation is a process where a single phase homogenous polymer solution is critically 

quenched, causing separation into a polymer-rich phase and a solvent-rich phase. This separation 

occurs to lower the system free energy due to the thermodynamically unstable state of the 

solution (15). 

Our laboratory has developed a novel method that uses thermally induced phase separation to 

produce a synthetic biodegradable polymer scaffold with nanofiber features. This is done by 

combining poly(L-lactic acid) (PLLA) with a solvent (tetrahydrofuran, THF) and freezing at a 

low temperature. Freezing causes the material to separate into two distinct phases of PLLA 

nanofibers and THF. The THF can then be extracted using another solvent and sublimated, 

leaving only the PLLA nanofibers  (16). We have also applied this method to create a 

nanofibrous gelatin scaffold using different solvents (17).  

In biological applications, it is advantageous for nanofibrous scaffolds to have 

interconnected, internal pore structures in order to aid in cell migration, nutrient/waste 

exchange, and uniform cell and nutrient distribution (18). Porous scaffolds can be 

manufactured using this method because a porogen such as sugar or paraffin can be used to form 
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pores within a bulk material and then leached out following phase separation, leaving open pores 

as well as nanofibers. Therefore, the entire process to make a nanofibrous, macroporous scaffold 

shown in Figure 2.1 is as follows: spherical porogen template formation, heat treatment to 

interconnect individual porogen spheres, polymer casting, phase separation, solvent exchange, 

porogen leaching, and freeze drying (19). Using this method, nanofibers that have an average 

diameter on the order of 100 nm can be formed, which can be difficult using other techniques. 

Phase separation also beneficially allows for the incorporation of internal macro-pores and 

complex scaffold geometries. Therefore, phase separation is a valuable method for nanofibrous 

scaffold preparation for tissue engineering applications. 

EFFECTS OF NANOFIBERS ON CELL FUNCTION 

The natural extracellular matrix (ECM) consists of nano-scale proteins such as collagen, 

fibronectin, and vitronectin. Cell-ECM interactions affect many signaling pathways that alter cell 

responses such as adhesion, proliferation, differentiation, and tissue neogenesis (20). Similarly, 

nanofibers affect these cell behaviors as seen in numerous cell types cultured on nanofibrous 

materials.  

Adhesion and Proliferation 

During initial attachment, cells lightly adhere to a substrate. Cells then spread and form adhesion 

structures to create stronger adhesion and increase interaction with the substrate. Without 

sufficient adhesion to surroundings, cell death can occur. Nanofibrous materials have been 

shown to promote adhesion so cells can take on morphology similar to that in vivo as compared 

to smooth materials. This has been demonstrated by human embryonic stem cell derived osteo 

progenitor cells cultured on thin nanofibrous matrix, solid non-nanofibrous films, and gelatin-
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coated tissue plastic (21). On nanofibrous matrix, cells beneficially maintain 3D morphology and 

form adhesions with nanofibers. However, on both solid films and tissue culture plastic, cells 

spread into a non-physiological 2D morphology which is not conducive to tissue development 

(Fig. 2.2). Oppositely, mouse embryonic stem cells lack interaction with solid films and take on 

a rounded morphology, another undesirable result (22).  

Following adhesion, cells must proliferate for successful tissue formation. This has been reported 

with many cell types cultured on nanofibrous scaffolds including human dental pulp stem cells 

(23) and pre-osteoblasts (24). 

Differentiation and Tissue Formation 

Nanofibrous scaffolds have been shown to improve differentiation of numerous stem cell 

populations (18, 23, 25-27). With human mesenchymal stem cells, the nanofibrous scaffold 

supported both osteogenic and chondrogenic differentiation with chemical stimulation (18, 28). 

Chondrogenic differentiation was marked by increased Sox-9 gene expression on nanofibrous 

matrix compared to solid films (18). Further examples of differentiation will be detailed with 

respect to specific tissues later in the review. 

While most studies support that nanofibers promote differentiation better than other materials, it 

has been shown that nanofibers can aid in maintaining pluripotency of proliferating mouse 

embryonic stem cells (29). This suggests that nanofiber effects may be dependent on culture 

conditions and that nanofibers may affect several complex signaling pathways. Further work is 

required to elucidate the role of nanofibrous features in stem cell differentiation. 
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Potential Mechanisms 

There are a few proposed mechanisms that may explain why nanofibers induced these positive 

biological effects: increased protein adsorption, increased integrin expression, and altered 

signaling pathways. It is suggested that initial attachment of cells may be due to increased 

adsorption of ECM proteins such as fibronectin, vitronectin, and laminin (30). While nanofibers 

do increase surface area, varying amounts of these proteins indicate that selective adsorption of 

important proteins may occur. Increased protein adsorption may in turn increase expression of 

integrins, transmembrane proteins that mediate cell-ECM attachment. Mouse embryonic stem 

cells have shown increased expression of α2, α5, and β1 integrins when cultured on nanofibrous 

matrix versus smooth films. Increased integrins were furthermore linked to increased 

mesodermal and osteogenic differentiation in this study (22). It has been proposed that integrins 

may aid in differentiation by activating paxillin and focal adhesion kinase, which are involved in 

differentiation pathways (31). Morphology, adhesion, and differentiation responses have also 

been attributed to RhoA (32) and Rac (29) expression, which regulate cytoskeletal organization 

and other cell behaviors. While these are possible underlying mechanisms of nanofiber effects, 

more work is required to fully investigate complex cell signaling pathways that may be involved. 

However, the effects of nanofibers on the regeneration of bone and cartilage will be further 

discussed. 

BONE TISSUE ENGINEERING 

Bone tissue forms the entire axial and appendicular skeleton, including the skull, ribs, vertebral 

column, pelvic and pectoral girdles, and upper and lower limbs. Regenerating bone tissue in 

following injury or genetic defects, for example, can be vital to allow for mobility, performance 

of everyday tasks, and pain relief. 
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While tissue engineered bone grafts have been researched for years, challenges still lie in 

achieving in vivo mechanical properties and vascularization. Necessary mechanical properties 

must be reached because the bone formed following scaffold degradation must withstand 

significant stresses over many years. Vascularization is essential for tissue survival and function 

because blood vessels supply oxygen and other nutrients and remove waste. The solution to 

overcoming these challenges to produce tissue engineered bone may lie in combining the right 

cell source with a nanofibrous scaffold. 

Nanofibrous (NF) scaffolds may be an advantageous microenvironment for bone tissue 

formation by mimicking the Type I collagen fibers that are a major component of bone. The 

large macro-pores that are also a component of our NF scaffolds allow for necessary blood 

vessel in-growth for bone tissue regeneration and survival. Even without cells, the 

osteoconductive NF scaffold has shown promising results in vivo following scaffold implantation 

in a rat calvarial defect model likely due to host MSC migration and subsequent osteogenic 

differentiation (33). Several cell types and composite scaffold materials have been successfully 

utilized by our laboratory and others to successfully produce bone tissue, such as embryonic 

stem cells, embryonic stem cell-derived mesenchymal stem cells, mesenchymal stem cells, and 

amniotic fluid-derived stem cells. 

Embryonic stem cells (ESCs) are explored in a vast range of tissue engineering applications due 

to their pluripotency. Our laboratory has directed them to an osteogenic lineage for bone 

formation by seeding them on nanofibrous thin matrix. Mouse ESCs were also seeded on solid, 

flat films without the NF features for comparison. After 12 hours, the nanofibers promoted cell 

adhesion seen by protrusion formation by ESCs on nanofibers. In contrast, mouse ESCs had a 

rounded morphology on the solid films, which is not conducive to osteogenic differentiation. 
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Differentiation was also enhanced by nanofibers as shown by increased gene expression of 

osteogenic markers and calcium content with the NF matrix compared to solid films (22). This 

study reveals that nanofibers improve osteogenic differentiation of ESCs by providing a 

synthetic extracellular matrix environment.  

This positive nanofiber effect was also seen on the differentiation of human embryonic stem cell-

derived mesenchymal stem cell (hESC-MSC) into osteoblasts. This recently derived stem cell 

source is attractive because they are more homogenous than ESCs and more proliferative than 

mesenchymal stem cells (MSCs) (34). Hu et al. (2010) further supported the NF architecture 

effects shown above with ES cells for hESC-MSCs through increased alkaline phosphate activity 

and calcium mineralization extent on NF thin matrix versus solid films. Secondly, by 

synergistically using dexamethasone and bone morphogenetic protein (BMP)-7 with 3D NF 

scaffold, osteogenic differentiation of hESC-MSC significantly improved during culture on 

nanofibrous scaffolds (25). Thus, another bone forming system was developed utilizing the NF 

PLLA scaffold with hESC-MSCs and osteogenic factors. 

Thirdly, human amniotic fluid-derived stem cells (hAFSCs) can be supported by NF scaffold for 

bone formation. Human AFSCs are multipotent but more investigation is required regarding their 

response to biomaterials and soluble factors (35). Along with ES cells and hESC-MSCs, hAFSCs 

can be directed to an osteogenic lineage when facilitated by NF features and BMP-7, simulating 

their in vivo environment (27). 

A mineral phase such as hydroxyapatite (HAP) can also been incorporated into the 

nanofibrous scaffolds to form a composite bone matrix-mimicking scaffold (36). This 

mineral addition was hypothesized to be beneficial in bone tissue engineering because it is the 
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main inorganic components in natural bone. The NF PLLA scaffold has been modified by HAP 

crystals using simulated body fluid incubation previously (37, 38). Most recently, Liu et al. 

(2009) incorporated nano-HAP into a 3D nanofibrous gelatin scaffold. Nanofibers allow 

adequate adhesion of HAP crystals (Fig. 2.3a) while preventing blockage of pore 

interconnections (Fig. 2.3b). When seeded with MC3T3 pre-osteoblasts, the NF gelatin/HAP 

scaffold supported differentiation, shown by bone sialoprotein (BSP) and osteocalcin (OCN) 

expression in Fig. 2.3c and 2.3d, and was mechanically superior to commercially available 

Gelfoam® (24). Other groups have shown successful bone formation using nanofibrous synthetic 

and natural polymer scaffolds such as electrospun PLGA (8), PVA/Type I Collagen (9), and 

many others (39). 

Nanofibrous scaffolds provide a cellular platform for bone formation. However, challenges still 

remain in repairing bone defects with sufficient vascularization that is capable of both short term 

and long term mechanical stability and is capable of native remodeling during aging.  Therefore, 

additional long term studies are needed to improve restoration of this important tissue. 

CARTILAGE TISSUE ENGINEERING 

Cartilage regeneration is often in demand for arthritic knees, hips, or shoulders, often due to high 

activity placing increased stress on joints. These articulating joints and the nasal septum are 

composed of hyaline cartilage, while the annulus fibrous in the intervertebral disc and 

mandibular condyles in the temporomandibular joint (TMJ) are covered with fibrocartilage, 

which when diminished can cause back pain or TMJ disorder, respectively (40). Lastly, the outer 

ear, nasal tip, and epiglottis consist of elastic cartilage. While each type of cartilage differs in cell 

and matrix arrangement and proportion, the constituents of cartilage remain the same: namely, 
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chondrocytes, collagen type II, and proteoglycans (41). Therefore, successful cartilage formation 

can be widely applied within the articulating joints and the craniofacial region. 

Cartilage tissue development is similar to bone in many ways; however, it has different 

environmental requirements for support of tissue growth. In regards to scaffold pore structure, 

small pores may be needed to prevent vascular ingrowth in vivo in order to maintain its 

avascularity. Nanofiber dimensions are similar due to the abundant Type I collagen in bone 

ECM and Type II collagen in cartilage ECM that are physically very similar. Mechanical 

properties, porosity, and pore interconnection size may also need to differ but this has not yet 

been studied. These complex architectural features of the nanofibrous scaffold may control the 

cell microenvironment better than hydrogels, commonly used in cartilage tissue engineering for 

stem cell encapsulation (42).  

When seeded with mesenchymal stem cells (hMSCs), the 3D NF scaffold supported 

chondrogenic differentiation, shown by gene expression of chondrogenic markers. After 6 weeks 

of culture, GAG accumulation and Type II collagen deposition occurred in the presence of TGF-

β1 (18). In addition to ECM deposition, scaffold’s pore architecture favorably forced hMSC 

aggregation which may have improved stem cell condensation for chondrogenic commitment. 

