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Abstract
Background: Malaria is an important public-health problem in the archipelago of Vanuatu and climate has been
hypothesized as important influence on transmission risk. Beginning in 1988, a major intervention using
insecticide-treated bed nets (ITNs) was implemented in the country in an attempt to reduce Plasmodium
transmission. To date, no study has addressed the impact of ITN intervention in Vanuatu, how it may have
modified the burden of disease, and whether there were any changes in malaria incidence that might be related
to climatic drivers.

Methods and findings: Monthly time series (January 1983 through December 1999) of confirmed Plasmodium
falciparum and Plasmodium vivax infections in the archipelago were analysed. During this 17 year period, malaria
dynamics underwent a major regime shift around May 1991, following the introduction of bed nets as a control
strategy in the country. By February of 1994 disease incidence from both parasites was reduced by at least 50%,
when at most 20% of the population at risk was covered by ITNs. Seasonal cycles, as expected, were strongly
correlated with temperature patterns, while inter-annual cycles were associated with changes in precipitation.
Following the bed net intervention, the influence of environmental drivers of malaria dynamics was reduced by
30–80% for climatic forces, and 33–54% for other factors. A time lag of about five months was observed for the
qualitative change ("regime shift") between the two parasites, the change occurring first for P. falciparum. The
latter might be explained by interspecific interactions between the two parasites within the human hosts and their
distinct biology, since P. vivax can relapse after a primary infection.

Conclusion: The Vanuatu ITN programme represents an excellent example of implementing an infectious
disease control programme. The distribution was undertaken to cover a large, local proportion (~80%) of people
in villages where malaria was present. The successful coverage was possible because of the strategy for
distribution of ITNs by prioritizing the free distribution to groups with restricted means for their acquisition,
making the access to this resource equitable across the population. These results emphasize the need to
implement infectious disease control programmes focusing on the most vulnerable populations.
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Background
Qualitative changes in the dynamics of populations, or
regime shifts, are common phenomena across all living
organisms [1,2]. Originally defined in fisheries science
[3], the concept that at some time (termed a "break-
point") there are disturbances that push a biological sys-
tem beyond its normal dynamical pattern and can
qualitatively change its behavior. Recently, this has
become a major concern for vector-borne diseases in the
context of global climatic change [4-6]. Such "break-
points" derive from ecological analysis that has come to
be known as Schmalhausen's law [2], which states that
systems at the border of their limits of tolerance to one
factor become more sensitive to small changes along any
other dimension of existence [2]. Schmalhausen's law
implies that if a system is pushed away from a state of
exacerbation, its mean value and variability should
decrease. This principle is strongly connected with the
idea of resilience [7], the robustness of an ecological sys-
tem before changing to a qualitatively different state,
which in principle should be less susceptible to the effects
of climatic variability as populations become less vulner-
able to infection [8].

Malaria in the archipelago of Vanuatu has historically
been a major public health problem as shown by the early
entomological surveys of Buxton and Hopkins [9], fol-
lowed by the extensive work of Bastien [10], where an
increase in the burden of the disease in the early 1980s
was reported [11], as well as its possible association to the
evolution of quinine resistant parasites [12,13], numer-
ous studies have shown this disease to be a major burden
for Vanuatu inhabitants. Although occasionally hyperen-
demic, like in some areas of sub-Saharan Africa, malaria
patterns are very different from this region in several
aspects. In Vanuatu, the frequency of fatal cases is greatly
diminished [14,15], the number of inapparent infections
changes seasonally, disease depends on Plasmodium spe-
cies [16], the diversity of parasites is reduced [17], and the
genetic make-up of the native populations presents signa-
tures of evolutionary changes driven by malaria. The latter
is expressed in an increased frequency of α-thalassaemia
associated with mild cases of malaria [18], and an
increased frequency of G6PDH enzyme deficiency [19],
which is different from sickle cell anaemia, the most com-
mon one seen in Africa [18,19].

