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Abstract

The true nature behind dark matter and dark energy in our universe are arguably two of the

most challenging astrophysical questions of the 21st century. They are so closely connected to the

history of our universe that the study of these questions is analogous to the study of the universe’s

cosmological evolution. The natural laws that govern their behavior will likely only be solved via

a multi-faceted approach, where multiple scientific techniques converge upon one coherent picture.

One important technique in our scientific toolbox is galaxy cluster cosmology: using the number,

size and spatial distribution of galaxy clusters in our universe to trace the growth of structure

over cosmic time. A crucial component of galaxy cluster cosmology requires knowing the masses of

clusters in the near and far universe. Because these masses are composed mostly of dark matter,

determining their total gravitational mass is not easy. One important class of methods to do this is

dynamical methods, which use the kinematic positions and velocities of individual galaxies orbiting

the cluster’s central mass to trace out the cluster’s gravitational potential and mass.

In this thesis, we take a close look at one specific dynamical method called the Caustic Technique.

We show that the Caustic Technique recovers precise and accurate galaxy cluster masses in the limit

where we have spectroscopic redshifts for a large number of galaxies per galaxy cluster (Ngal > 75).

However, even with the millions of galaxy spectra already taken by current galaxy cluster surveys,

for the majority of known galaxy clusters in the universe we typically have less than 25 galaxy

spectra per cluster, meaning we cannot achieve accurate or precise masses for these clusters with

the Caustic Technique–or any dynamical method for that matter. In order to circumvent this

problem, we developed a stacking algorithm that combines the galaxy data from multiple galaxy

clusters into one ensemble galaxy cluster, which increases the galaxy sampling to where we expect

to be unaffected by low-number statistics. We use large N-Body simulations to systematically test

the performance of our algorithm and determine its uncertainties. We show that we can recover

accurate and precise average galaxy cluster masses from clusters that have as little as 10 galaxy

spectra per cluster. We then apply our technique to a real spectroscopic sample and characterize

its Mass–Richness relationship. We self-calibrate the relationship using our stacking algorithm and

produce a corrected relationship that is in agreement with our expectation from simulations and is

unbiased with respect to galaxy cluster sampling uncertainties. Proof that our stacking algorithm

is not only feasible for use in the real universe but advantageous in certain scenarios opens the door

for scientists to use dynamical mass estimators to do cosmology with incredibly large datasets of

galaxy clusters that were before effectively unusable for such purposes.
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1. Introduction

Galaxies in our universe are not distributed evenly across the sky. When we point our telescopes

at any region of the sky, we see that galaxies are highly clustered in some regions and devoid in

others. This bunching of galaxies is due to gravitational instability, which pulls matter together

to form clusters of galaxies. These large (∼ 106 pc) systems are called galaxy clusters–sometimes

referred to as just clusters or dark matter halos–and are the largest gravitationally bound objects

in the universe.

Galaxy clusters are not bound by the gravity from the stars and dust in individual galaxies.

It was shown in the 1930s that the Coma cluster, for example, had a mass inferred from it gravity

that was a few hundred times the mass inferred from the starlight from all the galaxies in the

cluster. A component of mass invisible to optical light was proposed as a possible solution to the

problem, called dark matter (Zwicky 1937). Although it was later found that the medium between

galaxies is filled with a hot gas at millions of degrees that makes up most of the baryonic matter

of galaxy clusters, an additional mass component was still needed to bridge the gap between virial

and baryonic mass estimates. Today, we still call this missing mass dark matter, and its mysterious

origin is one of the questions at the forefront of modern astrophysics.

It is now known that dark matter is the dominant matter component of the universe, comprising

over 85% of its total matter content (Komatsu et al. 2011). This means that the normal baryonic

matter–that which makes up our everyday lives–is by far a subdominant component of the universe.

This is no exception in galaxy clusters: when we talk about the mass of a galaxy cluster, we are

speaking of its dark matter halo. In fact, all galaxy cluster mass estimation techniques are merely

ways through which we can measure the presence of a dark matter halo through its gravitational

interaction with light or baryonic matter, which we can detect.

The current picture of galaxy cluster formation starts with the Big Bang, where quantum

fluctuations in the distribution of matter and radiation in the hot early universe seeded over-dense

and under-dense regions. To first order, the over-dense regions grew linearly over time and pulled

more and more matter into their gravitational potential wells. Over time these potential wells

continued to grow and eventually developed into the deep potential wells that make up the galaxy

clusters we see today, 13.8 billion years after the Big Bang. The study of galaxy clusters is, then,

the study of the growth of large-scale structure in the universe. The growth of structure in the

universe is strongly correlated to the underlying cosmology (e.g. Tinker et al. 2008). Knowing the

distribution, size and number of galaxy clusters as a function of time is therefore a unique probe

that can constrain cosmological models that govern the past and future evolution of our universe.

In this thesis, I explain the research I have done over the past four years to better understand

the dynamics of galaxy clusters and use them as cosmological probes. The single, most important

endeavor that my research is concerned with is calculating the total Newtonian mass of a galaxy

cluster. Specifically, I take a close look at one particular dynamical method called the Caustic

Technique. I show that the Caustic Technique recovers precise and accurate galaxy cluster masses

in the limit where we have spectroscopic redshifts for a large number of galaxies per galaxy cluster

(Ngal > 75). However, even with the millions of galaxy spectra already taken by current galaxy
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cluster surveys, for the majority of known galaxy clusters in the universe we typically have less

than 25 galaxy spectra per cluster, meaning we cannot achieve accurate or precise masses for

these clusters with the Caustic Technique–or any dynamical method for that matter. In order to

circumvent this problem, I co-developed a stacking algorithm that combines the galaxy data from

multiple galaxy clusters into one ensemble galaxy cluster, which increases the galaxy sampling to

where we expect to be unaffected by low-number statistics. I use large N-Body simulations to

systematically test the performance of the algorithm and determine its uncertainties. I show that

it recovers accurate and precise average galaxy cluster masses from clusters that have as little

as 10 galaxy spectra per cluster. I then apply the technique to a real spectroscopic sample and

characterize its Mass–Richness relationship. I self-calibrate the relationship using the stacking

algorithm and produce a corrected relationship that is in agreement with the expectation from

simulations and is unbiased with respect to galaxy cluster sampling uncertainties. Proof that the

stacking algorithm is not only feasible for use in the real universe but advantageous in certain

scenarios opens the door for scientists to use dynamical mass estimators to do cosmology with

incredibly large datasets of galaxy clusters that were before effectively unusable.

The sectioning of this document begins with a general discussion of how we derive the masses

of galaxy clusters and details a systematic test of the Caustic Technique in §2. Much of chapter

2 has been published in Gifford, Miller, & Kern (2013). In §3, I explain the theory behind the

stacking algorithm and describe our rigorous and systematic tests in simulations to understand its

uncertainties. The results of this chapter are currently being submitted to the Astrophysical Journal

(Gifford, Kern, Miller et al. 2015). Finally, in §4, I present the stacking algorithm’s application to

real galaxy cluster optical survey data and discuss its implications for future surveys. The results of

this chapter are also currently being submitted to the Astrophysical Journal (Kern, Gifford, Miller

et al. 2015). The techniques I developed in §3 and the algorithms I used to apply them to real

data in §4 are also being used in related work concerning modified gravity in clusters (e.g., Stark,

Miller, Kern et al. 2015).
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2. Deriving the Masses of Galaxy Clusters

2.1. Introduction

Knowing the masses of galaxy clusters is important to cosmology because any theoretical

model of structure formation must be able to reproduce the observed mass function: the number of

clusters in the universe in a certain mass range. Cluster masses also provide the basis for a variety

of mass-to-observable scaling laws, which are relationships that correlate a cluster’s dark matter

mass to some observable signature of the cluster, such as its luminosity, X-ray temperature, galaxy

richness or the velocity dispersion of its orbiting galaxies. In many cases, observing these mass

proxies are quicker and easier than actually deriving the mass of a cluster via some measure of its

gravitational potential. This means that it becomes feasible to measure these mass proxies over

large portions of the sky and trace how these relationships change over the history of the universe.

If we can accurately calibrate these scaling laws with a subsample of highly precise cluster masses,

we will be able to statistically determine the masses of clusters in large-scale surveys and constrain

cosmological models.

2.2. How Do We Define A Mass?

Deriving the masses of clusters, however, is not an easy process. In some sense it is not even

clearly defined. When does a dark matter halo effectively terminate, if it does at all? The popular

Navarro-Frenk-White dark matter density model shown to match N-Body dark matter density

profiles, for example, does not converge when integrated to infinity (Navarro et al. 1996). To what

radius should we integrate a mass density profile to derive a mass? One way of choosing a radius is

by utilizing the virial theorem, which states that a “relaxed” gravitational system will have a total

kinetic energy equal to one half of its gravitational potential energy

Tkinetic = −1

2
Φgravity (1)

In this case, “relaxed” means that the galaxies in a cluster are gravitationally bound and

have spent enough time in the cluster’s gravitational well that their orbits reflect the influence of

the cluster’s gravitational potential. In other words, the contribution of their relic infall velocities

to their overall instantaneous velocities are negligible compared to the velocities induced by the

gravitational potential of the cluster.

This condition is satisfied in the cores of most galaxy clusters, but will be broken at some radius

from the cluster center, denoted as rvir. This radius also happens to be approximately equal to r200,

the radius at which the cluster’s mass density, ρ, is approximately equal to 200 times the critical

mass density of the universe ρcrit. This critical density is derived from the Friedman equations and

can be written as 3H2/8πG, where H is the Hubble constant and quantifies the expansion rate of

the Universe and G is the Newtonian gravitational constant. ρcrit is a constant 9.2× 10−27 kg/m3

(Ryden 2003).
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Gravitational potential is related to the mass density through the Poisson equation

∇2Φ(r) = 4πGρ(r) (2)

If we integrate a cluster’s mass density profile out to a radius of r200 then we get the mass enclosed

in this sphere, M200. ∫ r200

0
ρ(r)dr = M(< r200) = M200

This is a common way to define a cluster mass, as the integral of its density profile out to

a radius at which the cluster’s density is some number times the critical density of the universe.

