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Identification of white campion (Silene latifolia)
guaiacol O-methyltransferase involved in the
biosynthesis of veratrole, a key volatile for
pollinator attraction
Alok K. Gupta1,2*, Tariq A. Akhtar3, Alex Widmer2, Eran Pichersky3 and Florian P. Schiestl1

Abstract

Background: Silene latifolia and its pollinator, the noctuid moth Hadena bicruris, represent an open nursery
pollination system wherein floral volatiles, especially veratrole (1, 2-dimethoxybenzene), lilac aldehydes, and
phenylacetaldehyde are of key importance for floral signaling. Despite the important role of floral scent in ensuring
reproductive success in S. latifolia, the molecular basis of scent biosynthesis in this species has not yet been
investigated.

Results: We isolated two full-length cDNAs from S. latifolia that show similarity to rose orcinol O-methyltransferase.
Biochemical analysis showed that both S. latifolia guaiacol O-methyltransferase1 (SlGOMT1) & S. latifolia guaiacol
O-methyltransferase2 (SlGOMT2) encode proteins that catalyze the methylation of guaiacol to form veratrole. A large
Km value difference between SlGOMT1 (~10 μM) and SlGOMT2 (~501 μM) resulted that SlGOMT1 is 31-fold more
catalytically efficient than SlGOMT2. qRT-PCR expression analysis showed that the SlGOMT genes are specifically
expressed in flowers and male S. latifolia flowers had 3- to 4-folds higher level of GOMT gene transcripts than
female flower tissues. Two related cDNAs, S. dioica O-methyltransferase1 (SdOMT1) and S. dioica O-methyltransferase2
(SdOMT2), were also obtained from the sister species Silene dioica, but the proteins they encode did not methylate
guaiacol, consistent with the lack of veratrole emission in the flowers of this species. Our evolutionary analysis
uncovered that SlGOMT1 and SlGOMT2 genes evolved under positive selection, whereas SdOMT1 and SdOMT2
genes show no evidence for selection.

Conclusions: Altogether, we report the identification and functional characterization of the gene, SlGOMT1 that
efficiently catalyzes veratrole formation, whereas another copy of this gene with only one amino acid difference,
SlGOMT2 was found to be less efficient for veratrole synthesis in S. latifolia.
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Background
White campion, Silene latifolia (Caryophyllaceae), emits
a diverse array of volatiles to attract sphingid, geometrid,
and noctuid moths for pollination [1-4]. This species also
shows a pronounced day-night rhythm in odor emission,
with the key compounds predominately emitted during

the night [4-7]. Among commonly known pollinators for
this species, Hadena bicruris, a noctuid moth, is a spe-
cialist nursery pollinator and obligate seed predator [8,9].
Female H. bicruris are not only attracted for nectaring
but also for oviposition into female S. latifolia flowers
[10]. The larvae nurture on developing seeds [11] and
consume almost one fourth of the fruits developed
[12,13]. Available experimental evidence indicates that
the Hadena-Silene relationship can swing in between
mutualism and antagonism [9].
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Recently, the scent composition of S. latifolia and
related species has been identified and studied for be-
havioral activity in the pollinators [4,10,14]. A large set
of volatile compounds has been found in the S. latifolia
floral odor bouquet [6,7,13,15] and these compounds
comprise three major categories: fatty acid derivatives,
aromatics, and terpenoids [6,7]. Using wind-tunnel
bioassays, Dötterl et al. [13] investigated pollinators
interaction with individual scent compound and uncov-
ered that only seven (veratrole, decanal, linalool, guai-
acol, phenylacetaldehyde, isopentylaldoxime, and lilac
aldehydes) out of total produced compounds in S. latifo-
lia flowers showed behavioral activity in H. bicruris. A
further study based on scent composition analysis
revealed that veratrole and lilac aldehydes emission is
reduced four-folds after pollination, while other behav-
iorally active and non-active compounds remain un-
altered [10]. Therefore, apart from being involved in
pollinator attraction, the decrease in veratrole and lilac
aldehyde emission may slow down oviposition and sub-
sequent seed predation by Hadena following pollination.
Phenylacetaldehyde, one of the most abundant behavior-
ally active compounds, is involved in floral isolation of S.
latifolia from the closely related species S. dioica [6].
These investigations altogether imply that veratrole, lilac
aldehydes, and phenylacetaldehyde are key odor com-
pounds that play a central role in pollinator attraction
and floral isolation [6,7,10,14]. It is presently unclear
which compounds induce oviposition by Hadena
females into female S. latifolia flowers. H. bicruris rarely
oviposits into S. dioica [11]. However, the qualitative dif-
ference in floral volatile organic compounds (VOCs) be-
tween S. dioica and S. latifolia involves only few
compounds. Veratrole, guaiacol, and benzyl benzoate are
produced only in S. latifolia but a fatty acid derivative,
nonanal is only emitted by S. dioica [6]. Therefore,
besides quantitative scent differences [6], three com-
pounds produced in S. latifolia are involved in species
differentiation and presumably in maintaining the
Hadena-Silene latifolia relationship.
During the past two decades, molecular research on

