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EXECUTIVE SUMMARY 
The United States and the European Union have begun negotiation of the Transatlantic Trade and 
Investment Partnership (TTIP). This agreement is designed to reduce barriers to trade between the two 
economic units. One significant barrier to trade is the differing safety standards testing and 
requirements for vehicles sold in the EU and the US. Testing the same vehicle make/model under both 
regimens could be expensive, and negotiation of common standards may be difficult and time-
consuming. 

An alternative to item-by-item harmonization is mutual recognition. Under this solution, vehicles that 
meet EU regulations would be recognized for sale in the US, and vehicles that meet US regulations 
would be recognized for sale in the EU. To justify mutual recognition, it would be helpful (and possibly 
even necessary) to demonstrate that safety in EU- and US-regulated vehicles is essentially equivalent. 

This report describes a proposed methodology that could be used to measure evidence for the 
hypothesis that vehicles meeting EU safety standards would perform similarly to US-regulated vehicles 
in the US driving environment, and that vehicles meeting US safety standards would perform similarly to 
EU-regulated vehicles in the EU driving environment. If an acceptable level of similarity could be 
demonstrated, then a test-once approach may be supported; that is, passing regulations from one 
entity, US or EU, would certify a vehicle to be sold in either region. 

The current report presents results of Phase 1 of the Mutual Recognition Methodology Development 
(MRMD) project. Phase 1 was focused on developing an approach to statistical modeling and analysis of 
field data to address the state of evidence relevant to mutual recognition. As part of the methodology 
development, we assessed the availability and contents of a variety of crash datasets from the US and 
the EU, as well as their collective ability to support the proposed statistical methodology. 

As a starting point, we compared regulations at a high level and propose a scope of analysis as follows. 
First, we recommend separating analysis of crashworthiness and crash avoidance. Regulations 
addressing these are different, as are datasets and appropriate analysis methods. Second, we propose 
to limit the scope of crashworthiness analysis to US vehicles weighing less than 3.85 tonne (8500 lb) and 
EU vehicles classified as M1; vehicle model years ranging from 2003-2012; and crash years from 2003-
2012. For occupants, we will include drivers and outboard front-row passengers aged 13 years or more. 
All restraint usage modes (e.g. belted, unbelted), except for child restraint systems, will be included. 
Planar crashes in all directions (frontal, lateral and rear), rollovers, and pedestrian crashes will be 
considered in separate analyses, although the results will be merged at the end. Note that there may be 
insufficient data on pedestrian injury outcome in US datasets to support that element of analysis. For 
crash avoidance, we will focus on four main areas of regulation: headlamps (affecting pedestrian and 
nighttime crashes), mirrors (affecting lane-change and merging crashes), brakes (if supported by crash 
data), and Electronic Stability Control (ESC; affecting rollover and run-off road crashes). 

To support any analysis, datasets must be available, comparable, representative of their regions, and 
sufficiently large. Datasets in the US and EU were identified and catalogued. In-depth databases are 
those where crash investigation and reconstruction has been done, including recording of medically 
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evaluated injury outcome. These are required for crashworthiness analyses. National databases 
generally contain only the contents of police reports and can contribute to crash avoidance analysis. The 
USDOT provides nationally representative in-depth and police-reported databases. Access is not 
restricted and sample sizes are relatively large. In the EU, in-depth databases are collected in only a few 
countries, notably Germany, Sweden, France, and Great Britain. The combined sample size is judged 
sufficient for analysis, but we have some concerns about representation. In general, these countries are 
among the wealthier EU countries and vehicle purchase choices may reflect that, leading the results to 
have limited generalization to southern and eastern European countries.  

Data harmonization is required among all databases to be used for the analysis. This means that key 
variables are present in all datasets to be used and that their values are or can be made comparable 
(i.e., made to mean the same thing). The variable of greatest concern is Delta-V, which represents crash 
severity. This variable is reconstructed using different methods in different datasets, and there is some 
evidence that those methods may produce biased results relative to each other. However, we have 
identified a set of at least 67 cases that have sufficient detail to implement all reconstruction methods 
and will allow side-by-side comparison of the resulting Delta-Vs. This will allow adjustments to account 
for reconstruction method, if necessary.  

We propose a set of three statistical  approaches  to  “triangulate”  evidence  regarding  similarity  or  
differences in crash and injury risk associated with EU- and US-regulated vehicles. The main difficulty is 
that we must consider how to compare risk for each vehicle group (defined by the regulatory 
environment;  i.e.,  “EU-regulated  vehicles”  vs.  “US-regulated  vehicles”)  when  the  available  data  come  
from very different driving and crashing environments. We will describe a proposed approach below in 
terms of injury risk given a crash; a similar approach is planned to address crash-involvement risk.  

To address the essential problem described in the previous paragraph, we propose to use observed data 
to produce statistical models that represent injury risk given a crash for US-regulated vehicles and for 
EU-regulated vehicles separately. Predicted risk in these models is dependent on the various conditions 
of the crash, vehicle and occupant involved. Each of these two models can then be used to model the 
resulting injury outcomes that would have occurred in any given population of crashes defined in terms 
of crash, vehicle and occupant characteristics. For example, the injury outcomes for an EU-regulated 
vehicle can be modeled in a population that represents US conditions in terms of crash, vehicle and 
occupant characteristics.  

To explore evidence related to the hypothesis of equivalent field performance, we need seven 
components: 

a. A statistical model of injury risk to an occupant of an EU-regulated vehicle, given the conditions 
of any crash/occupant/vehicle combination; 

b. A statistical model of injury risk to an occupant of an US-regulated vehicle, given the conditions 
of any crash/occupant/vehicle combination;  

c. A standard population of crashes in the EU, described by crash/vehicle/occupant characteristics; 
this population is thought to represent a likely near-future crash population for the EU; 
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d. A standard population of crashes in the US, described by crash/vehicle/occupant characteristics; 
this population is thought to represent a likely near-future crash population for the US; 

e. One or more models of how US-regulated vehicles might enter the EU market; 
f. One or more models of how EU-regulated vehicles might enter the US market; 
g. A means of measuring the evidence for how injury risk in EU- and US-regulated vehicles is likely 

to differ (or not differ) in a particular crash population. 

The seven components described above represent the pieces of two parallel analyses—one that predicts 
the consequences of allowing EU-regulated vehicles into the US and one that predicts the consequences 
of allowing US-regulated vehicles into the EU.  

Items (a) and (b) are constructed separately from field data within the EU (for (a)) and the US (for (b)). 
Items (c) and (d) are test beds on which to compare the two risk models side-by-side. They represent the 
relative distribution of different crash, vehicle, or occupant characteristics involved in crashes in each 
region. If the two risk models are identical, then the crash distribution is irrelevant. However, if they are 
different in any way, then the overall relative outcome can be affected by the population of crashes. 
Thus, (a) and (b) must both be assessed side-by-side in both the populations represented by (c) and (d).  

The three statistical approaches use (a)-(d) somewhat differently, in an effort to look at the evidence 
from different angles. Approach 1, Seemingly Unrelated Regression, tests whether the models are 
identical. The approach will also assess the capability of the data and analysis to detect differences in 
the models if differences exist. The end result will be a functional description of the tradeoff between 
two  types  of  errors:  Type  1  (decide  “different”  when  “same”  is  true),  and  Type  2  (decide  “same”  when  
“different”  is  true).  This  will  allow  selection  of  a decision cutoff that chooses between the two 
conclusions  (“same”  and  “different”) while maintaining a maximum tolerated probability of error of a 
given type. Finally, there will be a single result to compare to the decision cutoff. The combination of 
these elements both describes the state of the evidence (i.e., the ability of the data to determine an 
answer) and the resulting answer (given a particular choice of cutoff).  

Approach 2, Consequences of Best Models, uses logistic regression to develop two separate models, one 
for EU risk and one for US risk, as a function of a set of predictors, (i.e., crash, vehicle, and occupant 
conditions). These correspond to (a) and (b). The two models will then be exercised on a standard 
population for the EU (i.e., (c)) and a standard population for the US (i.e., (d)). In both cases, the model 
will include a measurement of uncertainty, or error, and this will be accounted for in the evaluation. The 
approach will produce a distribution of relative risk (injury risk in EU-certified vehicles relative to injury 
risk in US-certified vehicles) across the EU population; the distribution values represent the probability 
that each possible relative risk is the true relative risk. The process will be repeated for the US standard 
population and that distribution may differ from the first one. The results will identify both the best 
guesses as to the true relative risks and measure the conclusiveness of the evidence for each. 

Approach 3, Evidence for Consequences, turns the question around and seeks to measure the overall 
evidence for each of a set of possible conclusions. Each conclusion is characterized by a range of relative 
risk on a single population (e.g., injury risk in EU-regulated vehicles/injury risk in US-regulated vehicles in 
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the EU crash environment is between 0.95 and 1.05). Evidence is measured using a weighted average of 
likelihoods for a large group of models that produce the same outcome. That evidence is then compared 
using Bayes Factors, the magnitude of which indicates the relative strength of evidence for two groups 
of hypotheses. Broadly, this approach, like the others, will both provide a best-guess answer and an 
assessment of the narrowness, or conclusiveness, of the evidence.  

One of the major challenges for this methodology is to identify the size of difference that matters. In 
other  words,  how  close  is  “close  enough”? Items (e) and (f) are required to address this issue, but these 
are not generated from data. Instead, they are agreed upon. The methodology can be implemented with 
any fleet penetration model, but different models will result in different injury consequences. A 
sensitivity analysis is recommended to assist decision-makers in selecting models. 

The final section of the Phase 1 report presents our judgment on the feasibility of implementation in 
Phase 2. In general, we believe that sufficient data are available to conduct the analysis, and datasets 
are sufficiently harmonized (or amenable to harmonization, in the case of Delta-V) to support analysis. 
The unknown factor is the level of uncertainty in the models, which in turn contributes to uncertainty in 
the comparisons. There is a reasonable chance that results will be inconclusive due to model 
uncertainty.  However,  all  three  approaches  produce  “best  guesses”  in  the  form  of  point  estimates.  In  
addition, Approach 2 provides a fairly rich description of patterns of relative risk across different types of 
crashes, vehicles, and occupants. At a minimum, this could provide some data-driven support for areas 
in which an item-by-item harmonization effort is least likely to have major consequences for risk. 

  



5 
 

BACKGROUND  

Overview 

Negotiations are underway between the United States  (US) and the European Union (EU) to establish a 
Transatlantic Trade and Investment Partnership (TTIP).  A primary objective of TTIP is to reduce or 
eliminate trade barriers between the two economic entities. The differences in motor vehicle 
regulations between the US and the EU are a major barrier to trade in the automotive sector.  Currently, 
vehicle manufacturers must test to both separate sets of regulations to sell the same vehicle 
make/model in both places.  Testing twice is more expensive and a comprehensive harmonization of the 
two sets standards would be an arduous and lengthy process. 

One way to eliminate this barrier is global or regulation-specific mutual recognition (see next section). 
Under a global mutual recognition solution, vehicles that meet EU regulations would be permitted for 
sale in the US, and vehicles that meet US regulations would be permitted for sale in the EU. To justify 
such mutual recognition, it would be helpful (possibly even necessary) to demonstrate that safety in EU- 
and US-regulated vehicles is essentially equivalent, using field data. 

The methodology presented in this report could be used to measure evidence for the hypothesis that 
vehicles meeting EU standards would perform similarly to US-regulated vehicles in the US driving 
environment and that vehicles meeting US standards would perform similarly to EU-regulated vehicles 
in the EU driving environment. If an acceptable level of similarity could be demonstrated, then a test-
once approach may be supported; that is, passing regulations from one entity, US or EU, would certify a 
vehicle to be sold in either region. 

The US-EU Bilateral Air Safety Agreement (BASA)  

The US and the EU have prepared agreements in several areas before the TTIP negotiations concerning 
the harmonization and/or mutual acceptance of each  other’s  regulations. A specific group is called 
mutual recognition agreements, which mean that officials on each side agree to accept products or 
services from the  other  side  based  on  a  “test once”  criterion.  It  was  briefly  investigated  whether  
information about such agreements related to traffic safety could be relevant in the present research 
project. The investigation was focused on the largest agreement of this kind up to date related to traffic 
safety, namely the US-EU Bilateral Air Safety Agreement on the regulation of civilian aviation safety1 
(BASA) from 2011, together with a description of the technical implementation2 of the BASA agreement 
(abbreviated here as TIPAEC). 

Although BASA is focused on avoiding doubled full-scale certification efforts, it is not a mutual 
recognition agreement in the global sense described above. Instead, it enables and encourages mutual 
acceptance of judgments and tests performed by the appropriate authorities from the other side to the 
maximum extent possible. This means that the findings made by one party may only need to be 
                                                           
1 Agreement between the United States of America and the European Community on cooperation in the regulation 
of civil aviation safety, 2011-0088. Available at http://www.state.gov/documents/organization/169475.pdf. 
2 Technical Implementation Procedures for Airworthiness and Environmental Certification, Revision 3, April 23, 
2013 

http://www.state.gov/documents/organization/169475.pdf
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reinforced by a validation process by the other party which, according to the vision described in Section 
1.4 of part C-3  in  TIPAEC,  is  a  “simple process based on mutual authority trust, which leads to design 
acceptance in compliance with the Validating  Authority’s  airworthiness  standards.”  At  the  same  time,  
each party retains its regulatory power and the authorities retain the responsibility to  “make  findings  of  
compliance”  with  regulations in their respective regions.  

Furthermore, a set of regulations have been identified that are considered equivalent under the BASA 
agreement. The principles for the identification of equivalent regulations are described in Section 3 of 
part C-6 in TIPAEC. Importantly, the agreement allows for judgment of equivalence even in those cases 
when the regulations are formally different. It is specified in Section 3.1.1 of part C-6 in TIPAEC that: “A 
literal comparison of the airworthiness standards developed by the US Federal Aviation Administration 
(FAA) and European Aviation Safety Agency (EASA) indicates that there are instances where the 
standards text differs extensively. In some cases, the FAA and EASA airworthiness standards may be 
determined to be equivalent despite such text differences.”  A  list  of  standards that are deemed 
equivalent can be found in Appendix B of TIPAEC. 

In  Article  5,  Annex  A  of  BASA,  it  is  stated  that  “the Parties agree that each Party's civil aviation 
standards, rules, practices and procedures are sufficiently compatible to permit reciprocal acceptance of 
approvals and findings of compliance with agreed upon standards made by one Party on behalf of the 
other as specified in the Annexes.”  However,  there  is  no  reference  or  description  in  the  document  of  
how  the  conclusion  on  “sufficient  compatibility”  has  been  achieved.  Therefore,  it  appears  that  the  BASA  
agreement was not attained through specific research aimed at evaluating functional equivalence of 
aircrafts certified in the US and the EU with respect to real-world risk, but rather followed a different 
path based on mutual trust and a direct comparison of aviation safety regulations.  

Although the stated goal of this project is to address evidence regarding global mutual recognition, 
elements of the analysis could address specific regulations or groups of regulations as treated in the 
BASA  agreement.  Within  BASA,  the  “mutual  trust”  approach  does  not  seem to require data or analysis; 
but  evidence  for  “sufficient  compatibility”  of  subgroups  of  regulations  might  be  obtained  through  
analyses described in the methodology below, whether or not global mutual recognition is supported. 

PROBLEM STATEMENT 
The objectives of this project are to: 

1) Develop a methodology to test the hypothesis that vehicles regulated in the US and EU would 
have essentially equivalent real-world safety performance when driven in a common driving 
environment. In other words, vehicles meeting EU standards would perform similarly to US-
regulated vehicles in the US driving environment and vehicles meeting US standards would 
perform similarly to EU-regulated vehicles in the EU driving environment. 

2) Identify appropriate datasets, evaluate their preliminary usage in the analysis, and identify 
potential issues.  
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The idealized approach to this question would be to have a set of similar EU-regulated and US-regulated 
vehicles that are driven in both the EU and the US by similar drivers. Crashes and injury outcome in such 
a dataset would provide a side-by-side comparison of injury risk for the two vehicle groups. However, 
since the point of the analysis is to address regulatory restrictions to vehicles that can be driven in each 
region, this is essentially a logical impossibility.  

Instead, we must consider how to compare risk for each vehicle group (defined by the regulatory 
environment; i.e.,  “EU-regulated  vehicles”  vs.  “US-regulated  vehicles”)  when  the  available  data  come  
from very different driving and crashing environments. A further difficulty is that the most relevant 
driving/crashing environment is one that is in the future (i.e., when mutual recognition would 
hypothetically allow both vehicle groups to be driven in the US and the EU), and therefore not observed 
yet. We will describe a proposed approach below in terms of injury risk given a crash; a similar approach 
is planned to address crash-involvement risk. 

To address the essential problem described in the previous paragraph, we use observed data to produce 
statistical models that represent injury risk given a crash for US-regulated vehicles and for EU-regulated 
vehicles separately. Predicted risk in these models is dependent on the various conditions of the crash, 
vehicle and occupant involved, but is not dependent on the distribution of such conditions in the crash 
population. These models (one for US-regulated vehicles and one for EU-regulated vehicles) can then be 
used to estimate the resulting injury outcomes that would have occurred in any given population of 
crashes if the vehicle involved had been regulated in the US or if it had been regulated in the EU. In 
particular, it can be estimated how the model that corresponds to EU-regulated vehicles would perform 
in a population representing US conditions and vice versa.  

To conduct such an analysis, databases must be found to support it. The sections that follow start with 
an assessment of the scope of the problem that we propose to address (which subset of regulation, 
vehicles, crashes, and occupants are considered). This is followed by a description of available 
databases, and then a discussion of data-related issues. The following section covers statistical models 
and methods in detail, and finally, the last section discusses whether Phase 2 could go forward. 

SCOPE  

Regulation comparison  

This section provides an overview comparing EU and US vehicle safety standards. The purpose of this 
review comparing regulations is to define a scope of data analysis that applies to relevant and 
comparable crash types.  

Vehicle Types 

In the EU, the first method of vehicle type classification  is  by  the  number  of  wheels  and  the  vehicle’s  
purpose. Category L consists of mopeds, motorcycles, motor tricycles, and quadricycles. Category M 
includes power-driven vehicles having at least four wheels and used to carry passengers. Category N 
includes power-driven vehicles having at least four wheels and used to carry goods. Category O includes 
trailers and semi-trailers, T includes agricultural and forestry tractors, and category G includes off-road 
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vehicles. Other categories include special purpose vehicles and non-road mobile machinery. The second 
way of classifying vehicles in the EU depends on either the engine capacity, mass, number of passengers, 
and capacity for standing passengers. Figure 1 shows the EU vehicle category M1 relevant to this 
analysis; vehicles in this category are intended to carry 8 occupants in addition to the driver or less and 
weigh less than 3.5 t. 

 

Figure 1. Relevant vehicle classes as defined by EU regulations. 

The US Department of Transportation also has many ways of categorizing vehicle types, defined one way 
in FMVSS 571.3. Motorcycles are defined as powered motor vehicles having less than or equal to three 
wheels equipped with a seat or saddle for use by the rider. Those with less than 5-brake horsepower are 
considered to be motor-driven cycles. Passenger vehicles are powered vehicles carrying less than or 
equal to 10 persons except for other categories described here. A multipurpose passenger vehicle is also 
a powered vehicle carrying less than or equal to 10 persons, but is either constructed on a truck chassis 
or with special features for off-road operation. A subcategory is motor homes, which include provisions 
for temporary residential accommodations.  

Buses are powered motor vehicles carrying more than ten persons. Subcategories are school buses or 
multifunctional school activity buses. Trailers are motor vehicles, with or without power, designed for 
carrying persons or cargo and for being drawn by another motor vehicle. Subcategories include boat, 
semi, pole, and full trailers. A truck is a powered motor vehicle, except a trailer, designed for 
transporting property or equipment. A truck tractor is a truck designed to draw other motor vehicles. 
Firefighting vehicles are in a separate class. Low-speed vehicles are 4-wheeled powered motor vehicles 
with a with a gross vehicle weight rating (GVWR) of < 1,361 kg (3,000 lb) whose maximum attainable 
speed in 1.6 km (1 mile) ranges from >32 km/hr (20 miles/h) to < 40 km/hr (25 miles/hr) on a paved 
level surface. 

FMVSS 523.2 uses a different method of vehicle categorization. Passenger automobiles are those 
manufactured primarily for use in the transportation of <=10 individuals. Non-passenger automobile are 
those that are not a passenger automobile or a work truck. Medium duty passenger vehicles are 
designed to mainly transport passengers, and either have a GVWR >3,856 kg (8,500 lb) or a vehicle curb 
weight (VCW) > 2,722 kg (6,000 lb) or has a basic vehicle frontal area in excess of 4.18 m2 (45 square 
feet). Heavy-duty vehicles are defined to include any commercial medium- and heavy-duty on highway 

Category  M   

Number  of  Seats 
(Excluding  driver)   

 
<=8 Category  M1 

>8 

Category  M2 
Max.  mass  

<=5t 

Category  M3 >5t 

Max.  mass<=3.5t  
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vehicle or a work truck. Weight ranges are as follows:  1) Heavy-duty pickup trucks and vans: 3,856 kg <= 
GVWR <=6,350 kg (8501<=GVWR <= 14,000 lb), 2) Heavy-duty vocational vehicles: GVWR> 3,856 kg 
(8,500 lb), 3) Truck tractors with a GVWR > 11,793 kg (26,000 lb). 

