Automatic Extrinsic Calibration of Vision and Lidar
by Maximizing Mutual Information
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This paper reports on an algorithm for automatic, targetless, extrinsic calibration of a lidar and optical camera
system based upon the maximization of mutual information between the sensor-measured surface intensities.
The proposed method is completely data-driven and does not require any fiducial calibration targets—making
in situ calibration easy. We calculate the Cramér-Rao lower bound (CRLB) of the estimated calibration param-
eter variance, and we show experimentally that the sample variance of the estimated parameters empirically
approaches the CRLB when the amount of data used for calibration is sufficiently large. Furthermore, we com-
pare the calibration results to independent ground-truth (where available) and observe that the mean error
empirically approaches zero as the amount of data used for calibration is increased, thereby suggesting that
the proposed estimator is a minimum variance unbiased estimate of the calibration parameters. Experimental
results are presented for three different lidar-camera systems: (i) a three-dimensional (3D) lidar and omnidirec-
tional camera, (ii) a 3D time-of-flight sensor and monocular camera, and (iii) a 2D lidar and monocular camera.

© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

With recent advancements in sensing technologies, the
ability to equip a robot with multi-sensor lidar/camera con-
figurations has greatly improved. Two important categories
of perception sensors commonly mounted on a robotic
platform are (i) range sensors [e.g., three-dimensional / two-
dimensional (3D/2D) lidars, radars, sonars] and (ii)
optical cameras (e.g., perspective, stereo, omnidirectional).
Oftentimes the data obtained from these sensors are
used independently; however, these modalities capture
complementary information about the environment, which
can be co-registered by extrinsically calibrating the sensors.

Extrinsic calibration is the process of estimating the
rigid-body transformation between the reference coordinate
system of the two sensors. This rigid-body transformation
allows reprojection of the 3D points from the range sen-

Direct correspondence to:
rav@umich.edu

Gaurav Pandey, e-mail: pgau-

sor coordinate frame to the 2D camera coordinate frame
(Figure 1). Fusion of data provided by range and vision
sensors can enhance various state-of-the-art computer vi-
sion and robotics algorithms. For example, Bao and Savarese
(2011) have proposed anovel framework for structure-from-
motion (SFM) that takes advantage of both semantic (from
camera data) and geometrical properties (from lidar data)
associated with the objects in the scene. Pandey et al. (2011a)
use the coregistered 3D point cloud with the camera im-
agery to bootstrap the scan registration process. They show
that the incorporation of image data in the 3D scan registra-
tion process allows for robust registration without any ini-
tial guess (e.g., from odometry). Additionally, Pandey et al.
(2012b) also proposed a robust mutual-information (MI)
-based framework for incorporating coregistered camera
and lidar data into the scan registration process. In mobile
robotics, simultaneous localization and mapping (SLAM)
is one of the basic tasks performed by robots. Although
using a lidar for pose estimation and a camera for loop
closure detection is common practice in SLAM (Newman
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(a) 3D lidar point cloud

(c) Fused RGB textured point cloud

Figure 1.

Reprojection of lidar and camera via extrinsic rigid-body calibration. (a) Perspective view of the 3D lidar range data, color-

coded by height above the ground plane. (b) Depiction of the 3D lidar points projected onto the time-corresponding omnidirectional
camera image. Several recognizable objects are present in the scene (e.g., people, stop signs, lamp posts, trees). Only nearby objects
are projected for visual clarity. (c) Depiction of two different views of a fused lidar/camera textured point cloud. Each 3D point is
colored by the RGB value of the pixel corresponding to the projection of the point onto the image.

et al., 2006), several successful attempts have been made to
use the coregistered data in the SLAM framework directly.
Carlevaris-Bianco et al. (2011) proposed a novel mapping
and localization framework that uses the co-registered om-
nidirectional camera imagery and lidar data to construct a
map containing only the most viewpoint-robust visual fea-
tures and then uses a monocular camera alone for online
localization within the a priori map. Tamjidi and Ye (2012)
reported a six degree of freedom (DOF) vehicle pose esti-
mation algorithm that uses the fusion of lidar and camera
data in both the feature initialization and motion prediction
stages of an extended Kalman filter (EKF).

Extrinsic calibration is a core pre-requisite for gather-
ing useful data from a multi-sensor platform. Many of the
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existing algorithms for extrinsic calibration of lidar-camera
systems require that fiducial targets be placed in the field
of view of the two sensors. A planar checkerboard pattern
(Figure 2) is the most common calibration target used by
researchers, as it is easy to extract from both camera and
lidar data. The correspondences between lidar and camera
data (e.g., point-to-point or point-to-plane) are established
either manually or automatically, and calibration parame-
ters are estimated by minimizing a reprojection error. The
accuracy of these methods is dependent upon the accuracy
of the established correspondences. There are also methods
that do not require any special targets (Moghadam et al.,
2013; Scaramuzza et al., 2007), but rely upon extraction of
some features (e.g., edges, lines, corners) from the camera
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Figure 2. Typical target-based calibration setup for an omni-

directional camera and a 3D lidar using a planar checkerboard
pattern.

and lidar data, either manually or automatically. The auto-
matic feature extraction methods are generally not robust
and require manual supervision to achieve small calibration
errors. Although these methods can provide a good estimate
of the calibration parameters, they are generally laborious
and time-consuming. Therefore, due to the onerous nature
of the task, sensor calibration for a robotic platform is gen-
erally undertaken only once, assuming that the calibration
parameters will not change over time. This may be a valid
assumption for static platforms, but it is often not true for
mobile platforms, especially in robotics. In mobile robotics,
robots often need to operate in rough terrain, and the as-
sumption that the sensor calibration is not altered during a
task is often not true.

Unlike many previously reported methods, here we
consider an algorithm for automatic, targetless, extrinsic
calibration of a lidar and camera system that is suitable
for easy in-field calibration. The proposed algorithm is
completely data-driven and uses a MI-based framework to
cross-register the intensity and reflectivity information mea-
sured by the camera and laser modalities. The outline of the
rest of the paper is as follows. In Section 2 we review related
work. Section 3 describes the extrinsic laser-camera calibra-
tion method. Section 4 presents some calibration results for
data collected in indoor and outdoor environments using
three different sensor configurations. Section 6 discusses
the implications of the laser-camera calibration technique
and Section 6 offers some concluding remarks.

2. RELATED WORK

Extrinsic calibration of laser-camera systems is a well-
studied problem in computer vision and robotics. The cal-
ibration methods reported in the past can be broadly clas-

sified into the following two categories: target-based and
targetless.

2.1. Target-based

Several methods have been proposed in the past decade that
use special calibration targets. One of the most common cal-
ibration targets used by researchers, a planar checkerboard
pattern, was first used by Zhang (2004) to calibrate a 2D
laser scanner and a monocular camera system. He showed
that the laser points lying on the checkerboard pattern and
the normal of the calibration plane estimated in the camera
reference frame provide a geometric constraint on the rigid-
body transformation between the camera and laser system.
The transformation parameters are estimated by minimiz-
ing a nonlinear least squares cost function, formulated by
reprojecting the laser points onto the camera image. This
was probably the first published method that addressed
the problem of extrinsic calibration of lidar/camera sensors
in a robotics context. Thereafter, several modifications of
Zhang’s method have been proposed.

Mei and Rives (2006) reported a similar algorithm for
the calibration of a 2D laser range finder and an omni-
directional camera for both visible (i.e., the laser is visi-
ble in the camera image also) and invisible lasers. Zhang’s
method was later extended to calibrate a 3D laser scanner
with a camera system (Pandey et al., 2010; Unnikrishnan
& Hebert, 2005). Nunnez, Rocha, and Dias (2009) modi-
fied Zhang’s method to incorporate data from an inertial
measurement unit (IMU) into the nonlinear cost function
to increase the robustness of the calibration. Mirzaei et al.
(2012) provided an analytical solution to the least squares
problem by formulating a geometric constraint between the
laser points and the plane normal. This analytical solution
was further improved by iteratively minimizing the non-
linear least squares cost function. The geometric constraint
in planar checkerboard methods requires the estimation of
plane normals from camera and laser data. Therefore, the
calibration error is correlated to the errors associated with
the estimation of these plane normals.

