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Abstract

Background: The relative contribution of epigenetic mechanisms to carcinogenesis is not well understood,
including the extent to which epigenetic dysregulation and somatic mutations target similar genes and pathways.
We hypothesize that during carcinogenesis, certain pathways or biological gene sets are commonly dysregulated
via DNA methylation across cancer types. The ability of our logistic regression-based gene set enrichment method
to implicate important biological pathways in high-throughput data is well established.

Results: We developed a web-based gene set enrichment application called LRpath with clustering functionality
that allows for identification and comparison of pathway signatures across multiple studies. Here, we employed
LRpath analysis to unravel the commonly altered pathways and other gene sets across ten cancer studies
employing DNA methylation data profiled with the Illumina HumanMethylation27 BeadChip. We observed a
surprising level of concordance in differential methylation across multiple cancer types. For example, among
commonly hypomethylated groups, we identified immune-related functions, peptidase activity, and epidermis/
keratinocyte development and differentiation. Commonly hypermethylated groups included homeobox and other
DNA-binding genes, nervous system and embryonic development, and voltage-gated potassium channels.
For many gene sets, we observed significant overlap in the specific subset of differentially methylated genes.
Interestingly, fewer DNA repair genes were differentially methylated than expected by chance.

Conclusions: Clustering analysis performed with LRpath revealed tightly clustered concepts enriched for differential
methylation. Several well-known cancer-related pathways were significantly affected, while others were depleted
in differential methylation. We conclude that DNA methylation changes in cancer tend to target a subset of the
known cancer pathways affected by genetic aberrations.

Background
Since the introduction of the Illumina HumanMethyla-
tion27 BeadChip platform, which measures the methyla-
tion of over 27,000 CpG sites across the human genome,
several studies have reported genomic sites with aber-
rant methylation in cancers. These publicly available
datasets, including several performed by The Cancer
Genome Atlas (TCGA), now allow for an integrative
analysis of DNA methylation across multiple cancer

types. We took a pathway-level approach to this integra-
tive analysis, illustrating the use of our newly developed
gene set enrichment testing web-based application,
LRpath (http://lrpath.ncibi.org).
The identification of predefined sets of biologically

related genes enriched with differentially expressed
genes is used routinely in the analysis and interpretation
of data from microarrays, RNA-Seq, and other high-
throughput methods. The most commonly used ap-
proach to identifying enriched sets of genes is based on
counting the number of differentially expressed genes in
a particular biological concept. A biological concept is a
pre-defined, biologically-related set of genes, derived
from any one of a number of different annotation
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sources [1]. In particular, such focus on biological con-
cepts rather than individual genes has proven useful in
cancer research. Several groups have developed tools look-
ing at the change in groups of genes sharing the same
functions or regulatory modules, as detailed in Furney
et al., where additional resources for cancer genomic and
epigenomic studies can be found [2]. Enrichment analysis
is not limited to transcriptomic data; pathway analysis
using epigenetic changes can also provide valuable infor-
mation as demonstrated by a lymphoma study where in-
flammatory signalling, especially the tumor necrosis factor
α network, was found to be differently dysregulated be-
tween two tumor subtypes [3]. For the analyses conducted
in this manuscript, we used genes harbouring differentially
methylated CpG sites in their promoter proximity, rather
than differential expression, in multiple cancer types. The
statistical significance of such overlap between genes of
interest and a particular concept is often established using
Fisher’s exact test. A number of tools that utilize this, or a
very similar approach have been developed, such as
David/EASE [4,5], Onto-Express [6,7], ConceptGen [1],
the Gostats package of Bioconductor [8], GOMiner [9,10],
and FuncAssociate [11].
As all of these programs require a list of differentially

expressed genes as input, the analytical results are influ-
enced by the significance cut-off selected by the user.
Thus, several methods have been proposed that offer al-
ternative approaches that do not require a significance
cut-off. Gene Set Enrichment Analysis (GSEA) uses dif-
ferential expression statistics of all genes, without cat-
egorizing them into differentially and non-differentially
expressed, and a non-parametric method to identify
enriched gene sets [12]. Our recently published LRpath
method uses logistic regression to functionally relate the
odds of gene set membership with the significance of
differential expression and calculates adjusted P-values
as a measure of statistical significance [13]. An alterna-
tive interpretation of how LRpath works comes from the
random sets method; that is, LRpath tests whether the
significance levels of a particular set of genes is signifi-
cantly higher (or lower) than those of a randomly chosen
set of genes of the same size [13,14].
We recently developed a web-based application for

LRpath with greatly expanded and novel gene set anno-
tations, including metabolite, transcription factor and
microRNA target sets, and literature-derived annota-
tions, and that also includes clustering analysis function-
ality, allowing one to identify and compare biological
concept signatures across multiple studies. LRpath is
particularly suitable for such an integrative study, be-
cause it performs well with both small and large sample
sizes [13], as it does not depend on non-parametric
resampling of samples to assess significance of enrich-
ment. Additional benefits of using the LRpath program

include (1) the ability to perform both “directional” and
“non-directional” enrichment tests that allow for two
different perspectives to enhance interpretation and (2)
the ability to easily compare and visualize results across
multiple studies using LRpath clustering functionality.
Epigenetic mechanisms such as DNA methylation and

histone modifications play essential roles in cell differen-
tiation and transcriptional regulation and are identified
as key mediators of cancer progression. For example,
transcription of a number of tumor suppressor genes
such as p16INK4a, BRCA1, p53 and MLH1 has been
demonstrated to be silenced by promoter hypermethyla-
tion [15]. Furthermore, genomic instability associated
with the hypermethylation of the DNA mismatch repair
enzyme gene MLH1 may not only deregulate critical
genes involved in the initial stages of carcinogenesis, but
also those involved in the later invasion and metastasis
stages of transformation [16].
In cancer, recurrent patterns of aberrant DNA methyla-