Table 1 compares the vehicle classifications used in the US and EU. The categories in gray shaded cells 
are considered to be most relevant to this project. 

Table 1.  
Comparison of US(DOT) and EU vehicle classifications. 

US EU 
 

Mass  #  Category  Category  #  Mass  

 < 3 wh  Motorcycles  Motorcycles & LSV  < 4 wh  < 400 kg  

< 1.3 t  4 wh  LSV     
< 4.5 t  < 10 p  Passenger vehicles  M1  < 9 p   

>3.9 t  < 10 p  Multi purpose passenger vehicle  
(truck chassis)  

M2  >9 p  < 5 t  

 >10  Bus  M3  > 9 p  > 5 t  
   N1    < 3.5 t  
> 3.9 t   Heavy duty vehicle  N2    3.5 – 12 t  
> 11.8 t   Heavy trucks  N3    > 12 t  

   O    .75 t, .35 t, 10 t  

 

Crash Avoidance 

The regulations in the US and EU that pertain  mostly  to  “traditional”  crash  avoidance  vehicle  features,  
such as brakes and lighting, are summarized in Table 2. There are somewhat comparable regulations for 
lighting, brakes, tires, and mirrors. The pedestrian regulation in the US only applies to school buses. In 
the US, there are also several regulations for items not necessarily tied to crash avoidance that address 
windshields and wipers, transmissions, vehicle theft, rollaway, hood latch, and window latch. 
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Table 2.  
Summary of EU and US regulation numbers pertaining to crash avoidance vehicle features. 

US TOPIC EU 

108  Lighting  1, 3, 7, 8, 19, 20, 31, 38, 87, 91, 98, 99, 
104, 112, 123, 128  

101, 123, 124, 125  Controls, steering, 
warning  

28, 68, 79  

109, 110, 117, 119, 120, 129, 
138, 139  

Tires, wheels  30, 54, 64, 117,  

103, 104  Windshields/wipers   

105, 105, 116, 121, 122, 135  Brakes  13, 90  

102  Transmission   

111  Mirrors/vision  46, 125  
114  Theft/rollaway   
113, 118  Hood latch/ windows   
126  ESC  13H 
131 (school bus only)  Pedestrian   

 

The US includes requirements for electronic stability control (ESC) in FMVSS 126, which was phased into 
vehicle model years 2008-2012 and is now required on all passenger vehicles.  For the EU, ESC is 
regulated in the United Nations Economic Commission for Europe (UNECE)-R13H. There are no other 
specific regulations that set the minimum safety performance of advanced driver assistance and crash 
avoidance systems before they are allowed to be used on vehicles to be driven on public roads in the EU 
or in the US, other than the general safety regulations as part of the Whole Vehicle Type Approval in the 
EU and Federal Motor Vehicle Safety Standards (FMVSS) in the US.  However, there are some ISO 
standards that potentially have been followed by the vehicle manufacturers when developing their 
driver assistance and crash avoidance systems. Examples of such International Standards Organization 
(ISO) standards are ISO26262 defined for functional safety for passenger vehicles up to 3.5 tonnes, 
ISO15623:2013 for forward vehicle collision warning systems and ISO 22179:2009 for full speed range 
adaptive cruise control (FSRA) systems; they are made for harmonization purposes but are not 
regulated. A review on existing (up to 2011) ISO, SAE and NHTSA test procedures for driver assistance 
and crash avoidance systems can be found in (Evgenikos, Papantoniou, Yannis, Stanzel, & Kohsiek, 
2011). 
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Crashworthiness 

Table 3 contains a summary of US and EU regulations pertaining to crashworthiness. For ten areas, there 
are comparable standards in each region, although the exact details of requirements and testing 
procedures vary. For occupant protection, FMVSS 208 covers items that are addressed in six different EU 
standards. Two main areas are not addressed by both regions. The US has a standard to address 
occupant protection in rollovers, while the EU has standards intended to reduce the injury severity of 
pedestrians struck by vehicles. 

Table 3.  
Summary of comparable crashworthiness regulations 

US EU 

201 Interior impact 21 Interior fittings 
202a Head Restraints 25 Head restraints 
203/2-4 Steering column 12 Steering column 
205a Glazing 43 Glazing 
206 Door locks/retention 11 Door latches/hinges 
207 Seating systems 17 Seating systems 
209 Seat belt assemblies 16 Safety belts 
210 Seat belt anchorages 14 Seat belt anchorages 
214 Side impact 95 Lateral impact 
216 Roof crush none 
208 Occupant protection 33 Frontal impact 

100/110 Electric/CNG vehicles 
42 Front and rear protection 
34 Fire prevention 
32 Rear impact 
126 Partitioning 

None 26/61 Projections (pedestrian) 
127 Pedestrian (EG/78/2009, 
EG/631/2009) 

 

Figure 2 provides a graphical representation of how the specifications for full-vehicle impact testing vary 
between the US and EU. The US requires full-frontal barrier tests with belted Hybrid III midsize and small 
female anthropomorphic test devices (ATDs) at 56 km/h. There are also full frontal unbelted 
requirements using the small female and large male at 32-40 km/h, with varying ranges of impact 
angles. Both the US and EU specify a 40% offset frontal barrier test using the midsize male, but the US 
test is run at 40 km/h and the EU is at 56 km/h. Both the EU and US specify a side impact barrier test 
using the ES-2 ATD. The US uses an impact barrier angled at 27 degrees and a test speed of 48 km/h, 
while the EU uses pure lateral impact at 50 km/h. The US also has a lateral pole impact test requirement.
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Figure 2. Graphical summary of regulated impact test requirements  
(extracted from Crash Safety Wissen app http://www.carhs.de/en/). 
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Crashworthiness and Crash Avoidance  

Analysis of crashworthiness and crash avoidance will be considered separately. In these areas, relevant 
datasets and outcomes are different, making it difficult to combine results. To analyze crashworthiness, 
we need to consider datasets containing injury outcome and details of the crash that generally require 
in-depth crash investigation. For crash avoidance, we need to analyze databases tabulating crash data as 
well as driving exposure. Because of differing regulations and data elements, rollovers and pedestrian 
crashes will be analyzed separately from other crash types. 

Exposure  

The methodology we propose for assessing essentially equivalent real-world performance of vehicle 
crashworthiness is based on the idea that although exposure to the driving environment may be 
different in the US and the EU (and even within the US and within the EU), vehicle testing is, in its 
essence, designed to assess risk given a crash and provide standards for maximum acceptable risk. Thus, 
the methodology should focus on measuring risk, independent of exposure, in the two regions and 
comparing the assessed risk. That is, when assessing crashworthiness it generally does not matter why 
the crash arises, whether it is related to driver error, road type, weather conditions or other factors of 
exposure that may differ between regions. What matters is the injury outcome given the experience of 
the vehicle (e.g., direction of force and crash severity), the characteristics of the occupant (e.g., age and 
gender), and the restraint systems used (e.g., seat belt use and airbag deployment). Many, if not all, of 
these factors are typically present in existing crash and injury datasets. 

It is more challenging to use existing crash and injury datasets to assess essentially equivalent real-world 
performance pertaining to crash avoidance. To  establish  a  vehicle’s  ability  to  aid  in  crash  avoidance,  one 
must estimate the crash risk by relating crash occurrences to the level of exposure (e.g., the number of 
miles travelled in a given environment). Crash datasets incorporating the latter are scarce. Thus, a 
common method of estimating risk is to use an external dataset (e.g., travel-based surveys or odometer 
readings from roadworthiness tests) for estimating the exposure. Such external datasets should be 
collected over the same geographical area as the crash dataset. For our purpose of comparing crash risk 
in the US versus the EU, there is a notable lack of harmonized exposure data. The International Road 

Traffic and Accident database (IRTAD), which is managed by the International Traffic Safety Data and 
Analysis Group under the Organization for Economic Co-operation and Development (OECD), contains 
estimates of total passenger vehicle kilometers travelled (VKT) per year as reported separately by each 
OECD member state. Most of the OECD member states are also members of the EU. Combined with 
crash datasets from the US and several individual EU states, this data could be used to estimate and 
compare crash risk on an aggregate level. However, this method may prove uncertain as individual OECD 
members most likely use different methods of calculating VKT. Furthermore, this approach would not 
allow for more detailed analysis to be performed because the VKT provided in the IRTAD database 
cannot be broken down into subcategories (such as vehicle occupant, make and model). Local 
availability of more detailed exposure data on a national level has also been investigated. Although 
some travel surveys and odometer datasets have been identified (e.g., in the UK, Germany and Sweden), 
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our assessment is that a significant amount of data processing is needed to extract useful measures of 
exposure from these datasets. 

An alternative method of estimated exposure is called Quasi-Induced Exposure (Cuthbert, 1994; Keall & 
Newstead, 2010). This method does not require an external exposure dataset. Conceptually, quasi-
induced exposure is a method that estimates exposure from characteristics of vehicles that were judged 
to be non-culpable in crashes. For example, vehicles that were involved in rear-end crashes and were 
struck from behind are generally inferred to be not at fault in the crash, but information about them is 
recorded in crash databases at a level that is useful for calculating crash rates. The assumption is that 
these vehicles happened to be in the vehicle stream randomly and are similar to vehicles in the general 
population that were not involved in crashes. Under this assumption, counts of induced exposure 
vehicles serve as measures of exposure used in the calculation of rates. 

Data Restrictions 

Based on the review of pertinent regulations, this project will include US vehicles weighing less than 
3.85 tonne (8500 lb) and EU vehicles classified as M1. Vehicle model years will range from 2003-2012, 
and crash years will be limited to those from 2003-2012.  

For occupants, we will include drivers and outboard front-row passengers aged 13 years or more. All 
restraint usage modes (e.g. belted, unbelted) except for child restraint systems will be included.  

Planar crashes in all directions (frontal, lateral and rear), rollovers, and pedestrian crashes will be 
considered in separate analyses, although the results will be merged at the end. There may be 
insufficient data on pedestrian injury outcome in US datasets.  

For crash avoidance, we are focusing on four main areas of regulation where we believe that analysis 
can be carried out. Headlamps likely affect pedestrian and nighttime crashes. Mirrors are associated 
with lane-change and merging crashes. We hope to consider brakes, if brake failure information is 
available in the crash data. Stopping distance, also related to brake regulations, is not available. 
Electronic Stability Control (ESC), which primarily affects rollover and run-off road crashes, will also be 
evaluated. However, manufacturers generally use the same ESC technology in both regions. Therefore, it 
is expected to produce similar results. 

DATASETS 
This section provides details about the availability of databases in the EU and the US that are relevant 
for the analysis. A list of datasets is provided in Appendix A, including the following metadata about the 
databases: 

 Name (often an abbreviation), full name, country/countries of data collection; 
 Owner of the database, homepage, accessibility (public, consortium or private access); 
 Number of crashes in the database, data years, inclusion criteria and other relevant information. 
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These details guide the identification of those datasets that have a potential for being used in Phase 2 of 
the project3. There are several aspects to consider in the selection of the most relevant databases. These 
include: 1) appropriate vehicle focus (passenger cars); 2) detailed information about crash severity and 
medical information (at a minimum, Delta-V4 and Maximum Abbreviated Injury Score (MAIS5 ) values are 
necessary for the crashworthiness analysis–a list of potential key variables is provided in Appendix B); 
and 3) a sufficiently large sample size (primarily, databases containing at least 1000 crashes are 
considered). Since the scope of analysis is limited to vehicles manufactured in 2003 or later, it is a 
prerequisite for relevance that the database contains data years in this period. Furthermore, it is 
important that the inclusion criteria for the databases are comparable (or can be made comparable by 
applying data filters) with those in NASS-CDS and GIDAS6 since unaccounted differences in inclusion 
criteria could bias the results. 

To facilitate a proper understanding of Appendix A, some background information is provided in the rest 
of this section regarding crash databases in general, and additional details are given for the most 
relevant datasets. Crash databases in the US are reviewed first, then crash data in the EU (both 
multinational and country-specific databases), and then global databases are considered; finally, we 
summarize which datasets are under consideration for Phase 2 of the project and how data from Field 
Operational Tests (FOT) will be addressed. 

Crash Data in the US 

The US is a single country, and national crash datasets are made available for free. There are three 
major national datasets of crashes: 1) the Fatality Analysis Reporting System (FARS); 2) the National 

Automotive Sampling System—Crashworthiness Data System (NASS-CDS or CDS); and 3) the National 

Automotive Sampling System—General Estimates System (NASS-GES or GES). The first, FARS, is a census 
of fatal crashes on public roads in the US. The second is an annual probability sample of approximately 
3500-4500 tow-away crashes involving light vehicles. The CDS data collection includes in-depth crash 
investigation and estimation of Delta-V using the software WinSMASH, as well as details on injury 
outcome coded according to the Abbreviated Injury Scale (AIS). Finally, GES is an annual probability 
sample of approximately 50,000 police-reported crashes. The basis for the data in GES is information 
contained in state police crash reports, but the data elements are coded to a national standard. 
Therefore, in the second phase of the MRMD project, CDS will be used when in-depth data (including 
Delta-V and MAIS values) are required, while GES enables estimates on a national level and can give 
information about the standard crash-involved occupant population. 

                                                           
3 For readability, it is assumed throughout this section that there will be a second phase in the MRMD project; i.e., 
the uncertainty regarding Phase 2 will generally not be expressed when writing about this phase. 
4 Change of velocity in a crash; this is the most commonly used measure for crash severity. 
5 Maximum Abbreviated Injury Scale value; this is a universal measure of overall injury severity.  
6 NASS-CDS: National Automotive Sampling System—Crashworthiness Data System; GIDAS: German In-Depth 
Accident Study. These are the largest in-depth crash databases in the US and the EU, respectively (detailed 
descriptions of these databases are given in this section), and therefore need to be included in the analysis. 
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Multinational in-depth databases in the EU 

In-depth crash data in the EU have been collected in specialized crash investigation studies in EU 
projects focusing on, for example, the causation of road crashes, rollover crashes, passive safety of 
passenger cars and fatal crashes. The resulting databases each contain from hundreds to a few thousand 
crashes from 19 countries in the EU. The EU projects in which in-depth data collection was conducted 
are listed in Appendix A among multinational in-depth databases. A difficulty with using data from EU 
projects is that the special focus in these projects often results in incomparable inclusion criteria. A 
further condition restricting the set of relevant databases is that crash reconstruction was not 
conducted in some of these projects; hence Delta-V is unavailable. One exception is the PENDANT 
project, briefly described below. In this database, the inclusion criteria are comparable with those of 
GIDAS, and Delta-V reconstruction was conducted in the project. 

PENDANT, the Pan-European Co-ordinated Accident and Injury Database, was developed between 2003 
and 2005 in a project co-funded by the European Commission. The main objective of PENDANT was to 
support EU vehicle and road safety policy-making. The resulting database contains approximately 1100 
crashes collected in eight EU countries (Austria, Germany, Spain, Finland, France, The Netherlands, 
Sweden and the United Kingdom). An inclusion criterion is that at least one vehicle occupant was injured 
in the crash; this is a stricter version of the criterion for GIDAS where all injury crashes are collected 
(including those in which, for example, a pedestrian is injured but all vehicle occupants are uninjured). A 
further criterion is that the crash includes a vehicle with model year 1998 or later; this does not mean 
any further restriction for the analysis in the MRMD project due to the limit of 2003 on vehicle model 
year in the analysis. Note, however, that in several crashes in PENDANT, all involved vehicles are of 
model years before 2003 hence the sample size for the analysis in Phase 2 will be substantially smaller 
than the total number of crashes.  

Country-specific in-depth databases in the EU 

Besides EU projects, an important source for in-depth crash data in the EU is provided by in-depth data 
collection projects in individual countries including Sweden, Germany, France, and the United Kingdom. 
Again, a complicating factor for the analysis is the variation of sampling criteria in these projects and 
differences in the data variables. Therefore, an analysis using multiple datasets needs to find a way to 
make up for differences in the sampling and identify comparable data elements. Access is limited for all 
these databases, which also means that metadata about the datasets can either be retrieved by 
literature review or via contact with the database owners/users; in the latter case, the availability of the 
information is strongly dependent on the willingness of the data owners to disclose information. The 
metadata is described in Appendix A under  the  heading  “Country-specific in-depth  databases  in  the  EU”  
and additional information on the most relevant ones for the MRMD project, namely GIDAS, CCIS, 
VOIESUR, LAB and INTACT, is provided below. 

The German In-Depth Accident Study (GIDASe) is the largest database of its kind in Europe. Data 
collection commenced in 1999 and was initiated by the German Federal Highway Research Institute 
(BASt) and the German Association for Research on Automotive Technology (FAT) which unites all 
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German passenger and commercial vehicle manufactures as well as numerous suppliers. Today GIDAS 
has 15 sponsors including the MRMD project partner Autoliv; the sponsors of GIDAS have exclusive 
access to the database. Crash data is collected by two teams, one at the Hannover Medical School 
(MHH) and one at the Traffic Accident Research Institute (VUFO) of Technische Universität Dresden 
(TU Dresden). After 15 years of continuous data collection the database includes over 22,000 injury 
crashes (i.e. crashes in which at least one person was injured) investigated in-depth. Delta-V values are 
reconstructed using a momentum method, primarily utilizing the software PC-Crash. 

The Cooperative Crash Injury Study (CCIS) is a major crash database in the UK in which data collection, 
funded by the UK Department for Transport and industrial partners, started in 1983 and ended in 2010. 
The sponsors have exclusive access to the database, which contains more than 15,000 crashes. Crash 
events are collected according to a stratified sampling procedure, which favors cars containing fatal or 
seriously injured occupants (Richards and Cuerden 2009). More specifically, the inclusion criteria in CCIS 
require that at least one passenger car which is younger than seven years has been involved in the crash 
and towed from the scene and that at least one crash-involved occupant was injured, according to the 
police report. Data was collected retrospectively (up to several days after the crash) by teams of 
investigators from Birmingham Automotive Safety Centre (BASC) based at the University of Birmingham, 
Vehicle Safety Research Centre (VSRC) based at Loughborough University and Vehicle Operations and 
Standards Agency (VOSA) from various locations in England. Delta-V reconstruction in CCIS is damage-
based, using the software AI-Damage. 

VOIESUR (Véhicule Occupant Infrastructure Etudes de la Sécurité des Usagers de la Route - Vehicle 

Occupant Infrastructure and Road Users Safety Studies) is a project funded by the French National 
Research Agency and Foundation MAIF. In this project, a database of more than 9000 crashes is built 
from the in-depth analysis of police reports in France in 2011. More specifically, the database contains 
the following crashes in 2011: all fatal crashes in France, 5% of the injury crashes in France and finally 
every crash that year in the Rhône region. The data come from expert investigations of police reports, 
sketches and photos. However, police-coding of variables is not automatically accepted – instead, police 
information is used to understand what happened. Delta-V in the crash is reconstructed using a method 
based on the vehicle trajectories when there is sufficient data available to do so. A consortium of four 
French research organizations has developed the VOIESUR database: CEESAR7, CETE NC8, IFSTTAR9 and 
LAB10, and the agreement of all members is required for data access.  

LAB (Laboratory of Accidentology and Biomechanics - Secondary Safety Database) is a French database 
for which crashes have been collected since 1993. The database is owned by the Laboratory of 
Accidentology, Biomechanics and human behavior 10 which is a shared laboratory between the two 
French car manufacturers, PSA (Peugeot-Citroën) and Renault. Around 400 crashes are collected 
annually in the database from Yvelines (west of Paris) and the whole of France for some targeted 

                                                           
7 Centre  Européen  d’Etudes  de  Sécurité  et  d’Analyse  des  Risques 
8 Centre d'ÉtudesTechniques de l'Équipement Normandie-Centre 
9 Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux 
10 Laboratoire d'Accidentologie, de Biomécanique et d'Etudes du comportement humain 
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vehicles. The inclusion criterion for crashes is the presence of at least one injured occupant in a 
passenger car. The database contains detailed information on crash characteristics and injury 
characteristics. 

The INTACT database was developed in consecutive research projects funded by the vehicle industry, 
the Swedish Governmental Agency for Innovation Systems (VINNOVA), the Intelligent Vehicle Safety 
Systems (IVSS) program, the European Commission (EC) and the Swedish Research Council (VR). These 
projects included both methodology development and data collection addressing different applications. 
The INTACT methodology, developed in the IVSS-funded project Investigation Network and Traffic 

Accident Collection Techniques during 2007-2010, was adapted by the EU project Road Safety Data, 

Collection, Transfer and Analysis (DaCoTA) in 2010 as the method to be used for in-depth crash 
investigation on a European level (Hill et al. 2012). Data collection using this methodology is ongoing in a 
VR-funded project; the resulting database currently contains approximately 250 crashes. Data collection 
is conducted in Gothenburg, Sweden and the six surrounding municipalities; the inclusion criteria are 
that at least one passenger car, bus or truck was involved in the crash and an ambulance was called to 
the crash scene. The software PC-Crash is used for Delta-V reconstruction. 