Malaria control efforts also are important to analysis of
this time pattern. In 1988, a major control intervention
was launched, with a massive distribution of insecticide-
treated nets (ITNs), following the abandon of indoor
residual spraying for controlling malaria [20]. Although
focused studies have demonstrated the use of ITNs to be
very effective on small islands of this archipelago, as dem-
onstrated by the elimination of the disease in Aneytium

[21], another study analysing the effects of this policy at
the level of the whole country has not been undertaken. In
the present study, the dynamics of malaria before and
after the introduction of ITNs into the archipelago are
evaluated in an attempt to determine whether there were
breakpoints where dynamics shifted transmission pat-
terns, and quantified the effects of climate on these pat-
terns before and after this intervention took effect.

Methods
Malaria data and monitored population at risk
Monthly records of malaria were obtained from health
centers of people who presented with fever or a recent his-
tory of fever, and whose standard blood slide analysis
indicated infection with either Plasmodium vivax or Plas-
modium falciparum, from January 1983 to December 1999.
Malaria cases detected by this passive surveillance were
the basis of the analysis. During this period total popula-
tion increased (Figures 1, 2). Data on distributed ITNs
with permethrin and re-impregnations were available for
the same period (Figure 3A). Data collection was done
under the guidance of the World Health Organization,
and controlled by two of the authors (AK, GT) who main-
tained quality controls on the reporting system and diag-
nosis reliability during the studied period. All data were
obtained from the Malaria and other Vector Borne Dis-
eases Control Unit, Ministry of Health, Port Vila, Vanuatu.

This passive case detection system changed in January
1991, as slide examination in small rural health posts was
discouraged by the central government of Vanuatu [19].
This policy change reduced the number of people being
monitored, however, it remained representative of the
whole population [19]. To account for the possible effects
of this policy change, changes in the rate of slide examina-
tion were measured before and after the breakpoint
obtained for the rate of slide examination, and assumed it
to be linearly correlated to changes in the population
monitored (Figure 1F). That is, the population at risk (cor-
responding to the population in districts where malaria
was present) was multiplied by the fraction obtained by
dividing the average rate of examination before and after
the breakpoint to evaluate this possible source of error. A
50% reduction in average rate of slide examination was
found during 1990–1991 (Figure 1F), as described in
[19].

Environmental data
Weather data included Sea Surface Temperature (SST)
indexes: 1+2, 3, 3.4 and 4 (also known as the Niño 1+2,
3, 3.4 and 4 [22]; Additional file 1), and precipitation and
temperature data from the climate database for political
areas [23,24]. These data were used as predictors in mod-
els to assess changes in the magnitude of forcing by cli-
matic variables in the dynamics of malaria incidence.
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Time Series: A Plasmodium falciparum malaria cases, B P. vivax malaria cases, C Temperature (°C), D Precipitation (mm), E Population at risk (solid), F Monthly slide examination rate (slides*1000/population at risk), the dashed line corresponds to the breakpoint, August 1990, estimated using the F statistic, and the solid lines at the bottom of the graph to the confidence inter-vals (February 1990, May 1992) the thick-black solid line is the Kolmogorov-Zurbenko adaptive filter implemented with a half window size, q, of 36 months, the breakpoint is December 1991, the blue line corresponds to the breakpoint obtained using the CUSUM (march 1990)Figure 1
Time Series: A Plasmodium falciparum malaria cases, B P. vivax malaria cases, C Temperature (°C), D Precipitation (mm), E 
Population at risk (solid), F Monthly slide examination rate (slides*1000/population at risk), the dashed line corresponds to the 
breakpoint, August 1990, estimated using the F statistic, and the solid lines at the bottom of the graph to the confidence inter-
vals (February 1990, May 1992) the thick-black solid line is the Kolmogorov-Zurbenko adaptive filter implemented with a half 
window size, q, of 36 months, the breakpoint is December 1991, the blue line corresponds to the breakpoint obtained using 
the CUSUM (march 1990). The mean rate (± S.D.) of slide examination before the breakpoint (August 1990) was (51.22 ± 
11.40) being reduced to (25.92 ± 11.56) after it. Statistical tests of significance can be seen in Additional file 3.
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Regime Shift for falciparum and vivax malaria: A falciparum malaria rate, the dashed line corresponds to the breakpoint, January 1992, estimated using the F statistic, and the solid lines at the bottom of the graph to the confidence intervals (June 1989, June 1994), the thick-black solid line is the Kolmogorov-Zurbenko adaptive filter implemented with a half window size, q, of 36 months, the breakpoint corresponds to August 1993, the blue line corresponds to the breakpoint obtained using the CUSUM (January 1992)Figure 2
Regime Shift for falciparum and vivax malaria: A falciparum malaria rate, the dashed line corresponds to the breakpoint, January 
1992, estimated using the F statistic, and the solid lines at the bottom of the graph to the confidence intervals (June 1989, June 
1994), the thick-black solid line is the Kolmogorov-Zurbenko adaptive filter implemented with a half window size, q, of 36 
months, the breakpoint corresponds to August 1993, the blue line corresponds to the breakpoint obtained using the CUSUM 
(January 1992).B &C seasonal falciparum malaria rate before and after breakpoint (January 1992) D vivax malaria rate, the 
dashed line corresponds to the breakpoint, May 1991, estimated using the F statistic, and the solid lines at the bottom of the 
graph to the confidence intervals (June 1989, November 1992), the black solid line is the Kolmogorov-Zurbenko adaptive filter 
implemented with a half window size, q, of 36 months, the breakpoint corresponds to February 1994, the blue line corre-
sponds to the breakpoint obtained using the CUSUM (January 1992) E &F seasonal vivax malaria rate before and after break-
point. For the F statistics the 30% percent of the data belonging to the extremes (15% each) was left out. For the Kolmogorov-
Zurbenko adaptive filter q was set to 36, in order to avoid the misidentification of cycles shorter than 6 years.
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Statistical analysis
Breakpoints and regime shifts

