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Summary. Joint modeling methods have become popular tools to link important features extracted from longitudinal data to
a primary event. While most modeling strategies have focused on the association between the longitudinal mean trajectories
and risk of an event, we consider joint models that incorporate information from both long-term trends and short-term
variability in a longitudinal submodel. We also consider both shared random effect and latent class (LC) approaches in the
primary-outcome model to predict a binary outcome of interest. We develop simulation studies to compare and contrast these
two modeling strategies; in particular, we study in detail the effects of the primary-outcome model misspecification. Among
other findings, we note that when we analyze data from a shared random-effect using a LC model while the information from
the longitudinal data is weak, the LC approach is more sensitive to such a model misspecification. Under this setting, the LC
model has a superior performance in within-sample prediction that cannot be duplicated when predicting new samples. This
is a unique feature of the LC approach that is new as far as we know to the existing literature. Finally, we use the proposed
models to study how follicle stimulating hormone (FSH) trajectories are related to the risk of developing severe hot flashes
for participating women in the Penn Ovarian Aging Study.
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1. Introduction
Joint models naturally link longitudinal covariates to disease
outcomes. Many joint models have been developed in the con-
text of cancer research and HIV/AIDS clinical trials, where
a mixed-effect model is outlined for the longitudinal trajecto-
ries and a primary outcome model is defined for the disease
outcome. The primary outcome models are often postulated
as: (1) shared random effects (SRE) models, where covariates
include a functional form of the random effects in the mixed-
effect submodel, and (2) latent class (LC) models, where there
exists heterogeneity (latent classes) in the longitudinal mean
profiles, and subjects in a particular LC share the same risk
of event, conditional on other covariates.

For SRE models, the random effects are used to capture
the main features in the longitudinal trajectories that pre-
dict the outcomes. The concept of “shared parameters” was
first used in Wu and Carroll (1988) to model non-ignorable
missing data, and later by Henderson, Diggle, and Dobson
(2000) to jointly analyze longitudinal and time-to-event data;
also see Tsiatis and Davidian (2004), Ibrahim, Chen, Sinha
(2001), and Ibrahim, Chu, and Chen (2010) for excellent gen-
eral reviews of these models. In the LC model literature,
growth mixture models (Verbeke and Lesaffre, 1996; Muthén
and Shedden, 1999) are extensions of random growth curve
models, creating distinct subgroups where individual trajecto-

ries vary around group-specific mean trajectories. Considering
time-to-event outcomes, Proust-Lima et al. (2012) studied the
joint LC modeling in detail and contrasted its use in terms of
goodness of fit, prediction accuracy and model performances
with that of joint SRE models. Using a prostate cancer study
data consisting of four well-separated classes of longitudinal
mean trajectories, they illustrated that, in comparison to a LC
model, the use of SRE model alone was not sufficient to fully
capture the relationship between class-specific outcomes and
the heterogeneity among different classes. They also reported
that only a mild advantage of LC remained for prediction of
outcomes from an external data set of similar nature.

In this article, we study the associations between lon-
gitudinal hormone levels and menopausal symptoms for a
group of middle-aged women. The Penn Ovarian Aging Study
(Freeman et al., 2011) is a longitudinal study consisting of a
population-based sample of 436 women aged 35–47 years se-
lected via random digit dialing in Philadelphia County, PA
during 1996–1997. At each annual assessment, measurements
and a blood sample were collected two times approximately
a month apart. One goal of the study is to explore associ-
ations between reproductive hormone levels and symptoms
in the transition to menopause. Changes in hormone levels
alter menstrual bleeding patterns prior to menopause mark-
ing the end of a woman’s reproductive years. This course of
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events coincides for a majority of women with the develop-
ment of hot flashes, sleep disorders, and bone loss, among
other symptoms. While researchers have focused on the as-
sociations between these symptoms and hormone levels, the
impact of within woman rate of change and variability in hor-
mones, such as follicle stimulating hormone (FSH), is not well
understood. To evaluate that hypothesis that subject-level
hormone fluctuation may accentuate menopausal symptoms
(Freeman et al., 2006), we investigate methods that model
both longitudinal profiles and residual variability of the FSH
and simultaneously link them with the risk of experiencing se-
vere hot flashes (SHF). While most joint models have treated
within-subject variability as a nuisance parameter, recently a
small literature has developed to evaluate the associations be-
tween longitudinal within-subject variability and the primary
outcomes (Sammel et al., 2001; Elliott 2007; Elliott, Sammel,
and Faul, 2012).

Thus, in this dataset we have longitudinal measures with
heterogeneity both in trajectory and variability that may be
predictive of a binary outcome. There is evidence that these
trajectories and variabilities may cluster into possibly clini-
cally relevant groupings, so we consider a mixture model for
FSH hormone that also includes latent classes for the subject-
level trajectories and variability. This leads to two potential
candidate models for the outcome: a “multiple shared random
effects” (MSRE) model whose predictors are subject-specific
random coefficients, and a LC model whose predictors are the
LC memberships. Since it is not clear which approach is best,
we examine the robustness and predictive accuracy of each
approach via simulation study. Our key focus is not on one
primary-outcome model or the other, but their contrasts and
the information they jointly provide.

2. Joint Models and Corresponding Approaches

The joint modeling approach consists of a model for the lon-
gitudinal trajectories and a primary model for the outcomes.

� Let yij denote the longitudinal covariate for subject i at
time tij, j = 1, ..., ni, i = 1, ..., n, the longitudinal submodel
of yij is a generalized growth mixture model (Muthén and
Shedden, 1999) with subject-specific mean trajectories and
residual variances:

Di ∼ Multinomial(πD
1 , ..., πD

KD
),

bi|Di = d ∼ N(βd, �d), d = 1, ..., KD;

Ci ∼ Multinomial(πC
1 , ..., πC

KC
),

σ2
i |Ci = c ∼ log-N(μc, τ

2), c = 1, ..., KC;

and yij|bi, σ
2
i ∼ N{f (bi; tij), σ

2
i }, (1)

where bi is the r dimensional vector of subject-level random
effects that reflect the subject-level trajectory patterns, and
σ2

i is the residual variance. Di and Ci define the latent
classes for the longitudinal means and individual variance
memberships, respectively.