Similarly, we can define M500 and M1500, which are the masses enclosed by r500 and r1500, which

are at significantly smaller radii than r200. In this thesis when we refer to a cluster mass, we are

referring to it’s M200, or the mass enclosed within a spherical radius where the cluster’s density is

equal to 200 · ρcrit.

2.3. How To Do It: The Caustic Technique

There are a few ways to directly measure the gravitational potential of a cluster and thus

estimate its mass. One way is to use a galaxy cluster’s dark matter halo as a gravitational lens,

which bends the light of background galaxies into our line of sight. The magnitude of the bending

is a prediction of general relativity and determines the mass of the cluster (e.g. Rozo et al. 2009).

Another method uses the microwave emission from the cluster’s intracluster medium (ICM), which is

a result of inverse Compton scattering of photons from the cosmic microwave background (CMB) off

of highly energetic electrons in the cluster (e.g. Planck Collaboration et al. 2014). Another method

uses the temperature of X-ray emission from the ICM to back out the gravitational potential and

hydrostatic mass of the cluster (e.g. Kravtsov et al. 2006). Yet another method uses the motions

of galaxies around the center, defined by simple Newtonian dynamics, to trace out the cluster’s

gravitational potential and Newtonian mass (e.g. Evrard et al. 2008; Saro et al. 2013; Gifford &

Miller 2013). Each technique is subject to various systematic uncertainties, making some preferable

over others in various situations. A clear picture of galaxy cluster formation requires a statistically

coherent picture of galaxy cluster masses from each individual technique. To date, this has yet to

be done.

Our focus is on the latter of the above stated methods, which represents a class of techniques

called dynamical methods. A dynamical method simply uses the positions and velocities of galaxies

around a cluster to measure the cluster’s mass. Within the scope of dynamical techniques, we

focus on the Caustic technique, originally conceived by Diaferio & Geller (1997) and expanded

by Diaferio (1999).

The Caustic technique takes the positions and velocities of a galaxy cluster’s member galaxies

and projects them into a phase space of cluster-centric radius and line-of-sight velocity (Figure 1).

These phase spaces are also referred to as radius-velocity or r-v phase spaces. If we were to create

the phase space of a galaxy cluster in three dimensions–taking each galaxy’s total radius from the

cluster center and it’s total velocity vector–we would find that the galaxies in a cluster fall below
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Fig. 1.— Left: Simulated galaxy cluster in three dimensional space. Right: A phase space of the

same simulated galaxy cluster, where individual galaxies’ cluster-centric radius and line of sight velocity are

projected along a line of sight towards the cluster from Earth. The characteristic trumpet shape seen at

small radii in the phase space to the right is the galaxy cluster signal that the Caustic technique searches

for.

the escape velocity profile of the cluster. This is a natural consequence of Newtonian dynamics:

if a galaxy has a velocity larger than the escape velocity at its radius then it will escape from the

cluster, and we should find virtually no galaxies above this threshold (Figure 2). Therefore, the

“edge” of the phase space, called the Caustic surface (blue line in Figure 2), traces the escape

velocity profile of the cluster, which is directly related to the cluster’s gravitational potential via

Newtonian dynamics through

v2
esc = −2Φ(r) (3)

This means that if we can accurately trace the escape velocity profile of the cluster then we can

directly back out its potential, which according to the Poisson equation (Equation 2) is directly

related to its density profile and therefore mass. Combining the virial equation with Equation 3

we get that the escape velocity is related to the average velocity at the virial radius

〈v2
esc〉 − 4〈v2〉 = 0 (4)

This process, however, is complicated due to the fact that in the real universe we are viewing

a galaxy cluster in projection. We are therefore actually measuring the line-of-sight escape velocity

profile vesc,los(r) and the line-of-sight galaxy velocities vlos. The anisotropy of the galaxies’ velocity

is encompassed by an anisotropy parameter β, which consists of a galaxy’s tangential velocity vθ
and radial velocity vr

β(r) = 1−
〈v2
θ〉(r)
〈v2
r 〉(r)

(5)

Diaferio (1999) shows that in projected space, the line of sight escape velocity is related to the

true escape velocity using β(r):

〈v2
los,esc〉(r) ≈

1− β(r)

3− 2β(r)
〈v2

esc〉(r) =
1

g(β(r))
〈v2

esc〉(r) (6)
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The Astrophysical Journal, 773:116 (14pp), 2013 August 20 Gifford, Miller, & Kern

Figure 1. Left: the gravitational potential (red band) is shown to envelope the edge of the particle (black points) and galaxy (orange circles) data when projected in
the 3D radius–redshift space. The edge of the phase-space density can be defined by choosing the correct iso-density contour (blue). Right: the same halo projected
on the sky, which blurs the surface from both the positions and anisotropies in the velocity components. Galaxies that are projected into the space, but live outside the
virial radius in three dimensions are highlighted with red ×′s.
(A color version of this figure is available in the online journal.)

technique is analogous to applying the Jeans equation, except
that the cluster observable is the radial escape velocity as
opposed to the velocity dispersion and that the escape velocity
maps directly to the gravitational potential, whereas the Jeans
analysis maps to its derivative. These differences are subtle but
important. Regardless, both the Jean’s technique and the caustic
technique posit that the radius/velocity phase-space does indeed
map directly to the gravitational potential and through some
simplifying assumptions, ultimately to the gravitational mass.

Our primary goal is to present the statistical characterization
(accuracy and precision) of caustic inferred halos masses, as
well as to study the effects of survey strategy when planning
a spectroscopic follow-up. In Section 2 we discuss the caustic
technique in detail and apply this technique in Section 3 on
N-body simulations using the underlying particles, the sub-
halos, as well as on the semi-analytic mock galaxy catalogs.
Using the galaxy catalogs, we incorporate realistic targeting
scenarios and show the effects on the measured bias and scatter.

2. METHODS AND DATA

2.1. Inferring Halo Mass from Gravitational Potential

Under Newtonian dynamics, the escape velocity is related to
the gravitational potential of the system,

v2
esc(r) = −2Φ(r). (1)

If the dynamics of the system are controlled by the gravitational
potential, tracers which have not escaped the potential well
should exist in a well-defined region of r–v phase space, where
r is the physical or projected radius from the center of the
cluster and v is the peculiar three-dimensional (3D) velocity or
projected one-dimensional (1D) velocity respectively relative to
the bulk cluster motion. The edge of this region in r–v space
within which bound tracers are allowed to exist defines the
escape velocity, vesc(r).

In Figure 1, we show an example halo from the Millennium
Simulation where we identify the actual gravitational potential
of the dark matter GΣi(m/|x − xi |) (red lines) and the iso-
density contour which traces the escape velocity profile of the

halo (blue lines). In the left panel, the velocities and radii are
three dimensional and in spherical coordinates while in the right
panel they are projected along one line-of-sight. The surface that
defines the density edge in the r–v phase space is an iso-density
contour that follows vesc(r) and therefore Φ(r).

In the observed data, we identify the projected vesc(r) surface
by applying standard kernel density estimation techniques to
the dynamical tracers in the r–v phase-space. The observed
tracers have inherent observational uncertainties in both the
radial and velocity directions. In this work, we focus on low-
redshift SDSS-like observations with spectroscopic precision
of ∼50 km s−1 or 0.5 h−1 Mpc in normalized coordinates and
astrometric precision of 0.05 h−1 Mpc. Therefore, our kernel
must be non-symmetric to account for the factor of 10 difference
in the two dimensions of the phase-space. Geller et al. (1999)
showed that such axis weighting does not have a large effect
on the mass profile determination, something that we confirm
in this work. We use a fixed multi-dimensional Gaussian kernel
with a width in the r and v directions that independently adapt
to the sampling according to (Silverman 1986)

K(r, v) =
(

4
3N

)1/5

σr,v (2)

where N is the number of dynamical tracers in the total phase-
space and σr,v is the dispersion in the radial and velocity di-
mensions. Equation (2) minimizes the mean integrated squared
error of the density estimate, which is the sum of the square of
the statistical bias and the variance, also known as the statisti-
cal risk (Stien 1981; Miller et al. 2002)). While Diaferio (1999)
adopt an adaptive kernel technique, we will show that a standard
fixed kernel recovers the cluster mass estimates with low scatter
and bias.

Diaferio (1999) assert that any realistic models of galaxy
clusters exhibit escape velocity profiles that at no point exceed
(d ln vesc/d ln r) = ζ where ζ = 1/4. If an iso-density contour
breaks this limit along its surface, the vesc(r) value is replaced
with a new value that yields (d ln vesc/d ln r) = ζ . Here, we
follow the prescription used in Serra et al. (2011) which invokes
a looser constraint of ζ = 2 rather than ζ = 1/4. This allows

2

Fig. 2.— Left: Simulated three dimensional phase space of a galaxy cluster. Right: Simulated projected

phase space of the same galaxy cluster along its line of sight towards us. In both figures, the black points

represent dark matter particles, while the orange dots represent simulated galaxies. The red line represents

the cluster’s gravitational potential, while the blue line is the estimate caustic surface. Red crosses in the

right figure are interloper galaxies projected into the phase space. Figure taken from (Gifford et al. 2013).

We therefore use g(β) to transform our projected escape velocity to a three dimensional escape

velocity.