This study shows that nanofibers can not only support bone formation but also cartilage 

formation, with the inclusion of appropriate growth factor(s), to create a tissue-specific synthetic 

environment. Therefore, with the ability to form both cartilage and bone, the entire osteochondral 

interface found in most joints like the temporomandibular joint, knee, hip, and shoulder can 

potentially be restored following injury or disease. 
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PATIENT-SPECIFIC SCAFFOLDS 

Due to the unique and widely varied skeletal sizes and complex shapes, there is a need for 

patient-specific tissue regeneration, currently a hot topic in the popular media. To serve this 

need, our laboratory has developed technology to create patient-specific, anatomically-shaped 

scaffolds. A scaffold unique to each patient can be helpful in regenerating the mandible shape, 

for example, as it has complex geometry and can highly vary between individuals. This can be 

done by creating a wax mold of one mandible section following 3D printing of the entire 

mandible from computed tomography (CT) scans of the patient (Fig. 2.4a). The mold is then 

used to form the NF scaffold (Fig. 2.4b,c) with macroporous structure (Fig. 2.4d) and patient-

specific geometry. The scaffold of one section of patient’s mandible successfully showed bone 

formation when seeded with MC3T3-E1 preosteoblasts (43). Similar results have been shown for 

an anatomical ear (43) and section of a hand digit (44). This technique holds great potential for 

tissue replacements that are specific to each patient in order to best restore natural appearance 

and function.  

DRUG DELIVERY USING IMMOBILIZED NANOSPHERES 

As shown for each tissue described previously, growth factors can have a large influence on stem 

cell differentiation. In vivo, growth factors lose bioactivity very rapidly due to several protein 

degradation pathways (45). Therefore, controlled release of bioactive molecules is highly 

necessary in vivo to sustain their activity over an extended time period. Drug delivery vehicles 

must also be designed to release the drug at the correct dosage due to cell sensitivity and to 

preserve drug bioactivity by maintaining molecular stability (46). Not only can drug delivery aid 

in tissue formation but could also deliver therapeutic drugs following implantation such as anti-

inflammatories or antibiotics. 
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Previous drug delivery techniques used with porous scaffold systems include incorporating the 

drug into the polymer solution, coating the scaffolds, or entrapping drug-filled microspheres 

within the scaffold (1). Although these methods allow for slower release, true release kinetics 

and spatial delivery control is not achieved. Hydrogels such as polyethylene glycol (PEG) are 

often used as drug carriers because drugs can be easily incorporated into the hydrogel solution 

(46, 47). However, biodegradable polyesters such as PLGA can be made into spheres to more 

precisely control release kinetics for significantly longer release compared to hydrogels. 

We have recently developed drug-encapsulating PLGA nanospheres that can be immobilized on 

the nanofibrous scaffold (4). These nanospheres, fabricated using a double emulsion technique, 

allow both spatial and temporal control of one or more growth factors. Immobilization of the 

nanospheres on nanofibers prevents nanosphere coalescence and migration to promote uniform 

spatial delivery. Release kinetics of PLGA nanospheres can be fine-tuned by varying the 

polymer molecular weight or copolymer composition (LA:GA ratio). For further control, 

nanosphere size can also be altered during the double emulsion process through amount of 

surfactant or emulsion strength. Using these novel PLGA nanospheres, sustained growth factor 

release at a high dosage has been achieved. 

In a study by Wei et al. (2007), PLGA nanospheres were used to deliver BMP-7 to induce 

ectopic bone formation. Nanospheres were immobilized on the nanofibers (Fig. 2.5a) without 

blocking interpore connections (Fig. 2.5b). Scaffolds with BMP-7 nanospheres (NS) without 

seeded cells were implanted into rats and evaluated after 3 weeks using H&E staining. Scaffolds 

soaked with BMP-7 (Fig. 2.5c) or with blank NS (not shown) contained only fibrous tissue, but 

scaffolds with BMP-7 NS revealed initial bone formation (Fig. 2.5d) (4). Results were similar 

after 6 wk implantation with even more significant bone formation in BMP-7 NS scaffolds. 
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Thus, sustained release of BMP-7 using PLGA nanospheres spurred bone formation better than 

BMP-7 soaked scaffolds with no delivery system. 

Similarly, another study determined the effect of PDGF using the PLGA nanosphere vehicle to 

promote angiogenesis. Following in vitro studies that demonstrated the bioactivity of PDGF, NF 

scaffolds with immobilized NS were implanted in rats (48). Results indicated significant 

angiogenesis when NS were present but negligible blood vessel formation in scaffolds lacking 

NS (48). Therefore, controlled release of PDGF can improve vascular ingrowth more effectively 

than endogenous signaling alone. 

These drug-delivering PLGA nanospheres with tunable release kinetics can be beneficially 

applied to several tissues in need of sustained growth factor(s) release. The temporal and spatial 

control achieved on the nanofibrous scaffold is a significant improvement over previous 

techniques used for controlled release. 

CONCLUSION 

The fields of biomaterials and tissue regeneration have recently advanced to create a suitable 

microenvironment for cell development to form a variety of tissues. Nanofibrous scaffolds are 

one such biomaterial approach shown to enhance bone and cartilage regeneration. Growth factor 

delivery on the scaffold has further improved tissue formation through controlled release for 

sustained bioactivity. However, challenges in precise material and biological control still exist 

that can be overcome to produce tissues closer to their native state. This will push the future of 

the field toward cell-based therapies to achieve functional tissue replacements. 
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FIGURES 

 

Figure 2.1. SEM micrographs of nanofibrous, macroporous PLLA scaffold with sugar sphere 
template leaching and thermally induced phase separation method. (a) sugar crystals; (b) sugar 
spheres (250-425µm diameter); (c) interconnected sugar sphere template after heat treatment at 
37°C for 15 min; (d) polymer/sugar composite following polymer casting, phase separation at -
20°C, solvent exchange, prior to sugar template leaching; (d,e) final 3D nanofibrous, 
macroporous scaffold after sugar template leaching and freeze drying at low (50x) and high 
(10,000x) magnifications. From (37). Copyright © 2006 by John Wiley & Sons. 
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Figure 2.2. SEM micrographs of hESC-derived bone progenitor cells after 48 hr of culture in 
osteogenic supplemented media on a thin nanofibrous film (Nano), a solid film with no 
nanofibrous features (Solid), and gelatin-coated tissue plastic (Control). Cells maintain 3D 
morphology on nanofibers but spread into an undesirable 2D morphology on solid film and 
control tissue plastic. Scale bars = 20µm for Nano & Control, 50µm for Solid. From (21). 
Copyright © 2010 by Elsevier. 

 

Figure 2.3. Effect of nano-hydroxyapatite/gelatin nanofibrous scaffold on MC3T3-E1 pre-
osteoblast differentiation. SEM micrographs of scaffolds incubated in 1.5x SBF for 7 days. (a) 
high magnification shows significant apatite deposition on nanofibers. (b) low magnification 
shows apatite crystals line pore walls without blocking pore interconnections. Real time PCR 
results of (c) bone sialoprotein (BSP) and (d) osteocalcein (OCN) after 1 and 4 weeks of culture 
on gelatin or gelatin/apatite scaffold, normalized to beta-actin expression. Gene expression of 
both bone markers is significantly higher at 4 weeks for gelatin/apatite composite scaffold than 
gelatin scaffold alone. (*) represents statistically significant difference, p>0.05. From (24). 
Copyright © 2009 by Elsevier. 
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Figure 2.4. Patient-specific nanofibrous (NF) scaffold for mandible section from CT-scan. (a) 
3D reconstruction of entire human mandible with highlighted section molded for scaffold 
fabrication. (b) Resulting bulk NF scaffold. Scale bar = 10mm. SEM micrographs of (c) 
nanofibers (Scale bar = 5 µm) and (d) interconnected pore structure of scaffold (Scale bar = 500 
µm). From (43). Copyright © 2006 by Elsevier. 
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Figure 2.5.  BMP-7 releasing nanospheres (NS) immobilized on nanofibrous scaffold and in vivo 
histological analysis. SEM micrographs of (a) NS immobilized on nanofibers with (b) 
undisturbed porous structure. H-E staining following 3 wk rat implantation in vivo for (c) BMP-7 
absorbed scaffold and (d) BMP-7 NS scaffold at 200x magnification. Bone formation is observed 
in BMP-7 NS scaffold only shown by matrix formation within pores. From (4). Copyright © 
2007 by Elsevier. 
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CHAPTER 3 

SCAFFOLD PORE SIZE CONTROLS CHONDROGENESIS OF HUMAN 

MESENCHYMAL STEM CELLS ON NANOFIBROUS, POROUS PLLA SCAFFOLD  

ABSTRACT 

Proper scaffold design is of great importance to guide chondrocytes and their progenitors to 

reconstruct both the morphology and function of reparative cartilage tissue. Previously, we 

demonstrated that poly-ʟ-lactide (PLLA) two-dimensional nanofibrous (NF) matrices promoted 

human bone marrow-derived mesenchymal stem cell (hMSC) commitment along the 

chondrogenic route, compared to non-NF matrices. While porosity and pore size of scaffolds are 

receiving increasing attention, the existing scaffolds fabricated using various techniques are not 

standardized and their pore shape and size are not well defined, lacking comparability between 

them. It remains unclear how pore size independently affects chondrogenic differentiation of 

stem cells in a scaffold. In this study, we compare the chondrogenic differentiation of hMSCs on 

three-dimensional NF PLLA scaffolds with small pore size (125-250 µm) or large pore size 

(425-600 µm) both in vitro and in vivo. Small-pore scaffolds were better in supporting 

chondrogenic differentiation in vitro with TGF-β1 stimulation. This was shown by higher marker 

gene expression levels at 2 wk and cartilage-specific extra-cellular matrix deposition at 2 and 4 

wk. Following 4 wk chondrogenic culture and 8 wk subcutaneous implantation in nude mice, 
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small-pore scaffolds supported avascular cartilage formation, but large-pore scaffolds contained 

only fibrous tissue. Therefore, small-pore scaffolds enhanced chondrogenic differentiation in 

vitro and cartilage formation in vivo compared to large-pore scaffolds. This study provides a 

strategy to control the cartilage regeneration process with designed pore architecture of porous 

NF scaffolds. 

INTRODUCTION  

The regenerative capacity of damaged or osteoarthritic articular cartilage is limited due to the 

avascularity of cartilage and low mitotic activity of chondrocytes (1). Unlike chondrocytes, 

bone-marrow derived mesenchymal stem cells (MSCs) are a suitable cell source for cartilage 

regeneration because a large number of cells can easily be isolated from a patient’s bone marrow. 

Furthermore, MSCs can quickly proliferate and undergo chondrogenic differentiation for robust 

cartilage tissue formation. 

Chondrogenesis of MSCs is a complex, highly controlled developmental process involving four 

important steps: mesenchymal condensation, chondrogenic commitment, differentiation into 

chondrocytes, and secretion of cartilaginous ECM. Mesenchymal condensation is the 

aggregation of pre-cartilage MSCs, mediated by cell-cell interactions, cell-matrix interactions, 

and several intracellular signaling pathways. It is the integral step that initiates the cartilage 

development process and must be controlled using advanced technology to use MSCs to 

regenerate functional cartilage. 
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Tissue engineering techniques show great promise in regenerating damaged cartilage tissue. 

These techniques require proper scaffold design to guide chondrocytes and their progenitors to 

reconstruct both the morphology and function of reparative cartilage tissue (2). Hydrogels are 

one category of common scaffold materials used in cartilage tissue engineering (3-6). For 

example, a photopolymerizing hydrogel system was used to encapsulate chondrocytes and 

revealed extra-cellular matrix (ECM) deposition with collagen and proteoglycan contents that 

increased with time of in vitro culture (7). However, hydrogels are typically unable to mimic the 

multi-scale architectural structure required for cartilage formation and achieve poor 

osteochondral integration when implanted (8). Porous synthetic polymer scaffolds, on the other 

hand, were reported to allow proper integration with subchondral bone tissue (9, 10). Importantly, 

the high processability of porous polymer scaffolds allows architectural features to be designed 

on the nano- to macro- scales that can be tailored to enhance tissue regeneration (11). Both the 

nano- and macro- scales are important because chondrogenic differentiation of chondrocytes and 

stem cells is promoted by the interaction with nanofibrous (NF) architecture (12, 13) and 

affected by the macro-pore size of the scaffold (14-19). However, the existing scaffolds 

fabricated using various techniques are not standardized and do not have well-defined pore shape 

and pore size, or do not have the desired ECM-mimicking features. 