tion alteration are evident, especially in promoter regions,
implicating the contribution of specific altered pathways
driven by methylation change. For example, DNA hyper-
methylation of gene promoters commonly marks disease
progression and silencing of putative tumor suppressor
genes. Conversely, DNA hypomethylation occurs most
commonly in a genome-wide manner, especially within re-
peat elements such as LINE1, Alu, and PG4s (potentially
G-quadruplex-forming sequences) [17-19] and is asso-
ciated with genomic instability [20,21]. Recently, the
hypomethylation of PG4-dense regions were reported in
cancer, indicating the role of DNA methylation in genomic
stability through a structural change in G4 formation,
resulting in DNA breakpoint hotspots [19]. In general,
demethylation of the genome can lead to 1) the reactiva-
tion of transposable elements, thereby altering the tran-
scription of adjacent genes, 2) the activation of oncogenes
such as H-RAS, and 3) the biallelic expression of imprinted
loci (e.g. loss of IGF2 imprinting) [22-24]. Studies of aber-
rant DNA methylation can benefit diagnostic and prognos-
tic marker discovery by identifying frequent methylation
targets and also can provide new insights for improved
classification, diagnosis, therapies, and prognosis.
The relative contribution of epigenetic mechanisms to

multiple cancer types is not well understood, in particu-
lar to what extent epigenetic mechanisms target similar
genes and pathways as somatic mutations. Here, we
hypothesize that during the pathogenesis of cancer, cer-
tain pathways or biological gene groups are commonly
dysregulated via DNA methylation across cancer types.
To test our hypothesis, we employed LRpath and cluster-
ing analysis on data from ten tumor versus normal DNA
methylation studies to unravel the commonly altered
pathways and other biological concepts across multiple
cancers. The ability of the method employed by LRpath
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to implicate important biological pathways and groupings
has previously been demonstrated [13]. In this paper, we
describe the first example of pathway analysis coupled
with the DNA methylome of various tumor types.

Results
Use of LRpath for enrichment testing and
cross-experiment visualization
The LRpath web application provides a user-friendly
web interface, the choice of 16 different annotation data-
bases (see Methods for details), and enables visualization
of the results of multiple enrichment tests. The first sec-
tion of the interface allows users to select an organism,
upload the input data set, select one or more annotation
databases to test against, and set a number of additional
parameters (Figure 1 and Methods). By default an undir-
ectional test is performed, which allows the user to dis-
tinguish between ‘Enriched’ concepts (those with more
genes changed than expected by chance) and ‘Depleted’
concepts (those with fewer changed). If the user chooses
to perform a directional test, the concepts enriched with
genes that are up- and down-regulated are distinguished,
rather than enriched and depleted.
The second part of the application, Cluster Analysis,

allows users to integrate LRpath results from multiple
experiments in order to interactively view and explore the
enrichment profiles across experiments. It provides a user-
friendly method for filtering, merging, and clustering
LRpath results using several approaches (see Methods).

Identification of biological concepts whose genes tend to
be hyper- or hypo- methylated across cancer types
(Directional LRpath analysis)
We analyzed data from ten tumor versus normal CpG
methylation studies detailed in Table 1, for significant dif-
ferentially methylated sites. We then performed clustering
analysis using the LRpath application by filtering to con-
cepts exhibiting significant enrichment (p-value<0.0001)
in at least five (50%) of the ten cancer types. The cluster-
ing analysis results for Gene Ontology (GO) terms and
pathways revealed tightly clustered hyper- and hypo-
methylated concepts, strongly suggesting that similar
pathways across multiple cancer types are affected by dys-
regulation of DNA methylation (Figure 2, and Additional
file 1: Table S1). Among the ninety two hypermethylated
concepts identified in the directional analysis (Figure 1),
over 50% of them are involved in early development and
morphogenesis such as neurogenesis (FDR < 1×10-10 in 5
tumor types), homeobox (FDR < 1×10-10 in 5 tumor
types), and embryonic development (FDR < 1×10-7 in 5
tumor types) (Additional file 2: Figure S1A). Since hyper-
methylation in the promoter region of a gene often
represses gene expression, these pathways may be subject
to transcriptional suppression. Nearly all of the remaining
hypermethylated concepts are involved in transcription
factor activity (FDR < 5×10-7 in 5 tumor types) and
voltage-gated potassium channels (FDR < 1.5×10-4 in 5
tumor types). Frequently altered genes involved in tran-
scription factor activity in various cancer types include
homeobox (HOX) genes, paired box (PAX) genes, and

http://lrpath.ncibi.org
Pathway Analysis using Logistic Regression

Clustering Options

Figure 1 The user-friendly web interface of LRpath application with 16 different annotation databases with hierarchical clustering
functionality. The first section allows the users to upload the data and select the concepts of interest. The second part of the application allows
the users to perform integrative analysis of multiple LRpath results.
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Table 1 Description of datasets used in the study GEO identifiers indicate the GSE ID for the study

Source GEO GEO GEO GEO TCGA TCGA TCGA TCGA TCGA TCGA
17648 21304 22867 26126

Tumor Type Colon Multiple
Myeloma

Glioblastoma Prostate Breast Kidney Lung
AC

Lung
SCC

Ovarian Stomach

Normal Sample # 22 3 4 71 27 199 24 27 8 57

Cancer Sample # 22 161 77 71 67 199 24 27 39 57

P-value < 0.01 7922 4489 1403 9151 6672 10664 6419 6738 4376 8436

P-value < 0.01 and at least 10% change in
average methylation

5642 4343 1179 3263 3888 2022 3847 3641 1900 3000

Matched Yes No No Yes No Yes Yes Yes No Yes
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Criteria: P - value < 0.0001 
in at least 5 studies concepts