To minimize this error, Zhou and Deng (2012) pro-
posed a new geometric constraint that decouples the esti-
mation of rotation from translation by shifting the origin
of the coordinate frame attached to the planar checker-
board target. Recently, Li et al. (2013) proposed an al-
gorithm for extrinsic calibration of a binocular stereo vi-
sion system and a 2D lidar. Instead of calibrating each
camera of the stereo system independently with the li-
dar, they proposed an optimal extrinsic calibration method
for the combined multi-sensor system based upon 3D re-
construction of the checkerboard target. Although a pla-
nar checkerboard target is most common, several other
specifically designed calibration targets have also been
used in the past. Li et al. (2007) designed a right-angled
triangular checkerboard target and used the intersection
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points of the laser range finder’s slice plane with the edges
of the checkerboard to set up the constraint equation.
Rodriguez et al. (2008) used a circle-based calibration object
to estimate the rigid-body transformation between a multi-
layer lidar and camera system. Gong et al. (2013) proposed
an algorithm to calibrate a 3D lidar and camera system us-
ing geometric constraints associated with a trihedral object.
Alempijevic et al. (2006) reported a Ml-based calibration
framework that requires a moving object to be observed in
both sensor modalities. Because of their MI formulation, the
results of Alempijevic et al. are (in a general sense) related
to this work; however, their formulation of the MI cost func-
tion is entirely different due to their requirement of having
to track dynamic objects.

2.2. Targetless

The target-based methods require a fiducial object to be con-
currently viewed from the lidar and camera sensors, and
are therefore not practical for easy in situ calibration. Scara-
muzza et al. (2007) introduced a technique for the calibra-
tion of a 3D laser scanner and omnidirectional camera from
natural scenes. They automatically extracted some features
from the camera and lidar data and then manually estab-
lished correspondence between the extracted features. The
calibration parameters were then estimated by minimizing
the reprojection error for the corresponding points. Recently,
Moghadam et al. (2013) proposed a method that exploits
the linear features present in a typical indoor environment.
The 3D line features extracted from the point cloud and the
corresponding 2D line segments extracted from the camera
images are used to constrain the rigid-body transformation
between the two sensor coordinate frames.

There are also techniques that exploit the statistical de-
pendence of the data measured from the two sensors to
obtain a calibration. Boughorbal et al. (2000) proposed a x>
test that maximizes the correlation between the sensor data
to estimate the calibration parameters. A similar technique
was later used by Williams et al. (2004), but their method re-
quires additional techniques to estimate the initial guess of
the calibration parameters. Levinson and Thrun (2012) use
a series of corresponding laser scans and camera images
of arbitrary scenes to automatically estimate the calibration
parameters. They use the correlation between the depth dis-
continuities in laser data and the edges in camera images.
A cost function is formulated that captures the strength of
the co-observation of depth discontinuity in the laser data
and the corresponding edge in the camera image. Recently,
Napier et al. (2013) presented a method that calibrates a
2D push broom lidar and a camera system by optimizing a
correlation measure between the laser reflectivity and gray-
scale values from the camera imagery acquired from natural
scenes. They do not require the sensors to be mounted such
that they have an overlapping field of view, and they com-
pensate for it by observing the same scene at different times
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from a moving platform. Therefore, they require accurate
measurements from an IMU mounted on the moving plat-
form. Recently, Wang et al. (2012) and Taylor and Nieto
(2012) have simultaneously proposed similar techniques to
our own that use MI as the measure of statistical dependence
between the lidar/camera sensor modalities for calibration.
Taylor and Nieto (2012) use a MI-based cost function to cali-
brate a 3D lidar and an omnidirectional camera mounted on
a vehicle, and they show that maximizing MI is better than
minimizing joint-entropy of the reflectivity and intensity
values obtained from these sensors. Similarly, Wang et al.
(2012) use normalized mutual information to calibrate a 2D
lidar with a hyperspectral camera, and they have shown
promising results.

2.3. Our Approach and Contributions

The recent works by Levinson and Thrun (2012) and Napier
et al. (2013) are closely related to our own, in the sense that
they also propose a fully automatic and targetless method
for extrinsic calibration; however, their formulation of the
optimization function is quite different. As far as the method
is concerned, Wang et al. (2012) and Taylor and Nieto (2012)
are the most closely related recent works to our own, al-
though they have either been published at the same time
or after Pandey et al. (2012a) (our previous work) and have
been used to calibrate specific sensors only. Our previous
work explored the idea of using Ml-based criteria for au-
tomatic calibration of a 3D lidar and an omnidirectional
camera. Here, we extend our previous work and show the
robustness of the algorithm by performing several different
experimental setups using real data obtained from a variety
of range/image sensor pairs. In particular, this work builds
upon our previous work (Pandey et al., 2012a) to include
the following:

® A comprehensive survey of both target-based and target-
less methods for calibration of 3D sensors and cameras
used in robotics applications.

® A detailed theoretical derivation of the proposed algo-
rithm with implementation details of the kernel density
estimate of the probability distribution and the relation-
ship between the joint histogram and the MI-based cost
function, which constitutes an important part of the pro-
posed algorithm.

® A comprehensive analysis of the proposed method based
on real-world experimental data obtained from three dif-
ferent lidar-camera systems, including (i) a 3D lidar and
omnidirectional camera, (ii) a 3D time-of-flight sensor and
monocular camera, and (iii) a 2D lidar and monocular camera,
thereby showing the utility of the proposed algorithm
over a wide range of practical applications. Moreover, a
comprehensive analysis of the effect of initial conditions
and computation time of the algorithm is also included
in this paper.
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(a) 2D laser scanner
(Hokuyo)

(b) 3D laser scanner
(Velodyne HDL-64E)

(c) TOF 3D camera

(d) 3D depth camera
(Microsoft Kinect)

(PMD CamCube)

Figure 3. Various range sensors used in robotics applications.

® A thorough comparison of the proposed algorithm with
other state-of-the-art targetless methods (Levinson and
Thrun, 2012; Williams et al., 2004) used for calibration in
the robotics community.

® Anopen-source release of the proposed algorithm imple-
mented in C++, used in all experimental results reported
here, is available for download from our server at http:/ /
robots.engin.umich.edu/SoftwareData/ExtrinsicCalib.

3. METHODOLOGY

The proposed algorithm is completely data-driven and
can be used with any camera, and any range sensor that
reports meaningful surface reflectivity values and scene
depth information. Various range sensors commonly used
in robotics and mapping applications are shown in Figure 3.
Most of these sensors report meaningful surface reflectivity
values that can be directly used in the proposed algorithm,
but for multibeam sensors like the Velodyne (2007), it is im-
portant to first perform interbeam calibration of the surface
reflectivity values (Levinson & Thrun, 2010). Here, we as-
sume that the reflectivity values are cross-beam calibrated
wherever necessary.

In this work, we use the surface reflectivity values re-
ported by the range sensor and the gray-scale intensity val-
ues reported by the camera to extrinsically calibrate the two
sensor modalities. We claim that under the correct rigid-
body transformation, the correlation between the laser re-
flectivity and the camera intensity is maximized. Our claim
is illustrated by a simple experiment shown in Figure 4.
Here, we calculate the correlation coefficient for the reflec-
tivity and intensity values for a scan-image pair at different
values of the calibration parameter, and we observe a dis-
tinct maxima at the true value. Moreover, we observe that
the joint histogram of the laser reflectivity and the camera
intensity values is least dispersed when calculated under
the correct rigid-body transformation.

Although scenarios such as Figure 4 do exhibit high
correlation between the two modalities, there also exist
counterexamples in which the two modalities may not
be as strongly correlated, for example infrared absorbing

surfaces and shadows. All the lidars that we have used
in our experiments emit infrared pulses (Velodyne-905
nm, Hokuyo-870 nm, PMD-950 nm); the reflected light is
processed and a reflectivity value based on the amount of
energy reflected by the scene is provided to the user. The
amount of energy absorbed or reflected back to the lidar
depends on the surface properties of the object. Typically,
a dark, matte surface absorbs more energy as compared
to a light, shiny surface. In our experiments, we use this
reflectivity provided by the sensor (after some interbeam
calibration) to compute the mutual information with the
gray-scale values obtained from the camera. In most of our
experiments we observe a reasonable correlation between
the lidar reflectivity and the camera intensity because the
environment mostly contains objects with either matte or
shiny surfaces. If the environment contains colored surfaces
that completely absorb infrared, these surfaces will show
up as black patches in the lidar reflectivity and will be
completely uncorrelated with the corresponding gray-scale
values obtained from the camera. Therefore, the mutual-
information-based calibration technique might not work
well in such situations. However, we are not aware of mate-
rials that exhibit such properties (i.e., that completely absorb
infrared) and are also found in common indoor/outdoor
environments used in robotics applications.