� The primary outcome model is a probit regression model:

�−1(p(oi = 1)) = Z′
iη, (2)

where the binary oi denotes the health outcome, and Zi

the ith set of covariates in the probit model. For the LC
model, Zi contains the LC memberships, Di and Ci; while
for the MSRE model, Zi contains SRE and residual vari-
ances. Other baseline variables may be included in Zi as
well.

Throughout, we let φ consist of all parameters in πD
d , βd ,

�d , πC
c , μc, τ2, η. We also replace η in (2) by θ for the LC and

by γ for the MSRE models to ease the task of presentation.

2.1. Structure Specification and Posterior Computation

We denote the prior distribution of φ by π(φ), assume each
parameter in φ has independent prior and let z = (b, σ, C, D)′.
The variable x consists of the longitudinal y’s and the out-
comes o’s. The complete data likelihood of φ based on data
(x, z) is given by,

f (x, z|φ)

∝
{

n∏
i=1

[∏
d

[
πD

d (2π)−r/2|�d |−1/2

× exp
{

−1

2
(bi − βd)

′
�−1

d (bi − βd)
}]I(Di=d)

×
∏

c

[
πC

c (2πτ2)− 1
2 σ−2

i exp
{

− 1

2τ2

(
log σ2

i −μc

)2
}]I(Ci=c)

×
ni∏

j=1

1√
2πσ2

i

exp

[
− 1

2σ2
i

{
yij − f (bi; tij)

}2

]

×�(Z′
iη)oi

{
1 − �(Z′

iη)
}1−oi

]}
π(φ). (3)

We propose a Bayesian approach to estimate model pa-
rameters. For the mixture normal distribution of the ran-
dom effects, we let βd ∼ N(0, V ), V = nĈov(β̂) where β̂ is
the estimator in regressing y on the design matrix defined
by f (·; tij). This corresponds to a “single observation” data-
driven inflated covariance prior centered at a null model,
and avoids improper posteriors resulting from the possi-
bility that some latent classes are not represented in the
data (Elliott et al., 2005). For the covariance matrix of
the random effects, �d , we use the prior from Kass and
Natarajan (2006): �d ∼ Inverse-Wishart(df = m, 	), where

	 = r

(∑n

i=1
Ĉov(b̃i)

−1/n

)−1

; b̃i is the OLS estimator of

bi. We let m = 2.5 + (r − 1)/2 as suggested by Frühwirth-
Schnatter (2006, Section 6.3.2) to restrain the eigenvalues of
the covariance matrices away from 0, avoiding “local maxima”
that can result from the improper posterior due to unbounded
likelihoods when the covariance matrix is unrestricted in nor-
mal mixture models (Day, 1969).

For the mixture log-normal distribution for the resid-
ual variances, we used diffuse priors: μc ∼ N(0, v), τ−2 ∼
Gamma(a, b) with v = 1000 and a = b = 0.001. For the
class membership probabilities, we assume conjugate
Dirichlet(4, ..., 4) on both πC and πD (Frühwirth-Schnatter,
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2006); this is equivalent to assuming a priori four observa-
tions per-class, avoiding having empty classes. Lastly, we let
η ∼ N(0, (9/4)I) in the probit regression, where (9/4)I would
bound the estimated outcome probabilities to be away from
0 and 1 (Garrett and Zeger, 2000).

Gibbs sampling is used to obtain draws from the posterior
distributions. For (η | C, D, O) we use the Albert and Chib
(1993) data augmentation method for probit regression mod-
els. The draws of (σ2

i |Ci, {μc}c, τ
2, bi, oi, {yij}i) for all i are ob-

tained by the inverse cumulative distribution method. The
exact specifications of all priors and MCMC procedures are
given in Web Appendix A. In the Ovarian Aging data anal-
ysis, we ran three chains from diverse starting points and
use Gelman–Rubin statistics (Gelman et al., 2003) to assess
MCMC convergence. In simulations, we started the chains at
the initial values obtained from estimated individual parame-
ters in longitudinal yi’s and ad hoc estimates built from them.

For the well-documented issue of “label switching” in mix-
ture modeling (Redner and Walker, 1984), we applied the
post-processing relabeling algorithm (Stephens, 2000) where
class permutations and re-assignment are adopted at each
MCMC iteration. In simulations, we ran Stephens’s relabel-
ing algorithm with the initial class labels on the raw MCMC
output. In the data application, for models with KD = 2 or
KC = 2, there is little evidence of label switching. For cases of
larger than two KD or KC, label switching happens more fre-
quently. With the convergence speed of Stephens’s algorithm
depending on the quality of initial labels, we re-initialize the
class labels when needed, prior to a full re-run of the algo-
rithm.

2.2. The Choice of the Number of Classes

The choice of the number of latent classes is known to be a
challenging problem in modeling finite mixtures (McLachlan
and Peel, 2000). We consider two commonly used Bayesian
model assessment criteria: the deviance information criterion
(DIC) of Spiegelhalter et al. (2002), and the logarithm of the
pseudomarginal likelihood (LPML), proposed by Geisser and
Eddy (1979). For DIC, recalling x = (y, o)′, we consider

DIC(x) = D(φ) + pD = 2D(φ) − D(φ)

= −4Eφ

{
log f (x | φ) | x

} + 2 log f
{
x | E(φ | x)

}
.