Silene has primarily focused on sex-determination [16-19],
the evolution of heteromorphic sex chromosomes [20-24],
hybridization [25,26], and EST sequencing for species dif-
ferentiation or marker development [27,28]. The produc-
tion of copious amounts of behaviorally active volatile
compounds also makes Silene an ideal system for investi-
gating genes underlying volatile biosynthesis. At present,
though, scent biosynthetic pathways remain uncharacter-
ized in Silene. Among several scent enzymes known so far,
the plant O-methyltransferase (OMT) family of enzymes
performs a prominent role in secondary metabolism and
eliminates a methyl group from S-adenosyl-L-methionine
to the hydroxyl group of the substrate [29]. Besides

playing a role in lignin biosynthesis [30,31], anthocyanin
biosynthesis [32,33], and disease resistance [34-36], these
OMTs are also involved in volatile biosynthesis [37-40].
For instance, eugenol O-methyltransferase (EOMT) and
chavicol O-methyltransferase (CVOMT) methylate the
substrates in order to synthesize methyleugenol and
methylchavicol, respectively [41,42]. Studies in roses
reported the functional characterization of orcinol O-
methyltransferases (OOMT1 and OOMT2) genes that are
involved in the formation of 3-hydroxy 5-methoxytoluene
and 3, 5–dimethoxytoluene (DMT), two key scent com-
pounds of rose varieties [43,44]. Until now, several plant
methyltransferases have been functionally characterized
owing to their involvement in floral scent biosynthesis and
flavoring properties [42,45,46].
As part of an ongoing research project to characterize

key genes involved in floral scent biosynthesis in Silene
species, we have recently developed a S. latifolia floral
EST resource of 3,072 sequences by constructing one
standard and two subtraction cDNA libraries (Gupta
et al. in prep). The analysis of these sequences allowed
us to characterize a wide range of candidate genes in-
cluding several OMTs with high similarities to function-
ally characterized OMTs in other species. Here we show
that two full-length coding cDNAs derived from these
libraries represent S. latifolia guaiacol O-methyltransferase1
(SlGOMT1) and S. latifolia guaiacol O-methyltransferase2
(SlGOMT2) genes and address the following questions:
1) Do heterologously expressed proteins catalyze the forma-
tion of veratrole in S. latifolia and S. dioica? 2) How do dif-
ferences in veratrole emission between day and night in
S. latifolia controlled? 3) Are SlGOMT genes differentially
expressed between floral and leaf tissues, and between
sexes? 4) Do SlGOMT and S. dioica O-methyltransferase
(SdOMT) genes show evidence for selection?

Results
Isolation and characterization of GOMT and GOMT-like
cDNAs
A search of the EST database constructed from S. latifo-
lia flowers (Gupta et al. in prep) for sequences homolo-
gous to known O-methyltransferases identified ESTs,
and the sequence information in these ESTs led to the
isolation of two coding cDNA sequences of 1,059 bp
that we designated as SlGOMT1 and SlGOMT2. These
sequences encode peptide sequences of 353 amino acids
and the molecular mass of both purified SlGOMT pro-
teins was approximately 37 kD on SDS-PAGE, similar to
other plant-based methyltransferases [29] (Figures 1&2).
SlGOMT1 and SlGOMT2 were nearly identical with
the exception of two nucleotides differences that result
in one amino acid difference at position 74. This weak
divergence suggests that the two sequences correspond
to different alleles of the same locus. An alignment of
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the deduced SlGOMT1 and SlGOMT2 protein sequences
with other characterized protein sequences is shown in
Figure 2. The comparison of deduced amino acid se-
quences between SlGOMTs (SlGOMT1 and SlGOMT2)
and biochemically characterized OMTs of other plants
revealed the 54–55% identity with orcinol OMTs from
Rosa hybrida [43] and 54% identity with resveratrol
OMT from Vitis [35]. Further Blast searches also showed
45% identity with Ocimum eugenol OMT [42] and 31%
identity with Solanum catechol OMT [47]. Based on pri-
mers designated for SlGOMT1 and SlGOMT2, we were
also able to obtain two GOMT-like coding cDNAs of
1,062 bp long from RNA extracted from S. dioica flowers
and we designated them SdOMT1 and SdOMT2. These
both sequences shared 89–90% identity with SlGOMT1
and SlGOMT2.

Biochemical characterization of SlGOMTs and SdOMTs
SlGOMTs and SdOMTs were expressed in E. coli and
the proteins tested for methylation activity with guaiacol,
the presumed substrate of veratrole, as well as orcinol,
the substrate of OOMT, eugenol, the substrate of
EOMT, and catechol, a compound recently shown to be
the substrate of a methyltransferase in tomato, which
converts it to guaiacol [47]. Methyleugenol, which has
no hydroxyl groups that could be methylated, was used
as a control (Table 1). SlGOMT1 exhibited preferred ac-
tivity with guaiacol and was efficiently able to methylate

guaiacol to veratrole (Figures 3, 4, 5 & Additional file 1:
Figure S4), with a Km value for guaiacol of 9.8 μM
(Table 2). SlGOMT2 had low levels of activity with sev-
eral substrates, including guaiacol (Table 1) and a Km

value for guaiacol, 501 μM, that is 51-fold higher than
that of SlGOMT1 (Table 2), resulting an enzyme that is
31-fold less efficient with guaiacol than SlGOMT1
(Table 2). SdOMT1 and SdOMT2 did not methylate any
of these tested substrates.

Veratrole emission
Veratrole emission from both female and male flowers
was 50–77 orders of magnitude higher during the night
than during the day (Z =−3.321, p= 0.001; Table 3). As
expected, there was no veratrole emission detected from
leaf tissue, indicating that veratrole is a flower-specific
compound (leaf volatile data is not shown in Table 3).
However, there was no significant difference in veratrole
emission for male and female flowers (Z = 0, p= 1).

Gene expression analysis
To ascertain whether SlGOMT genes are differentially
expressed between flowers and leaves in S. latifolia, qRT-
PCR analyses were performed (Table 3). Our results show
that SlGOMT genes are preferentially expressed in floral
tissue, whereas no expression was detected in leaf tissues
(Table 3, data is not shown for leaf tissue in this table).
Surprisingly, there was no significant difference found in
SlGOMT gene expression in flowers collected during day
and night (Z=−0.680, p= 0.529). However, SlGOMT ex-
pression is significantly (3–4 folds) higher in males than in
females during day and night (Z=−3.250, p=0.001).

