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resistant measure to detect cognitive EEG activity
during locomotion
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Abstract

Background: High-density electroencephalography (EEG) with active electrodes allows for monitoring of
electrocortical dynamics during human walking but movement artifacts have the potential to dominate the signal.
One potential method for recovering cognitive brain dynamics in the presence of gait-related artifact is the
Weighted Phase Lag Index.

Methods: We tested the ability of Weighted Phase Lag Index to recover event-related potentials during
locomotion. Weighted Phase Lag Index is a functional connectivity measure that quantified how consistently 90°
(or 270°) phase ‘lagging’ one EEG signal was compared to another. 248-channel EEG was recorded as eight subjects
performed a visual oddball discrimination and response task during standing and walking (0.8 or 1.2 m/s) on a
treadmill.

Results: Applying Weighted Phase Lag Index across channels we were able to recover a p300-like cognitive
response during walking. This response was similar to the classic amplitude-based p300 we also recovered during
standing. We also showed that the Weighted Phase Lag Index detects more complex and variable activity patterns
than traditional voltage-amplitude measures. This variability makes it challenging to compare brain activity over
time and across subjects. In contrast, a statistical metric of the index’s variability, calculated over a moving time
window, provided a more generalized measure of behavior. Weighted Phase Lag Index Stability returned a peak
change of 1.8% +−0.5% from baseline for the walking case and 3.9% +−1.3% for the standing case.

Conclusions: These findings suggest that both Weighted Phase Lag Index and Weighted Phase Lag Index Stability
have potential for the on-line analysis of cognitive dynamics within EEG during human movement. The latter may
be more useful from extracting general principles of neural behavior across subjects and conditions.
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Background
The ability to measure cognitive brain dynamics with
electroencephalography (EEG) during real-world beha-
viors has historically been challenging for neuroscien-
tists. One of the most fundamental and difficult aspects
of this challenge is to parse EEG from electromyo-
graphic, electroocular, and movement artifacts that occur
during movement [1-5]. Overcoming this challenge would

help researchers understand the cognitive dynamics that
occur during everyday life. It would also have applica-
tions in various neurotechnologies, such as monitoring
neurological conditions, and would greatly contribute to
the understanding of the control of human movement.
Movement artifacts in EEG recorded during walking in-
clude movement of electrodes, loss of skin contact,
muscles activation associated with head stabilization
(electromyographic artifact) [6,7], and cable sway that
leads to electronic interference. Other electrical artifacts
in EEG occur due to muscle activation associated with
jaw clenching and blinking, and movement of the eye
(electroocular artifacts). These latter artifacts are not
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specific to movement tasks but can still make it diffi-
cult to separate out EEG related from true cognitive
dynamics.
Two recent papers [8,9] have demonstrated the ability

to record event-locked cognitive EEG activity during lo-
comotion despite the presence of movement artifacts. In
the first analysis [8], the authors introduced an artifact
template technique to remove gait-locked EEG activity,
and were able to recover an event-locked p300 response
associated with an oddball discrimination task even dur-
ing running. In the second analysis [9], the authors used
independent component analysis (ICA) to separate EEG
channel activity during walking into brain, muscle, eye,
and movement artifact signals. Using an inverse model-
ing approach, the authors were able to determine the
anatomical locations of independent sources of brain ac-
tivity that collectively formed the scalp level p300 re-
sponse. While both were effective at removing walking
artifact they each had their limitations. The first tech-
nique requires a regular and predictable pattern of move-
ment over which an artifact template can be time locked.
Such conditions do not exist for most types of artifacts
and require specialized recording equipment in the lab
(i.e., motion capture cameras). The second technique
(ICA) requires significant post-processing methods, which
would not be useful for brain-machine interface devices
in their current state. Neither of these approaches can
be used in real-time.
One alternative approach for reducing EEG artifacts