In our setting with latent z, f (x | φ) is not available in closed
form. We use the approach outlined in Celeux et al. (2006)
and detailed in Web Appendix B, to obtain DIC(x) by

Ez

{
DIC(x, z)

} = −4Ez,φ

{
log f (x, z | φ) | x

}
+ 2Ez

[
log f

{
x, z | Eφ(φ | x, z)

} | x
]
,

where integration over the latent z is obtained via numerical
methods.

LPML corresponds to a Bayesian cross-validation measure
and is defined as LPML = ∑n

i=1
log(CPOi), where CPOi =

f (yi, oi|y(−i), o(−i)) represents a leave-one-out cross-validated
posterior predictive density for (yi, oi) given the data exclud-
ing (yi, oi) (denoted by (y(−i), o(−i))). The model with higher
value of LPML provides a better fit to the data (Ibrahim et al.,

2001). Details of the LPML computation are also provided in
Web Appendix B.

2.3. Goodness of Fit Evaluation

We assessed the model goodness of fit to the data
in two ways. First, we examined the posterior predic-
tive distributions (PPDs; Gelman et al., 2003), where a
PPD p value close to 0.5 implies a satisfactory fit of
the model to the data. For the longitudinal trajectories,
we draw yrep from the posterior predictive distribution
f (yrep|y, o) = ∫

f (yrep|φ, z, y, o)f (φ, z|y, o)dφdz to compute
the PPD p values P{Ti(yi; bi, σ

2
i ) < Ti(y

rep
i ; bi, σ

2
i ) | y}, where

for subject i, we consider a χ2-like statistic, Ti(yi; bi, σ
2
i ) =∑

j

{
yij − f (bi; tij)

}2
/σ2

i . For the outcome indicator oi, we

compute P
(
T rep < T obs | y

)
, where T obs = n−1

∑
i
I(oi = 1),

and T rep = n−1
∑

i
o
rep
i with o

rep
i drawn from the posterior

predictive distribution, a Bernoulli distribution with the suc-
cess probability P(orep

i = 1|y, o) = ∫
�(Z′

iη)f (φ, z|y, o)dφdz.
Second, we assessed the discriminatory ability of the model

using receiver-operating characteristic (ROC) curves, in par-
ticular the area under the ROC curve (AUC). ROC curves
plot true positive rate (TP) versus false positive rate (FP)
for all possible cutoffs based on predicted P(oi = 1) = �(Z′

iη)
obtained from (2). The ROC curve and AUC were computed
at each MCMC iteration using the ROCR package in R (Sing
et al., 2005). To obtain the posterior mean and the point-
wise 95% credible interval of ROC curve, we select 250 points
equally spaced along the FP axis and take the vertical aver-
age or 95% quantiles of TP’s at the 250 chosen points. This
approach is referred to as vertical averaging of ROC curves
at fixed FP rates by Fawcett (2006).

3. Simulations

We conduct simulation studies to evaluate the properties of
the LC and MSRE modeling when the true and the assumed
models may or may not be the same; i.e., the data could be
generated under an LC model but analyzed using an MSRE
model, and vice versa. We consider four scenarios for the lon-
gitudinal model with different levels of overlapping mixtures
in both mean profiles and variance patterns, crossed with two
primary-outcome models.

3.1. Simulation Study Design

For the longitudinal observations, we generate data for sub-
ject i from the following model with two mean profiles and
two variance classes:

yij|bi, σ
2
i ∼ N(b0i + b1itij, σ

2
i );

bi ∼ πdN(β1, �1) + (1 − πd)N(β2, �2) and

log σ2
i ∼ πcN(μ1, τ

2) + (1 − πc)N(μ2, τ
2), (4)

where tij = 0, 1, ..., ni; ni ≡ 20. For k = 1, 2, we let βk =
(βk1, βk2)

′ and �k have diagonal elements (ω2
k1, ω

2
k2) and cor-

relation ρk. We let β1 = (0, 0)′ and β2 = (2
√

2, 2
√

2)′, ρ1 = 0,
μ1 = −2 and μ2 = −0.5 in all scenarios. Thus the means
of the two bivariate normals differ by 4 throughout, while
the mean log-variances are separated by 1.5. Our four
longitudinal model scenarios are defined by (ρ2, ω

2, τ2)′ =
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(0.6, 2, 0.25), (−0.6, 1, 0.25), (0.6, 2, 0.06), and (−0.6, 1, 0.06),
respectively, where ω = ω11 = ω12 = ω21 = ω22.

Figure 1 shows the 95% contours for the two components
in the mean profiles and the density plots of the log-variance
classes in each of the four scenarios: both mean and vari-
ance classes heavily overlapping (scenario # 1), only the vari-
ance classes heavily overlapping (scenario # 2), only the mean
classes heavily overlapping (scenario # 3), neither the mean
nor the variance classes heavily overlapping (scenario # 4).
In all scenarios, πd = 0.35 and πc = 0.65.

The following two underlying probit models are considered
for health outcome:

(1) LC probit submodel:

�−1
{
P(oi = 1)

} = θ0 + θ1I(Di = 2) + θ2I(Ci = 2)

+ θ3I(Di = 2, Ci = 2); (5)

(2) Multiple shared random effect (MSRE) probit submodel:

�−1
{
P(oi = 1)

} = γ0 + γ1b0i + γ2b1i + γ3σ
2
i

+ γ4b0iσ
2
i + γ5b1iσ

2
i , (6)

where Di = 1 corresponds to the mean class N((0,0)′, �1),
and Ci = 1, the variance class N(−2, τ2) in the longitudinal
model (4). We choose θ and γ for each scenario so that the
outcome prevalence is approximately 50%.

