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Abstract 
Cryptococcus neoformans (C. neoformans) is a major opportunistic fungal infection of 

immunocompromised populations. Robust Th1 immune polarization is required for clearance of 

C. neoformans. We hypothesized that TNFα promotes classical activation of dendritic cells 

(DC), which prime protective Th1 immunity. CBA/J mice were infected intratracheally with 104 

CFU of C. neoformans strain 52D. Selected mice were given TNFα blocking antibodies (αTNFα) 

intraperitoneally just before infection. Mice were euthanized and evaluated for pulmonary and 

splenic fungal burden through a Colony Forming Unit assay. We observed a stark decrease in 

fungal burden in the lungs of CBA/52D mice in contrast to fungal persistence in αTNFα-

CBA/52D mice. Immune polarization was assessed through isolation of T cell and DC RNA and 

assessment of mRNA expression of selected immune genes. In DCs and CD4+ T cells, single 

administration of αTNFα profoundly down-regulated DC1 or Th1 genes, respectively, but up-

regulated DC2 or Th2 gene expression. CD4+ and CD8+ T cell gene marker expression was also 

evaluated through flow cytometry. αTNFα decreased accumulation of pulmonary CD4+ T cell 

and CD8+ T cells. Differential cell counts were performed on lung leukocytes; administration of 

αTNFα decreased neutrophil accumulation. To assess the impact of TNFα on DC1 phenotype 

stability, mouse bone marrow-derived DCs (BMDCs) were given IFNγ with or without TNFα 

treatment and cultured, then washed and treated with IL-4 and assessed for key DC1/2 gene 

expression by qPCR.  Following IL-4 exposure, TNFα/IFNγ-pretreated BMDCs continued to 

show high DC1 gene and low DC2 gene expression. Together these data revealed that early 

induction of TNFα is critical for generation of a protective immune response to C. neoformans 

infection. We propose that TNFα induces stable DC1 polarization in the infected lungs, which 

supports sustained Th1 T cell polarization, leading to fungal clearance.  



Introduction 

I. Cryptococcus neoformans 

Cryptococcus neoformans is a major opportunistic fungal pathogen that leads to severe 

mycoses worldwide (1). A saprophytic fungus, C. neoformans can be found most commonly in 

soils, especially those associated with trees or contaminated with avian feces, in which the yeast 

externally digests and feeds on decaying animal and plant matter (2). As a versatile yeast, C. 

neoformans can cause disease in a wide range of hosts including protozoa, plants, insects, birds 

and mammals. In humans, the main route of infection is inhaling the desiccated yeast and/or 

blasidiospores and therefore primary cryptococcosis is usually localized in the alveolar spaces 

(2). Following infection, pathology ranges from subclinical to severe pulmonary pneumonia (2). 

Systemic dissemination is possible for severe, uncontrolled cryptococcal infections and the main 

site of dissemination is the central nervous system; cryptococcal meningoencephalitis is often a 

fatal condition (2). Current treatment for cryptococcosis requires the extended use of highly toxic 

antifungal drugs and often results in poor outcomes (3, 4). 

As an opportunistic yeast, C. neoformans often infects immunocompromised humans (1, 

4, 5). In the case of C. neoformans, the most commonly associated cause of immunodeficiency is 

in HIV positive patients where the viral infection has rendered the T cells ineffective (2). 

Consequently, C. neoformans is among the major causes of opportunistic infections in AIDS 

patients and cryptococcal meningitis is categorized as one of the AIDS-defining infections (6). In 

2009, the CDC estimated that there were 1 million new cases of HIV-associated cryptococcosis 

per year, amounting to 680,000 deaths per year (7). Cryptococcosis is also common among other 



immunocompromised patients including solid organ transplant recipients, those undergoing 

immunosuppressive therapies, and patients with hematological malignancies (2, 4, 8, 9). 

Interestingly, clinical reactivation or revertance has been shown to be responsible for 52% of 

cryptococcosis in both solid organ recipients (10) and in AIDS patients (11). Five different 

stages have been suggested for the pathogenesis of C. neoformans infections: initiation, 

dormancy, reactivation, dissemination, and systemic proliferation (12). These findings indicate 

that C. neoformans likely persists in a latent infectious stage in both immunocompromised and 

immunocompetent individuals. There have also been reported outbreaks of cryptococcosis where 

the afflicted patients and animals showed no detectable deficiency in immune function (13). 

These outbreaks among immunocompetent individuals demonstrate that highly virulent 

Cryptococcus strains can evade host immune defenses and interfere with the development of 

protective immunity even in healthy individuals. Therefore, a deeper understanding of C. 

neoformans and its interaction with the host immune system is needed to ensure that all the 

mechanisms necessary for the development of protective immunity against C. neoformans are 

recognized. 

Much research over the past few decades has demonstrated that the development of an 

immune response to C. neoformans requires interaction of multiple arms of the immune system. 

It has been shown that in order for the host to achieve clearance of C. neoformans, optimal innate 

and adaptive immune responses are necessary (reviewed in (8). While it has been shown that the 

innate immune system is insufficient on its own in achieving clearance (14), its proper function 

is required for generation of an optimal adaptive immune response; thus, defects in either the 

innate or adaptive immune responses can lead to insufficient clearance of C. neoformans (9). 



These findings demonstrate the importance of interplay between the innate and adaptive immune 

components for effective elimination of cryptococcal infection. 

II. Innate Immunity in Cryptococcus neoformans Infection 

Innate Immunity 

 The innate immune response is the subsystem of immunity composed of the cells and 

mechanisms that defend the host from infection. The innate immune response responds to 

pathogens in a generic way and is a first line of response; it does not confer long-lasting 

immunity. (15) 

Innate Immune Recognition by Phagocytes 

The principal innate immune cells involved in recognition of C. neoformans are 

phagocytes, which internalize fungal cells and products (15-21). Phagocytes include 

macrophages and dendritic cells (DCs) and their precursor cells, monocytes. These phagocytes 

recognize and respond to infections (22). Upon infection, large numbers of DC precursors are 

recruited into the lungs of infected mice (60-62). Disruption of events leading to DC recruitment 

lead to the development of non-protective Th2 responses and prolonged pulmonary infection (63, 

64). DCs are clearly crucial to the development of a protective immune response to C. 

neoformans. DCs must not only be recruited in substantial numbers but must also be optimally 

polarized to generate an effective immune response against C. neoformans.  Although the 

antimicrobial defenses initiated by innate recognition of the fungus are insufficient to clear the 

infection, the innate immune system is vital to the development of a protective, antigen-specific 

adaptive immune response (22). These immune signals recruit more leukocytes (immune cells), 

such as lymphocytes, to the lungs.  