Evolutionary analysis
To analyze evolutionary relationships and patterns of se-
quence evolution in SlGOMTs and SdOMTs sequences,
we retrieved a total of 92 plant OMT sequences from
NCBI (Additional file 2: Table S1) following the criteria
described in the methods section. These sequences were
combined with our SlGOMTs and SdOMTs sequences to
construct a Bayesian inference phylogeny. All identified
Silene sequences formed a separate clade and showed
distant relationships with M. truncatula isoflavone7-O-
methyltransferase (IOMT) gene. A maximum likelihood-
based analysis of synonymous versus non-synonymous
mutations was performed to test for the signature of se-
lection. Our analysis revealed strong evidence for positive
selection (ω= 2.38; p= 0.0017) along the branch leading
to SlGOMT1 and SlGOMT2, whereas no evidence for
positive selection was found along the branch to
SdOMT1 and SdOMT2 (Additional file 3: Table S2).
Purifying selection was found along the branch linking
the SlGOMT and SdOMT sequences (ω =0.14;
p= 0.0032; Figure 6).

Figure 1 Purification of SlGOMT1 and SlGOMT2. Both GOMT1
and GOMT2 were purified by Ni2+ affinity chromatography and
separated by SDS-PAGE. Lane 1 shows the soluble crude bacterial
extract (~10 μg) and lane 2 shows the purified protein (~1 μg).
Molecular weight markers are shown on the left.
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SlGOMT1  - - - - - - - - - - - - - - - - M E N P K E L L N A Q A H I WNH I F AY H S S AAL K CA I E LG I P D T I E KHGN P
SlGOMT2  - - - - - - - - - - - - - - - - M E N P K E L L N A Q A H I WNH I F AY H S S AAL K CA I E LG I P D T I E KHGN P
SdOMT1  - - - - - - - - - - - - - - - - M E N P K E L L N A Q A H I WNH I F AY HR S S AL K CAV E LG I P D A I E KH S N P
SdOMT2  - - - - - - - - - - - - - - - - M E N P K E L L N A Q A H I WNH I F AY HR S T AL K CAV E LG I P D T I E KHGN P
RhOOMT1 M E R L N S F R H L N Q KW S N G E H S N E L L H A Q A H I WNH I F S F I N S MS L K S A I Q LG I P D I I NKHG Y P
RhOOMT2 M E R L N S F K H L N Q KW S N G E H S N E L L H A Q A H I WNH I F S F I N S MS L K S A I Q LG I P D I I NKHG - P
VvROMT1 - - - - - - - - - - - M D L A N G V I S A E L L H A Q A H VWNH I F N F I K S MS L K CA I Q LG I P D I I HNHGK P
ObEOMT  - - - - - - - - M A L Q KV D I S L S T E Q L L Q A Q V H VWNHMYA F AN S MS L K CA I Q LG I P D I L HKHG R P
CTOMT1  - - - - - - - - - - - - - - - - - - - - - - - - - - - - M L D RM L YV L A S Y S L L D C S V V E - - - - - - - - - - - - 
 1 . . . . . . . 1 0 . . . . . . . . 2 0 . . . . . . . . 3 0 . . . . . . . . 4 0 . . . . . . . . 5 0 . . . . . . . . 6 0 . 

SlGOMT1  M T L Q D L A N S L A I T P T K T L S L YR L L R L L V H S N F F S MT K L VD - - G E E AY ANN I N S QLLL KDH P
SlGOMT2  M T L Q D L A N S L A I T P T K T L S L YR L L R L L V R S N F F S MT K L VD - - G E E AY ANN I N S QLLL KDH P
SdOMT1  M T L Q D L A N S L A I T P T K T R S L YR L L R L L V H S N F F S MT K L VD - - G E E AY GNN I N S QLLL KDH P
SdOMT2  M T L Q D L A K S L A I T S N K T S S L YR L L R L L V H S N F F S A T K L VN - - G E E VY DNN I N S QLLL KDH P
RhOOMT1 M T L S E L T S A L P I H P T K S H S V YR LM R I L V H S G F F A KKK L S K T DE E - GY T LT DA S QLLL KDH P
RhOOMT2 M T L S E L T S A L P I H P T K S H S V YR LM R I L V H S G F F A KKK L S K T DE E - GY T LT DA S QLLL KDH P
VvROMT1 M T L P E L V A K L P V H P K R S Q C V YR LM R I L V H S G F L A AQR VQQ G KE E E GY V LT DA S R LLL M D D S 
ObEOMT  M T L S Q L L Q S I P I NK E K T Q C F QR LM R A L V N S N F F I E E N N S N - NQ E VC YWLT P A S C LLL K E A P
CTOMT1  - - - - - - - - E G N G V T E R R Y G L S RVG K F F V R D - - - - - - - - - - - - - - - - - - - - - - - - - - - - E D G 
 . . . . . . . 7 0 . . . . . . . . 8 0 . . . . . . . . 9 0 . . . . . . . 1 0 0 . . . . . . . 1 1 0 . . . . . . . 1 2 0 . . 

