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Abstract Methane (CH4) is the primary component of natural gas and has a larger global warming
potential than CO2. Recent top-down studies based on observations showed CH4 emissions in California’s
South Coast Air Basin (SoCAB) were greater than those expected from population-apportioned bottom-up
state inventories. In this study, we quantify CH4 emissions with an advanced mesoscale inverse modeling
system at a resolution of 8 km×8 km, using aircraft measurements in the SoCAB during the 2010 Nexus of Air
Quality and Climate Change campaign to constrain the inversion. To simulate atmospheric transport, we use
the FLEXible PARTicle-Weather Research and Forecasting (FLEXPART-WRF) Lagrangian particle dispersion
model driven by three configurations of the Weather Research and Forecasting (WRF) mesoscale model. We
determine surface fluxes of CH4 using a Bayesian least squares method in a four-dimensional inversion.
Simulated CH4 concentrations with the posterior emission inventory achieve much better correlations with
the measurements (R2 = 0.7) than using the prior inventory (U.S. Environmental Protection Agency’s National
Emission Inventory 2005, R2 = 0.5). The emission estimates for CH4 in the posterior, 46.3 ± 9.2 Mg CH4/h,
are consistent with published observation-based estimates. Changes in the spatial distribution of CH4

emissions in the SoCAB between the prior and posterior inventories are discussed. Missing or underestimated
emissions from dairies, the oil/gas system, and landfills in the SoCAB seem to explain the differences between
the prior and posterior inventories. We estimate that dairies contributed 5.9 ± 1.7 Mg CH4/h and the two
sectors of oil and gas industries (production and downstream) and landfills together contributed 39.6 ± 8.1
Mg CH4/h in the SoCAB.

1. Introduction

The average atmospheric mixing ratio of the greenhouse gas methane (CH4) has increased by at least a factor
of 2.5 since preindustrial times [Myhre et al., 2013]. At current global concentrations, CH4 is the second most
important greenhouse gas behind CO2 for anthropogenic radiative forcing. The atmospheric lifetime of CH4

of ~12.4 years is much shorter than that of CO2, but CH4 has a significantly higher global warming potential
than CO2 (~86 times higher over 20 years and ~34 times higher over 100 years) [Myhre et al., 2013, Table 8.7].
It has been argued that reducing emissions of CH4 may be an important component of an initial strategy for
avoiding the most severe impacts of global warming [Alvarez et al., 2012; Brandt et al., 2014].

Recently, many studies [Pétron et al., 2012; Brandt et al., 2014] found discrepancies in CH4 inventories
derived from bottom-up methods, based on an accounting of process-level activity and emission factors,
and top-down approaches, which rely on atmospheric observations to infer emissions from a geographic
region and often from a particular type of emissions source. Differences between bottom-up and
top-down estimates suggest that the understanding of CH4 sources is incomplete, leading to uncertainty
in the application of regulations to mitigate CH4 emissions.
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Recent top-down approaches have shown that CH4 emissions in the U.S. were underestimated in existing
surface inventories [Kort et al., 2008; Miller et al., 2013; Brandt et al., 2014], especially in the south-central
U.S. and California. Greenhouse gas emissions in California have been regulated by the state legislature,
which required that statewide greenhouse gas emissions be reduced to 1990 levels or lower by the year
2020. Recent studies have estimated CH4 emissions both across California [Jeong et al., 2012, 2013, 2014]
and within the South Coast Air Basin (SoCAB) [Wunch et al., 2009; Wennberg et al., 2012; Peischl et al., 2013]
using either bottom-up inventory or top-down atmospheric approaches. The SoCAB region is particularly
interesting because of the large population and known CH4 sources from a densely populated urban area
(Los Angeles) containing a large oil and natural gas production and distribution network, large landfills,
and dairy livestock agriculture.

Bottom-up estimates of CH4 emission in the SoCAB range from 26.2 Mg CH4/h for NEI 2005 to 34.3 Mg CH4/h
for California Air Resources Board (CARB) 2009 (available at http://www.arb.ca.gov/cc/inventory/data/data.
htm) and 61.6 Mg CH4/h for Emission Database for Global Atmospheric Research version 4.2 (EDGARv4.2)
(available at http://edgar.jrc.ec.europa.eu [Rogelj et al., 2014]). One top-down technique to estimate CH4