III. Dendritic Cells in Cryptococcus neoformans Infection 

Adaptive immune responses depend crucially on DCs, the antigen presenting cells that 

stimulate T cells (32, 34). DCs are present in most organs/tissues and they recognize signs of 

invading pathogens in local environments, respond to pro-inflammatory stimuli by up-regulation 

of co-stimulatory molecules and various chemokine receptors, and migrate to the lymph nodes to 

stimulate T cells to eliminate the infection (32, 34). The majority of DCs recruited into sites of 

infection serve primarily to direct local adaptive immune responses (59). DCs are most 

associated with a protective phenotype when they take on a “DC1” phenotype, in which they 

maintain high expression of genes that promote DC maturation and the generation of a Th1 

immune response such as iNOS, MHC class II, IL12b, and CCR7 (65). DCs are more associated 

with a non-protective phenotype when they take on a “DC2” phenotype, in which they promote 

Th2-skewed immune responses by maintaining lower expression of the DC1 genes and higher 

expression of DC2 genes such as IL10, Arg1 and Fizz (65). 

The Role of TNFα in Dendritic Cell Polarization 

TNFα has been shown to be crucial in the generation of a protective host response to C. 

neoformans. Sufficient TNFα expression has to been shown to correlate strongly with positive 

clinical outcomes, while lowered expression correlates with negative clinical outcomes (66). 

Increased TNFα expression has been associated with a lower fungal burden, high T cell numbers, 

and more likely survival in HIV patients with cryptococcal meningitis (67). Diminished TNFα 

levels in AIDS patients prior to antiretroviral therapy during C. neoformans infection is 

associated with increased mortality (68). Virulent fungal strains such as C. gatti (R265), which is 



causing major outbreaks in the Pacific Northwest and Canada, suppresses TNFα production by 

DCs (69). 

Patients with autoimmune diseases such as inflammatory bowel disease and rheumatoid 

arthritis are often treated with anti-TNFα antibodies. These antibodies play a crucial role in 

diminishing inflammation but leave the host susceptible to C. neoformans infection (70-73). 

Furthermore, Cryptococcal strains that weakly induce TNFα demonstrate increased virulence 

relative to strains that strongly induce TNFα (74, 75). Conversely, mouse strains that typically 

induce weaker TNFα response during C. neoformans infection have decreased resistance to the 

infection (74). 

IV. Adaptive and T cell Mediated Immunity to Cryptococcus neoformans 

Adaptive Immunity 

 Adaptive immunity is a subsystem of the immune response composed of specialized, 

systemic, cells that eliminate pathogen growth. (16) Adaptive immunity creates immunological 

memory after an initial response to a specific pathogen. The adaptive system includes both 

humoral and cell-mediated immunity. (16) 

Adaptive immunity is characterized by antigen-specific responses by activated T cells 

(39-42). T cells are the most important adaptive immune cells during cryptococcal infection, as is 

clear by the susceptibility of T cell deficient HIV/AIDS patients to C. neoformans and by 

acquisition of anti-cryptococcal immunity through adoptive transfer of T cells in mice, but not 

through transfer of B cells (7, 39-41, 43, 44). Optimal adaptive immunity ultimately is necessary 

to stimulate macrophages to eliminate the cryptococcal infection (45, 46-51). 

 



T cell Mediated Responses 

For effective clearance of C. neoformans, activated T cells must be recruited to the lungs 

where they can coordinate protection (Fig. 1, 46, 52, 53).  T cells mostly direct the responses of 

other immune cells, including effector (or killing) functions of macrophages (45, 46, 54). These 

protective responses by T cells depend on their activation or polarization phenotype. Th1 

polarization leads to protection against infection while Th2 polarization is non-protective. 

Protective Th1 immunity is characterized by the up-regulation of a variety of immune 

signals, including IFNγ, TNFα, and IL-12 (24, 45, 55-57). In contrast, non-protective Th2 

responses are driven by up-regulation of the cytokines IL-4 and IL-10 (24, 45, 55-57). Th17 

responses are characterized by IL-17 production, and are protective and associated with Th1 

responses (24, 45, 55-57). In general, Th1/Th17 versus Th2 activation is not an either-or process; 

rather the overall balance of Th1-type and Th2-type cytokine expression places T cells along a 

continuum of Th1/Th7 versus Th2 responses (43, 51, 54). Th1/Th17 responses help recruit and 

activate macrophages to aid in fungal clearance (43, 45). Conversely, clearance is less successful 

during Th2 responses (43, 45). Thus, the development of protective immunity to C. neoformans 

requires not only the presence of T cells also their optimal polarization. 

T cell Stability In C. neoformans Infection 

        In addition to the development of a protective immune response, stability of the effector 

phenotype is required to complete fungal clearance. T cells demonstrate plasticity; that is, they 

can change their cytokine production over time when environmental signals are changed (58). 

Thus a major question is how a protective immune response remains stable despite the plasticity 

of its main effector cells. 

 



 

Role of TNFα in T Cell-Mediated Responses 

Signaling by TNFα is associated with a protective T cell-mediated response, and this is 

true of TNFα in cryptococcal infection (32). First of all, TNFα signaling is required for robust T 

cell recruitment to the lungs during the adaptive phase of the immune response (Fig. 1, 32). 

TNFα deficiency causes a shift from a Th1-biased cytokine profile to a Th2-biased cytokine 

profile, including reduced IFNγ expression and increased IL-4 expression (32). This effect is 

associated with lower clearance of the fungus in TNFα-depleted mice as compared to control 

mice (32). We propose that the mechanisms by which TNFα achieves its effects on Th 

polarization and cytokine expression occur through TNFα-mediated modulation of DC 

polarization. (Fig. 1) 

Priming of Adaptive Responses by Innate Immunity 

Recognition of pathogens by phagocytes also initiates priming of adaptive immune 

responses. In this respect, there are two major inflammatory functions that innate immunity 

serves—recruitment of leukocytes to the site of infection and stimulation of T cells, the directors 

of adaptive immunity. These processes involve the production of chemokines and other 

cytokines by innate immune cells and require the optimal polarization of DCs (Fig.1, 22). 