N = 171

Criteria: P - value < 1e-11
in at least 1 study
N = 139 concepts

Enriched Among   Hypomethylated Genes

Nerve development
Embryonic development 
Homeobox
Sequence   -   specific DNA binding
Voltage - gated potassium channels

Enriched Among  Hypermethylated Genes

Immune - response related
1.Chemokine  and cytokine 
activity
2.Responses to stimulus and 
inflammation
3.Receptor binding activities

Peptidase activities
Epidermis development

Clustering Analyses of Directional LRpath Tests

Hypo                    Hyper
0

Figure 2 Hierarchical clustering of significant biological concepts from directional LRpath tests. The data from 10 different cancer versus
normal CpG methylation studies were subjected to directional LRpath analysis and then clustered using criteria indicated in the figure.
The clustering of LRpath results suggests that similar pathways across multiple cancers are affected by differential DNA methylation. The majority
of the enriched hypomethylated concepts were immune-response related. Concepts related to early development are enriched with genes
harbouring hypermethylation.
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Wilms tumor suppressor gene (WT1). Examination
showed that the hypermethylation in these gene clusters,
which accounts for the enriched hypermethylated con-
cepts involved in transcription activity, is reassured in the
majority of the cancer cases (Additional file 2: Figure S2).
Among the 1,517 probes on the Illumina BeadChip anno-
tated to a gene with sequence-specific transcription factor
activity, 202 probes have more than 20% average change
in methylation in at least three tumor types. Unsupervised
clustering and visualization of these genes reveal that they
were mostly hypermethylated in tumors (185 hypermethy-
lated vs. 17 hypomethylated probes as seen in Additional
file 2: Figure S3). While over 80% of the hypermethylated
transcription factor genes are PRC2 targets (158 out of
185 probes corresponding to 86 out of 106 unique genes),
very few hypomethylated transcription factor genes were
PRC2 targets (5 out of 17 probes corresponding to 1 out
of 10 unique genes) (Additional file 2: Figure S3).
LRpath analysis also revealed voltage-gated channel ac-

tivity is significantly altered across multiple cancer types
(FDR < 0.003 in 5 tumor types). The concepts involved in
voltage-gated potassium channel activity include genes
such as KCNQ1, SNAP25, KCNA3, and others, which are
known to play a role in cell proliferation. Further down-
stream analysis reveals KCNA3 promoter hypermethyla-
tion in 8 out of the 10 cancers, identifying it as one of the
most prevalent events in tumorigenesis and affecting vari-
ous tumor types (Figure 3).
The majority of hypomethylated gene sets identified

across multiple cancer studies were immune-related con-
cepts such as chemokine (FDR < 0.002 in 5 tumor types),
cytokine (FDR < 0.02 in 5 tumor types), receptor binding
activities (FDR < 0.02 in 5 tumor types), responses to
stimulus (FDR < 0.04 in 5 tumor types), and inflammation
(FDR < 0.005 in 5 tumor types) (Figure 4). The epidermis
(FDR < 2.7×10-9 in 5 tumor types), intermediate filament
(FDR < 0.0003 in 5 tumor types), and keratin concepts
(FDR < 6.6×10-5 in 5 tumor types) involved in ectoderm
development also form a tight cluster of hypomethylated
concepts, suggesting DNA methylation-driven cancer cell
invasion and tumorigenesis across various types of cancer
(Additional file 2: Figure S1B). Finally, genes involved in
peptidase activity (FDR < 0.06 in 5 tumor types) had a sig-
nificant tendency to be hypomethylated across cancer
types.
We examined the significant genes from Ectoderm

(FDR < 0.0003 in 5 tumor types) and Epidermis develop-
ment (FDR < 7.7×10-5 in 5 tumor types) in each cancer
type in the context of the occupancy of PRC2 compo-
nents SUZ12 and EED, and H3K27me3 [25]. The major-
ity of the genes involved in these pathways that are
bound by these PRC2 proteins exhibit differential
methylation (Figure 5 and Additional file 2: Figure S4
and 5A-D). The ectoderm and epidermis development

pathways were shown to be enriched with hypomethy-
lated genes, which was driven by the non-PRC2 targets;
the PRC2 target genes in these pathways were more
prone to be hypermethylated (Additional file 2: Figure
S5A and 5B). In contrast, the pathways involved in
embryo development and neurogenesis were enriched
among hypermethylated genes, and both PRC2 and non-
PRC2 targets showed a higher proportion of hypermethy-
lated genes, although the trend seemed stronger among
the PRC2 targets (Additional file 2: Figure S5C and 5D).
Interestingly, while around 40% of non-PRC2 target genes
involved in ectoderm and epidermis development were
differentially methylated in multiple myeloma (compar-
able to the other types of cancers), none of the PRC2-
target genes are significantly differentially methylated in
multiple myeloma.
Additional concept types available in LRpath include

metabolite concepts that combine metabolic enzyme
coding genes, DrugBank concepts, and transcription fac-
tor targets (see Methods for details). In our directional
analysis we found several metabolite concepts that were
consistently enriched across cancer types. The hypo-
methylated concepts included several metabolite con-
cepts in androgen and estrogen metabolism, C21-steroid
hormone biosynthesis and metabolism, tyrosine metab-
olism, and xenobiotics metabolism (Additional file 2:
Figure S6A). Genes involved in these concepts encode
several prominent groups of enzymes including multiple
members of the Cytochrome P450 family, steroid biosyn-
thesis enzymes and members of the UDP glucuronosyl-
transferase family. The hypermethylated metabolite
concepts included cyclic AMP (cAMP) and cyclic GMP
(cGMP) which include genes encoding several phospho-
diesterases and adenylate cyclases (Additional file 2:
Figure S6A). In addition, we identified twelve Drug Bank
concepts, each of which consists of genes known to inter-
act with a specific drug (Additional file 2: Figure S6B).
Several transcription factors were predicted to target
genes enriched with hypermethylation across cancer types,
including AHR-ARNT, ATF2 (CREBP1), PAX4, E2F2 and
NRSF (Additional file 2: Figure S6C).
In addition to clustering pathways and other biological

concepts significant across several cancer types, we also
performed clustering on biological concepts significant in
any one or more cancer types (Figure 2- right side). The
two heatmaps in Figure 2 look surprisingly similar, suggest-
ing that the majority of pathways affected by DNA methy-
lation in cancer are common to multiple cancer types.