Due to the relatively small number of cases in INTACT, the contribution of the database in estimating the 
overall injury risk for EU-registered vehicles will be minor. The INTACT data is, however, expected to be 
important in the MRMD project because it can address a crucial question related to data harmonization. 
This aspect is further elaborated in a subsequent section. 

EU level crash data 

The most comprehensive source for national crash data in the EU is the Community Road Accident 

Database (CARE), which contains national data from all 28 EU countries plus Iceland, Norway and 
Switzerland. CARE has no data collection activity of its own but the data come from the member states; 
such data are recoded according to uniformization protocols (CAREPLUS and CADaS) to obtain a 
standardized dataset. Only selected organizations from each participating country (at most three per 
country) have access to the database; these include the MRMD project partners Chalmers and VTI. 
However, CARE does not contain Delta-V or MAIS values since those are generally not included in 
national crash data; therefore, the main use of CARE in this project is the specification of the standard 
crash-involved occupant population in Europe.  

Global datasets 

There have been efforts to standardize datasets internationally, including the International Road Traffic 

Accident Database (IRTAD), already  mentioned  in  the  “Exposure”  section. In this database, aggregated 
road safety data as well as relevant exposure data from OECD member countries are collected in a 
standardized format. Of the 29 OECD countries that participate, 19 are EU members. Besides the 
number of injury crashes, fatalities and hospitalizations, IRTAD has information on seat belt wearing 
rates by road network areas. Access to the database is restricted to IRTAD member organizations (which 
include the MRMD project partners UMTRI and VTI).  
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A recent effort for data standardization is the on-going project Initiative for the Global Harmonization of 

Accident Data (iGLAD), which was initiated in 2010 by European car manufacturers. The MRMD project 
partner Chalmers has been given the commission of trust to administer the project. The aim of iGLAD is 
to develop a global in-depth dataset to improve road and vehicle safety. In the first phase of iGLAD, 
funded by the European Automobile Manufacturers Association (ACEA), ten countries from four 
continents contribute with 100-200 cases from their own data repository. The data are recoded 
according to a common data scheme defined within the iGLAD project, and after merging the datasets 
the database will be delivered to the ACEA members and the data providers mid-2014. This first data 
delivery will contain 1580 crashes in total.  

In the following years, data providers will contribute to the iGLAD database with at least 100 cases 
annually, but those data will be delivered beyond the time frame of the MRMD project. Note also that 
GIDAS, INTACT and NASS-CDS are data providers in iGLAD; hence, the corresponding data in iGLAD does 
not increase the total sample size for the analysis in Phase 2. Also, there are data from India and 
Australia in iGLAD, which may not be relevant for the MRMD project. This implies that the contribution 
of iGLAD to the sample size may be substantially smaller than the total number of crashes. A further 
difficulty is that each data provider may have their own set of inclusion criteria; therefore, any analysis 
of iGLAD data must account for such differences. Nevertheless, iGLAD may be an important data source 
in the project because it contains crash data from countries in Southern and Eastern Europe (namely 
Spain, Italy and the Czech Republic) in a standardized format. 

New Zealand provides an interesting and potentially useful situation.  Although it is not part of the US or 
the EU, it allows vehicles compliant with either set of regulations to be driven on public roads.  
Databases in New Zealand are available and in good condition. However, preliminary information from 
colleagues in New Zealand suggest that the number of US regulated vehicles driven is small and that the 
majority of them are either sports cars or heavy pickup trucks. Nonetheless, these data might still be 
useful for small-scale model testing. Models developed from EU and US datasets could be applied to the 
New Zealand data to test the success of the effort to separate modeling of injury risk from the 
population of crashes in the data. This activity would be useful, but is not critical to the project as a 
whole.  

We also investigated Korea and Mexico, which similarly allow EU- and US-regulated vehicles.  However, 
their laws do not lend themselves to this analysis. In Korea, manufacturers can only sell US-regulated 
vehicles if the total volume is low (<25,000 units).  In Mexico, vehicles can be sold with safety systems 
removed and vehicles significantly altered. We did not further investigate the condition and access to 
databases in those countries. 

Relevance of crash data to the crashworthiness and crash avoidance analysis    

To summarize, the relevant datasets for crashworthiness analysis include detailed information regarding 
occupants in crashes, their crash circumstances, and their injury outcomes. The following in-depth 
databases have already been selected to be used in Phase 2 of the project, assuming that issues 
concerning access to the databases can be solved: 
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 NASS-CDS (US); 
 GIDAS (Germany); 
 INTACT (Sweden); 
 iGLAD (Global); 
 PENDANT (eight EU countries). 

Other likely options, currently under consideration, are the following in-depth crash databases: 

 CCIS (UK); 
 LAB (France); 
 VOIESUR (France).  

For the crash avoidance analysis and for establishing standard populations of crash-involved occupants, 
we need national police-reported crash datasets; detailed crash severity and injury information are not 
required. The relevant datasets are as follows: 

 NASS-GES (US); 
 CARE (EU); 
 National datasets from specific countries in the EU. National data from those countries where 

the relevant in-depth databases are from may be especially relevant; these include: 
a. DeStatis (Germany); 
b. STRADA (Swedish TRaffic Accident Data Acquisition; Sweden); 
c. STATS19 (UK); 
d. BAAC (Bulletin d'Analyse des Accidents Corporels de la Circulation; France). 

For either domain, we will need to apply the conjunction of the most restrictive inclusion criteria from 
each considered dataset to all of the datasets. For example, CDS samples on tow-away crashes, and 
GIDAS chooses crashes where at least one person is injured. The GIDAS dataset will need to be restricted 
to only tow-away crashes, and the CDS dataset will need to be limited to only crashes where one person 
is injured. This way, the analysis can be conducted on the comparable subsets of tow-away crashes in 
which at least one person was injured. In addition, all variables referring to a certain physical quantity 
must mean the same thing and be measured in the same way. Further discussion of data harmonization 
is  included  under  the  section  “Issues”. 

Field Operational Test (FOT) Data 

Field Operational Tests (FOTs) using both prototype and production crash-avoidance systems have been 
conducted in both the EU and the US. No such dataset includes national representation of drivers in any 
country, but all have been used to estimate effectiveness of these systems in their respective countries. 
A full list of FOT activities together with detailed information on each FOT study is provided at 
http://wiki.fot-net.eu/index.php?title=FOT_Catalogue. In particular, UMTRI has conducted a series of 
FOTs, including the recent Integrated Vehicle-Based Safety System (IVBSS) FOT, which involved vehicles 
equipped with both Forward Collision Warning (FCW) and Lane-Departure Warning (LDW). The EuroFOT 
project, in which SAFER was a key partner, collected data on a number of production systems, also 

http://wiki.fot-net.eu/index.php?title=FOT_Catalogue
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including FCW and LDW. The capability of FOT data to contribute to the issue of functional equivalence 
of EU-registered and US-registered vehicles has been addressed by a literature review of FOT results; 
see  “Assessing  Crash  Avoidance  Benefits”. 

ISSUES 
For the methodology development several important issues have been identified.  A brief summary of 
these issues is presented here.  More detailed explanations, together with suggestions on how to 
address these issues, are provided in the next section. 

One difficulty related to using crash data from multiple datasets relates to differences in sampling 
criteria.  This aspect has been discussed above.  Further, some of the key variables used for the 
modeling approach were coded and computed in different ways in different datasets and thus are not 
directly comparable.  Due to limitations in the sample size of the European datasets, the threshold for 
the binary classification of the injury severity variable has to be aligned to a level that may not 
correspond to the injury severity limits addressed in regulations. 

Another issue is the effect of the consumer information programs on the vehicle safety performance. 
Consumer test requirements may exceed regulatory requirements and thus the vehicles involved in real-
world crashes may not represent the safety level requested in regulatory standards. These consumer 
rating systems can influence vehicle safety design and sales patterns, particularly for affluent sectors of 
the population. In some cases, the rating system is so important to marketing and market share for the 
vehicle that they act as de facto regulations. 

The last issue described in this section is the evaluation of crash avoidance systems. A significant impact 
on traffic safety is expected by the introduction of crash avoidance and mitigation systems, but this is 
not easily measured because the presence of equipped vehicles is quite low in the available accident 
datasets. Further it is questionable how data from field operational test can be used to identify a crash 
avoidance and mitigation benefit for a specific system.  

Data harmonization 

Method of Calculating Delta V 

One of the most frequently used parameters to describe the severity of a crash is the change in velocity, 
commonly  known  as  ‘Delta-V’.  It  describes  the  vector  difference  between  the  inbound and the 
outbound velocity immediately before and after a crash event and therefore has a magnitude and a 
direction. In crash databases the Delta-V generally states the magnitude, whereas the direction is 
expressed in  the  ‘principal direction  of  force’  (PDOF). While the use of these terms is universal, the 
methods of calculating them differ between databases as they use different data collected from the 
crash site and vehicle damage measurements. 

In general, with on-site crash data collection, it is possible to identify the inbound directions, collision 
points, and end positions of the collision participants. Thus, a trajectory-based reconstruction is feasible. 
The Delta-V and the PDOF are then calculated from the difference of the run-out and run-in momentum 
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vectors. Databases that use this reconstruction method include the German GIDAS study, the Austrian 
project ZEDATU, and the Swedish INTACT project. Most often, a program called PC Crash is utilized, 
which is a momentum-based crash reconstruction program. 

PC-Crash was validated in 1996 on its capability to estimate immediate pre-impact speeds and post-
crash trajectories (Cliff & Montgomery 1996). Unfortunately the accuracy of the estimation of Delta-V 
was not part of the validation. It is believed that reconstruction results with PC Crash do not show a 
systematic bias towards higher or lower Delta-V values. 

Most often when the crash site is investigated retrospectively, there is less chance to identify the input 
parameters for a reliable trajectory-based reconstruction. Nevertheless, the energy absorbed during the 
crash can be estimated by measuring the residual crush of the vehicle and applying an estimate of the 
stiffness to the measured crush area. From the crush energies and masses of the crash participants a 
Delta-V can be calculated, either neglecting or considering the restitution of the deformed area (Nolan 
et al. 1998). 

The NHTSA in the US developed  an  algorithm  based  on  an  incremental  impact  model  called  ‘CRASH3’  
which is used in programs like WinSMASH or AI Damage. WinSMASH is used for the NASS-CDS study in 
the US and AI-Damage was used for the CCIS project in the UK. The main difference between the 
programs is the application of different vehicle structural stiffness values that allow for vehicle fleet 
differences between the US and UK, and the consideration of a coefficient of restitution in AI Damage, 
which is not available in WinSMASH. Earlier studies have shown that the application of WinSMASH to 
frontal crashes result in an average underestimation of Delta-V by 23% compared to event data 
recorders (EDR) (Niehoff & Gabler 2006). The underestimation was identified to be strongly dependent 
on the vehicle type. The use of vehicle-specific stiffness coefficients reduced the underestimation to 
about 11%. This study also showed that adding a restitution coefficient would reduce WinSmash's 
underestimation to about 1%. 

WinSMASH itself had a major update in 2008 when a new library of specific stiffness values for 
passenger vehicles was introduced. In 2009, with the updated stiffness values, the underestimation of 
Delta-V in straight and angled frontal crashes in car-to-car collisions was assessed to be 16%, which was 
a significant improvement from the older WinSMASH version (Hampton & Gabler, 2009; 2010). Another 
study showed an underestimation of Delta-V for frontal car-to-car crashes by 11% in cases of large 
overlap and by 17% in cases of small overlap (Ireus & Lindquist 2014). For side crashes, an 
overestimation of Delta-V by 13% was identified when impacted by a car and by 2.4% when impacted by 
light trucks or vans (LTV) (Johnson & Gabler 2014). 
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Table 4. Published estimates of difference between  
updated WinSMASH 2008 DeltaV and EDR by crash mode. 

Damage based Delta-V Estimation (WinSMASH 2008) 

Crash Types Other Details Error compared to EDR 

Frontal Crashes Average - 16% 
Small overlap - 17% 
Large overlap - 11% 

Side Crashes Impacted by car + 13% 
Impacted by LTV + 2.4% 

 

It is distinctly possible that there is a biased relationship between the two methods of Delta-V 
reconstruction. To resolve the issue, case data from the Swedish INTACT project will be used to develop 
a relationship between Delta-V calculated using WinSMASH, as is done in the NASS-CDS database (which 
is similar to the AI Damage protocol), and a trajectory-based reconstruction using PC Crash. This is 
possible because INTACT< unlike other in-depth databases, contains sufficiently detailed information to 
allow application of both damage-based and trajectory-based reconstruction methods.   INTACT allows 
an export of relevant crush measurements for usage in WinSMASH (pre- and post-2008 version) and AI 
Damage, and thus a side-by-side comparison of Delta-V from PC Crash, WinSMASH pre-2008, 
WinSMASH post-2008, and AI Damage. In case the methods produce different results, a means for 
adjusting a bias among the three methods will be developed. 

So far, 49 crashes involving 67 passenger cars have been reconstructed with PC-Crash in INTACT that 
have sufficient data for calculating Delta-V using WinSMASH. There may be other cases in the database 
that could be used for the comparison. 

Appendix C contains a more detailed explanation of the different methods of Delta-V calculation. 

Injury Definition 

The preferred injury outcome is to examine injures of severity AIS3 or greater, as well as all fatalities 
(MAIS3+F), because these injuries most closely correspond to the severity addressed by regulatory test 
criteria. For example, the neck intercept criteria Nij = 1 corresponds to a 22% probability for AIS3+ neck 
injury and the chest acceleration level of 60g corresponds to a 25% probability of AIS4+ chest injury. 
However, preliminary review indicates that the sample of MAIS3+F injured passenger car occupants will 
be too small in EU datasets if this injury level is used. Instead, we will use MAIS2+F as the injury 
outcome.  

In doing so, we are implicitly assuming that ratios of more severe injuries are constant across 
crash/vehicle/occupant characteristics, and that results related to MAIS2+F apply to higher injury levels 
(e.g.,  MAIS3+F  or  fatality).  This  is  known  as  the  “proportional  odds  assumption”  (UCLA 2014)and it will 
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need to be tested. To the extent that the proportional odds assumption is not supported, we will need 
to develop a model of how MAIS3+F (and F only) are related to MAIS2+F. This can be done using the 
larger NASS-CDS dataset. The logic is that because bodies are physiologically the same in the EU and US, 
the relationship between risk of MAIS2 and risk of MAIS3 is simply a function of biomechanics and 
should not be different in the EU and US. However, some crash/vehicle/occupant characteristics might 
have different associations between risk of MAIS3+F and MAIS2+F. An example is given below that 
shows how CDS has been used for a similar purpose. 

Figure 3 and Figure 4 are taken from a previous analysis, and use CDS data to estimate the risk of AIS2+ 
and AIS3+ injury by body region from 1999-2010. The head, thorax, and lower extremities have the 
highest risks at each injury level, but the order changes with severity. Upper extremity injuries are also 
among the body regions with higher risk when considering AIS2+ injuries, but not AIS3+ injuries. This 
initial look shows that trends with time for each body region tend to be similar for each injury level.  

 

Figure 3. Risk of AIS2+ injury to each AIS body region for each crash year  
(vehicles aged 10 years or less) 
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Figure 4. Risk of AIS3+ injury to each AIS body region for each crash year  
(vehicles aged 10 years or less) 

The interpretation of the figures in this context would be an adjustment to the interpretation of 
MAIS2+F risk in different crash types. As a hypothetical example, if young occupants with MAIS2+F 
injuries have a preponderance of upper-extremity injuries and older occupants with MAIS2+F injuries 
have a preponderance of thorax injuries, then a much larger percentage of older occupants would be 
expected to also have MAIS3+F injuries, compared to young people. Thus, a 2:1 risk ratio for older vs. 
younger occupants with MAIS2+F injuries might translate to a 4:1 risk ratio for MAIS3+F injuries. These 
relationships can be measured using CDS data to allow for a more nuanced interpretation of results. We 
will work under the assumption that risk differences in MASI2+F injuries between EU- and US-regulated 
vehicles will translate to same-directional risk differences in MAIS3+F injuries as well.  Under this 
assumption, the magnitude, but not the direction of differences, is the issue with using MAIS2+F as the 
dependent measure. 

Consumer Information Programs  

Both the US and the EU vehicle markets are influenced by consumer rating schemes and reward 
systems. NHTSA runs extra tests to provide more information to consumers through its NCAP process. 
These tests are run at a higher severity than regulatory tests, and results from frontal, side impact, and 
rollover tests are used to generate vehicle star ratings. The Insurance Institute for Highway Safety (IIHS) 
is an independent organization funded by the insurance industry, and it publishes safety ratings for 
vehicles based on several tests that differ from those used in NCAP evaluations.          

From a crashworthiness standpoint, Euro NCAP includes several types of barrier tests run at higher 
levels than required by regulation.  These include a 40% offset frontal, a pole side impact test, and a 
barrier side impact test.  The program also evaluates vehicle features intended to mitigate whiplash 
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injuries and pedestrian injuries.  For child occupants, child restraint compatibility, performance in front 
and side impacts, and inclusion of other child-friendly safety features are rated.   

Consumer information programs also provide information regarding crash avoidance technologies. In 
addition to the star-rating scheme, Euro NCAP also has a reward system (called Euro NCAP Advanced) 
for safety technologies or crash avoidance systems. In their current reward system, Euro NCAP has 
tested Blind Spot Monitoring, Lane Support Systems, Speed Alert Systems (ISA), Autonomous Emergency 
Braking, Attention Assist, Automatic Emergency Call (eCall), Pre-Crash Systems, Vision Enhancement 
Systems, and Multi Collision Brake. Compared to Euro NCAP, NHTSA only includes three active safety 
systems in their reward systems; these are Electronic Stability Control, Lane Departure Warning, and 
Forward Collision Warning. The reward systems help to increase public awareness of these rather new 
safety systems. It should be noted here that the availability of the crash avoidance technologies are not 
part of the 5-Star Ratings System by NHTSA. The IIHS recently added assessments of Frontal Collision 
Warning systems and automatic braking systems to their vehicle ratings. Appendix D specifically 
summarizes how different crash avoidance technologies are addressed by different consumer 
information programs.  

The proposed analysis will primarily focus on regulations and not consumer information programs, but 
the Phase 2 analysis will explore the use of vehicle rating it as a predictor to estimate its effect. The goal 
is to remove any effect of purchase decisions that emphasize vehicles that perform above minimum 
(regulatory) standards. However, consumer information programs are not barriers to selling vehicles in 
the marketplace, and are thus not the focus of the analysis. Some of the rating systems change over 
time and only a subset of vehicles are tested and rated, so it may not be possible to associate every 
vehicle in the database with a rating. The high quality datasets are largely from countries that are 
wealthy and where vehicle purchasing may be driven by ratings. 

Assessing Crash Avoidance Benefits 

In the realm of crash avoidance, more and more vehicles are now equipped with advanced driver 
assistance systems, such as frontal collision warning (FCW) and lane departure warning (LDW). It is 
highly likely that such systems would be available in even more vehicles in the future, both in the EU and 
the US. Crash avoidance research efforts, particularly field operational tests (FOTs), were reviewed to 
determine if they could prove useful to identify whether such systems operate in the same way and 
whether they would give the same safety performance when being used in the EU and the US. Results 
were not clear with respect to how one could use information on the potential safety benefit of certain 
advanced driver assistance and crash avoidance systems for the purpose of this project. We illustrate 
the issues by taking one project in the EU and one project in the US as examples. 

Though there have been many research projects conducted to evaluate the effectiveness of advanced 
driver assistance and crash avoidance systems, most such studies were done at a national level (i.e., per 
country) or even a smaller scale. To our knowledge, the EuroFOT project (Kessler, et al. 2012) was the 
first that tried to evaluate the effectiveness of such systems at a scale beyond a national level. Forward 
collision warning systems, lane departure warning systems, and adaptive cruise control systems from 
different vehicle manufacturers were tested in different European countries. EuroFOT also tried to 



27 
 

estimate the potential safety benefit of these three advanced safety functions at EU level. However, an 
estimation of the potential safety benefit at the EU level could only be made for a combination of 
forward collision warning and adaptive cruise control (see Table 1 in (Malta et al., 2012)). Besides the 
three mentioned systems, the EuroFOT project also tested six other systems, but each of them was 
tested at a single-country level or smaller.  

A recent example of FOT studies in the US is the Integrated Vehicle-Based Safety Systems (IVBSS) project 
(Sayer et al. 2011). The systems studied in IVBSS were forward crash warning, lane drift warning, lane-
change/merge warning, and curve speed warning, tested on light and heavy vehicles. Name-wise, these 
systems are very similar to the ones tested in EuroFOT. However, the implementation of the systems are 
different; the ones tested in EuroFOT are systems that were already available on the market at the time 
of the FOT from the different vehicle manufacturers, while those tested in IVBSS were prototype 
versions, and did not represent particular vehicle brands. For the light vehicles, IVBSS provided an 
estimation of the potential safety benefit of the integrated system (i.e., a bundle of four systems) and 
forward crash warning as an individual system (see Table 25 in (Nodine, Lam, Stevens, Razo, & and 
Najm, 2011)). 