We now have an estimate of the escape velocity and hence gravitational potential via Equa-

tion 3. One course of action to get the cluster’s mass is to use the Poisson equation (Equation 2)

to relate potential profile to a mass density profile. This, however, involves taking a derivative

of a non-smooth function. Diaferio (1999) introduces an alternative method using a partial mass

differential equation dm = 4πρ(r)r2dr. If we invoke Equation 1, this becomes:

dm = −2πv2
esc(r)

ρ(r)r2

Φ(r)
dr (7)

We can multiply this by the gravitational constant and integrate to yield the mass inclosed by

some radius R:

G ·M(< R) =

∫ R

0
−2π ·G · g(β(r)) · 〈v2

esc,los〉(r) ·
ρ(r)r2

Φ(r)
· dr

=

∫ R

0
Fβ(r) · 〈v2

esc,los〉(r) · dr
(8)

where the term Fβ(r) encompasses the g(β(r)), ρ(r) and Φ(r) terms. Diaferio (1999) claim that

Fβ(r) is roughly constant as a function of radius from 1 to 3 times r200, which they calibrate against

N-Body simulations. They claim an average Fβ of 0.5, while Serra et al. (2011) claim an average of

0.7. Differences in these values are related to the kind of mass tracers used in one’s mock catalogues,

such as galaxies, dark matter particles or subhalos. While Diaferio (1999) used subhalos as velocity

tracers–which are known to be biased tracers of the velocity dispersion–Serra et al. (2011) used

dark matter particles. For our analysis, we adopt an Fβ of 0.65, which is calculated using galaxy

tracers explained in subsection 2.4.
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Going from a phase space to an escape velocity profile is not so simple, however. Once a phase

space is constructed, the Caustic technique runs a two dimensional kernel density algorithm that

creates a density space overtop of the phase space. The technique then picks a set of iso-density

contours from the density space that outline the edge of the galaxies in the phase space, which

generally forms a characteristic trumpet shape (Figure 1 Right). The next question is, which iso-

density contour best matches the escape velocity profile (see Figure 2)? We do this two different

ways. One way we do this is by taking the iso-density contour that best fits the velocity dispersion

of the cluster, thereby making the technique dependent on the cluster’s velocity dispersion. This is

what we typically associate with a Caustic mass. Another way, which is currently being developed

and tested by our team, is to bin the data in radial bins and take the top X percent (∼10%) of

galaxies along the velocity axis in each bin, thereby tracing out a Caustic surface as a function of

radius. We call a mass derived with this variant of the Caustic technique an Edge mass.

When working on individual galaxy clusters–i.e. phase spaces of individual galaxy clusters–

the typical Caustic masses are preferred. When we start working on stacked phase spaces, as is

described in section 3, we see that we want to use an Edge mass.

2.4. Systematic Analysis of the Caustic Technique

In 2013, we presented a systematic analysis of the Caustic technique against simulated dark

matter halos (Gifford, Miller, & Kern 2013). Simulations provide an ideal proving ground for testing

the performance of the technique because we know what the real mass of a cluster is in a simulation:

we just physically add up the masses of all the dark matter particles within r200. This means we

can test the technique, change it, and test it again to optimize it’s performance. To do this, we

queried a set of 100 dark matter halos from the Millennium Simulation, a large simulation that

models the gravitational clustering of dark matter particles over cosmic time(Springel et al. 2005).

The Caustic technique, however, relies on the motions of galaxies, not dark matter particles. We

therefore used a suite of semi-analytic catalogues–algorithms that paste galaxies onto dark matter

subhalos and model galaxy formation processes–to test the performance of the Caustic technique

against the simulated halos and their galaxies (Springel et al. 2001; Bower et al. 2006; De Lucia

& Blaizot 2007; Bertone et al. 2007; Guo et al. 2011). We discuss these simulations further in

subsection 3.2.

One of the results of the study was that a shiftgapper method of interloper treatment works

well for dealing with interloper galaxies in a phase space, better than a sigma clipping routine. A

shiftgapper method bins the phase space data in radial bins and measure the velocity dispersion of

galaxies in each bin. In each bin it looks for velocity gaps where there are no galaxies, and if the

velocity gap is bigger than some threshold it cuts all galaxies above the gap. We will continue to

use a shiftgapper technique to deal with galaxy interlopers for the rest of this thesis.

The other main result we are interested in is how the Caustic technique performs in a simulation

that is made to mock a real observation. In such a scenario, we choose a galaxy cluster in three

dimensional coordinates and put ourselves some distance away from the known cluster center. We

then project every galaxy into a two dimensional space, identical to how we would see it in the sky,
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and make realistic cuts in galaxy magnitude and completeness. Using four different semi-analytic

datasets and the dark matter subhalos, Gifford et al. (2013) finds that the Caustic technique is

fairly robust to semi-analytic modeling. Figure 3 shows that the Guo et al. (2011), Bertone et al.

(2007) and De Lucia & Blaizot (2007) catalogues give essentially identical virial mass, Caustic mass

and velocity dispersion biases as a function of galaxy sampling number, Ngal. The subhalos and

the Bower et al. (2006) semianalytics are distinctly different than the other catalogues in that they

treat orphan subhalos/galaxies differently, which is likely the cause of their mass bias. What is also

important, is that when a phase space is sampled with roughly 50 galaxies or more the Caustic

returns unbiased masses and has a scatter of about 35% (Figure 3 & Figure 4). The phase space

sampling, i.e. the number of galaxies in a phase space, is key to how the performance of the Caustic

and is denoted by Ngal ≡ “number of galaxies in a phase space.”
The Astrophysical Journal, 773:116 (14pp), 2013 August 20 Gifford, Miller, & Kern

Figure 7. The bias in virial mass (left), caustic mass (middle), and velocity dispersion (right) as a function of the number of galaxies (Ngal) used in the mass
determination. The biases are shown for the Guo (red), De Lucia (orange), Bertone (green), and Bower (blue) semi-analytics as well as the subhalos (purple). Ngal is
the dominant source of bias in the caustic mass as well as the virial mass, and the semi-analytic biases all converge to within errors at high sampling.
(A color version of this figure is available in the online journal.)

Figure 8. Top: the velocity segregation bias as a function of the fraction of the brightest galaxies within a projected r200 used in the caustic mass. The x-axis indicates
the fraction of the 50 brightest galaxies. We keep the total number of galaxies fixed by replacing bright galaxies with those dimmer than the 50th brightest. We replace
galaxies by starting from the dimmest (solid lines) or by starting from the brightest (dashed; see text) but always keep the five brightest galaxies. The errors are the
uncertainties on the mean bias. Bottom: the log sample scatter for the brighter sample (solid lines above), however the scatter for the dimmer sample is nearly identical
in all cases.
(A color version of this figure is available in the online journal.)

brightest to the dimmest, or from the dimmest to the brightest,
etc. In Figure 8 we show two different replacement techniques
starting from the dimmest (solid lines) or brightest galaxies
(dashed lines). We always keep the five brightest galaxies in
each case, and we replace galaxies with those starting from
the 51st brightest within r200. We find that the bias does not
depend on in how the replacement is done. As shown in
Figure 8, the virial mass is more affected by target selection
based on galaxy luminosity than the caustic mass. To minimize
brightness-induced mass biases, the Guo et al. (2011) semi-

analytics indicate that one should always strive to target the
brightest galaxies. There is no change in the average scatter as
dimmer galaxies are added to the sample.

In Figure 9, we keep Ngal constant and show the bias (top) and
scatter (bottom) as a function of red galaxy fraction. We start
with the N = 50 brightest red-sequence galaxies, and replace
the dimmest fraction of those galaxies with the brightest blue
non-red-sequence galaxies within the projected r200. We also
conduct the test by replacing the galaxies randomly, with no
noticeable difference in the results.

10

Fig. 3.— The Caustic technique is fairly robust to how galaxies are modeled in simulations. In the middle

panel, three out of four semi-analytic catalogues give essentially identical results: when the phase space is

sampled with > 50 galaxies (Ngal > 50) the Caustic technique returns unbiased masses with respect to the

Simulation’s quoted halo mass. Figure from Gifford et al. (2013).

2.5. Conclusion: Motivation for Stacking

While it is reassuring that the Caustic technique can theoretically produce unbiased (0± 5%)

and low scatter (∼30%) halo mass estimates, this is contingent upon having at least 50 member

galaxies in our phase space. Observationally, this means getting at least 50 spectroscopic redshifts

per cluster, which is feasible and available for mid and high mass clusters at low redshift. However,

this gets increasingly more difficult for low-mass clusters and for all clusters at high redshift. In

fact, all dynamical mass estimators depend heavily on having a statistically significant sample of

Ngal measured galaxy redshifts. Individual clusters that have less than ∼30 galaxy spectra are

therefore rendered effectively useless for dynamical mass estimators.

This is somewhat disconcerting, especially because for any large scale galaxy survey, the clus-

ters on the edge of its redshift limits will suffer from poor galaxy sampling due to magnitude

limitations. This, however, is exactly the region that we would like to probe for cluster masses to
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Figure 5. Left: the scatter in virial mass, caustic mass, and velocity dispersion as a function of Ngal. The solid lines represent the observed log scatter for a single
line-of-sight to 100 halos from Figure 3. The dotted lines are the statistical representation of the line-of-sight scatter from Figure 4 (bottom). Right: the solid lines are
the same observed scatter (left), but are compared with the predicted mass scatters based on the summation in quadrature of the line-of-sight statistical scatters with
the intrinsic 3D mass scatter.
(A color version of this figure is available in the online journal.)

Equation (12) implies a relationship of ∼3 between the log
scatter in virial mass and log scatter in velocity dispersion;
however, the relationship between scatter in caustic mass and
scatter in velocity dispersion is not immediately obvious as the
two do not have an exact analytic relationship. We do know
that the escape velocity surface is calibrated by the velocity
dispersion and the caustic mass is calculated by integrating
the 〈v2

esc〉(r). A naive assumption is that the scatter in velocity
dispersion dominates over all other systematic scatters in the
caustic technique. If so, we should find that the log scatter in
caustic mass is very nearly twice that of the log scatter in velocity
dispersion.

In Figure 6 we show that the virial mass obeys the predicted
log mass–velocity dispersion scatter relation (blue line) as
expected. We also show that the sensitivity of the scatter
in caustic mass is well predicted by twice the scatter in
velocity dispersion (red line); however the absolute value is
slightly higher due to other systematic sources of uncertainty.
This implies that other forms of systematic uncertainty in the
technique are indeed small, and that the line-of-sight scatter in
velocity dispersion dominates the uncertainty in caustic mass,
albeit to a lesser degree than it does in the virial mass.