The electrospun fibrous scaffolds have been used for cartilage regeneration. However, the issue 

with electrospinning is that the two variables of fiber size and pore size cannot be independently 

controlled. Pore size is increased by increasing fiber diameter, often from nano- to micro-fibers. 
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Thus, it remains unclear how pore size independently affects chondrogenic differentiation. 

To solve this issue, NF polymer scaffolds can be fabricated using a thermally-induced 

phase-separation (TIPS) technique instead of electrospinning. To generate macro-pores in a 3D 

NF scaffold, the polymer can be cast onto an interconnected porogen template consisting of 

heat-treated sugar spheres, prior to TIPS for NF formation (20). The diameter of the sugar 

spheres can then control the scaffold pore size. Following sugar leaching, the resulting scaffold is 

highly uniform with interconnected spherical pore structure of desired pore size, unlike the 

irregular pore geometry commonly obtained through salt leaching. In addition, the pore walls 

uniformly consist of phase-separated nanofibers, which by themselves can promote 

chondrogenic differentiation of human mesenchymal stem cells (hMSCs) (12). Therefore, our 

high-porosity, phase-separated NF polymer scaffold with highly uniform, spherical pore 

structure is a good model to examine the effect of pore size on cartilage formation. In this study, 

we compare the chondrogenic differentiation of hMSCs on 3D NF scaffolds with two distinct 

pore sizes both in vitro and in vivo in a mouse subcutaneous implantation model. 

MATERIALS AND METHODS 

Fabrication of NF PLLA scaffolds with different pore sizeS 

Fabrication of 3D NF scaffolds has been described in detail previously (20). Briefly, 10% 

PLLA/tetrahydrofuran (THF) solution was cast into an assembled sugar template (formed from 

bound sugar spheres, 125–250 µm or 425–600 µm in diameter respectively) under mild vacuum. 

The polymer-sugar composite was phase separated at -20°C overnight and then immersed into 
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cyclohexane to exchange THF for 2 d. The composites were then freeze-dried, and the sugar 

spheres were leached out in distilled water and freeze-dried again to obtain highly porous 

scaffolds. Scaffolds were cut into circular disks with dimensions of 3.6 mm in diameter and 1 

mm in thickness. For cell culture study, the scaffolds were sterilized with ethylene oxide. 

Characterization of scaffolds 

The scaffolds were sputter-coated with gold and observed under a scanning electron microscope 

(Philips XL30 FEG) at 10 kV. The quantification of interconnection opening size and ratio was 

according to a previous report (20) based on scanning electron microscopy (SEM) micrographs 

and using ImageJ software (NIH, Bethesda, MD). At least 10 pores for each type of scaffold 

were selected for analysis. 

Cell seeding and culture on scaffolds 

Human bone marrow-derived mesenchymal stem cells (hMSCs) were obtained from Lonza 

Walkersville, Inc. (Walkersville, MD). The cells were cultured according to the manual provided 

by the supplier. Scaffolds were soaked in 70% ethanol for 30 min, washed three times with PBS 

for 30 min each, and twice in Lonza’s MSC Growth Medium for 2 hr each on an orbital shaker at 

75 rpm. 2.5×105 cells were seeded onto each scaffold (3.6 mm in diameter and 1 mm in 

thickness). After 2 hr of initial seeding, cell-seeded scaffolds were further cultured for 22 hr 

under static condition to enhance cell adhesion on scaffolds. To induce chondrogenesis, 

cell-seeded scaffolds were transferred to 15 ml polypropylene culture tubes and maintained in 

0.5 mL chondrogenic medium (DMEM, 1% insulin-transferrin-selenium, 100µg/ml sodium 
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pyruvate, 40µg/ml proline, 10-7 M dexamethasone, 50µg/ml ascorbic acid) supplemented with 10 

ng/ml TGF-β1 (Peprotech, Rocky Hill, NJ). The medium was changed twice a week. 

Immunofluorescent staining of constructs 

After 24h, constructs were washed in PBS and fixed in 4% formaldehyde for 1 hour. Cell 

membranes were then permeabilized in 0.1% Triton-X for 5 mins. After washing in PBS 3x, the 

actin cytoskeleton was stained using Alexa-Fluor® 555 phalloidin (Life Technologies #A34055) 

at a 1:35 dilution in 1% bovine serum albumin as specified by the manufacturer. Constructs were 

mounted on slides in mounting media containing DAPI (Vector Laboratories, Burlingame, CA) 

to stain nuclei and observed using confocal microscopy (Nikon Eclipse C1). 

Quantification of total DNA amount 

After 24 hr of initial seeding and culture, the constructs were washed with PBS for 5 min, 

homogenized with a Tissue-Tearor (BioSpec Products, Inc., Bartlesville, OK), and the DNA 

content was determined with the DNA Quantification Fluorescence Assay Kit from Sigma (St. 

Louis, MO). 

Gene expression analysis 

Samples were homogenized with a Tissue-Tearor. Total RNA was isolated using RNeasy Mini 

Kit (Qiagen, Valencia, CA) according to the manufacturer’s protocol. The cDNA was 

reverse-transcribed with TaqMan reverse transcription reagents (Applied Biosystems, Foster City, 

CA). 

Real time PCR was carried out with at least 3 samples per group using TaqMan Universal PCR 
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Master Mix (Applied Biosystems) and pre-designed primers and probes (Applied Biosystems) 

for collagen type I (Hs00164004_m1), collagen type II (Hs01064869_m1) on a ViiA 7 Real time 

PCR system (Applied Biosystems). The gene expression level was normalized against 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH, Hs99999905_m1) expression.  

Glycosaminoglycan (GAG) assay 

GAG amount was quantified as previously published (21). Briefly, constructs were harvested 

after 2 wk and 4 wk of culture, washed with PBS, and digested with 100 µl papain solution (280 

µg/mL in 50 mM sodium phosphate, pH 6.5, containing 5 mM N-acetyl cystein and 50 mM 

EDTA) for 24 hr at 65°C. GAG content was measured by reaction with dimethylmethylene blue. 

Optical density was determined at 525 nm and GAG content of each construct was calculated 

using shark chondroitin 4-sulfate as the standard. 

Subcutaneous implantation 

Following 4 wk of chondrogenic induction in vitro with 10 ng/ml TGF-β1, cell-scaffold 

constructs with small or large pore size were implanted subcutaneously into nude mice for 8 wk. 

Male nude mice that were 6-8 wk old (Charles River, Wilmington, MA) were used. Surgery was 

performed under general anesthesia by inhalation of isoflurane. To implant four constructs per 

mouse, two midsagittal incisions were made on the dorsa, and one subcutaneous pocket was 

created on each side of each incision. One cell-scaffold construct was implanted into each pocket 

at random. Four samples were implanted for each group (small or large pore size). Incisions were 

closed with suture clips. Following 8 wk implantation period, mice were euthanized and implants 



36 
 

harvested. These animal procedures were performed according to the protocol approved by the 

Univeristy Committee on Use and Care of Animals (UCUCA) at the University of Michigan. 

Histological analysis 

Constructs were washed in PBS, fixed with 3.7% formaldehyde in PBS overnight, dehydrated 

through a graded series of ethanol, embedded in paraffin, and sectioned at a thickness of 5 µm. 

For histological analysis, sections were deparaffinized, rehydrated, and stained with H&E, Alcian 

blue or Safranin-O. For immunohistochemical staining, rehydrated sections were pre-treated with 

pepsin solution for 15 min, incubated with Collagen type II antibody (Thermo Fisher Scientific 

Inc., Fremont, CA) at a 1:100 dilution for 1 hr and detected by a Cell & Tissue Staining Kit 

(R&D systems Inc., Minneapolis, MN) according to the manual. All sections were counterstained 

with hematoxylin.      

Statistical analysis      

For cell culture studies, numerical values were reported as mean ± standard deviation (n = 3). To 

test the significance of observed differences between the study groups, the Student’s t-test was 

applied. A value of p < 0.05 was considered to be statistically significant.  

RESULTS 

Two types of scaffolds with a pore size of 125-250 µm or 425-600 µm were fabricated 

(Fig.3.1A-E). Both of the scaffolds have similar NF matrix structures except the different pore 

sizes. After 24 hr of initial seeding and culture, the cells formed aggregates inside the small-pore 

and large-pore scaffolds (Figs.3.2A-B). The size of aggregates was confined by the pore size 
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with fewer cells in the aggregates within small pores compared to large pores. There was no 

significant difference in total DNA amount after 24 hr of cell seeding, showing comparable 

seeding efficiency on small- and large-pore scaffolds (Fig. 3.2C).  

GAG content was quantified for constructs cultured for 2 wk and 4 wk. A much higher amount of 

GAG was secreted by cells cultured on small-pore scaffolds than cells cultured on large-pore 

scaffolds during the two culture periods. Although, GAG deposition into scaffolds increased with 

time for both pore sizes (Fig. 3.3A). Total RNA was extracted from constructs and subjected to 

gene expression analysis. Collagen type II gene expression level was substantially higher for 

small-pore constructs than large-pore constructs (Fig. 3.3B); conversely, collagen type I gene 

expression level was lower in small-pore constructs than large-pore constructs (Fig. 3.3C). After 

4 wk of culture, the constructs were subjected to histological analysis. The cells grew throughout 

both the small-pore scaffolds (Fig.3.4A) and large-pore scaffolds (Fig. 3.4B) during the culture 

period, shown by H-E stain. Consistent with GAG quantification data, denser GAG-containing 

ECM was deposited in small-pore scaffolds (Fig. 3.4C) compared to large-pore scaffolds (Fig. 

3.4D), shown by Alcian blue staining. Immunohistological stain of Collagen type II further 

showed more Collagen type II was deposited into ECM by cells cultured in small-pore scaffolds 

(Fig.3.4E) compared to large-pore scaffolds (Fig.3.4F).  

Following 4 wk in vitro chondrogenic culture and 8 wk mouse subcutaneous implantation, 

small-pore constructs supported cartilage formation with typical cartilage morphology (Fig. 

3.5A). However, large-pore constructs succumbed to fibrous tissue invasion with obvious 
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hypercellularity (Fig. 3.5B). Furthermore, the cartilage tissue in the small-pore constructs were 

positively stained by Safranin-O for GAG (Fig. 3.5C), while large-pore constructs had negative 

Safranin-O staining (Fig. 3.5D). IHC staining of endothelial cell marker CD31 for blood vessel 

visualization showed that small pore implants were mostly avascular cartilage tissue (Fig. 3.5E), 

while large pore implants contained rich microvessels, indicative of fibrous tissue (Fig. 3.5F). 

DISCUSSION 

Chondrogenesis is a tightly controlled developmental process, involving multiple steps including 

condensation of MSCs, chondrogenic commitment, differentiation into chondrocytes, and 

secretion of cartilaginous ECM (22). Importantly, the phenotype of differentiated chondrocytes is 

dependent on the cell morphology. Chondrocytes often de-differentiate when cultured on a 2D 

surface as a monolayer and can re-differentiate to rounded cell morphology after pellet culture 

(23, 24), transwell culture (25), culture in 3D hydrogel (7), or culture on porous scaffolds (12, 26, 

27). All of these chondrogenic culture models involve cell aggregation to mimic the 

mesenchymal condensation process. We hypothesized that the pore size of scaffolds can be used 

to control MSCs aggregation and subsequent chondrogenic commitment and differentiation 

processes. Our highly porous, well-interconnected scaffold served as a good model to study this 

effect of pore size. This study showed that the small pores (125-250 µm) promoted 

chondrogenesis in vitro, with higher marker gene expression levels, more GAG deposition, and 

more typical cartilage morphology. Following mouse subcutaneous implantation, small-pore 

scaffold enhanced cartilage formation with GAG matrix deposition. The cartilage formation also 
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served as a sufficient template for endochondral ossification in this ectopic model, allowing bone 

formation on the easily vascularized edges of the scaffolds. However, in the orthotopic model of 

cartilage defect repair, endochondral ossification would likely be prevented, resulting in stable 

cartilage formation. Due to poor in vitro cartilage formation and rigorous vascular invasion, 

large-pore construct contained only fibrous tissue following in vivo implantation. 