Cytokines are small proteins involved in cell signaling and immuno-modulatory functions; 

chemokines are a family of cytokines that can induce directed chemotaxis of immune cells. Upon 

recognition of pathogens, innate immune cells produce inflammatory cytokines that attract more 

leukocytes to the lungs and induce changes in the capillary endothelium that enhances the ability 

of leukocytes to transmigrate into the lungs from the bloodstream (23-25). Recruited leukocytes 



enable greater surveying of the infection and many will ultimately migrate to the lymph nodes to 

activate T cells and the adaptive response. 

Cytokines also direct the stimulation of T cells with antigen. The primary innate immune 

cells that stimulate T cells in cryptococcal infection are DCs (26-28). For optimal stimulation of 

T cells to occur, DCs must be polarized correctly. Migration and correct polarization enables 

DCs to migrate to lung-associated lymph nodes, where T cells reside, and to present antigen and 

stimulate these T cells. These responses are achieved through recognition pathways, including 

direct recognition of pathogens by the DCs as well as indirect effects of the optimal chemokines 

and cytokines produced by other innate immune cells upon recognition of pathogens (29). 

Optimal DC polarization induces changes in chemokine receptor expression by DCs that 

enhance their propensity to migrate from the lungs to the lymph nodes (30-33). Once in the 

lymph node, DCs present antigens to T cells via direct cell-to-cell contact (21, 28, 29). MHC 

class I and II are the proteins used by DCs for antigen presentation (21, 28, 29). For a robust T 

cell response to occur, DCs need to also express co-stimulatory molecules, including CD40, 

CD80, and CD86 and produce inflammatory cytokines, such as IFNγ, IL-12, and TNFα, which 

further activate the T cells (21, 24, 25, 28, 34, 35). Such factors are the major determinants of the 

type of T cell-mediated response that will develop (22, 29, 34, 36-38). In summary, recognition 

of C. neoformans by phagocytes leads to production of chemokines and inflammatory cytokines, 

leading to leukocyte recruitment and DC polarization. These processes enable priming of the 

adaptive responses and are crucial for the type of adaptive response that will develop, ultimately 

determining the outcome of infection. 

 

 



Materials and Methods 
Mice. Female wild type CBA/J mice were obtained from Jackson Laboratories (Bar Harbor, 

ME). Mice were aged to 8–10 weeks at the time of infection or 12 weeks at the time of bone 

marrow isolation. Mice were humanely euthanized by CO2 inhalation at 1, 2, and 4 weeks post-

infection (wpi) for in vivo experiment sample collection as described below. Uninfected mice 

were euthanized humanely for in vitro dendritic cell experiments as described below. The 

University Committee on the Use and Care of Animals and the Veterans Administration 

Institutional Animal Care and Use Committee approved all experiments. 

 

C. neoformans. C. neoformans strain 52D (ATCC 24067) was recovered from 10% glycerol 

frozen stocks stored at -80°C and grown to log phase at 37°C in Sabouraud dextrose broth (1% 

neopeptone, 2% dextrose; Difco, Detroit, MI) on a shaker. The cultures were then washed in 

non-pyrogenic saline (Travenol, Deerfield, IL), counted on a hemocytometer, and diluted to 3.3 

×105 yeast cells/ml in sterile non-pyrogenic saline. 

 

Intratracheal inoculation with C. neoformans. Mice were anesthetized via intraperitoneal 

injection of Ketamine and Xylazine (100 and 6.8 mg/kg body weight, respectively) and were 

restrained on a foam plate. A small incision was made through the skin covering the trachea. The 

underlying salivary glands and muscles were separated. Infection was performed by intratracheal 

injection of 30 µl (104 CFU) via 30-gauge needle actuated from a 1-ml tuberculin syringe with C. 

neoformans suspension (3.3 ×105/ml). After inoculation, the skin was closed with cyanoacrylate 



adhesive and mice were monitored during recovery from anesthesia. Following infection the 

inoculi were plated and cultured to confirm the number of organisms injected into the mice. 

 

Anti-TNFα Injection. Before infection, selected mice were treated with TNFα antibody (100 

ng/mouse, Taconic, Hudson, NY) or non-specific IgG (vehicle) in a volume of 20 µl via intra-

peritoneal route at day 0.  

 

Lung Leukocyte Isolation. The lungs from each mouse were excised, washed in RPMI, minced 

with scissors, dissociated by gentleMACS tissue dissociator (Miltenyi Biotec, Cambridge, MA). 

Processed lung tissues were digested enzymatically at 37°C for 30 min in 10 ml/mouse of 

digestion buffer [RPMI, 5% FBS, penicillin and streptomycin (Invitrogen, Grand Island, NY); 1 

mg/ml collagenase A (Roche Diagnostics, Indianapolis, IN); and 30 µg/ml DNase (Sigma, St. 

Louis, MO)], and dissociated a second time. The cell suspension and tissue fragments were 

further dispersed by repeated aspiration through the bore of a 10-ml syringe and were 

centrifuged. Erythrocytes in the cell pellets were lysed by addition of 3 ml NH4Cl buffer 

(0.829% NH4Cl, 0.1% KHCO3, and 0.0372% Na2EDTA, pH 7.4) for 3 min followed by a 10-

fold excess of RPMI.  Cells were pelleted, resuspended, and a second cycle of syringe dispersion 

and filtration through a sterile 100-µm nylon screen (Nitex, Kansas City, MO) was performed. 

The filtrate was centrifuged for 30 min at 1500 RPM in the presence of 20% Percoll (Sigma) to 

separate leukocytes from cell debris and epithelial cells. Leukocyte pellets were resuspended in 5 

ml complete RPMI media, and enumerated on a hemocytometer following dilution in Trypan 

Blue (Sigma, St. Louis, MO).  



 

Colony-Forming Unit Assay. For determination of microbial burden, small aliquots of 

dispersed lungs or spleens were collected following the digest procedure. Serial 10-fold dilutions 

of the samples were plated on Sabouraud dextrose agar plates in duplicates of 10-µl aliquots and 

incubated at room temperature for 3 days. C. neoformans colonies were counted 2 days later and 

the number of colony-forming units (CFU) was calculated on a per-organ basis. 