In addition to the mass scatter for a given Ngal, we also show
how the average mass bias depends on Ngal. As before with the
total scatter, we measure the average bias for the 100 halos as
〈ln(Mc/M200)〉 after choosing only one l.o.s. to each. We repeat
this measurement for 100 different l.o.s. and report the average
sample bias. The bias in caustic mass is shown in Figure 7
(middle) for all four semi-analytics and the subhalos. At small
Ngal the caustic mass can be biased very low compared with
M200. However, above Ngal = 50, the log bias is unbiased and
all the semi-analytics agree to within the 1σ -errors. A similar
trend is seen with the virial mass (left), but when compared
with the caustic mass, the virial mass exhibits a larger bias
for small Ngal. The virial mass bias, and to a lesser degree the
caustic mass bias, are dependent on the velocity dispersion bias
which is shown as a function of Ngal in Figure 7 (right). We
find that the four different semi-analytics generally agree to
within the errors on the means (from the 100 l.o.s.). The Bower
et al. (2006) galaxies are always lower than the others, but not

Figure 6. Relationship between log scatter in velocity dispersion and log scatter
in mass. The blue line predicts the virial mass uncertainties and has a slope of
2.94 as listed in Evrard et al. (2008). The red line predicts the caustic mass
uncertainties and has a slope of 2.
(A color version of this figure is available in the online journal.)

significantly. The sub-halos are very biased. We discuss these
trends in Section 4.1.

3.3. Target Selection

Up to now, we have assumed that we have spectroscopic
follow-up that is complete for the N brightest galaxies within
the projected r200 of each halo. Here, we drop that constraint
and allow more realistic targeting algorithms. We include
selection based on galaxy magnitude, membership within the
red-sequence, and projected distance from the cluster center.

In Figure 8 we keep Ngal and color constant (i.e., only the
red sequence) and show the bias (top) and scatter (bottom)
as we decrease the fraction of original brightest (in absolute
magnitude) galaxies. Starting from the sorted 50 brightest
galaxies, we have different options for how we replace galaxies.
For instance, we could replace them randomly, or from the
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Fig. 4.— The Caustic technique has a fundamental floor on how precise it can be (red). It levels out at

about 30% – 35% scatter for very high phase space sampling (Ngal > 100). This is largely due to projection

effects, and clusters’ spherical asymmetry. Figure from Gifford et al. (2013).

do exciting cosmology: the bleeding edge of cluster surveys at higher and higher redshifts. This will

be particularly important over the next decade when (example of surveys) deliver unprecedented

quantities of optical data that can be used to constrain the cosmological growth of dark matter.

Some of the most interesting clusters in these surveys will fall near the magnitude limits of the

telescopes and will thus be too sparsely sampled to be used with conventional dynamical mass

estimators.

This provides a strong incentive to develop a method that will allow dynamical techniques to

at least extract some useful information from these poorly sampled clusters. One way to circumvent

this problem is to combine the sparsely sampled data sets together in order to increase the total

signal of a resultant data set. This only makes physical sense if the data sets are drawn from the

same or a similar underlying distribution. In our case, this would be the underlying dark matter

mass profile of each galaxy cluster. Assuming we take galaxy clusters that are similar in size and

mass, if we stack the phase spaces of their member galaxies together, we may be able to make a

more precise measurement of their total averaged mass.

This kind of technique is actually quite common in astronomy. It is has, for example, already

been implemented in the field of galaxy cluster cosmology through stacked weak lensing shear

methods. This technique uses the bending of light around galaxy clusters as predicted by general

relativity to trace the mass profile of the central cluster. In many cases the bending of the light or

“shear” is statistically too weak to derive a precise measurement of the central cluster’s mass. When

these shear measurements are stacked overtop many other weakly lensed shear data, a coherent

picture emerges. In a similar way, we thought that by stacking individual galaxy clusters into an

ensemble cluster, we might be able to measure a Caustic surface and produce an average Caustic

mass for the ensemble. There have been studies that have stacked galaxy cluster kinematic data to

study the non-mass related dynamics of ensemble clusters, such as their velocity dispersions (Becker

et al. 2007). However, it has yet to be investigated whether one can derive a reliable dynamical

mass estimate from stacked ensembles, and if those can then be used to constrain cosmology. We



– 10 –

therefore set out to build a model for such a technique, with the overarching goal of eventually

applying it to real data if we could reasonably understand the systematic errors associated with

stacked galaxy cluster phase spaces.
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3. Stacked Caustics: Towards Precise Dynamical Masses

3.1. Introduction

It is not immediately clear that stacking is possible with dynamical mass estimators: part of

our work was to figure out if and when applying a stacking method is appropriate. In order to

create a model for stacked galaxy clusters, we developed and tested our algorithms against a wealth

of N-body and semi-analytic simulation data from the Millennium Simulation.

When we “stack” galaxy clusters, what we mean is that we are overlaying the cluster-centric

radius and line of sight velocity phase spaces of multiple clusters on top of each other to create

a master phase space. This really only makes sense if the galaxies from each cluster are drawn

from a similar distribution. This corresponds to taking galaxy clusters that are similar in mass, or

some observable correlated to mass such as richness or luminosity, and combining them to create

an ensemble cluster. This has the direct effect of increasing the sample size of galaxies in our phase

space, which means that we can measure the Caustic surface to higher precision.

Fig. 5.— Left: Four sparsely sampled individual galaxy clusters from MS with Ngal = 15 for each cluster.

In some cases the galaxies extend to ± 2000 km/s and in others only ± 1000 km/s, which is in part due to

projection effects. Right: Stacked ensemble cluster including clusters at left with Nclus = 15 and an Ngal =

15 for each stacked cluster. This equates to an ensemble sampling of ∼Nclus·Ngal = 225 galaxies within the

ensemble cluster’s r200.

Stacking also has the added benefit of averaging out projection effects, which adversely affects

the Caustic technique’s performance because it assumes spherical symmetry. Galaxy clusters are

not completely spherical and can resemble ellipsoids to some degree. Because clusters are randomly

oriented in space, we will sometimes view an ellipsoidal cluster on its side, as if we were looking

at the laces of a football, and sometimes we will view it down the barrel, as if we were looking

straight at the tip of a football. These differences cause discrepancy in the determination of the

cluster’s velocity dispersion and will decrease or increase the Caustic surface respectively, however,

when we combine multiple randomly oriented systems these differences are effectively averaged

out (Figure 5). This large source of uncertainty that affects the Caustic technique’s precision on
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individual clusters is actually alleviated in stacked ensemble clusters, such that stacked Caustic

masses theoretically level out at much higher precision (Figure 8). Here, we present the first viable

model for dynamical mass estimation of stacked galaxy cluster phase spaces. We show that this

technique can theoretically decrease the scatter in Caustic mass estimates from ∼ 35% to as low

as ∼10%.

3.2. Developing the Stacking Technique: Simulation Data, Computational

Challenges and Methodology

3.2.1. Data

The N-Body simulation data that we use comes from the Millennium Simulation, hereafter MS,

developed and run by the VIRGO Consortium, a collaboration of British, German, Canadian and

US astrophysicists (Springel et al. 2005). They utilized the open sourced GADGET2 code (Springel

et al. 2001) to carry out the simulation and calculate the gravitational forces between dark matter

particles over time. The cosmological parameters for their simulation follow the standard ΛCDM

model with cosmological parameters ΩM = ΩDM + Ωb = 0.25,Ωb = 0.045, h = 0.73,ΩΛ = 0.75, n =

1, σ8 = 0.9, and H0 = 100 ·h km s−1 Mpc−1. At the time it was run in 2005, the MS was the largest

ever N-Body simulation of cold dark matter by a factor of 10. The MS itself monitors only the dark

matter particles and uses a Friends-Of-Friends (FOF) algorithm to determine when a clustering

of dark matter particles constitutes a “subhalo,” and when a clustering of subhalos constitutes a

“halo.” To develop the stacking technique, we extracted data for over 2,000 dark matter halos from

their database–a factor of 20 greater than our previous analysis in subsection 2.4.

On top of the motions of the dark matter subhalos, galaxy formation, evolution and destruction

can be characterized and mapped over time using semi-analytic models that impose basic physical

rules on the star formation, radiative transfer, AGN feedback and supermassive black hole growth

for each galaxy. These are called semi-analytic catalogues, and in our study we utilized the Guo

et al. (2011) semi-analytic catalogue to extract the motions of galaxies around each dark matter

halo in the MS. The Guo semi-analytic model is tuned so that the results at the end of the

simulation match the observed galaxy population in the local universe. We can therefore test our

code in simulations and make realistic predictions as to how our technique will perform in the real

universe.

The Guo catalogue, however, is a data cube. This means that the position and velocity vector

of each galaxy is defined in a three dimensional cartesian coordinate frame in X, Y and Z with

respect to the simulation box. In the real universe we work in sky coordinates of Right Ascension

(RA) and Declination (Dec) for each galaxy’s position and redshift (z) for each galaxy’s line of

sight velocity. To model a mock observation in the MS, Henriques et al. (2012) created a “light

cone” out of the Guo semi-analytic catalogue. This means that they took the Guo simulation box

at different times during its evolution–at a z of 0, 0.5, 1, 1.5, 2 and so on–and stitched them end

to end from an observer to make a model universe as we would see it from Earth. We call this

dataset the Henriques lightcone. We use the Henriques lightcone as an intermediary step between

developing our technique with the Guo dataset and applying our technique to data in the real
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universe to ensure we can account for all of the systematic uncertainties of the technique.

3.2.2. Computational Challenges

The way in which we develop and test the stacking technique is highly systematic. When

we stack galaxy clusters together there are essentially two parameters that affect the dynamics of

the resulting ensemble cluster, Ngal and Nclus. Ngal is the number of galaxies we take from each

individual cluster and put into the stack, while Nclus is the number of individual galaxy clusters

that we do this to in order to create one ensemble cluster. To create the ensemble cluster in

Figure 5, for example, we took fifteen galaxy clusters and from each, took fifteen galaxies and

threw them into the ensemble cluster, meaning that the ensemble cluster has a total sampling size

of Ngal·Nclus = 15 · 15 = 225. For any one pairing of Ngal and Nclus, we stack across our full sample

of 2000 galaxy clusters. Therefore, the number of resultant ensemble clusters is uniquely defined

by Nclus, in that Nens = 2000 / Nclus. We then repeat this for multiple pairs of Ngal and Nclus to

explore how different ways of building an ensemble cluster affects our ability to recover its average

mass. This creates a two dimensional parameter space that manifests as a grid, which we call an

ensemble grid, shown in Figure 6.