has been to use machine learning techniques such as a
neural networks [10] to extract the important signal.
Earlier methods of artifact reduction that focus on phase,
instead of amplitude, include Mean Phase Coherence
[11], Phase Lag Index [12], Phase Locking Value [13],
and Imaginary Coherency [14]. Each of these techniques
have naturally progressed from one another. They have
emerged from our understanding that phased-based
measures of functional connectivity can be useful in re-
moving artifact signals that primarily lie in amplitude
space. It was not until Stam introduced the most recent
family of Phase Lag Index measures however, that the
artifact removing benefit of removing phase and anti-
phase locked signal was demonstrated. To our knowl-
edge, none of these techniques have been applied to
EEG recorded during walking, so it is not known how
effective they would be in the presence of gross body
movements.
The next metric in this progression that could be used

for reducing movement artifacts in EEG is the Weighted
Phase Lag Index (WPLI). WPLI was introduced recently
[15]. It extends Stam’s PLI measure, by introducing a
phase-difference weighting normalization. WPLI could
negate the need for standard EEG pre-processing techni-
ques like noisy channel removal, noisy epoch removal,

or artifact-laden epoch removal by filtering out artifacts
on-line. The major advantage of having an on-line me-
thod for artifact rejection is that it would allow for fast
implementation for assessing cognitive dynamics [16-18]
and could also be used for brain-computer interfaces
[19] that worked in real time. This would facilitate neu-
rotechnology development that could be deployed out-
side the laboratory.
To test the potential of WPLI for the on-line assess-

ment of cognitive dynamics, we collected EEG data from
healthy human subjects standing and walking while en-
gaged in a visual oddball discrimination task. The visual
oddball discrimination task is an extremely well-studied
[20,21] paradigm involving a subject viewing presenta-
tions of two stimuli; a ‘standard’ that occurs often, and
an ‘oddball’ that occurs infrequently. The presentation of
this oddball is known to create an event-related potential
(ERP) at about 300 milliseconds after presentation of the
oddball (p300), as measured by EEG. We hypothesized
that WLPI would allow us to recover a p300-like event-
related potential from movement artifact contaminated
EEG recorded during walking that manifested from the
phase relationships among channels. We also investi-
gated a measure of WPLI Stability (WPLIS) to generalize
the WPLI measure, classifying periods of high or low
stability/volatility. The purpose of using WPLIS was to
account for the intra-subject and inter-trial specificity
in the WPLI response. It allowed us to generalize the
WPLI response and quantify the gross changes in WPLI
dynamics.

Methods
Eight healthy, right handed, volunteers, with no history
of major lower limb injury and no known neuro-
logical or locomotor deficits completed this study
(age range 20–31 years). All subjects provided written
informed consent prior to the experiment. The University
of Michigan Internal Review Board approved the proto-
col and we complied with all standards defined in the
Declaration of Helsinki. More detailed accounts of
the data collection methods can be found in previous
publications [9].
Subjects stood and walked (0.8 m/s), on a treadmill

while we recorded 248-channel electroencephalography
at 512 Hz (ActiveTwo, BioSemi, Amsterdam, The
Netherlands). Concurrently, standard (80%) and target
(20%) stimuli (0° or 45° rotated black crosses on a white
background, respectively) appeared on a monitor placed
at eye level about 1 m in front of the subjects. Each stimu-
lus was presented for 500 ms separated by intervals of uni-
form variation between 500 ms and 1500 ms. For each
gait condition (standing and walking), subjects performed
an experimental block where they pressed a handheld but-
ton whenever the target stimulus appeared (active) and a
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control block where they did not press a button (passive).
Triggers were sent from the computer and the handheld
button to time-lock the presentation and reaction to the
EEG data. Each data collection session began with the
standing condition, followed by the walking condition.
The standing block lasted 5 minutes each while the walk-
ing lasted 10 minutes. Subjects performed only a single
block of each condition to minimize the effects of stimu-
lus habituation.