emissions uses observations of mixing ratios of coemitted or well-mixed species (CO and CO2) and existing
inventories of those species to infer CH4 emissions. Wunch et al. [2009] estimated CH4 emissions in the
SoCAB using observed ratios of CH4 mixing ratio with those of CO and CO2 from a ground-based Fourier
transform spectrometer and found that CH4 emissions in this area were 45.6 to 68.4 ± 11.4 Mg CH4/h.
Wennberg et al. [2012] and Peischl et al. [2013] used measurements on board the NOAA P-3 aircraft from
the California Nexus, Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in 2010
[Ryerson et al., 2013] to infer SoCAB CH4 emissions, taking advantage of P-3 flight plans designed for good
spatial coverage over the basin. They used observed ratios between CH4 and CO2 or CO mixing ratios and
their emission estimates from California Air Resources Board (CARB) to derive total CH4 emissions from the
SoCAB of 50.2 ± 11.4 and 46.7 ± 4.6 Mg CH4/yr, respectively. The accuracy of this method is limited by (i)
the accuracy of the surface emission estimates of the coemitted or well-mixed species (CO2 and CO), and
(ii) differences between the spatiotemporal emission patterns of CH4 and the reference species. Peischl
et al. [2013] also characterized the source attribution of CH4 using CH4 and light alkane measurements in
the SoCAB and found that natural gas pipelines, geologic seeps, and the oil and gas industries accounted
for most of the underestimation in current bottom-up CH4 inventories.

Recently, an inversion method was applied to SoCAB CH4 emissions byWecht et al. [2014], using the adjoint of
the Goddard Earth Observing System-Chemical (GEOS-Chem) model at 2/3° × 1/3° resolution and prior
emissions estimates from the EDGAR inventory. Wecht et al. [2014] estimated CH4 emissions of 35.3± 9.1 and
47.9± 9.1 Mg CH4/h using either GOSAT satellite or aircraft observations during the CalNex campaign,
respectively. While the Wecht et al. [2014] CH4 emission estimates agree with those of Wennberg et al. [2012]
and Peischl et al. [2013], large uncertainties may arise from the coarse resolution of the GEOS-Chem model.
The SoCAB region is associated with atmospheric mesoscale transport, such as land-sea breezes, and
complex terrain, leading to impacts on the planetary boundary layer (PBL) and upslope transport, which
influence pollution transport [Angevine et al., 2013]. Hence, an inverse model at mesoscale should enable
more confident estimates of the strength and spatial distributions of CH4 emissions in the SoCAB region.

To tackle this problem, we use the off-line Lagrangian particle dispersion model FLEXible PARTicle-Weather
Research and Forecasting (FLEXPART-WRF) coupled to three different Weather Research and Forecasting
(WRF) model configurations to estimate source-receptor relationships and apply an inverse model at
mesoscale. The mesoscale inverse system uses a Bayesian least squares method assuming lognormal
distributions for the observations and the surface fluxes. Inverse models minimize the mismatch between
measured and simulated observations of CH4 concentrations by modifying surface flux densities from
individual grid cells. The U.S. Environmental Protection Agency’s (EPA’s) National Emission Inventory (NEI)
2005 is used as a prior estimate of the CH4 surface flux. Major sources of CH4 in NEI 2005 include landfills
and livestock but do not include oil and gas emissions. This inverse system has been used successfully to
estimate CO, NOy, and CO2 in the SoCAB [Brioude et al., 2013a]. Here we use the same inversion method to
optimize surface emission fluxes of CH4 with observations from six P-3 flights in May and June 2010 during
the CalNex intensive field campaign. Section 2 presents the details of the methods used. The results are
presented and discussed in section 3, followed by the conclusions of this work.
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2. Methods
2.1. Observations

The NOAA P-3 aircraft measured
CH4 mixing ratios over the SoCAB
during CalNex 2010 [Ryerson et al.,
2013]. In our inverse modeling
analysis of the CalNex campaign,
we use six flights (4 May, 8 May,
14 May, 16 May, 19 May, and 20
June) to estimate CH4 emissions in
the SoCAB (Figure 1). These flights
were dedicated to characterizing
daytime emissions and chemistry
in the area, focusing on late
morning and afternoon periods
after a well-mixed boundary layer
was established. Vertical mixing at
night is very uncertain in models
and measurements, and therefore,

nighttime data are not used in this study. Moreover, only observations in the boundary layer are used in the
inversion, and we exclude the overwater segmentations of the 16 May flight because the models did not
handle the boundary layer over the water properly [Angevine et al., 2012]. No precipitation events were
associated with these six flights.

On the research aircraft, CH4 was measured once per second using wavelength-scanned cavity ring-down
spectroscopy (WS-CRDS) by a Picarro 1301m instrument [Peischl et al., 2012, 2013]. The detailed information
about WS_CRDS calibrations is described in section 2.1 of Peischl et al., 2012. They estimated a total inaccuracy of
CH4 measurements of ±1.2ppbv and reported a 1 s precision of ±1.4ppbv during smooth flight and ±2.0ppbv
during turbulent flight. For 8 May, we use quantum cascade laser direct absorption spectroscopy (QCLS)
measurements [Kort et al., 2011], with an uncertainty of ±1ppbv, as the Picarro instrument was not operating on
this flight. The median difference between 1 s averaged QCLS and WS-CRDS was 4.5 (±5.1) ppb shown in Figure
13 of Santoni et al. [2014], which correspond to an error of 0.25% for measured CH4 using 1800ppb background.