The two projects used similar main ideas to estimate the safety impact on the EU level (for EuroFOT) and 
for the whole US (for IVBSS). That is, they first identified and calculated the target crash populations for 
the different systems, then identified changes related to safety by comparing FOT data with and without 
systems. Finally, they projected these changes in terms of reduction of crashes on the national level or 
beyond. While the main ideas on how to estimate the safety impact on the EU level and the whole US 
are similar, the results cannot and should not be compared directly. This is because the way the 
estimation task was implemented in the two projects is likely to be different, as it depends on the 
availability of crash databases in the area of interest, how detailed the available crash databases are, 
specific implementation of the systems (e.g., a system is designed to work only above certain speed), 
and the indicators and indicator levels were used to determine changes with and without systems. 
Furthermore, the effectiveness of the driver assistance and crash avoidance systems could be affected 
by the traffic environment and general driving style on the area of usage. For example, a majority of lane 
departure warning systems (including all the variants) depend on clear lane markers, so the system may 
not function well due to snow, mud, heavy rain, fog, road conditions, unusual/indistinct lane marker, 
etc. (see  e.g.  “What  are  the  limitations”  at  http://www.euroncap.com/rewards/infiniti_ldp.aspx). This 
means that the effectiveness of lane-departure warning systems in a specific country may not reflect the 
effectiveness of the same system in another country with very different road conditions and weather 
conditions.  

Besides having safety benefits, driver assistance and crash avoidance systems could potentially have 
risks too.  For example, drivers might adapt to be less attentive ((Bayly, Fildes, Regan, & Young, 2006) 
and (Wege, Will, & and Victor, 2013)). However, further research is needed to be able to measure this 
aspect.  

To conclude, knowledge from current literature does not give enough evidence to say with sufficient 
confidence whether or not the vehicles equipped with advanced assistance and crash avoidance systems 
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that have been tested in the EU would have the same safety performance in the US or the other way 
around. The main difficulties are the following: 

 Lack of results on EU level; 
 Results are often available concerning a combination of systems; such results could only be 

compared with the results from the same combination of systems; 
 Even systems which are called the same name may actually be different (e.g., how they were 

implemented and their operation range); 
 Potential side-effects of such systems (e.g., behavioral adaptation) have been indicated in a 

handful of cases, but have not been quantified. 

STATISTICAL METHODS 

Overview of Statistical Approach 

A key challenge of this analysis is that because of current regulations (i.e., separate regulatory 
environments for the EU and US), there are no field data that speak directly to the question of whether 
US-regulated and EU-regulated vehicles perform similarly when driven in the other region11. To address 
this, we must use statistical models to represent expected real-world performance of the two vehicle 
groups as well as the expected driving/crashing environment in which they might be driven in the 
future. We also need models of how other-region vehicles are likely to enter the fleets, because this will 
influence the expected driving/crashing environment as well. Finally, we need a way to compare the 
performance of these models to estimate relative risk associated with mutual recognition.  

To explore evidence for the stated hypothesis (of real-world equivalence), we require seven model 
components: 

a. A statistical model of injury risk to an occupant of an EU-regulated vehicle, given the conditions 
of any crash/occupant/vehicle combination 

b. A statistical model of injury risk to an occupant of a US-regulated vehicle, given the conditions of 
any crash/occupant/vehicle combination  

c. A standard population of crashes in the EU, described by crash/vehicle/occupant characteristics; 
this population must arguably represent a likely near-future crash population for the EU 

d. A standard population of crashes in the US, described by crash/vehicle/occupant characteristics; 
this population must arguably represent a likely near-future crash population for the US 

e. One or more models of how US-regulated vehicles might enter the EU market 
f. One or more models of how EU-regulated vehicles might enter the US market 
g. A means of measuring the evidence for how injury risk in EU- and US-regulated vehicles is likely 

to differ (or not differ) in a particular crash population 

                                                           
11 Note: Both EU- and US-regulated vehicles are driven in a common driving environment in New Zealand. Those 
data do not address the basic question of how EU and US vehicles would perform side-by-side in the US driving 
environment or EU driving environment. 
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In the overview that follows, we will use crashworthiness, or injury risk, as an example. To develop a 
statistical model of crashworthiness in EU-regulated vehicles, we can use field data from the EU. Our 
model will predict injury risk to passengers of EU-regulated vehicles involved in crashes, as a function of 

characteristics of those crashes. This can be represented as in Equation 1. 

 predicted probability of injury = f(crash, vehicle, occupant characteristics) (1) 

In Equation 1, f is a function that takes crash, vehicle, and occupant characteristics and returns a 
probability value between 0 and 1. That probability value is our best guess as to injury risk for a specific 
occupant in a specific vehicle and crash. However, the model will also have associated uncertainty that 
results in a distribution of predicted injury risk for each case. This is shown in Equation 2 below. 

  predicted distribution of injury risk= f(crash, vehicle, occupant characteristics)+uncertainty (2) 

Equation 2 gives a more complete picture of the model of injury risk. Rather than predicting a single 
value of injury risk for each case, the model returns a probability distribution of predicted risk. Thus, for 
example, if a 50-year-old belted male driver were involved in a 30-km/hr Delta-V crash in an EU-
regulated vehicle, the model might predict that his true value of injury risk is estimated according to the 
distribution in Figure 5. That is, the true value is unknown (and unknowable), but the model predicts 
that the true value is most likely to be 0.05, less likely (but still possible) to be 0.04 or 0.06, and 
extremely unlikely to be 0.02 or 0.08 (and so on).  

 

Figure 5. Illustration of risk model with uncertainty. In this example, the distribution 
represents the probability that each value is the true value of injury risk for a single 

combination of crash, vehicle, and occupant characteristics. 

The same process can be used with US crash data to develop (b), the model of injury risk in US-regulated 
vehicles as a function of crash, vehicle, and occupant characteristics. Once again, we must account for 
the level of uncertainty in the model.  
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The key role of the injury risk models, (a) and (b), is to separate injury risk from the driving environment. 
This is critical because we are trying to envision how occupant risk will be affected by putting a set of 
vehicles into a different environment. For example, rollover crashes may be less common in the EU 
compared to the US. However, if an EU-regulated vehicle is sold in the US, it would be expected to 
experience a rollover at the US rate, not the EU rate. To predict how this might work in the future, we 
must estimate risk of injury given a rollover for the EU-regulated vehicles, independent of whether 
rollover is common or uncommon in the EU. Similarly, larger vehicles are more common in the US than 
in the EU; hence, small vehicles may experience lower-severity crashes in the EU, on average, compared 
to the US (because they are less likely to hit larger vehicles). However, the injury risk model for the small 
EU vehicle should predict injury risk given a specific Delta-V value. Thus, when sold in the US, the same 
vehicle would be expected to experience a larger number of high Delta-V crashes than it would have in 
the EU (because it will crash with larger cars on average), but we can predict the injury risk on the basis 
of the new expected Delta-Vs that that vehicle would experience in the US environment. 

Once developed, the EU and US injury risk models must be compared. The simplest comparison would 
be to determine whether the models are identical. If the risk models are identical, then performance will 
be the same, regardless of the exposure of EU- and US-regulated vehicles to different types of crashes.  

The first of our three proposed approaches, Seemingly Unrelated Regression, or Approach 1, tests this 
hypothesis. A critical challenge in testing this hypothesis is that because we are interested in the 
strength of evidence that the models are the same, traditional hypothesis testing is not appropriate. 
Traditional  hypothesis  testing  sets  the  hypothesis  of  “same  models”  as  the  null,  or  default,  hypothesis  
and only looks at evidence that the observed data violate that hypothesis. However, evidence against 
rejecting the null hypothesis is not the same as evidence for the null.  

Thus, in Approach 1, we must measure the capability of the data and model to detect differences of 
various sizes when they do exist, in addition to measuring the evidence for a difference. Depending on 
the size of differences that are considered important, this method may or may not provide a conclusive 
result.  

In the case where the two models are shown to be different or evidence is inconclusive, it is not 
necessarily the case that the overall consequences across the crash population will be different as well. 
Indeed, risk differences under different crash conditions are likely since the regulatory environments 
may seek to optimize performance for the crash conditions most relevant to the region. However, since 
populations of crash conditions are quite varied, different risk models can produce similar or different 
overall injury risk. 

To take a simple example, suppose that there are two types of crashes, A and B. Table 5 shows a 
hypothetical scenario for type-specific injury risk and overall injury risk. In this example, EU-regulated 
vehicles have 1% injury risk in crash type A and 2% injury risk in crash type B. The EU crash population is 
made up of ¾ crash type A and ¼ crash type B. US-regulated vehicles have the reverse risk and the 
reverse population proportions. Thus, one could argue that regulation has been optimized for the 
different crashing environments. When a US-regulated vehicle is driven in the EU, it will be exposed to 
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the EU crash environment and because injury risk is higher in the more common crash type A, overall 
injury risk across all crashes will be higher for US-regulated vehicles driven in the EU environment. The 
risk ratio (EU/US) is less than one, indicating that occupants of EU-regulated vehicles are at lower risk of 
injury in the EU crash environment. However, when EU-regulated vehicles are driven in the US crash 
environment, they are exposed to more of crash type B. The pattern reverses in this situation, and the 
risk ratio (EU/US) across all crashes in the US population is greater than one, indicating better 
performance for US-regulated vehicles in that driving environment. 

Table 5.  
Illustration Using Hypothetical Risk and Crash Type Scenarios 

Region Injury Risk Proportion of 
Population 

Overall Injury Risk Across All 
Crashes  

Crash 
Type A 

Crash 
Type B 

Crash 
Type A 

Crash 
Type B 

EU Crash 
Environment 

US Crash 
Environment 

EU 0.01 0.02 0.75 0.25 0.01*0.75+ 
0.02*0.25= 

0.0125 

0.01*0.25+ 
0.02*0.75= 

0.0175 
US 0.02 0.01 0.25 0.75 0.02*0.75+ 

0.01*0.25= 
0.0175 

0.02*0.25+ 
0.01*0.75= 

0.0125 
Risk Ratio 
(EU/US) 

    0.714 1.40 

 

As discussed earlier, Approach 1 tests the hypothesis that the risk models for EU- and US-regulated 
vehicles are the same. If they are, then the vehicles are functionally equivalent, even if the crash 
populations differ; this means that occupants of EU-regulated vehicles will have the same injury risk 
when driving in the US as the occupants of US-regulated vehicles, and vice versa. In contrast, Approach 2 
assesses the consequences of models that are either shown to be different or for which evidence for 
“same”  vs.  “different”  is  inconclusive.  In  Approach  2,  both  models  will  be  exercised  on  the  EU  
crash/vehicle/occupant population as well as the US crash/vehicle/occupant population. Assessment of 
the overall risk for the two populations will be done in parallel and results cannot be merged. Thus, as in 
Table 5, there will be two results. 

To exercise the risk models, we need a standard population of crashes that represents crashes in the EU 
(i.e., item (c)) and another standard population of crashes for the US (item (d)). In the crashworthiness 
case, this population will consist of a large number of occupants who were involved in crashes, along 
with the crash/vehicle/occupant descriptors that are needed for both risk models. The collection of 
occupants should approximate the likely distribution of crash-involved occupants in each region in the 
near future (i.e., the time when mutual recognition could be in effect). Thus, if older occupants make up 
20% of crash-involved occupants in the EU, then the EU standard population should include about 20% 
older occupants. Similarly, if rollovers make up 5% of crashes in the EU, then about 5% of occupants in 
the standard population should be in rollovers. 
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For the US standard population, we will use the NASS-CDS population for 2012. CDS populations are 
used by NHTSA to estimate benefits and consequences of regulations and NCAP ratings. For the EU 
standard population, GIDAS employs a weighting method adopted by the European Commission (EC) for 
EuroNCAP Advanced Technologies Assessment. That method will be replicated in this analysis. 

The example in Table 5 does not address the model uncertainty that was discussed after Equation 1 and 
shown in Equation 2. In exercising the risk models on the standard populations, we must also account 
for model uncertainty. Thus, the results of Approach 2 will be distributions that represent the probability 
of a variety of possible true overall consequences. The less uncertainty there is regarding the predicted 
probability of injury, the less uncertainty there will be in the bottom-line risk ratios.   

Another issue that must be addressed in Approach 2 is the nature of the expected fleet penetration of 
other-region vehicles into the standard populations (items (e) and (f)). The simple model illustrated in 
Table 5 and discussed afterwards would compare the overall risk ratio across all crashes in each 
population. However, it is unlikely that US-regulated vehicles will replace EU-regulated vehicles in the 
EU fleet at random (and vice versa). Instead, it is likely that certain vehicle types will be more often 
purchased from among US-regulated vehicles and other vehicle types will be more often purchased 
from among EU-regulated vehicles. There is no expectation that mutual recognition would substantially 
change the fleet composition in either region with respect to vehicle type (e.g., percent of small cars vs. 
large cars), but if fleet penetration of other-region vehicles differs by vehicle type, bottom-line risk can 
be affected. Although (e) and (f) are not developed from data, they will need to be discussed and agreed 
upon. 

Approach 2 provides a nuanced way of assessing risk models and their likely consequences. However, it 
is focused on the single best risk model for each vehicle group (EU-regulated and US-regulated). 
Approach 3 turns the question around, and instead of focusing on a single model, it assesses the 
evidence for groups of models that produce equal consequences. 

In contrast with the first two approaches, Approach 3 evaluates a large number of possible models of 
risk in EU- and US-regulated vehicles. Many models are highly unlikely, but many other models are only 
slightly less well supported by the data than the best model. Moreover, there are many different models 
that lead to the same population-wide risk ratios.  

Using Bayes Factors, it is possible to measure the evidence for groups of models. Models will be grouped 
according to their population-wide outcome for the EU standard population (using the appropriate fleet 
penetration model), and separately grouped according to their population-wide outcome for the US 
standard population. For a given group of possible models, evidence can be measured and also 
compared to the evidence for a different group of possible models. Bayes Factors are defined as the 
ratio of evidence for one group of models over another group, thus providing a measurement of the 
comparison of evidence. Approach 3 is computationally more intensive than the other two approaches, 
but it has the advantage of addressing the question in a different way, thus triangulating an answer to 
the original question of essential equivalence in field performance. 
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In summary, we plan to take three different analysis approaches to assess the evidence for various 
injury risk models, focusing on the consequences of these models and the evidence for them. Results 
from the three approaches form a more complete picture of how the regulatory environments affect 
injury or crash risk and how this would affect risk if mutual recognition were adopted. The three 
proposed strategies are: 

1) Test the hypothesis that EU and US injury risk models are identical; 
2) Choose the best EU and best US models independently and assess injury consequences, taking 

into account model uncertainty; 
3) Assess relative strength of evidence for groups of models that result in equal consequences. 

Throughout the next sections, we discuss the methods applied to crashworthiness analysis, which will 
use logistic regression. The same methods will be applied to the crash avoidance analysis, but we will 
use Poisson or Negative Binomial regression models for that case rather than logistic regression models. 
These models fall into the same class of general linear models as logistic regression, but are most 
appropriate for count data (as opposed to binary outcome data).  

Statistical Modeling 

Logistic Regression 

The purpose of logistic regression in this methodology is to develop models of injury risk as a function of 
crash, vehicle and occupant predictors for EU- and US-regulated vehicles. Logistic regression is used in a 
wide variety of applications when the response variable has a small number of possible outcomes. The 
binary outcome case is most common, and will be described here.  

Suppose the response variable, y, for an occupant is assigned a value of 1 if a crash resulted in MAIS2+F 
injury to the occupant, and is assigned the value of 0 if a crash resulted in little or no injury to the 
occupant. The dataset also has a set of r predictors, x1, x2…xr each of which describes a characteristic of 
the crash, vehicle, or occupant in each case. Predictors might include direction of impact, weather 
conditions, and occupant age, among others. 

The logistic regression model uses these data to predict the risk of MAIS2+F injury, given the predictors, 
according to the formula given in Equation 3.  

 𝑝̂ = ଵ

ଵା௘ష(ഁబశ∑ ഁ೔ೣ೔)
ೝ
೔సభ

 (3) 

where 𝑝̂ is the predicted probability of injury, 𝛽଴ is the intercept, the 𝛽௜ are coefficients of the 
predictors, and xi’s  are  the  predictor  values. The model-fitting process results in estimates of the 𝛽’s  and  
an additional error component that measures model uncertainty using any lack of fit of the model to the 
data. 

Logistic regression is a type of general linear model in that a simple transformation of the predicted 
outcome is related to a linear function of predictors (though individual predictors can also be 
transformed). Here, the odds of serious injury are defined as p/(1-p). Logistic regression models the ln 
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odds of MAIS2+F injury for each occupant on the left side of the model equation as a linear function of 
predictor variables on the right side of the model equation. For N occupants, the model equation is 
shown in Equation 4.  

 𝑙𝑛 ቀ ௣೔
ଵି௣೔

ቁ = 𝛽଴ + 𝛽ଵ𝑥௜ଵ + ⋯+ 𝛽௥𝑥௜௥                            𝑖 = 1,…𝑁 (4) 

where 𝛽଴ is the intercept parameter, 𝛽௝, 𝑗 = 1,… , 𝑟 are regression coefficients or slope parameters, 
and 𝑥௜௝  are known predictor variables such as Delta-V or occupant age. Note that this formulation is 
equivalent to Equation 3, but focuses on the linear portion of the equation. Like many models, logistic 
regression models are fit using the method of maximum likelihood, which is described in more detail in a 
subsequent section. 

Since the left side of the model equation represents the ln odds of MAIS2+F injury, the slope parameters 
have interpretations as ln odds ratios. For a continuous predictor x such as Delta-V, the slope parameter 
attached to it represents the ln odds of MAIS2+F injury for a unit increase in Delta-V at fixed values of all 
other predictors. So if the coefficient for Delta-V in the model is 0.039, then the corresponding odds 
ratio for Delta-V is 𝑒଴.଴ଷଽ = 1.04. This odds ratio indicates that the odds of MAIS2+F injury increase by 
4% for each increment of Delta-V if all other predictors are kept constant. For a binary predictor such as 
seat belt use that is coded 0 if the occupant did not use a seat belt and 1 if the occupant did use a seat 
belt, the slope parameter represents the ln odds of MAIS2+F injury for occupants who wore a seat belt, 
compared to those who did not. If the coefficient in the model for belt use is -0.69, the odds of MAIS2+F 
injury for a belted occupant is 50% of the odds for an unbelted occupant (𝑒ି଴.଺ଽ = 0.5). Because 
multiple predictors are included in the model, an odds ratio for a variable is interpreted under the 
assumption that it has been adjusted for the other predictors included in the model. 

In this context, coefficients can be interpreted as describing the performance of occupant protection 
systems in a variety of contexts. For example, a positive age coefficient means that older occupants are 
at greater risk than younger occupants. This would be expected based on fragility of older people. 
However, a shallow age slope means that occupant protection works nearly as well for older occupants 
compared to younger ones, whereas a steep age slope means that younger occupants are protected 
much better than older occupants. Taking this a step further, the coefficients of the EU and US models 
can generally be compared, and any differences in those coefficients reflect differences in occupant 
protection systems in vehicles. Note, however, that coefficients are always in the context of the entire 
model—the presence of other predictors will affect the magnitude of a given coefficient. Thus, a simple 
comparison does not tell the whole story, and it is necessary to implement the model on the entire 
crash population to understand how two different models actually compare for different cases, as well 
as across the population as a whole. 

An additional challenge surrounds estimation of the intercept, or β0. With logistic regression, 
coefficients of predictors are unbiased, even when the underlying sample is biased (Breslow, 1996). For 
example, the underlying sample might use inclusion criteria that emphasize more severe crashes, but 
the coefficients will be the same as they would be with a random sample of crashes. In contrast, the 
intercept is biased when the sample is biased. If inclusion criteria for the EU and US datasets are 
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equated, the intercepts should correctly reflect the risk of that type of crash. However, if inclusion 
criteria are implemented differently, the biased intercepts could introduce overall risk differences that 
do not reflect true risk differences.  

To address this challenge, we can use cases where risk should be the same to calibrate the model. One 
example of such cases might be those where specific elements of specific vehicles are identified that are 
sold unchanged in both the US and the EU. In principle, identical safety systems should produce identical 
injury risk under identical crash/vehicle/occupant conditions. If the models produce risk differences 
under the same crash conditions (relevant to the unchanged safety systems), then the intercepts may be 
out of calibration and will need to be adjusted accordingly.  

One advantage of logistic regression is that when the outcome of interest is rare, an odds ratio can be 
interpreted as relative risk. For crash outcomes, serious injury to occupants is rare compared to no 
injury. In other words, in crash datasets, the binary y variable often has many more 0 outcomes (no 
injury) than 1 outcomes (serious injury). In that case the odds ratio approximates a relative risk and it is 
appropriate use logistic regression as an exposure-based risk model (Greenland & Thomas, 1982). 