EEG processing for comparative analysis
All processing and analysis was performed in Matlab
(The Mathworks, Natick, MA) using scripts based on
EEGLAB (sccn.ucsd.edu/eeglab), an open source envir-
onment for processing electrophysiological data [22], as
well as specialized code for this study.
For the majority of the analyses in this paper, all EEG

channels were used. However, to compare the inclusion/
exclusion of noisy channels, we identified noisy channels
as in [8,23]. Data was initially high-pass filtered above
1 Hz. EEG noise removal parameters were then selected
according the established standards of EEGLAB and it
developers at the Swartz Center for Computational Neu-
roscience (University of California San Diego). EEG sig-
nals exhibiting substantial noise throughout the standing
and walking conditions were removed from the data in
the flowing manner: 1) channels with std. dev. > 1000 μV
were removed, 2) any channel whose kurtosis was more
than 5 std. dev. from the mean was removed, and 3)
channels that were uncorrelated (r< 0.4) with nearby
channels for more than 1% of the time-samples were
removed. An average of 130.4 EEG channels remained
after the exclusion of these channels (range : 89–164,
stdev : 24.6). Channels were then re-referenced to an
average of the remaining channels.

Weighted Phase Lag Index
After collection, EEG signals were band passed around
4 ± 2 Hz using a 2nd order Butterworth filter. Additional
frequency bands around 6, 8, and 10 Hz were also inves-
tigated, though the 4 Hz band showed the most robust
result. In future studies it may be useful to thoroughly
explore the range of frequency bands, the impact of dif-
ferent bandwidths, and the cross communication be-
tween frequencies.
We calculated WPLI as explained by Vinck et al. [15].

Data were down sampled from 512 Hz to 51.2 Hz before
calculation of instantaneous phase because of computa-
tional limitations. Interpolation was not used as it may
have an effect on the calculation of phase. Because of
the frequency band investigated we do not believe this
downsampling significantly affected the metric. The in-
stantaneous phase φn,t, of each channel, for every time
sample, was calculated by first taking the Hilbert

transform of Ψ. Ψ is the matrix of n = 1. . .N channels
(rows) and t = 1. . .T time samples (columns),

~ψn;t ¼ H ψn;t

� �

and then computing the instantaneous phase,

φn;t ¼ tan�1
~ψn;t

ψn;t

 !
:

Next, the phase difference between every channel pair
was computed, for each time sample,

ΔΦni;nj;t ¼ φni;t � φnj;t :

WPLI was calculated over ~488 ms sliding windows,
with ~244 ms of overlap, via the following equation:

WPLIni;nj;t ¼ <
sin ΔΦni;nj;τ
� ��� ��

sin ΔΦni;nj;τ
�� >

�����
�����

where ΔΦn1, n2,τ is a vector of phase differences span-
ning ~488 ms (25 time samples) and τ is the sliding time
window index. At this point, since WPLI is an undir-
ected measure, the total number of connections can be
reduced from N2 to N(N-1)/2. For simplicity however
we keep N2 connections here.
The purpose of the WPLI is to remove amplitude and

phase synchronous based artifacts that are intrinsically
mixed with brain activity. By operating in phase space,
and maximally weighting ±90 degree phase differences,
all signals associated with temporally acute, as well as
uniformly driven sources, are omitted. Only phase lag-
ging interactions, like those from a complex coupled os-
cillator system (e.g., the brain), are detected.

Weighted Phase Lag Index Stability
We used the coefficient of variation, calculated over a
0.5 s sliding time-window, to calculate WPLI Stability.
For a given WPLI window, τ, WPLIS was:

WPLISni;nj;τ ¼
STD WPLIni;nj;τ�0:5s⋯WPLIni;nj;τ

� �
WPLIn1;n2;τ�0:5s⋯WPLIni;nj;τ
� �

where STD is the standard deviation. This measure of
temporal stability identifies periods of high/low WPLI
variability. If WPLI is a measure of the functional flow
of information between two brain regions (mapped to
EEG channels in this case) [15], then a low WPLIS
reflects continuous and uniform flow of this informa-
tion. Conversely, if WPLIS is high then WPLI is highly
irregular and an unstable dynamic information flow is
implied.
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Weighted Phase Lag Index Stability Statistics
The error for all WPLIS was calculated as the standard
error across all eight subjects. WPLIS changes were cal-
culated in reference to the baseline by averaging the
0.5 s epoch prior to oddball presentation. Then, the
minimum WPLIS value was extracted for the 1.5 s epoch
following the oddball presentation. The error for that
minimum value was then used to calculate z-scores and
p-values for the minimum.