In some studies, pore size effect could be attributed to varied cell seeding efficiencies because it 

was previously reported that the chondrogenic differentiation is related to cell densities (28). 

However, in the current study, the cell seeding efficiency was similar for small-pore and 

large-pore scaffolds, so the difference in extent of cartilage differentiation was not caused by 

different initial cell seeding densities. Rather, the cell aggregates were confined by the pore size, 

and the difference in cell aggregation may have led to the consequent difference in chondrogenic 

differentiation in this study.  

It should also be noted that the small-pore and large-pore scaffolds additionally had different 

pore interconnection properties, with comparable interconnection opening to pore surface ratio 

(27.58 ± 7.38% for small-pore and 28.63 ± 8.27% for large-pore scaffolds, with no significance) 

but different interconnection opening size (55.7 ± 14.41 μm for small-pore scaffolds and 140.59 

± 26.60 μm for large-pore scaffolds, p < 0.001). The pore interconnection size may affect mass 

transfer such as diffusion of nutrient and waste and cell migration (29, 30). Limitation in mass 

transfer will cause limited cell growth inside the scaffolds. However, we did not find significant 

difference in cell distribution inside the different pore size scaffolds during the culture period 
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from the observation of histology results, showing that mass transfer is not a limiting factor in 

our study. This is likely because our phase-separated NF scaffold advantageously has greater 

than 95% porosity with well-interconnected pore structure, so as not to negatively affect cell 

seeding or mass transfer even in the small-pore scaffolds. Therefore, the difference in pore 

interconnectivity between the two different pore-sized scaffolds did not significantly affect 

chondrogenesis of hMSCs in this study. 

Overall, this study showed that pore size can be used to control MSC aggregation and subsequent 

chondrogenic differentiation, providing a useful method for controlling the cartilage regeneration 

process and constructing functional cartilage tissues.  

CONCLUSION 

In this study, scaffold pore size was used to control the highly-regulated process of cartilage 

regeneration. A phase-separated nanofibrous, macro-porous PLLA scaffold provided a good 

model for this study due to: 1) a uniform, spherical, and well-interconnected pore structure, and 2) 

nanofibers that promote chondrogenic differentiation. Using this model, nanofibrous PLLA 

scaffolds with small pore size (125-250 µm) significantly enhanced chondrogenic differentiation 

of human MSCs and cartilage formation compared to a large pore size (425-600 µm) both in 

vitro and in vivo. Based on these positive results, we believe that tailoring the highly-designed 

pore architecture of nanofibrous polymer scaffolds may also improve the regeneration of many 

other tissues. 
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FIGURES 

 
Figure 3.1 Morphologies of small (125-250 µm) and large (425-600 µm) pore scaffolds. A) 
Overall morphology. Scale bar: 3 mm. SEM micrographs of B) Small pore scaffold and C) large 
pore scaffold at low magnification, showing interconnected macro-pores; D) small pore scaffold 
and E) large pore scaffold at high magnification, showing identical nanofibrous structure of the 
pore walls.  
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Figure 3.2 Human bone marrow-derived mesenchymal stem cells (hMSCs) adhered to and 
aggregated within A) small pore and B) large pore scaffold 24 hr after seeding, shown by 
immunofluorescent staining of F-actin (red) and nuclei (blue). There was no significant 
difference in cell seeding efficiency between small-pore and large-pore scaffolds (C), 
demonstrated by quantification of total DNA amount. Scale bar: 200 µm. 

 
Figure 3.3 Glycosaminoglycan (GAG) quantification and gene expression of hMSCs seeded on 
small and large pore scaffolds during in vitro chondrogenic culture with 10 ng/ml TGF-β1. A) 
Small pore scaffolds had significantly higher GAG content per scaffold at 2 wk and 4 wk 
compared to large pore scaffolds. Small pore scaffolds also had B) significantly higher collagen 
type II gene expression and C) significantly lower collagen type I gene expression after 2 wk 
chondrogenic culture. *p< 0.05. **p<0.01. 
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Figure 3.4 Histological analysis at 4 wk in vitro chondrogenic culture of hMSCs on small and 
large pore scaffolds. H&E staining showed the cells grew throughout the whole scaffolds both 
for A) small-pore and B) large-pore scaffolds. Scale bar: 200 μm. Alcian blue staining showed 
denser glycosaminoglycan matrix deposition in C) small pore scaffolds compared to D) large 
pore scaffolds. Similarly, collagen type II immunohistochemical staining revealed more collagen 
type II matrix deposition in E) small pore than in F) large pore scaffolds. Scale bar: 100 µm.  
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Figure 3.5 H&E, Safranin O, and CD31 staining following 4 wk in vitro chondrogenic culture 
and 8 wk subcutaneous implantation in nude mice. H&E staining revealed that A) small pore 
scaffold had typical cartilage morphology with moderate ectopic bone formation (arrows) on 
scaffold surface; B) large pore scaffold had fibrous tissue invasion and blood vessel ingrowth, 
preventing chondrogenic phenotype maintenance. C) Safranin O staining showed that small pore 
scaffold was positive for GAG-containing matrix, whereas D) large pore scaffold was negative. 
CD31 immunohistochemical staining for endothelial cells showed that E) small pore construct 
was mostly avascular but F) large pore scaffold contained rich microvessels (arrow indicates a 
typical microvessel). Scale bar: 200 µm.  
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CHAPTER 4 

SCAFFOLD PORE SIZE CONTROLS ENDOCHONDRAL OSSIFICATION IN VIVO 

INTRODUCTION 

Bone is a highly vascularized tissue comprised of a collagen type I-rich matrix that is 

mineralized with hydroxyapatite. During long bone development and bone healing, bone is 

formed via endochondral ossification. This process begins when chondrocytes (cartilage cells) 

from the periosteum (bone outer membrane) form collagen type II and proteoglycan-rich matrix 

cartilage template. Chondrocytes then become hypertrophic or enlarged, calcify the cartilage 

matrix, and then die due to nutrient limitations (1). Blood vessels can then invade the open, 

enlarged lacunae of the cartilage template, carrying osteoprogenitor cells that differentiate into 

osteoblasts and osteoclasts. Osteoclasts break down the calcified cartilage, allowing osteoblasts 

to secrete bone matrix of collagen type I. This bone matrix then calcifies, finally resulting in new 

bone tissue (2). However, this native bone healing process of endochondral ossification may not 

be sufficient to repair large critical-sized bone defects. Thus, a tissue-engineered bone graft that 

supports endochondral ossification could serve as solution for bone defect repair. 

For bone tissue engineering, scaffolds play a pivotal role by serving as an artificial extracellular 

matrix (ECM) to support endochondral ossification (3). Importantly, scaffolds must exhibit an 

internal porous network because well-interconnected pores are critical for uniform cell 

distribution, cell migration, nutrient/waste diffusion, blood vessel ingrowth, and tissue ingrowth 
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into the scaffold, especially as scaffold thickness increases (4). Bone tissue-engineered scaffolds 

are often made of ceramic-like hydroxyapatite or β-tricalcium phosphate due to their 

osteoconductivity (5-7) similar to native bone minerals. However, ceramics are brittle, and 

incorporation of an internal porous network is difficult, resulting in a limited pore size and pore 

interconnection size (8-11). Therefore, instead of using ceramic scaffolds, biodegradable 

synthetic polymer scaffolds are actively employed for tissue engineering applications due to their 

high processability and easily tailored multi-scale design features, including a porous network 

(12, 13). 

Porous polymer scaffolds have two critical pore design parameters: pore size and pore 

interconnection size. Pore size can control cell attachment, migration, and differentiation (14), 

and is therefore highly important for bone regeneration. In a seminal review, Karageorgiou and 

Kaplan establish that bone formation requires a pore size greater than 300 µm for capillary 

ingrowth (14). However, pore architecture varies greatly between scaffold systems. Porous 

scaffolds fabricated by salt leaching (15) or gas foaming (16) do have control over pore size but 

typically have non-uniform, irregularly-shaped pores with minimal pore interconnectivity, 

making them a poor model for investigating the effect of pore size or interconnection size on 

endochondral ossification. Due to the lack of control over pore interconnection size, research of 

interconnection size is limited (11, 17) and has not been systemically studied on polymer 

scaffolds to our knowledge. Advantageously, Wei et al. has shown that using a sugar porogen 

template followed by polymer/solvent casting can achieve uniform, spherical, well-

interconnected pores with intricate control over both pore size and interconnection size (18). In 

addition, this pore fabrication method can be combined with thermally-induced phase separation 

to induce nanofiber formation. By mimicking the nano-structure of collagen of the native ECM 
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(19), the nanofibrous scaffold has previously been shown to enhance cell adhesion, proliferation, 

and differentiation of multiple stem cell types (20-26). Therefore, this macroporous, nanofibrous 

polymer scaffold may serve as a good model for investigating how scaffold pore size controls 

endochondral ossification. 

In this study, we investigated four pore size ranges: 60-125µm, 125-250um, 250-425µm, and 

425-600µm of nanofibrous PLLA scaffold. Scaffolds were seeded with rabbit bone marrow 

derived mesenchymal stem cells (BMSCs) because they are a plentiful, easily harvested cell 

source, and can differentiate into both chondrocytes and osteoblasts (27). We hypothesized that 

in a highly interconnected porous scaffold, a small pore size of 125-250µm, even less than 300 

µm, could still promote capillary ingrowth for mature bone formation, while the very small pore 

size scaffold (60-125 µm) may prevent endochondral ossification for cartilage formation.  

METHODS 

Scaffold Fabrication 

The nanofibrous PLLA scaffolds were prepared as previously described (18). Sugar spheres with 

different sizes were first prepared by an emulsion technique. Typically, 50 g of d-fructose were 

melted at 120°C for 90 min until clear yellowish liquid was obtained. The liquefied sugar was 

emulsified into 50 mL mineral oil with 1.3 mL Span 80 at 120°C under stirring. The resulting 

mixture was cooled down using an ice-bath to solidify sugar spheres. After discarding the 

mineral oil, the sugar spheres were washed with hexane three times and sieved to select desired 

sizes (60-125, 125–250, 250–425, and 425– 600 µm size ranges). The sieved sugar spheres were 

packed in a Teflon vial with hexane and heat treated at 37 °C for 30 min to achieve a highly 
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interconnected sugar sphere template. After bonding the sugar spheres, hexane was removed, and 

the sugar template was dried under vacuum. 

Then, about 0.6–0.8 mL 10 % (w/v) PLLA/THF solution was cast into the assembled sugar 

template. Mild vacuum was applied during casting in order to fully fill the interspaces of the 

bonded sugar template with polymer solution. The polymer solution/sugar template was phase 

separated at -20 °C overnight and then immersed into cyclohexane to extract solvent (THF) for 2 

days. The resulting composites were freeze-dried. The sugar template was then leached away in 

distilled water, and the porous nano-fibrous scaffold was freeze-dried. 

Scanning Electron Microscope (SEM) Observation 

Scaffolds were coated with gold for 120 s using a sputter coater (DeskII, Denton vacuum Inc) 

and observed using SEM (Philips XL30 FEG). 

Bone Marrow Stem Cell Isolation and Culture 

Bone marrow-derived mesenchymal stem cells (BMSCs) were obtained from the New Zealand 

White rabbits by aspiration of the femoral and tibial bone marrow using an 18-gauge syringe 

needle. A total of 10 ml of marrow  was collected into 1000 U of heparin-containing 

maintenance media (high-glucose alpha-MEM (Gibco) containing 10% fetal bovine serum (FBS) 

(Gibco) and antibiotics (penicillin G, 100 U/ml; streptomycin, 0.1 mg/ml)). The marrow was 

washed with PBS once and fresh media twice, and centrifuged at 2000 rpm for 3 min after each 

wash. Rabbit BMSCs were collected and cultured in 60-cm2 culture dishes in maintenance media 

at 37 C under 5% CO2, changing media every 2-3 days. Cells were used at passage 3. 
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Cell Seeding on Scaffold 

Scaffolds were soaked in 70% ethanol for 30 min, washed three times with PBS for 30 min each, 

and twice in alpha MEM with 10% fetal bovine serum for 30 min each. Scaffolds (5 mm in 

diameter and 1.5 mm in thickness) were seeded such that 200,000 cells were adhered onto each 

scaffold after 24h. After 2 hr of initial seeding, cell-seeded scaffolds were further cultured for 22 

hr under static condition to enhance cell adhesion on scaffolds.  