Poisson Regression 

Unlike logistic regression, in which the response is binary, the response variable for Poisson regression is 
a count. The Poisson model is the standard model for the analysis of rates. The numerator of the rate is 
a count, such as the number of crashes, and the denominator of the rate is a measure of exposure, such 
as vehicle-miles traveled (VMT). Therefore, data used in a Poisson model are aggregated in the sense 
that each observed rate is a ratio of a sum of crashes and a sum of exposures taken over combinations 
of predictor variables. 

Poisson regression models the ln rate on the left side of the model equation as a linear function of 
predictor variables on the right side of the model equation. For N rates, the model equation is Equation 
5.  

𝑙𝑛 ቀఓ೔
௧೔
ቁ = 𝛼 + 𝛽ଵ𝑥௜ଵ + ⋯+ 𝛽௥𝑥௜௥                            𝑖 = 1,…𝑁 (5) 

where 𝜇 is the expected count and t is the measure of exposure in the denominator. The parameter 𝛼 is 
the intercept, 𝛽௝, 𝑗 = 1,… , 𝑟 are regression coefficients or slope parameters, and 𝑥௜௝  are known 
predictor variables such as road type, time of day, or area of operation (rural/urban). As with logistic 
regression, Poisson models are fit by the method of maximum likelihood. 

A relative risk (RR) is the ratio of two rates. If two rates are the same, then the RR=1 or the ln RR=0. 
Since the left side of the model equation represents the ln rate of crashes per unit of exposure, the 
slope parameters have interpretations as ln RRs. For a binary predictor such as rural/urban that is coded 
1 for crashes occurring in rural areas, and 0 for crashes occurring in urban areas, the slope parameter 
represents the ln RR that compares crash rates in a rural area relative to an urban area.  
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As noted above, crash avoidance analysis using Poisson regression requires a measure of exposure. If 
sufficient exposure data is not included in current available datasets, we may use quasi-induced 
exposure instead (e.g., Cuthbert, 1994; Keall & Newstead, 2010).  

Negative Binomial Regression 

Often, the Poisson distribution is not sufficiently flexible to model the variance in a given dataset. The 
Poisson has only one parameter, so it represents a strong assumption about the relationship between 
the mean and variance of the rates (i.e., that they are the same).  

In cases where variance is greater than the Poisson model suggests (called overdispersion), the negative 
binomial can be used instead. The modeling structure and process are exactly the same—ln rates are a 
linear function of predictors and coefficients. However, a separate parameter is estimated to better 
account for variance in the data. 

In the present context, Poisson and Negative Binomial models serve the same function. We will use the 
best-fitting model to estimate crash risk as a function of parameters. 

Likelihood 

Since likelihood forms the basis of our statistical methodology for all three approaches, a brief overview 
is provided here. If we consider all possible risk models, we might include models such as those that take 
the forms listed below: 

𝑝̂ = −6   +   0.14 ∗   𝑑𝑉; 

𝑝̂ = −7   + 0.1   ∗   (𝑑𝑉)ଶ   + 0.2   ∗   𝑎𝑔𝑒; 

𝑝̂ = −12 + 0.2   ∗   𝑎𝑔𝑒 − 1.2(𝑖𝑓  𝑏𝑒𝑙𝑡𝑒𝑑) + 0.9 ∗ cos  (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  𝑜𝑓  𝑓𝑜𝑟𝑐𝑒); 

where dV is the change of velocity (also known as Delta-V), and p̂ is the predicted risk of injury given a 
crash.  

The evidence provided by the data for every model can be characterized by its likelihood, which is the 
probability of the data given the model (Equation 6). 

𝐿 = ∏ 𝑃(𝑫|𝜽)஽  (6) 

where Θ is a vector of coefficients that describes the model, D is the data, P is a probability measure, 
and L is the likelihood, or the product of all the individual probabilities of each data element under the 
model described by Θ. We can visualize this by creating a two-dimensional12 space defining the 
parameters being considered. For this example, we use a simple logistic model with one predictor (dV) 
and two parameters (intercept and slope of dV, denoted by β0 and β1). The predicted risk of an MAIS2+F 
injury given a crash in this model, denoted by p̂ = p̂(dV), is shown in Equation 7. 

                                                           
12 The number of dimensions will be two for the simple model that follows; in general, it depends on the number 
of predictors. 
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𝑝̂ = 1
𝑒ఉబାఉ೏ೇ∗ௗ௏ൗ  (7) 

Note that this value is the unique solution of the logistic regression equation (Equation 8).  

𝑙𝑛 ቀ ௣̂
ଵି௣̂

ቁ = 𝛽଴ + 𝛽ௗ௏ ∗ 𝑑𝑉 (8) 

The data are a series of observations of occupants in crashes, visualized in Table 6. Each observation has 
a value of Delta-V and an injury outcome. The injury outcome is treated as a binary variable, set to 1 if 
the occupant has an injury corresponding to AIS2 or higher (or fatality), and 0 if they are uninjured or 
have AIS 1 injuries only.  

Table 6. Theoretical occupant dataset 

Occupant Number Delta-V Injury outcome (injured=1) 

1 15 0 
2 30 1 
3 10 0 
4 12 1 
… … … 

 

Given a set of observed data, we can compute the probability of getting those particular outcomes 
(given the particular crashes), as the product of each individual outcome probability, under a particular 
model. For the example in Table 6, the likelihood is computed as in Equation 9. 

=   [1 − 𝑝̂(15)] ∗    𝑝̂(30) ∗ [1 −   𝑝̂(10)] ∗    𝑝̂(12) ∗ …   = ቂ1 − 1
1 + 𝑒ି(ఉబାఉ೏ೇ∗ଵହ)ൗ ቃ ∗ …        (9) 

Over  the  whole  parameter  space  in  this  example  (i.e.,  for  each  value  of  β0 and  β1), the likelihood is a 
smooth function and can be graphed as shown in Figure 6. In logistic regression, the pair of parameters 
at the peak of the likelihood surface is chosen as the maximum likelihood estimator of the true 
parameters13. In other words, that parameter pair is the one most supported by the data; of all models 
of the form in Equation 7, it  is  the  one  with  exactly  this  β0 and βdV pair (namely,  β0=-1, βdV =0.9 in Figure 
6) which maximizes the probability of seeing the set of outcomes (Table 6) that have been observed in 
the reality. 

 

                                                           
13 The  expression  ”true  parameters”  refers to the pair of parameters for which the predicted injury risk equals the 
actual real-world injury risk for the considered group of vehicles (e.g. US-certified vehicles).  
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Figure 6. Illustration of likelihood of outcomes;  
the maximum likelihood corresponds to the peak. 

The next step would be to consider the likelihood space for EU vehicles separately from US vehicles, as 
visualized with hypothetical data in Figure 7. The EU model in this hypothetical example is of the same 
form as the US model; i.e., it also is described by Equation 7. The underlying data are different from 
crash-involved occupants of US vehicles. This explains why the likelihood surfaces are different. 

For the EU model, it again is possible to estimate the true parameters by the pair of parameters at the 
peak of the EU likelihood surface; the maximum likelihood estimators may either be the same or 
different from those in the US model.  

p=1/(1+e
-­(-­1+0.9*dV)

) 
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Figure 7. Example likelihood space for EU and US vehicles (not based on actual data) 

Approach 1: Seemingly Unrelated Regression (Test hypothesis that EU and US injury 
risk models are identical) 

In this context, using the crashworthiness problem to illustrate the example, a model can be any 
function of predictors that results in a predicted injury risk. Predictors are fixed qualities of each 
occupant’s  crash  experience,  such  as  age,  gender,  Delta-V, crash direction, model year, and restraint 
use. The real-life outcome is the presence or absence of injury. The model output is the predicted risk of 
injury. For this approach, the modeling process results in estimated coefficients of predictors that go 
into an equation that outputs injury risk.  

After the model-selection process, we end up with two equations: 

EU predicted risk = f(EU Coefficients * predictors) 

US predicted risk = f(US Coefficients * predictors) 

In addition, each equation has an r X r variance-covariance matrix that quantifies the uncertainty 
(variance) in each coefficient, as well as the covariance between coefficients. Note that the same 
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predictors are used in both models. For example, if gender is a significant predictor in one dataset but 
not the other, we will still choose to include gender as a predictor in both models.   

Seemingly Unrelated Regression (SUR) is a technique to test the hypothesis that the EU coefficients are 
equal to the US coefficients, including the intercept. The SUR method uses a standard hypothesis-testing 
framework  in  which  “equal  coefficients”  is  treated  as  the  null  hypothesis. With this approach, we must 
consider the potential for making two types of error: 1) claiming  “different”  when  “same”  is  true, and 2) 
claiming  “same”  when  “different”  is  true. As with all decision algorithms, increased confidence that one 
type of error is low results in lower confidence that the other type of error is low.  

As described mathematically in Appendix E, the probability of a Type II error, or β, (1-β is power) is a 
function of the size of difference being detected and the probability of a Type I error, or α. The test 
statistic, S, and its variance are determined by the modeling process. As output of Approach 1, we can 
describe the relationship between α,  β,  and δ, using a Receiver Operating Characteristic (ROC) curve. A 
theoretical ROC curve is shown in Figure 8.  When  we  refer  to  “large”  and  “small”  differences,  we  might  
consider that a difference in risk ratio of less than 1% is a small difference, and a difference in risk ratio 
greater than 5% is a large difference.  (The actual curves for these values may look different from those 
in Figure 8, although the curve for 1% will be below the curve for 5% for all values of α. The topic of 
quantifying  “large”  and  “small”  differences  will  be  covered  more  fully  in  a  later  section.)

  

Figure 8. Theoretical ROC curve relating the relationship between power and alpha for 
two possible levels of difference between coefficients. 

Figure 9 shows how Type I and Type II errors trade off.  The figure also shows how a large difference, if it 
were to exist, can be detected with more certainty than a small difference. 

To use this curve in the present context, we first need to select values for delta, alpha, and power; in 
choosing two items, the ROC curve defines the third. The choice of δ depends on the size of difference 
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that  is  “close  enough.”  Once  δ is determined, we must select a cutoff for either α or the power, which 
depends on balancing between error types. In traditional hypothesis testing, α is selected to be 0.05 and 
power is often not measured. There, the  goal  is  only  to  reject  or  fail  to  reject  the  hypothesis  of  “same.”  
However, in this context, it would be reasonable to select a target value of power (e.g., 80%) and then 
determine α from the provided function. Figure 9 illustrates this approach. 

 

Figure 9. Theoretical ROC curve with examples of selection of criterion. 

In Figure 9, setting power at 0.8 would result in an α of 0.06 in the case of the large difference and 0.42 
in the case of the small difference. Finally, a p-value is compared to the chosen α level. The p-value 
represents the probability of getting S under  the  null  hypothesis  of  “coefficients  are  the  same”. Note 
that S is independent of α, power, and δ. If the p-value is smaller than α, we conclude that the two risk 
models are different. If it is larger than α, we consider this to be evidence that they are the same (and 
the  probability  of  being  wrong  is  β). 

 As an example of how to interpret these curves, suppose that power is selected to be 80% and the p-
value for the data is 0.29. If we have an 80% chance of detecting a small difference, then we will have a 
42% chance of concluding that the coefficients are different when they are not. In this case, we would 
reject the null because the p-value is less than α, and we have a 42% chance of being wrong. However, if 
we have an 80% chance of detecting a large difference, then we have a 6% chance of incorrectly 
concluding  “different.”  In this case, we conclude that the risk models are the same because the p-value 
is greater than α. This time, we have a 20% (1-80%) chance of being wrong.  

To effectively use this approach, we will need to choose a size of difference that is important to detect, 
based on resulting likely injury consequences. Power is set as the requirement. In other words, we need 
to be able to conclude  “different” if the difference really existed with some minimum probability (e.g., 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

P
o

w
e

r 
(1

-b
et

a)

Alpha
0.06 0.42



42 
 

80%). Alpha is then determined from the ROC curve based on the selected power level and the size of 
the difference. With larger variance and/or smaller sample size (i.e., weak evidence), we will need higher 
alpha values to maintain fixed power. The area under the ROC measures the strength of the evidence for 
detecting a particular difference in this context.  

Appendix E contains more detailed equations relevant to Approach 1. 

Approach 2: Consequences of Best Separate Models 

For the second approach, we will develop separate models for EU and US injury risk and look at their 
consequences on a standard population. In this case, some predictors used in the EU model may not be 
used in the US model and vice versa. Since EU and US vehicles conform to different regulations, they 
would be expected to produce different models of injury risk. The underlying models take the following 
form: 

Distribution of EU predicted risk = f(EU Coefficients * predictors) + EU uncertainty 

Distribution of US predicted risk = f(US Coefficients * predictors) + US uncertainty 

One might be tempted to conclude that separate models generated independently must result in 
different risk, but this is not the case. Different models can produce equivalent risk across the whole 
population. For example, one region may have higher risk in side impacts while the other region has 
greater risk in frontal impacts, but because of the differences in distribution by crash type or age, the 
overall injury risk to each driving population could still be the same. In fact, even in the simplest case 
with only one predictor it is possible to have different models resulting in the same point estimate of 
risk across the whole population. This case will be illustrated first in this section before turning to the 
more complex case including several predictors where the predicted injury risk is not one value but 
rather a probability distribution on several possible values. 

Suppose that we consider models defined in terms of an intercept plus Delta-V and fix two (β0, βdV) pairs 
as maximum likelihood estimators based on the observed data in each of the regions US and EU. This 
approach leads to two predicted risk functions of the form in Equation 7, namely p̂US characterized by 
the coefficients aUS = β0 and bUS = βdV, and  p̂EU characterized by the coefficients aEU = β0 and bEU = βdV. 
Furthermore, we assume that these are different models; i.e., aUS ≠  aEU and/or bUS ≠ bEU. Our goal here is 
to compute the effect of these predicted risk functions across the whole population. These models are 
components (a) and (b) of the seven model elements described above. 

Next, we identify a standard crash-involved occupant population for each region that describes the 
characteristics of crash-involved occupants and the conditions they are exposed to. The standard 
population consists of a set of occupants in crashes, together with data describing the crash, vehicle, 
and occupant. The EU and US standard populations are separate and carried through all analyses in 
parallel. These correspond to components (c) and (d) in the list of model elements. 

For the underlying simple model with only one predictor, let us consider standard populations in which 
𝑁௜ா௎and 𝑁௜௎ௌ occupants are involved in crashes with Delta-V level i in the EU and the US, respectively; 
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the total number of crash-involved occupants are 𝑁ா௎ = ∑ 𝑁௜ா௎௜  and 𝑁௎ௌ = ∑ 𝑁௜௎ௌ௜ . The overall 

predicted risk of a vehicle with risk function p̂  on  the  EU  standard  population  can be computed using 
Equation 10. 

 𝑅ா௎(𝑝̂) = ଵ
ேಶೆ ∑ 𝑝̂(𝑖) ∗ 𝑁௜ா௎௜  (10) 

and the overall predicted risk of a vehicle with risk function p̂  on  the  US  standard  population,  𝑅௎ௌ(𝑝̂), is 
defined analogously, with 𝑁ா௎ and 𝑁௜ா௎ replaced by 𝑁௎ௌ and 𝑁௜௎ௌ, respectively. The risk ratio 

computed on one of the standard populations is the ratio of overall predicted risks in a fixed order; for 
this study, we will always have the risk for EU vehicles is in the numerator and the risk for US vehicles in 
the denominator. This way, the risk ratio computed on the EU standard population is 

𝑅𝑅ா௎ = 𝑅ா௎(̂𝑝̂ா௎)/𝑅ா௎(̂𝑝̂௎ௌ); 
Analogously, the risk ratio computed on the US standard population is 

𝑅𝑅௎ௌ = 𝑅௎ௌ(̂𝑝̂ா௎)/𝑅௎ௌ(̂𝑝̂௎ௌ). 
With these definitions, 𝑅𝑅ா௎ is a measure of the crashworthiness of EU vehicles relative to US vehicles in 

Europe while 𝑅𝑅௎ௌ measures the crashworthiness of EU vehicles relative to US vehicles in the United 

States. For example, outcomes of 𝑅𝑅ா௎ < 1 and 𝑅𝑅௎ௌ > 1 would mean that the overall predicted risk 
of injury given a crash in Europe is lower in EU-certified vehicles than in US-certified vehicles, but in the 
United States, it is the other way around. Roughly speaking, this means that EU vehicles are more 
crashworthy in Europe than US vehicles would be, but US vehicles perform better in the United States 
than EU vehicles would. Note that the EU and US models being the same (i.e., aUS = aEU and bUS = bEU) is a 
sufficient but not necessary condition for 𝑅𝑅ா௎ = 𝑅𝑅௎ௌ = 1.  

For the analysis, we probably need to be able to identify risk ratios relating to a 5% difference or less to 
be able to detect changes resulting in fatality fluctuations on the order of 100 occupants (see last 
section under Statistical Modeling). The variation in outcomes for a given risk ratio is an inherent 
property of risk, not a reflection of modeling uncertainty. Thus for this phase of analysis, we will leave 
that uncertainty out of the comparison process and focus on risk. 

The process described above provides point estimates of the risk ratio based on one predictor, Delta-V. 
A completely analogous process could be applied in case of several predictors; in that case, point 
estimates  can  be  obtained  based  on  the  occupants’  characteristics in the standard population (crash 
type, severity, restraint use, age, etc).  

However, this method has not accounted for model uncertainty so far. Only the best fit predicted risk 
functions were taken into account; considering model uncertainty is especially relevant for cases when 
the likelihood space is less peaked (e.g. see the likelihood space for EU vehicles in Figure 7) and no 
choice of the parameters is substantially better than others. Therefore, a more appropriate approach to 
the problem is to consider a whole distribution of possible parameter values instead of a point estimate.  
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The next step is to estimate a distribution of risk ratios produced by the US and EU models for the 
standard populations via simulation14. This is done in several steps. First, we randomly sample an injury 
risk from the distribution of such risks for each occupant, using the EU injury risk model. Next, we repeat 
the process by selecting an injury risk from the distribution of injury risks using the US model.  We then 
calculate the risk ratio across each of the two standard populations, producing two risk ratios. This 
process is repeated 1000 or more times to produce an estimate of the distribution of risk ratios for the 
EU standard population (RREU) and another distribution of risk ratios for the US standard population 
(RRUS). A detailed mathematical description of this process is found in Appendix E. 

Figure 10 through Figure 12 show three possible theoretical outcomes of this process. In these figures, 
the distribution of 𝑅𝑅௎ௌ is displayed, which is a measure of the crashworthiness of EU vehicles relative 
to US vehicles when driven in the United States. In Figure 10 the most likely EU/US risk ratio is 1.0. The 
shaded area indicates that there is a 71% likelihood that the risk ratio lies between 0.9 and 1.1, i.e., the 
distribution is narrow. This case indicates strong evidence for a claim that the crashworthiness of an EU-
certified vehicle in the US would be similar to the crashworthiness of US-certified vehicles. Figure 11 
shows a similar shape of distribution that is shifted to the right. This means that the best estimate of the 
EU/US risk ratio is 1.15, and there is a 32% likelihood that the ratio lies between 0.9 and 1.1 (shaded 
area). The narrow distribution indicates strong evidence for a risk ratio higher than 1; intuitively, this 
means that EU-certified vehicles are less crashworthy in the US traffic than US-certified vehicles. In 
Figure 12, the best single estimate of risk ratio is 1.05, and there is a 29% likelihood that the ratio lies 
between 0.9 and 1.1. However, the broad distribution of risk ratios indicates that the data are 
inconclusive regarding this value. 

 

 

Figure 10. Distribution of EU/US risk ratio for US standard population, example 1. 

                                                           
14 The simulation process described here is an instance of Monte Carlo simulations (Mooney, 1997). 
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Figure 11. Distribution of EU/US risk ratio for US standard population, example 2. 

 

Figure 12. Distribution of EU/US risk ratio for US standard population, example 3. 

This procedure would then be repeated for the EU population to produce parallel results. We will then 
have an estimated distribution of risk ratios for the standard US population (RRUS) and for the standard 
EU population (RREU). It is possible that the direction of the risk ratios is opposite. This case is similar to 
the outcome of  𝑅𝑅ா௎ < 1 and 𝑅𝑅௎ௌ > 1 for the point estimates that was discussed above and suggests 
that regulations have been optimized to the exposure in each of the regions. 



46 
 

The distribution of risk ratios is likely to include 1, corresponding to equal risk. The smaller the sample, 
the more likely it is to include 1. That is, weaker evidence leads to greater likelihood of failing to reject 
the null. As a result, we will not use a 0.05 cutoff, but will evaluate the strength of evidence, which is 
embodied in the spread of the risk-ratio distribution.  

Approach 3: Evidence for Consequences 

In Approach 2, we calculated the best model and evaluated likely consequences. In Approach 3, we do 
the opposite. We group models in terms of consequences, and then examine the relative evidence for 
each group.  

In Approach 3, we will consider a large collection of possible hypotheses about the true risk models for 
EU- and US-regulated vehicles. For each hypothesis, there is an EU model and a US model. The models 
can be constructed using the same or different predictors. Figure 13 illustrates this idea using the 
likelihood surfaces first introduced in Figure 6 and Figure 7. Recall that in this simple two-parameter 
example, each point in the likelihood space is a pair of coefficients. Here, there is a separate pair for EU-
regulated vehicles and one for US-regulated vehicles.  