To investigate the robustness of each approach under pri-
mary model-misspecification, we generated data from LC and
MSRE primary models from equations (5) and (6) under each
of the four longitudinal mixture scenarios, and then applied
the approaches assuming the LC and MSRE structure to all
generated data sets regardless of how the data were gener-
ated. For scenarios in which the true and assumed model dif-
fer, we generated observations from 10,000 subjects, obtained
the corresponding maximum likelihood estimates (MLE) con-
structed under the assumed model, and repeated the process
1000 times to obtain the averages of the estimated param-
eters. We then used these average estimates as if they were
the “true” parameters for the assumed structure under that
simulation scenario. This practice allows us to compare the
robustness for the two different modeling considerations un-
der the same data-generation mechanism. For each scenario,
we simulate 100 data sets of n = 200.

3.2. Estimates of the Longitudinal Model

First, we report the findings on regression associations and
classification of LC membership, two aspects that play an ex-
planatory role in accuracy of health-outcome prediction. The
performances of estimation of the longitudinal parameters are
reported in Tables A.1–A.4, Web Appendix C. When fitting
true underlying models, we find that the performance of the
LC approach is affected by how difficult it is to separate the
mixture components in LC, though they tend to do better
than the MSRE approach. When fitting misspecified models,
both approaches are quite robust when there is sufficient in-
formation in the longitudinal data to separate classes. When

the information from the longitudinal data is weak, the LC
approach is more sensitive to model misspecification. Model
misspecification also tends to damage the estimation of the
mixture proportions in scenarios #1 and #3; even fitting a
correctly assumed model still yields somewhat biased and un-
der covered estimates of the mixture proportions. The vari-
ance components of the longitudinal model were generally well
estimated under all scenarios.

3.3. Estimates of the Primary Outcome Model

For the study of regression association, we focus on the best
(scenario #4) and the worst (scenario #1) scenarios in terms
of the levels of mixture overlapping. Table 1 gives the Monte
Carlo bias, standard deviation (SD), mean squared error
(MSE), and 95% credible interval coverage (95% COV) for
the corresponding association parameters under the correctly
specified and mis-specified primary-outcome models. Recall
that when the true and assumed models differ, the values
reported under the “True” and “Bias” columns in the ta-
ble refer to the corresponding large-sample MLEs and their
discrepancies to the estimates given by fitting the assumed
models. Such discrepancies can reflect how much the associa-
tion between the longitudinal data and the health outcome of
interest can be affected by model-misspecification. We clearly
observed the association-correspondence from the correctly
and mis-specified assumed models in scenario #4. For exam-
ple, θ2 and γ3 always shared the same sign, indicating how
the binary outcomes associate with the magnitude of subject-
level residual variances, or a positive association between the
outcome and a D2 class in a true LC model is reflected by the
positive values of targeted γ1 and γ2 in the assumed MSRE
fit.

Examining the Monte Carlo bias and coverage probabil-
ity of the 95% credible intervals for each parameter, we find
that outcomes from fitting an MSRE model are not affected
much by the levels of mixture overlapping nor by model-
misspecification. In contrast, under scenario #1, if the true
model is MSRE, the estimates of association parameters ob-
tained by assuming LC can be far away from the targeted
values and result in reduction of credible-sets coverage. The
complete simulation results for all four scenarios are given in
Tables A.1–A.4 (Web Appendix C).

3.4. Misclassification Rates

As the true class labels are known in our simulated data
sets, we also consider the misclassification rates defined as
the percentages of misclassified subjects when the classifi-
cations are based on C̃i = argmaxcπ̂

C
ic and D̃i = argmaxdπ̂

D
id ,

where π̂C
ic and π̂D

id are the posterior means of P(Di = d|y, o)
and P(Ci = c|y, o), respectively.

In Table 2, we report the mis-classification rates for both
mean and variance classes under scenarios # 1–4 and different
combinations of true and assumed LC and MSRE models. The
LC model tends to perform reasonably well when correctly
specified. When the two mixture components are well sepa-
rated, both approaches perform well regardless of model spec-
ification. Variance classes are generally well estimated, with
some modest reduction in accuracy for overlapping compo-
nents. Such results are robust against model-misspecification.
For the overlapping mean classes in scenarios #1 and #3, the
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Figure 1. Simulation setup for the mean profiles and variance classes: left column: 95% contour plots of the two components
for mean profile class; right column: density plots of the two components for variance class (dotted curves are the density
curves for the variances).
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Table 1
Estimates of the association parameters in the primary outcome model from the simulation study based on 100 datasets of

size, n = 200

True LC structure True MSRE structure

Assumed 95% 95%
structure TRUE BIAS SD RMSE COV TRUE BIAS SD RMSE COV

(a) Generated from longitudinal scenario # 1
LC θ0 −0.80 −0.65 0.50 0.82 0.89 −0.40 −1.00 1.13 1.51 0.35

θ1 1.80 0.61 0.66 0.90 0.88 −0.11 2.40 2.34 3.35 0.35
θ2 −0.20 0.20 0.69 0.72 0.98 0.53 1.64 1.76 2.41 0.36
θ3 −0.30 −0.28 0.82 0.87 0.97 0.16 −3.69 3.73 5.24 0.35

MSRE γ0 −0.32 0.00 0.21 0.21 0.95 −1.00 0.19 0.24 0.30 0.92
γ1 0.20 0.01 0.11 0.11 0.96 1.00 −0.09 0.16 0.18 0.95
γ2 0.18 −0.01 0.11 0.11 0.96 −1.00 0.04 0.17 0.18 0.96
γ3 −0.22 −0.15 0.60 0.62 0.92 2.00 −0.52 0.58 0.78 0.87
γ4 −0.04 0.01 0.32 0.32 0.93 −2.00 0.29 0.36 0.46 0.90
γ5 −0.04 0.06 0.30 0.30 0.94 2.00 −0.14 0.38 0.41 0.95

(b) Generated from longitudinal scenario # 2
LC θ0 −0.80 −0.06 0.25 0.25 0.98 −0.48 −0.19 0.30 0.36 0.89