The average flight speed was 100m/s, and we use 30 s averaged values, equivalent to a horizontal resolution
of ~3 km. The P-3 measurements in the SoCAB were collected close to the surface sources, and hence,
chemical loss and soil sinks of CH4 can be neglected. The uncertainty on simulated concentrations
introduced by assuming CH4 to behave as a passive tracer is lower than other sources of uncertainty
pertaining to the simulation of atmospheric transport, such as those related to the errors in modeled wind
field, PBL height, linear interpolations of the data, and turbulent mixing, estimated to be 20 to 30% in
Angevine et al. [2014]. Therefore, we treat CH4 as a passive tracer throughout the paper, regardless of the
position of the measurements relative to the sources.

2.2. The Prior Emission Inventory

The 4 km×4 km EPA NEI 2005 v4 [U.S. Environmental Protection Agency (EPA), 2015] is used to provide the
prior emission inventory in the inverse system. CH4 surface emissions from mobile on-road and off-road
sources, nonpoint area sources, and point sources (negligibly small) are processed following EPA
recommendations in the EPA SPECIATE 4.1 database [Simon et al., 2010]. The 4 km×4 km NEI data are
averaged onto the 8 km×8 km spatial resolution grid (Figure 1) used for the inverse modeling to relatively
reduce the uncertainty with a loss of resolution. We do not include wetland and fire emissions because we
consider them to be negligible contributors over the time period of our study. Emissions from oil and gas
industries are very small in the NEI 2005.

It is expected that the limitations of the NEI 2005 inventory (underestimation of emissions from oil and gas
industries and spatial distribution of sectors) will be compensated by the inversion method. Changes in
spatial distribution in the posterior are discussed in section 3.2.

Figure 1. The prior inventory of CH4 emissions from the U.S. EPA NEI 2005
(unit: μg s�1m�2) averaged at 8 km × 8 km spatial resolution. Colored lines are
flight tracks of six aircraft flights. The black line denotes the SoCAB domain.
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2.3. Spatial Distributions of Dairy, Landfills, and the Oil/Gas Industries

Dairy farms, landfills, and the oil and gas industries (production and distribution system) are known to be
important sources in the SoCAB area [e.g., Peischl et al., 2013]. Figure 2 shows their spatial distributions at
8 km×8 km resolution. Dairies and landfills are mapped using the same data as those shown in Figure 1c of
Peischl et al. [2013]. The oil/gas production and downstream (including storage, transmission, and
distribution) sectors are mapped using a hybrid inventory from Liu et al. (Mapping methane emissions from
oil and natural gas systems in the contiguous United States, submitted to Environmental Science and
Technology, 2015). Specifically, the spatially resolved emissions from oil and gas production are generated
based on the 12 km gridded inventory of nonmethane hydrocarbons (NMHCs) for nonpoint oil and gas
production sources from NEI-2011 and state-specific CH4-to-NMHCs emissions ratios from Eastern Research
Group, Inc. [2013]. Downstream oil and gas emissions from processing, storage, transmission, and distribution
were from a spatial allocation of the national total emission from the EPA Greenhouse Gas Inventory [EPA,
2014] based on geospatial data of natural gas processing facilities, interstate and intrastate pipelines,
compressor stations, and population density. The spatial distribution of those sectors in Figure 2 will be used
to test independently the spatial distribution in the posterior and discuss CH4 emissions per sectors. More
discussion about these sectors is found in section 3.2.2.

2.4. Modeling
2.4.1. Trajectory and Meteorology
A three-dimensional Lagrangian dispersion model (FLEXPART) [Stohl et al., 2005] was used to simulate hourly
back trajectories along the flight tracks. High-resolution meteorological simulations were performed using
the Weather Research and Forecasting (WRF) model [Skamarock et al., 2005] to drive FLEXPART [Brioude
et al., 2013b]. In this study, FLEXPART-WRF version 3.1 served as our mesoscale atmospheric transport model
to simulate contributions to airborne CH4 mixing ratios from surface CH4 fluxes, which has been used to
constrain species such as CO, NOx, and CO2 in airborne measurement-based inversions [Brioude et al., 2013a].

