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Abstract MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) magnetic
field and plasma measurements taken during crossings of Mercury’s magnetotail from 2011 to 2014 have
been examined for evidence of substorms. A total of 26 events were found during which an Earth-like
growth phase was followed by clear near-tail expansion phase signatures. During the growth phase,
just as at Earth, the thinning of the plasma sheet and the increase of the magnetic field intensity in
the lobe are observed, but the fractional increase in field intensity could be ∼3 to 5 times that at Earth.
The average timescale of the growth phase is ∼1 min. The dipolarization that marks the initiation of
the substorm expansion phase is only a few seconds in duration. During the expansion phase, lasting
∼1 min, the plasma sheet is observed to thicken and engulf the spacecraft. The duration of the substorm
observed in this paper is consistent with previous observations of Mercury’s Dungey cycle. The
reconfiguration of the magnetotail during Mercury’s substorm is very similar to that at Earth despite its
very compressed timescale.

1. Introduction

The observations from Mariner 10 in 1974 revealed that Mercury has an intrinsic magnetic field and a dynamic

interaction with the solar wind [Ness et al., 1974; Russell et al., 1988; Slavin et al., 2007]. Recent observations

from MErcury Surface, Space ENviroment, GEochemistry, and Ranging (MESSENGER) [Solomon et al., 2007]

have confirmed the previous results and broadened our understandings of the Mercury’s magnetosphere

[e.g., Anderson et al., 2008; Slavin et al., 2009; Benna et al., 2010]. The planet’s internal magnetic field has the

same polarity as Earth’s field, but with a dipole moment of 195 to 215 nT ⋅ R−3
M which is ∼1% of the terres-

trial, where RM ≈ 2440 km is Mercury’s radius. The dipole is aligned to within 5∘ of the spin axis of the planet,

but it is offset to the north by ∼0.2 RM [Alexeev et al., 2008; Anderson et al., 2010]. At Mercury, the magne-

tosheath often develops a thick plasma depletion layer with low plasma 𝛽 (the ratio of plasma pressure to

magnetic pressure) adjacent to the dayside magnetopause [Gershman et al., 2013]. As a result, reconnection at

the Mercury’s magnetopause occurs even for small shear angles (the rotation of magnetic field from the mag-

netosheath into the magnetosphere) [DiBraccio et al., 2013; Slavin et al., 2014], while more than 90∘ of shear

is usually required at Earth [e.g., Sonnerup, 1974; Pu et al., 2005]. Overall, the dimensionless reconnection rate

at Mercury is estimated to be ∼3 times larger than that at Earth [Slavin et al., 2009; DiBraccio et al., 2013].

Reconnection at the dayside magnetopause transports plasma, magnetic flux, and energy to the nightside

magnetotail. Reconnection occurring in the magnetotail then drives the convection of plasma, magnetic flux,

and energy back to the dayside magnetosphere. This circulation is called the “Dungey cycle” [Dungey, 1961].

The duration of substorms at Earth has been shown to be of the order of the Dungey cycle time. At Earth, it is
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Figure 1. The black line is the mean magnetopause location according to
Winslow et al. [2013], and the circle represents the Mercury’s surface. The
trajectory of MESSENGER during three orbits is plotted in the solar wind
aberrated Mercury solar magnetospheric (MSM’) X′-Z′ plane, which is
aberrated by Mercury’s orbital velocity so that the solar wind would
radially outward from the Sun. The trajectories are given by the colored
lines, red for 1 July 2011, green for 18 June 2012, and blue for 9 December
2012. The thick parts in each orbit represent the MESSENGER’s locations
during expansion phase.

∼1 to 3 h [e.g., Akasofu, 1964; Baker
et al., 1996; Huang, 2002] and ∼2 to
3 min at Mercury [Siscoe et al., 1975;
Slavin et al., 2010].

Possible dipolarizations accompanied
by energetic electrons (>35 keV)
were observed from the flyby of
Mariner 10 [Baker et al., 1986; Eraker
and Simpson, 1986; Christon, 1987].
Recently, MESSENGER has identified
dipolarization fronts in the Mercury’s
plasma sheet and provided strong
evidence of spatially constrained flow
channels [Sundberg et al., 2012]. In
this work, we report the first obser-
vations of Earth-like magnetospheric
substorm activity including magnetic
flux loading-unloading, plasma sheet
thinning-thickening, and near-tail
dipolarization events. We also esti-
mate the magnetic energy dissipated
during substorms at Mercury. The
results show that the reconfigura-
tion of the magnetotail during the
substorms at Mercury is remarkably
similar to what is seen at Earth, albeit
they occur on a timescale at a few
minutes as opposed to ∼1–2 h.