θ1 1.80 0.13 0.37 0.39 0.98 0.06 0.03 0.45 0.45 0.92
θ2 −0.20 −0.07 0.52 0.52 0.96 0.65 0.52 0.66 0.84 0.84
θ3 −0.30 −0.05 0.69 0.69 0.96 −0.08 −0.09 0.91 0.92 0.87

MSRE γ0 −0.66 0.01 0.24 0.24 0.98 −1.00 0.07 0.24 0.25 0.97
γ1 0.28 −0.02 0.12 0.12 0.96 1.00 −0.05 0.17 0.17 0.94
γ2 0.28 0.02 0.11 0.11 0.94 −1.00 0.02 0.17 0.17 0.93
γ3 −0.22 −0.28 0.56 0.62 0.97 2.00 −0.33 0.59 0.68 0.96
γ4 −0.05 0.12 0.33 0.35 0.89 −2.00 0.17 0.37 0.40 0.95
γ5 −0.05 −0.02 0.29 0.30 0.94 2.00 −0.06 0.39 0.39 0.97

(c) Generated from longitudinal scenario # 3
LC θ0 −0.80 −0.60 0.42 0.74 0.87 −0.41 −1.02 1.15 1.54 0.34

θ1 1.80 0.53 0.55 0.77 0.91 −0.12 2.52 2.28 3.40 0.31
θ2 −0.20 0.10 0.62 0.63 1.00 0.57 1.30 1.50 1.98 0.34
θ3 −0.30 −0.11 0.77 0.77 1.00 0.15 −3.42 3.15 4.65 0.36

MSRE γ0 −0.28 −0.01 0.20 0.20 0.96 −1.00 0.16 0.22 0.28 0.96
γ1 0.19 0.02 0.13 0.13 0.89 1.00 −0.09 0.15 0.18 0.92
γ2 0.20 0.00 0.14 0.14 0.93 −1.00 0.04 0.16 0.17 0.92
γ3 −0.37 −0.12 0.47 0.49 0.98 2.00 −0.42 0.53 0.68 0.94
γ4 −0.07 −0.10 −0.03 0.34 0.92 −2.00 0.25 0.35 0.43 0.94
γ5 −0.07 −0.04 0.04 0.36 0.93 2.00 −0.10 0.35 0.37 0.96

(d) Generated from longitudinal scenario # 4
LC θ0 −0.80 −0.01 0.19 0.19 0.97 −0.50 −0.05 0.24 0.25 0.91

θ1 1.80 0.00 0.25 0.25 0.99 0.06 0.05 0.30 0.30 0.90
θ2 −0.20 −0.08 0.51 0.52 0.95 0.69 0.10 0.38 0.40 0.94
θ3 −0.30 0.09 0.57 0.58 0.95 −0.08 −0.09 0.49 0.49 0.95

MSRE γ0 −0.62 −0.01 0.23 0.23 0.98 −1.00 0.14 0.25 0.29 0.93
γ1 0.29 −0.01 0.12 0.12 0.97 1.00 −0.08 0.15 0.17 0.90
γ2 0.29 0.03 0.13 0.13 0.94 −1.00 0.05 0.17 0.18 0.93
γ3 −0.36 −0.16 0.69 0.71 0.95 2.00 −0.44 0.58 0.73 0.93
γ4 −0.09 0.07 0.35 0.35 0.95 −2.00 0.22 0.36 0.43 0.90
γ5 −0.08 −0.02 0.30 0.30 0.97 2.00 −0.10 0.42 0.43 0.94

use of MSRE tends to result in high-misclassification rates
even if the model is well specified, but these rates are higher
when fitting an LC model under an MSRE structure. How-
ever, a high mis-classification rate obtained under an assumed
MSRE model, such as those in scenario #1, does not associate
with deteriorated performances in estimating association pa-
rameters in Table 1. In contrast, a high mis-classification rate
obtained by an assumed LC model, particularly under model-
misspecification, does.

3.5. Predictive Accuracy

We next turn our attention to evaluating the predictive accu-
racy of outcome using the same setups. We evaluate the true
AUC (i.e., the AUC for the true model computed with the
known parameters) and the corresponding values predicted
by assuming an LC or an MSRE model, respectively. The
means and 2.5/97.5 percentiles of the posterior mean AUCs
based on repeated samples are given in Table 3a. Besides the
true AUC, the rows in Table 3a summarize outcomes from



Joint Modeling via Mixtures of Means and Variances 493

Table 2
Misclassification rates (%) for the mean profile and variance
class memberships from the simulation study based on 100

datasets of size, n = 200

True LC model True MSRE model

Scenario Scenario
Assumed
model # 1 # 2 # 3 # 4 # 1 # 2 # 3 # 4

Mean profile class
LC 12 0 11 0 50 1 50 1
MSRE 33 0 34 1 33 0 34 1

Variance class
LC 11 11 3 3 12 13 3 3
MSRE 10 11 3 3 11 11 3 3

within-sample (training) and out-of-sample (testing) predic-
tions. Additional independent data sets of size ñ = 50 were
generated from the same model as the testing sets. Under
model-misspecification, we also reported AUC obtained when
the true LC membership/random effects are used to build pre-
dictions for the assumed MSRE/LC models (i.e., “assumed”
AUC at the last two tables of Web Appendix C). The differ-
ences between the “training” and “assumed” AUC reflect the
effects attributed to the estimated class-memberships.

When the MSRE model is assumed, the AUC outcomes
either show a little loss of predictive power (only under mis-
specification) or the results are close to the true AUC. The
slightly lower AUC values of testing samples, in comparison
to those of training, are as expected. When fitting correctly
specified LC model, the empirical 95% credible intervals of
AUC under scenarios #1 and #3 are wider than the truth,
while such intervals under scenarios #2 and #4 are of similar
length to the truth, reflecting the larger variabilities in the
predictive power for settings under overlapping mean compo-
nents.