Following Brioude et al. [2013a], we also consider three transport models. Uncertainties introduced by the
transport models are, in part, taken into account in the inversion method and estimated in our results.
The three transport models were designed using three different WRF meteorology configurations (Table 1).
The first WRF configuration [Angevine et al., 2012, 2013] (hereafter referred to as “WRF1”) and the second
WRF-Chem 3.1 configuration [Kim et al., 2011; Lee et al., 2011] (hereafter called “WRF2”) have been previously
evaluated and showed reasonable performance for scientific studies in the SoCAB [Angevine et al., 2013].
WRF1 and WRF2 were used in Brioude et al. [2013a]. The third WRF configuration (“WRF3”) is based on
WRF-Chem version 3.4, with a nested horizontal grid at 4 km over California and 60 vertical levels. Global
Forecast System/National Centers for Environmental Prediction (GFS/NCEP) data are used for the initial
and boundary conditions to the WRF3 model. The Noah land surface model with the U.S. Geological
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Figure 2. Methane emissions (unit: μgm�2 s�1 ) in the SoCAB area (red box) from four sectors at 8 km× 8 km spatial
resolution: dairy, landfill, oil/gas production, and oil/gas downstream (storage, transmission, and distributions), with unit
μgm�2 s�1.
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Survey (USGS) land cover-land use and the Yonsei University (YSU) boundary layer scheme are used. WRF2
only provides the sigma dot (the derivative of WRF vertical coordinate with respect to time) instantaneous
wind field while the other two provide time-averaged wind fields. We estimate correlations between the
three WRF configurations and observations (Table S1 in the supporting information) of the entire CH4 time
series for the six flights analyzed during CalNex. The correlation coefficients between the three FLEXPART-
WRF CH4 time series are not much larger than the correlation coefficients between the measured CH4 time
series and simulated time series of each FLEXPART-WRF model. Therefore, each model can be considered as
independent of the others in the sense that there is no correlation bias.

The Hanna scheme [Stohl et al., 2005] is used in FLEXPART-WRF to prescribe a turbulent profile including both
horizontal and vertical turbulences in the PBL. Time-averaged winds generated by the WRF model are used
instead of instantaneous wind to reduce uncertainties in the Lagrangian trajectories in complex terrain
[Brioude et al., 2012]. PBL height, surface sensible heat flux, and friction velocity were taken directly from
the WRF simulation. A total of 10,000 computational particles are released either every 30 s along the
aircraft flight tracks or every 100m during vertical profiles. No convection, chemical transformation, and
deposition were simulated. FLEXPART simulates the trajectories over 24 h to focus on the local transport
within the study area (i.e., the SoCAB). The trajectories are also limited to 24 h for computational
feasibilities. Hence, the influence of previous-day transport and emissions is ignored, which will increase
the uncertainty in the flux estimates. Brioude et al. [2013a] estimated that restricting the trajectories to 24 h
added an uncertainty of ~7% to the surface emission estimates.

The FLEXPART-WRF output has a horizontal resolution of 8 km×8 km, with 1 h output time interval. The
output, also referred to footprint (in sm3 kg�1), consists of a residence time within a surface layer (in
meter) weighted by the atmospheric density, which represents the sensitivity of the airborne
measurements to surface emissions. When combined with a surface emission inventory (in kgm�2 s�1),
one can calculate a mixing ratio for each set of trajectories along the aircraft flight track. In this way,
FLEXPART-WRF linearizes the transport processes between the surface and the aircraft. This approach
alleviates the need for an adjoint model of WRF-Chem (not currently available) in the application of the
inversion technique [Brioude et al., 2013a; de Foy et al., 2015].
2.4.2. Inverse Modeling
We apply the inverse modeling approach described in Brioude et al. [2011, 2013a] to the CH4 data collected in
the SoCAB during CalNex. The observations used in the inverse modeling are the CH4 mixing ratio
enhancements above background. We define the background CH4 for each flight as the lowest mixing
ratio found in the atmospheric boundary layer below 2 km upwind of the SoCAB, which is also close to the
value of the mode in the distribution of all mixing ratios measured below 2 km during the campaign. The
enhancements in CH4 are ~10% of background concentrations on average. The background concentration
estimates were associated with an uncertainty of 10 ppb due to the variability in the low concentrations
found in the PBL for each flight. This uncertainty was added to the measurement uncertainties in the
inversion. Negative deviations from the background are removed from the observation data set and a
small value of 10^-5 ppb was used instead.

To calculate the best estimates of CH4 surface flux emissions, we use an iterative method to minimize a
lognormal Bayesian least squares cost function with solutions in a median of the distribution, similar to the
one used in Brioude et al. [2011]:

J ¼ 1
2

ln y0ð Þ � ln Hxð Þð ÞTR�1 ln y0ð Þ � ln Hxð Þð Þ þ 1
2
α ln xð Þ � ln xbð Þð ÞT B�1 ln xð Þ � ln xbð Þð Þ (1)

Table 1. Names and Configurations of the Three WRF Runs Used in This Study

Name Version Initialization PBL Scheme Grid Spacing (km) Vertical Levels LSM, Data Wind Field

WRF1a WRF 3.3 ERA-Interim MYJ 4 60 Noah, UCM, MODIS Time-averaged winds
WRF2a WRF-Chem 3.1 ERA-Interim YSU 4 60 Noah, UCM, USGS Sigma dot σ̇ð Þ Winds
WRF3b WRF-Chem 3.4 NCEP-GFS YSU 4 60 Noah, USGS Time-averaged winds

aThe two configurations were used in Brioude et al. [2013a].
bThe detailed description of WRF3.4 parameterizations can be found in http://www.mmm.ucar.edu/wrf/users/docs/user guide V3/contents.html.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD023002