Additionally, in the case of shadows cast in the en-
vironment (e.g., see Figure 5), here ambient light plays a
critical role in determining the intensity levels of image pix-
els on the road. As clearly depicted in the image, there are
some regions of the road that are covered by object shad-
ows. The gray levels of the image are locally affected by
the shadows of occluding objects; however, the correspond-
ing reflectivity values in the laser modality are not because
it uses an active lighting principle. Thus, in these types of
scenarios, the data between the two sensors might not ex-
hibit as strong of a correlation and, hence, will produce a
weak input for the proposed algorithm. In this paper, we
do not focus on solving the general lighting problem. In-
stead, we formulate a MI-based data fusion criterion to es-
timate the extrinsic calibration parameters between the two
sensors, assuming that the data are, for the most part, not
corrupted by lighting artifacts. In fact, for many practical

Journal of Field Robotics DOI 10.1002/rob
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(b) Corresponding lidar colored by height

Correlation Coefficient
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Pitch Angle (degree)
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(d) Grayscale/reflectivity correlation

(c) Corresponding lidar colored by reflectivity
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Reflectivity Reflectivity

(e) Grayscale/reflectivity joint distribution

Figure 4. Simple experimentillustrating the available correlation between lidar measured surface reflectivity and camera measured
image intensity. (a) Image from the Ladybug3 omnidirectional camera. (b) and (c) Depiction of the Velodyne HDL-64E 3D lidar data
color-coded by height above ground and by laser reflectivity, respectively. (c) The correlation coefficient for the reflectivity /intensity
values as a function of one of the extrinsic calibration parameters, pitch, while keeping all other parameters fixed at their true
value. We observe that the correlation coefficient is maximum for the true pitch angle of 0°, denoted by the dashed vertical line.
(d) Depiction of the joint histogram of the reflectivity and intensity values when calculated at an incorrect (left) and correct (right)
rigid-body transformation. Note that the joint histogram is least dispersed under the correct rigid-body transformation.

indoor/outdoor calibration scenes (e.g., Figure 4), shadow
effects represent a small fraction of the overall data and thus
appear as noise in the calibration process. This is easily han-
dled by the proposed method by aggregating multiple scan
views.

Journal of Field Robotics DOI 10.1002/rob

3.1. Theory and Background

Mutual information based registration dates back to the
early 1990s when Woods et al. (1993) first introduced
such a registration method for multimodality images. Their
method was based on the assumption that images of the
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(a) Image data

(b) Lidar data

Figure5. Counterexample showing thatnonuniform lighting can play a critical role in influencing reflectivity /intensity correlation.
(a) Ambient lit image with shadows of trees and buildings on the road. (b) Top view of the corresponding lidar reflectivity map,
which is unaffected by ambient lighting due to its active lighting principle.

same object taken from different sensors have similar gray-
scale values. In a more ideal case, the ratio of gray levels
of corresponding points in a particular region of the image
should have low variation. Thus, they proposed a method
to minimize the average variance of this ratio in order to ob-
tain the registration parameters. Hill et al. (1993) extended
this idea to construct a joint histogram of the gray values
of the two images, and they showed that the dispersion
of the histogram is minimum when the two images are
aligned. Soon thereafter, Viola and Wells (1997) and Maes
et al. (1997) nearly simultaneously introduced the idea of
mutual information for alignment of data captured from
two different sensing modalities. The algorithmic develop-
ments in MI-based registration were exponential during the
late 1990s and early 2000s and very soon became state-of-
the-art in the medical image registration field. Researchers
widely used the MI framework to focus on specific regis-
tration problems in various clinical applications. Within the
robotics community, the application of MI has not been as
widespread, even though robots today are often equipped
with different modality sensors to perceive the environment
around them.

The mutual information between two random vari-
ables X and Y is a measure of the statistical dependence
occurring between the two random variables. Various for-
mulations of MI have been presented in the literature, each
of which demonstrate a measure of statistical dependence
of the random variables in consideration. One such form of
Ml is defined in terms of entropy of the random variables:

MI(X, ¥) = H(X) + H(Y) — H(X, Y), 1)

where H(X) and H(Y) are the entropies of random variables
X and Y, respectively, and H(X, Y) is the joint entropy of
the two random variables:

H(X) = - ) px(z)logpx (). )
zeX

H(Y) ==Y pv(y)logpy(y), @3)
yeY

H(X,Y)==) Y pxv(z.9)logpxv(z.v). (4
zeX yeY

The entropy H(X) of a random variable X denotes the
amount of uncertainty in X, whereas H(X, Y) is the amount
of uncertainty when the random variables X and Y are co-
observed. Hence, Eq. (1) shows that MI(X, Y) is the reduc-
tion in the amount of uncertainty of the random variable X
when we have some knowledge about the random variable
Y. In other words, MI(X, Y) is the amount of information
that Y contains about X and vice versa.

3.2. Mathematical Formulation

Here we consider the laser reflectivity value of a 3D point
and the corresponding gray-scale value of the image pixel
to which this 3D point is projected as the random vari-
ables X and Y, respectively. The marginal and joint proba-
bilities of these random variables, p(X), p(Y), and p(X,Y),
can be obtained from the normalized marginal and joint
histograms of the reflectivity and gray-scale intensity val-
ues of the 3D points co-observed by the lidar and camera.
Let (P;;i =1,2,...,n} be the set of 3D points whose co-
ordinates are known in the laser reference system, and let
{X;;i=1,2,..., n}be the corresponding reflectivity values
for these points (X; € [0, 255]).

For the usual pinhole camera model, the relationship
between a homogeneous 3D point, P;, and its homogeneous
image projection, p;, is given by

p: =K[R|]P;, (5)

where (R, t), called the extrinsic parameters, are the or-
thonormal rotation matrix and translation vector that

Journal of Field Robotics DOI 10.1002 /rob
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R, t]

Figure 6.

relate the laser coordinate system to the camera coordi-
nate system, and K is the camera intrinsics matrix. Here,
R is parametrized by the Euler angles [¢, 6, ¥]", and t =
[x,y,z]" is the translation vector. Let {¥;; i = 1,2, ...,n} be
the gray-scale intensity value of the image pixel upon which
the 3D laser point projects, such that

Yi = 1(pi). (6)

where Y; € [0, 255], I is the gray-scale image, and p; is the
inhomogeneous version of p;.
Thus, for a given set of extrinsic calibration parameters,
X; and Y; are the observations of the random variables X
and Y, respectively (Figure 6). The marginal and joint prob-
abilities of the random variables X and Y can be obtained
in several different ways. One of the simplest and most
commonly used estimators of probability distribution is the
maximum likelihood estimator, which is directly obtained
from the normalized histogram:
Xk

. kelo,255], @)
n

>
<
Il

Ray
|

where x; is the observed counts of the intensity value :

Xk = ZI(Xi = k), (8)
i=1
1 if X, =k,
I(X':k):{o i X k. ©)

Although the MLE is easy to compute, generally it has a
high mean-squared error (MSE). Therefore, here we use a
kernel density estimate (KDE) of the probability distribu-
tion, which has been shown to have less MSE as compared
to the MLE, and is computed by smoothing the MLE with a
symmetric kernel (Scott, 1992):

PX =k) = % D Ku(X - X)), kel[0,255], (10)
i=1

where K, () is a symmetric kernel and w is the bandwidth
of the kernel. An illustration of the KDE of the probabil-

Journal of Field Robotics DOI 10.1002/rob

Image Plane

Illustration of the mathematical formulation of MI-based calibration.

ity distribution of the gray-scale values from the available
histogram is shown in Figure 7.

The KDE of the joint distribution of the random vari-
ables X and Y is given by

s IL)
i=1

(kx, ky) € ([0, 255] x [0, 255]), (11)

where Kq(-) is a symmetric kernel and Q2 is the the smoothing
matrix of the kernel. In our experiments we have used a
Gaussian kernel, and the smoothing matrix € is computed
from Silverman’s rule of thumb (Silverman, 1986):

15| 0x 0
Q = 1.06n" |: 0 ay:|’ (12)
where oy and oy are the standard deviations of the obser-
vations of X and Y, respectively.

Once we have an estimate of the probability distribu-
tion, we can then write the MI of the two random variables
as a function of the extrinsic calibration parameters (R, t),
thereby formulating an objective function:

6= arg max MI(X, Y; ©), (13)

whose maxima occur at the sought-after calibration param-
eters, ©® =[x, y,z,¢,0,¢¥]". KDE provides a smooth and
more accurate estimate of the probability distribution, re-
sulting in a distinct optimum in the MI-based objective func-
tion, near the correct value of the calibration parameter [see,
for example, Figure 7(c)].