When the MSRE model is the truth and the LC model is
used, the outcomes in “LC-testing” suggest that the average
posterior means given in “LC-training” could be overly opti-
mistic, except for scenario #4. In addition, there again exists
considerably large variation, indicated by the wide credible
intervals in scenarios #1 and #3, corresponding to the de-
teriorated performances we observed in Table 1. Under sce-
nario #1, Figure A.1 (Web Appendix C) presents two typical
data examples that have either very high (top panel) or very
low (bottom panel) AUC estimated by the LC model when
the truth is the joint MSRE model. In both examples, the
AUC’s by the correctly specified MSRE model are very close
to the truth. However, the high AUC by LC suggests that
the LC model has some ability to create “outcome-informed
clusters” and deliver overly optimistic within-sample predic-
tion under model-misspecification. This finding is also re-
vealed by the differences between the values of “LC-training”
and “LC-assumed” (measuring the effects due to estimated
cluster-memberships) reported in Web Appendix C.

The phenomenon is a unique feature of joint LC modeling,
and is partly due to the difficulty in determining cluster-
memberships and partly due to the fact that the mixture

classification is done given both the longitudinal y and the
outcome o. When the information to divide clusters in y is
relatively weak, the binary outcome o tends to dominate in
determining the latent classes to boost the posterior density.
With the outcome o being binary, classes were created
to match the two groups of o = 0 and o = 1. This results
in the predictive power of future longitudinal data being
over-estimated, as the prediction under the current data only
weakly relies on it. Figure A.1 illustrates this phenomenon.
This phenomenon for joint LC modeling also happens when
the data are generated from the LC model, but the effect
is much less prominent. To our knowledge this phenomenon
has not been previously noted in the literature and it could
have strong implications for outcome interpretation. On the
other hand, when almost all subjects are being assigned to
one mean class by the LC model, prediction of the outcome
is solely dependent on the variance class and consequently
the LC model had low predictive performance. The existence
of these two typical cases in Figure A.1 leads to overly
inflated variation for LC estimated AUC’s. We also report
the corresponding outcomes for Brier Score (Brier, 1950) in
Table 3b, which re-enforce the findings obtained using AUC.

Finally, all simulations are repeated with n = 500; see Ta-
bles A.5–A.10 (Web Appendix C) for results. The outcomes
are consistent with the findings of n = 200, with notably re-
duced bias and RMSE of the estimates of all model parame-
ters and reduce mis-classification rates of class memberships
when the true and assumed models are the same.

4. Analysis of Penn Ovarian Aging Study Data

One goal of the Penn Ovarian Aging Study is to determine
to what extent the annually FSH levels are predictive of the
risk of SHF. Out of the 436 women in the study, we restrict
our analysis to the 245 who (a) had not experienced SHF at
baseline and (b) had at least three measurements of FSH.
Hormone values were treated as missing if a woman was preg-
nant, breast feeding or taking exogenous hormones during the
study period. A total of 4244 FSH values were observed, rang-
ing from 3 to 26 per woman. Of the 245 women without SHF
symptoms at baseline, 118 (48.2%) had experienced SHF at
least once during the study.

After removing the population level non-linear trend by
subtracting the loess estimate of mean FSH by age, we
seek to evaluate whether each individual’s deviation from
it, postulated by the subject-level random coefficients in
an orthogonal polynomial model, is associated with SHF.
We let yij denote the detrended log(FSH) lowess residuals
(Figure A.2, Web Appendix D) and oi denote the SHF indi-
cator: oi = 1 if any SHF score ≥2 during study. Preliminary
analysis by linear mixed effects (LME) modeling indicates
that a random intercept and random slope model is sufficient
to capture the trends in the residual trajectories. Thus we
let f (bi; tij) = bi0 + bi1tij, where tij is the linear term in the
orthogonal polynomial used in the LME modeling, and bi0

and bi1 are the subject-level random intercepts and slopes,
respectively. We then jointly model the FSH mean profile
and residual variance to predict the risk of SHF using models
in (1) and (2). We examine the use of the primary probit LC
and MSRE models under the joint modeling framework, as
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Table 3
(a) Mean area under the ROC curves and (b) Brier score for the prediction of outcome from the simulation study based on

100 datasets of size, n = 200. Left columns: data generated from the LC model; right columns: data generated from the
MSRE model. “Percentile” refers to the 2.5 and 97.5 percentiles of the results computed under the true parameters across
simulations; “95% CI” refers to mean of the lower and upper 95% credible intervals across simulations. LC/MSRE-testing
refers to results obtained for the validation sample of size ñ = 50, while LC/MSRE-training gives within-sample prediction

outcomes

TRUE: joint LC model TRUE: joint MSRE model

Scenario Scenario

# 1 # 2 # 3 # 4 # 1 # 2 # 3 # 4

(a) Area under the ROC curves
Truth

Mean 0.80 0.81 0.81 0.81 0.84 0.85 0.83 0.84
Percentile (0.75, 0.86) (0.75, 0.86) (0.75, 0.87) (0.75, 0.86) (0.79, 0.89) (0.80, 0.90) (0.77, 0.88) (0.78, 0.89)

LC-training
Mean 0.80 0.82 0.80 0.81 0.85 0.69 0.83 0.64
95% CI (0.58, 0.91) (0.75, 0.88) (0.63, 0.92) (0.75, 0.86) (0.63, 0.97) (0.58, 0.82) (0.60, 0.96) (0.56, 0.72)

LC-testing
Mean 0.67 0.79 0.68 0.79 0.64 0.59 0.66 0.61
95% CI (0.54, 0.79) (0.69, 0.9) (0.59, 0.78) (0.67, 0.89) (0.53, 0.73) (0.49, 0.7) (0.58, 0.74) (0.49, 0.77)

MSRE-training
Mean 0.76 0.80 0.77 0.81 0.84 0.85 0.83 0.83
95% CI (0.69, 0.83) (0.73, 0.85) (0.71, 0.85) (0.74, 0.86) (0.79, 0.89) (0.79, 0.90) (0.76, 0.88) (0.77, 0.89)