Tests of structural changes in time series can be under-
taken using at least three different strategies: F tests that
compare the null hypothesis of no regime shift to the
presence of a regime shift, generalized fluctuation tests
that do not assume any particular pattern of deviation
from the absence of regime shifts [25,26] and adaptive fil-
tering of signals [27]. A total of three approaches were
used in the present study to assess the robustness of the
findings. The F statistic is obtained by comparing the

residuals (i) of a segmented regression at time i with the

residuals  from an unsegmented regression using the
following expression:

Where n is the time series length and k the number of
parameters. The null hypothesis is rejected when the
supremum of the statistic is larger than the value of a dis-
tribution SupF derived by Hansen [28,29]. This approach
has been generalized for l breaks, with arbitrary but fixed
l [30,31]; where the number of breaks can be selected
using conventional tools for model selection like the
Akaike Information Criterion (AIC) [32].

The other two approaches, the generalized fluctuation test
and the adaptive filtering, include formal significance
tests, yet reveal regime shifts graphically instead of assum-
ing specific types of departure in advance. For the general-
ized fluctuation test a parametric model is fitted to the
data and an empirical process (EFP) is derived that cap-
tures the fluctuation either in residuals or parameter esti-
mates [25,26]. Under the null hypothesis the fluctuations
are governed by central limit theorems while under the
alternative (regime shifts) the fluctuation is increased
[26]. In the present analysis, the ordinary least squares
(OLS) based CUSUM tests introduced in [33] was used.
This test is based in cumulative sums of residuals from a
linear regression:

where a regime shift is evidenced by a single peak around
the breakpoint, provided that the limiting process for

 is the standard Brownian bridge W0(t) = W(t) -

tW(l), where W(.) denotes Brownian motion. Significance
for the CUSUM was tested using the derivations presented

in [25,26]. For equation (1) and (2) the residuals  came
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Bed nets A Monthly number of distributed bed nets(black line) and number Re-impregnated bed nets (green line) B Probability density of the percentage of people locally cov-ered with bed nets between 1988 and 1997, bandwidth of 0.027 C Percent (%) of population covered by bed nets for the lower and upper time limit for the breakpoints, the green-blue line corresponds to January 1992 (Plasmodium fal-ciparum and P. vivax), the green line to September 1992 (P. fal-ciparum) and the blue line to December 1992 (P. vivax)Figure 3
Bed nets A Monthly number of distributed bed nets(black 
line) and number Re-impregnated bed nets (green line) B 
Probability density of the percentage of people locally cov-
ered with bed nets between 1988 and 1997, bandwidth of 
0.027 C Percent (%) of population covered by bed nets for 
the lower and upper time limit for the breakpoints, the 
green-blue line corresponds to January 1992 (Plasmodium fal-
ciparum and P. vivax), the green line to September 1992 (P. fal-
ciparum) and the blue line to December 1992 (P. vivax).
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yt μ φ1yt-1 + φ12yt-12 + εt (3)