SlGOMT1  C T L A P F T L G ML D P A M T E P P HY L S KW F Q N Q - D E S V F HV I HG R S FW E HA G LT P G F N Q L F N R AM
SlGOMT2  C T L A P F T L G ML D P A M T E P P HY L S KW F Q N Q - D E S V F HV I HG R S FW E HA G LT P G F N Q L F N R AM
SdOMT1  C T L A P F I L G S L D P P M T E P P HY L S KW F R N Q - D E S A F HV VHG R S FW E HA S LT P E F N Q L F N R AM
SdOMT2  C T L A P F T L G T L D P S M T K A P Q Y L S KW F Q N Q - D E S A F HV VHG R S FW E HA G LT P G F N Q L F N R AM
RhOOMT1 L S L T P Y L T A ML D P V L T N PWN Y L S T W F Q N D - D P T P F D T AHGMT FWDYG NHQ P S I A H L F N D AM
RhOOMT2 L S L T P F L T A ML D P V L T T PWN Y L S T W F Q N E - D P T P F D T AHGMT FWDYG NHQ P S I A H L F N D AM
VvROMT1 L S I R P L V L A ML D P I L T K PWHY L S AW F Q N D - D P T P F H T AH E R S FWDYA GHE P Q L NN S F N E AM
ObEOMT  L T V T P L V Q V V L D P T F T N PWH HMS E W F T H E K HA T Q F E A ANG C T FW E K L ANE P S K G R F F D E AM
CTOMT1  A S M G P L L A L L Q D KV F I N S W F E L KD A V L E G - - GV P F DR VHG VHA F E Y P K LD PK F N D VF N Q AM
 . . . . . 1 3 0 . . . . . . . 1 4 0 . . . . . . . 1 5 0 . . . . . . . 1 6 0 . . . . . . . 1 7 0 . . . . . . . 1 8 0 . . . 

SlGOMT1  G S D A S F V S I A L V AN K D F A K M V E G I G S L V D V AGG D G T V AK I I AR A Y PW L KCTV F DL P Q VV D G
SlGOMT2  G S D A S F V S I A L V AN K D F A K M V E G I G S L V D V AGG D G T V AK I I AR A Y PW L KCTV F DL P Q VV D G
SdOMT1  G S D A S F V S S V L V A S K D F KK M V E G L G S L V D V AGG N G TMAK T I AR A Y PW L KC I V F DL PHVV D G
SdOMT2  G S D T S F V S S V L V D S K D F KK M V E G I G S L V D V AGG N G TMAK T I AR A Y PW L KC I V F DL PHVV D G
RhOOMT1 A S D A R L V T S V I I N - - D C K G V F E G L E S L V D V GGG T G T L AKA I ADA F P H I ECTV L DL PHVV A D 
RhOOMT2 A S D A R L V T S V I I D - - D C K G V F E G L E S L V D V GGG T G T V AKA I ADA F P H I ECTV L DL PHVV A D 
VvROMT1 A S D A R L L T S V L L K - - E G Q G V F AG L N S L V D V GGG T GKV AKA I ANA F P H L NCTV L DL PHVV A G
ObEOMT  S C D S R L I A H V F T K - - D Y K H V I E G I R T L V D V GGG N G TMAKA I VE AMP T I KCTV I DL PHVV A G
CTOMT1  I N H T T V V M K R I L E N - - - Y K G F E N L K T L V D V GGG L GVN L KM I T S K Y P T I KG TN F DL PHVV Q H 
 . . . . 1 9 0 . . . . . . . 2 0 0 . . . . . . . 2 1 0 . . I. . . . . 2 2 0 . . . . . . . 2 3 0 . . . . . II. . 2 4 0 . . . . 

SlGOMT1  L Q G N - G S N L E Y V AG DM F K E I P S AD V VM L KW I L H DWS D E HC V R I L E R C K EA I P S N - - - GK I I
SlGOMT2  L Q G N - G S N L E Y V AG DM F K E I P S AD V VM L KW I L H DWS D E HC V R I L E R C K EA I P S N - - - GK I I
SdOMT1  L Q G N D I S N L E Y V AG DM F K E I P S AD A L M L KW I L H DWS D E QC V R I L E R C K EA I P S N - - - GK I I
SdOMT2  L Q G N D I S N L E Y V AG DM F K E I P S AD A L M L KW I L H DWS D E QC V R I L E R C K EA I P S N - - - GK I I
RhOOMT1 L Q G S - - K N L K Y T GG DM F E A V P P AD T V L L KW I L H DWS D E E C I K I L E R S R VA I T G K E KKGKV I
RhOOMT2 L Q G S - - K N L K Y T GG DM F E A V P P AD T V L L KW I L H DWND E E C I K I L KR S R VA I T S K D KKGKV I
VvROMT1 L Q G S - - K N L N Y F AG DM F E A I P P AD A I L L KW I L H DWS D E E C VK I L KR C R EA I P S K E NG GKV I
ObEOMT  L E S T - - D N L N Y I GG DM F Q S I P S AD A I L L K S I I H DWDD V E G L K I L KK C KDA VV M G - - - GKV I
CTOMT1  A P S Y - - P G V D H V GG DM F E S V P QGD A I F MKW I L H DWS D GHC L KL L KN C HKA L P D N - - - GKV I
 . . . 2 5 0 . . . . . III. . 2 6 0 . . . . . . . 2 7 0 . . . . . . . 2 8 0 . . . . . . . 2 9 0 . . . . . . . 3 0 0 . . . . . 