3.3. Optimization

The cost function (13) is maximized at the correct value
of the rigid-body transformation parameters. Therefore,
any optimization technique that iteratively converges to
the global optimum can be used here. Some of the com-
monly used optimization techniques compute the gradient
or Hessian of the cost function (Barzilai & Borwein, 1988;
Levenberg, 1944; Marquadrt, 1963; Whittaker & Robinson,
1967). The proposed method does not provide an analytical
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Figure 7.

In (b) we have plotted the KDE of the probability distribution computed from the histogram of sample data. KDE

provides a smooth and more accurate estimate of the probability distribution, which in turn affects the cost function. In (c) we
have plotted the MI-based cost function (for the same scan-image pair) (i) computed directly from the normalized histogram (red
dashed) and (ii) computed from the KDE (green solid). Clearly, when using the KDE we obtain a distinct optimum in the cost
function near the correct value (i.e., 30 cm) of the calibration parameter.

derivative of the cost function with respect to the 6-DOF
calibration parameters. This is mainly because we cannot
write the joint and marginal histograms of the reflectivity
and the intensity values as a direct function of the calibra-
tion parameters. We first project the 3D point into the image
and then establish correspondence between reflectivity and
intensity values of the projected point to generate the his-
tograms. Since the histograms are calculated in the image
space, the cost function does not involve the calibration pa-
rameters in a manner that can be analytically differentiated.
Although, the proposed cost function does not have a para-
metric form, we can still compute the gradient of the cost
function numerically and use one of the gradient-descent

algorithms to solve the optimization problem. In all of our
experiments, we have used the gradient-descent algorithm
proposed by Barzilai & Borwein (1988). This method uses
an adaptive step size in the direction of the gradient of the
cost function. The step size incorporates the second-order
information of the objective function. If the gradient of the
cost function (13) is given by

G = VMI(X, Y; ©), (14)

then one iteration of the Barzilai & Borwein (1988) method
is defined as
Gy

0,1 =06 —_—, 15
k+1 K+ Vi e (15)
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Algorithm 1 Automatic extrinsic calibration by maximization of mutual information

1: Input: 3D Point cloud {P;; i =1, ..., n}, Reflectivity {X;; i =1, ..., n}, Image {I}, and Initial guess {®,}

2: Output: Estimated parameter {6}

3: while||@y1 — O > THRESHOLD do

4 o, > [R | t}

5: Initialize the joint histogram: Hist(X, Y) =0

6: fori =1— ndo

7: pi = K[R \ t]P,

8: Y,' = I(pl)

9: Update the joint histogram: Hist(X;, ¥;) = Hist(X;, ¥;) + 1

10: end for

11: Calculate the kernel density estimate of the joint distribution: p(X, Y; @)

12: Calculate the mutual information: MI(X, Y; ©;)

13: Update the current estimate: @1 = O, + AF(MI(X, Y; ©;)), where F is either the gradient function or some heuristic
and A is a tuning parameter

14: end while

where O, is the optimal solution of (13) at the kth iteration,
G, is the gradient vector (computed numerically) at O,
| - Il is the Euclidean norm, and y; is the adaptive step size,
which is given by

s,
Ve = ==, (16)

where s, = O, — O, and g = Gy — Gy_1.

Moreover, one can also use heuristic methods (Forrest,
1993; Kirkpatrick, Gelatt, & Vecchi, 1983; Nelder & Mead,
1965) that do not even require the computation of gradi-
ents. It should be noted that the proposed cost function has
no dependence upon the optimization technique used to
solve for the calibration parameters. If the cost function is
smooth and exhibits a distinct optimum, then any optimiza-
tion technique should give the same results. However, we
will show in our experiments (Section 4.1.2) that the cost
function is not smooth all of the time. In situations in which
the cost function is not smooth because of insufficient data,
the exhaustive search (computationally expensive) methods
are more likely to converge to the correct solution; how-
ever, for smooth cost functions with a distinct optimum,
the gradient-based or heuristics methods are suitable as
they converge to the correct solution within a few steps.
The complete Ml-based calibration algorithm is shown in
Algorithm 1.

3.4. Cramér-Rao Lower Bound of the Estimated
Parameter Variance

It is important to know the uncertainty in the estimated
calibration parameters in order to use them in any vision
or SLAM algorithm. Here we use the Cramér-Rao lower
bound (CRLB) of the variance of the estimated parameters
as a measure of the uncertainty. The CRLB (Cramer, 1946)
states that the variance of any unbiased estimator is greater
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than or equal to the inverse of the Fisher information matrix.
Moreover, any unbiased estimator that achieves this lower
bound is said to be efficient. The Fisher information of a
random variable Z is a measure of the amount of informa-
tion that the observations of the random variable Z carry
about an unknown parameter o, upon which the probability
distribution of Z depends. If the distribution of a random
variable Z is given by p(Z;«), then the Fisher information
is given by (Lehmann & Casella, 2011)

2
Z(x) =E |:<ai log p(Z;oe)) i| . 17)

In our case, the joint distribution of the random vari-
ables X and Y, as defined in Eq. (11), depends upon the six-
dimensional transformation parameter ®. Therefore, the
Fisher information is given by a [6 x 6] matrix, Z(®), whose
elements are individually computed as

el el
(@), = E X, Y; X, Y;
(©); = £ [ 55 08 (X, ¥;0) 15 og p(x.¥;0) 1)
The CRLB is then given by

Cov(0®) > Z(®)™, (19)

where Z(©) ! is the inverse of the Fisher information matrix
calculated at the estimated value of the parameter ©.

4. EXPERIMENTS AND RESULTS

This section describes in detail the experiments performed
to evaluate the accuracy and robustness of the proposed au-
tomatic calibration technique. We present both qualitative
and quantitative results with data collected from three dif-
ferent sensor pairs commonly used in robotics applications.
The proposed method gives accurate results over the wide
range of sensor pairs used.
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Figure 8.

(b)

(a) The modified Ford F-250 pickup truck with sensor configuration as described in Pandey et al. (2011b). (b) The

Velodyne HDL-64E 3D laser scanner (Velodyne, 2007) and the Point Grey Ladybug3 omnidirectional camera (Point Grey Research

Inc., 2009) are mounted on the roof of the vehicle.

4.1. 3D Laser Scanner and Omnidirectional Camera

In the first set of experiments, we present calibration re-
sults from a Velodyne HDL-64E 3D laser scanner (Velodyne,
2007) and a Point Grey Ladybug3 omnidirectional camera
system (Point Grey Research Inc., 2009) mounted on the roof
of a vehicle (Figure 8). In this work, we pre-calibrated the
reflectivity values of the Velodyne laser scanner using the
algorithm reported by Levinson & Thrun (2010), and we
used the manufacturer provided intrinsic calibration pa-
rameters (focal length, camera center, distortion coefficients
of the lens) for the omnidirectional camera. In all of our
experiments in this section, scan refers to a single 360° field-
of-view 3D point cloud and its time-corresponding camera
imagery.

4.1.1.

In this experiment, we show that the quality of the in situ cal-
ibration performance is dependent upon the environment in
which the scans are collected. We collected several datasets
inboth indoor and outdoor settings. The indoor dataset was
collected inside a large garage, and it exhibited many near-
field objects such as walls and other vehicles. In contrast, the
outdoor dataset includes lighting artifacts (Figure 4), mov-
ing objects, and most of the structure lying in the far-field.
In Figures 9(e) and 9(f), we have plotted the calibration re-
sults for 15 scans collected in outdoor and indoor settings,
respectively. We clearly see that the variability in the esti-
mated parameters for the outdoor scans is much larger than
that of the indoor scans. This is not surprising as the outdoor
dataset is more likely to be corrupted with lighting artifacts
and dynamic objects; however, we observe that the error
fluctuation in translation parameters is higher as compared
to rotational parameters. We attribute this asymmetric er-

Calibration Performance Using a Single Scan

ror behavior to the presence of only far-field 3D points in
the outdoor dataset, rendering the cost function less sen-
sitive to the translational calibration parameters—making
them more difficult to estimate. This is a well-known phe-
nomenon of projective geometry, where in the limiting case
if we consider points at infinity, [¥, ¥, Z, 0], the projection of
these points (also known as vanishing points) is not affected
by the translational component of the camera projection ma-
trix (Hartley & Zisserman, 2000):

p= K[R | t] — KR (20)

O 2 =t
2 =

We should expect then that scans that only contain 3D
points far off in the distance (i.e., the outdoor dataset) will
have poor observability of the calibration parameters, as
opposed to scans that contain many nearby 3D points (i.e.,
the indoor dataset), as seen in Figure 9. Therefore, if we
intend to perform MI-based calibration from a single scan-
image pair, we should use data collected with this effect in
mind.