Principal Component Analysis of WPLIS Event-Locked
Response
We performed a principle components analysis (PCA),
using MATLAB’s built in PCA function, on the channel
pairs to achieve two goals. First, we wanted to extract
the primary underlying event-locked response in the
WPLIS brain network. Second, we sought to map the
spatial distribution of the channel pairs that contributed
most highly to the event-locked WPLIS response.
We generated a topographic map showing the extent

to which each channel pair contributed to the first prin-
cipal component (PC) of the WPLIS response. This was
done by summing, for each channel of a channel pair,
the positive contributions (PC loading) to the first PC.
Channels that contributed most strongly and most often
(as a part of various channel pairs) to the first PC, had
the highest cumulative loading and the warmest topo-
graphic map color.

CumulativePC Loadingni ¼

XN
nj¼1

PC Loadingninj ; PCLoading ≥ 0
0; PC Loading < 0

	

Results
The conventional approach to analyzing stimulus-locked
EEG signals with high artifact requires significant post-
processing and cannot be done on-line. Figure 1 sum-
marizes this paper. It demonstrates the four conditions
in this EEG study along with the conventional (left) and
WPLI (right) processing methods. Notice the time arrows
along the left side demonstrating which methods can be
computed on-line and which must be done post-hoc.
Figure 2 shows the EEG signals during standing and

walking time-locked to the onset of the visual oddball
stimulus (Figure 2). We plotted the average scaled and
normalized voltage response, for a single subject, from
0.5 s before stimulus onset to 1.0 s after stimulus onset
for all channels (1a, 1d), non-noisy (good) channels
(1b,1e), and noisy (bad) channels (1c,1f ) as color-coded
horizontal lines. Some noisy channels appeared clean for
the standing cases because the noisy channels were

defined across the standing and walking conditions, as
well as across time periods not within these epochs. For
the standing case, a p300 response (negative scalp poten-
tial deflection around 300–700 ms after oddball pre-
sentation, vertical black dashed line) was visible (black
rectangle) and was more pronounced when noisy chan-
nels were omitted (Figure 2b). For the walking condition
(Figures 2d-1f ), no p300 cognitive potential was visible
above the background noise. Figure 2g shows the EEG
channel presented as locked to heel strike rather than
oddball presentation. The artifacts from this event are
many orders of magnitude larger than the voltage changes
due to a cognitive response.
The WPLI results demonstrate a much clearer p300-like

deflection for both standing and walking. Figure 3 shows
WPLI results for the same subject, session, and epoch data
as in Figure 2. The WPLI values are plotted for each chan-
nel pair (instead of for each channel as in Figure 2) be-
cause WPLI is a network approach. Figure 3 shows that a
robust event-locked WPLI deflection exists, even across
electrode pairs containing previously defined noisy chan-
nels (Figure 3c). Even in the walking case (Figure 3d-f),
where the voltage amplitude signal was dominated by

Figure 1 Flow chart representing the four experimental
conditions and the two EEG processing streams that have been
used for EEG recorded during human locomotion. The top block
shows the four conditions over which EEG was recorded; standing
while passively engaged in the oddball task, standing while actively
engaged in the oddball task, walking while passively engaged in the
oddball task, and walking while actively engaged in the oddball task.
WPLI can be calculated entirely on-line while most other processing
techniques must be calculated offline.
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Figure 2 Oddball and heel-strike locked voltage amplitude responses for a single subject (1) plotted over epochs from 0.5 s before to
1 s after the time-locking event. The color mapped oddball, time-locked, voltage responses of all (a, d), clean/good (b, e), and bad (c, f)
channels during standing (top row) and walking (bottom row) are shown. Clean channels are defined as those free of movement and EEG
artifact, and bad channels are those omitted per the criteria discussed in methods. The standing cases show the cognitive dynamics that can be
resolved time-locked to the oddball. The walking cases demonstrate that these dynamics are lost due to walking artifact. Panel (g) shows the
voltage amplitude response locked to left heel-strike and how significant the walking artifact is. Each channel voltage color is normalized to its
average voltage. Channels are sorted and numbered by their correlation to the mean voltage signal with higher correlated signals at the bottom.
The black box around 300 ms in (b) shows a example component of the p300 negative deflection across clean channels. This deflection is not
visible during walking (panel e).