SlGOMT1  I I DMV V D P Q A Q N NN H F H A Q L L S DM E MMA L N VGG I E R T E DQWKK L F L Q AGFNHYN I F P I LG I 
SlGOMT2  I I DMV V D P Q A Q N NN H F H A Q L L S DM E MMA L N VGG I E R T E DQWKK L F L Q AGFNHYN I F P I LG I 
SdOMT1  I I DMV V D P Q A Q N NN H F H T Q L L F DM E MMA L Y VGG I E R T E DQWKK L F L Q AGFNHYN I F P I LG L
SdOMT2  I I DMV V D P Q A Q N NN H F H T Q L L F DMAMMA L F VGG I E R T E DQWKK L F L Q AGFNHYN I F P I LG L
RhOOMT1 I I DM M M E N Q K G D E E S I E T Q L F F DM L MMA L V GG - K E RN E K E WAK L F T D AGF S D YK I T P I S G L
RhOOMT2 I I DM M M E N Q K G D E E S I E T Q L F F DM L MMA L V R G - Q E RN E K E WAK L F T D AGF S D YK I T P I LG L
VvROMT1 I I DM I M M K N Q G D YK S T E T Q L F F DM T MM I F A P G - R E RD E N E WEK L F L D AGF S HYK I T P I LG L
ObEOMT  I I D V V V G V N H D I D E V L E D Q L H F DMAMMC Y F NA - K E R T MS E WEK L I YD AGFKS YK L T P A F G V 
CTOMT1  V V E A N L P V K P D T D T T V V G V S QCD L I MMA Q N P GG K E R S E Q E F RA L A S E AGFKG V N L I C C V C N 
 . . 3 1 0 . . . . . . . 3 2 0 . . . . . . . 3 3 0 . . . . . . . 3 4 0 . . . . . . . 3 5 0 . . . . . . . 3 6 0 . . . . . . 

SlGOMT1  R S V I E V R C L                                                     
SlGOMT2  R S V I E V R C L                                                     
SdOMT1  R S V I E V R C L                                                     
SdOMT2  R S V I E V R C L                                                     
RhOOMT1 R S L I E V Y P -                                                     
RhOOMT2 R S L I E V Y P -                                                     
VvROMT1 R S L I E V Y P -                                                     
ObEOMT  R S L I E A Y P -                                                     
CTOMT1  F W V M E F Y K -                                                     

. 3 7 0 . . . . . 

Figure 2 Alignment of SlGOMT1 (Silene latifolia), SlGOMT2 (Silene latifolia), SdOMT1 (Silene dioica), and SdOMT2 (Silene dioica). White
letters on black background show identical amino acids of at least five sequences. One amino acid (in yellow background) that is involved in the
difference of catalytic efficiency is highlighted. Three conserved SAM-binding domains are also shown in red blocks. GenBank accession numbers
are as follows: RhOOMT1 (Rosa hybrida, NCBI: AF502433), RhOOMT2 (Rosa hybrida, NCBI:AF502434), VvROMT (Vitis vinifera, NCBI:CAQ76879),
ObEOMT (Ocimum basilicum, NCBI:AF435008), and CTOMT1 (Solanum lycopersicum, sol genomics network:SGN-U582403).
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Discussion
In this paper, we report the identification of a novel en-
zyme that is responsible for the formation of veratrole
(1, 2-dimethoxybenzene) from guaiacol in Silene latifo-
lia. Veratrole is widely found among plants and is
known as a key compound for some plant-insect interac-
tions. In S. latifolia and other Silene species, veratrole is
a key compound for pollinator attraction [5,13,48]. The
related 1, 4-dimethoxybenzene volatile compound has
been identified from the flowers of Salix species and this
compound serves as an attractant for an oligolectic bee
[49]. Schiestl & Dötterl [50] have also recently shown
the evolutionary importance of methoxlated aromatics
including veratrole in the association of Araceae plants
and their pollinators, but until our study, the molecular
basis of veratrole synthesis was unknown in planta.

GOMT and veratrole biosynthesis
The dioecious Silene latifolia serves as a plant model
system for several ecological and evolutionary topics
due to its remarkable features including well differen-
tiated heteromorphic sex chromosomes, its nursery
pollination system, and the associated floral fragrances
[6,7,13,23,51-55]. In S. latifolia, aromatic (e. g., vera-
trole, phenylacetaldehyde, methylsalicylate, and benzyl

benzoate) and montoterpenoid (e. g., lilac aldehydes &
alcohol, α-pinene, and linalool) compounds comprise a
significant part of the total floral scent emission [6,7].
Genes involved in the synthesis of these few widespread
floral volatiles have been characterized in a number of
plants, mostly from hermaphroditic species. For instance,
genes that are involved in the synthesis of phenylacetal-
dehyde have been characterized in Petunia [56], Rosa
[57], Lycopersicum [58], and Arabidopsis [59]. Similarly, a
large number of terpene synthase genes have been iso-
lated and characterized in several plant species [60-66].
However, few scent genes have been examined in dioe-
cious species, with one exception being the two terpene
synthase genes that are accountable for the synthesis of
some sesquiterpenes in Actinia deliciosa flowers [67].
One of these two terpene synthase genes was found to
possess conifer diterpene internal sequence (CDIS) do-
main that is usually characteristic feature of many di-
terpene synthase and determines their activity [67,68].
Veratrole is a key attractant compound in the floral fra-

grance of S. latifolia and it is down-regulated, together
with other compounds, subsequent to pollination [10].
Our study in this dioecious plant species characterized
two candidate "veratrole forming genes", SlGOMT1 and
SlGOMT2. Analysis of the activities of the enzymes they
encode showed that SlGOMT1 is an efficient and specific
guaiacol methyltransferase (Tables 1, 2, and Figures 3–5)
whose activity leads to the synthesis of veratrole.
SlGOMT1 also had low levels of activity (<11% com-
pared with its activity with guaiacol) with several other
substrates, with the exception of catechol (Table 2).
SlGOMT2, on the other hand, has low levels of activity
with guaiacol compared to the activity of SlGOMT1
(Tables 1, 2, and Figure 5), and comparably low levels
with several other substrates tested. Therefore, it is not
possible to conclude at this point that the presence of
SlGOMT2 in the flowers would lead to the synthesis of
veratrole, particularly since the Km value of SlGOMT2 is
relatively high compared with the corresponding value of

Table 1 Substrate specificity of SlGOMT1 and SlGOMT2
with various substrates

Substrate SlGOMT1* (% Activity) SlGOMT2 (% Activity)

Guaiacol 100 12

Catechol 35 13

Orcinol 11 9

Eugenol <1 <1

Methyleugenol <1 <1

Purified SlGOMT1 and SlGOMT2 were assayed at room temperature under
standard assay conditions by adding substrate at a final concentration of
200 μM and excess 14C-SAM together. Relative activity is expressed as the
percentage of GOMT1 activity with guaiacol as a substrate.
* Specific activity was measured 1.96 NMOL/MIN/MG protein at saturating
substrate concentrations.