 

Figure 13. Hypothetical likelihood surfaces for EU and US vehicles. Risk ratios for the US 
standard population (RRUS) can be computed for each pair of models. 

Each pair of models can be scored in terms of the resulting risk ratio in a single standard population. 
Figure 13 illustrates scores for two particular hypotheses, using the US standard population. These 
scores are labeled as RRUS1 and RRUS2. These pairs (as all pairs) will also have a score using the EU 
standard population, but here we will illustrate using only one standard population.  

It is important to note that in this approach, each hypothesis is treated as if it were true. Thus, the 
consequences on the standard population are calculated without considering any uncertainty. We will 
score each potential hypothesis (i.e., pair of models) and then later measure the evidence for them.  
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Once all model combinations are scored, we group them into RRUS bins, such as .69-.71, .71-.73,…,  .99-
1.01, 1.01-1.03, 1.03-1.05….. For each risk-ratio bin representing a group of hypotheses, we use the data 
to measure the relative evidence for that group. The measure of evidence is the probability of getting 
the data we observed under the hypothesis (or model) being assessed; i.e., likelihood. The evidence for 
a bin is calculated as the weighted average of the evidence for each of the models in the bin.  

Theoretical examples of the evidence are shown in Figure 14 and Figure 15. In Figure 14, the evidence 
peaks narrowly with the 0.98-1.02 bin, supporting a risk ratio in this range. The evidence shown In 
Figure 15 has a wide distribution that does not strongly favor any one risk ratio. 

 

Figure 14. Evidence supports risk ratio in 0.98-1.02 range 

 

0.00E+00�

5.00E-09�

1.00E-08�

1.50E-08�

2.00E-08�

2.50E-08�

3.00E-08�

3.50E-08�

0.6
6-0
.70
�

0.7
0-0
.74
�

0.7
4-0
.78
�

0.7
8-0
.82
�

0.8
2-0
.86
�

0.8
6-0
.90
�

0.9
0-0
.94
�

0.9
4-0
.98
�

0.9
8-1
.02
�

1.0
2-1
.06
�

1.0
6-1
.10
�

1.1
0-1
.14
�

1.1
4-1
.18
�

1.1
8-1
.22
�

1.2
2-1
.26
�

1.2
6-1
.30
�

1.3
0-1
.34
�

1.3
4-1
.38
�

Ev
id
en

ce
�

Risk�Ra o�Group�

Example�1�



48 
 

 

Figure 15. Evidence does not support any particular risk ratio. 

Bayes Factors are ratios of the evidence, or average likelihood, for groups of hypotheses and can be 
interpreted as a direct comparison of evidence for one risk ratio vs. another. They allow us to compare 
the evidence provided by the data for one group/bin of hypotheses to the evidence provided for 
another group/bin of hypothesis.  

A Bayes Factor calculation for Figure 14 is shown below. Bayes Factors > 3 are considered positive 
evidence for the numerator hypothesis, relative to the denominator hypothesis. 

 𝐵𝑎𝑦𝑒𝑠𝐹𝑎𝑐𝑡𝑜𝑟1 = ௘௩௜ௗ௘௡௖௘  ௙௢௥  ோோೆೄ∈[଴.ଽ଼,ଵ.଴ଶ]
௘௩௜ௗ௘௡௖௘  ௙௢௥  ோோೆೄ∈[଴.ଽସ,଴.ଽ଼)

= 3.0 

As described above, groups of hypotheses (that is, risk ratios grouped in the same bin) can be 
considered together in the numerator and denominator. Generating the likelihood of the data within 
any group of hypothesis is done using a weighted average, where the likelihood of each hypothesis in 
the group is weighted by the prior probability of that hypothesis.  

 𝐵 =
∑ ௣(஽|ఏభ)గ(ఏభ)ഇభ
∑ ௣(஽|ఏమ)గ(ఏమ)ഇమ

 (12) 

We will build the multi-dimensional likelihood space for the EU and US based on all predictors that 
showed some value in Approaches 1 and 2. The joint likelihood is the product of the separate likelihood 
values.  The range of these parameter values will also be based on relevant results from the first two 
approaches. We will compute likelihoods for each group of hypothesis that falls within each RRUS bin. 
We then use the Bayes factors to compute ratios for each pairing of hypothesis bins to assess the level 
of differentiation of hypothesis, or to measure the ability of the data to support any particular bin of 
hypotheses. The process will be repeated for RREU. 
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One of the criticisms frequently leveled against Bayesian approaches is that the selection of the prior 
distribution, in this case weights for the weighted average of evidence, influences the results and is 
arbitrary. For this analysis, we need to choose a prior distribution to determine the weights in the 
weighted average of models in each RR bin. If we use equal weight across all hypotheses, the overall 
evidence for the group of hypotheses will be diluted and evidence for all bins will be similar. Some 
models are highly improbable, and their very low likelihood (and poor match to data) will reduce the 
average of  all  hypotheses  in  the  group.  Instead,  “empirical  Bayes”  priors  can  be  constructed  that  use  the  
data to estimate the prior, hence minimizing influence of the prior on the outcome (Kass & Raftery, 
1995). We will also perform sensitivity analysis to ensure that our results are not overly influenced by 
the selection of prior distribution. 

Understanding Consequences 

One of the issues that must be addressed in the risk comparison analysis of EU and US vehicles is what 
size of injury risk difference matters, or “how  close to same is  close  enough?”  To  address  this  we  need  
to have an idea of what the consequences of any given risk difference are. To illustrate this in Phase 1, 
we developed a simple model of fatality risk across the US fleet that was designed to give a general idea 
of consequences of various risk differences. However, in Phase 2, this model will need to be revisited, as 
described at the end of this section. 

The estimation approach uses the US fleet and fatalities as the base comparison condition. Using GES 
2011 data and limiting analysis to passenger cars, SUV, minivans and light trucks, we estimate 
10,179,303 occupants involved in crashes. Using FARS (from Traffic Safety Facts on the NHTSA website), 
we observe that 21,253 occupants of those vehicle types were killed in 2011. This results in a base 
fatality risk of 0.20879% per crash-involved occupant. 

We assume that in a (near) future year, the number of crash-involved occupants will be identical to 2011 
and we want to compare the total fatalities under two scenarios: 

1) Vehicles sold in the US must meet US standards and fatality risk for all occupants remains the 
same as in 2011  

2) Vehicles sold in the US may meet either US or EU standards. 

Scenario 1 is straightforward because the risk is determined. However, under scenario 2, we need to 
evaluate some different possibilities. We allow two numbers to change: fleet penetration of EU vehicles, 
and fatality risk ratio for the EU vehicles compared to US vehicles (which can be higher or lower). In 
Table 7, we set EU vehicle fleet penetration to be 10%. This value is a parameter of the model that could 
easily be adjusted according to different requirements. To put the currently chosen value of 10% into 
perspective, it can be compared to the annual vehicle turnover rate in the US, which in 2011 was about 
5%.  
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Table 7.  
Difference in US Annual Fatalities for Different Relative Risks  

between EU and US vehicles. 

Relative Risk (EU Compared 
to US) 

Difference in US Annual 
Fatalities are 50% Likely to 

Be  Less  Than… 

Likelihood that US Annual 
Fatalities Will Be Reduced 

1% Greater 21 44.4% 
1% Less -21 55.5% 
5% Greater 106 24.4% 
5% Less -106 75.7% 
Same Risk 0 50.0% 

  
For the simulation, we assumed that risk for EU vehicles was either 1% or 5% higher or lower than the 
fatality risk for US vehicles, as illustrated in Figure 16. 

 

Figure 16. Estimated fatality risk if EU risk is 1% or 5% higher or lower than US  
(right plot includes close-up of variation). 

For a fleet penetration of 10% EU vehicles, the second column of Table 7 is computed by multiplying 
90% times the original risk plus 10% times the EU risk (which is some percentage increase or decrease 
relative to the US risk). Graphically, this is shown in Figure 17 (note the nonzero origin of y-axis). The red 
portion of the fatality total is from the vehicles meeting US standards, while the blue portion is from 
vehicles meeting EU standards. Overall, the estimated variation in total fatalities is small relative to the 
total number of fatalities, but the absolute differences are on the order of those used by NHTSA to 
justify regulation (NHTSA 2005). 
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Figure 17.  
Possible consequences to US fatality count for 10% EU vehicle fleet penetration with 

different levels of relative injury risk  
(note non-zero y-axis origin on the lower graph). 

Although these simulations convey the magnitude of change on average, they do not convey the 
variability in total fatalities that could occur even if risk was demonstrated to be the same. Within Table 
7, variability in potential outcome is conveyed by the third column.  

To compute the range of possibilities and their associated probabilities, we use a binomial distribution. 
The binomial has one parameter, p, which is the risk of fatality, and it returns the probability of getting a 
particular number of fatalities, given the risk, p, and total crashes, n. 

0

5000

10000

15000

20000

25000

Base US 10% EU1%+ 10%EU1%- 10%EU5%+ 10%EU5%-

A
n

n
u

al
 U

S 
fa

ta
lit

ie
s

Meeting EU regs

Meeting US regs

+21                   -21                 +107               -107

18000

18500

19000

19500

20000

20500

21000

21500

22000

Base US 10% EU1%+ 10%EU1%- 10%EU5%+ 10%EU5%-

A
n

n
u

al
 U

S 
fa

ta
lit

ie
s

Meeting EU regs

Meeting US regs

+21                   -21                 +107               -107



52 
 

The numbers in Table 7 and Figure 17 come from the difference between the two scenarios (i.e., the one 
with only US vehicles and the one with 10% EU vehicles and 90% US vehicles). For every difference, we 
can compute the probability of that happening, given the original US risk (from data) and the risk ratio 
between EU and US vehicles (up or down). The second column in Table 7 gives the expected fatality 
difference, which is the 50th percentile of the options.  

The third column turns the question around and asks how likely it is that we would see lower fatalities in 
the EU-allowed scenario. This can happen even if EU risk is higher because the outcome is a random 
variable. If risk is higher, the average outcome is guaranteed to be an increase in fatalities, but the 
actual outcome can be many things. With a small risk increase and low fleet penetration, it is still 
possible there would be fewer fatalities when mixing in some EU vehicles (though never more than 50% 
likely). If the risk difference is much larger, there would be a lower chance of seeing fewer fatalities. 

Another way of showing this concept is to present the 90% confidence interval on the fatality difference, 
as shown in Table 8. In all of these cases, that interval would include zero because of the low fleet 
penetration, the relatively small risk difference, and the selected confidence level. 

Table 8.  
90% confidence interval for expected fatality count change  

given 10% fleet penetration of EU vehicles with different fatality risks 

Relative Risk (EU Compared 
to US) 

Difference in US Annual Fatalities Are 90% Likely to Be 
Within… 

1% Greater -230 – 273 
1% Less -272 – 230 
5% Greater -146 – 358 
5% Less -356 – 144 
Same Risk -251 – 251 

 

One of the complexities of this calculation that is not reflected above is the fact that if EU-regulated 
vehicles are sold in the US, it is unlikely that such vehicles will enter the fleet at random. Instead, current 
European vehicles tend to be smaller than American vehicles (on average), and it is plausible that EU-
regulated vehicles will initially replace smaller American vehicles. Thus, even if EU-regulated fleet 
penetration reaches 10%, it may not be a random 10%. This, too, will affect estimated consequences. 

As part of the overall methodology, we listed components (e) and (f), which are economic models of 
how US vehicles might enter the EU fleet and EU vehicles might enter the US fleet. These models are not 
estimated from the data, but are decided upon a priori. A variety of plausible models can also be 
implemented in a sensitivity analysis.  

The role of the fleet penetration models is to refine interpretation of risk consequences. The fleet 
penetration models will only be implemented in Approach 2. It is possible to use them in Approach 3, 
but because of the computational intensity of that approach, implementation is likely to take an 
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inordinate amount of time. Instead, the primary value of looking at the implications of different fleet-
penetration models can be gained by focusing on Approach 2 models. 

Fleet-penetration models are added to the simulation of consequences of EU and US risk models in each 
of the standard populations. In Approach 2, we focused on RREU and RRUS. However, to understand 
consequences, we would take the next step and simulate outcomes. For each case in a standard 
population, we would incorporate not only the predicted risk and its model uncertainty, but also the 
possible outcomes. These outcomes would be weighted based on the fleet penetration model.  

PHASE 2: RECOMMENDATIONS AND LIMITATIONS 
Phase 1 focused on defining a methodology and potential datasets for analysis in Phase 2. Given that we 
have not yet applied any of the methods to the suggested datasets, it is difficult to predict how 
definitive the results will be. In other words, we do not know how much unexplained error will remain. 
There is a distinct possibility that the results, particularly from Approaches 2 and 3, will be inconclusive 
due to large variance. 

However, the risk models developed in Approach 2 represent point estimates, which are our best 
guesses as to the true underlying risk curves. This will allow us to look at collections of crash types for 
which different injury risks may balance out. In addition, performing the basic comparisons has value, as 
this type and level of analysis has not been previously done. While the results may not directly be 
helpful in the TTIP negotiations, performing the analysis may provide guidance as to what might be 
possible with the available data for future analyses. It could also point to regulatory areas where 
harmonization or item-specific recognition (as in BASA) is least likely to result in major risk 
consequences. 

To complete Phase 2 within the targeted window, analysis needs to begin as soon as possible if the 
Alliance decides to fund it. In the meantime, UMTRI and SAFER will begin preliminary negotiations with 
other database owners and experts about collaborating on Phase 2, if funded.  
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Table A1.  Summary of Databases, Countries, Owners, Homepages 

Database 
 Name 

Full Name Country Owner Homepage 

Country-specific in-depth databases in the EU  
ADAC ADAC Accident 

Investigation 
Study 

DE ADAC http://www.adac.de/infotestrat/unfall-schaeden-und-
panne/Unfallforschung/default.aspx 

Applus+ 
IDIADA 

Applus+ IDIADA ES Applus+ IDIADA http://www.applusidiada.com/en/service/Road_safety-
1328274977266 

CCIS Co-operative 
Crash Injury 
Study 

UK Consortium (Department for 
Transport) 

http://www.trl.co.uk/research_development/improving_safety/collisio
n_investigation/incident_investigation.htm 

CHICC Child Safety in 
Car Crashes 

SE Consortium (Saab Automobile) http://publications.lib.chalmers.se/records/fulltext/155673.pdf 

CzIDAS Czech In-Depth 
Accident Study 

CZ IDIADA CZ and CDV Transport 
Research Centre 

http://www.kfv.at/fileadmin/webcontent/Publikationen_englisch/5th_C
EE_2nd_Day/4_Fric_In-Depth_Accident_Investigation_CZ.pdf 

DIANA System Analysis 
on Real 
Accidents 

ES CIDAUT http://www.cidaut.es/en/ 

EDA Études 
Détaillées des 
Accidents 

FR LAB, IFSTTAR http://www.innovations-transports.fr/Etudes-detaillees-d-
accidents?lang=en 

GIDAS German In-
Depth Accident 
Study 

DE Consortium  
(BASt and several 

manufacturers/suppliers) 

http://www.gidas.org/?L=1 

In-SAFE In-­‐depth Study 
of road 
Accidents in 
Florence 

IT Department of Mechanics and 
Industrial Technologies (DMTI) at 
the University of Florence and the 
Anaesthesia and Intensive Care 

Unit at the Emergency Department 
(ICU) of the Careggi University 

Hospital 
(Florence) 

http://www.ptw.unifi.it/projects.php?id=14 

INTACT Investigation 
Network and 
Traffic Accident 
Collection 
Techniques 

SE Consortium (leader: Swedish 
Transport Administration) 

http://www.intact-project.se 

LAB Laboratory of 
Accidentology 
and 

FR LAB - PSA Peugeot Citroën / 
Renault  

http://www.psa-peugeot-citroen.com/en/psa_group/security_b3.php 

http://www.adac.de/infotestrat/unfall-schaeden-und-panne/Unfallforschung/default.aspx
http://www.adac.de/infotestrat/unfall-schaeden-und-panne/Unfallforschung/default.aspx
http://www.applusidiada.com/en/service/Road_safety-1328274977266
http://www.applusidiada.com/en/service/Road_safety-1328274977266
http://www.trl.co.uk/research_development/improving_safety/collision_investigation/incident_investigation.htm
http://www.trl.co.uk/research_development/improving_safety/collision_investigation/incident_investigation.htm
http://publications.lib.chalmers.se/records/fulltext/155673.pdf
http://www.kfv.at/fileadmin/webcontent/Publikationen_englisch/5th_CEE_2nd_Day/4_Fric_In-Depth_Accident_Investigation_CZ.pdf
http://www.kfv.at/fileadmin/webcontent/Publikationen_englisch/5th_CEE_2nd_Day/4_Fric_In-Depth_Accident_Investigation_CZ.pdf
http://www.cidaut.es/en/
http://www.innovations-transports.fr/Etudes-detaillees-d-accidents?lang=en
http://www.innovations-transports.fr/Etudes-detaillees-d-accidents?lang=en
http://www.gidas.org/?L=1
http://www.ptw.unifi.it/projects.php?id=14
http://www.intact-project.se/
http://www.psa-peugeot-citroen.com/en/psa_group/security_b3.php
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Database 
 Name 

Full Name Country Owner Homepage 

Biomechanics - 
Secondary 
Safety Database 

OTS On The Spot UK Department for Transport 
 (TSRC/TRL) 

 http://hdl.handle.net/2134/9170 

RAIDS Road Accident 
In-Depth Studies 

UK Department for Transport  
(TSRC/TRL) 

http://www.trl.co.uk/research_development/improving_safety/collisio
n_investigation/incident_investigation.htm 

SIRSS Sistema 
Integrato 
Regionale per la 
Sicurezza 
Stradale  

IT Osservatorio Regionale sulla 
Sicurezza Stradale 

http://www.regione.toscana.it/-/sirss-sistema-integrato-regionale-per-
la-sicurezza-stradale 

Swedish 
national in-
depth fatal 
crash 
database 

Swedish 
national in-depth 
fatal crash 
database 

SE Swedish Transport Administration http://www.trafikverket.se/Privat/Trafiksakerhet/Vart-
trafiksakerhetsarbete/Sa-utreder-vi-olyckor/Djupstudier-av-

vagtrafikolyckor/ 

VOIESUR Vehicule 
Occupant 
Infrastructure 
Etudes de la 
Sécurité des 
Usagers de la 
Route 

FR Consortium  
(CEESAR, CETE NC, 

 IFSTTAR, LAB) 

http://www.agence-nationale-recherche.fr/en/anr-funded-
project/?tx_lwmsuivibilan_pi2[CODE]=ANR-11-VPTT-0007 

ZEDATU ZEntrale 
DAtenbank 
Tödlicher 
Unfälle in 
Österreich 

AT Graz University of Technology http://www.vsi.tugraz.at/index.php?id=47 

Multinational in-depth databases in the EU 

CASPER Child 
advanced 
safety project 
for European 
roads 

DE, ES, FR, IT, 
UK 

Consortium (PSA - Renault) http://cordis.europa.eu/projects/rcn/91144_en.html 

CHILD CHild Injury 
Led Design 

DE, ES, FR, IT, 
SE, UK 

Consortium (Renault) http://www.casper-project.eu/child%20web%20site/ 

CREST Child Restraint 
System for 
Cars 

DE, FR, IT, UK Consortium (Renault) http://cordis.europa.eu/projects/rcn/31115_en.html 

https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/9170/2/dft-rsrr-73-ots-phase2.pdf
http://www.trl.co.uk/research_development/improving_safety/collision_investigation/incident_investigation.htm
http://www.trl.co.uk/research_development/improving_safety/collision_investigation/incident_investigation.htm
http://www.regione.toscana.it/-/sirss-sistema-integrato-regionale-per-la-sicurezza-stradale
http://www.regione.toscana.it/-/sirss-sistema-integrato-regionale-per-la-sicurezza-stradale
http://www.trafikverket.se/Privat/Trafiksakerhet/Vart-trafiksakerhetsarbete/Sa-utreder-vi-olyckor/Djupstudier-av-vagtrafikolyckor/
http://www.trafikverket.se/Privat/Trafiksakerhet/Vart-trafiksakerhetsarbete/Sa-utreder-vi-olyckor/Djupstudier-av-vagtrafikolyckor/
http://www.trafikverket.se/Privat/Trafiksakerhet/Vart-trafiksakerhetsarbete/Sa-utreder-vi-olyckor/Djupstudier-av-vagtrafikolyckor/
http://www.agence-nationale-recherche.fr/en/anr-funded-project/?tx_lwmsuivibilan_pi2%5bCODE%5d=ANR-11-VPTT-0007
http://www.agence-nationale-recherche.fr/en/anr-funded-project/?tx_lwmsuivibilan_pi2%5bCODE%5d=ANR-11-VPTT-0007
http://www.vsi.tugraz.at/index.php?id=47
http://cordis.europa.eu/projects/rcn/91144_en.html
http://www.casper-project.eu/child%20web%20site/
http://cordis.europa.eu/projects/rcn/31115_en.html
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Database 
 Name 