Figure 3 Oddball and heel-strike locked WPLI deflections for the same subject as in Figure 2 plotted over epochs from 0.5 s before
to 1 s after the time-locking event. The color mapped WPLI response of all (a, d), clean (b, e), and bad(c, f) channel pairs (62 k = 61,504) during
standing (top row) and walking (bottom row) are shown. Only data from the first 25% of each session was used. Channel pair WPLI measures are
sorted and numbered by their correlation to the mean WPLI response. There is a clear and uniform WPLI deflection across almost all channels.
This deflection can be seen even when both channels are considered bad and for the walking case. Panel (i) shows the WPLI deflections
time-locked to left heel-strikes.
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artifact, a clear event-locked cognitive response is visible.
Figure 3g demonstrates the effectiveness of WPLI in re-
moving movement artifact as the previously strong heel-
strike artifacts shown in Figure 2 are mostly removed.
The WPLI results were not consistent across time or

subjects. Figure 3 is limited to the first two minutes
(~25%) of the trial for the subject. The same subject’s
WPLI response, when viewed across the whole time period
as shown in Figure 4a. It is highly variable and does not
provide a consistent response. In addition, the timings of
distinct WPLI deflections, were variable across subjects
(Figure 4b,c). This suggests the WPLI may not be the
ideal measure for making generalizations of cognitive dy-
namics with consistency between subjects and over time.
WPLIS provided a consistent and robust measure of

oddball presentation (Figure 5). The grand mean WPLIS
(averaged over all channel pairs and subjects within a
given session type), time-locked to the oddball stimulus,
is shown in Figure 5. The shaded regions indicate the
standard errors across subjects. The sliding 0.5 s window
used to calculate WPLIS smoothes the deflections seen
in WPLI (Figure 3), therefore a longer (−0.5 s through
1.5 s) epoch is shown in Figures 4 and 5. For the stand-
ing and walking conditions (Figures 5), WPLI stabilization
(i.e. a WPLIS decrease) was observed across nearly all of
the channel pairs. This statistically significant decrease

began 300 ms after stimulus onset, peaked around
700 ms, and continued until approximately 1 s after the
presentation of the oddball stimulus. For the passive
standing case a 3.6%+−0.8% change from baseline was
measured (p = 0.0001) while for the active standing case
a 3.9% +−1.3% change from baseline was measured
(p = 0.0028). For the passive walking case a 2.4% +−0.3%
change from baseline was measured (p = 0.0001) while
for the active walking case a 1.8% +−0.5% change from
baseline was measured (p = 0.0001). Figure 5 also shows
which electrodes, belonging to pairs, contribute to the 1st

principal component of activity. We see the strongest con-
tribution for the posterior regions near the visual cortex.
Figure 6 shows the average WPLIS for each channel

pair, time locked to the oddball stimulus, for each ses-
sion type: standing/passive, standing/active, walking/pas-
sive, and walking/active. Channel pairs were sorted by
correlation to the mean. In both the standing and walking
conditions, a decrease in WPLIS occurred around 700 ms
for the channel pairs. This response only occurred in fewer
channel pairs during walking compared to standing.