The third approach is totally non-parametric, and is based
on recovering a signal and its breaks. The Kolmogorov-
Zurbenko adaptive filter (KZAF) [27] is based on filtering
the time series y using:

Where

And q is half-length of a k iterative moving average (xt)
applied to the original time series yt. The term f(D(t)) is
defined by:

And D(t) is the absolute difference defined by:

D(t) = |xt+q - xt-q| (7)

And D'(t) as:

D'(t) = D(t + 1) - D(t) (8)

Once zt is obtained quantitative estimates of discontinuity
can be based on an analysis of the sample variances of zt,
defined by:

When there are no breaks, maxima in the estimated vari-
ance of (9) are approximately independent and exponen-
tially distributed with a expected number of peaks of
about n/(2qk0.5), allowing to consider a breakpoint when

the  value exceeds the 95% upper tail of the exponen-

tial distribution with such parameter.

Regime shift analyses were carried out on: (i) the monthly
rate of slide examination (No. Slides examined*1,000/
Total population at risk); (ii) the monthly rate of the two
malaria parasites (No. slides examined*1,000/Monitored
population at risk) and (iii) weather variables (rainfall
and temperature).

Threshold for ITN coverage
Time series for total number of bed nets distributed per
month were accumulated and divided by the total popu-
lation at risk estimated from the annual population data.
It was assumed that the annual data corresponded to
December, and interpolated the rest of the months using
a smoothing splines regression as explained in [34]. The
probability density [32] of the percentage of people
locally covered with the distributed ITNs was also studied.

Seasonality
The seasonality of vivax and falciparum malaria rates
(cases/population size) were assessed by using box dia-
grams before and after the regime shift [32].

Non-stationary patterns of association
The wavelet transform can be used to study the patterns of
association between two nonstationary time series
[35,36]. Specifically, the wavelet coherency analysis can
determine whether the presence of a particular frequency
at a given time in the disease corresponds to the presence
of that same frequency at the same time in a covariate
(e.g., rainfall and temperature). The cross-wavelet phase
analysis can determine the time lag separating these two
series as well.

Changes in the effects of climate on the dynamics
Once breakpoints for the regime shift were identified in
the falciparum and vivax malaria rate series, the splitted
series around the breakpoints were studied using seasonal
auto-regressive (SAR) models [32]. The procedure for
model building was similar to the one described in [36]:
(i) a null model was fitted to the rate of the falciparum
and vivax malaria (ii) temperature and rainfall were fil-
tered with the coefficients of the null model, and (iii)
cross-correlation functions were computed using the
residuals of the null model and those of the filtered cli-
matic variables.

The full model for P. falciparum considered precipitation
(P) with lags of 2 and 29 months, and temperature (T)
with lags of 3 and 12 months, as follows:

yt = μ + φ1(yt-1 - μ) + φ12(yt-12 - μ) + β1Pt-2 + β2Pt-29 + α1Tt-3+ 
α2Tt-12 + εt (10)
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For P. vivax the full model considered precipitation (P) a
lag 9 months, and temperature (T) with a lag 10 months,
as follows:

yt = μ + φ1(yt-1 - μ) + φ12(yt-12 - μ) + β1Pt-9 + α1Tt-10 + εt

(11)

In both cases, the error was assumed as independent and

normally distributed: εt~N(0, ). After the initial fitting,

models were simplified using a process of backward elim-
ination[36]: (i) taking out one predictor at a time, (ii)
finding the minimum AIC for models with similar com-
plexity, i.e., number of parameters, (iii) comparing the
likelihood of the best model (minimum AIC) for each
level of complexity with the full model, and simplifying
while differences were not statistically significant. For the
analyses the climatic covariates were demeaned in order
to not affect the intercept value [32].