Subcutaneous Implantation 

Cell-scaffold constructs with sample size of at least 3 were implanted subcutaneously into nude 

mice for 4 or 8 weeks. Male nude mice that were 6-8 wk old (Charles River, Wilmington, MA) 

were used. Surgery was performed under general anesthesia by inhalation of isoflurane with 

balanced oxygen. To implant four constructs per mouse, two midsagittal incisions were made on 

the dorsa, and one subcutaneous pocket was created on each side of each incision. One cell-

scaffold construct was implanted into each pocket at random, and incisions were closed with 

suture clips. Following 4 or 8 wk implantation period, mice were euthanized with CO2, and 

implants were harvested. These animal procedures were performed according to the protocol 

approved by the University Committee on Use and Care of Animals (UCUCA) at the University 

of Michigan. 

MicroCT Analysis 

Samples were embedded in 1% agarose and placed in a 14 mm diameter tube and scanned over 

the entire length of the scaffold using a microCT system (µCT100 Scanco Medical, Bassersdorf, 

Switzerland). Scan settings were: voxel size 12 µm, 70 kVp, 114 µA, 0.5 mm AL filter, and 

integration time 500 ms.  Analysis was performed using the manufacturer’s evaluation software, 
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and a fixed global threshold of 18% (180 on a grayscale of 0–1000) was used to segment bone 

from non-bone to in order to quantify bone volume and create 3D reconstructions. 

Histological Analysis 

Constructs were washed in PBS, fixed with 3.7% formaldehyde in PBS overnight, and 

decalcified in 10% EDTA (pH=7.4) for two weeks. Decalcified constructs were then dehydrated 

through a graded series of ethanol, embedded in paraffin, and sectioned at a thickness of 5 µm. 

For histological analysis, sections were deparaffinized, rehydrated, and stained with H&E. For 

immunohistochemical staining, rehydrated sections were heated to 99C for 10 min in citrate 

buffer for heat-induced antigen retrieval, blocked using the Cell & Tissue Staining Kit (R&D 

systems Inc., Minneapolis, MN) according to the manual. Slides were then incubated with CD31 

antibody (Abcam) at a 1:50 dilution overnight, detected by the kit’s AEC chromogen, and 

counterstained with hematoxylin.  

Statistical Analysis 

Analysis of bone volume results were performed using ANOVA followed by a post-hoc Tukey 

test in JMP Pro 11 (by SAS) with p<0.05. 
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RESULTS 

In this study, four scaffold pore size ranges (60-125, 125–250, 250–425, and 425–600 µm) were 

used to study the effect of pore size on endochondral ossification in vivo.  Unlike most porous 

polymer scaffolds, the pores were highly uniform, spherical, and well-interconnected (Figure 

4.1). Scaffolds of each pore size were seeded with rabbit BMSCs and implanted subcutaneously 

into nude mice to induce endochondral ossification in an ectopic model. Following 4w and 8w in 

vivo, bone volume of the construct were quantified using MicroCT. After 4w, bone volume 

increased with pore size, as expected, but the increase was not statistically significant. After 8w 

subcutaneous implantation, the large pore scaffold (425-600 µm) had significantly higher bone 

volume than the very small pore scaffold (60-125 µm), with a clear trend that bone volume 

increases with pore size (Figure 4.2).  

MicroCT was also used to create 3D reconstruction of the 8w explanted constructs from the top 

and side cross-section views (Figure 4.3). From the top view, robust bone formation occurred on 

the outside of all four pore size scaffolds, as expected, because the edges of the scaffolds are 

easily vascularized in the subcutaneous space. Additionally, all constructs held their original, 

disc-like shape because cartilage tissue quickly filled the porous scaffold, providing enough 

mechanical integrity to withstand the force placed on the scaffold in vivo. From the side cross-

sectional view of the constructs, the small, medium, and large pore scaffolds contained uniform 

bone formation throughout the entire cross section with bone porosity increasing with pore size. 

Interesting, the very small pore scaffold (60-125µm) did not accommodate bone formation 

throughout the entire cross-section but mainly only on the outer shell of the construct. 
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From histological analysis of 8w constructs with H&E staining (Figure 4.4), the very small pore 

scaffold contained cartilage tissue in the center of the scaffold with typical low cellularity and 

rounded hollow lacunae formation. The very small pore scaffold underwent endochondral 

ossification mainly on the easily-vascularized edges of the scaffold only (noting pink bone 

matrix), thus resulting in significantly less bone volume shown in Figure 4.2. The small and 

medium pore scaffolds contained a similar amount of bone formation on the pore walls, while 

the large pore scaffold had thicker layer bone matrix on the pore walls, though not significantly 

higher bone volume than small or medium pore scaffolds (p>0.05). Interestingly, the small, 

medium, and large pore scaffolds all contained bone marrow-like tissue within the pores 

surrounded by bone tissue, consisting of immune cells with darkly-stained nuclei, adipocytes 

(round, white spaces), and blood vessels filled with pink-stained red blood cells. Impressively, 

the well-interconnected, spherical pores maintained their structure even after 8w in vivo, 

allowing pore size to remain consistent throughout the entire study, which is often challenging 

for porous, polymer scaffolds. 

Furthermore, in order to visualize the blood vessels within the constructs, CD31 in the 

endothelial layer of blood vessels was immunohistochemically stained red-brown in the 8w 

ectopic constructs (Figure 4.5). The cartilage in the very small pore scaffold remained avascular, 

while the blood vessel diameter increased along with pore size in the small, medium, and large 

pore scaffolds. The larger blood vessels in the large pore scaffold likely contributed to deposition 

of highest bone volume by carrying more oxygen, growth factors, other nutrients, and 

osteoprogenitor cells to enhance bone formation and endochondral ossification. 
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DISCUSSION 

Endochondral ossification is the process by which a cartilaginous matrix is gradually replaced by 

bone and is important for both skeletal development and bone healing. To support bone healing 

and regeneration, scaffolds play an important role by serving as an artificial extracellular matrix 

when self-repair is limited. Porous polymer scaffolds have been widely studied for bone tissue 

engineering and must contain an internal porous network that is critical for uniform cell 

distribution, cell migration, nutrient/waste diffusion, blood vessel ingrowth, and tissue ingrowth. 

One of the most important design parameters of porous polymer scaffolds is pore size. Most 

scaffold systems require a pore size of 300 µm in order to allow capillary invasion for bone 

formation. Impressively, this study showed that if the scaffold pores were well-interconnected, 

an even smaller pore size (125-250um) could still support mature bone formation. A pore size 

even less than 125 µm was required to prevent endochondral ossification and inhibit blood vessel 

ingrowth.  Importantly, the very small pore scaffold (60-125µm) still facilitated cell penetration 

for cell seeding due the high pore interconnectivity, promoting cartilage formation in the center 

of the 1.5mm thick scaffold. Therefore, scaffold pore size can control the endochondral 

ossification process by promoting or preventing host vasculature invasion. 

We believe that our porous, nanofibrous scaffold with uniform, spherical, highly interconnected 

pores provided a superior model for studying the effect of well-controlled pore size on 

endochondral ossification. Not only is the porous architecture advantageous, but the ECM-

mimicking nanofibers may have enhanced adhesion, proliferation, and chondrogenic 

differentiation of BMSCs, which has been shown previously (21).  
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Importantly, unlike many previous studies, cell-seeded scaffolds were implanted subcutaneously 

into nude mice the next day for immediate interaction with host vasculature without any in vitro 

induction that may alter the pore architecture effect. This was possible because the  early passage 

3 rabbit BMSCs were highly proliferative and could form a good cartilage template in less than 3 

weeks (data not shown), quickly laying the groundwork for successful endochondral ossification. 

Therefore, by using a combination of a superior scaffold and cells, robust, mature bone filled 

with bone-marrow like tissue without any in vitro pre-culture was formed after only 4 weeks of 

subcutaneous implantation, which is faster and more robust than most bone tissue-engineered 

material systems. 

It is important to note that in the previous pore size study in chapter 3, there was in vitro 

chondrogenic induction prior to subcutaneous implantation, resulting in the different pore size 

effect from this study. In chapter 3, the small pore scaffold seeded with human BMSCs formed a 

strong, hard cartilage template after 4w in vitro, blocking blood vessel invasion in vivo and 

preventing endochondral ossification. Furthermore, in chapter 3, after 4w in vitro, the large pore 

scaffold contained a poor cartilage template that allowed blood vessel penetration but could not 

support endochondral ossification, resulting in fibrous tissue invasion. In contrast, in this study, 

the small and large pore scaffolds were not cultured in vitro first, allowing a good cartilage 

template to form in vivo from highly proliferative rabbit BMSCs. Blood vessels could then 

penetrate the cartilage template, resulting in successful endochondral ossification. 

CONCLUSION 
 
In a highly interconnected porous, nanofibrous PLLA scaffold seeded with rabbit BMSCs and 

implanted subcutaneously for 8 weeks, a small pore size of 125-250µm, even less than 300 µm, 

could still promote capillary ingrowth for mature bone formation, while the very small pore size 
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scaffold (60-125 µm) prevented endochondral ossification for cartilage formation. Furthermore, 

a large pore scaffold (425-600µm) supported the highest bone volume likely due to ingrowth of 

larger blood vessels through the larger pore network. Using this superior scaffolding model with 

uniform, spherical, highly interconnected pores, the effect of pore interconnection size on blood 

vessel ingrowth and ectopic endochondral ossification will be studied. 
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FIGURES WITH CAPTIONS 

 
Figure 4.1 SEM Micrographs of nanofibrous PLLA scaffolds of four distinct pore size ranges 
with uniform, spherical, well-interconnected pores. 



60 
 

 

 
Figure 4.2 Bone volume quantification from MicroCT analysis after 4 or 8w subcutaneous 
implantation of large, medium, small, and very small pore size scaffolds. Small, medium, and 
large pore scaffolds supported robust bone formation after 8w. Very small scaffolds inhibited 
bone formation and had significantly less bone volume than large pore scaffold, *p<0.05. 
 

Figure 4.3. MicroCT 3D Reconstructions of four different pore size scaffolds after 8w mouse 
subcutaneous implantation from top view and side cross-section. Very small pore scaffold (60-
125µm) exhibited bone formation mainly on the outer surface of the scaffold. Small, medium, 
and large pore scaffolds supported robust, uniform bone formation throughout cross section. 
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Figure 4.4 H&E histological analysis after 8w subcutaneous implantation at 100x magnification. 
Very small pore scaffold (60-125µm) contained cartilage with typical morphology in the center 
of the scaffold. Small, medium, and large pore scaffolds supported bone formation on pore walls, 
shown by pink staining of bone matrix, with bone marrow-like tissue within the pores. 
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Figure 4.5 CD31 immunohistochemical staining of endothelial layer of blood cells at 200x 
magnification as red-brown. Cartilage in very small pore scaffold is avascular. Blood vessels 
within small, medium, and large pore scaffold increase in size within increasing pore size. Note 
that the scaffold also stains red due to the high surface area of the nanofibers. 
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CHAPTER 5 

ELECTRODEPOSITED CALCIUM PHOSPHATE ON NANOFIBROUS PLLA 

SCAFFOLD ENHANCES ECTOPIC BONE FORMATION 

INTRODUCTION 

Through an understanding of the extracellular matrix (ECM) and associated tissues, engineers 

have derived a design for tissue engineering scaffolds composed of polymers combined with 

ceramic crystals. One of the most widely used models for an artificial ECM is the 

polymer/ceramic composite system. Crystalline ceramics and amorphous materials have long 

been studied as potential candidates for bone tissue engineering applications (1-9). For example, 

calcium phosphate (CaP) ceramics, including hydroxyapatite (HA), have drawn interest due to 

their similarity to bone mineral, their inherent biocompatibility and their exceptional 

osteoconductivity.  HA exhibits a strong propensity for attracting osteoblasts but possesses a low 

resorption rate in vivo and is not mechanically strong, especially in highly porous forms. This is 

a disadvantage because porosity is a necessity for tissue ingrowth/regeneration (10).  

Polymer scaffolds have also been investigated at length as candidates for artificial ECM because 

of their mechanical properties, resorbability, and ability to be fabricated with desired nanofibrous 

structures using techniques like thermally induced phase separation and electrospinning. 