4.1.2. Calibration Performance Using Multiple Scans

In the previous section, we showed that it is necessary to
have near-field objects, no lighting artifacts, and no mov-
ing objects in the scans in order to robustly estimate the
calibration parameters from a single scan; however, this
might not always be practical—depending upon the op-
erational environment. In this experiment, we demonstrate
improved calibration convergence by simply aggregating
multiple scans into a single batch optimization process (Fig-
ure 10). It should be noted that the reflectivity from lidar and

Journal of Field Robotics DOI 10.1002 /rob
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Figure 9. 3D laser and omnidirectional camera single-view calibration results for outdoor and indoor datasets. The variance in
the estimated parameters (especially translation) is significantly large in the case of the outdoor dataset due to poor observability
as noted in the text. Each point on the abscissa in (e)—(f) corresponds to a single scan trial.

gray-scale intensity from the camera is quantized between
[0, 255], resulting in a large joint histogram (256 x 256 =
65, 536 bins) that needs to be estimated. The number of 3D
points or observations (X;, ;) of these random variables ob-
tained from a single scan when using Velodyne data is typi-
cally of the order of 80,000 points. Therefore, if we use a sin-
gle scan-image pair, thejoint histogram is largely undersam-
pled [Figure 10(a)] because only about 80,000 observations
are used to populate a histogram of 65,536 bins. However, if

Journal of Field Robotics DOI 10.1002/rob

we use more data (i.e., scan-image pairs from multiple loca-
tions) to generate the joint histogram, they fill in the unob-
served sections of the histogram [Figure 10(b)]. This results
in a better estimate of the joint and marginal probability dis-
tributions of the random variables, which in turn improves
the MI estimate and increases the smoothness of the cost
function [Figure 10(d)]. The smooth cost function now ex-
hibits a distinct optimum near the correct calibration param-
eters. We can therefore use any gradient descent algorithm
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The top panel shows the joint histogram of lidar reflectivity and camera intensity values. We get a better estimate of

the joint histogram (fill-in of unobserved sections) as the number of scan-image pairs is increased. The bottom panel shows the MI
cost-function surface versus translation parameters x and y. Note the distinct optimum and smoothness of the cost surface when
the scans are aggregated. The correct value of parameters is given by (0.3, 0.0). Negative MI is plotted here to make visualization

of the extrema easier to see.

to quickly converge to the global optimum of this cost
function.

Figure 11 shows the calibration results for when multi-
ple scans are considered in the MI calculation. In particular,
the experiments show that the standard deviation of the
estimated parameters quickly decreases as the number of
scans is increased by just a few. Here, the red plot shows the
sample standard deviation (o) of the calibration parameters
computed over 1,000 trials, where in each trial we randomly
sampled {N =5, 10, ..., 40} scans from the available indoor
and outdoor datasets to use in the MI calculation. The green
plot shows the corresponding CRLB of the standard devia-
tion of the estimated parameters. In particular, we see that
with as little as 20-40 scans, we can achieve very accurate
performance. Moreover, we see that the sample variance

asymptotically approaches the CRLB as the number of scans
used increases, indicating that this is an efficient estimator.
In this experiment, we took static snapshots of the laser scan
and the camera image to avoid any errors due to motion of
the vehicle. Although using the static snapshot is the best
way to acquire data for calibration, if we have access to a
good IMU mounted on the vehicle, the calibration process
can be made even more user-friendly. In that case, we can
motion-compensate the scan data using the IMU and then
use them in the proposed calibration method. This allows
for easy online calibration of the sensors without the need
for acquiring static snapshots. We found that the calibration
parameters obtained from the motion-compensated scans
(using a good IMU) are close to those obtained from the
static scans (Table I).

Journal of Field Robotics DOI 10.1002/rob
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3D laser and omnidirectional camera multiview calibration results. Here we use all five horizontal images from the

Ladybug3 omnidirectional camera during the calibration. Plotted is the uncertainty of the recovered calibration parameters versus
the number of scans used. The red (dashed line) plot shows the sample-based standard deviation (o) of the estimated calibration
parameters calculated over 1,000 trials. The green (solid line) plot represents the corresponding CRLB of the standard deviation of
the estimated parameters. Each point on the abscissa corresponds to the number of aggregated scans used per trial.

Table I.

Comparison of calibration parameters estimated by the proposed method with static scans, the proposed method with

motion-compensated scans, feature alignment as reported in Levinson and Thrun (2012) for 40 and 100 scan pairs, a x? test as
reported in Williams et al. (2004), and a checkerboard target pattern as reported in Pandey et al. (2010).

X y Z Roll Pitch Yaw

Method Data (cm) (cm) (cm) (deg) (deg) (deg)
Proposed method 40 Scans 30.5 -05 —44.6 —-0.15 0.00 —90.27
w/motion compensated 40 Scans 33.6 —-0.7 —41.6 —0.20 —0.06 —90.14
Levinson and Thrun (2012) 40 Scans 30.0 0.7 —40.7 -0.37 —-0.24 —89.72
100 Scans 31.6 -0.3 —41.7 —0.05 0.05 —90.12
Williams et al. (2004) 40 Scans 29.8 0.0 —43.4 —0.15 0.00 —90.32
Pandey et al. (2010) 14 Planes 34.0 1.0 —41.6 0.01 —0.03 -90.25

4.1.3. Calibration Performance with Different Initial
Guesses

In this experiment, we show the robustness of the proposed
algorithm over the initial guess of the calibration parame-
ters. As described in Algorithm 1, the proposed algorithm
requires an initial guess of the calibration parameters, which
is generally obtained by manually measuring the distances
and angles between the two sensors. Typically, the error
in this measurement is of the order of 10 cm for transla-
tion parameters and 10° for rotation parameters. So, here
we performed 500 independent trials with a random initial
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guess (within the measurement errors), and we observed
that the algorithm converges to the correct calibration pa-
rameters (Figure 12). In this experiment, we used 20 ran-
domly sampled scan-image pairs from our indoor and out-
door dataset. We observe that the standard deviation of the
estimated translation parameters over these 500 trials is less
than 0.7 cm and the standard deviation of the rotation pa-
rameters is less than 0.5°. Therefore, this experiment clearly
depicts the robustness of the proposed algorithm over a
wide range of initial guesses of the calibration parameters
that is within the acceptable range of manual errors.
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Figure 12. Calibration performance for different initial conditions with 20 scan-image pairs. Here we perform 500 independent
trials with random initial guess. The initial guess is marked in red, the output of the proposed calibration algorithm is marked in
green, and the CRLB of the standard deviation of the estimated parameters is shown in blue.
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Figure 13. Computation time as a function of the number of
scans used for calibration. Computation time increases as the
number of data points are increased (one scan contains approx-
imately 80,000-100,000 3D points). More data result in better
calibration performance, so there is a tradeoff between compu-
tation time and the robustness of the algorithm.

4.1.4. Computation Time Analysis

In this experiment, we analyzed the computational com-
plexity of the proposed algorithm. In Section 4.1.2, we
showed that as we increase the number of scans, from dif-
ferent viewpoints, the calibration performance increases.
However, the increase in the number of scans also increases
the computation time of the algorithm. Since the compu-
tational complexity of the algorithm is O(n + m?), where n
is the number of 3D points used and m is the number of
quantization bins of the random variables X and Y, if the
number of bins is fixed (here 256), then the computation
time increases linearly with the increase in the number of
3D points or scans. Figure 13 shows a plot of computation
time as a function of the number of scans used with a sim-
ple gradient descent algorithm (Barzilai & Borwein, 1988) as
the optimization method. We observe that the computation
time (on a standard laptop with Intel Core i7-2670QM CPU
@ 2.20 GHz) when the algorithm uses 20 scan-image pairs
is of the order of 5 min. There is a clear tradeoff between the
computation time and the robustness of the algorithm as the
increase in the number of scans makes the algorithm more
robust but it also increases the computation time. Since cal-
ibration is typically an offline task, there is no need for the
algorithm to be real-time; however, we also do not want to
wait for very long to obtain the results. Therefore, an optimal
value of the number of scans should be chosen depending
upon the application. In our experiments, we observed that
2040 scans provide a good calibration result (Sections 4.1.2
and 4.1.3) within 5-10 min, respectively, which we believe
is acceptable for practical in-field operations of robots. We
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would like to point out that the current implementation of
the algorithm (used in our experiments) is unoptimized as
we compute the joint histogram in a serialized fashion iter-
ating through every point in the scans; however, the com-
putation of the joint histogram from the 3D points can be
easily parallelizable and is readily multithread or graphics
processing unit (GPU) applicable, which could significantly
improve upon the times reported here.