Full Name Country Owner Homepage 

DaCoTA  Road Safety 
Data, 
Collection, 
Transfer and 
Analysis 

AT, CZ, DE, 
DK, EE, ES, FI, 
FR, GR, IS, IT, 
MT, NL, NO, 
PL, SE, SI, UK 

Consortium  
(VSRC Loughborough) 

http://www.dacota-project.eu 

EACS European 
Accident 
Causation 
Survey 

DE, ES, FR, IT, 
NL, FI  

European  Automobile  Manufacturers’  
Association (ACEA) + European 

Commission (EC) 

http://ec.europa.eu/transport/wcm/road_safety/erso/data/Content/eur
opean_databases.htm 

ECBOS Enhanced 
Coach and 
Bus Occupant 
Safety 

AT, DE, ES, 
FR, GB, IT, NL, 
SE 

Consortium  
(Graz University) 

http://ec.europa.eu/transport/road_safety/pdf/projects/ecbos.pdf 

ETAC European 
Truck 
Accident 
Causation 

DE, ES, FR, 
HU, IT, NL, SI 

Consortium (CEESAR) (initiated by the 
International Road Transport Union 

(IRU) & European Commission (EC)) 

http://ec.europa.eu/transport/roadsafety_library/publications/etac_fin
al_report.pdf 

MAIDS Motorcycle 
Accidents In-
Depth Study 

DE, ES, FR, IT, 
NL 

Consortium  
(European Association of Motorcycle 

Manufacturers, ACEM) 

http://ec.europa.eu/transport/road_safety/pdf/projects/maids.pdf 

PENDANT Pan-European 
Co-ordinated 
Accident and 
Injury 
Databases 

AT, DE, ES, FI, 
FR, NL, SE, UK 

Consortium  
(VSRC Loughborough) 

http://www.vsi.tugraz.at/pendant 

RISER Roadside 
Infrastructure 
for Safer 
European 
Roads 

AT, ES, FI, FR, 
NL, SE, UK 

Consortium  
(Chalmers University) 

http://ec.europa.eu/transport/roadsafety_library/publications/riser_fin
al_report.pdf 

ROLLOVER Improvement 
of Rollover 
Safety for 
Passenger 
Vehicles 

AT, DE, ES, 
UK 

Consortium  
(Graz University) 

http://www.vsi.tugraz.at/rollover 

SafetyNet 
Causation 

SafetyNet 
Causation 
Database 

DE, FI, IT, NL, 
SE, UK 

Consortium  
(VSRC Loughborough) 

http://erso.swov.nl/safetynet/content/safetynet.htm 

SafetyNet 
Fatal 

SafetyNet 
Fatal 
Database 

DE, FI, FR, IT, 
NL, SE, UK 

Consortium  
(VSRC Loughborough) 

http://erso.swov.nl/safetynet/content/safetynet.htm 

http://www.dacota-project.eu/
http://ec.europa.eu/transport/wcm/road_safety/erso/data/Content/european_databases.htm
http://ec.europa.eu/transport/wcm/road_safety/erso/data/Content/european_databases.htm
http://ec.europa.eu/transport/road_safety/pdf/projects/ecbos.pdf
http://ec.europa.eu/transport/road_safety/pdf/projects/etac.pdf
http://ec.europa.eu/transport/road_safety/pdf/projects/etac.pdf
http://ec.europa.eu/transport/road_safety/pdf/projects/maids.pdf
http://www.vsi.tugraz.at/pendant
http://ec.europa.eu/transport/roadsafety_library/publications/riser_final_report.pdf
http://ec.europa.eu/transport/roadsafety_library/publications/riser_final_report.pdf
http://www.vsi.tugraz.at/rollover
http://erso.swov.nl/safetynet/content/safetynet.htm
http://erso.swov.nl/safetynet/content/safetynet.htm
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Database 
 Name 

Full Name Country Owner Homepage 

In-depth databases in the US 
NASS-CDS National 

Automotive 
Sampling 
system - 
Crashworthine
ss Data 
System 

US NHTSA http://www.nhtsa.gov/NASS 

CIREN Crash Injury 
Research 
Network 

US NHTSA http://www.nhtsa.gov/Research/Crash+Injury+Research+(CIREN)/D
ata: 

SCI in NiTS Special Crash 
Investigations 
of Not in 
Traffic 
Surveillance 

US NHTSA http://www.nhtsa.gov/SCI 

EU level crash data 
CARE Community 

Road Accident 
Database 

All EU 
countries & CH, 
IS, NO, i.e.: AT, 
BE, BG, CH, 
CY, CZ, DE, 
DK, EE, ES, FI, 
FR, GB, GR, 
HR, HU, IE, IS, 
IT, LT, LU, LV, 
MT, NI, NL, 
NO, PL, PT, 
RO, SE, SI, 
SK, UK 

European Commission (EC) http://ec.europa.eu/transport/road_safety/specialist/statistics/index_e
n.htm 

US level crash data 
NASS-GES National 

Automotive 
Sampling 
System - 
General 
Estimated 
System 

US NHTSA http://www.nhtsa.gov/NASS 

FARS Fatal 
Accidents 

US NHTSA http://www.nhtsa.gov/FARS 

http://www.nhtsa.gov/NASS
http://www.nhtsa.gov/Research/Crash+Injury+Research+(CIREN)/Data:
http://www.nhtsa.gov/Research/Crash+Injury+Research+(CIREN)/Data:
http://www.nhtsa.gov/SCI
http://ec.europa.eu/transport/road_safety/specialist/statistics/index_en.htm
http://ec.europa.eu/transport/road_safety/specialist/statistics/index_en.htm
http://www.nhtsa.gov/NASS
http://www.nhtsa.gov/FARS
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Database 
 Name 

Full Name Country Owner Homepage 

Recording 
System 

Global databases 
iGlad Initiative for 

the Global 
Harmonization 
of Accident 
Data 

AT, AU, CZ, 
DE, ES, FR, IN, 
IT, SE, US 

Consortium (Administrator:  
Chalmers University) 

http://www.iglad.net 

IRTAD International 
Road Traffic 
and Accident 
Database 

OECD 
countries: AT, 
AU, BE, CA, 
CH, CZ, DE, 
DK, ES, FI, FR, 
GR, HU, IE, IL, 
IS, IT, JP, KR, 
LU, NL, NO, 
NZ, PL, PT, 
SE, SI, UK, US 

OECD http://internationaltransportforum.org/irtadpublic/index.html 

 

  

http://www.iglad.net/
http://internationaltransportforum.org/irtadpublic/index.html
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Table A2.  Summary of Databases, Accessibility, Sizes, Years, Inclusion Criteria 

Database 
name 

  

Accessibility Number of 
crashes 

  
Data years 

  
Inclusion criteria, other details 

  
Public Consortium Private 

Country-specific in-depth databases in the EU  

ADAC     x 11456 2005-present 
Air rescue was called to crash scene; therefore, 90% of 
the collected crashes involve a severely/critically injured 
occupant. 

Applus+ IDIADA     x 400 1999-present 

Varying (as data collection has been conducted in 
projects with different focus). Generally, crashes with the 
involvement of cars, motorcycles, coaches or vulnerable 
road users are collected. PC-Crash reconstruction. 

CCIS   x   15000 1983-2010 Passenger car <7 years old and towed was involved in 
the crash, at least one occupant of the car was injured. 

CHICC   x   87 2004-2007 
Crashes including a child of age <=12 admitted to a 
hospital in the western region of Sweden are collected; no 
Delta-V values are available. 

CzIDAS   x   300 2011-present At least one person was injured in the crash; all traffic 
modes are included; PC-Crash reconstruction. 

DIANA     x 400 2003-present 

Injury crashes; random notifications from police control 
rooms regardless of the type of crash or the type/age of 
vehicle; crashes are collected in Valladolid province, both 
in urban and in rural areas. PC-Crash reconstruction. 

EDA   x   1100 ?-2003 Car, pedestrian and truck crashes; in-depth on-the-spot 
investigation; PC-Crash and Madymo reconstruction. 

GIDAS   x   22000 1999-present At least one person injured; all traffic modes; PC-Crash 
reconstruction. 

In-SAFE     x 150 2011-present 

Severe and fatal accidents (accidents with major trauma, 
ISS>15) in metropolitan areas of Florence; the 
deformation energy and Delta-V are estimated with 
Crash3; all the previous data are verified and validated by 
PC-­‐Crash 8.3 and Virtual CRASH 2.2. 

INTACT   x   275 2007-2009 and 
2012-present 

Ambulance was called to the crash scene; at least one 
passenger car, bus or truck was involved in the crash; 
PC-Crash reconstruction. 

LAB   x   1000+ (~400 / 
year) 1993-present At least one person in a passenger car was injured. 
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Database 
name 

  

Accessibility Number of 
crashes 

  
Data years 

  
Inclusion criteria, other details 

  
Public Consortium Private 

OTS   x   4500 2000-2010 All road users, all injury severities (including property 
damage only). PC-Crash reconstruction. 

RAIDS   x   300 2013-present 
Police reported collisions in the Thames Valley and 
Hampshire regions; crashes occurring anywhere in 
Nottinghamshire or Leicestershire. 

SIRSS     x 3887 2008-2012 Randomly selected crashes from the Region of Tuscany. 
Swedish 

national in-
depth fatal 

crash database 

x (access can be 
granted to 

selected research 
projects) 

    3481 
1997-present; 

digitalized from 
2004 

All fatal crashes in Sweden; no Delta-V values are 
available. 

VOIESUR   x   9000 2011 

All information coded in the database, including crash 
reconstruction, relies on police reports investigated by 
accident investigation experts. The sample includes: all 
fatal crashes in France (~3500), all crashes occurring in 
Rhone department (~2500), 1/20 of injury crashes in 
France (~3000). 

ZEDATU   x   3000 2004-present Fatal car accidents in Austria; PC-Crash reconstruction. 
Multinational in-depth databases in the EU  

CASPER   x   137 2009-2012 
Same as in CREST with two differences: children <=13 
years are considered and rear impacts are also reviewed 
on a case-by-case basis. 

CHILD   x   264 2002-2005 Same as in CREST. 

CREST   x   405 1996-2000 

Car-to-car or car-to-fixed obstacle crashes, with at least 
one child <=12 yrs restrained in CRS or with adult seat 
belt involved in the crash. Vehicles with <=9 occupants 
are considered. At least one occupant suffered an 
MAIS2+F injury in the crash. Only frontal impacts with 
DeltaV>=40 km/h and lateral impacts with >=200 mm 
intrusion are considered. 

DaCoTA    x   99 2012 
At least 3 out of 5 cases from each country must include a 
road user who was taken to hospital immediately after the 
crash. 

EACS   x   1904 1996-2002 
A light vehicle with weight <3500 kg was involved in the 
crash, at least one person was injured. The cases from 
each region must be closely related to the distribution of 
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Database 
name 

  

Accessibility Number of 
crashes 

  
Data years 

  
Inclusion criteria, other details 

  
Public Consortium Private 

crashes in the country in terms of road type, vehicle types 
and drivers. Cases where the drivers sustained serious 
brain injuries were excluded.  

ECBOS   x   36 1994-2001 Crashes with the involvement of M2, M3 and city buses. 

ETAC   x   624 2004-2006 All injury accidents involving at least one heavy goods 
vehicle. 

MAIDS   x   921 1999-2001 Crashes with powered two-wheelers in which at least one 
rider was injured. 

PENDANT   x   1086 2003-2005 

At least one car manufactured after 1998 was involved in 
the crash. At least one vehicle occupant was injured. 
Among other crashes, the database includes 119 
reconstructed rollovers (with Delta-V values). 

RISER   x   211 1998-2002 Single vehicle crashes only; all passenger vehicles, trucks 
and motorcycles, and all severity levels are included. 

ROLLOVER   x   145 2002-2005 

Rollover crashes, up to one turn, direction longitudinal, 
belted occupant(s); the sample includes 40 crashes that 
started with roll followed by impact; 40 crashes that 
started with side impact followed by roll; 40 cases that 
started with front impact followed by roll. In each category 
there are 1-2 cases with SUVs, but convertibles are 
excluded. 

SafetyNet 
Causation   x   1006 2005-2008 

Random selection of cases to the best of the teams 
abilities, all kinds of crashes were investigated. No Delta-
V values are available. 

SafetyNet Fatal   x   1296 2003-2004 

Fatal crashes investigated retrospectively; the sample 
should be representative to country level with respect to 
the following measures (separately): road user killed, road 
class, urban-rural, month of the year.  No Delta-V values 
are available. 

In-depth databases in the US  

NASS-CDS x     

~3300-5000 
per year 
(fewer in 

recent years) 

1988-present 
(annually 

updated in fall 
of following 

year) 

Probability sample of crashes in the US involving at least 
one light vehicle that is towed away due to disabling 
damage. 
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Database 
name 

  

Accessibility Number of 
crashes 

  
Data years 

  
Inclusion criteria, other details 

  
Public Consortium Private 

CIREN x (partial)   x 
(UMTRI) ~400 per year 

1997-present 
(2004-2013 

avail in public 
files) 

Convenience sample from participating CIREN hospitals; 
cases are crash-involved occupants admitted to 
participating trauma center who meet inclusion criteria: 
vehicle<=6 yrs, AIS 3+ injury, frontal and restrained (front 
row airbag only allowed) or any side impact or any rollover 
without 100% ejection or any fire or any pregnant 
occupant regardless of all other criteria). 

SCI in NiTS x     113 2006-2013 

Vehicle related injury incidents that either occur on private 
property or do not involve a moving vehicle.  The special 
crash investigation subset of the NiTS has done in-depth 
investigation of 113 cases from the complete database 
that includes approximately 600,000 documented injuries 
per year.  

EU level crash data  

CARE 

x (access by 
selected 

organizations 
only) 

    1000000+ 1991-present Injury crashes that are included in the national statistics of 
the countries involved. 

US level crash data  

NASS-GES x     ~50,000 per 
year 

1988-present 
(annually 

updated in fall 
of following 

year) 

Probability sample of police-reported crashes in the US; 
all data elements are coded from the police reports. 

FARS x     

~33,000 per 
year (has 

been 
declining) 

1975-present 
(annually 

updated in 
summer of 

following year) 

Census of fatalities on US public roads; death within 30 
days of crash and due to injuries sustained in the crash; 
some additional information from death certificates and 
coroner's reports are included, but in-depth crash 
investigation is not done. 

Global databases  

iGlad x (access can be 
purchased)     1580 2007-present 

Varies across the data providers. A general requirement is 
that more than 80% of the variables have a known value 
for each crash included in the database. 

IRTAD x (access can be 
purchased)     1000000+ 1970-present Aggregated crash data and exposure data from the OECD 

countries.  
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APPENDIX B: KEY VARIABLES
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Table B1.  Summary of key variables in datasets 

  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

accident 
description 

type of accident 
according to the 
catalogue of the HUK 
from 1977 

UTYP accident type 

DaCoTA accident type (data years 
2012-present); CADAS accident 
type (data years 2012-present); 
INTACT accident type (data years 
2007-2009) 

crash type ACCTYPE 

moving direction of 
the involved vehicles UART collision type - crash configuration RSHDSC2 

surrounding 
environment 

whether the scene of 
the accident is inside 
or outside a built-up 
area 

ORTSL location area classification; accident 
environment - - 

road 
characteristics 

road level STRART road type   road type - 

RELATION TO 
INTERCHANGE, 
 TRAFFICWAY 
FLOW ,  
NUMBER OF 
TRAVEL LANES  

material of road 
surface STRDECK - roadway surface type roadway surface type SURTYPE 

road surface condition 
due to weather STROB road condition road condition roadway surface 

condition SURCOND 

maximum permitted 
speed of the road VZUL - speed limit at accident time posted speed limit SPLIMIT 

information of road 
section STFUHO - accident spot type Traffic way-relation to 

junction RELINTER 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

type of traffic control VKREG - traffic regulation traffic control device TRAFCONT 

vehicle 
characteristics 

date of first 
registration (year) TDEZJ registration 

year - vehicle model year MODELYR 

type of vehicle (own 
definition) FART participant 

type element type  body category - 

vehicle (make and 
model) FZG2 vehicle make make - car; model - car vehicle make , vehicle 

model 
MAKE,  
MODEL 

body shape ABF - body style - car class of vehicle BODYTYPE 

curb weight LGEW - kerb weight - car vehicle curb weight  CURBWGT 

gross vehicle weight ZULGEW - *not for cars, but possible to 
guess* total GVWR (kgs) GVWR 

energy source of the 
engine EQUELLE vehicle engine 

type 
fuel type - car; alternative fuel  
type - car fuel type FUELTYP 

vehicle crash 
characteristics 

the principal direction 
of force according to 
 CDC 1, 2 

VDI1 primary 
collision - CDC CDC1,2 clock CLOCK 

main deformed 
vehicle area according 
to CDC 3 

VDI2 primary 
collision - CDC CDC3 deformation location GAD 

specific horizontal 
location of the 
damage according to 
CDC 4 

VDI3 primary 
collision - CDC CDC4; CDC4e long/lateral SHL 

VDI vertical VDI4 primary 
collision - CDC CDC5 vertical/lateral SVL 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

VDI type of impact VDI5 primary 
collision - CDC CDC6 distribution TDD 

VDI degree of 
deformation VDI6 primary 

collision - CDC CDC7 extent EXTENT 

EES EES primary 
collision - EES EES - - 

delta-v DV 
primary 
collision - 
delta-v 

Delta V (DV) total [km/h]; DV 
longitudinal [km/h]; DV lateral 
[km/h] 

highest severity  
impact computer  
generated 
 Delta V--total 

HDVTOTAL 

vehicle weight in the 
crash GEWGES vehicle mass - 

vehicle cargo  
weight + vehicle  
curb weight 

- 

backward dislocation 
of engine MOTORDEF - powertrain hit - car damage to  

fuel cell FUELDAM 

impact number which 
caused worst damage KOLLS - 

*can be computed from the 
variable "relative impact 
severity"* 

highest severity  
impact--event number ACCSEQDV 

vehicle pre-crash 
characteristics 

initial velocity V0 
primary 
collision - 
Driving speed 

initial speed (IS) - - 

collision velocity / 
sequence end velocity VK 

primary 
collision - 
collision speed 

collision speed [km/h] 

highest severity 
impact computer 
generated Delta V—
impact speed 

HIMPCTSP 

skidding occurrence 
prior to impact SCHLEU - event type pre-­‐impact  stability PREISTAB 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

equipment of traction 
control system ASR type of safety 

system traction control system - car - - 

equipment of 
electronic stability 
program 

ESP type of safety 
system electronic stability control - car  - - 

equipment of cruise 
control TMAT type of safety 

system cruise control - car - - 

equipment of collision 
warning COLLWARN type of safety 

system 
forward collision warning - car; 
Rearward collision warning - car 

equipment type-crash 
avoid - 

VRU crash 
characteristics 

wrap around distance 
(VRU) ANABWL - wrap around distance - - 

impact zone on the 
vehicle (VRU) ANZONE - 

vehicle area description - car; x-
measurement; y-measurement 
[mm]; z-measurement 

- - 

human 
characteristics 

gender GESCHL gender gender sex SEX 

age in years ALTER1 age age age AGEMONTH, 
 AGEYEAR 

height GROESP height stature height HEIGHT 
body weight GEWP weight weight weight WEIGHT 

human behavior 

result of digital alcohol 
test TESTDIG - alcohol level measured by; Alcohol 

per millage alcohol test result  ALCTEST 

blood alcohol content BLUTALK1 - alcohol level measured by; Alcohol 
per millage alcohol test result  ALCTEST 

equipment of alcohol 
lock system ALKOLOCK type of safety 

system alcolock - car - - 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

equipment of driver 
distraction control ABLENKON type of safety 

system impairment warning - car - - 

occupant 
movement 

ejection occurrence AUSSCHL - ejection route ejection -type EJECTION 

be ejected from where AUSWO - seat position; seat ejection—area N/A 

injury 
description 

Maximum AIS MAIS MAIS - 
maximum known  
occupant AIS  
(AIS98 FORMAT) 

MAIS 

Maximum AIS (by 
AIS2005) MAIS05 MAIS MAIS 

maximum known  
occupant AIS 
 (AIS08 FORMAT) 

MAIS 08 

injury severity by the 
investigation team PVERL injury severity police injury severity PAR Severity INJSEV 

type of hospital 
treatment BEHAND - hospitalized; number of days in 

hospital treatment TREATMNT 

AIS region 1 head AISREG1 AIS region 1: 
head w/o face 

AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity  
(AIS08 Format)  
& Body Region  
(AIS08 Format) 

AIS &  
REGION08 

AIS region 2 face AISREG2 AIS region 2 
face 

AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity  
(AIS08 Format)  
& Body Region  
(AIS08 Format) 

AIS &  
REGION09 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

AIS region 3 neck w/o 
spine AISREG3 AIS region 3 

neck w/o spine 
AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity  
(AIS08 Format)  
& Body Region  
(AIS08 Format) 

AIS &  
REGION10 

AIS region 4 thorax 
w/o shoulder AISREG4 

AIS region 4 
thorax w/o 
shoulder 

AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity  
(AIS08 Format)  
& Body Region  
(AIS08 Format) 