Fig. 6.— Our ensemble grid, describing a two dimensional parameter space where we explore different ways

to construct an ensemble cluster by varying Ngal (vertical axis) and Nclus (horizontal axis). In each cell, the

upper left number uniquely identifies the cell and the lower right number is Ngal·Nclus.

This creates a serious computational challenge; for each of the 49 cells in our ensemble grid
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we are stacking our full sample of 2000 galaxy clusters and running the Caustic technique over the

resultant ensembles. By itself, the Caustic technique takes about four seconds to calculate the mass

of one galaxy cluster phase space. This means that each full realization of an ensemble grid takes

a little over 14 hours. However, we need to iterate the ensemble grid many times to average out

stochastic processes and constrain the errorbars on our mass estimates. All of this boils down to

about one week worth of computation in order to fully test our technique. In order to improve our

technique, however, we need to repeat this whole process every time we significantly change it. This

high volume of computation time–let alone the large amounts of data we are constantly loading in

and writing out–makes developing the code infeasible with a single computer. We therefore moved

to High Performance Computing (HPC) and parallel processing to make this possible. In fact,

we specifically designed the code in order to be optimized for parallelization and usage on HPC

systems.

At Michigan, we have 40 dedicated computers and large amounts of data storage that we can

remotely access. In order to get even more computing power, we applied for and won a science

allocation of 36 computers on the Open Cloud Consortium’s Open Science Data Cloud (OSDC)

computing cluster. We remotely configured the 36-core supercomputer and uploaded our data and

software in order to leverage a combined 76 computers between our research group. This cut down

our one-week computation time by about a factor of 70, which was key in allowing us to proceed

with the systematic development of the stacking technique.

In order to promote scientific transparency and allow other researchers to duplicate our results

and use our code, we have open sourced our custom built stacking code to the public, which we

call “caustic stack.”1

3.2.3. Methodology

The notion of stacking introduces inherent uncertainties that we need to be able to understand

and control in order for stacking to become a usable technique on real data. The total uncertainty

can be thought of as the product of multiple nested probabilities that each describe different

uncertainties associated with the technique. Our ultimate goal is to describe the uncertainty of

the Caustic mass with respect to the “True” mass of the cluster: P(Mcaustic|Mtrue). However,

there is some ambiguity in how we choose what the “True” mass of the cluster is, in particular

for the case of an ensemble cluster, which is composed of multiple individual clusters where we

could reasonably take either a mean, median or weighted mean of the individual masses to derive

the ensemble’s “True” mass. We therefore represent this ambiguity with an uncertainty variable

P(Mensemble|Mtrue). In the case of the real universe, we don’t even know what Mtrue really is, so

there is an additional uncertainty in the mass proxy that we use to determine clusters that are

similar in size, defined as P(Mobservable|Mtrue). This gives us a total uncertainty equation:

P (Mcaustic|Mtrue) = P (Mcaustic|Mensemble) · P (Mensemble|Mobservable) · P (Mobservable|Mtrue) (9)

1The open sourced Python code can be found here: https://github.com/nkern/caustic_stack

https://github.com/nkern/caustic_stack
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The first term right of the “=” is equivalent to asking, “what uncertainty is there in running the

Caustic technique over an ensemble that has a known mass of Mensemble = Mtrue?” The next term

asks, “What uncertainty is there in picking an Mensemble?” Lastly, the third term asks, “What

uncertainty is introduced by stacking clusters that may or may not be similar in mass?” Recall

that this was one of the fundamental assumptions of the stacking technique: that the galaxies from

each cluster are being drawn from a similar underlying dark matter distribution. This last term

will be crucial in understanding if we can theoretically use the stacking technique on real data.

Our systematic analysis of the stacking technique addresses each of the terms on the right

of Equation 9 one-by-one, so as to isolate each term’s contribution to the overall uncertainty of

the technique. This is done in three steps: 1.) Self Stacking, 2.) Mass Stacking, 3.) Observable

Stacking.

We use two standard measures to gauge how well the Caustic technique performs. A statistical

bias refers to accuracy: how close is your result to the true answer. A statistical scatter refers

to precision: how well can you reproduce your work and get the same result. Consider a group of

archers firing arrows at a far-off target. In one scenario, all arrows land very close together but are

far from the bulls-eye, meaning that the archers have high precision but low accuracy. In another

scenario, all the arrows strikes are evenly distributed across the target, meaning that their average

position is right on the bulls-eye but their ability to control where the arrow strikes at any one

time is poor. From a statistical point of view, we would like to minimize both our bias (0 ± 5%)

and scatter (< 30%), which is equivalent to maximizing precision and accuracy.

3.3. Self Stacking

Self stacking is a routine where we take one individual cluster and stack it and only it Nclus

times to produce an ensemble cluster. In effect, we are stacking it against itself, hence the name

self-stacking. In this case, each stacked phase space is just a different realization of the exact

same underlying galaxy cluster with the same three dimensional gravitational potential and mass

profile. The mass bin of the ensemble cluster contains only one value and is therefore a delta

function centered on the individual cluster’s Mtrue. This means that P(Mensemble|Mobservable) ≡ 1.

In addition, because we are working in a simulation where we know the “true” mass of a galaxy

cluster (see subsection 2.4), then P(Mobservable|Mtrue) ≡ 1. This means that for self stacking,

Equation 9 is reduced to

P (Mcaustic|Mtrue) = P (Mcaustic|Mensemble) (10)

which qualitatively states that any bias or scatter that we recover through self stacking is a direct

reflection of the bias and scatter inherent to the technique, and is not a function of external galaxy

cluster selection effects that plague us in the real universe and are encompassed by the other

uncertainty terms.

Self stacking has one crucial limitation, though, and that is that we aren’t actually creating an

ensemble cluster if we stack the exact same phase space on top of itself. If that were the case, we

would be putting points directly on top of points in the ensemble phase space, which wouldn’t allow



– 16 –

us to better characterize the Caustic surface and would defeat the purpose of stacking altogether.

In order to get around this, we need to take new projections from different vantage points every

time we stack so that we see a different projection of the same galaxy cluster Nclus times. The self

stacking workflow thus follows these exact steps:

I. Set constants for this run of the code, such as Ngal & Nclus

II. Choose one galaxy cluster in the simulation’s 3D cartesian coordinates

1. Load in that cluster’s dark matter halo data

2. Initialize ensemble phase space data structures

(a) Move the observer to a random position 50 h−1 Mpc away from the 3D cluster center

(b) Project each galaxy in the field of view into a cluster-centric radius and line-of-sight

velocity phase space

(c) Choose Ngal galaxies from the phase space and append them to the ensemble’s phase

space

3. Repeat the previous step (step 2) Nclus times, which includes the first iteration

4. Remove interlopers in the final ensemble phase space via some interloper treatment

technique

5. Run the Caustic technique on the final ensemble phase space, write the result out to file

III. Repeat previous step (step II) for all 2000 dark matter halos

The first thing we need to address is how to choose Ngal galaxies from a phase space in step 2

(c). In the simulations we have all of the galaxies that form around the galaxy cluster, including

the really dim ones that we would probably not detect around a real galaxy cluster with a realistic

telescope. A realistic method for choosing galaxies would be to take the top Ngal brightest galaxies,

because these would be the first ones that we would observe in the real universe. This, however,

does not work well in a self stacked ensemble cluster because each individual cluster phase space

would then contain the same physical galaxies, just in different r-v positions. It turns out that if

you stack the same physical galaxies with different r-v phase space positions you create artificial

structure in the phase space that greatly biases the Caustic mass.

Figure 7 shows that when we always select the top brightest galaxies we get artificial structure

in the phase space due to self stacking (Left-Top & Right-Top). We can circumvent this by taking

a random selection of galaxies rather than the top brightest, however, this is dependent on our

total sample of galaxies being sizably larger than Ngal itself. If the total sample size is close to Ngal

then taking a random selection does not get rid of the artificial structure (Left-Bottom). So long

as the total sample we randomly select from is greater than ∼ 10×Ngal we can produce a clean,

structure-less phase space (Right-Bottom). All of the clusters in our 2000 galaxy cluster sample

satisfy this criterion.

Before we run the Caustic technique over all 2000 galaxy clusters across the parameter space

in our ensemble grid (see Figure 6), we need to deal with interloper galaxies. As a reminder,
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Fig. 7.— Left-Top: For each cluster projection, select a sample of Ngal · 1 brightest galaxies and from that

sample, select the Ngal top brightest to stack. Clearly, artificial structure is apparent.

Left-Bottom: For each cluster projection, select a sample of Ngal ·1 brightest galaxies and from that sample,

randomly select Ngal to stack. Artificial structure is still apparent when total sample = Ngal · 1.

Right-Top: For each cluster projection, select a sample of Ngal ·25 brightest galaxies and from that sample,

select the Ngal top brightest to stack. Clearly, artificial structure is apparent.

Right-Bottom: For each cluster projection, select a sample of Ngal · 25 brightest galaxies and from that

sample, randomly select Ngal galaxies to stack. Artificial structure goes away when total sample is Ngal · 25.

interloper galaxies are galaxies that are not actually apart of the galaxy cluster of interest, but

are foreground (between observer and galaxy cluster) or background (behind the galaxy cluster)

galaxies that are projected into the line of sight. They are typically easy to identify because,

although they seem to have similar positions as the member galaxies, they typically have much

different peculiar velocities–i.e. redshifts–and colors than member galaxies. They are, however, a

few interloper galaxies that lie close enough to the cluster that they contaminate the escape velocity

surface we are trying to measure. Stacking only compounds this issue, and actually makes it harder

for a shiftgapper technique to eliminate interloper galaxies from near the escape velocity surface.