 

Visual identification of leukocyte populations. 50,000 leukocytes from the end of the lung 

digest were cytospun onto charged microscope slides. Samples were fixed and pre-stained for 2 

min in a one-step methanol based Wright-Giemsa stain (Harleco, EM Diagnostics, Gibbstown, 

NJ) and stained using steps two and three of the Diff-Quik stain procedure. A total of 300 cells 

were counted for each sample from high power microscope fields. Macrophages and 

lymphocytes were visually counted in Wright-Giemsa-stained samples of lung cell suspensions 

cytospun onto glass slides. The percentages of leukocyte subsets were multiplied by the total 

number of leukocytes to determine the absolute number of specific leukocyte subsets in each 

sample.  

 

Flow Cytometry. All staining reactions were performed according to the manufacturers' 

protocols. Data were collected on a FACS LSR II flow cytometer using FACSDiva software (BD 

Biosciences, San Jose, CA) and analyzed using FlowJo software (Tree Star, San Carlos, CA). A 

minimum of 200,000 cells were analyzed per sample. Initial gates were set based on light-scatter 



characteristics followed by gating on CD45+ population, then T cells were separated from 

myeloid cells by expression of CD3, CD4, CD8, CD11b, CD11c. Macrophages were 

distinguished from DCs by autofluorescence and CD11b expression. The total number of cells 

within each mouse tissue was calculated by multiplying the frequency of this population by the 

total number of leukocytes in each sample (percentage of cells multiplied by the original 

hemocytometer count of total cells). 

 

Pulmonary T cell and Dendritic Cell Isolation. 108 lung leukocytes from each sample were 

exposed to a PE labeling reagent, incubated, exposed to EasySep PE Selection Cocktail, and 

incubated further (Stem Cell, Vancouver, BC). EasySep magnetic nanoparticles were added to 

attach to CD4+ cells and eluent was poured off. Cells were washed with 2% FBS in PBS 3 times, 

resuspended in buffer, centrifuged, and resuspended in Trizol. Then, CD11c cells were isolated 

from the eluent via the same procedure, pelleted, and resuspended in Trizol. 

 

Quantitative Real-Time PCR (qRT-PCR).  RNA was extracted from Trizol using phenol 

chloroform purification followed by isopropanol precipitation, quantified by spectrophotometer, 

and first-strand cDNA was synthesized using RNeasy Plus Mini Kit (Invitrogen, Carlsbad, CA) 

according to the manufacturer's instructions using 500ng total mRNA per sample. qPCR was 

performed using an MX 3000P system (Stratagene, La Jolla, CA) according to the 

manufacturer's protocols. Forty cycles of PCR (94°C for 15 seconds followed by 60°C for 30 

seconds and 72°C for 30 seconds) were performed on a cDNA template. The mRNA levels were 



normalized to beta-acctin levels and the ratio of sample to uninfected-baseline expression level 

(fold induction) was calculated. 

 

 

Isolation & Culture of Bone-Marrow Derived Dendritic Cells (BMDCs).  Bone marrow cells 

from mice were harvested by removing the ends from the femurs and tibias (after removal of 

skin and muscle) and flushing the marrow with 1 ml of RPMI medium using a 1 ml syringe and a 

25½-guage needle.  Cells were cultured in 100 × 15-mm dishes in complete DMEM medium 

with GM-CSF (20ng/ml, PeproTech, Rocky Hill, NJ). After 7 days, the loosely adherent BMDCs 

were pipetted off. BMDCs were then plated at a density of 1 x 106 cells/ml in 2 mls in a non-

tissue-culture-treated 6-well dish and exposed to primary cytokine stimulations for 24 hours, 

then washed, and treated secondary cytokine stimulations for a subsequent 24 hours. Following 

these sequences, BMDCs were removed via Trizol and processed for RNA and qRT-PCR as 

described above. 

 

Calculations and statistics. Statistical significance was calculated using Student’s t-test for 

individual paired comparisons or t-test with Bonferoni adjustment, whenever multiple groups 

were compared. Means with P values of <0.05 were considered significantly different and were 

represented by *. All values are reported as means ± standard errors (SEM). Calculations were 

performed using Primer of Biostatistics software (McGraw-Hill, NY).  

 

 



Results 
Figure 1 

Mechanism of clearance of Cryptococcus neoformans 

	
  

Figure 1: C. neoformans infects the lungs. Immature DCs recognize C. neoformans and are 

stimulated by the fungus to DC1 maturation and expression of MHC markers. DCs are also 

stimulated by the fungus to express chemokine receptor Ccr7, which promotes migration of DCs 

to the lymph nodes. In the lymph nodes, DCs activate T cells promoting their expansion and 

polarization. Antigen-specific effector T cells developed and primed for Th1, Th2 or Th17 

polarization migrate to the lungs to mount and orchestrate the adaptive immune response which 

then develops into a robust Th1 response which eradicates the infection. 

Lymph node 

Lungs 



TNFα is Required for Pulmonary Fungal Clearance and Preventing Systemic 
Dissemination of C. neoformans 

To determine the importance of TNFα to the pulmonary clearance of C. neoformans in 

infected mice during the “early” - innate and subsequently developing the adaptive phase of the 

immune response, CBA/J mice were intratracheally inoculated with C. neoformans strain 52D 

and intraperitoneally injected with either an anti-TNFα antibody or a control antibody.  

Pulmonary fungal burden was determined at 1, 2, and 4 weeks post infection (wpi). In both mice 

groups given the control antibody (CBA/52D) and the anti-TNFα antibody (αTNFα-CBA/52D), 

fungal burden increased during the “early/innate” phase to the same extent (Fig. 2A).  In 

contrast, while the fungal load began to decrease from 2 wpi on in CBA/52D group, resulting in 

a 200-fold decrease in fungal burden between the peak at the 1 wpi and the 4 wpi time point, it 

remained high in αTNFα-CBA/52D (Fig. 2A). Thus indicated protective adaptive immune 

response the development in CBA/52D but not αTNFα-CBA/52D mice.  

Next, extra-pulmonary/systemic dissemination was evaluated by measuring splenic 

fungal burden. During the “early” phase, low but detectable (<102 CFU) fungal burdens were 

observed in spleens of CBA/52D mice, and decreased to a minimal level at 4 wpi on (Fig. 2B), 

suggesting that the dissemination was minimal and self-limited in these mice. This contrasted 

with increased (<103 CFU) and persistent fungal dissemination in αTNFα-CBA/52D; a 

significant increase in dissemination in αTNFα-CBA/52D relative to CBA/52D was found at 

both 2 at 4 wpi, reaching 3-orders of magnitude difference at 4 wpi (Fig. 2B). Thus, early TNFα 

signaling is required for pulmonary fungal clearance and to prevent systemic dissemination 

during C. neoformans infection. 