Identification of biological concepts enriched or depleted
in genes dysregulated via CpG methylation across cancer
types (Non-directional LRpath analysis)
Similar to the directional analysis results performed on
ten tumor versus normal methylation studies, the
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clustering analysis of GO terms and pathways from non-
directional LRpath analysis also exhibited tightly clus-
tered enriched and depleted concepts across multiple
cancer types (Figure 6). DNA repair (FDR < 0.0005 in 5
tumor types) and cell cycle activity (FDR < 0.016 in 5
tumor types), two of the most commonly affected
pathways in cancer development, were depleted in differ-
entially methylated genes. To determine if notable
exceptions to this trend exist, we examined the change
in methylation of those genes involved in cell cycle.
Among the 564 unique genes (1,101 total probes) related
to cell cycle pathways on the Illumina BeadChip, 42
genes including several key regulators such as APC,
CDKN2A and 2B, and RASSF1 harboured greater than
20% average methylation change in at least 3 tumor
types (30 hypermethylated and 12 hypomethylated genes
as seen in Additional file 2: Figure S7).
Similarly, among the total of 237 unique genes (450

probes) related to DNA repair on the Illumina BeadChip,
only 10 hypermethylated and 13 hypomethylated genes
with greater than 15% change in average methylation in at
least 3 studies were identified. These included the p53

related gene, p73 (TP73) [26] and DNA repair protein
O6-methylguanine-DNA methyltransferase (MGMT)
involved in DNA repair activity. Interestingly, patients
with MGMT hypomethylation were shown to have worse
survival compared to those with MGMT promoter methy-
lation (12.2 months vs. 18.2 months) [27].
Although the concepts involved in cell cycle and DNA

repair activity were shown to be depleted in differential
methylation, indicating fewer genes involved in this concept
are affected via DNA methylation change than by chance,
certain crucial regulator genes such as APC, CDKN2A, and
CDKN2B [21,28,29] were still shown to be differentially
methylated to a great extent in multiple tumor types. As
seen in Additional file 2: Figure S7, one of the APC probes
was hypermethylated by more than 10% in 5 out of 10
tumor types, and probes for CDKN2A and CDKN2B genes
were hypermethylated by more than 10% in all 10 types.

Overlap among differentially methylated genes in
enriched biological concepts across cancers
The same significant pathways could be affected by ei-
ther similar or different sets of methylated genes across
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various cancer types. The concepts involved in epidermis
development, immune response, and neurogenesis were
three of the most commonly affected significant concepts
(Figure 2 and 4; Additional file 2: Figure S1A and 1B).
Based on Fisher’s exact tests for non-random associations

between any two studies from the ten data sets (resulting
in 44 pairs), mostly the same genes appeared to be driving
enrichment. In those concepts involved in epidermis de-
velopment and immune response, which were both
enriched with hypomethylated genes, every pair except
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those paired with prostate cancer were highly significant
(Additional file 1: Table S1). Neurogenesis was enriched
among hypermethylated genes, and again we saw a high
degree of overlap among the specific genes determining
enrichment. While the prostate study seemed to be
consistent with other cancer types for neurogenesis, the
myeloma and ovarian studies tended not to be signifi-
cant. In myeloma, very few genes involved in neurogen-
esis were differentially methylated (N = 5 genes) in
comparison with other studies (which ranged from 30
to 231 genes in other types), thus non-correlation
observed in myeloma can be explained by the lack of
genes involved in neurogenesis.

Notable cancer-specific results
Although the clustering analysis revealed that most of the
significant concepts were shared across multiple types of
cancers, several notable cancer type-specific exceptions
were observed. First, we identified cancer-specific results
from non-directional LRpath results. In glioblastoma,
pathways involved in bone morphogenetic protein (BMP)
(FDR < 0.0003) were enriched with differentially methy-
lated genes. The importance of BMPs in glioma was
previously studied in vivo using glioma stem cells treated
with BMPs, which effectively delayed tumor growth and
reduced tumor invasion [30]. In prostate cancer,
extracellular related concepts (such as extracellular region
part (FDR < 4×10-20), extracellular space (FDR < 7×10-15),
extracellular matrix (FDR < 5×10-10), and proteinaceous
extracellular matrix (FDR < 3×10-9)) and adhesion related
concepts (FDR < 1×10-8) were significantly enriched among
hypermethylated concepts, compared to others. To identify
additional concepts that are highly cancer-type specific, the
biological concepts significant with p-value < 0.0001 in just
one type of cancer in the directional LRpath analysis were
examined (Additional file 2: Figure S8). In myeloma, mul-
tiple kinase activities (FDR < 0.0014) were hypermethylated,
and muscle/fiber related concepts (FDR < 9×10-5 for
contractile fiber part) were hypo-methylated. In breast
cancer, several processes involving circadian rhythms
(FDR < 0.017) were hypermethylated.

Discussion
Performing an integrative analysis of biological concepts
dysregulated via methylation across ten cancer types, we
identified concepts affected in multiple cancer types that

support biologically important findings. The underlying
logistic regression method used by LRpath has been
shown to perform favorably [13]. The current applica-
tion of our LRpath web-based software allowed us to not
only identify pathways regulated via hyper- or hypo-
DNA methylation for each cancer type, but to also de-
termine biological concepts depleted in DNA methyla-
tion changes and to easily integrate and visualize the
results. In addition, an important feature of LRpath that
distinguishes it from many other programs is the avail-
ability of a broad range of concept types such as tran-
scription factor and drug targets, metabolites and
literature-derived concepts that are not available in other
programs. These concepts are often smaller than com-
monly used GO terms or pathways and have potential to
point to very specific changes in metabolism or a regula-
tory process.