Polymers including poly (ʟ-lactic acid) (PLLA) (6) and poly(lactic-co-glycolic acid) (PLGA), 

along with polyamide, polycaprolactone, polyethylene, gelatin, chitosan and collagen have been 
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fabricated into composite scaffold structures, which incorporate HA (11-21). These combinations 

allow the scaffold system to maintain many of the positive aspects of HA, while alleviating some 

of the negative features. Advantages of pairing HA with natural and/or synthetic polymers 

include improved control of design parameters such as porosity, degradability and mechanical 

properties when compared to pure HA scaffolds. Porosities greater than 90% are possible, where 

pure HA scaffold porosity is usually less than 70%. On a different scale, the addition of HA 

crystals to natural polymer scaffolds has been shown to improve mechanical properties compared 

to polymer control scaffolds and the presence of an HA component reduces adverse effects 

associated with the degradation of some synthetic polymers, including pH imbalance (21). 

Polymer/ceramic scaffolds can be fabricated by simply mixing a ceramic component into a 

polymer solution (21), but the HA crystals become trapped within the bulk of the scaffold instead 

of interacting with cells at the surface, resulting in a low osteoconductivity. Rather than mixing 

the HA component into the polymer solution prior to scaffold fabrication, HA can be “grown” on 

the surface of polymer scaffolds, through a biomimetic process involving submersion in 

simulated body fluid (SBF) (22). SBF incubation results in apatite crystals similar to those 

present in bone were found along the surfaces of scaffold pores. 

While SBF incubation is well-established to deposit HA on polymer scaffolds, a faster method 

would be more desirable. Recently, a method has been developed that uses electrodeposition to 

grow HA crystals in just 30 minutes onto 2D films (23) or 3D scaffolds (24), prepared by 

electrospinning or TIPS. This method was initially used to coat titanium dental implants (25). 

For electrodeposition, polymer substrates are adhered to a voltage-supplied electrode and 

submerged in an electrolyte containing both calcium and phosphate. After 30 minutes, much 

faster than the 1-2 week SBF method, flower-shaped crystals are formed on the substrate. The 
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deposited crystals consist of a combination of hydroxyapatite, dicalcium phosphate dihydrate 

(DCPD), and octacalcium phosphate (OCT), as it is common to obtain multiple mineral phases 

with any mineralization method. While the mechanism behind electrodeposition still requires 

some investigation, the process is tunable using temperature, pH, voltage, deposition time, and 

electrolyte composition to alter crystal topography, calcium to phosphate ratio, size, and amount 

(23). For example, increasing polymer concentration (i.e. fiber diameter) or deposition time 

increases the amount of minerals. Morphology also changes from flower-like to flake-like when 

deposition time is increased from 15 mins to 60 mins. 

When HA is added to a scaffold, first it can encourage cell adhesion and proliferation. 

Cell adhesion to the scaffold is important in preventing cell death and creating cell morphology 

similar to that in vivo. Calcium phosphate, of which HA is one type, may improve cell 

attachment with each granule serving as a cell attachment point (26). Nanofibers then allow pre-

osteoblasts to achieve a preferred 3D elongated shape on nanofiber films compared to an overly 

spread morphology achieved on flat films (27). This suggests that a composite scaffold with 

nanofibers and HA may synergistically improve the cell microenvironment. Following adhesion, 

cell proliferation is essential for tissue formation and may also be enhanced by HA (26, 28). 

Once stem cells greatly proliferate, they must differentiate into the desired mature cell 

type. It has been widely shown that HA improves osteogenic differentiation of numerous stem 

cell types including embryonic stem cells (29), iPS cells (30), and bone marrow-derived 

mesenchymal stem cells (31, 32). HA has also been shown to facilitate the differentiation of pre-

osteoblasts (33) and enhance osteoblast function (34). The positive effect of HA on osteogenic 

differentiation is marked by increased bone marker gene expression, collagen type I deposition, 

mineralization, and alkaline phosphatase activity. Due to these effects, biomaterials containing 
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HA can successfully support bone tissue formation. For example, Liu et al. showed that HA on a 

nanofibrous gelatin scaffold adheres to the nanofibers without blocking the interconnected 

porous structure. When seeded with MC3T3-E1 pre-osteoblasts, HA significantly enhanced gene 

expression of bone sialoprotein  and osteocalcein  at four weeks (33). Therefore, this composite 

scaffold improves osteogenic differentiation of pre-osteoblasts using both apatite minerals and 

nanofiber architecture. 

Nanofibers enhance several stem cell behaviors: adhesion, proliferation, and differentiation. The 

suggested mechanisms behind these positive nanofiber effects include increased integrin 

expression (35), increased protein adsorption (36), and modified signaling pathways through 

paxillin, focal adhesion kinase, RhoA, and Rac (27, 37, 38). While the mechanisms behind the 

cellular response to hydroxyapatite still require further investigation, a few mechanisms have 

been proposed. One suggested mechanism is that hydroxyapatite increases protein absorption, 

most significantly fibronectin and vitronectin absorption, through the integrin-FAK-Akt 

pathway, which then suppresses apoptosis (39). This hypothesis was established through 

observation of MC3T3-E1 pre-osteoblasts on 3D PLLA/hydroxyapatite composite scaffold in 

comparison to those on pure PLLA scaffold. Because this study used pre-osteoblasts, the 

mechanism for stem cell differentiation must still be elucidated. Another study also implicates an 

FAK pathway using MC3T3-E1 pre-osteoblasts by showing activation of ERK in response to 2D 

hydroxyapatite discs (40). 3D studies are warranted to better simulate the in vivo environment. 

The hydroxyapatite/polymer composite scaffold model reveals that composite scaffolds can be 

highly useful in promoting cell adhesion and proliferation and more importantly stem cell 

differentiation. To date, however, no study to our knowledge has determined the combined effect 

of: 1) electrodeposited calcium phosphate and 2) TIPS polymer nanofibers seeded with 3) stem 
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cells in a 4) 3D scaffold 5) in vivo for bone formation. Therefore, this study will determine the 

effect of electrodeposited calcium phosphate (CaP) on a 3D nanofibrous, polymer scaffold 

seeded with rabbit bone-marrow derived mesenchymal stem cells (BMSCs) in an ectopic bone 

model, compared to a blank, nanofibrous scaffold without CaP. 

MATERIALS AND METHODS 

Scaffold Fabrication 

The nanofibrous PLLA scaffolds were prepared as previously described (41). Sugar spheres with 

different sizes were first prepared by an emulsion technique. Typically, 50 g of d-fructose were 

melted at 120°C for 90 min until clear yellowish liquid was obtained. The liquefied sugar was 

emulsified into 50 mL mineral oil with 1.3 mL Span 80 at 120°C under stirring. The resulting 

mixture was cooled down using an ice-bath to solidify sugar spheres. After discarding the 

mineral oil, the sugar spheres were washed with hexane three times and sieved to select desired 

sizes (250–425 µm size range). The sieved sugar spheres were packed in a Teflon vial with 

hexane and heat treated at 37 °C for 30 min to achieve a highly interconnected sugar sphere 

template. After bonding the sugar spheres, hexane was removed, and the sugar template was 

dried under vacuum. 

Then, about 0.6–0.8 mL 10 % (w/v) PLLA/THF solution was cast into the assembled sugar 

template. Mild vacuum was applied during casting in order to fully fill the interspaces of the 

bonded sugar template with polymer solution. The polymer solution/sugar template was phase 

separated at -20 °C overnight and then immersed into cyclohexane to extract solvent (THF) for 2 

days. The resulting composites were freeze-dried. The sugar template was then leached away in 

distilled water, and the porous nano-fibrous scaffold was freeze-dried. 
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Calcium Phosphate Electrodeposition on Scaffolds 

Calcium phosphate electrodeposition was adapted from the method previously described for 

deposition on 2D films (23, 42). The setup for electrodeposition contained two electrodes: a 

platinum plate electrode (20 × 20 × 0.2 mm) served as the counter electrode and the scaffold-

covered, stainless-steel electrode as the working electrode. Six scaffolds (5mm diameter, 1.5mm 

thick) were adhered onto the surface of the stainless-steel electrode using copper foil conductive 

adhesive. The scaffold-covered electrode (cathode) was immersed into ethanol for 1–2 min prior 

to electrodeposition in order to reduce the amount of hydrogen gas evolution at the deposition 

electrode. Due to the high porosity and surface area of the scaffold, vacuum at 27 psi was applied 

during the immersion to fully wet the surface of the scaffolds. The distance between the two 

electrodes was fixed at 2.5 cm. The setup was placed in a beaker filled with a calcium and 

phosphate-containing electrolyte, which was placed in a water bath to maintain the desired 

temperature of 60C. The electrolyte was a solution of 0.042 mol L–1 Ca(NO3)2·4H2O and 0.025 

mol L−1 NH4H2PO4, with a pH of 4.70.  

A voltage of 3V was applied to the electrodes and deposition was performed for 1 hour at 60C. 

Scaffolds were then turned over, and the opposite side of the scaffolds was deposited for another 

hour to achieve uniform crystal deposition throughout the entire scaffold. Scaffolds were then 

removed from the electrode and heated at 60C for 30 mins to improve adhesion of crystals to the 

scaffold. CaP coating on each sample was verified under inverted microscrope. 

Scanning Electron Microscope (SEM) Observation 

Calcium phosphate-deposited and blank scaffolds were coated with gold for 120 s using a sputter 
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coater (DeskII, Denton vacuum Inc) and observed using SEM (Philips XL30 FEG) at 50x and 

400x. 

Bone Marrow Stem Cell Isolation and Culture 

Bone marrow-derived mesenchymal stem cells (BMSCs) were obtained from the New Zealand 

White rabbits by aspiration of the femoral and tibial bone marrow using an 18-gauge syringe 

needle. A total of 10 ml of marrow  was collected into 1000 U of heparin-containing 

maintenance media (high-glucose alpha-MEM (Gibco) containing 10% fetal bovine serum (FBS) 

(Gibco) and antibiotics (penicillin G, 100 U/ml; streptomycin, 0.1 mg/ml)). The marrow was 

washed with PBS once and fresh media twice, and centrifuged at 2000 rpm for 3 min after each 

wash. Rabbit BMSCs were collected and cultured in 60-cm2 culture dishes in maintenance media 

at 37 C under 5% CO2, changing media every 2-3 days. Cells were used at passage 3. 

Cell Seeding on Scaffold 

Scaffolds were soaked in 70% ethanol for 30 min, washed three times with PBS for 30 min each, 

and twice in alpha MEM with 10% fetal bovine serum for 30 min each. CaP and blank scaffolds 

(5 mm in diameter and 1.5 mm in thickness) were seeded with 250,000 cells in 13 µl of medium. 

After 2 hr of initial seeding, enough media was added to cover scaffolds, and cell-seeded 

scaffolds were further cultured for 22 hr under static condition to enhance cell adhesion on 

scaffolds.  

Subcutaneous Implantation 

Cell-scaffold constructs (n=8) were implanted subcutaneously into nude mice for 4 or 8 weeks. 

Male nude mice that were 6-8 wk old (Charles River, Wilmington, MA) were used. Surgery was 
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performed under general anesthesia by inhalation of isoflurane with balanced oxygen. To 

implant four constructs per mouse, two midsagittal incisions were made on the dorsa, and one 

subcutaneous pocket was created on each side of each incision. One cell-scaffold construct was 

implanted into each pocket at random. Eight samples were implanted for each group, and 

incisions were closed with suture clips. Following 4 or 8 wk implantation period, mice were 

euthanized with CO2, and implants were harvested. These animal procedures were performed 

according to the protocol approved by the Univeristy Committee on Use and Care of Animals 

(UCUCA) at the University of Michigan. 

MicroCT Analysis 

Samples were embedded in 1% agarose and placed in a 14 mm diameter tube and scanned over 

the entire length of the scaffold using a microCT system (µCT100 Scanco Medical, Bassersdorf, 

Switzerland). Scan settings were: voxel size 12 µm, 70 kVp, 114 µA, 0.5 mm AL filter, and 

integration time 500 ms.  Analysis was performed using the manufacturer’s evaluation software, 

and a fixed global threshold of 18% (180 on a grayscale of 0–1000) was used to segment bone 

from non-bone in order to quantify bone volume and create 3D reconstructions. It is important to 

note that this fixed threshold at 18% is significantly higher than the threshold that the CaP 

coating is visible (15%), and therefore the initial CaP coating is considered non-bone in this 

analysis. 