Figure 2 

 

 

Figure 2: Fungal burden was evaluated in the lungs and spleens. Mice were inoculated 

intratracheally with 104 C. neoformans. Lungs and spleen were harvested at 1, 2, and 4 wpi for 

analysis of fungal burden. We observe an over 200-fold decrease in fungal burden in the lungs of 

CBA/52D mice between 1 and 4 wpi, which contrasts with persistence of high fungal burden in 

αTNFα-CBA/52D mice. There is continued fungal growth in the spleens of CBA/52D mice, 

whereas splenic fungal burden in αTNFα-CBA/52D remains at a lower level throughout the 

experiment. Data represent mean pooled from 3 separate matched experiments, N=4 for each of 

the analyzed parameters; * p<0.05 in comparison between CBA/52D and αTNFα-CBA/52D. 

 

 

 

 

 



Early TNFα Plays a Transient Role in Pulmonary Recruitment of Leukocytes Throughout 
the Time-Course of Infection. 

To assess whether the observed deficiency of αTNFα-CBA/52D mice in pulmonary 

clearance was associated with changes in magnitude of the cellular inflammatory response or a 

change in composition of leukocyte population, pulmonary leukocytes from digested lung tissue 

samples were enumerated and then differential cell count analysis was conducted at 1, 2 and 4 

wpi. We focused on lymphocyte and mononuclear myeloid cell subsets, as they are essential for 

adaptive clearance. Similar numbers of total lung leukocytes were observed through most time 

points of the immune response (Fig. 3A). αTNFα-CBA/52D mice had statistically significantly 

fewer total leukocytes compared to CBA/52D mice at 2 wpi, suggesting that TNFα was 

important for the peak inflammatory response observed at that time point (Fig. 3A). At 4 wpi, 

however, both CBA/52D and αTNFα-CBA/52D mice showed elevated leukocyte numbers in the 

lungs, no longer significantly different from each other (Fig. 3A). αTNFα-CBA/52D mice had 

significantly down-regulated macrophage and lymphocyte numbers at 2 wpi (Fig. 3B-C), 

indicating that TNFα is necessary for a robust early immune response and that that early TNFα 

signal contributed to the recruitment of lung leukocyte subsets important for successful 

pulmonary fungal clearance. To assess whether the observed deficiency of αTNFα-CBA/52D 

mice in pulmonary clearance was associated with a change in T cell subset numbers, T cells 

(which are most crucially required subset for anti-cryptococcal defenses) were enumerated via 

flow cytometry. CD4+ and CD8+ T Cell numbers were similar throughout the experiment, except 

at 2 wpi, when αTNFα-CBA/52D mice carried fewer CD4+ T cells which appears to be 

compensated by greater number of CD8+ T cells when compared to CBA/52D mice (Fig. 4D-E). 

These data suggest that TNFα signaling was required for optimal pulmonary recruitment of 

inflammatory cells, but did not dramatically affect T cell numbers.  
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Figure 3: The effect of TNFα on pulmonary leukocyte accumulation. Lung leukocytes were 

isolated from infected mice at 1, 2, and 4 wpi. Cells were plated, stained, and counted for percent 

composition by leukocyte subset, which were multiplied by total leukocyte number. Treatment 

decreased lymphocyte number, macrophage number, and total leukocyte number at 2 wpi. 

Treatment also decreased CD4+ T cell number and increased CD8+ T cell number at 2 wpi. Data 

was pooled from 2 separate matched experiments, N=4 for each of the analyzed parameters; * p< 

0.05 in comparison between CBA/52D and αTNFα-CBA/52D.  
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TNFα Increases Pulmonary CD4+ T Cell IFNγ Production and Decreases CD4+ and CD8+ 
T Cell IL-10 Production 

Since, the effects on recruitment were transient and were not likely to account entirely for 

such a major and prolonged difference in clearance, we examined T cell polarization readouts. T 

cells were isolated analyzed via flow cytometry for mean fluorescence intensity of selected gene 

markers. Treatment down-regulated, by more than half, production of the “protective” Th1 

cytokine IFNγ in CD4+ T cells at 2 and 4 wpi, but transiently up-regulated production of IFNγ in 

CD8+ T cells at 2 wpi (Fig. 4A, 3B). At 2 wpi, treatment significantly up-regulated production of 

non-protective regulatory cytokine IL-10 in CD4+ T cells by up to 3-fold and in CD8+ T cells 

(Fig. 4B, 4D).  Since, the effects on T cell polarization were more profound and lasting than the 

changes in leukocyte recruitment, our data demonstrate that early TNFα signaling is required for 

optimal, protective, T cell polarization, providing an explanation for the profound and long-

lasting effect of early TNFa on pulmonary clearance of C. neoformans. 

 

 

 

 

 

 

 



Figure 4 

 

 

 

 

 

 

 

 

 

 

Figure 4: The effect of TNFα on T cell intracellular cytokine expression. T cells were isolated 

and analyzed by flow cytometry following extracellular stain with CD4 and CD8 antibodies and 

intracellular antibody staining for IFNγ and IL-10.  Bars show mean fluorescence intensity for 

these cytokines in CD4+ and CD8+ T cell subsets. Treatment down-regulated expression of the 

Th1 cytokine IFNγ in CD4+ T cells and up-regulated expression of the Th2 cytokine IL-10 in 

CD4+ and CD8+ T cells at 2 wpi. Interestingly, at the same time point, treatment up-regulated 

expression of IFNγ in CD8+ T cells. Data was pooled from 2 separate matched experiments, N=3 

for each of the analyzed parameters; *p< 0.05 in comparison between CBA/52D and αTNFα-

CBA/52D. 
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TNFα is Required for Optimal Th1 Cytokine Expression and Prevention of Th2 Cytokine 
Induction in CD4+ T Cells during Cryptococcal Infection 

To assess whether the observed deficiency of αTNFα-CBA/52D mice in pulmonary 

clearance was associated with broader changes in CD4+ T cell polarization, cytokine and 

cytokine transcription factor mRNA expressions were evaluated in sorted lung CD4+ T cells at 1, 

2 and 4 wpi. The effects were variable based on the group of cytokines analyzed. TNFα 

expression was suppressed early in αTNFα-CBA/52D, but increased at the later time points (Fig 

5A). Similarly, the Th17 cytokine IL17a expression levels were down regulated in the mice at 1 

wpi (Fig 5C). IFNγ expression was significantly down-regulated in the αTNFα-CBA/52D mice 

relative to the CBA/52D mice at 4 wpi (Fig 5B), indicating suppression of protective Th1 

response resulting from early TNFα depletion. In contrast, we observe a strong component of 

non-protective Th2 immune response with GATA4 transcription factor highly up-regulated 

through 1-2 wpi and the IL4 cytokine upregulated at 2-4 wpi in TNFα depleted mice (5D, 5E). 