Figure 3 Biosynthesis of veratrole in Silene latifolia. A methyl group from S-adenosyl-L-methionine (SAM) is transferred to the p-hydroxyl
group of guaiacol to synthesize veratrole and S-adenosyl-L- homocysteine (SAH).
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SlGOMT1 (app. 500 μM vs.10 μM, Table 2). An examin-
ation of the internal concentration of guaiacol in flower
tissue is required to resolve this issue.
It has recently been reported that catechol is the sub-

strate of a methyltransferase in tomato fruit (CTOMT)
that converts it to guaiacol [47]. Thus, catechol may
serve as a precursor of guaiacol in S. latifolia as well. Al-
though SlGOMT1 does show a relatively low level of
amino acid similarity to tomato CTOMT, we observed a
moderate level of activity for SlGOMT1 with catechol
(Table 1). While this result is intriguing, additional work
such as measuring catechol concentrations in S. latifolia

Figure 4 A representative GC chromatogram showing the conversion of guaiacol to veratrole by SlGOMT1. A desalted crude extract from
E. coli cells expressing SlGOMT1 was supplied with guaiacol and SAM. Volatile compounds were collected and analyzed as described in methods
section.

Figure 5 Velocity versus substrate curves for SlGOMT1 (closed
circles) and SlGOMT2 (open circles) with increasing amounts of
guaiacol.

Table 2 Kinetic parameters of SlGOMT1 and SlGOMT2

Recombinant
protein

Km Kcat Kcat/Km

μM s-1 s-1M-1

SlGOMT1 9.79 ± 1.51 2.58 × 10-3 ± 1.64× 10-4 270.27 ± 64.10

SlGOMT2 501 ± 198 3.95 × 10-3 ± 1.09× 10-3 8.63 ± 1.81
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flowers must be carried out to determine whether cat-
echol is indeed the precursor of guaiacol in this system.
In tomato, both catechol and guaiacol have been detected
in the fruit, but in S. latifolia flowers, only guaiacol emis-
sion, but not catechol, have been observed [6,7,10,47].
It is well established that in many species, flower scent

emission is governed by a circadian clock and/or light,
apparently as an adaption to the temporal activity of their
pollinators [37,38,69-71]. Our study and that of Wälti
et al. [6] show that scent emission in S. latifolia differs
between day and night. Furthermore, SlGOMT expres-
sion in male flowers was 3–4 folds higher than in female
flowers both during the day and night but this difference
was not found for sex-specific veratrole emission. Wälti
et al. [7] found significant higher veratrole emission in
male compared to female S. latifolia plants and the lack
of a significant sex specific difference in our study may
be consequence of relatively low sample size combined
with high variability in veratrole emission. It is worth
noting, however, that Nieuwenhuizen et al. [67] found
that A. deliciosa female flowers produce more scent than
male flowers even though no difference in gene expres-
sion was found between flowers of the two sexes.

Evolution of GOMT
The observation that a single amino difference between
SlGOMT1 and SlGOMT2 is responsible for a large dif-
ference in catalytic efficiency of veratrole synthesis in
S. latifolia is intriguing. Similarly, two duplicated gene
copies were characterized for eugenol synthesis in
Clarkia breweri in which one copy is about 3.5 fold
more efficient than the other [72].
In contrast to S. latifolia which emits veratrole in its

floral odor, S. dioica emits no veratrole [6]. The two
genes found in that species that are closely related to
SlGOMTs, SdOMT1, and SdOMT2, were found to be
expressed in floral tissue, but, our data show that
SdOMT1 and SdOMT2 do not have activity with guai-
acol, catechol, or the other substrates tested in this
study. It is possible that these enzymes contain muta-
tions that render them inactive. Koeduka et al. [73]
found that a single nucleotide substitution in the cod-
ing region of the Petunia axillaris subsp parodii

isoeugenol synthase (PapIGS) gene has resulted to the
loss of the enzymatic activity and thereby, prevents
isoeugenol emission from flowers. On the other hand,
several studies on the plant OMT family have revealed
that one or a few amino acid changes can be responsible
for novel substrate specificities, such as in the Clarkia iso
(eugenol) OMT [45] and Ocimum phenylpropene-OMTs
[74]. Such amino acid changes in OMT sequences have
been found to evolve under positive selection [75,76].
Because the sequences of SlGOMT1 and SlGOMT2

are more similar to each other than to SdOMT1 and
SdOMT2 (Figure 6), we do not know if they represent
two alleles of the same locus, or a duplication that oc-
curred after the split from S. dioica. The results of the
sequence divergence analysis indicate positive selection
on SlGOMT1 & SlGOMT2 (as evidenced by their signifi-
cant dN/dS value, 2.39), suggesting the recent acquisi-
tion of GOMT activity in S. latifolia by a few amino acid
substitutions. This evolutionary change could be brought
about through selection for better discrimination by pol-
linators from its closely related sister species, S. dioica,
leading to enhanced floral isolation [77,78]. Alterna-
tively, veratrole could be a key signal in the specific asso-
ciation of S. latifolia with its primary pollinator, Hadena
bicruris. Pollinator-mediated selection is commonly oc-
curring on scent compounds [79,80]. Higher amount of
veratrole emission can empower higher flower attractive-
ness from longer distances in S. latifolia [7,13,81]. Al-
though there is no selection detected on SdOMTs, the
evidence for purifying selection before in the branch
leading to both SlGOMTs and SdOMTs suggest a con-
served role of the ancestral OMT proteins, and it is
therefore possible that the SdOMT enzymes have an-
other, as yet uncharacterized functions.