Histological Analysis 

Constructs were washed in PBS, fixed with 3.7% formaldehyde in PBS overnight, and 

decalcified in 10% EDTA (pH=7.4) for two weeks. Decalcified constructs were then dehydrated 

through a graded series of ethanol, embedded in paraffin, and sectioned at a thickness of 5 µm. 

For histological analysis, sections were deparaffinized, rehydrated, and stained with H&E.  
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In Vitro Cell Proliferation 

Rabbit BMSCs at passage 3 were plated in a 48 well plate with 9,000 cells per well (n=3). Cells 

were cultured in 4 different growth media conditions with 1) calcium-free DMEM (#21068, 

Gibco) plus 2 mM glutamine (GlutaMAX, Gibco) or alpha MEM with 2) 70 µg/ml calcium, 3) 

140 µg/ml calcium or 4) 280 µg/ml calcium. To achieve 140 µg/ml and 280 µg/ml calcium 

concentration, sterile 1M calcium chloride was added to the base alpha MEM formulation which 

already includes 70 µg/ml calcium. The following supplements were also added to all media 

conditions: 10% fetal bovine serum (FBS) (Gibco), 100U/ml penicillin, and 100µg/ml 

streptomycin (Gibco). Osteogenic differentiation media was the growth media above, plus 

100nm dexamethasone, 10mM β-glycerophosphate, and 50µg/ml ascorbic acid. Media was 

changed 3 times per week. 

Cell number was determined using CCK-8 cell counting kit (Dojingo, Japan) according to the 

manual. Briefly, at each time point, 15 µl of CCK-8 reagent plus 150 µl of fresh media was 

added to each well and incubated for 1 hour to induce color change. 40µl of reagent/media from 

each well was transferred in triplicate to a 96 well plate, and absorbance was read at 450nm. 

Culture plate was washed with PBS, fresh media was added, and culture was continued until 14 

days. 

Quantitative Real-time PCR for Osteopontin and Bone sialoprotein Gene Expression 

Rabbit BMSCs at passage 3 were plated in a 24 well plate with 45,000 cells per well with n=3. 

Cells were cultured in the same osteogenic differentiation media described in the proliferation 

study for 14 days with the same 4 groups of 0, 70, 140, and 280 µg/ml calcium. Media was 

changed three times per week. 
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RNA was extracted using Trizol (Invitrogen) according to the manual by adding 1 ml Trizol 

directly to each well. Reverse transcription-PCR was then performed to form cDNA using 

Superscript II RT kit (Invitrogen) according to the manual. Quantitative real-time PCR was 

performed using TaqMan Universal PCR Master Mix (Applied Biosystems) and primers for 

osteopontin and bone sialoprotein (Applied Biosystems) on a ViiA 7 Real time PCR system 

(Applied Biosystems). Gene expression level was normalized against GAPDH expression 

(Applied Biosystems). 

Statistical Analysis 

Analysis of bone volume to compare CaP versus blank scaffolds were performed using a t-test in 

Microsoft Excel with p<0.05. 
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RESULTS AND DISCUSSION 

When NF PLLA scaffolds are electrodeposited at 3V and 60C for 2 hours in a calcium and 

phosphate-containing electrolyte, flower-like crystals of calcium phosphate uniformly form on 

the scaffold without blocking pore interconnections (Figure 5.1). CaP coating consists of 

hydroxyapatite and amorphous CaP, and the amorphous CaP slowly releases from the scaffold 

over three weeks (data not shown). In order to the determine the effect of electrodeposited 

calcium phosphate (CaP), scaffolds with and without CaP were seeded with rabbit BMSCs and  

implanted subcutaneously into nude mice for 4w or 8w. Using MicroCT analysis to quantify 

mineralized tissue, CaP-deposited scaffold significantly enhanced bone volume formed within 

the scaffold after both 4w and 8w, compared to the blank scaffold without CaP (p<0.05) (Figure 

5.2). It is important to note that the quantified bone volume is only new bone tissue and does not 

include the initial CaP coating, which was below the threshold used for analysis. This clear CaP 

effect can be also visualized using 3D MicroCT reconstructions of the newly formed ectopic 

bone issues, viewed from the top of the scaffold (Figure 5.3). The CaP scaffold induced 

significant mineralized bone formation after only 4w, with robust bone formation throughout the 

scaffold at 8w, while the blank scaffold contained minimal bone after 4w and supported less 

ectopic bone formation at 8w (Figure 5.3).  

This positive CaP effect can further been seen by histological analysis with H&E staining. After 

4w in vivo, more bone formation (pink) formed on the pore walls throughout the entire cross-

section of the CaP scaffold, compared to the blank scaffold (Figures 5.4). From 4w to 8w, bone 

matrix deposition increased in both CaP and blank scaffolds (Figure 5.5). After 8w, while the 

blank scaffold did support some osteogenesis, the neo-bone was still found only in part of the 

scaffold, with fibrous tissue (light pink) invading the remainder of the scaffold at 8w (Figure 
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5.5D). This lack of bone tissue also caused the blank scaffold to slightly flatten or collapse in 

response to external forces, causing it to have a thinner cross-section (Figure 5.5C) than the CaP 

scaffold (Figure 5.5A). In contrast, at 8w, the CaP scaffold contained uniform, mature bone 

formation through the scaffold filled with bone marrow-like tissue of darkly-stained immune 

cells, adipocytes (round white areas), and large blood vessels, such as the one marked with an 

arrow extending through a pore interconnection (Figure 5.5A). Therefore, the electrodeposited 

CaP on a nanofibrous, PLLA scaffold enhanced ectopic osteogenesis compared to an identical 

blank scaffold without CaP. 

In order to determine why CaP promoted osteogenesis, rabbit BMSCs were cultured on tissue 

culture plastic in growth or osteogenic differentiation media containing 0, 70 (base media 

concentration), 140, or 280 µg/ml calcium (Figure 5.6). Proliferation was measured over 14 

days. In growth media, cells proliferated similarly independent of calcium concentration; though 

without any calcium, proliferation was slightly inhibited at day 14. In contrast, in differentiation 

media, proliferation varied significantly in response to exogenous calcium concentration. 

Without any calcium, cells only proliferated minimally and never reached confluency. All other 

groups with calcium-containing differentiation media achieved confluency by 7 days. Maximum 

proliferation was attained with 280 µg/ml calcium, while cells proliferation plateaued with 70 

µg/ml calcium, likely indicating that differentiation was underway. 

In order to test this hypothesis, differentiation was measured at 14 days using real-time PCR for 

two osteogenic differentiation markers: osteopontin (OPN), a middle marker, and bone 

sialoprotein (BSP), a late marker (Figure 5.7). Just as in the proliferation study, rabbit BMSCs 

were cultured on tissue culture plastic in osteogenic differentiation media containing 0, 70 (base 

media concentration), 140, or 280 µg/ml calcium. At 14 days, there was no significant difference 
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in OPN expression between groups because the 14 day time point may be too late for 

upregulation of OPN.  Interestingly, BSP expression was 4 fold higher with 70 µg/ml calcium, 

compared to 140 or 280 µg/ml calcium. Therefore, as hypothesized, in the 70 µg/ml calcium 

group, cells likely proliferated until 7 days, then began to differentiate, causing the plateau in 

proliferation from 7 to 14 days. Based on the proliferation and differentiation responses to an 

increased calcium concentration of 280 µg/ml, the electrodeposited CaP likely enhanced 

proliferation but not differentiation. 

CONCLUSION 

In an ectopic in vivo model, electrodeposited calcium phosphate (CaP) on a nanofibrous PLLA 

scaffold seeded with rabbit bone marrow-derived mesenchymal stem cells (BMSCs) enhanced 

mature, mineralized bone formation compared to a blank scaffold without CaP, shown by 

MicroCT and histological analysis. Furthermore, the calcium in the beneficial CaP crystal 

coating likely promoted rabbit BMSC proliferation, shown by an in vitro model. In the future, 

this promising CaP/polymer composite scaffold could be used to enhance femoral bone defect 

repair without any implanted cells by encouraging host stem cell proliferation. 
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FIGURES AND CAPTIONS 

 

Figure 5.1. SEM micrographs of Top: CaP-deposited (3V, 60C, 60min) nanofibrous PLLA 
scaffold and Bottom: Blank scaffold at 50x and 400x magnifications. 
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Figure 5.2. Bone volume quantification from microCT analysis of calcium phosphate-
electrodeposited scaffold versus blank scaffold after 4w and 8w subcutaneous implantation. 
**p<0.01, ****p<0.0001 

 

Figure 5.3. 3D MicroCT reconstruction of (a, b) calcium phosphate-electrodeposited scaffold 
and (c, d) blank scaffold after 4w and 8w mouse subcutaneous implantation, from top view. 
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Figure 5.4. H&E staining after 4w subcutaneous implantation. Calcium phosphate (CaP) 
deposited scaffold at A) 40x magnification and B) 100x magnification. Blank scaffold at C) 40x 
magnification and D) 100x magnification. 

 

Figure 5.5. H&E staining after 8w subcutaneous implantation. Calcium phosphate (CaP) 
deposited scaffold at A) 40x magnification and B) 100x magnification. Blank scaffold at C) 40x 
magnification and D) 100x magnification. Arrow: blood vessel filled with pink-stained red blood 
cells. 
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Figure 5.6 Proliferation of rabbit BMSCs cultured on tissue culture plastic over 14 days in 
osteogenic differentiation media (on left) or growth media (on right) for calcium concentrations 
of 0, 70, 140, or 280 µg/ml. Error bars represent standard error. 

 

Figure 5.7 Relative osteopontin (left) and bone sialoprotein (right) gene expression of rabbit 
BMSCs cultured on tissue culture plastic over 14 days in osteogenic differentiation media with 
exogenous calcium concentrations of 0, 70, 140, or 280 µg/ml. Error bars represent standard 
deviation. 
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CHAPTER 6 

CONCLUSION 

SUMMARY 

To overcome the significant drawbacks of current treatments, in this dissertation, we have 

combined a trifecta of material science, engineering, and biology to design tissue-engineered 

cartilage and bone grafts as an alternate therapy for small defect repair. Previously, our group has 

made significant progress in developing novel nanofibrous, porous polymer scaffolds for tissue 

regeneration. Using a 3D nanofibrous poly(ʟ-lactic acid) (PLLA) scaffold seeded with bone 

marrow-derived mesenchymal stem cells (BMSCs), three specific aims were investigated. 

Aim 1 studied the scaffold pore size effect on cartilage formation in vitro and in vivo. In this 

study, we compared the chondrogenic differentiation of hMSCs on three-dimensional 

nanofibrous (NF) PLLA scaffolds with small pore size (125-250 µm) or large pore size (425-600 

µm) both in vitro and in vivo. Following 4 wk in vitro chondrogenic culture and 8 wk 

subcutaneous implantation in nude mice, small-pore scaffolds supported avascular cartilage 

formation, but large-pore scaffolds contained only fibrous tissue. Therefore, small-pore scaffolds 

enhanced chondrogenic differentiation in vitro and cartilage formation in vivo compared to large-

pore scaffolds. 

In Aim 2, we took the previous study one step further and systematically studied four different 

pore sizes ranges instead of just two. Additionally, we removed the initial in vitro induction 
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culture and implanted scaffolds 24 hours after cell seeding in order to investigate how pore size 

affected endochondral ossification with integral interaction with host vasculature from day 1. 

Using this setup, in a highly interconnected porous, nanofibrous PLLA scaffold seeded with 

rabbit BMSCs and implanted subcutaneously for 8 weeks, a small pore size of 125-250µm, even 

less than 300 µm often required, could still promote capillary ingrowth for mature bone 

formation, while the very small pore size scaffold (60-125 µm) prevented endochondral 

ossification for cartilage formation. Furthermore, a medium pore scaffold (250-425µm) and large 

pore scaffold (425-600µm) supported high bone volume due to ingrowth of large blood vessels, 

shown by CD31 staining, through the interconnected pore network. Therefore, scaffold pore size 

can be a useful tool for controlling endochondral ossification in vivo. 