MSRE-testing
Mean 0.74 0.78 0.75 0.79 0.78 0.8 0.78 0.79
95% CI (0.59, 0.89) (0.65, 0.9) (0.61, 0.88) (0.67, 0.89) (0.66, 0.88) (0.68, 0.89) (0.64, 0.89) (0.65, 0.9)

(b) Brier score
Truth

Mean 0.16 0.16 0.16 0.16 0.16 0.15 0.16 0.16
Percentile (0.13, 0.2) (0.13, 0.19) (0.13, 0.19) (0.13, 0.19) (0.13, 0.18) (0.13, 0.18) (0.14, 0.19) (0.13, 0.19)

LC-training
Mean 0.15 0.16 0.15 0.16 0.12 0.2 0.14 0.22
95% CI (0.1, 0.23) (0.13, 0.19) (0.09, 0.19) (0.13, 0.19) (0.04, 0.23) (0.15, 0.24) (0.05, 0.23) (0.2, 0.24)

LC-testing
Mean 0.26 0.27 0.25 0.26 0.26 0.27 0.25 0.25
95% CI (0.23, 0.33) (0.22, 0.34) (0.23, 0.28) (0.2, 0.31) (0.22, 0.31) (0.22, 0.32) (0.22, 0.29) (0.22, 0.28)

MSRE-training
Mean 0.19 0.17 0.19 0.17 0.16 0.15 0.16 0.16
95% CI (0.16, 0.22) (0.14, 0.2) (0.16, 0.21) (0.14, 0.2) (0.14, 0.18) (0.12, 0.18) (0.14, 0.2) (0.14, 0.19)

MSRE-testing
Mean 0.26 0.26 0.26 0.26 0.25 0.26 0.26 0.25
95% CI (0.22, 0.3) (0.21, 0.31) (0.22, 0.31) (0.22, 0.31) (0.21, 0.32) (0.21, 0.32) (0.21, 0.31) (0.22, 0.29)

presented in Section 2. We also adjust for additional baseline
covariates log(BMI) and smoking status in both models.

For all models, we ran three MCMC chains of 50,000 it-
erations, discarded the first 10,000 iterations as burn-in, and
only retained every 10th draw to reduce autocorrelation. We
assessed chain-convergence by the Gelman–Rubin statistic R̂.
The maximum value among all parameters was less than
1.1, indicating convergence. Given the moderate sample size
n = 245, we considered the models in (1) with KD and KC

being 1–3. The KD and KC selected by DIC and LPML dif-
fered, with LPML preferring more mixture components (Table
A.12, Web Appendix D); a typical behavior of LPML in our
additional simulation outcomes (not shown). The best model
selected by DIC had KD = 1, KC = 2, with a two-class model

of a KD = 2, KC = 2 close second for both the MSRE and LC
models.

Figure 2 shows the mean and variances for the KD =
1, KC = 2 model (left: MSRE; right: LC), indicating the bi-
modal nature of the posterior means of the individual vari-
ances. Table 4 reports the results for fitting both MSRE and
LC models when KD = 1, KC = 2; see Table A.13, Web Ap-
pendix D, for results assuming KD = 2, KC = 2. The estima-
tion of the longitudinal submodel differs little between an LC
and an MSRE fit. The two-class mean model separates the
mean trajectories into two approximately equal-sized classes,
with one a “null class” with slope and intercept near zero, the
other a “high and rising” (Figure A.3, Web Appendix D) class
with the slope/intercept being 0.21/0.16 and 0.22/0.17 under
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Figure 2. Posterior pointwise 95% credible intervals for the mean profile classes and the histograms of log-variances in the
analysis of Penn Ovarian Aging data with KD = 1, KC = 2: (a) and (b): under the joint MSRE model and (c) and (d): under
the joint LC model.

the MSRE and LC models, respectively. Both LC and MSRE
modeling implies a reduced risk of SHF for the “high and
rising” class of FSH, albeit not being significant. The MSRE
outcomes further indicate that the subject-level random in-
tercept for the residual FSH measures is non-significant.

All models suggest that a little more than one in five women
(22% under MSRE, 21% under LC) belong to a low resid-
ual variance class, centered at 0.07(MSRE)/0.06(LC), while
the remainder belong to a higher variance class, centered at
0.32(MSRE)/0.31(LC). Both MSRE and LC models suggest
a positive and highly significant association between subject-
level variance and risk of SHF while adjusting for baseline
covariates of smoking and BMI.

For a non-smoking woman at mean BMI of 27.7 with
FSH slope and intercept at the population mean, the prob-
ability of experiencing a SHF under the MSRE model with
KD = 1, KC = 2 is 30.5% (19.7%, 42.0%) and 45.9% (38.2%,
54.1%), respectively, if her residual variance is at the Class
1/Class 2 mean. The difference is greater under the LC model
with outcome probabilities become 17.9% (5.0%, 32.9%) and
51.5% (43.0%, 60.1%). No significant interactions between
subject-level means and residual variances were found among
models with KD = 1 or 2. (Table A.14, Web Appendix D).

All models provide marginal evidence to support smoking at
baseline as contributing to higher risk of SHF, while the effect
from baseline BMI is non-significant.