Conclusions
Two novel flower-specific methyltransferase genes were
characterized from S. latifolia that are capable of
methylating guaiacol and is expressed differentially be-
tween male and female individuals. Our study also
provides the foundation for future Silene scent molecu-
lar research. Altogether, the information provided on
genes responsible for scent production and its evolu-
tionary signatures will be relevant for understanding
pollinator-driven selection on floral scent variation in
plants.

Methods
Plant materials
S. latifolia and S. dioica plants were grown under green
house conditions at the Hönggerberg and Eschikon ex-
perimental sites of ETH Zurich. Flowers were harvested
after dusk (mid night). The flowers were snap-frozen in
liquid nitrogen after collection and stored at −80°C until

Table 3 Veratrole emission and SlGOMT expression in
Silene latifolia flowers

Flower / Condition Expression
(Mean± SE)

Veratrole emission1

(Mean± SE)

Night flowering2 ♀ 0.31 ± 0.08 1.36 ± 0.49

Day flowering2 ♀ 0.43 ± 0.08 0.027 ± 0.027

Night flowering2 ♂ 1.11 ± 0.28 3.86 ± 3.17

Day flowering2 ♂ 1.24 ± 0.20 0.05 ± 0.038
1 ng/l, 2 n = 5.
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use. Total RNAs were extracted from flowers using the
RNeasy plant mini kit (Qiagen) and poly A+mRNA was
isolated using the Oligotex mRNA kit (Qiagen) accord-
ing to the manufacturer's instructions.

Isolation of full-length SlGOMTs & SdOMTs
S. latifolia floral EST libraries were searched against
sequences with homology to known members of plant
methyltransferase families using the BLASTX algorithm

Figure 6 Phylogenetic analysis of Silene GOMT homologs. Bayesian phylogeny with branch length from BaseML is shown and numbers
indicate posterior probabilities (only 1.0 value mentioned) next to branches.
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[82]. One partial sequence showing similarity with rose
orcinol O-methyltransferase was selected for isolation of
the full-length cDNA sequence. Complete coding cDNA
sequences were isolated using the SMART-RACE cDNA
amplification kit (Clontech) according to the manufac-
turer's protocol. Gene-specific primer pairs were used to
obtain the full-length cDNA sequence from S. latofolia
as well as from S. dioica, and the resulting PCR products
were cloned into the pSMART vector (Lucigen). Inserts
were verified by sequencing. Two coding sequences each
from S. latifolia and S. dioica were isolated.

Preparation of Silene GOMT constructs
To determine whether SlGOMT1, SlGOMT2, SdOMT1,
and SdOMT2 potentially encode functional proteins, we
amplified the complete open reading frames including
start codons but without native stop codons at the end.
The protein coding regions (ORFs) of SlGOMTs and
SdOMTs were amplified by RT-PCR using an upstream
primer and a downstream primer (Additional file 4:
Table S3). PCR amplification was carried out for
30 cycles after an initial denaturation at 94°C for 2 min.
Each cycle consisted of denaturation at 94°C for 1 min,
annealing at 55°C for 1 min and extension at 72°C for
2 min with a final extension of 7 min in a Biometra ther-
mocycler. The resulting PCR products were cloned into
expression vector using pEXP-CT/Topo TA expression
kit according to manufacturer's instructions. The con-
structs were subjected to complete sequencing to con-
firm the orientation of the inserts.

GOMT activity, purification, enzymatic assays, and
product identification
SlGOMT1, SlGOMT2, SdOMT1, and SdOMT2 con-
structs were transformed into E. coli BL21-CodonPlus
(DE3)-RIPL cells (Stratagene). Cells harboring constructs
were cultured in LB medium until an OD600 of 0.6. Iso-
propyl 1-thio-β-D-galactopyranoside (IPTG) was added
to a final concentration of 1 mM to induce protein ex-
pression and cells were incubated for 16 hours at 18°C.
Cell pellets resuspended in Buffer A (100 mM Tris–HCl,
5 mM MgCl2, 10 mM β-mercaptoethanol, 10% glycerol
[v/v], pH 7.5) were subsequently ruptured by sonication.
Clarified crude extracts were desalted on PD-10 columns
equilibrated with Buffer A and protein concentration
was estimated with the standard Bradford method. En-
zymatic activity was performed essentially as described
by Wang et al. [83]. Enzyme (10–20 μg of desalted crude
extract) was incubated in a final volume of 50 μl with
0.2 mM substrate (guaiacol, orcinol, catechol, eugenol,
and methyleugenol) and 5 μM S-[methyl-14C]adenosyl-
L-Met (40–60 mCi/mmol) for 30 minutes at room
temperature. Reaction products were extracted with
200 μl of ethyl acetate and 100 μL of the organic phase

was transferred to 2 ml of non-aqueous scintillation fluid
and subjected to a scintillation counter (model 2S6800,
Beckman). Approximately 50 μg of desalted crude ex-
tract was incubated in a final volume of 200 μl contain-
ing 1 mM guaiacol and 1 mM SAM in buffer A for
30 minutes at room temperature and SPME device was
employed for volatile collection.
The recombinant SlGOMT1 and SlGOMT2 proteins