Finally, T-regulatory cell transcription factor Foxp3 in the αTNFα-CBA/52D mice is 

dramatically unregulated at 2 wpi compared to control mice, further indicating dysregulated T 

cell polarization following early TNFα depletion (Fig. 5F). Thus early TNFα signaling has a 

profound effect on T cell polarization, and its depletion results in broad alteration in CD4+ T cell 

polarization status for up to 4 wpi. 

 

 

 

 



Figure 5 

 

TNFα is Required for Optimal Th1 Cytokine Expression and Prevention of Th2 Cytokine 
Induction in CD4+ T Cells during Cryptococcal Infection 

 

 

 

 

Figure 5: The effect of TNFα on gene expression in CD4+ T Cells. Lung leukocytes were 

isolated from infected mice at 1, 2, and 4 wpi and CD4+ T cells were sorted using Robosep 

magnetic bead/antibody selection system to 99% purity. RNA was isolated from CD4+ cells and 

converted to cDNA for evaluation of gene expression through qPCR arrays. Bars represent mean 

gene fold expression relative to uninfected control mice ±SEM. Treatment up-regulated the Th2 

cytokine IL-4 at 1, 2, and 4 wpi. Treatment also up-regulated the Th2 transcription factor 

GATA4 and the T regulatory gene Foxp3 at 2 wpi. Treatment down-regulated expression of the 

Th1 cytokines TNFα and IL17a at 1 wpi and down-regulated IFNγ at 4 wpi. Data was pooled 

from 2 separate matched experiments, N=4 for each of the analyzed parameters; * p< 0.05 in 

comparison between CBA/52D and αTNFα-CBA/52D. 



TNFα Regulates Expression of H2-DMb1, CCR7, and Cytokines by Pulmonary Dendritic 
Cells 

Dendritic cells (DCs) play an important role in directing T cell polarization. To determine 

whether the observed dysregulation in T cell polarization of αTNFα-CBA/52D mice was 

associated with a change in DC expression of genes relevant to DC effects on T cell polarization, 

the enriched lung DC population was obtained by magnetic sorting using CD11c antibodies, 

RNA isolated and assessed by qPCR. We evaluated expression of major histocompatibility 

complex (MHC) II, CCR7 (DC1/maturation factor), Arg1 (DC2 marker), and T cell polarizing 

cytokines IL12 and IL10 expression, at 1, 2 and 4 wpi (Fig. 6). Following TNFα depletion, we 

observed lasting down-regulation of H2-DMb1, the gene encoding for the DC maturation marker 

MHCII (Fig. 6A) and lymph node migration receptor CCR7 (Fig. 6C), suggesting that the DC 

maintained a less mature and less DC1-like phenotype following early TNFα depletion. In 

contrast, the hallmark of DC2, Arginase1, was up regulated in the αTNFα-CBA/52D mice at 1 

and 2 wpi (Fig. 6B), suggesting that DC1/DC2 balance was shifted towards DC2. Consistently, 

expression of the Th1 driving cytokine, IL12b, was diminished in αTNFα-CBA/52D mice at 1 

and 2 wpi while regulatory and Th2 driving cytokine IL-10 was strongly upregulated at 2 wpi in 

these mice (Fig. 6D, 6E). Thus, early TNFα depletion in C. neoformans infected mice caused a 

shift in pulmonary DC phenotype away from DC1 towards a DC2 phenotype, explaining 

diminished Th1 and Th2 response in these mice.  
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TNFα Regulates Expression of H2-DMb1, CCR7 and Cytokines by Pulmonary Dendritic Cells 

 

 

 

 

 

 

 

 

 

 

Figure 6: The effect of early TNFα signaling on dendritic cells gene expression profile in C. 

neoformans infected lungs. Lung leukocytes were isolated from infected mice at 1, 2, and 4 

weeks post-infection. RNA was isolated from CD11c+ cells (DC) and converted to cDNA for 

evaluation of gene expression through qPCR arrays. Bars represent mean gene expression 

change relative to uninfected control mice ±SEM. Treatment down-regulated the Th1 cytokine 

IL12b, the Th17 cytokine IL17a, the co-stimulatory molecule H2-DMb1, and the migration 

stimulatory molecule CCR7, at 1, 2, and 4 wpi. Treatment up-regulated the Th2 cytokines IL10 

and the hallmark of Alternative Activation of macrophages, Arg1, at 1 and 2 wpi. Data was 

pooled from 2 separate matched experiments, N=4 for each of the analyzed parameters; * p< 

0.05 in comparison between CBA/52D and αTNFα-CBA/52D. 



TNFα Stimulation Stabilizes IFNγ-Induced Dendritic Cell DC1 Gene Expression Despite 
Subsequent IL-4 Exposure 

Early TNFα was essential to the generation of a robust, immune response against C. 

neoformans and induced profound long-term effects on T cell and DC polarization. To assess 

whether TNFα contributed to robust and stable DC1 programing of DC, thereby promoting long-

term protective effects on T cell polarization in C. neoformans infected lungs, we tested the 

effects of TNFα to modulate DC polarization in vitro. Bone Marrow-derived DCs (BMDCs) 

were exposed to IFNγ, a cytokine that normally causes DC1 polarization, ± TNFα, followed by 

24 hours of either stimulation with IFNγ or IL-4, a cytokine that normally causes DC2 

polarization. RNA was then extracted and evaluated via qPCR for expression of the DC1 gene 

for Nitric Oxide Synthase (iNOS) and the DC2 gene factor Fizz. When DCs were initially 

stimulated with and maintained in IFNγ, they showed high iNOS expression, which was 

diminished when they were stimulated with IFNγ followed by IL-4 (Fig. 7A). Importantly, there 

was no significant difference in iNOS expression between DCs given IFNγ + TNFα and 

subsequently IFNγ and DCs given IFNγ + TNFα and subsequently IL-4 (Fig. 7A), suggesting 

that TNFa stabilized DC1 phenotype in DC, making them less susceptible to the DC2 switch 

caused by IL-4. When DCs were initially stimulated with IFNγ and it was maintained, they 

showed baseline expression of DC2 marker, Fizz, which became profoundly upregulated when 

these DCs were stimulated with IL-4 (Fig. 7B). However, when DCs were co-stimulated with 

IFNγ + TNFα and subsequently stimulated with IL-4, they could no longer up-regulate Fizz (Fig. 