2. Observations
2.1. Overview of MESSENGER Observations
The magnetic field data (20 samples per second) from the MESSENGER magnetometer [Anderson et al., 2007]
and plasma data (<13 keV/q) from the Fast Imaging Plasma Spectrometer (FIPS) sensor (8 s energy scan)
[Andrews et al., 2007] are used for this investigation. The magnetic field is given in Mercury solar magneto-
spheric (MSM) coordinates. In this system, XMSM and YMSM are in Mercury’s magnetic equatorial plane with
XMSM directed sunward. ZMSM is normal to the magnetic equatorial plane and points toward the north celestial
pole. YMSM completes the right-handed coordinate system. The magnetic equatorial plane is shifted ∼ 0.2RM

northward from the equatorial plane. MESSENGER inserted into orbit about Mercury on 18 March 2011 and
entered a highly inclined (∼82.5∘) and eccentric (∼ 200 × 15 000 km) orbit. On 16 April 2012, the apoapsis
of the spacecraft was decreased and the orbital period reduced from ∼12 to ∼8 h. We describe the MESSEN-
GER orbits as taking place during “hot seasons” or “warm seasons” according to whether periapsis was on
the dayside or nightside of the planet. During the warm seasons, MESSENGER moves southward and tailward
after its periapsis on the nightside at ∼ 60∘ north magnetic latitude, and it crosses the plasma sheet closer
to Mercury than during the hot seasons. MESSENGER passes through the plasma sheet at a distance of ∼2
to 3RM during the hot seasons, which is near the location where reconnection X-line forms. Many researches
have identified the flux ropes or plasmoids during the hot season crossings [Slavin et al., 2009, 2010, 2012;
DiBraccio et al., 2015]. Therefore, we have examined the plasma sheet passes during warm seasons to identify
the magnetospheric substorm activity in the near-tail region.

Three MESSENGER warm season plasma sheet passes on 1 July 2011, 18 June 2012, and 9 December 2012 with
clear substorm growth and expansion phase signatures are presented in the next section. The locations where
these near-tail passes took place are displayed in Figure 1. The pass on 1 July 2011 (in red) is the nearest to the
surface of Mercury, and we call this event as “Event I.” The pass on 9 December 2012 (in blue, called “Event III”)
is the farthest from the planet, and the one on 18 June 2012 (in green, called “Event II”) was intermediate in
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Figure 2. Overview of plasma and magnetic field measurements for (left column) Event I (1 July 2011), (middle column)
Event II (18 June 2012), and (right column) Event III (9 December 2012). (first row) The energy spectrum (color bar is in
log10 [cm3 s str keV]−1), (second row) proton density, (third row) Bx , (fourth row) By , (fifth row) Bz , (sixth row) Bt , and

(seventh row) the magnetic elevation angle (𝜃). Bt =
√

B2
x + B2

y + B2
z ). 𝜃 is defined to be 0∘ when it is in the X′

MSM
− Y′

MSM
plane and 90∘ when directed northward. Red dashed lines in the magnetic field panels represent the measurements of
the nearest nonsubstorm plasma sheet crossings for each event. The first, second, and third vertical dashed lines
indicate the start times of loading phase, expansion phase, and recovery phase, respectively.

altitude. The magnetic local time of the events are ∼00:08, ∼23:37, and ∼00:02, respectively, indicating that
all events were located very close to midnight.

2.2. Case Studies
The plasma and magnetic field measurements from the three events are displayed in Figure 2. The first and
second rows are the proton E∕q spectra and the observed proton densities from FIPS [Raines et al., 2013].
Magnetic field observations for each case are shown as black lines from the third to seventh rows. And field
observations from the nearest nonsubstorm plasma sheet passes (i.e., with unperturbed magnetic field obser-
vation) are shown by the red dashed lines for comparison. Vertical dashed lines mark the onset of the substorm
growth phase, expansion phase, and recovery phase, respectively, from the left to right for each event. Before
the first vertical dashed line the magnetic field Bx is nearly the same as the nonsubstorm pass in each case.
The differences in Bz indicate the different conditions of the plasma sheet between the passes. The presence
of high-energy (>1 keV) protons (first row) indicate that MESSENGER had entered the plasma sheet before the
start of the growth phase for Event I and Event II. The magnetic latitudes were high (>13.40∘ for Event I and
>17.50∘ for Event II) and altitudes were low (<460 km for Event I and <684 km for Event II) for the two events;
therefore, MESSENGER was expected to be in the high-latitude plasma sheet at that time. No plasma was
observed during Event III implying that MESSENGER was in the lobe region when the growth phase began.