4.1.5. Comparison with Other Calibration Methods

We performed the following three experiments to quantita-
tively benchmark results from our proposed method against
other published methods:

1. Comparison with Williams et al. (2004): In this ex-
periment, we replace the MI criteria with the x? statistic
used by Williams et al. (2004). The x? statistic gives a mea-
sure of the statistical dependence of the two random vari-
ables in terms of the closeness of the observed joint distri-
bution to the distribution obtained by assuming X and Y to
be statistically independent:

[px. 3:©) — plx; ©)p(y;©)]

2 @) =
KX Y;8)= ) p(x;©)p(y; ©)

xeX, yeY

(1)

We can therefore modify the cost function given in Eq. (13)
to

0= argmax 1*(X,Y;0). (22)

A comparison of the calibration results obtained from
the x? test (22) and the MI cost function (13) using 40 scan-
image pairs is shown in Table I. We see that the results
obtained from the y? statistics are similar to those obtained
from the MI criteria. This is mainly because the x statistics
and Ml are equivalent and essentially capture the amount of
correlation between the two random variables (McDonald,
2009). We use MI as the measure of correlation between
the random variables mainly because it is well studied and
has been successfully used in practical applications (e.g.,
medical image registration). Moreover, several researchers
have developed methods that robustly and efficiently esti-
mate MI from the sample data [e.g., Chao and Shen (2003),
Lin and Medioni (2008), and Hausser and Strimmer (2009)],
which can be readily used within the proposed framework.

2. Comparison with Levinson and Thrun (2012):
Levinson and Thrun (2012) proposed an automatic calibra-
tion technique that uses correlation between depth discon-
tinuities in the laser data and their projected edges in the
corresponding camera images. In this experiment, we re-
place our MI-based cost function with the criteria proposed
by Levinson and Thrun:

N X7

LC(X.Y;©) =YY X} D/, (23)

f=1 p=1
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Figure 14. Comparison with Levinson and Thrun (2012). (a) Here we plot the uncertainty of the recovered calibration parameters
versus the number of scans used. The red (solid line) plot shows the sample-based standard deviation (o) of the estimated
calibration parameters calculated over 1,000 trials using Levinson’s method (Levinson and Thrun, 2012). The green (dashed line)
plot shows the sample-based standard deviation of the estimated parameters using our proposed method. Each point on the
abscissa corresponds to the number of aggregated scans used per trial. Clearly the proposed method converges to a good solution
with significantly fewer scans. (b) Here we plot the cost computed from the two techniques as a function of one of the calibration
parameters (i.e., translation in y). The leftmost plot shows the cost computed by Levinson’s method with 20 scan-image pairs from
an outdoor dataset (with motion-compensated 3D points). The rightmost plot shows the MI-based cost computed for the same set
of scan-image pairs. Clearly the MI-based cost function (computed from 20 scans) is smooth and exhibits a distinct optimum near
the correct calibration parameter. Levinson’s cost function (computed from the same 20 scans), on the other hand, is rough and
shows local optima (marked in red on the leftmost plot); however, Levinson’s cost function becomes smooth as we increase the
number of scans (center plot). Levinson’s cost computed with 80 scan-image pairs is smooth and exhibits a distinct optimum. The
correct value of translation parameter is marked with a green arrow, and all the plots show optima at that location.

where LC(:) is Levinson’s criterion for N scan image pairs, Figure 14 shows a comparison of the proposed method
X ,f is the depth discontinuity at the pth point in scan f, and with Levinson’s method. In this experiment, we used

D,:T ; is the edge strength at projection of 3D point p onto the motion-compensated scans captured in an outdoor urban

corresponding image f. The modified cost function can be environment (Pandey et al., 2011b) to estimate the rigid-
written as body transformation from both methods. In Levinson’s

method, only points corresponding to the edges of the sur-
© =arg max LC(X,Y;0). (24) faces are used, discarding a large amount of points corre-
sponding to the ground plane and other flat surfaces present
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in the environment—therefore, it requires a relatively large
number of scans and a structured calibration environment.
Although the plots show that for both methods the sample-
based standard deviation of the estimated calibration pa-
rameters decreases as the number of scans is increased, the
proposed method gives good calibration results with only
20 scans, whereas Levinsons method requires nearly 100
scans to reach the same precision level. Unlike Levinson’s
method, our proposed method is whole-image based and
uses all of the overlapping laser-image data. This allows
our method to produce good calibration results with fewer
scans even if the calibration environment is largely devoid
of any linear depth discontinuities—the only criterion being
that the scene have some distinctive reflectivity/intensity
texture (e.g., a parking lot with painted parking stalls as in
Figure 4). It should be noted that both methods are equally
affected by the lighting artifacts and noise due to moving
objects in the scene. However, the noise due to these artifacts
is reduced by using more data to compute the cost function
in both of the methods. In Figure 14(b), we have plotted the
cost computed from both of the methods, and we observe
that Levinson’s cost function exhibits several local optima
when computed with fewer scans. This is also the reason
why we observe high variance in the estimated parame-
ters when we use fewer scans in Levinson’s method, as the
gradient-based optimization technique often gets stuck in
these local optima.

Fundamentally, both methods are quite similar as they
use the joint statistics of data to compute the calibration
parameters. Since Levinson’s method does not use the re-
flectivity value from the lidar and only uses the depth in-
formation, this method can be easily used with sensors that
do not provide the reflectivity information. The proposed
method, on the other hand, only works with sensors that
also provide reflectivity information along with the depth
(or 3D) information.

3. Comparison with Pandey et al. (2010): Pandey et al.
(2010) proposed a method that requires a planar checker-
board pattern to be observed simultaneously from the laser
scanner and the camera system. The normal of the planar
surface and 3D points lying on the surface constrain the rel-
ative transformation between the laser scanner and the om-
nidirectional camera system. These constraints are used to
solve for the extrinsic calibration parameters within a non-
linear optimization framework. The 3D points lying on the
planar surfaces are manually extracted from the 3D point
cloud. The normals of these planar surfaces in the camera
reference frame are also calculated by manually clicking the
corners of the checkerboard pattern in the image. We com-
pared our minimum variance results (i.e., estimated using
40 scans) with the results obtained from the method de-
scribed in Pandey et al. (2010), and we found that they are
very close (Table I). The reprojection of 3D points onto the
image using results obtained from these methods looks very
similar visually. Therefore, in the absence of ground truth,

Journal of Field Robotics DOI 10.1002/rob

it is difficult to say which result is more accurate. The pro-
posed method, however, is definitely much faster and easier
as it does not involve any manual intervention.

4.1.6. Convergence basin analysis

In this experiment, we analyze the convergence basin of
the proposed algorithm and compare it with Levinson’s al-
gorithm (Levinson and Thrun, 2012). We randomly selected
N scan-image pairs from our outdoor dataset and used them
to estimate the calibration parameters for several different
values of errors in the initial guess provided to the two
algorithms. We considered eight different sets of errors in
the initial guess ranging from (5 cm, 5°) to (20 cm, 20°). We
performed 500 independent trials for each of these errors
in the initial guess and plotted the normalized standard de-
viation of estimated parameters. If the standard deviation
of calibration parameters is given by [o,, 0y, 0., 0y, 09, 0y ],
then the normalized standard deviation of translation and

rotation parameters can be written as /0?2 + o2 + 02 and
[0, + 07 + 0, respectively. In Figure 15, we have plotted