In testing our technique, we found that a shiftgapper interloper-removal technique is unable to

remove a substantial amount of interlopers from heavily stacked ensembles, which causes our mass

estimates to be biased. To fix this, we employ a more rigorous interloper removal technique called

“edge clip” (Gifford et al. in prep 2015). This technique takes the kernel density map of the phase

space that the Caustic technique generates and takes its derivative. It then looks for the inflection

point of the derivative, which effectively traces out the edge of the phase space along the velocity

(vertical) axis, where galaxies go quickly from being populous to devoid. Depending on the slope

of the derivative, it eliminates galaxies above a threshold near the determined inflection point.
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Lastly, before we run the Caustic technique, we need to decide variation of the mass calculation

we will use. As noted briefly in subsection 2.3, we currently have two ways to pick a set of iso-

density contour on the phase space and correlate one of them to the escape velocity profile. The

traditional method finds the iso-density contour that most closely matches the velocity dispersion

of the cluster galaxies, which is what should be used for non-stacked galaxy clusters and is what

we call a Caustic Surface. We quickly realized that this could not be used on stacked galaxy

clusters because the velocity dispersion of an ensemble is ill-defined. Becker et al. (2007) analyzed

stacked galaxy clusters in the maxBCG cluster catalogue from the SDSS data release 7, and found

that their pair-wise velocity dispersions exhibit narrower-than-gaussian behavior. Analytically this

makes sense. Each galaxy cluster has on average a gaussian distribution of galaxy velocities centered

roughy on 0 km/s. When you add gaussians on top of each other–which is essentially what stacking

is doing–the resultant distribution is known to be non-gaussian, and in fact, it is always narrower

than gaussian. This is problematic for stacking because the halo velocity dispersion is defined to

be the standard deviation of a gaussian distribution of velocities. Therefore, in a stacked ensemble,

the traditional halo velocity dispersion is unphysical and will be biased, which will propagate into

the traditional Caustic mass because it is calibrated using the cluster’s velocity dispersion.

This forced us to come up with a new way to choose the correct iso-density contour without

relying on the cluster’s velocity dispersion. Gifford et al. in prep. (2015) found that one could

reproduce an unbiased estimate of the escape velocity profile by binning the phase space in radial

bins and, for each bin, taking the top X% of galaxies along the velocity axis, where X is generally

∼ 10%. The iso-density contour that minimizes the χ2 along these points is then chosen as the

“correct” iso-density contour and is correlated to the escape velocity profile. For Caustic mass esti-

mates of ensemble clusters, we will always use masses derived using this Edge Surface. For Caustic

mass estimates of individual clusters, we will always use masses derived from the traditional Caustic

Surface calibrated to a halo velocity dispersion. We use the term Caustic mass interchangeably,

but will explicitly clarify when their contexts overlap. Otherwise, it is safe to assume that ensemble

cluster Caustic masses come from an Edge Surface, while individual cluster Caustic masses come

from a Caustic Surface.

We run our stacking code over the ensemble grid across different Ngal & Nclus pairs and measure

how the Caustic mass of an ensemble varies from it’s true mass. Figure 8 characterizes the bias

and scatter of the Caustic mass across the ensemble grid parameter space. In these plots, we

are comparing the derived Caustic mass of each ensemble with the average mass of the individual

clusters that were stacked, where the average is a robust median. The bias plot (left) shows that

a large portion of the parameter space is close to 0 ± 5% bias. No matter how small the Ngal is,

as long we we stack upwards of 25 clusters we can get to 0 ± 5% bias. We can therefore conclude

that the process of stacking does not introduce any major uncertainties that severely detriment the

accuracy of the Caustic technique. The overall behavior of the two plots show that the sampling

size of the phase space, denoted by diagonal black lines (left plot) and horizontal axis (right plot), is

strongly correlated to the overall bias and scatter of the Caustic technique, as was also determined

in Gifford et al. (2013).

Figure 8-right tells us that the Caustic technique actually has lower scatter–higher precision–

on ensembles than on individual clusters. The dotted black line is the same line from Figure 4 run
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Fig. 8.— Left: Self stacking run over our ensemble grid parameter space, showing that we attain roughly

0% bias at sampling rates of > 1000 galaxies per phase space. Right: Scatter of ensemble masses as a

function of galaxies in a phase space. The take-away is that the stacking technique has a much lower plateau

than the original Caustic technique, mainly due to the averaging out of spherical asymmetries. This makes

the stacking technique much more precise at high sampling.

over individual clusters, whereas the dotted blue line is the scatter on ensemble systems. On an en-

semble, the Caustic technique levels out at around 15%, which is a factor of two improvement over

its precision on individual clusters. The improvement in precision is due an ensemble’s spherical

symmetry; galaxy clusters are inherently aspherical and when they are stacked in random orien-

tations their mutual asymmetries tend to average each other out. Because the Caustic technique

assumers spherical symmetry, it does a more precise job on ensembles than on individual systems.

3.4. Mass Stacking

Mass stacking is one step closer to how one would construct an ensemble in the real universe. In

the mass stacking routine, rather than stack the same cluster on itself, we stack together different

clusters, each with a different mass. This means that we can take the Ngal brightest galaxies

per cluster, which is an accurate description of how we would select galaxies in a real observation,

without having to worry about creating artificial phase space structure as we did when self stacking.

This also means that we can no longer assume that the “true” mass of the ensemble is any one

of the individual clusters that make it up, but some average of all of their masses. This correlates

to saying that P(Mensemble|Mobservable) 6= 1, as we assumed with self stacking. P(Mobservable|Mtrue)

still equals 1, however, because there is zero uncertainty related to what the true mass of each

individual cluster is: our observable for each individual cluster is still the true simulation-quoted

M200. The uncertainty equation (Equation 9) now looks like

P (Mcaustic|Mtrue) = P (Mcaustic|Mensemble) · P (Mensemble|Mobservable) (11)

where P(Mcaustic|Mensemble) has already been constrained in our self stacking analysis.

Figure 9 characterizes the bias and scatter of the Caustic technique when mass stacking. Similar
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to Figure 8 that shows increasing bias and scatter along the upper-left to lower-right diagonal, we

find that mass stacked ensembles retain low bias at sampling rates greater than 500 galaxies per

phase space. The mass scatter is similar to the scatter when self stacking and stays remarkably low

even at medium sampling rates of 200 – 500 galaxies per phase space.
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Fig. 9.— Left: Caustic mass bias with respect to the median of the individual cluster masses that make up

each ensemble. Right: Caustic mass scatter about the median of the individual cluster masses that make

up each ensemble.

The size of a bin’s range in mass depends on how many high-mass and low-mass clusters

are inherently formed in the universe and the number of clusters we choose to bin per ensemble.

We could make a stacked ensemble in two ways: 1. maintain a constant number of clusters per

ensemble and have variable bin size in mass or 2. maintain a constant bin size in mass and have

a variable number of clusters stacked per ensemble. Above all else, we want to maintain the same

total number of galaxies in the ensemble phase space because this sampling rate is very closely tied

to our accuracy and precision. We therefore choose path (1.) and keep the number of clusters per

bin a constant, while each bin has a varying range in mass. Because of this, high mass ensembles

will have much larger mass ranges than low mass ensembles. For example, the ten most massive

galaxy clusters in our sample span 2.3×1015 — 8.7×1014 h−1M�, while ten intermediate/low mass

galaxy clusters in our sample span 8.676× 1013 — 8.665× 1013 h−1M�.

This could theoretically induce a non-constant bias, that is, a bias that changes as a function

of mass. We find, however, that the difference in a bin’s mass range does not induce a noticeable

bias as a function mass. Figure 10 graphs the Caustic masses of 42 ensemble clusters against the

median of the individual cluster masses that make up each ensemble. The blue line plotted is not

a best fit line, but a one-to-one line, showing a theoretical 0% bias. This shows that when mass

stacking ensembles with Ngal=15 & Nclus=50, one can recover unbiased and highly precise Caustic

masses. The errorbars are calculated via a bootstrap resampling analysis, where we re-run the
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Fig. 10.— One-to-one graph for mass stacked ensemble clusters, where Ngal=15 and Nclus=50. Errorbars

are calculated via a bootstrap resampling analysis. The blue line is not a best fit, but a one-to-one line

showing theoretical 0% bias. This shows that the bias does not change as a function of mass.

technique many times and see how the results change each time. The standard deviation of these

results is then plotted as the error bars.

3.5. Observable Stacking

We now incorporate the final term in Equation 9, P(Mobservable|Mtrue). Recall that this term

accounts for not knowing what the real masses of each galaxy cluster is in the real universe; how

can we choose to stack clusters that are similar in mass if we don’t know what their masses are

beforehand? We need to turn to a mass proxy or observable that scales with mass. While we

cannot get the absolute mass of a cluster with a mass-observable scaling law, we can estimate if

one cluster is more or less massive relative to another, and in this way can sort through a catalogue

and group clusters of similar mass. There will be an uncertainty associated with this scaling law,

though, which is encompassed by this last term. This phenomenon is known as mass mixing

(Becker et al. 2007), because we are sometimes mixing clusters of different masses into bins where

they don’t theoretically belong. This mass mixing effect is stronger the higher the scatter is on the

mass–observable relationship. The goal of this analysis is to see how much bias and scatter mass

mixing induces into the technique. If it induces a significant amount of bias and scatter that is

both unpredictable and non-robust to our ensemble grid parameter space, we may not be able to

stack clusters in the real universe.

Figure 11 shows our Caustic technique applied to observable-stacked ensembles in the MS. We

use a richness estimator for our mock observable, described in subsection 4.3. These plots help us

narrow in on which Ngal & Nclus configuration returns Caustic masses with low bias and scatter with

respect to the average mass of the ensemble’s constituent galaxy clusters. Our ensemble grid plots

show that there is a somewhat significant bias induced by mass mixing (Figure 11-Left). However,
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Fig. 11.— Left: Mass bias of ensemble grid with mass mixing induced. Ensemble Caustic masses are biased

in certain regions of the parameter space, but are unbiased in other. Right: Mass scatter over ensemble

grid parameter space. Ensemble Caustic mass precision remains relatively robust to mass mixing. Diagonal

lines show the total phase space sampling size, Ngal·Nclus

this bias really only starts to have a significant effect when the ensemble sampling is greater than

1000 galaxies per phase space. With an Ngal=15 and Nclus=25 or 50, we can still get relatively

unbiased results with a scatter near 15%.