A clear Bx discrepancy between the black and red dashed lines emerges beginning at the first vertical dashed
lines for all the events. After periapsis, MESSENGER moves toward the equatorial plane, and the Bx mea-
surements are expected to decrease as the red dashed lines (nonsubstorm plasma sheet passes), due to the
decrease in Bdipole with decreasing magnetic latitude and the diamagnetic effect of the plasma sheet. But
instead of decreasing, Bx is almost constant or slightly increases and Bz decreases for these events until the
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time marked by the second set of vertical lines. The magnetic elevation angles (𝜃), shown in the seventh row,
are decreasing during this interval for all events, which imply that the magnetic field lines are stretched down
the tail. Plasma observations for Event I show that MESSENGER is still in the plasma sheet during this time.
But in Event II, the plasma spectrum implies that MESSENGER entered the lobe region at ∼15:35:45 UT in the
growth phase. Together with previous conclusion that field lines are stretched and higher altitude of MESSEN-
GER in Event II than Event I, this location change of spacecraft from plasma sheet to lobe indicates a thinning
process of the plasma sheet (recession of the outer edge of high-latitude plasma sheet). The almost constant
Bt , which is expected to decrease due to the motion of MESSENGER, during the growth phase indicates the
increase of magnetic flux in the magnetotail. Therefore, we conclude that this interval (between the first two
vertical dashed lines) is the flux loading process of the tail (i.e., the substorm growth phase) [e.g., Baker et al.,
1996]. The plasma spectrum in Event III indicates that MESSENGER was still in the lobe during the growth
phase and small increase of By implying the flare of magnetotail in the XY plane is also consistent with flux
loading conclusion. The growth phase lasted ∼58 s, ∼1 min 2 s, and ∼1 min 35 s for Event I, Event II, and Event
III, respectively, which are consistent with previous results [Slavin et al., 2010]. Bx at the end of growth phase
for the three events are ∼80%, ∼ 50%, and ∼ 30% larger than that of nonsubstorm observations, while previ-
ous observations showed that the increase of magnetic field is only ∼20 − 30% at Earth [Huang, 2002; Milan
et al., 2004].This indicates that tail magnetic flux loaded during substorm growth phase at Mercury could be
several times larger than that at Earth [see also Slavin et al., 2010].

The growth phase ended with a clear dipolarization event (the second vertical line) indicated by a sharp
increase of Bz , a decrease of Bx , and fluctuations in By . Bz increased by ∼28 nT in ∼6 s for Event I, ∼10 nT in ∼8 s
for Event II, and ∼8 nT in ∼5 s for Event III, individually. Bx for all events sharply decreased to below the red
dashed lines in ∼40 s, which is the signature of rapid plasma sheet thickening. It is worth to note that other
possible dipolarizations are observed in Event II and Event III, which should be the signatures for multiplan-
etward plasma flows. The end of the plasma sheet thickening is approximately identified as the intersection
point between the observed Bx and nonsubstorm Bx , which is marked by the third vertical dashed lines. These
regions coincide with high Bz and also fluctuations of By (the signature of field-aligned currents (FACs)) which
are also consistent with the signatures of substorm expansion phase at Earth [e.g., Rostoker et al., 1980]. In the
plasma observation of Event I, we find that the plasma has higher energy after dipolarization than the plasma
before dipolarization implying an acceleration process during dipolarization. Especially immediately after the
dipolarization, only a few proton (∼0.03 cm−3) with energy higher than ∼8 keV was detected indicating that
the amount of proton was accelerated to higher-energy range out of the scope of FIPS. The emergence of
>1 keV protons in Event II and Event III suggests that MESSENGER entered the plasma sheet in both cases dur-
ing the expansion phase, which might further confirm the abruptly thickening of Mercury’s plasma sheet after
dipolarization because MESSENGER moved only tens of kilometers in this time. This is similar to the Earth’s
plasma sheet evolution during substorm.