For the joint MSRE and LC models, we conducted model-
checking via PPD p values (PPD-p’s). The corresponding his-
tograms are given in Figure A.4 (Web Appendix D). For KD =
1, KC = 2, the longitudinal detrended log(FSH), the ranges
and medians of PPD-p’s are (0.06, 0.93) and 0.54 (MSRE)
and (0.09, 0.92) and 0.54 (LC), respectively. The contrasts be-
tween the individual fits from the top (0.1 ≤ PPD-p’s ≤ 0.9)
and bottom (otherwise) panels of Figure A.5 suggest that the
small PPD-p’s appear to be driven by the individual outlying
points and large PPD-p’s are caused by the “almost perfect”
fits. The goodness of fit for the FSH trajectories and the risk
of SHF, are further supported by Figure A.6, which shows
that only about 4% of the FSH values are not covered by
the 95% subject-level posterior predictive intervals and by the
PPD-p of 0.497 and 0.498, under primary-outcome MSRE and
LC models, respectively. Finally, we found that the MSRE
model had somewhat greater predictive power than the LC
model, with the posterior means of AUC = 0.682 for former,
and 0.645 for latter; the ROC curves are provided in Figure
A.7. A comparison of AUCs suggests that the difference in
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Table 4
Posterior estimates of the model parameters under the joint MSRE and LC models in the analysis of Penn Ovarian Aging

data with KD = 1, 2 and KC = 1, 2

MSRE model LC model

Mean SE 95% CI Mean SE 95% CI

β11 0.040 0.031 (−0.020, 0.101) 0.038 0.031 (−0.024, 0.099)
β12 0.110 0.025 (0.061, 0.158) 0.109 0.025 (0.060, 0.157)
ω2

11 0.200 0.023 (0.160, 0.250) 0.200 0.023 (0.160, 0.249)
ω2

12 0.102 0.013 (0.079, 0.130) 0.103 0.013 (0.080, 0.132)
ρ1 0.668 0.055 (0.552, 0.767) 0.668 0.056 (0.551, 0.768)
μ1 −2.699 0.149 (−3.004, −2.416) −2.767 0.162 (−3.094, −2.459)
μ2 −1.138 0.054 (−1.247, −1.035) −1.160 0.054 (−1.269, −1.057)
τ2 0.171 0.040 (0.105, 0.262) 0.191 0.043 (0.120, 0.287)
πC

1 0.225 0.040 (0.150, 0.305) 0.212 0.039 (0.140, 0.292)
γ0 (intercept) −0.457 0.953 (−2.327, 1.430)
γ1 (log(BMI)) −0.065 0.284 (−0.625, 0.493)
γ2 (smoking) 0.375 0.186 (0.011, 0.746)
γ3(b0i) −0.889 0.322 (−1.546, −0.286)
γ4(b1i) 0.753 0.467 (−0.137, 1.694)
γ5(σ

2
i ) 1.627 0.592 (0.515, 2.831)

θ0 (intercept) −0.826 0.946 (−2.670, 1.011)
θ1 (log(BMI)) −0.041 0.280 (−0.587, 0.498)
θ2 (smoking) 0.330 0.184 (−0.036, 0.691)
θ3 (D = 2)
θ4 (C = 2) 1.000 0.326 (0.437, 1.717)

the performance was not clearly delineated (�AUC is 0.037
(−0.039, 0.114)).

5. Concluding Remarks

In this article, we study two joint modeling approaches, LC
and MSRE, to link the important characteristics or features
in the longitudinal trajectories to the primary health outcome
when the underlying true model may or may not be the model
used to analyze the data. Both LC and MSRE models are built
upon certain modeling assumptions whose violations may not
be easily detected using popular model-selection/diagnostic
approaches. However, relatively little attention has been paid
to the potential impact of model misspecification in the joint
modeling framework. This work provides guidance concerning
the potential impact of choosing one of the LC and MSRE
modeling strategies to link longitudinal measurements and
health outcome while the other model generates the data.

Our simulation study showed that the MSRE model had
several strengths over that of the LC model. First, it was not
as sensitive to model misspecification as the LC approach.
In addition, the MSRE approach was not as sensitive as
the LC approach to failures to clearly separate the latent
classes because correct class assignment is more critical to
estimating the outcome-model association parameters under
LC modeling strategy. In terms of prediction, the misspecified
MSRE AUC measure was almost identical to the truth while
LC approach suffered considerable loss of predictive power
when misspecified. Furthermore, for overlapping mixture
components, the misspecified LC AUC computed based on
within-sample classification could lead to an over-optimistic
impression of prediction power because of the creation of

outcome-informed clusters. This phenomenon is a conse-
quence of difficulties in identifying cluster memberships.
The LC model did have several strengths relative to the
MSRE model. For the estimation of longitudinal parameters
themselves, the LC approach could outperform MSRE,
which performed poorly when the components of the latent
classes are not well separated. Also, the LC model has the
advantages of summarizing complex multivariate prediction
features into a much simpler form. When the resulting latent
classes are easily interpretable, the LC model allows one to
relate the outcome risk to meaningful features identified by
the various latent classes. A final feature of note from our
simulation study was that the LC model was more sensitive
to LC misclassification and outcome parameter estimation
bias when the mean classes were not well separated than
when the variance classes were not well separated.

Both modeling strategies gave similar results when applied
to the Penn Ovarian Aging study. There was no strong ev-
idence of clustering among the mean FSH hormone trajec-
tories, nor strong evidence that subject-level variability in
these trajectories was associated with risk of severe hot flash.
In contrast, residual variances did group into a low- (∼20%)
and high- (∼80%) variance class, with both the MSRE and
LC models showing that lower variances were associated with
very substantial declines in risk of SHF.

This work can be extended in a variety of ways. For
example, the assumption of a low-order polynomial function
for the longitudinal predictors could be relaxed to allow
for a penalized spline or functional regression model. This
may provide a more non-parametric parsing of “short term”
and “long term” subject-level variability, if sufficient data
are available at the subject-level to allow estimation of
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such terms. Also, developing methods to compensate for
missing data in both the longitudinal predictors and out-
come measures, particularly under non-missing-at-random
mechanisms, will have practical application as well.

6. Supplementary Materials

Web Appendices A–D referenced in Sections 2.1, 2.2, 3, and 4;
and C++/R codes to implement our LC and MSRE methods
are available with this paper at the Biometrics website on
Wiley Online Library.
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