Hypomethylated biological concepts
Because the available data are reflective of tumor cellular
heterogeneity, aberrant methylation of certain pathways
is generally reflective of a heterogeneous cell population
that includes the tumor environment. It’s worth noting
that such information would be lost if analysing cell
lines with 100% cellularity, and may be particularly rele-
vant to the identification of clinically relevant biomar-
kers of risk and prognosis. For example, inflammation,
which was hypomethylated across cancers, is a marker
of senescence which plays a major role in the tumor
microenvironment. As a key element in cancer progres-
sion, senescence allows an influx in inflammatory
elements into tumor cells causing tumorigenesis at mul-
tiple levels: DNA damage, cell survival, angiogenesis and
promotion of growth [31]. Chemokine and cytokine ac-
tivity further promote inflammation. Peptidase activity,
which was also hypomethylated across cancers, is
required for the tumor cells to break through the extra-
cellular matrix and basement membrane barriers to be-
coming invasive, and thus its predicted up-regulation via
hypomethylation would promote metastasis [32]. Other
hypomethylated concepts, epidermal and keratinocyte
development and differentiation, have been linked to
worse survival prognosis and increased local invasiveness
[33].
As shown in the results, the majority of hypomethy-

lated concepts are related to immune response, and

(See figure on previous page.)
Figure 5 The percentage of PRC2 target vs. non-target genes harbouring significant (p-value<0.05) differential methylation. The
significant differentially methylated genes from a select few developmental concepts including dermal, embryo, and neural development were
subjected to further analysis with respect to PRC2 targets and the presence of CpG islands. As reported, a higher proportion of PRC2 target genes
was differentially methylated in multiple tumor types. Interestingly, none of the PRC2 target genes involved in dermal development were
differentially methylated in multiple myeloma.
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promoter DNA hypomethylation often results in gene
activation. This inflammatory activation via DNA hypo-
methylation could be due to an influx of lymphocytes
into the tumor microenvironment or due to a difference
in the DNA methylation in the tumor cells themselves.
While it is beyond the scope of this manuscript to con-
clude to what extent each of the above possibilities con-
tributed, regardless of the origin of the inflammatory
response, we speculate the change in DNA methylation
is a common mechanism to elevate immune responses
across multiple cancers.
Identification of metabolite concepts that include

members of the Cytochrome P450 (CYP) and UDP glu-
curonosyltransferase (UDPG) families suggests that pro-
moter hypomethylation may be involved in regulation of
their transcript levels. CYP proteins have been shown to
be expressed across multiple tumor types [34]. CYP
enzymes mediate the metabolic activation of numerous
precarcinogens, and they can promote or suppress
tumor development via hormonal control in cancers that

are sensitive to hormone concentration (e.g. breast can-
cer). UDP glucuronosyltransferases catalyse the glucuro-
nidation of many lipophilic endogenous and exogenous
substrates such as bilirubin, estrogens, and xenobiotics.
These enzymes, along with ABC transporters, are
involved in multiple drug resistance, and their expres-
sion is also often altered in cancers.

Hypermethylated biological concepts
Among hypermethylated gene groups, which we predict
would be down-regulated in tumors, were nervous sys-
tem and embryonic development genes. We observed a
high degree of overlap between these concepts and Poly-
comb Repressive Complex 2 (PRC2) target genes. The
group of genes regulating early development, normally
regulated by PRC2, often becomes methylated in cancer
[35]. Even in ectoderm and epidermis developmental
pathways that are enriched with hypomethylated genes,
the PRC2 targets tended to be hypermethylated
(Additional file 2: Figure S5A and 5B). Interestingly, the
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Enriched with Differentially MethylatedGenes

Cell Cycle
DNA repair
Protein modification
RNA activitities
Transcription Factors

Depleted with Differentially MethylatedGenes

Immune-response related
1.Chemokineand cytokine activity
2.Responses to stimulus and 
inflammation
3.Receptor binding activities
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Epidermis development
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Nerve development
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                       None

Figure 6 Hierarchical clustering of significant biological concepts from non-directional LRpath tests. The data from 10 different cancer
studies were subjected to non-directional LRpath analysis and then clustered using criteria indicated in the figure. The clustering of LRpath results
suggests that similar pathways across multiple cancers are consistently depleted or enriched by the differentially methylated genes. Concepts
such as DNA repair and cell cycle activity, which play a crucial role in cancer development and progression, are depleted in differentially
methylated genes (Criteria: At least one study with p-value < 0.00001, N=661 genes).
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cancer type that displayed the lowest number of hyper-
methylated PRC2 targets was multiple myeloma, the
only non-solid tumor analysed, despite having the sec-
ond highest number of differential methylation sites
(below colorectal cancer) (Table 1 and Figure 5). Unlike
the other nine cancers examined in this study, multiple
myeloma is a blood cell cancer, and the absence of dif-
ferential methylation among PRC2 target genes involved
in early development and morphogenesis pathways may
be due to the different nature of cancer development
and invasion in blood cancer. Downstream analysis at
the gene level also identifies multiple myeloma as the
most divergent cancer from the rest. Based on Fisher’s
Exact tests for non-random associations between any
two studies from the ten data sets (resulting in 44 pairs),
there appear to be mostly the same genes driving enrich-
ment in neurogenesis, (every pair except those involved
in myeloma data are highly significant) (Additional file
1: Table S1).
Voltage-gated potassium channels, hypermethylated in