2.3. Statistical Results
The three cases presented in the previous section reveal that a clear substorm at Mercury includes plasma
sheet thinning (growth phase), dipolarization, and plasma sheet thickening (expansion phase). According to
the changes of MESSENGER’s location, we can categorize the events into three types based on the plasma
measurements. Type I is represented by Event I that spacecraft was always located in the plasma sheet during
the substorm. Type II is defined as spacecraft moved from plasma sheet into the lobe region during the growth
phase and reentered the plasma sheet after dipolarization due to the thickening of plasma sheet as observed
in Event II. Spacecraft in Type III was located in the lobe region before and during the growth phase and
entered the plasma sheet after dipolarization as Event III. A statistical study is performed to investigate the
three types of events. As mentioned above, we have surveyed all the warm season orbits of MESSENGER from
2011 to 2014 to look for the events related with magnetospheric substorm activity; i.e., spacecraft observed
an almost constant Bt and Bx at first which is ended with a dipolarization event and followed by sharp decrease
in Bx , high Bz , and fluctuation in By . The selection resulted in 26 events. The time duration of growth phase
and expansion phase is determined from the comparison with the nonsubstorm plasma sheet observations.

The position distributions of the 26 events are displayed in MSM’ X ′-Z′ (Figure 3a) and X′-Y′ (Figure 3b) planes.
Type I, II, and III events are denoted by the red, green, and blue dots, respectively. We can see that Type I
events are in lower altitude and lower latitude regions than the other two types of events. Type III events
are located further tailward and northward, and Type II events are generally distributed between these two
groups. This distribution of the three types of events is consistent with the evolution of shape of the plasma
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Figure 3. Event locations of the 26 events in MSM’ (a) X′Z′ and (b) X′Y′ planes. Red, green, and blue dots represent Type
I, Type II, and Type III events, respectively. Histograms for the duration of (c) growth phase and (d) expansion phase. The
average durations with their standard deviations are shown in the middle of each panel.

sheet during the substorm. The plasma sheet thinning during growth phase would let the events near plasma
sheet boundary (Type II) move into the lobe and reenter the plasma sheet in expansion phase. Figures 3c
and 3d show the histograms of growth phase and expansion phase durations for all the events. The average
duration for the growth phase is ∼65 s and is ∼ 60 s for the expansion phase. The results are consistent with
previously found loading-unloading time (∼2–3 min) [Slavin et al., 2010].

2.4. Estimation of Dissipated Energy
In this section, we take the three cases in section 2.2 to estimate the total dissipated magnetic energy during
Mercury’s substorm, which is assumed to be the difference between the magnetic energy at the end of growth
phase and expansion phase. We take Event I as an example. Bt was ∼122 nT at the end of growth phase for
this case. This is consistent with the predicted value (∼120 nT) from power law equation determined from
MESSENGER’s third flyby of Mercury when a series of loading-unloading events were observed:

Bt(X) = 122.9|X′
MSM|−1.6 + 28.9,

where X′
MSM is in RM and Bt is in nT [Slavin et al., 2012]. From this equation, Bt was estimated to be ∼70 nT at

∼2RM, which is the assumed location for near-Mercury neutral line (NMNL) [Slavin et al., 2012; DiBraccio et al.,
2015]. The cross-tail radius of Mercury’s magnetosphere between the planet and the NMNL is estimated from
the Shue magnetopause model:

R = Rss

( 2
1 + cos 𝜃

)𝛼

,

where 𝜃 is the angle between R and the Mercury’s dipole-Sun line, Rss is the subsolar standoff distance, and
𝛼 is the flaring parameter [Shue et al., 1998; Winslow et al., 2013]. The best fitting parameters for this case are
Rss = 1.25RM and 𝛼 = 0.65 based on the pressure balance between the solar wind and magnetosphere
in the magnetopause. Solar wind condition is assumed to be the averaged values: PSW ∼15 nPa [Winslow
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Figure 4. The evolution of Mercury’s magnetosphere during the substorm. The shape of the plasma sheet and relative locations of the three events at the start of
substorm (a) growth phase, (b) expansion phase, and (c) recovery phase. Red, green, and blue dots represent the Event I, Event II, and Event III in Figure 2.

et al., 2013]. Therefore, the magnetic energy stored in the magnetotail between the NMNL and the planet can
be estimated from