Discussion
Conventional approaches to EEG processing in high-
artifact studies rely on post-processing that includes the
removal of entire channels and time epochs that are

Figure 4 Variability of time and subject of WPLI response to oddball stimulus. A) WPLI averages taken over 10 distinct 30 s intervals to
highlight the time varying nature of the WPLI event-locked response. The first 30 s of the trial were averaged in interval 1 and the last 30 seconds
in interval 10. Red vertical lines indicate the onset of the oddball stimulus in each interval. Subject 1 is the same subject used in previous figures.
B,C) Channel pair WPLI responses for selected intervals and over all time demonstrating the variability of WPLI responses across subjects.

Lau et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:47 Page 6 of 9
http://www.jneuroengrehab.com/content/9/1/47



laden with noise. After these steps are taken they often
require large averages over trials and subjects to negate
the remaining artifact effects. After removal of noisy
channels, the remaining noise that was not time-locked
to the cognitive event of interest is assumed to be
smoothed and removed by the averaging of voltage traces
over many trials when calculating event-related potential
(ERP) plots. This approach can capture p300-related
deflections under controlled artifact-limited conditions.
WPLI, a dynamic network functional connectivity

measure, was less sensitive to gait-phase locked artifacts
than conventional EEG channel voltage analyses. How-
ever, WPLI responses that were time locked to the ap-
pearance of a visual oddball stimulus during walking
were highly variable across subjects and trials. We found
that a stability measure of WPLI (i.e. WPLIS) provided a
more robust p300-like cognitive event during walking.
In the most general sense, a stability measure of any
metric will provide a more generalized measure of its
dynamic properties. The stability measure used here is
analogous to the Fano Factor [24], which has been
expanded to generalize the inter-spike intervals of neur-
onal firing. WPLIS allows for the comparison and aver-
aging of responses within sessions and between subjects.
Our results suggest that WPLI provides a more useful

technique for on-line analysis of cognitive dynamics dur-
ing human walking than WPLI alone. However these
results suggest that WPLI measures a more complex
and specific activity than conventional amplitude-based
measures. This leads to significant intra- and inter-

subject variability and simple averaging of WPLI fails.
WPLIS can be used for grouped analyses of WPLI across
subjects and different studies. The findings are an im-
portant step toward developing a computational meth-
odology to analyze EEG activity while humans interact
in a real-world environment.
In another recent study [8], the researchers used an

event related template to remove stride-synchronous
movement artifacts. Gwin et al. [8] collected both EEG
and kinematic data, created an artifact template by first
time warping stride-locked EEG signals to uniform lengths
in time, then averaged them. This template was sub-
tracted from the EEG activity and the signal was un-
warped, leaving only EEG activity and artifact that was
not concurrent with each stride. While this method was
useful in removing walking artifact, it is limited in its ap-
plicability to controlled situations, uncommon in real-
world environments. It also does not account for random
and unpredictable movement artifacts that may other-
wise obscure the cognitive signal. Furthermore, by re-
moving all EEG signal concurrent with stride, possible
brain dynamics linked to stride were also removed [23].
The WPLIS measure does not require such an a priori
knowledge of the nature of the artifact, nor the inclusion
of kinematic movement data. Another major advantage
of the WPLIS measure over the event related template
technique is that WPLIS detection of cognitive proces-
sing can be conducted in an on-line fashion. The event
related template technique requires considerable post-
processing after data collection [8], the inclusion of the

Figure 5 The average WPLIS response across subjects for the standing/passive (a), standing/active (b), walking/passive (c), and
walking/active (d) conditions. Each case shows a statistically significant WPLIS decrease that follows the oddball presentation with a downwark
peak at ~600 ms. For the active cases (b, d) the negative deflections are more pronounced. For the passive standing case a 3.6% +−0.8% change
from baseline was measured (p = 0.0001) while for the active standing case a 3.9% +−1.3% change from baseline was measured (p = 0.0028).
For the passive walking case a 2.4% +−0.3% change from baseline was measured (p = 0.0001) while for the active walking case a 1.8% +−0.5%
change from baseline was measured (p = 0.0001). The EEG electrodes most strongly contributing to the 1st principal component are shown in
panel e. As expected strong visual cortex connectivity is present as the subject(s) observe the computer screen.
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entire data set, and significant human analyzer input.
Thus, although both techniques have demonstrated suc-
cess as decoding electrocortical events related to cogni-
tive dynamics, there are clear reasons for choosing one
over the other depending on the situation of the data
collection.
The WPLI and WPLIS measures are both network-