tumors, play various roles in cancer progression, such as
its initial role during the onset of the disease, as well as
cell proliferation, apoptosis, migration, and invasion dur-
ing metastasis [36]. The gene inactivation via promoter
DNA methylation events in voltage gated gene Kv1.3
(KCNA3) has been previously reported in breast and
pancreas adenocarcinomas [37,38]. Our analysis vali-
dated KCNA3 as hypermethylated in breast cancer, plus
identified it as hypermethylated in an additional 7 tumor
types. Another example is human ether-a-go-go-related
gene 1 (hERG1), which we found significantly differen-
tially methylated in lung adenocarcinoma, myeloma and
stomach cancers. hERG1 is often dysregulated in cancer
and physically interacts with integrin to modulate adhe-
sion dependent intracellular signalling cascades, includ-
ing cell adhesion, invasion, and proliferation [39,40].
When the biological concepts enriched in just 1 type of

cancer (p-value < 0.0001) are examined, the enrichment of
genes involved in circadian rhythm was identified in breast
cancer. The disruption of normal circadian rhythm might
benefit the survival of cancer cells, and the circadian
rhythm disruption has been proposed as a risk factor for
breast cancer [41]. Promoter hypermethylation concomi-
tant with a decrease in expression was identified for the
circadian genes PER1 and PER2 in breast cancer [42].
Based on our LRpath results, we identified additional circa-
dian genes, DRD1 (FDR < 9.9×10-7), CASP1 (FDR < 0.002),
PTGDS (FDR < 4.8×10-23), and PGLYRP1 (FDR < 8.5×10-7)
as hypermethylated in breast tumor samples (significance
levels based on probe-level LIMMA analysis, see Methods);
these genes play a role in the regulation and disruption of
circadian rhythm (Additional file 2: Figure S9).
Transcription factors, as a group represented by the

sequence-specific DNA binding and homeobox concepts,

also tended to be hypermethylated. There are a number
of transcription factors commonly hypermethylated in
our analysis including the HOX gene family, FOX gene
family, PAX gene family, the tumor suppressor WT1,
and others. The vast majority of the genes involved in
transcription factor activity were PRC2 targets (Additional
file 2: Figure S3), which confirms the high degree of over-
lap between PRC2 target genes and those that are
methylated in cancers.
Among the hypermethylated metabolite-centered con-

cepts, cyclic AMP (cAMP) is of interest, because it is a
key second messenger involved in numerous cellular
events. In cancers, cAMP analogues are known to
decrease the rate of proliferation of cells and induce
apoptosis [43].

Biological concepts depleted in genes with aberrant
methylation
From non-directional LRpath tests and clustering, we
determined that DNA repair and cell cycle had fewer
differentially methylated genes than expected by chance.
We hypothesize that genes involved in DNA repair and
cell cycle tend to be dysregulated by alternative mechan-
isms such as genomic aberrations, somatic mutations, or
histone modifications. Alternatively, dysregulation of
these pathways could be driven by single key genes with
large effects, which would not be revealed in a pathway
level analysis. To test the presence of differential methy-
lation in a select set of key regulator genes, we examined
individual methylation levels of all genes involved in ei-
ther DNA repair or cell cycle. While the majority of the
genes did lack differential methylation, we found that
certain crucial key regulator genes of cell cycle such as
APC, CDKN2A and CDKN2B [28,29,44] are indeed
hypermethylated across most tumor types and had an
average difference in methylation of at least 20% for
three or more cancers (Additional file 2: Figure S7).
Likewise, MGMT and TP73 exhibit hypomethylation in
multiple tumor types. Thus, although few genes in cell
cycle and DNA repair are affected by differential DNA
methylation, many that are affected are known key
driver genes in cancer.

PRC2 target genes involved in early development
Concepts involved in early development (such as ecto-
derm, epidermis, and embryonic development, and
neurogenesis) were commonly identified as differentially
methylated in our LRpath analysis. Interestingly, some
tended to be hypomethylated (ectoderm and epidermis)
while others were hypermethylated (embryonic and
neurogenesis). Since many of the genes involved in early
development are reported to be regulated by PRC2 and
are the targets of methylation, we examined these genes
under the context of PRC2 targets and the presence of
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CpG islands (Additional file 2: Figure S4). Whether they
are PRC2 targets or not, the percentage of significantly
altered genes involved in the above four developmental
pathways is slightly higher than what is expected by
chance (Figure 5). As expected, PRC2 targets contain a
higher percentage of differentially methylated genes than
non-PRC2 targets with few exceptions (glioblastoma and
myeloma in ectoderm development; glioblastoma, mye-
loma and ovarian in epidermis development; ovarian in
embryo development; and myeloma and ovarian in
neurogenesis). While the non-PRC2 target genes located
outside of CpG islands involved in ectoderm and epider-
mis development (hypomethylated concepts), show an
increased proportion of methylation change, this is not
seen in non-PRC2 target genes located outside of CpG
islands involved in embryo development and neurogen-
esis (hypermethylated concepts).
Interestingly, while around 40% of non-PRC2 target

genes involved in ectoderm and epidermis development
were differentially methylated in multiple myeloma
(comparable to the other types of cancers), none of the
PRC2-target genes are significantly differentially methy-
lated (Black arrows from Figure 5). We speculate the ab-
sence of differential methylation among PRC2 target
genes involved in early development and morphogenesis
pathways may be due to the different nature of cancer
development and invasion in non-solid tumors.