The reason for bias at a high Nclus is likely due to an increase in the mass ranges of the

ensembles. When stacking a larger number of clusters, there is a higher chance that we accidentally

stack a high mass cluster into a low mass bin. This is just the nature of mass mixing. This could

adversely affect the Caustic mass estimate of this ensemble because the high mass cluster populates

more galaxies above the phase-space edge of the smaller galaxies, forcing the Caustic technique to

overestimate the escape velocity profile and derive a mass that is biased high.

However, the important part of Figure 11 is not that there is a new bias induced by mass

mixing, its that the bias is still relatively robust to how we construct our ensembles. In other

words, if you move one or two grid cells from the center of Figure 11, you only induce a bias change

of roughly 10% at worst. What this means is that while there might be a slight bias that is induced

from the mass mixing effect, 1. it isn’t significant enough (ex. 20+%) to prevent us from using the

stacking technique, 2. it has predictable behavior, in that it increases as the total sampling of the

phase space increases, and most importantly, 3. the bias per ensemble grid point is independent of

mass. This last point, #3, is explained by Figure 12, which takes one grid point in our ensemble

parameter space and plots its 40+ ensemble Caustic masses. The blue line shows theoretical 0%

bias. What is clear is that the ensembles are biased high, which means it was taken from a pink-ish

grid point in our parameter space of Figure 11. However, it is evident that the slope of Figure 12

has the same slope as the blue line. This means that while the ensembles are indeed biased high,
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that bias is independent of mass and is a constant throughout our sample of ensemble clusters.

This means that if we can calibrate one portion of these ensembles, say the high mass end, then we

can calibrate the entire sample of ensembles because the bias is the same throughout the sample.

Fig. 12.— True mass versus stacked ensemble Caustic masses for one Ngal & Nclus configuration of the

ensemble grid parameter space (Figure 11) showing that while the ensemble Caustic masses may be biased,

that bias is the same across all mass ranges, i.e. the bias is mass independent, a prediction we will look to

confirm when we stack on real galaxy survey data.

3.6. Conclusion

The Caustic technique’s ability to recover accurate and precise Caustic mass estimates is highly

dependent of sufficient phase space galaxy sampling (Figure 3). For clusters that have less than 50

known member galaxies, the Caustic technique is rendered effectively unusable because its bias and

scatter depreciate significantly. Unfortunately, low mass clusters and all clusters at high redshift

suffer from sparse sampling effects. If we want to use dynamical mass estimators on these clusters,

we need to find a way to circumvent the Caustic technique’s weakness to sparse sampling.

In order to remedy this problem we developed a model for a stacking routine that can be used

on galaxy cluster dynamical mass estimators, specifically the Caustic technique. By combining

the galaxy data from multiple sparsely sampled galaxy clusters into one ensemble cluster, we can

significantly increase the precision and accuracy of the Caustic technique. For example, for a set

of 25 galaxy clusters where we have spectroscopic redshifts for only 15 member galaxies, their

individual mass estimates would suffer from a bias of > 60% and a scatter of > 70%, according

to Gifford et al. (2013). Assuming we can get a rough estimate of their mass via a mass proxy

like their N200, we can stack these clusters into an ensemble galaxy cluster and run the Caustic

technique to get an estimate of their average mass, which has a theoretical 0% ±5% bias and 15%

scatter (Figure 11).
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We came to this conclusion through a highly systematic and rigorous test of our technique in

three main phases: self stacking, mass stacking and observable stacking. Each phase constrains

different uncertainty aspects that effect the entire stacking process (Equation 9). In doing so, we

have come to a deep understanding of how the process of stacking a galaxy cluster in the real

universe can bias our technique. By exploring the parameter space of our ensemble grid (Figure 6,

Figure 11) we find that we need to operate in certain Ngal & Nclus regimes when stacking real data

in order to stay unbiased. Furthermore, the bias that is induced from mass mixing is independent

of the mass of the ensemble cluster. This means that if we can get a small subsample of highly

accurate galaxy cluster masses at the high mass end, we can calibrate our ensemble One-To-One

line (Figure 12) and therefore effectively calibrate the entire sample of ensembles.

Other authors have stacked galaxy clusters and applied the Caustic Technique to learn about

the dynamics of stacked galaxy clusters (Serra et al. 2011; Rines et al. 2013). They stack galaxies

in order to deduce the ensemble’s mass profile to high precision, which needs a high sampling rate

of galaxies to achieve. They do not, however, perform any kind of systematic test of their stacks

to understand how the process of stacking affects their ensemble mass estimates. This work is

the first work that has taken a detailed and rigorous look at how the process of stacking affects

dynamical mass estimates of ensemble galaxy clusters. We have shown that the way in which we

build our ensemble cluster does indeed affect the bias and scatter of ensemble mass estimates and

must not be overlooked in future studies of ensemble galaxy clusters. In conclusion, we find that

stacking algorithms have a high potential to improve our ability to constrain the masses of clusters

across different mass and redshift ranges, given that we first understand the inherent uncertainties

associated with stacking.
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4. Application to Optical Galaxy Surveys

4.1. Introduction

Over the past decade, galaxy cluster surveys have brought in incredible amounts of data on

the masses of clusters in the radio, optical and X-ray wavelength regimes. In the present and near

future, large galaxy cluster surveys will continue to push our datasets on galaxy clusters to higher

redshift and lower masses. Here, we present an initial application of our stacking technique on real

data, showing that it is a useful tool in recovering the masses of sparsely sampled galaxy clusters

in the real universe.

4.2. SDSS DR12 Data Set and the C4 Cluster Catalogue

The Sloan Digital Sky Survey (SDSS) is a photometric imaging and spectroscopic observa-

tional program that has mapped a large part of the sky and taken an unprecedented number of

spectroscopic galaxy redshifts. Beginning in 2000 and continuing up to the present, SDSS has

mapped over 500 million objects; their most recent data release, DR12, was made public in July

2014 and contains over 4 million spectra. We use SDSS’s DR12 dataset to create ensemble galaxy

clusters at low redshift to test our stacking algorithm on a real dataset. We subsample from the

entire DR12 dataset and limit ourselves to a magnitude and redshift cut, where each galaxy’s SDSS

R band absolute magnitude is < -19.1 and spectroscopic redshift is < 0.25.

Fig. 13.— Sky coverage of the C4 cluster catalogue. Black points are photometry from SDSS DR12, yellow

points are C4 identified galaxy clusters.

Before we stack clusters, though, we need to know where the clusters are. In order to locate

clusters in the universe we rely on a cluster finder algorithm. For our study, we use the C4 cluster

finder (Miller et al. 2005). The C4 cluster finder identifies galaxy clusters in a multi-dimensional

position, redshift and color space. It is a red sequence based algorithm, meaning that is uses

the fact that galaxies in the cores of clusters tend to be red to identify galaxy cluster member

galaxies. Miller et al. (2005) ran the C4 cluster finder algorithm over SDSS data and created the

C4 cluster catalogue, which is simply a list of galaxy clusters and their positions on the sky. The C4
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cluster catalogue is a low redshift catalogue, extending from a z of ∼ 0.02 to ∼ 0.17, and contains

∼ 2500 galaxy clusters. Figure 13 shows our C4-identified galaxy clusters in the sky on top of

SDSS DR12 photometric data. Some of these clusters are not actually clusters, though, and are

either substructure effects or chance projections of overlapping clumps of galaxies on the sky. After

setting basic constraints on the cleanliness of the sample, we are left with a sample of 1500 galaxy

clusters.

4.3. Richness Estimator

In order to stack galaxy clusters together, we need to first use a mass-observable scaling

relationship to get a rough estimate of their mass so that we can arrange our sample into sets

of galaxy clusters of similar masses. We can do this many different ways, with a cluster’s total

luminosity, galaxy richness or galaxy velocity dispersion. For our analysis, we create a galaxy

richness estimator and use each individual galaxy cluster’s N200 to determine their masses relative

to other galaxy clusters.

In essence, a galaxy cluster’s richness is simply a measure of how many galaxies are in the

cluster. For high mass clusters with larger gravitational potential wells, we would expect more

galaxies to be trapped under its gravitational influence. For low mass clusters, we would expect less.

A galaxy cluster’s richness, therefore, scales with its overall mass. Within the line of sight toward

any one galaxy cluster lies thousands of foreground and background galaxies that are completely

unrelated to the galaxy cluster of interest, which induces a scatter about this idealistic relationship.

Fig. 14.— SDSS DR12 photometric data for one galaxy cluster (cyan) surrounded by member, foreground

and background galaxies (colored points). A cluster’s richness is all red galaxies within 1 virial radius (yellow)

minus the density of red galaxies in a annuli from 3 to 5 virial radii (magenta).

Galaxies within a virial radius of a galaxy cluster tend to be “red and dead.” This relationship is

called the Red Sequence of galaxy clusters and we can pick out clusters via an apparent overdensity

in galaxies’ color-magnitude space. To measure a cluster’s richness, we simply calculate the number

of galaxies that have a similar color as the cluster itself that lie within the cluster’s r200. To account
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for foreground and background galaxy contamination, we sweep out an annuli of galaxies that lie

within 3× r200 < r < 5× r200, find the density of galaxies that have the same color as the cluster of

interest, and subtract that density times the projected area of the cluster from the initial richness

measurement. Once we have a measure of N200 for each individual galaxy cluster, we re-sort the

ordering of the cluster catalogue based on their N200 so that we can relate clusters of similar mass.

To determine the color of a cluster we use the same radius-velocity phase space the Caustic

Technique uses, and take all galaxies with a radius within r200 and velocity within two times the

velocity dispersion of the cluster. We then take a robust mean of the those galaxies’ color: color =

SDSS G Filter Magnitude - SDSS R Filter Magnitude. Figure 14–Right shows an example color–

magnitude plot, where the cluster color is denoted by the horizontal blue line. We then go back

to the photometric dataset and pick out all projected galaxies within 1 virial radius and within 1σ

of the cluster color (Figure 14–yellow points). The number of galaxies that fit this category is the

“signal” of the cluster. We then take all galaxies within a 3 × r200 < r < 5 × r200 annuli that are

also within 1 sigma of the cluster color (magenta points), divide that number by the area swept out

by the annuli and call this the background density. The richness is then the background density

times the area swept out by 1 virial radius, subtracted from the initial signal: richness = signal -

background.