based approaches to quantifying electrocortical dynam-
ics. Several network-based approaches for understanding
static and dynamic brain activity have gained consider-
able acceptance in recent years [25-29]. Network-based
approaches allow for a broader parameter space (N2 as
opposed to N, where N is the number of EEG channels)
in quantifying brain activity. In addition, network-based
approaches are driven by the interactions between
sources of activity, instead of the individual sources
themselves. This allows for a more complex character-
ization of activity. Network approaches recover the func-
tional connectivity of the active brain [25,26]. Specifically,
functional connectivity is the dynamic measured con-
nectivity that reflects the anatomical connectivity and
the underlying processes occurring in the brain at a
given time. WPLI, in particular, is a functional connect-
ivity measure that was designed to ignore non-brain
sources of activity. The fundamental assumption is that
stable, 90 degree out-of-phase, signals can only

consistently arise from highly complex coupled har-
monic oscillator systems (i.e., the brain) and not from
external noise and artifact sources.
There are a number of areas where this methodology

can be expanded to provide additional insight into
underlying cognitive activity. Most importantly, the
time-varying nature of WPLI dynamics should be stud-
ied in more detail. Figure 4 exhibits a complex and vari-
able WPLI response across subjects and time. While this
result may not be ideal for the consolidation of results, it
does not imply that WPLI itself is inherently flawed. On
the contrary, it suggests a deeper and more robust meas-
ure of cognitive dynamics that may vary across subjects
and time. Further examination is needed to elucidate the
complex WPLI response, much like initial work in the
p300 voltage-amplitude response has led to a deeper
understanding of the p3a and p3b [21,30].
The existence of several underlying processes contrib-

uting to the WPLI response described here would not be
entirely surprising because WPLI is a functional con-
nectivity metric. WPLI measures the interaction between
channel pairs and quantifies the dynamic interaction be-
tween them, reflecting the functional connectivity be-
tween brain regions. In addition, the application of
measures such as mean path length, clustering coeffi-
cients, and betweeness centrality could help researchers
further understand connectivity changes within and be-
tween tasks [28,31,32]. Lastly, a comparison to the de-
biased WPLI may advance the results presented here [15].
We did not attempt to specifically describe the nature

of changes in the WPLI response over the duration of
the trials. Instead, we used WPLIS to identify periods of
strong WPLI fluctuation, or conversely, WPLI steadying.
WPLIS is not a direct measure of network communica-
tion, as WPLI is; instead, it measures changes in commu-
nication or functional network connectivity. A WPLIS
decrease, indicating stabilization, reflects smaller changes
in WPLI over time, meaning a more homogenous and
temporally uniform processing state. Conversely, a WPLIS
increase indicates larger changes in WPLI over time, and
a transitioning processing state. The implementation of
WPLIS was a necessary first step, but, as Figure 4 indi-
cates, the dynamics of WPLI likely reflect functional
connectivity which may be more complex than trad-
itional voltage-amplitude measures.

Conclusion
We demonstrated that WPLIS can be used to recover
event-locked cognitive activity from artifact-contaminated
EEG recorded during a walking task. WPLI had more
limitations as a measure for long-term data collections
and across subjects than WPLIS because of its sensi-
tivity to a robust and yet unexplored range of brain
connectivity dynamics. This work represents a logical

Figure 6 Event locked WPLIS responses for the standing/
passive (a), standing/active (b), walking/passive (c), and
walking/active (d) conditions showinging pair-pair changes that
are locked to the oddball stimulus. Changes in the baseline level
of WPLIS occur between standing and walking however the
event-locked decrease is observable in both cases. Channel-pair
WPLIS responses were averaged across subjects and then sorted
by correlation to the mean.
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step towards implementation of EEG-based brain im-
aging in real-world settings with on-line artifact removal.
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