CUI ET AL. INVERSE ESTIMATE OF METHANE EMISSIONS 6702

http://www.mmm.ucar.edu/wrf/users/docs/user


where y0 is the observation enhancement above the background value owing to surface emissions with the
p×1 dimension and p is the number of observations. Parameter x is am× 1 vector of the posterior solutions
andm is the number of gridded fluxes in space and time. H are the FLEXPART-WRF outputs, which construct a
linear linkage between surface emissions and mixing ratios at given receptors, and the dimension of H is
p×m. Parameter xb is a m× 1 vector of prior fluxes, and R (dimension: p× p) and B (dimension: m×m) are
error covariance matrices of observations and prior fluxes in the lognormal distribution space. Parameter α
as a regularization parameter that comes from the L-shape criterion [Henze et al., 2009], which is used to
balance the errors in both covariance matrices to obtain the smallest sensitivity to the error in either the
observations or the prior.

The advantage of using a lognormal transformation in the cost function is that no negative fluxes are found in the
posterior so that we obtain a minimum variance solution (equivalent to the mean of the distribution) and not a
likelihood, and the lognormal distribution follows more closely the observed CH4 mixing ratios (after subtracting
the background value). This approach avoids the drawbacks of other techniques used to prevent negative fluxes,
such as modifying covariance matrices or bounded inverse methods [e.g., Stohl et al., 2009; Miller et al., 2014].

The observation errors, which include uncertainties from the measurements and from the background
definition for each flight, typically, are assumed to be uncorrelated. Likewise, we assume that errors in the
prior surface inventory are uncorrelated. Hence, the error covariance matrices of the observations (R) and
prior (B) are modeled as diagonal matrices.

We use four time intervals to construct a four-dimensional (three spatial dimensions plus time) inversion
following Brioude et al. [2013a]: (i) morning rush hours between 13:00 UTC and 16:00 UTC (06:00–09:00
local time), (ii) midday hours between 17:00 UTC and 21:00 UTC (10:00–14:00 local time), (iii) evening rush
hours between 22:00 UTC and 01:00 UTC (15:00–18:00 local time), and (iv) nighttime hours between
02:00 UTC and 12:00 UTC (19:00–5:00 local time). The four time intervals are applied to both trajectories
and prior emissions. The values reported in section 3 are the averages for the two time intervals between
17:00 UTC and 01:00 UTC (10:00–18:00 local time) when we have the strongest confidence in the transport
models and therefore in the inversion.

Over the SoCAB domain, the Jacobian matrix H, representing the transport model in the inversion, has a
dimension of 768 to 1109 rows (the total number of 30 s averaged observations in each individual flight)
by 23280 columns (the total number of surface grid cells with four time intervals). To reduce the
dimension of the matrix in order to obtain inversion solutions efficiently and to reduce cross correlations
between surface fluxes in the posterior, we cluster surface grid cells in the domain using an optimality
criterion based on the Fisher information matrix, which is different than Brioude et al. [2013a] that limited
the inversion on grid cells with significant emission in the prior. Here we use a similar criterion as Bocquet
et al. [2011] to construct adaptive grids in the control space:

J ¼ Tr BWTR�1W
� �

(2)

where J is the criterion andW is the derivative of the Jacobian matrix H assuming a lognormal distribution.
We classify the surface grid cells into clusters according to the neighbor method: namely, neighboring grid
cells having similar values are aggregated as a cluster. In addition, grid cells with high values (e.g., equal to
and above �5) of J are not aggregated. After applying this criterion, the domain in Figure 3, showing the
control space of the inversion, uses 1201 clusters for each time interval, reducing the total grid cells in the
inversion by a factor of ~5 (from 23,280) while mitigating information loss on surface fluxes.

For each flight and transport model, we used 100 iterations of the inversions with a random term (equivalent
to a standard deviation of 5% of a lognormal distribution of prior flux estimates) to minimize cross correlation
in the prior and hence in the posterior. The uncertainty in the posterior emission estimate from the ensemble
of single-flight-based inversions is then estimated by using the posterior covariance matrix to estimate the
posterior uncertainty for each realization and as the standard deviation of the distribution represented by
the 1800 realizations from the ensemble of six flights and three transport models.

The uncertainty from the FLEXPART Lagrangian model cannot be assessed fully with this approach, but we
assume that this uncertainty is small compared to the uncertainties in the meteorological fields [Hegarty
et al., 2013]. Angevine et al. [2014] evaluated the uncertainty in atmospheric transport to be 20 to 40% in a
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FLEXPART-WRF ensemble of six WRF
configurations due to uncertainties in
meteorological fields. It is still unclear
how this uncertainty propagates in the
inversion system. However, our ensemble
of only three WRF configurations might
underestimate the uncertainty introduced
by the FLEXPART-WRF simulated transport
in the posterior estimates.