7B). These data demonstrated that DCs exhibit DC1 to DC2 plasticity in the absence of TNFα, 

but became stable DC1 following the initial pulse with TNFα.  

 



Figure 7 

Early TNFα Stabilizes Dendritic Cell DC1 Gene Expression Despite Late IL4 Exposure 

 

 

 

 

 

 

 

 

Figure 7: The effect of TNFα on DC gene expression. DCs were derived from mice bone marrow 

as described in “Methods.” BMDCs were cultured and exposed to 24-hour stimulation of IFNγ ± 

TNFα before 24 hours of IL-4 stimulation. BMDCs were then harvested for RNA, which was 

converted to cDNA and evaluated for gene expression through qPCR. Bars represent mean gene 

expression ±SEM. Replacement of IFNγ with IL4 resulted in significant suppression of DC1 

gene iNOS up-regulation, with consecutive up-regulation of DC2 gene Fizz, indicating that the 

“naïve DC” can readily switch from DC1 to DC2 following the change in cytokine environment.  

Priming of DC with TNFα entirely removed the effect of IFNγ replacement by IL4 on iNOS 

expression and severely blunted up-regulation of Fizz. Data was pooled from 3 separate matched 

experiments, N=18 for each of the analyzed parameters; * p< 0.05 in comparison between 

IFNγ+TNFα and IFNγ. 

 

 



 Initial TNFα Stimulation Fails to Stabilize Dendritic Cell DC2 Phenotype Following 
Subsequent IFNγ Exposure 

Because TNFα strongly stabilized the DC1 phenotype in BMDC we sought to determine 

if TNFα would also induce DC2 phenotype stabilization. To test this BMDC were stimulated 

with IL-4 ± TNFα followed by 24 hours of either IFNγ or IL-4 stimulation. DC1/DC2 

phenotypes were analyzed as above.  DC stimulated and maintained in IL4 did not express 

iNOS, but when switched to IFNγ they rapidly upregulated iNOS, which indicated DC1 

phenotype (Fig. 8A).  The addition of TNFα did not prevent up-regulation of iNOS following 

addition of IFNγ; DCs given IL-4+ TNFα and subsequently IFNγ robustly expressed iNOS (Fig. 

8A). DCs maintained in IL-4 showed robust expression of the DC2 marker Fizz and addition of 

IFNγ showed a strong decreasing trend in expression of this gene (Fig. 8B). Addition of TNFα 

did not significantly alter Fizz expression in IL-4 maintained condition, and subsequent IFNγ 

stimulation dramatically down-regulated Fizz expression (Fig. 8B).  Thus in contrast with strong 

DC1 phenotype stabilization, TNFα failed to induce to stabilize DC2 phenotype in pre-polarized 

DC2 as they remained susceptible to DC1 switch.  

 

 

 

 

 

 



Figure 8 

Initial TNFα Stimulation Fails to Stabilize Dendritic Cell DC2 Phenotype Following Subsequent 
IFNγ Exposure 

 

 

 

 

 

 

 

 

Figure 8: The effect of TNFα on DC gene expression. DCs were isolated from mice bone 

marrow. BMDCs were cultured and exposed to 24-hour stimulation of IL-4 ± TNFα before 24 

hours of either IL-4 or IFNγ stimulation. BMDCs were then harvested for RNA, which was 

converted to cDNA and evaluated for gene expression through qPCR. Replacement of IL-4 with 

IFNγ resulted in significant up-regulation of the DC1 gene iNOS, with consecutive down-

regulation of the DC2 gene Fizz, indicating that the “naïve DC” can readily switch from DC1 to 

DC2 following the change in cytokine environment. Priming of DC with TNFα made no 

significant difference to DC polarization plasticity. Bars represent mean gene expression ±SEM. 

Expression of both iNOS and Arginase were similar regardless of TNFα stimulation. Data was 

pooled from 3 separate matched experiments, N=18 for each of the analyzed parameters; * p< 

0.05 in comparison between IL-4 and IL-4+TNFα. 

 

 



Discussion 
This study examined the role of early TNFα signaling (at the onset of infection with C. 

neoformans) in modulation of the development of protective immunity to this fungal pathogen in 

a mouse model, using transient depletion of TNFα with a neutralizing antibody.  Our study 

shows that transient TNFα depletion resulted in: 1) impaired fungal clearance during the adaptive 

but not innate phases of the immune response; 2) diminished accumulation of leukocytes 

including macrophages and lymphocytes in the lungs; 3) an altered DC activation profile, 

specifically skewing from DC1 to DC2 activation profile; 5) an altered T cell activation profile 

mixed Th1/Th2 with variable activation at different time points. Our study further established 

that TNFα’s effect as a DC1- (but not DC2-) –phenotype stabilizer is the likely mechanism by 

which TNFα promotes protective Th1 response.  

Our data show that early TNFα depletion results in a stark impact on pulmonary 

clearance of C. neoformans during the adaptive phase of the immune response. Specifically, 

cryptococcal clearance that occurs following the development of adaptive immunity (after 1 wpi) 

is disrupted in animals in which TNFα was transiently depleted by a single dose of anti-TNFa 

antibody at the onset of infection. This finding is consistent with what has been shown before 

(32, 83, 87, 90). The fungal burden in αTNFα-CBA/52D relative to CBA/52D was significantly 

elevated at 2 and especially 4 wpi, indicating that transient, early depletion of TNFα induced a 

long-term downstream effect on the ability of the immune system to clear C. neoformans 

infection.  