produced in E. coli were purified by Ni2+ affinity chro-
matography (Qiagen), according to the manufacturer’s
instructions. Briefly, crude protein extracts were desalted
into Buffer B (100 mM potassium phosphate, 150 mM
NaCl, 10 mM imidazole, pH 7.5) and applied to 0.5 mL
of Ni2+ resin. Following 10 column washes with Buffer
B, proteins bound to the resin were eluted with Buffer B
containing 250 mM imidazole. Eluted proteins were
desalted into Buffer A and concentrated using Amicon
ultra-15 filters (Millipore). Protein purity of the eluted
proteins was assessed by SDS-PAGE and concentration
was determined as described above. For kinetic analysis,
assays were performed as described above with ~0.5 μg
of purified SlGOMT1 or 2 and various concentrations of
guaiacol, while SAM concentration was held constant at
200 μM. Reactions were stopped by the addition of 10 μL
of 2 N HCL. Double reciprocal plots were used to deter-
mine the apparent Km and Vmax for each enzyme.

Scent collection
Floral odor was collected in a climate chamber using the
dynamic heaspace method. We collected odor at light
from 4 AM to 8 PM and in the dark from 9 PM to
3 AM. Five individuals each of both sexes were used for
floral volatile collection and three individuals of each sex
were selected for leaf volatile collection. Intact newly
opened whole flowers and new leaves of these individuals
were enclosed in an oven roasting bag (NalophanW) and
air was sucked out from these bags using a battery oper-
ated pump (PAS-500 Personal Air Sampler, Spectrey,
Redwood city, California, USA). Volatiles were trapped
in self made absorbent glass tubes filled with Tenax for
30 min during day and night. Control samples were also
collected for discriminating the compounds from sur-
rounding air contaminations and their average was sub-
tracted from the each sample. All glass filters were
capped with teflon tape on both sides and enclosed in
the aluminium foil to avoid contamination, and samples
were preserved for subsequent gas chromatograph (GC)
analysis at −20°C.

Quantitative gas chromatographic analysis and
compound identification
Volatile samples were analyzed within 4 days of vola-
tile collections by a gas chromatograph (GC, Agilent
6890 N) connected to an HP5 column (30 m× 0.32 mm
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internal diameter × 0.25 μm film thickness) and an
Agilent 5975 mass selective detector associated to a ther-
mal desorption system (TDS2, Gerstel, Mühlheim Ger-
many). The TDS temperature was adjusted to rise from
30° (0.5-min hold) to 240°C (1-min hold) at 60°C per mi-
nute. The CIS (cold injection system) temperature was
set to rise from −50°C (0.5-min hold) to 150°C (0.5-min
hold) at 16°C per second and to 250°C (0.5-min hold) at
12°C per second. The oven temperature of the GC6890
was programmed to rise from 50°C (3 min hold) to
230°C at 8°C per minute. Agilent ChemStation and MSD
ChemStation E.02.00.493 (Agilent Technologies, Palo
Alto, California, USA) software were utilized for charac-
terizing the peaks and retention times. Synthetic vera-
trole (Sigma–Aldrich, Switzerland) was further employed
as a standard for comparing the retention time as well
as calibrating peak area with absolute amount in the
mass spectrometry chromatograms. Quantified amount
of veratrole was estimated in ng per liter of air sampled.

Real time RT-PCR analysis
We used the same set of flower and leaf samples for
gene expression analysis that were also used for volatile
collections. After each volatile collection, floral and leaf
tissues were immediately harvested and snap-frozen in
liquid nitrogen. All these samples were stored at −80°C
until required. Total RNA was extracted from flowers
and leaf using the RNeasy plant mini kit (Qiagen). RNA
was subsequently subjected to DNAse treatment using
RQ1 RNase-Free DNase (Promega, Madison, Wisconsin,
USA) following manufacturer’s instructions. First-strand
cDNA was synthesized by M-MLV Reverse Transcript-
ase (Promega, Madison, Wisconsin, USA) and an Oligo
(dT )15 primer. As a control for possible DNA contamin-
ation, reverse transcriptions were done with and without
the enzyme. RT-PCRs were performed with the SYBR
Master Mix (Applied Biosystems, Foster City, USA) on a
7500 Real Time PCR System (Applied Biosystems, Foster
City, USA). Actin, EF1A, and CL285 primers were ap-
plied as internal controls and qRT-GOMT primers were
used for amplification (Additional file 4: Table S3). All
samples including control reactions were performed
three times. The results were recorded by 7500 Software
v 2.0.1 (Applied Biosystems, Foster City, USA). At least
three sets of independent experiments were performed
to calculate a mean cycle threshold (Ct) value and stand-
ard deviations.

Statistical analysis
Non-parametric Mann Whitney U-tests were used to
analyze the differences in veratrole emission and gene
expression between sexes and day/night. All analyses
were performed using SPSS statistical package (SPSS
Inc. Chicago).

Phylogeny reconstruction and selection analysis
SlGOMT1 sequence was chosen as a seed for retrieval
of homologous sequences from NCBI using BlastN
searches and combined with the sequences that were
generated from this study. BlastN searches were opti-
mized using ‘somewhat similar sequences’ option follow-
ing general parameters (Max target sequences 100,
expect threshold 10, word size 11, and match/mismatch
scores 2,-3). DNA sequences were aligned with BioEdit
v7.0.5 and poorly aligned 8 sequences from the pool of
selected 100 sequences were excluded for subsequent
analysis. The best substitution model was estimated
using Mr. Modeltest 2.3 [84]. The Markov Chain Monte
Carlo (MCMC) method was employed to approximate
the posterior probabilities of trees using MrBayes 3.1.2
[85]. Branch lengths of obtained consensus tree were
optimized with BaseML. CodeML was further used for a
codon-based model. Both programs belong to PAML 4.4
package [86].

Additional files
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