the normalized standard deviation of the estimated cali-
bration parameters computed from 500 independent trials
with random initial guesses. The initial guess in each trial is
asample from a uniform distribution with mean equal to the
true value of the calibration parameter and standard devia-
tion equal to the error in the initial guess. Figures 15(a) and
15(b) show the standard deviation of estimated parameters
when the error in the initial guess of translation parameters
is 10 cm (5 cm) and the error in the initial guess of rota-
tion parameters is changed from 5° to 20°. Figures 15(c) and
15(d) show the standard deviation of estimated parameters
when the error in the initial guess of rotation parameters
is 10° (£5°) and the error in the initial guess of translation
parameters is changed from 5 to 20 cm. We observe that the
proposed algorithm provides good results with 40 scans
when the error in the initial guess of translation and rota-
tion parameters is within 10 cm and 10°, respectively. On
the other hand, Levinson’s method with 40 scans fails to
converge to the correct solution even for low values of error
in the initial guess (e.g., 5 cm, 5°). However, as we increase
the number of scans in Levinson’s algorithm to 100, it gives
results similar to the proposed algorithm, with a conver-
gence basin of 10 cm in translation and 10° in rotation. It
should be noted that the straightforward gradient descent
optimization technique used in this experiment makes no
provisions to avoid local optima, and that while there ex-
ist more sophisticated stochastic optimization techniques
that can be used to avoid such local optima (Forrest, 1993;
Kirkpatrick et al., 1983; Wenzel & Hamacher, 1999), they are
not employed here. Moreover, the convergence basin (espe-
cially for translation parameters) is also dependent upon the
environment in which the data are collected. In this exper-
iment, we have only used motion-compensated scans from
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Figure 15. Convergence basin analysis. Here we have plotted the normalized standard deviation of estimated calibration param-
eters computed from 500 independent trials with random initial guess. The initial guess in each trial is a sample from the uniform
distribution with mean equal to the true value of calibration parameter and standard deviation equal to the error in initial guess.
Parts (a) and (b) show the standard deviation of estimated parameters when the error in initial guess of translation parameters is
10 cm and the error in initial guess of rotation parameters is changed from 5° to 20°. Parts (c) and (d) show the standard deviation
of estimated parameters when the error in initial guess of rotation parameters is 10° and the error in initial guess of translation
parameters is changed from 5 to 20 cm. Red and green bars show the standard deviation of calibration parameters obtained from
Levinson’s method with 40 and 100 scans, respectively. The standard deviation of calibration parameters from the proposed method
using 40 scans is shown in blue. We observe that we obtain good results when the error in initial guess of translation and rotation

parameters is within 10 cm and 10°, respectively.
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Figure 16. Comparison with manufacturer ground-truth. (a) A depiction of the coordinate frames corresponding to each camera
(¢i) and camera head (H) of the Ladybug3 omnidirectional camera system. (a) Plotted are the mean absolute error in the relative-
pose calibration parameters for the two side-looking cameras (c; and cs), i.e., [Xe,e; — )A((,z(,5 |, versus the number of scans used to
estimate these parameters. The mean is calculated over 100 trials of sampling N scans per trial {N = 10, 20, ..., 60}. We see that the

error decreases as the number of scans is increased.

an outdoor dataset, and we observe that the translation pa-
rameters are more sensitive to errors in the initial guess.
We have already discussed this effect of faraway 3D points
on the translation parameters in our previous experiment
(Section 4.1.1). Therefore, we can further increase the con-
vergence basin of the proposed algorithm by using indoor
scan data and a more sophisticated stochastic optimization
technique.

4.1.7. Comparison with Available Ground-truth

The omnidirectional camera used in our experiments is pre-
calibrated from the manufacturer. It has six 2-Megapixel
cameras, with five cameras positioned in a horizontal ring
and one positioned vertically, such that the rigid-body trans-
formation of each camera with respect to a common coor-
dinate frame, called the camera head (H), is well-known
(Point Grey Research Inc., 2009). Here, Xy, is the Smith,
Self, and Cheeseman (1988) coordinate frame notation, and
it represents the 6-DOF pose of the ith camera (¢;) with re-
spect to the camera head (H). Since we know X, from the
manufacturer, we can calculate the pose of the ith camera
with respect to the jth camera as

Xr,-r, = eXHci 2] XHCja {l ?I: J} (25)

In the previous experiments, we used all five horizon-
tally positioned cameras of the Ladybug3 omnidirectional
camera system to calculate the MI; however, in this exper-
iment we consider only one camera at a time and directly
estimate the pose of the camera with respect to the laser
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reference frame (X, ). This allows us to calculate )A(c.,.(,, from

the estimated calibration parameters )A(gq and )A((Cj. Thus,
we can compare the true value of Xeie; (from the manufac-
turer data) with the estimated value X, ¢; Figure 16 shows
one such comparison from the two side-looking cameras of
the Ladybug3 camera system. Here we see that the error
in the estimated calibration parameters reduces with the
increase in the number of scans. Ideally, this error should
asymptotically approach the expected value of the error (i.e.,
E[|6 — ©]] — 0), however we observe some residual bias.
The primary reason for the residual bias is the assumption
that the intrinsic parameters of the lidar and camera ob-
tained from the manufacturers are correct, which is not nec-
essarily true. The intrinsic parameters for each laser beam
(a total of 64 lasers) of the Velodyne lidar includes (i) ele-
vation angles, (ii) range bias, (iii) intensity calibration, and
(iv) rotation angle. Also, for the Ladybug3 omnidirectional
camera, the intrinsic parameter of each lens includes (i) fo-
cal length, (ii) camera center, (iii) lens distortion parameters,
and (iv) relative transform of each camera with respect to
the camera head (X .,). Therefore, with so many other pa-
rameters that are used to compute the cost function, it is
difficult to identify the actual source of the residual bias
that we observe in this experiment. It should be noted that
in this experiment we used only a single camera as op-
posed to all five cameras of the omnidirectional camera sys-
tem, thereby reducing the amount of data used in each trial
by 1/5. It is our conjecture that with additional trials, a
statistically significant validation of unbiasedness could be
achieved.
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(a) A 3D TOF camera and a monocular
camera mounted on a rigid bar

(b) Depth map from TOF camera

(c) Intensity map from TOF camera

reerrrr i

(d) Image from monocular camera

Figure 17. Data obtained from a 3D TOF camera and monocular camera system.

4.2. Time-of-flight 3D Camera and Monocular
Camera

In this section, we present results from data collected
from a 3D time-of-flight (TOF) camera (Xu et al., 2005)
and a monocular camera (Point Grey Research Inc., 2010)
mounted on a rigid bar [see Figure 17(a)]. A sample image
obtained from the monocular camera is shown in 17(d) and
the corresponding depth and intensity map of the scene
obtained from the TOF 3D camera are shown in Figures
17(b) and 17(c), respectively. The size of the depth map
obtained from the 3D camera is 200 x 200 pixels, which
equates to 40,000 3D points per scan. We use the 3D points
with the intensity information along with the camera im-
agery to estimate the calibration parameters within the pro-
posed framework. We assume that the intrinsic calibration
parameters of the monocular camera are either known or
are pre-computed using any standard method [e.g., (Zhang,
2000)]. In Figure 18, we show qualitative calibration re-
sults for projecting the 3D points onto the corresponding
camera imagery using the estimated rigid-body transfor-
mation. We also show how the calibration results improve
when multiple scans are considered in the Ml-based cal-
culation. We observe that the standard deviation of the es-
timated calibration parameters decreases and approaches
the CRLB as the number of scans used to calculate the Ml is
increased.

4.3. 92D Laser Scanner and Monocular Camera

In this section, we present results from data collected from
a 2D laser scanner (Hokuyo, 2009) and a monocular camera
(Point Grey Research Inc., 2010) mounted on a rigid bar, as
shown in Figure 19. This type of sensor setup is typical for
an indoor SLAM problem. In our case, the single-beam 2D
laser scanner operates at 30 Hz and provides 540 points per
scan, hence the number of scans required to achieve small
variance of the calibration parameters is significantly large
as compared to the Velodyne (of the order of a few hundred
scans). The quality of the minimum variance estimate (cal-
culated from 700 scans) is shown in Figure 19(b). Although
we have used up to 700 scans in this experiment, the to-
tal number of points used to estimate the MI still remains
significantly less (700 x 540 = 378, 000 points) as compared
to 20 Velodyne scans (i.e., 20 x 80, 000 = 1, 600, 000 points).
In Figure 19(c), we plot the sample standard deviation of
the estimated calibration parameters and the correspond-
ing CRLB as a function of the number of scan pairs used.
As observed in the earlier experiments (Sections 4.1.2 and
4.2), we see a decrease in parameter variance as the number
of scans is increased and the sample standard deviation ap-
proaches the value predicted by the CRLB. Although, the
standard deviation does not seem to converge to zero, if
we use more scans the standard deviation can be further
reduced and will converge to zero in the limiting case.
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Pandey et al.: Automatic Extrinsic Calibration of Vision and Lidar « T17

rrrrPPREIEIErrS

(a) TOF point cloud projected onto the camera imagery

8 20 12
- e -Sample ¢ - e -Sample ¢ Q - e -Sample ¢
Q —o—CRLB —o—CRLB 10 —o—CRLB
6f 15} @ \
. ' \
1Y v 8 o,
Tl T £ ?
S4 \ s1or Y S 6 '
< v S LN ~ \
¥ e 4 \
2 L% 5 hS .
\ L:N 2 b
[P “e. oL
N o o
0 0 0

0 20 40 60 0 20 40 60 0 20 40 60
# Scans # Scans # Scans

- e -Sample ¢ Q‘
Q —=—CRLB ol
' '

- e -Sample ¢
—o—CRLB

- e -Sample ¢
Q —o—CRLB

1.5

3l

Roll (degree)
N
o-
Pitch (degree)
Yaw (degree)

o, 05 .