4.4. Stacking on 900 Low-z C4 Clusters

Using our richness estimator and the Caustic Technique, we calculate the richnesses and Caustic

masses for 900 individual galaxy clusters from the C4 Cluster Catalogue using the SDSS DR12

spectroscopic sample extending from 0.03 < z < 0.15. (Figure 16: Top-Left). By eye, it seems

evident that there is some non-linear behavior, or at least, bi-modal linear behavior of two linear

functions that pivot at around log10(N200) = 1.75. To show this more distinctly, we separate the

figure into two cluster populations: those that have over 50 galaxy spectra and those that have

less than 50 galaxy spectra. We use a robust line fitter and plot best fit lines to each population

to highlight the non-linearity of the sample as a whole (Figure 16: Top-Right). While it may

not be statistically correct to fit lines to these populations, we do so to merely highlight the fact

that these populations likely do not belong to the same underlying population. However, drawing

insight from our systematic test of the Caustic Technique in §2, for the population with over 50

galaxies per cluster (blue) we would expect it to follow linear behavior because we have achieved the

sampling necessary to recover theoretically unbiased masses. For the population with less than 50

galaxies per cluster (black) we are in the regime where the Caustic Technique returns masses that

are significantly biased low and would expect the non-linear behavior that matches the bias(N200)

behavior from Figure 3. Both of these expectations assume that the underlying “true” scaling of

N200 with M200 is indeed linear in log space (i.e. described by a single power law in real space),

which we find that it is in the Millennium Simulation (see Figure 15).

The fact that we recover non-linear behavior at the low richness end of our Mass–Richness

relationship is therefore indicative of the Caustic Technique’s bias at low richness. To test how our

stacking algorithm works on this data set, we bin the 900 clusters by their measured N200 and create

ensemble clusters each composed of 25 clusters and 15 galaxies taken per cluster. We measure their
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Fig. 15.— Mass–Richness relationship in the Millennium Simulation showing an underlying linear behavior

in log-log space.

Caustic “Edge” masses and plot them against the median N200 of each bin’s constituent clusters

(Figure 16: Bottom-Left). We fit a line to those points and recover a linear relationship in log

space. Overlaying all of these points and fits on top of each other, we see that the ensemble best

fit (cyan) agrees with the fit to the unbiased Caustic masses (orange) to first order (Figure 16:

Bottom-Right). It could be argued that its normalization is slightly lower, which would correspond

to it being slightly underbiased. However, as we mentioned in subsection 3.5, the exact bias of

the ensembles with respect to the individual clusters’ Caustic mass hovers around 0% ± 5− 10%.

What is important is the fact that the cyan line has similar slope as the orange line, which is a

statement that the bias, if present, is independent of mass (or richness), which is exactly as we

predicted with our simulated tests. We fit lines to the magenta and blue points using a robust linear

regression technique called Random Sample Consensus (RANSAC), which is an iterative method

that accounts for outliers. Future work will employ a fully Bayesian linear regression model similar

to Andreon & Hurn (2010).

One of the benefits of stacking is that we can attain unbiased mass estimates for clusters

that have only a handful of measured galaxies. As we showed in section 3, these ensemble mass

estimates are theoretically an unbiased tracer of the average masses of the individual galaxy clusters

that make up the ensemble. We can therefore take a mass-observable relationship, which does not

necessarily give absolute masses and could be biased, and calibrate it so that it is unbiased. We

would do this by creating a transfer function for the biased part of Mass–Richness relationship (i.e.

black points in Figure 16). This transfer function is the multiplicative difference between a linear

model derived from the ensembles, and a non-linear model derived from the individual clusters that

are biased:

M200,unbiased(N200) = T (N200) ·M200,biased(N200) (12)

where T is the transfer function. In other words, the transfer function is the difference between
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Fig. 16.— Top-Left: Mass–Richness relationship for 900 low-redshift C4 galaxy clusters. As a whole, the

graph seems to show some non-linear behavior. Top-Right: We split the same graph into two populations:

those that have over 50 spectroscopic redshifts and those that don’t. We use a robust line fitter to get a

rough idea of how these populations scale with N200. Bottom-Left: We then stack over these 900 clusters

binned by their measured N200. Bottom-Right: Two previous plots overlaid, showing that the ensemble

best fit line (cyan) roughly matches the blue population best fit line (orange) in terms of both slope and

normalization.

the black points and the magenta points at the lower-right corner of Figure 16.

Once we have a Mass–Richness relationship that is unbiased with respect to galaxy cluster

sampling, we can apply this scaling law to all galaxy clusters in the C4 sample and attain a

statistically unbiased set of masses for our initial sample of 1,500 galaxy clusters. With an unbiased

set of galaxy cluster masses we can theoretically begin to do galaxy cluster cosmology, such as

counting the number of galaxies in a given mass range, called the Mass Function (Figure 17). This

kind of cosmology is very sensitive to time evolution: from low to mid redshift, the Mass Function

changes significantly depending on cosmological parameters (Tinker et al. 2008). However, the

C4 sample alone does not provide enough galaxy clusters at high redshift to really perform any

cosmological tests. To really test cosmology models, then, we will need to push out to higher redshift

and apply the stacking algorithm to a cluster catalogue that extends to a redshift of around 0.7.
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The RedMapper catalogue provides us with just that ability.

4.5. Conclusion & Near-Future Applications

In the near future, we will extend the stacking code to run on higher redshift data sets. The

RedMapper cluster finder, for example, identifies galaxy clusters similar to the C4 method by using

the red sequence, but picks clusters from a redshift of 0.15 to 0.7 (Rykoff et al. 2014). These galaxy

clusters have SDSS DR12 spectroscopy but most are poorly sampled, making them ideal candidates

for our stacking code. With a data set that extends out to mid redshifts of ∼ 0.7, we can begin to

perform real cosmological tests.

The mass function describes the number of galaxy clusters produced at a given mass. This is

highly sensitive to cosmological parameters, such as the relative energy densities of dark energy and

dark matter. Figure 17 shows the mass function of galaxy clusters in the Millennium Simulation,

where the circles represent the galaxy cluster number counts and the red and black lines represent

theoretical predictions at z=0 and z=0.5 with the red showing no dark energy and the black line

showing strong dark energy. This says that if we can get accurate number counts out to higher and

higher redshifts, our stacking technique may be able to theoretically constrain predictions of dark

energy, Λ. RedMapper is a great dataset to try and do this test on, and we now have the data, the

tools and a theoretical understanding of the stacking technique needed to do it.

Fig. 17.— Millennium Simulation mass function (circles) and theoretical Tinker mass function (lines) at

z=0 and z=0.5, where red is no dark energy and black is strong dark energy. Measuring the mass function of

galaxy clusters at z=0.5 with the stacking technique may be able to constrain Λ, the dark energy cosmological

constant. Figure from Miller et al. 2014.
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5. Conclusion

Over the next two decades, large ground-based telescopes will deliver extremely vast amounts

of astronomical data. A significant focus of this data will be geared towards understanding arguably

two of the most pressing questions in astrophysics in the 21st century: what is dark matter and

dark energy? To resolve these questions, the astronomical community is going to have to use a

multi-faceted approach and use different kinds of cosmological probes to build a comprehensive and

coherent picture. A key part of this approach is the study of galaxy clusters and the constraints

they can put on cosmological parameters.

There are only a few ways to directly measure the dark matter mass of a galaxy cluster’s

dark matter halo. One way is the Caustic technique, which uses the positions and velocities of

orbiting galaxies to trace the galaxy cluster’s escape velocity profile, which is directly related to its

gravitational potential and Newtonian mass. We showed that the Caustic technique can accurately

(0% bias) and precisely (40% scatter) recover the M200 of a galaxy cluster given that we have

spectra for over 50 of its member galaxies. Many of the known galaxies clusters in the universe,

however, only have a handful of galaxy spectra associated with them. This means that we cannot

feasibly use the Caustic technique, or any dynamical mass estimator for that matter, to derive their

M200. This is unfortunate because precision cosmology depends heavily on high number statistics;

we cannot do good cosmology with only a handful of data points. It is also unfortunate because

galaxy clusters that tend to be poorly sampled are typically the ones that are the most interesting:

the ones at the edges of the redshift limits of the current telescopes, were we will always be making

new discoveries.

For these reasons we set out to build a stacking technique that would allow us to use the

Caustic technique on galaxy clusters with only a handful of galaxy spectra. In this thesis, we

detailed how we systematically built and tested our technique against N-body and semi-analytic

datasets from one of the largest cosmological simulations ever run. We show that by stacking

galaxy clusters together to form an ensemble cluster, we can theoretically increase our precision by

a factor of three, and retain our accuracy so long as restrict ourselves to unbiased parameter spaces

in Figure 11.

We then applied our theoretical framework on real data and showed that we observationally

confirmed certain predictions from our simulations: namely that mass mixing induces minimal bias

and that the bias is independent of mass. This means that the stacking technique can feasibly

be used on real data. We then used the Caustic Technique to derive a Mass-Richness relation-

ship for the C4 cluster catalogue (Figure 16). After stacking C4 clusters, we self-calibrated our

Mass-Richness relationship at the low-richness end and produced a Mass-Richness relationship for

1,500 galaxy clusters in the C4 sample that is theoretically unbiased with respect to spectroscopic

sampling effects. This is the first time such a Mass-Richness relationship has been produced via

dynamical methods on real galaxy cluster survey data. In the near future, we will employ the

same procedure over the RedMapper cluster catalogue, which extends out to a redshift of 0.7 and

contains tens of thousands of galaxy clusters. If successful, we could theoretically use galaxy cluster

masses to constrain cosmological models of dark energy.
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More generally, we have presented for the first time a systematic and rigorous test of how

dynamical mass estimators respond to stacked ensemble galaxy clusters. This has far-reaching

implications for all cosmologists, in that we can now use the many spectroscopically-poor galaxy

clusters that make up many of known galaxy clusters to do cosmology. This has the significant

result of enabling cosmologists another tool in our scientific toolbox to study the nature of dark

matter and dark energy, where each tool is crucial in constructing a comprehensive yet coherent

picture of our universe.
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