In Aim 3, using the same ectopic in vivo model for bone regeneration used in Aim 2, we 

explored whether an electrodeposited calcium phosphate (CaP) coating on a medium pore size, 

nanofibrous PLLA scaffold could promote the scaffold’s osteoconductivity. Beneficially, 

electrodepositing of the calcium phosphate is two to three orders of magnitude faster than the 

standard simulated body fluid incubation but had not yet been studied in a 3D scaffold model. 

This study showed that the electrodeposited calcium phosphate (CaP) on a nanofibrous PLLA 

scaffold seeded with rabbit bone marrow-derived mesenchymal stem cells (BMSCs) enhanced 

mature, mineralized bone formation compared to a blank scaffold without CaP, shown by 

MicroCT and histological analysis. Furthermore, the calcium in the beneficial flower-shaped 

CaP coating promoted rabbit BMSC proliferation, shown by an in vitro model. 

By combining the knowledge gained from this dissertation, a novel biphasic scaffold with two 

unique pore size ranges could be fabricated to regenerate the entire osteochondral (cartilage-
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bone) interface. A preliminary study is described below that reveals initial results indicating 

successful regeneration of this challenging tissue interface using one continuous, biphasic 

material with biphasic growth factor delivery. 

PRELIMINARY RAT KNEE DEFECT STUDY WITH TGF-β1-LOADED SCAFFOLD 

TGF-β1 delivery has previously been used for cartilage regeneration in vivo; however, dosages 

widely vary between the few studies reported in literature. Therefore, prior to using biphasic 

delivery of TGF-β1 and BMP-2 for osteochondral repair (Figure 1.1), we determined the effect 

of TGF-β1 delivered throughout the medium pore, nanofibrous PLLA scaffold in a rat knee 

defect model to ensure its bioactivity.  

A defect (2mm diameter, 3mm deep) was made in the patellar groove of the distal rat femur. A 

scaffold with controlled release of 1µg TGF-β1 loaded in PLGA microspheres was implanted 

into the defect (n=8). Two other control groups included the scaffold alone without TGF-β1 

(n=2) and a sham control where no material was implanted into the defect (n=2). After 8 weeks, 

the sham control exhibited minimal repair with white abnormal fibrous tissue or fibrocartilage on 

the joint surface (Figure 6.1, left). In the ‘scaffold only’ group, the defect and implanted scaffold 

were still visible with apparent damage to the surrounding cartilage (Figure 6.1, middle). 

Impressively, the TGF-β1-loaded scaffold supported excellent repair of the joint surface such 

that the defect in no longer visible after 8w (Figure 6.1, right). Furthermore, Safranin O staining 

revealed that the 1 µg TGF-β1-loaded scaffold promoted a thick layer of strongly stained GAG-

rich cartilage with typical rounded chondrocytes in hollow lacunae with columnar organization, 

indicating successful knee defect repair (Figure 6.2). As expected, the scaffold alone had 
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minimal Safranin O-positive cartilage repair, and the sham control had negative staining with no 

repair. 

Therefore, TGF-β1 encapsulated in PLGA microspheres and loaded on the PLLA scaffold 

remained bioactive and promoted successful knee defect repair in rat model. In the next 

preliminary study, BMP-2 will be added along with TGF-β1 in a novel biphasic scaffold with 

two unique pore size ranges to determine if the important interface between cartilage and bone 

can be further enhanced. 

 

Figure 6.1 Gross appearance of 8w rat knee defect repaired with sham control, medium pore 
scaffold implanted, or scaffold with 1µg of TGF-β1 loaded scaffold. Defect in patellar groove is 
still visible in sham and scaffold-only groups but is minimally visible with scaffold loaded with 

1µg of TGF-β1, indicating repair to joint surface. 

 

Figure 6.2 Safranin O staining of cross-section of patellar groove in distal femoral head after 8w 
rat knee defect repaired with sham control, medium pore scaffold implanted, or scaffold with 

1µg of TGF-β1 loaded scaffold. 1µg TGF-β1-loaded scaffold had significant Safranin O staining 
on joint surface with typical rounded chondrocytes in lacunae with columnar organization. 

Scaffold only had minimal repair, and sham control exhibited no repair. Arrows show defect 
boundaries. 
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PRELIMINARY BIPHASIC SCAFFOLD STUDY 

Based on the results described in Aim 2, a very small pore size (60-125µm) can prevent blood 

vessel ingrowth for cartilage regeneration. Oppositely, a medium pore size (250-425µm) can 

allow blood vessel invasion for significant mature bone formation. Using these two pore size 

ranges, a biphasic scaffold with an upper cartilage layer of very small pores and a lower bone 

layer with medium pores was fabricated for osteochondral regeneration (Figure 6.3). This 

biphasic continuous material could not only support both unique tissues but also their interface, 

which adhering two different materials together could not achieve. 

 

Figure 6.3 SEM of biphasic scaffold for osteochondral regeneration with top cartilage layer 
with 60-125µm and bottom bone layer with 250-425µm pores. 

In order to direct stem cell differentiation, biphasic growth factor delivery of TGF-β1 and BMP-

2 was used to drive cartilage and bone regeneration in their individual layers. The growth factors 

were loaded into PLGA microspheres and immobilized onto either the upper or lower layer of 

the scaffold. Three groups were compared as described in Table 1 below: 1) biphasic delivery of 

both TGF-β1 and BMP-2 (n=4), 2) BSA delivery as generic protein control (n=2), and 3) single 

delivery of TGF-β1 in both layers (n=2). We hypothesized that the biphasic delivery of both 
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growth factors could regenerate both cartilage and bone simultaneously on the biphasic pore size 

scaffold (Figure 6.3) when seeded with rabbit BMSCs and implanted subcutaneously in nude 

mice for 2w or 6w. (A rat knee defect model was not used because two distinct layers of 1ug 

TGF and 1ug BMP could not be achieved in a tiny 2mm scaffold at this time.) 

Table 1 Biphasic pore size and growth factor delivery scaffold study design for 
osteochondral regeneration, describing upper cartilage layer and lower bone layer. 

 

After 2w and 6w subcutaneous implantation, gross appearance reveals that the biphasic pore size 

scaffold with biphasic delivery of bioactive TGF-β1 and BMP-2 (Figure 6.4, left) appears to 

have an upper cartilage phase and a highly vascularized lower bone phase. Scaffolds with BSA 

(Figure 6.4, middle) and TGF-β1 delivery (Figure 6.4, right) appear as glossy cartilage with 

minimal vascularization after 6w.  

Based on further evaluation using MicroCT reconstructions and histological analysis with 

Safranin O staining, after two weeks, the BSA loaded scaffold best exhibited a clear interface of 

cartilage and bone tissue at the interface of the very small and medium pores (Figure 6.5). The 

TGF-β1 and TGF-β1/BMP2 groups contained some positive Safranin O staining inside the 
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scaffold with mineralization on the easily vascularized outer layer of the scaffold after 2w 

(Figure 6.5). 

After 6w subcutaneous implantation, all three groups underwent significant endochondral 

ossification throughout the entire scaffold (Figure 6.6) due to the limitation of the ectopic 

subcutaneous implantation model, which does not provide the native microenvironment of a 

knee defect repair model. Interestingly, the TGF-β1 group did prevent endochondral ossification 

in the center of the scaffold, where positive Safranin O-stained cartilage tissue remained. 

Therefore, based on this preliminary data, this biphasic material combining multiple technologies 

may be a promising foundation for osteochondral defect repair, though more studies are required, 

as detailed below in future work. 

 

Figure 6.4 Gross appearance of cell-scaffold constructs after 2w or 6w mouse subcutaneous 
implantation. Biphasic pore size scaffold with biphasic delivery of TGF-β1 and BMP-2 (left) 
appears to have an upper cartilage phase and a highly vascularized lower bone phase after 2w 
and 6w. After 6w, scaffolds with BSA (middle, control) and TGF-β1 delivery (right) appear as 

glossy cartilage with minimal vascularization. 
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Figure 6.5 MicroCT reconstruction and Safranin O staining of cross-section of BSA, TGF-β1, or 
TGF-β1/BMP2 loaded on biphasic pore scaffold after 2w mouse subcutaneous implantation. 

 

Figure 6.6 MicroCT reconstruction and Safranin O staining of cross-section of BSA, TGF-β1, or 
TGF-β1/BMP2 loaded on biphasic pore scaffold after 6w mouse subcutaneous implantation, 

showing significant calcification in all three groups. 
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FUTURE WORK 

Each of the studies presented as Aims 1-3, in Chapters 3-5 respectively, could serve as the 

foundation for further studies to provide a deeper understanding of how the material properties 

affect biological processes. 

 In Aim 1 described in Chapter 3, a deeper mechanistic study can be performed in order to 

elucidate why the small pore scaffold enhances chondrogenic differentiation in vitro, compared 

to the large pore scaffold. The roles that Yap (a transcription factor involved in 

mechanotransduction) and Smad2/3 (the effector of the TGF-β signaling pathway) play in 

mesenchymal condensation, an important step in chondrogenic commitment, can be compared in 

both pore size scaffolds. We hypothesize that in the small pore scaffold, Yap is downregulated 

while p-Smad2/3 is upregulated as a result of increased mesenchymal condensation, enhancing 

chondrogenic differentiation after 1 day of TGF-β1 induction in vitro, compared to the large pore 

scaffold using Western blot. To show a causal effect, we further hypothesize that an siRNA 

knockdown of Yap will promote chondrogenic differentiation in the large pore scaffold. Through 

these deep biological studies, we can determine why the small pore scaffold enhances 

chondrogenic differentiation. 

To further study Aim 2 (Chapter 4), we can go beyond pore size to study the effect of pore 

interconnection size on endochondral ossification in an ectopic model. This is important because 

how pore interconnection size of a polymer scaffold affects bone formation has not been studied 

previously, to our knowledge. This is likely because most researchers do not have the technology 

to finely control interconnection size without using a different fabrication method, resulting in 

more pore architecture variance than just interconnection size. Preliminary data (not shown) 
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reveals that when pore interconnection size in the small pore scaffold is decreased from 85µm to 

40µm, the 40µm interconnections still allow blood vessel ingrowth for bone formation. We 

hypothesize that an even smaller interconnection size with an average of 30µm will prevent 

vessel invasion for cartilage formation, while still allowing cell penetration. This interconnection 

size study, which most researchers do not have the technology to control, would further 

characterize how pore architecture can control blood vessel invasion and therefore endochondral 

ossification. 

For Aim 3, this promising CaP/polymer composite scaffold that enhanced ectopic bone 

regeneration could be used to enhance femoral bone defect repair without any implanted cells by 

encouraging host stem cell proliferation. In this defect model, the CaP effect can be seen more 

clearly without the reliance on implanted cells but solely host cells. Lastly, the CaP effect on 

osteogenic differentiation can be further characterized with a time course study with several bone 

markers. 

Overall, the future of this tissue-regenerative work is to push toward a solution for osteochondral 

defect repair. The same biphasic material study described in Table 1 above should be repeated in 

a rabbit osteochondral defect model, which is the accepted animal model for this type of repair. 

The only difference from the preliminary ectopic study described above would be that stem cells 

would not need to be implanted because host chondrocytes and stem cells will migrate into the 

scaffold, which will be promoted by the growth factor delivery and facilitated by the pore 

structure. However, the main challenges in fabricating this complex material are achieving 1) a 

high enough dosage of each growth factor that 2) still remains localized to only one layer of the 

scaffold in a small scaffold that fits in the knee defect (5mm diameter, 3mm deep). To solve 
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these challenges, instead of pipetting, a higher technology method may be required to load the 

PLGA microspheres onto the biphasic scaffold. Alternatively, silica nanoparticles could be used 

as the drug delivery vehicle which can load a 5-fold higher dose of the growth factors than the 

PLGA microspheres. Thus, a smaller amount of vehicle would be loaded onto the scaffold, 

which would be easier to localize in a single layer of the scaffold. Based on preliminary data, 

once this material fabrication hurdle is overcome, this complex biphasic scaffold with unique 

pore sizes and biphasic growth factor delivery could simultaneously guide host stem cell 

fate toward the chondrogenic and osteogenic lineages for osteochondral defect repair. In 

the future, this tissue-engineered osteochondral knee graft could aid in developing 

therapies for other articulating joints, as well as other joint pathologies like osteoarthritis. 

This cell-instructive, biomimetic composite material could even serve as a platform to 

engineer various complex tissues and organ systems. 
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