3. Results and Discussion
3.1. Posterior-Prior Differences in
Emission Strengths
3.1.1. Total Emissions of CH4

Back-trajectory footprints of the six flights
from the three transport models are shown
in Figure 4. The footprints provide a sense
of the ability of the aircraft observations to
constrain surface sources across the SoCAB.

The spatial distributions of footprints have similar patterns and emphasize the impact of northerly and
northwesterly background airflow on the SoCAB domain. The six flights sampled predominantly
downwind of the surface emissions in the SoCAB area.

The total posterior emissions for the SoCAB domain are calculated for each flight and for each transport model
over the SoCAB area (Table 2 and Figure S1 in the supporting information). According to a recent report [United
States Energy Information Administration, 2015], the seasonality of natural gas consumption in California had an
amplitude of 15% in 2010. As seasonal variation in natural gas distribution leak is small [McKain et al., 2015], one
can assume a seasonality of 15% from NG leaks in Los Angeles. Peischl et al. [2013] found that 47% of total CH4

emission in SoCAB was due to NG leaks. As the seasonality from Landfills and Dairies in the Los Angeles basin
should be small, one can expect a seasonality of ~10% in the CH4 emission.

Diurnal and day to day variations in methane emission have been observed from feedlots [Gao et al., 2011]
and landfills. One can expect smaller emission variation from oil and gas facilities as their industrial
activities have no particular diurnal variation. Finally, mobile sources, which have a strong diurnal
profile, contribute only 1% of the total methane emission and should have a small impact. The six
flights used in this study are not enough to fully cover the diurnal and day to day emission variations
from landfills and feedlots, sources that contribute 44% to the total methane emissions in Los Angeles
(LA) basin [Peischl et al., 2013]. Hence, our posterior emission uncertainty estimates should be
considered as a lower limit.
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of 8 km× 8 km. See the text in section 2.4.2 for the details. Grid cells are
aggregated into clusters when values of the criterion in adjacent cells
are below �5. Cells with values equal to and above �5 are not aggre-
gated. After aggregating, the original 5820 grid cells are aggregated
into 1201, 1199, and 1200 clusters for the WRF1, WRF2, and WRF3
transport models, respectively.
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The posterior values for the three transport models range from 45.1 to 48.2 Mg CH4/h. The mean values over
the six flights for each transport model are also shown in Figure S1. The three transport models’ posterior
estimates have a mean value 46.3 Mg CH4/h with uncertainties of 21%, 19%, and 19%, respectively.
Combining the three transport models, we estimate an optimized value of 46.3 ± 9.2 Mg CH4/h for the
SoCAB area (Figure 5 and Table 2). The uncertainty here includes the posteriors’ uncertainty and the
transport models’ uncertainty.

Our estimate is higher by factor of ~1.8 than NEI 2005 (26.2 Mg CH4/h). Our estimate is in agreement with
previous estimates derived from observations taken over the same time period (Figure 5; 50.2 ± 11.4 Mg
CH4/h [Wennberg et al., 2012], 46.7 ± 4.6 Mg CH4/h [Peischl et al., 2013], 31.9–44.5 Mg CH4/h (Santoni et al.,
California’s methane budget derived from CalNex P-3 Aircraft Observations and a Lagrangian transport
model, submitted to Journal of Geophysical Research, 2014), and 47.9 ± 9.1 Mg CH4/h [Wecht et al., 2014]).

The precision and the accuracy of the surface flux estimates based on a single flight can also be evaluated.
The total posterior emission estimates vary by ~6% between the six flights shown in Table 2. However, as
mentioned above, the variation in posterior emission across the meteorological models is closer to
20% [Angevine et al., 2014]. Hence, a given day surface emission estimates in the SoCAB can likely
be estimated to within ~20% from a single flight’s data and a single meteorological model for this
summer period.
3.1.2. Time Series of CH4 Mixing Ratio
Figure 6 presents the comparisons between observed and simulated time series of CH4 mixing ratio
enhancements over background using the prior and posterior estimates for each flight. The simulated
time series using the posterior estimates optimized by the inversion shows better agreement with
observations than the simulated time series using the NEI 2005 prior inventory. We calculate the mean
bias between observations with the simulations using prior estimates and those using the posterior
inventory resulting from the inversion. Mean biases with the posterior estimates distinctly decrease in
these studies by 50% to 85% compared with prior estimates. We exclude the overwater segments of the
16 May flight because models did not handle the boundary layer over the water properly [Angevine
et al., 2012]. The correlations and the correlation coefficients, R2, between the observations and the
simulated time series are shown in Figure 7 for each flight and each transport model. The slope of
the correlations is closer to 1, and R2 is higher using the posterior estimates compared with the prior
estimates for all flights.