AIS &  
REGION11 

AIS region 5 abdomen AISREG5 AIS region 5 
abdomen 

AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity  
(AIS08 Format)  
& Body Region 
 (AIS08 Format) 

AIS & 
 REGION12 

AIS region 6 spine AISREG6 AIS region 6 
spine 

AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity  
(AIS08 Format)  
& Body Region 
 (AIS08 Format) 

AIS &  
REGION13 

AIS region 7 upper 
extremities AISREG7 

AIS region 7 
upper 
extremities 

AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity  
(AIS08 Format)  
& Body Region (AIS08 
Format) 

AIS &  
REGION14 

AIS region 8 lower 
extremities AISREG8 

AIS region 8 
lower 
extremities 

AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity 
 (AIS08 Format) 
 & Body Region  
(AIS08 Format) 

AIS &  
REGION15 

AIS region 9 not 
specified injuries AISREG9 

AIS region 9 
not specified 
injuries 

AIS-grade, AIS-localizer 1, AIS-
localizer 2 for each injury 

A.I.S. Severity  
(AIS08 Format)  
& Body Region  
(AIS08 Format) 

AIS &  
REGION16 

number of days until 
death UELTG - number of days until death time to death DEATH 

vision Daytime or nighttime 
of the accident TZEIT light condition light condition conditions--light LGTCOND 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

clouds and fog 
conditions at the time 
of the accident 

WOLK - cloud cover; fog/mist conditions--
atmospheric CLIMATE 

equipment of lane 
departure warning SPURHAW type of safety 

system lane departure warning - car equipment type 
-crash avoid - 

equipment of lane 
keeping support SPURHAE type of safety 

system - equipment type 
-crash avoid - 

equipment of backup 
warning aid RHILF type of safety 

system 
back-up alarm - truck; back-up 
alarm - bus - - 

equipment of night 
vision NIGHTV type of safety 

system night vision - car - - 

lamps 

type of lighting - 
daylight running lights SWARTT type of safety 

system 
*no variable, but interview 
question* 

equipment type 
-crash avoid - 

bending light / 
adaptive front lighting 
system 

KURVENL type of safety 
system active headlamps - car - - 

adaptive light 
distribution ADAPTLV type of safety 

system active headlamps - car - - 

headrest 
type of headrest KSTART - neck restraint head restraint  

-type HEADTYPE 

type of headrest 
protection system KSTSCH type of safety 

system whiplash protection head restraint 
 - active HEADACT 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

seat belt 

seat belt usage RHSBEN use of safety 
system 

signs of seat belt usage; friction 
marks on belt webbing; claimed 
seatbelt usage; verified seatbelt 
usage 

used in  
this crash? ACTUSE 

type of seat belts GURTE type of safety 
system Seat belt type availability ACTAVAIL 

whether the seat belt 
functioned during the 
accident 

RHSFUNKT - belt malfunction; pretensioner 
activated 

Malfunction 
(Seatbelt) MANFAIL 

airbag 

activation of front 
airbag or not AIRBF 

type, 
Deployment / 
activation 

airbag type 

function –  
location& 
function— 
deployment 
(airbag) 

BAGLOC & 
 BAGDEPLY 

activation of roof-
integrated airbag or 
not 

AIRBDI 
type, 
Deployment / 
activation 

airbag type 

function –  
location& 
function— 
deployment 
(airbag) 

BAGLOC & 
 BAGDEPLY 

activation of seat-
integrated airbag or 
not 

AIRBSI 
type, 
Deployment / 
activation 

airbag type 

function –  
location& 
function— 
deployment 
(airbag) 

BAGLOC & 
 BAGDEPLY 

activation of door-
integrated airbag or 
not 

AIRBTI 
type, 
Deployment / 
activation 

airbag type 

function –  
location& 
function— 
deployment 
(airbag) 

BAGLOC &  
BAGDEPLY 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

activation of knee 
airbag or not AIRBKN 

type, 
Deployment / 
activation 

airbag type 

function –  
location& 
function— 
deployment 
(airbag) 

BAGLOC &  
BAGDEPLY 

activation of seat 
ramp airbag or not AIRBSR 

type, 
Deployment / 
activation 

airbag type 

function –  
location& 
function— 
deployment 
(airbag) 

BAGLOC &  
BAGDEPLY 

activation of rear 
airbag or not AIRBH 

type, 
Deployment / 
activation 

airbag type 

function –  
location& 
function— 
deployment 
(airbag) 

BAGLOC & 
 BAGDEPLY 

child seat 

type of child seat KISIART1 type of safety 
system 

CRS type as used in car; CRS ECE 
approval classification 

type_child  
restraint CHTYPE 

type of child seat KISIART2 type of safety 
system 

CRS type as used in car; CRS ECE 
approval classification 

type of child  
safety seat &  
child seat used 

CHTYPE 

tire 

tire pressure front 
right of the passenger 
car 

REIFDRVR - tire pressure tire measured 
 pressure PRES 

tire pressure rear right 
of the passenger car REIFDRHR - tire pressure tire measured  

pressure PRES 

tire pressure rear left 
of the passenger car REIFDRHL - tire pressure tire measured  

pressure PRES 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

tire pressure front left 
of the passenger car REIFDRVL - tire pressure tire measured  

pressure PRES 

brakes equipment of brake 
assistant system BREMSASS type of safety 

system ABS - car; brake assist - car equipment type 
-crash avoid - 

steering damage of steering 
wheel or not ICLRAD - steering wheel deformation - car 

location  
steering rim/spoke  
deformation  

RDEFLOC 

fire the place fire started BRANDURS - fire - car; fire start location - car origin of fire FIREORIG 

door 

condition door front 
left of passenger car TUERZVL - 

front left door function - car; left 
frontal door opening longitudinal 
deformation - car 

location& 
opening& 
damage/ 
separation 

DLOCAT& 
DOPEN& 
DFAILURE 

condition door lock 
front left of passenger 
car 

TUERSVL - front left door function - car 

location& 
opening& 
damage/ 
separation 

DLOCAT& 
DOPEN& 
DFAILURE 

condition door front 
right of passenger car TUERZVR - 

front right door function - car; 
right frontal door opening 
longitudinal deformation - car 

location& 
opening& 
damage/ 
separation 

DLOCAT& 
DOPEN& 
DFAILURE 

condition door lock 
front right of 
passenger car 

TUERSVR - front right door function - car 

location& 
opening& 
damage/ 
separation 

DLOCAT& 
DOPEN& 
DFAILURE 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

condition door rear 
left of passenger car TUERZHL - 

rear left door function - car; left 
rear door opening longitudinal 
deformation - car 

location& 
opening& 
damage/ 
separation 

DLOCAT& 
DOPEN& 
DFAILURE 

condition door lock 
rear left of passenger 
car 

TUERSHL - rear left door function - car 

location& 
opening& 
damage/ 
separation 

DLOCAT& 
DOPEN& 
DFAILURE 

condition door rear 
right of passenger car TUERZHR - 

rear right door function - car; right 
rear door opening longitudinal 
deformation - car 

location& 
opening& 
damage/ 
separation 

DLOCAT& 
DOPEN& 
DFAILURE 

condition door lock 
rear right of passenger 
car 

TUERSHR - rear right door function - car 

location& 
opening& 
damage/ 
separation 

DLOCAT& 
DOPEN& 
DFAILURE 

under ride 
whether vehicle was 
under-ridden or 
under-rides 

ARTUFAHR - - override/ 
under-ride RIDEUP 

rollover rollover occurrence ROLLWANN - 

*included in CDC 6 code; for each 
event, the variable "occurred 
during rollover" describes whether 
the event occurred during 
rollover* 

Rollover 
 data-type ROLLTYPE 

reconstruction 
method 

 theory principal of 
reconstruction REKOART - *variable-specific, for Delta-V: "DV 

source"* 
basis for total Delta V 
(highest) DVBASIS 
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  GIDAS iGLAD INTACT NASS 

Type of variable Description Name Name Name Description Name 

 program used for 
reconstruction REKOPROG - 

*for momentum 
-based reconstruction, PC-Crash is 
used; for damage-based 
reconstruction, AI Crash is used* 

basis for  
total Delta V 
 (highest) 

DVBASIS 
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APPENDIX C: CALCULATION OF DELTA-V FROM CRUSH MEASUREMENT 

Estimation of the deformation energy from crush pattern 

Given a linear force-deflection characteristic   

 

for each infinitesimal voxel (dy,ds) in the deformed area on the vehicle 

 

the absorbed energy can be estimated as following, with B as the gradient and A as the intercept of the 
force-deflection function. A can be explained as a certain amount of force has to be applied before a 
residual deformation occurs. 
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In case the resulting deformation force is applied from an angle   to the normal vector of the vehicle 
side, the resulting force and collinear deformation depth becomes: 
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Calculating of the Delta-V from deformation energy 

Knowing the collision opponent masses and absorbed energy the Delta-V can be calculated from the 
equations for conservation of momentum and conservation of energy (AI Damage): 

  
  






1
12

211

212
1 mmm

EEmv  

 

When a restitution coefficient is not considered (WinSMASH) the equation is simplified to: 

 
 211

212
1

2
mmm
EEmv




  

 

The coefficient of restitution is dependent on the impact velocity and the impacted vehicle area. The 
corresponding values are most often derived from crash test, where all pre- and post-impact velocities 
are known and the deformation energy can be calculated. 

An adjustment of vehicle stiffness and coefficient of restitution might be an additional alternative to 
compensate the bias between the trajectory-based and crush-based Delta-V estimation. 
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APPENDIX D.  ASSESSMENT OF CRASH AVOIDANCE SYSTEMS 
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Table D1.  Summary of crash avoidance technologies and related assessments and standards 

Crash  
avoidance  
technology 

(other specific names) 

Effectiveness Estimates  
and Sources 

Potential risks EuroNCAP NHTSA IIHS Related ISO 
Standards 

Adaptive cruise  
control 

Adaptive cruise control is estimated to reduce 6-
29% of rear-end crashes (Elvik 2006, Najm & 
Mironer 1998). Many other findings suggesting 
effectiveness of ACC can be found from 
(TraceD4.1.1-D6.2 2007 p15-16). 

Driver's behavioral adaptation may 
negate the safety benefit of the 
system (TraceD4.1.1.-D6.2 2007 
p.16, Kulmala 1997), for example 
due to increase average speed, 
reduced headway, larger braking 
force, greater lane position 
variability and longer hazard 
detection reaction (as reviewed in 
Humanist 2006, Regan et al. 2001) 

   ISO 
15622:2010; 
ISO 
22179:2009 
for Full 
speed range 
ACC 

Alcohol 
interlock 

Alcohol interlocks are estimated to reduce 18% of 
crashes where alcohol was a factor (eSafety Forum 
2005). Many other findings suggesting 
effectiveness of alcohol interlock can be found 
from (TraceD4.1.1-D6.2 2007 p18). 

Studies by (Jullgren et al. 2005, 
Schonfeld & Sheehan 2004, as 
reviewed in TraceD4.1.1-D6.2 2007 
p19) suggested that this system’s 
effectiveness lowers over time. 

    

Attention assist 
 
(Driver Alert) 

There has been an indication that the system 
"could prevent a third of all accidents involving a 
passenger car every year in Europe caused by 
drowsiness" (from 
http://www.euroncap.com/rewards/ford_driver_al
ert.aspx", "could prevent 1875 injury accidents 
involving a passenger car every year in Europe" 
(from 
http://www.euroncap.com/rewards/mercedes_be
nz_attention_assist.aspx). 

  Yes, in 
terms of 
rewards 

      

Automatic emergency 
call (eCall, (SYNC 
Emergency 
Assistance, Assist 
Advanced eCall, 

    Yes, in 
terms of 
rewards 
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Crash  
avoidance  
technology 

(other specific names) 

Effectiveness Estimates  
and Sources 

Potential risks EuroNCAP NHTSA IIHS Related ISO 
Standards 

Localized Emergency 
Call, Connect SOS) 

Autonomous 
emergency braking 
(City Brake Control, 
Forward Collision 
Mitigation, Front 
Assistant, Pre Sense 
Front, Pre Sense Front 
Plus, Front Assist, 
Active City Stop, 
Forward Alert, 
Collision Prevention 
Assist,  City 
Emergency Brake, 
Collision Mitigation 
Brake System, PRE-
SAFE Brake, City 
Safety) 

    Yes, in 
terms of 
rewards 

  Yes   

Blind spot monitoring 
(Rear Vehicle 
Monitoring System, 
Side Assist) 

    Yes, in 
terms of 
rewards 

      

Electronic Stability 
Control 
(ESP) 

Electronic stability control is estimated to reduce 
40% of all single-vehicle crashes and 75% of 
rollovers (IIHS). Many other findings suggesting 
effectiveness of ESC can be found from 
(TraceD4.1.1-D6.2 2007 p29-31). 

 Yes, in 
ratings 

Yes, in 
ratings 
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Crash  
avoidance  
technology 

(other specific names) 

Effectiveness Estimates  
and Sources 

Potential risks EuroNCAP NHTSA IIHS Related ISO 
Standards 

Frontal collision 
warning 
(Forward Collision 
Warning) 

FCW is estimated to reduce 7-80% of rear end 
crashes (FWHA 1998, Kanianthra and Murtig 1997, 
Kullen 2005, NHTSA 2001, Regan et al. 2002, and 
Sugimoto 2005) and 50-80% of head-on and object 
crashes (Lee et al. 2002). Many other findings 
suggesting effectiveness of FCW can be found from 
(TraceD4.1.1-D6.2 2007 p34-35). 

Driver may experience behavioral 
adaptation that could result in a 
safety critical situation (Wege et al. 
2003).  

 Yes, in 
ratings 

Yes ISO 
15623:2013 

Intelligent lighting 
systems 

Intelligent lighting systems are estimated to reduce 
18% of pedestrian/cyclist low-visibility crashes 
(eSafetyForum 2005). 

Potential risks may occur as drivers 
increase their speeds as a result of 
better visibility (eSafetyForum 2005). 

    

Lane  
support systems 
(Lane change 
warning, Lane 
departure warning; 
Ford Lane Keeping 
Alert,Opel Eye, Lane 
keeping assistance; 
Lane Assistant, Active 
Lane Assist, Lane 
Assist, Lane Keeping 
Aid, Lane Departure 
Prevention) 

Lane change warning systems are estimated to 
reduce 37-40% of drifting and lane change crashes 
(FHWA 1998, Kaniantrha and Murtig 1997, 
McKeever 1998). See also TraceD4.1.1-D6.2 2007 
p40-41. 

    ISO 
17387:2008 

Lane departure warning is estimated to reduce 25% 
of head-on collisions and 25% of off-path crashes 
(Abele et al. 2005, Regan et al. 2001). See also 
TraceD4.1.1-D6.2 2007 p42. 

 Yes, in 
terms of 
rewards 

Yes, in 
ratings 

 ISO 
17361:2007;  

Lane keeping assistance systems are estimated to 
reduce 17-25% of off-path crashes (eSafety Forum 
2005, FHWA 1998, eImpact Project 2005), 24% of 
head-on collisions (eImpact Project 2005), and 60% 
of sideswipe collisions (eImpact Project 2005). See 
also TraceD4.1.1-D6.2 2007 p43. 

 Yes, in 
terms of 
rewards 

   

Programmable key 
system 
 (MyKey) 

"It is estimated that, if every car in Europe were 
fitted with such a system, some 4000 accidents and 
over 150 fatalities could be prevented" (from 
http://www.euroncap.com/rewards/ford_mykey.as
px) 

  Yes, in 
terms of 
rewards 

      

Multi Collision Brake             
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Crash  
avoidance  
technology 

(other specific names) 

Effectiveness Estimates  
and Sources 

Potential risks EuroNCAP NHTSA IIHS Related ISO 
Standards 

Pedestrian detection 
system 

No published estimates of effectiveness of 
pedestrian detection systems 

     

(Pre-) Crash systems 
 (Crew Protect Assist, 
Pre-Sense Basic, 
Proactive Occupant 
Protection, Collision 
Mitigation Brake 
System, PRE-SAFE, 
PRE-SAFE Brake) 

    Yes, in 
terms of 
rewards 

      

Reverse collision 
warning system 

Reverse collision warning systems are estimated to 
reduce 50-81% of backing crashes (Lee 2002) 

Some concern related to the systems 
were reported in Regan et al 2005 
(See TraceD4.1.1-D6.2 2007 p47). 
The concern was mainly related to 
the limitation of the sensors used 
and therefore the concern may 
change as sensor technologies 
advances. 

    

Road departure 
warning 

Road departure warning systems are estimated to 
reduce 24% of off-path crashes (Kaniantrha and 
Murtig 1997) 

     

Speed alert systems, 
or intelligent speed 
assistance (ISA) 

The systems are estimated to reduce 36% crashes 
with injury and 59% of fatal crashes given 100% ISA 
penetration rate (Carsten & Tate 2005). 

  Yes, in 
ratings 

      

Vision Enhancement 
Systems 
(Adaptive Forward 
Lighting) 

    Yes, in 
terms of 
rewards 
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APPENDIX E: ADVANCED STATISTICAL DESCRIPTIONS 

Seemingly Unrelated Regression (Approach 1) 

Seemingly Unrelated Regression (SUR) can be written as a system of equations as follows: 

 

 

where the 1 subscripts refer to US and 2 refer to EU. Xi is an ni x ri matrix of predictor values for each 
case;  ri is the number of predictors in the ith dataset.  βi is a ri x 1 vector of coefficients estimated in the 
modeling  process.  Finally,  εi is an ni x 1 vector of residual error terms determined in the modeling 
process. These equations produce the same maximum-likelihood models as logistic regression on 
separate datasets, but with joint variance estimates. Once the models are selected, we can test the 
hypothesis that coefficients are the same: 

H0:  βj1 =  βj2 (Hypothesis 1) 

Where  j  indexes  predictors  from  1…  ri.  

The test statistic, S, is equal to the difference  between  the  coefficients,  or  βj1-βj2. Using a Wald test, S 
has a chi-square distribution with 1 degree of freedom when H0 is true. Thus, the p-value for S is its 
probability under that distribution. 

We can also choose an alternative hypothesis Ha, which can be described as: 

Ha:  βj1 =  βj2 -δ (Note thatδis not a risk in this case, but part of a coefficent) 

Under Ha, power is calculated using Equation 13.  

 𝛽 = 𝑝(𝑆 < 𝛼|𝛿  𝑖𝑠  𝑡𝑟𝑢𝑒) = 1 − ൬Φିଵ(𝛼) − ఋ
ඥ௩௔௥  ௢௙  ௌ

൰ + ൬Φିଵ(1 − 𝛼) − ఋ
ඥ௩௔௥  ௢௙  ௌ

൰ (13) 

where S is the test statistic, α is the selected Type I error rate, δ is the size of difference being evaluated, 
and Φ is the standard normal distribution. 

Calculating distribution of risks for Approach 2 

Let us denote the distribution of predicted risk functions for EU vehicles by DEU and the corresponding 

distribution for US vehicles by DUS. For every Delta-V value i and 𝑗 = 1,… ,max  (𝑁௜ா௎,𝑁௜௎ௌ), let 𝑝̂ா௎
௜,௝,ଵ be a 

realization of DEU (i.e., an injury risk function which was randomly chosen according to the distribution 

DEU) and let  𝑝̂௎ௌ
௜,௝,ଵ be a realization of DUS. The overall predicted risk of a vehicle with the realization of 

injury risk functions corresponding to EU vehicles computed on the EU standard population is     
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while the overall predicted risk of a vehicle with the realization of injury risk functions corresponding to 
US vehicles on the EU standard population is  

𝑅ଵ
௎ௌ,ா௎ =

1
𝑁ா௎෍෍ 𝑝̂௎ௌ  

௜,௝,ଵ
ே೔
ಶೆ

௝ୀଵ௜

(𝑖). 

Analogous quantities 𝑅ଵ
ா௎,௎ௌ and 𝑅ଵ

௎ௌ,௎ௌ can be defined for the US standard population by replacing ଵ
ேಶೆ 

by ଵ
ேೆೄ and letting the index 𝑗 in the second sum run from 1 to 𝑁௜௎ௌ instead of 𝑁௜ா௎. This way, for these 

realizations of the injury risk functions, the risk ratios computed on the standard populations can be 
computed as follows: 

𝑅𝑅ா௎ଵ = 𝑅ଵ
ா௎,ா௎/  𝑅ଵ

௎ௌ,ா௎ 

and  

𝑅𝑅௎ௌଵ = 𝑅ଵ
ா௎,௎ௌ/  𝑅ଵ

௎ௌ,௎ௌ. 

This process is repeated 1000 or more times (let 𝐾 ≥ 1000 be the total number of times), each time 

with newly drawn realizations with 𝑝̂ா௎
௜,௝,௞ and 𝑝̂௎ௌ

௜,௝,௞   (𝑘 = 1,… , K) of the injury risk functions. This 
procedure yields sometimes the same and sometimes different values of 𝑅𝑅ா௎௞ ; more precisely, the end-
product is an empirical distribution of 𝑅𝑅ா௎ and an empirical distribution of 𝑅𝑅௎ௌ. 

 

 

 