Conclusions
Besides its role in suppressing repeat elements in the
genome, DNA methylation has evolved to regulate cer-
tain biological phenomena that need to change within
an individual’s lifetime (e.g., development and differenti-
ation, response to environment), yet still retain a certain
level of stability [45,46]. Therefore, one could predict
that dysregulation of DNA methylation in cancers would
tend to occur in the types of biological processes that re-
quire this level of control, for example immune system
and cell differentiation [46]. Several specific pathways in
these broad categories, also known to be involved in
cancer, were identified in this study. On the other hand,
other pathways constitutively required by most cells,
would not be predicted to be regulated via DNA methy-
lation. Several such pathways, for example DNA repair
and cell cycle, were either depleted or saw no signifi-
cance in the number of genes with differential methyla-
tion even though some such pathways are known to be
important in cancer development and progression. We
hypothesize that these pathways tend to be dysregulated
by genetic alterations and/or alternate epigenetic
mechanisms, or by key regulator genes. Our analyses
may also reflect methylation events that are involved
solely in cancer progression as opposed to initiation. A
similar analysis of early lesions or precancerous tissue

may result in different gene sets, since the methylation
status of genes is labile. Based on the results of our inte-
grative analysis, we conclude that regardless of tumor
type, similar pathways are affected by aberrant CpG
methylation during carcinogenesis. Although many of
the observed methylation changes may not result in a
change in gene expression, such methylation changes,
when consistent, may still serve as biomarkers of prog-
nosis. Further studies will shed light on consistent differ-
ences between solid and non-solid tumors in terms of
DNA methylation.
Although we found that many of the same genes

exhibited aberrant promoter DNA methylation across
cancers, which of these specific changes drive cancer de-
velopment and progression may differ to a greater extent
among cancer types. Such differences are likely due to
tissue-specific expression and functions. Thus, further
studies are required to elucidate which players tend to
be the drivers of each cancer type. A second limitation
of this study is the limitation of assessed sites to those
present on the Illumina HumanMethylation27 Bead-
Chip, which are focused mainly in or near CpG islands
and in gene promoter regions. Thus, if a pathway tends
to be regulated via differential methylation mainly out-
side of CpG islands, it may be missed in the present
study. Comprehensive analysis of rapidly emerging stud-
ies performed using reduced representation bisulfite se-
quencing (RRBS) and whole genome bisulfite sequencing
(WGBS) will clarify this issue.

Methods
Biological concept database
LRpath uses an internal annotation database that con-
tains a wide variety of gene sets (concepts) representing
several types of biological knowledge, and based on the
database used by ConceptGen (http://conceptgen.ncibi.
org) [1]. Based on the original data source for each group
of concepts, the concepts were grouped into the
following categories: functional annotations, literature
derived concepts, target sets, interactions, metabolite-
centered concepts and chromosomal location (Cytoband)
(Additional file 1: Table S1). Data were downloaded from
respective sources. To build the transcription factor
targets concepts, KnownGene, KnownToLocusLink, and
TfbsConsSites tables were obtained from UCSC Genome
browser (Mar. 2006, NCBI36). For each known gene, the
Entrez Gene ID (formerly known as Locus Link ID) is
assigned using the KnownToLocusLink table, and the list
of transcription factors that bind to a gene promoter re-
gion (±2,000 bp of TSSs) was generated using minimal
overlap.
For miRNA concepts, the TargetScanS table contain-

ing 54,199 conserved miRNA target sites in human
Refseq genes predicted by TargetScanHuman5.1 was
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obtained from the UCSC genome browser, as well as the
target sites predicted by miRanda using the newly
improvised mirSVR algorithm from microRNA.org. The
latter source has predicted over 16 million miRNA target
sites in 34,911 distinct 30UTR in human, and for down-
stream analysis, 3,155,472 non-conserved and 1,047,672
conserved miRNA sites (totalling approximately 4 mil-
lion sites) with good mirSVR scores to be considered
further. To provide high-quality miRNA targets, only
the target sites predicted by both targetScan and
miRanda algorithms within 30UTR regions of the human
genome were included in the LRpath database, covering
36,015 sites with 153 different miRNAs. The other con-
cepts were created as described previously for Concept-
Gen software (Sartor et al., 2010) (Table 2).

Creation of the LRpath application
The LRpath application consists of the web-based user
interface, the request handler (Executor), the Rserv
(R server) host and the database server. The web inter-
face allows the user to select and upload the input file,
select one or more databases to search against, and set
the analysis parameters. The application also provides
access to several advanced options including setting the
maximum and minimum number of genes in concepts,
changing the low and high values for calculating odds
ratios, and the significance cut-off for reporting the driv-
ing genes. Once the analysis has been completed the

application will display the output in a table format. In
addition to viewing the output as a web page, users can
download the analysis results as tab-delimited text or as
an Excel file, which provides an opportunity to sort the
results and import them into other programs (e.g. the
Cytoscape plug-in visualization software Metscape,
http://Metscape.ncibi.org).
Since certain LRpath searches can take several minutes

to run, the requests are queued and ran as compute
resources become available. Approximate run-times for
each database are provided on the web site. Currently
the system can handle up to five requests simultan-
eously. Queued requests are served on a “first come, first
served” basis, with current jobs marked as “running”. A
monitor URL is assigned to each job, which allows users
to check the status of their jobs. The user has an option
to provide an e-mail address for notification when the
job is running and a link to results. This option is par-
ticularly useful if multiple large databases are selected
(e.g. GO and MeSH).

Cross-experiment visualization via clustering in LRpath
LRpath results from multiple experiments may be inte-
grated in order to interactively view and explore the
enrichment profiles across experiments. It provides a
user-friendly method for filtering, merging, and clus-
tering LRpath results using several options. The input
for this part of the application is the set of URLs from
previous LRpath analyses to be clustered. The user has
the ability to choose the values to be used to cluster,
the type of distance matrix method, the type of linkage
method for hierarchical clustering, and which bio-
logical concepts to include. The output is a set of files
to input directly into the widely-used and freely-
available TreeView software [47,48]. Here, users can
view the hierarchical clustering with each row corre-
sponding to a concept, and each column corresponding
to an experiment.