3.2. Spatial Distribution of
Posterior-Prior Differences
3.2.1. CH4 and CO Ratios
We use the inversion system and
the same six flights as for CH4 to
calculate the posterior inventory
of CO for the SoCAB using the
updated FLEXPART-WRF version.
Our results (~65 kg/s in the SoCAB)
are consistent with the CO emis-
sions estimates in Brioude et al.
[2013a] (68 kg/s). This negligible
difference comes from the fact
that (i) we clustered grid cells that
have small influence on the inver-
sion, and hence, all the grid cells

Figure 5. Previous estimates of total emissions of CH4 in the SoCAB during the
CalNex campaign (blue) compared with the estimates from this study. The
error bars (1 sigma) present the uncertainties of CH4 annual emission estimates.
The prior estimate of total emissions of CH4 in the SoCAB from NEI 2005 is shown
as well (orange).

Table 2. Total Emissions of CH4 (Mg/h) Over SoCAB Derived From Each of the P-3 Flights With the Ensemble of Three Different Transport Models and an Averaged
Estimate of CH4 Emissions Based on Six Flights and Three Transport Models

Fight 4 May 8 May 14 May 16 May 19 May 20 June Mean

Total emissions (Mg CH4/h) 46.6 ± 10.6 46.9 ± 5.5 47.9 ± 10.1 47.8 ± 6.4 48.6 ± 11.2 39.9 ± 7.1 46.3 ± 9.2
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Figure 6. The comparison of observations and models for the time series of the CH4 mixing ratio for NOAA P-3 flights on 4,
8, 14, 16, and 19 May and 20 June 2010. The plot includes the observations (black line), estimates from FLEXPART based
on the prior inventory (blue line), and inversion estimates based on the posterior inventory (red line). The shaded areas
indicate 1σ variability for the threeWRF configurations. Mean biases were calculated between observations and simulations
using the prior inventory (blue text) and between the observations and simulations using the posterior (red text). For
16 May flight, we exclude the flight overwater segments because the models did not handle the boundary layer over
the water properly.

Figure 7. Correlations of the simulated and observed above background CH4mixing ratio for each flight using the three transport models. The lines indicate the least
squares fits to the correlations between observations and simulations with either the posterior inventory (red) or prior inventory (blue). All correlations in the column
are significant with P< 0.05.
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within the domain are used, while Brioude et al. [2013a] limited the inversion on grid cells with significant
emission in the prior, (ii) FLEXPART-WRF version has changed with notably a bug fix on the sensible heat
flux. The ratio between CH4 and CO, equivalent to the slope of the correlation between the atmospheric
mixing ratios of these species, is used to evaluate changes in the spatial distributions of CH4 relative to
those of CO between the prior and posterior. Figure 8 presents CH4 and CO correlations and their least

Figure 8. Scatterplot of CH4 versus COmixing ratios formeasurements (black) and simulations, using prior (blue) and posterior
(red) emissions for the flights on 4, 8, 14, 16, and 19 May and 20 June. Simulations include results from all data in three
WRF configurations. The black dots represent observations of CH4 and CO mixing ratios, the blue dots show estimates from
FLEXPART-WRF based on the NEI 2005 prior inventories of CO and CH4, and the red dots show FLEXPART-WRF data based
on the posteriors from the inversion in this study. The solid lines represent the least squares fit to each set of data, and the dash
lines represent 1 standard deviation differences in the slope of the fits.
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squares fits from the six flights for the observations and simulated by the transport models using the prior
and posterior estimates of CH4 and CO emissions. The slopes between CH4 and CO are systematically in
better agreement with observations using the posterior surface inventory compared with simulations using
the prior surface inventory. Slopes between CH4 and CO from the observations and posterior estimates are
in very good agreement.

Figure S2 shows the spatial distribution of surface emission ratio between CH4 and CO in the prior and
posterior inventories. The prior and posterior inventories of CH4 are shown in Figure 9 and discussed
further in section 3.2.2. As shown in Figure 8, CH4-CO ratios are underestimated in the prior inventory. The
CH4-CO ratio in the prior inventory (Figure S2) is rather homogeneously distributed in the SoCAB, probably
due to the missing oil and gas industry sector. In the posterior inventory, the CH4-CO ratio is
heterogeneously distributed, with large ratios where dairies, landfills, and the oil/gas sources are located.
The details of these source types are discussed below.
3.2.2. Changes in Spatial Distribution
The spatial distribution of surface fluxes in the posterior and prior inventories and their differences shown in
Figure 9 can be used to help quantify emissions from different source sectors. The posterior inventory
(Figure 9a) is based on the averaged posterior inventories from each flight and the three transport
models. In the SoCAB area, the prior inventory from NEI 2005 (Figure 9b) shows high emissions of CH4

over Los Angeles County, Orange County, and the Chino area (34°1′N, 117°41′W) where most dairies are
located. The uncertainties of the posterior inventory are shown in Figure 9c. There are mostly low values
of uncertainties for many grid cells, but relatively high values in the Chino area and the coastal urban
area. The posterior inventory presents the same emission patterns as the prior inventory, but with a
particularly large increase in CH4 emissions in parts of the basin dominated by the oil/gas sources and
diaries (Figure 9d and Figure 2).