0 20 40 60 0 20 40 60
# Scans # Scans

(b) Ml-based calibration result

Figure 18. Results for the MI-based calibration of a 3D TOF camera and a monocular camera. (a) TOF point cloud projected onto
the camera imagery; the points are color-coded based on scene depth from the camera. (b) We plot the uncertainty of the recovered
calibration parameter versus the number of scans used. The red (dashed line) plot shows the sample-based standard deviation (o)
of the estimated calibration parameters calculated over 1,000 trials. The green (solid line) plot represents the corresponding CRLB
of the standard deviation of the estimated parameters. Each point on the abscissa corresponds to the number of aggregated scans

used per trial.

It should be noted that in this experiment, we have not
mounted the sensors to any robotic platform; instead, we
have attached the sensors on a rigid bar and moved the
whole assembly in space while collecting the data for cali-
bration (i.e., there is no restriction of movement). However,
if the sensors were to be mounted on a planar robot, observ-
ability of certain calibration parameters will be an issue. We
think that this issue can be resolved, however, by designing
a rigid fixture for the sensors (e.g., a rigid bar, as shown in
the experiment) and computing the relative sensor trans-
form using the method described here before mounting the
fixture to the robot, for example.

5. DISCUSSION

The MI-based framework for calibration of multimodal sen-
sors presented here assumes that the range sensor also pro-
vides reflectivity of the surface apart from the range infor-
mation. However, oftentimes we need to use other sensing
modalities (e.g., sonar or laser without reflectivity) due to
system constraints or for certain specific requirements. We
have not tested the proposed MI-based framework with any
sensors that do not provide a direct correlation as observed
between reflectivity and gray-scale values. However, we
believe that one can extract similar features from the two
modalities, which can be used in the MI framework. For
instance, if the lidar just gives the range returns (i.e., no re-
flectivity), then we can first generate a depth map from the
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point cloud. The depth map and the corresponding image
should both have edge and corner features at the discon-
tinuities in the environment (Figure 20). The MI between
these features should exhibit a maxima at the sought-after
rigid-body transformation. There might be other ways to
extract highly correlative features for such sensors, and it
will be worthwhile to explore the use of these features in
the MI-based calibration framework.

Additionally, the proposed algorithm is formulated as
an optimization problem that maximizes a cost function to
estimate the unknown calibration parameters. Therefore,
the optimization techniques used to solve the unknown
variables directly affect the robustness and computational
complexity of the algorithms. In this paper, we have used a
simple gradient descent technique to solve the optimization
problem. It works well when we use sufficient data, how-
ever it is sensitive to initialization errors and has the ten-
dency to get trapped in a local optima. Moreover, since the
cost function is a nonparametric function of the unknown
variables, the gradient is computed numerically, thereby
making it computationally expensive and inaccurate. Sev-
eral methods of directly estimating the derivative of the MI-
based cost function using interpolation techniques (Maes
etal., 1999; Panin & Knoll, 2008) have been developed in the
past. In the future, we would like to use these techniques to
obtain a better estimate of the first- and second-order deriva-
tives of the MI-based cost function, thereby improving the
estimated calibration parameters and the corresponding
CRLB.
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Figure 19. Results for the Ml-based calibration of a 2D lidar and a monocular camera. (a) 2D laser scanner and a monocular
camera mounted on a horizontal bar. (b) 2D lidar points projected onto the camera image using the estimated transform. Points
are color-coded based on distance from the camera: blue—close, red—far. (c) We plot the uncertainty of the recovered calibration
parameter versus the number of scans used. The red (dashed line) plot shows the sample-based standard deviation (o) of the
estimated calibration parameters calculated over 1,000 trials. The green (solid line) plot represents the corresponding CRLB of the
standard deviation of the estimated parameters. Each point on the abscissa corresponds to the number of aggregated scans used

per trial.

6. CONCLUSIONS

We presented an information theoretic algorithm to auto-
matically estimate the rigid-body transformation between a
camera and a lidar range sensor. It is important to note
that the reflectivity of the 3D points obtained from the
range sensor and the intensity of the pixel obtained from
the camera are discrete signals generated by sampling the
same physical scene, but in a different manner. Since the
underlying structure generating these signals is common,
they are statistically dependent upon each other. We use
MI as the measure of this statistical dependence and for-
mulate a cost function that is maximized for the correct
calibration parameters. The source code of an implemen-
tation of the proposed algorithm in C++ is available for
download from our server at http://robots.engin.umich.
edu/SoftwareData/ExtrinsicCalib.

The proposed algorithm is completely data-driven and
does not require any artificial targets to be placed in the
field-of-view of the sensors, making it fairly easy to cal-
ibrate. Target-based methods, on the other hand, require
special fiducials to be placed in the environment, which
is onerous. This is the reason why sensor calibration in a
robotic application is typically performed once, and the
same calibration is assumed to be true for rest of the life

of that particular sensor suite. However, for robotics appli-
cations where the robot needs to go out into rough terrain,
the assumption that the sensor calibration is not altered dur-
ing a task is often not true. Although we should calibrate
the sensors before every task, it is typically not practical to
do so if it requires setting up a calibration environment ev-
ery time. Our method, being free from any such constraints,
can be easily used to fine-tune the calibration of the sen-
sors in situ, which makes it applicable to in-field calibration
scenarios.

We compared the proposed algorithm with two target-
less calibration methods. The first method, from Williams
et al. (2004), is fundamentally very similar to the proposed
method as it uses correlation of lidar reflectivity and gray-
scale intensity values from the camera to estimate the cali-
bration parameters. Since x2 cost and MI are both statistical
measures of the correlation of these intensity values, we ob-
serve similar results when the same number of scans is used
to estimate the calibration parameters from the x*-test and
the proposed method. The advantage of using Ml is that it
is a well-studied measure, and several methods of robust
and efficient estimation of MI from the sample data have
already been developed, which can be directly used within
the proposed framework. The second method, that of Levin-
son and Thrun (2012), also uses the joint statistics of data
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(a) Monocular Camera (b) Kinect Camera

(d) Depth map

(e) Edges from color image (f) Edges from depth map

Figure 20. Here we illustrate an example extension of the MI-based calibration framework to a monocular camera with a Kinect
camera, which does not provide any reflectivity information. The color image and the corresponding depth map from the Kinect
camera are shown below (center panel). The edges extracted from the color image and the corresponding depth map (bottom panel)

clearly show a correlation.
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obtained from the lidar and camera to estimate the cali-
bration parameters. Although we observe similar trends in
results, the proposed method produces better results with
smaller amounts of data. This is mainly because Levinson’s
method discards a significant amount of data in the pre-
processing stage. An important advantage of Levinson’s
method, however, is that it does not use reflectivity values
from lidar data and, therefore, can be used to calibrate sen-
sors that do not necessarily provide reflectivity information.

We showed that the proposed algorithm works with a
wide variety of sensors commonly used in indoor/outdoor
robotics. Various experiments were performed to show the
robustness and accuracy of the algorithm in typical robotics
applications. Whether it is a 3D laser scanner and an om-
nidirectional camera system mounted on the roof of a car,
or a 2D laser scanner and a monocular camera mounted
on a robotic platform for indoor applications, the proposed
method works equally well.

Our algorithm also provides a measure of the uncer-
tainty of the estimated parameters through the Cramér-Rao
lower bound. We have shown in our experiments that the
sample variance of the estimated parameters approaches
the CRLB as the number of scans is increased, therefore in
the limit our estimator can be considered to be an efficient
estimator. Moreover, in the limiting case, the CRLB can be
considered as the true variance of the estimated parameters
and can be readily used within any probabilistic robotics
perception framework.
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