Reanalysis of publicly available CpG methylation data in
cancers
For this study, we selected ten tumor versus normal
CpG methylation studies profiled on the Illumina
HumanMethylation27 BeadChip, four studies from Gene
Expression Obmibus (GEO) and six studies from The
Cancer Genome Atlas (TCGA) database based on avail-
able sample size (N > 40) and the availability of normal
adjacent methylation profiling status (at least three nor-
mal samples). To represent a wide spectrum of cancers,
all studies, with the exception of lung cancer, which is
classified into adenocarcinoma and squamous cell car-
cinoma, were from unique sites: breast, colon [49], brain
[50], myeloma [51], kidney, ovarian [52], prostate [53],
and stomach. From 27,543 CpG sites, those sites with

Table 2 Biological concepts represented in the LRpath
database

Biological knowledge
type

Concept type Number of
concepts

Functional Annotations Biocarta pathways 103

EHMN Metabolic
pathways

59

GO Biological Process 4566

Go Cellular Component 634

Go Molecular Function 1264

KEGG Pathway 222

Panther Pathway 98

PFAM 767

Literature Derived MeSH 6001

OMIM 142

Targets Drug Bank 293

miRBase 149

Transcription Factors 241

Interaction Protein Interaction
(MiMI)

8999

Other Metabolite 959

Cytoband 1151
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missing beta score in any one study were filtered out,
and 23,050 sites remained for further downstream ana-
lysis. Our analyses included 6 paired and 4 non-paired
studies, and using LIMMA package in R software, the
differential methylation between tumor and adjacent
normal samples was examined using beta scores according
to experimental design (paired or non-paired). Resulting
p-values were adjusted for multiple-comparison using the
false discovery rate (FDR) method.

LRpath enrichment analyses with cancer versus normal
datasets
The data representing 23,050 sites generated from the R
statistical analysis was reformatted to contain Entrez gene
IDs, p-values, and fold-changes in tab-delimited text file
format. Fifteen concept types were selected (Biocarta path-
way, EHMN metabolic pathway, GO biological process,
cellular component, and molecular function concepts,
KEGG pathway, Panther pathway, pFAM, MeSH, Drug
Bank, miRBase, transcription factors, MiMI, metabolite,
and cytoband) for enrichment analysis in LRpath. For each
study, the test was performed using both directional and
non-directional options with default settings. The link to
the final results of each test was received automatically
using the email notification functionality.

LRpath clustering analyses with cancer versus normal
datasets
The outputs from the directional and non-directional
tests were subjected to clustering analysis in two separ-
ate runs (http://lrpath.ncibi.org). In directional clustering
analysis, the links of ten individual studies were used to
fill out the web-based analysis form using negative log10
p-values, with uncentered Pearson correlation distance
matrix and the centroid clustering method. From a total
of 8,199 concepts involved in pathways, only 171 con-
cepts remained after filtering using p-value <0.0001 in at
least half of the studies criteria, and 139 concepts
remained using p-value <1e-11 in at least one study. The
first filtering criteria were designed to identify concepts
present across multiple tumor types, while the second
criteria were for concepts specific to a tumor type. In
non-directional clustering analysis, a total of 661 con-
cepts involved in pathways remained after filtering to
those concepts with p-value < 0.00001. In addition, the
significant concepts (at least 3 studies with p-value
< 0.001) from directional testing involved in Metabolite,
Drug Bank, and Transcription Factors concept types
were subjected to clustering analysis using uncentered
correlation with centroid linkage. The output files are
provided in three formats (atr, cdt, and gtr), and they
were visualized using Java Treeview software.

Additional files

Additional file 1: Table S1. Significance of overlap in the specific
differentially methylated genes in significant GO terms between pairs of
studies using Fisher’s exact test (p-value<0.05 is indicated with red text)
GO term - Immune Response GO term - Epidermis Development GO
term – Neurogenesis.

Additional file 2: Figure S1. Waterfall plots showing the methylation
change in significant genes between normal and tumor samples
involved in neurogenesis and epidermis development (GO terms).
Positive values indicate hypermethylation in cancer, while negative values
indicate hypomethylation in cancer. A. Neurogenesis. B. Epidermis
Development. Figure S2. Change in average percent methylation of
HOX gene family, PAX gene family, and WT1 involved in Transcription
Factor Activity. Figure S3. Unsupervised clustering of probes involved in
Sequence-specific Transcription Factor Activity. Figure S4. The status of
PRC2 targets and CpG islands for those probes involved in the specified
GO terms. Figure S5. The proportion of differentially methylated genes
among the PRC2 targets and non-PRC2 targets (those probes with the p-
value<0.05 and the minimum difference between the average
methylation percentage of tumor vs. normal greater than 5% are
graphed) A. Ectoderm Development. B. Epidermis Development. C.
Embryo Development. D. Neurogenesis. Figure S6. Clustering of
metabolite, drug target, and transcription factor concepts.
Hypomethylated concepts are shown in red and hypermethylated
concepts are shown in green. A. Metabolite concepts. B. Drug concepts.
C. Transcription Factor concepts. Figure S7. Change in average percent
methylation of the probes for TP73, CDKN1A, 1B, 1C, 2A and 2B, 2C, 2D,
and APC. Figure S8. Cancer-specific enriched concepts in LRpath
directional analysis. Biological concepts enriched with a significant
p-value < 1e-4 in one tumor type are listed in the table below.
In myeloma, kinase activities are enriched among hypermethylated
genes, and muscle-related processes and components are enriched
among hypomethylated genes. In breast cancer, several circadian
processes are shown up to be enriched among hypomethylated genes.
Figure S9. Bar graphs showing the methylation change in genes
involved in circadian rhythm process in breast cancer. In tumor samples,
the increase in the level of methylation in DRD1, PTGDS, CASP1, and
PGLYRP1 genes are observed.
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