As shown in Figure 2, CH4 emissions from the dairy sector predominate in the eastern part of the SoCAB and
CH4 emissions of oil/gas sources predominate in the western part of the basin along the coastal urban area.
We cannot differentiate the overlapping grids between oil/gas production and distribution sources and
landfills. However, the large increase in CH4 emissions in the western part of the basin (Figure 9d) of CH4

emissions in the posterior compared to the prior is located in a region where oil/gas production and
distribution dominates. This difference is consistent with Peischl et al. [2013] who pointed out that those
emissions from natural gas distribution and geological seeps could account for the differences between

Figure 9. CH4 surface fluxes (unit: μg s
�1m�2) from (a) the posterior inventory of our inversion, (b) the NEI 2005 prior inventory,

(c) the uncertainties in the posterior inventory, and (d) the difference between the posterior and the prior inventory.
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the bottom-up and top-down results. We estimate the total emissions from oil/gas production, distribution,
and landfill sources contribute 39.6 ± 8.1 Mg CH4/h in the SoCAB, a factor of 1.8 higher than the value in the
prior inventory (22.5 Mg CH4/h), but consistent with estimates (39.0 Mg CH4/h) in Peischl et al. [2013].

The number of overlapping grids between the dairy sources and the other three source types is negligible
(Figure 2), which allows us to estimate the total emissions from the dairy sector. We estimate that dairies
contribute 5.9 ± 1.7 Mg CH4/h in the SoCAB, twice the value in the prior inventory (3.1 Mg CH4/h). This
value is higher than the bottom-up estimate from Peischl et al. [2013] of 3.6 Mg CH4/h, but consistent with
their top-down estimates of 5.6 ± 2.9 Mg CH4 /h using a mass balance approach on three P-3 transects
downwind of the Chino area during CalNex.

4. Summary and Conclusions

We present the first top-down estimates of CH4 emissions in the South Coast Air Basin (SoCAB) based on an
inverse modeling approach at mesoscale. Annual CH4 emissions are constrained using in situ measurements
from the NOAA P-3 aircraft during the 2010 CalNex campaign over the SoCAB. FLEXPART Lagrangian
dispersion model simulated atmospheric transports when coupling with three configurations of WRF runs, the
equivalent of three mesoscale transport models. Unlike Brioude et al. [2013a], aggregating surface grid cells
based on a clustering method is applied to exploit the information content of the inversion to reduce spatial
cross correlation between posterior fluxes while allowing computation of the optimal fluxes at a reasonable
cost. Simulated CH4 mixing ratios using the derived CH4 emissions are in better agreement and better
correlation with the measurements (R2 =0.7) than using the prior inventory (R2 =0.5). The derived CH4
emission estimates are 46.3±9.2Mg CH4/h, in agreement with other recent published observation-based studies.

The inversions are applied to data from individual flights and using the output of the three independent
transport models, so our estimated uncertainty includes both the posterior uncertainty and part of the
uncertainty from the transport models. However, our uncertainty estimates should be considered as a
lower limit. Additionally, we estimate that the total emissions for a given day can be evaluated with data
from a single flight with an uncertainty of ~20%. The six flights used in this study are not enough to fully
cover the diurnal and day to day emission variations from landfills and feedlots, sources that contribute
44% to the total methane emissions in LA basin [Peischl et al., 2013]. Hence, our posterior emission
uncertainty estimates should be considered as a lower limit.

We apply the same inversion with COmeasurements to estimate CO surface emissions and analyze CH4 to CO
atmospheric enhancement ratios and surface inventories. The simulated CH4-CO slopes using the posterior
are in good agreement with the observed slopes. The spatial distribution of the CH4-CO ratios in the
posterior inventory is heterogeneous, with higher slopes found in the areas of the basin where most of
the oil/gas, landfill, and dairy sources are located. We estimate that dairies in the Chino area contributed
5.9 ± 1.7 Mg CH4/h, twice the value in the prior inventory (NEI 2005, 3.1 Mg CH4/h), and consistent with
top-down values from Peischl et al. [2013] based on a mass balance approach. The oil/gas production and
distribution system and landfill sectors together contribute 39.6 ± 8.1 Mg CH4/h in the SoCAB, a factor of
1.8 higher than the prior inventory, consistent with results in Peischl et al. [2013].

We have shown that themesoscale inverse technique is successful in improving bottom-up CH4 inventories in
terms of flux and spatial distribution in a region with complex terrain like the SoCAB area. Our study supports
the view that emissions of CH4 in the SoCAB area are greater than expected from population-apportioned
bottom-up state inventories and missing or underestimated emissions from dairies, the oil/gas system, and
landfills in the SoCAB. As shown in this study, airborne measurements used in a mesoscale inversion could
be used to monitor greenhouse gas emissions in a region like the SoCAB. The same technique will be
applied to CalNex aircraft measurements over the Central Valley to further improve our knowledge of the
statewide emissions of CH4 and the contributions from different source types.
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