Our study also confirms the previously reported deficiencies in total pulmonary leukocyte 

population and specific leukocyte subsets including lymphocytes and macrophages. Leukocytes 



play an essential role in the cell-mediated immune response to invading pathogens including 

viruses, mycobacteria and fungi in the pulmonary environment (76). In the case of C. 

neoformans, the kinetics and magnitude of recruitment of various leukocyte subsets critically 

affects pulmonary clearance (reviewed in (77, 78, 82, 92, 93)).  Our study showed the onset 

cryptococcal clearance corresponded with peak inflammatory response in the lungs of CBA/52D 

mice and that the 50% reduction of pulmonary leukocyte recruitment in αTNFα-CBA/52D mice 

corresponded with the absence of clearance at that time (Figure 2). Lymphocyte and macrophage 

accumulation is especially crucial for clearance of C. neoformans in the infected host (94). 

Analysis of leukocyte subsets identified both defects in lymphocyte and macrophage recruitment 

in anti-TNFα treated mice, providing additional evidence that the adaptive immune response was 

profoundly distorted by the absence of early TNFa signaling. Thus early TNFa signaling is 

required for subsequent generation of optimal and sufficiently robust immune response that is 

required for the progressive clearance of pathogen from the infected lungs.   

Among lymphocyte subsets, T cells have been shown to be vital to clearance in 

cryptococcosis and recruitment of the appropriate subsets of leukocytes into the lungs (81, 74). 

While we observed a transient decrease in CD4+ T cells in αTNFα-CBA/52D (only at 2 wpi), we 

also observed an increase in CD8+ T cells at this time point (Figures 4D, 4E). Since CD8+ 
T cells 

have been reported to be an important contributor to anticryptococcal cellular immunity and can 

compensate for absence of CD4+ (96), we believe that the transient decrease in CD4+ T cell 

recruitment was not the predominant mechanism that led to long-term defect in fungal clearance 

in αTNFα-CBA/52D mice.  However, the successful clearance of C. neoformans relies not only 

on the presence of T cells but also on their proper (Th1-type) polarization (74, 82).  Our findings 

support that early TNFα-induced signals have a profound and lasting effect on cytokine 



production by T cells and are required for optimal Th1 response. Flow cytometry demonstrated 

that the detrimental Th2 cytokine IL-10 is up-regulated in both CD4+ and CD8+ T cells in 

αTNFα-CBA/52D mice at 2 wpi (Figure 4A,C), while clearance-promoting IFNγ is down-

regulated in CD4+ T cells at 2 and 4 wpi. Consistently, mRNA expression data in CD4+ T cells 

corroborated with these results, showing clear down-regulation of IFNγ at 4 wpi. (Figure 5B). 

Early TNFa signaling also affected early but not late IL17a expression and strongly suppressed 

expression of key factors associated with a non-protective response, GATA4, IL-4, and Foxp3, 

which were all up-regulated in TNFα depleted mice at 2 wpi (Figure 5D, E, F). Thus TNFα is 

clearly an important regulator of T cell cytokine production that overall promotes a Th1 bias of T 

cell polarization.  

DCs are the primary phagocytic cells that present antigen to T cells during cryptococcal 

infection and are a major innate determinant of the Th1/Th2 polarization phenotype that will 

develop during the transition between innate and the adaptive immune response (84, 85, 94). The 

effects of DC on T cell polarization occurs through the types of cytokines DC express, as well as 

through expression of various co-stimulatory molecules which act on T cells during direct DC/T 

cell contact (80, 89, 94, 95). TNFα is known to be an important factor for DC activation and 

maturation. Thus, we further tested if changes in dendritic cell phenotype occurred upstream 

from the dysregulated T cell polarization in TNFα depleted mice.  DC activation status was 

assessed to be dramatically changed by TNFα depletion, as demonstrated by mRNA expression 

data. Decreased expression of mature DC1 genes, such as Ccr7, IL-12b, and H2-DMb1, and 

IL12b and increased expression of DC2 genes by pulmonary CD11c+ cells, such as Arg1 and 

IL10, occurred in αTNFα-CBA/52D mice (Figure 6). TNFα signaling causes DC1 bias at every 

time point. Thus it is clear TNFα plays a crucial role in promoting stable DC1 phenotype in the 



infected lungs during both the innate and adaptive phases of infection. Because the effects of 

transient TNFα depletion on T cell signatures and gene expression were not identical across all 

the time points, perhaps due to the highly dysregulated response, it is likely that early DC1 bias 

promotes T cell Th1 polarization during the later phases of infection. 

To determine if TNFα directly affects DC1 activation status, DC1 stability experiments 

were performed. Initially DC1 activated Bone Marrow-derived DCs maintained high expression 

of iNOS, a DC1 gene, when exposed to TNFα, regardless of what cytokine they were 

subsequently exposed to (Figure 7A). Similarly, BMDCs maintained low Fizz expression when 

initially DC1 activated and exposed to TNFα, regardless of what cytokine they were 

subsequently exposed to (Figure 7B). This is in contrast to initially DC1 BMDCs not exposed to 

TNFα, which displayed polarization plasticity. So, the early effects of TNFα were to stabilize 

DCs in a protective activation status. The DC-1 activated DCs most likely promoted long-term 

protective effects on T cell polarization in C. neoformans infected lungs. This model could 

account for the long-term effects caused by initial, transient depletion of TNFα, and has been 

postulated before (91). 

To determine if TNFα directly affects DC2 activation status, DC2 stability experiments 

were performed. Initially DC2 activated Bone Marrow-derived DCs differentially expressed 

iNOS, a DC1 gene, when subsequently exposed to a different cytokines, regardless of if they 

were exposed to TNFα (Figure 8A). Similarly, initially DC2 BMDCs differentially expressed 

Fizz, a DC2 gene, when subsequently exposed to a different cytokines, regardless of if they were 

exposed to TNFα (Figure 8B). So, TNFα does not stabilize BMDCs in a non-protective 

activation status. They remain susceptible to a DC1 switch. Thus, because TNFα only maintains 

a DC1 bias it is most likely only instrumental in promoting a Th1 T cell polarization in a C. 



neoformans infection. 

Together these data revealed that early TNFα is critical for generation of a protective 

immune response to C. neoformans infection. We propose that TNFα induces stable DC1 

polarization in the infected lungs, which supports sustained Th1 T cell polarization and prevents 

non-protective Th2 bias, paving the way for the effective clearance of the infection. Together, 

our T cell and DC analysis suggest that the crucial interaction between DCs and T cells is 

impaired in αTNFα-CBA/52D mice. 

Understanding more completely the mechanisms behind these effects could create a new 

opportunity for immunotherapy intended to enhance the immune response during cryptococcal 

infection. Our study shows that TNFα could be potentially beneficial to improve clearance of C. 

neoformans in infected patients.  
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