EB = ∫
−1RM

−2RM

𝜋r2(X)B2
t (X)∕2𝜇0dX,

r(X) is the radius for the circular of magnetopause at specific X ′
MSM. The estimated total magnetic energy stored

in the Mercury’s magnetotail at the end of growth phase is ∼1.67 × 1012 J. At the end of expansion phase, Bt is
∼55 nT and the total energy is ∼ 7.6×1011 J. Therefore, the magnetic energy dissipated during the expansion
phase is∼ 9.1×1011 J for Event I. Employing the similar processes as above, our estimate of the total dissipated
magnetic energy in Event II is ∼ 6.7 × 1011 J and ∼ 8.1 × 1011 J for Event III. Previous studies have shown that
the typical energy loaded during a substorm at Earth is ∼ 2.1 × 1015 J [e.g., Akasofu, 1981; Tanskanen et al.,
2002], which is ∼ 3000 times larger than that at Mercury.

Tanskanen et al. [2002] showed that ∼ 30% of the magnetic energy loaded into the Earth’s tail was dissi-
pated in the Northern Hemisphere via Joule heating. Let us assume that the same amount of magnetic energy
was dissipated in each hemisphere during Mercury’s substorm. Then the dissipated magnetic energy (Ed) in
each hemisphere would be ∼2.7 × 1011 J, ∼2 × 1011 J, and ∼2.4 × 1011 J for Event I, Event II, and Event III,
respectively. Recent study revealed that the net electrical conductance (𝜍) for the closure of steady state FACs
is ∼ 1 S [Anderson et al., 2014]. And our result shows that the time duration (TEX) of substorm expansion phase
is ∼ 60 s. The magnitude of FACs during Mercury’s substorm expansion phase could be simply deduced from
the I2

FACTEX∕𝜍 = Ed . We get IFAC ∼ 67, ∼ 58, and ∼ 63 kA for the three events, respectively. These values dur-
ing substorms are consistent with the conclusion of Anderson et al. [2014]; i.e., the magnitude of steady state
FACs in the northern hemisphere of Mercury is commonly ∼ 20–40 kA and could exceed 200 kA during dis-
turbed condition. We want to note that Event I was observed in the plasma sheet so that the lobe magnetic
field should be larger than the values. And therefore, the real energy dissipation during the expansion phase
in this event was underestimated in some extent.

3. Summary

In this paper, we have investigated substorm processes in Mercury’s magnetotail using magnetic field and
plasma observations from MESSENGER. We, for the first time, have reported observations of substorm growth
and expansion phases in such a detail, measured their properties, and estimated the total magnetic energy
dissipated during substorms at Mercury. Case studies and statistical analyses have revealed that the global
reconfiguration of the magnetotail during Mercury’s substorms is similar to that at Earth [e.g., McPherron
et al., 1973; Baker et al., 1996]. The evolution of Mercury’s near-tail magnetic field during a substorm is shown
schematically in Figure 4 relative to the positions of the three events analyzed in section 2.2. MESSENGER
was inside the plasma sheet for Event I (red dot) and Event II (green dot) at the beginning of the growth
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phase (Figure 4a). After the growth phase, MESSENGER in Event II was moved from plasma sheet into the lobe
due to the thinning of plasma sheet (Figure 4b). During the growth phase, dayside magnetopause would be
moved planetward due to the erosion caused by magnetic reconnection [e.g., Slavin and Holzer, 1979]. The
magnetic field lines in the magnetotail were compressed, and magnetic reconnection at the near-Mercury
reconnection site (X′

MSM ∼ −2.2RM) then drives plasma flow planetward. After plasma flow encounters the
strong magnetic field, a few second duration dipolarization leading the thickening of plasma sheet could
be triggered. And MESSENGER during Events II and III would enter the plasma sheet during the expansion
phase as shown in Figure 4c. The reconfiguration of the magnetotail during a substorm at Mercury is similar
to what happens at Earth. The durations of the growth and expansion phases at Mercury are ∼65 s and ∼60 s,
while the duration of the growth phase is ∼1 h and the expansion phase is ∼30 min for Earth’s substorm [e.g.,
Akasofu, 1964; Huang, 2002]. Our estimation of dissipated magnetic energy during Mercury’s substorm is 3
orders smaller than at Earth. And the total FACs during substorm is ∼60 kA which is 2 orders of magnitude
lower than at Earth.
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