Results
Temporal patterns of malaria in Vanuatu present a clear
shift in the incidence rate by the end of 1993 and begin-
ning of 1994, for both parasite species (Figures 2A and
2D).

Breakpoints were confirmed by all three different meth-
ods (Additional files 2 and 3). For the incidence rate in
both malaria species, breakpoints were statistically signif-
icant according to the F statistic and the variance of the
KZAF. Even though the EFP estimates were not significant,
peaks were detectable in both cases in January 1992
(Additional file 3). During that same time period no sig-
nificant changes were found for climatic time series (Addi-
tional file 4). By the time changes were detected, bed net
coverage (Figure 3B) was as low as 6% (EFP estimate) or
slightly above 20% of the population at risk (KZAF). At a
more local scale, villages where bed nets were distributed
mostly had ~80% of the population covered (Figure 3C).

Plasmodium falciparum seasonality was qualitatively very
similar before and after the breakpoint (Figures 2B and
2C), showing maximum incidence during the first quarter
of the year (January-March), and minimum incidence
during the third quarter of the year (July-September). For
P. vivax (Figures 2E and 2F) a similar change was
observed, although the patterns were not so clear as for P.
falciparum, due to greater seasonal variability. With the
exception of a brief period during 1992–1996 where cases
due to both parasites were synchronous (i.e., with peaks
at the same time), the dynamics of the infections were
mainly asynchronous and not coherent (i.e., not associ-
ated in the frequency domain) at the seasonal scale. How-
ever, both diseases were significantly cross-coherent at an

interannual scale, with the dynamics of P. falciparum
cases being mostly synchronous with that of P. vivax
(Additional file 5).

Regarding the effects of climate during the studied period,
the cross-coherence wavelet analysis showed malaria to be
correlated with temperature at the seasonal scale; both P.
falciparum and P. vivax incidence rates were led by temper-
ature (Figure 4). A similar pattern was seen between the
two parasites and rainfall at the seasonal scale, despite the
presence of some gaps. A significant coherence with rain-
fall at interannual scales was also found. For P. vivax,
coherence was statistically significant for periods between
two and four years, during 1992–1996. No evidence that
El Niño indices were leading the dynamics of the disease
was identified.

Finally, Table 1 presents the parameter estimates for rate
models of P. falciparum and P. vivax, including exogenous
forcing by temperature, before and after the breakpoint.
Model selection by backward elimination showed that
rainfall was not a significant covariate (detailed values in
Additional file 6). Following the qualitative change in the
dynamics,P. falciparum had a proportional (~66%) and
absolute (7.7 cases/1000 population) decline in incidence
that was greater than that for P. vivax (~52% and 2.6 cases/
1000 population, respectively). The importance of tem-
perature in driving the dynamics also declined after the
breakpoint for both species, between 31% and 49% for P.
falciparum and 80% for P. vivax (the coefficient after the
breakpoint became statistically non-significant). The
importance of temperature in driving the dynamics also
declined after the breakpoint for both species, between
31% and 49% for P. falciparum and, although not statisti-
cally significant, 80% for P. vivax. This suggests that the
average effect of 1°C increase in temperature will increase
incidence in a reduced amount when compared with its
effect before the breakpoint. For example, preceding the
shift each degree Celsius above the three-month lagged
mean temperature value used to increase the rate by 1.43
cases/1000 people at risk, for Plasmodium falciparum. In
contrast, after the breakpoint this change only increased
the rate by half of its previous magnitude, i.e., 0.72/1000
people at risk (Table 1). A similar phenomenon was also
seen for the variability that was not explained by the mod-
els, which also was reduced by 54% and 33% in P. vivax
and P. falciparum, respectively, as shown by the decrease in
the error variance of the models after the breakpoint
(Table 1).

Discussion
Following a disturbance, biological systems can either
return to their normal state of variability or can move far
away from such a state [1,2,37,38]. Transients, i.e., the
anomalous behavior between regimes or basins [39,40],
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Cross-wavelet coherency and phase of Plasmodium falciparum malaria rate with A temperature and B rainfall and of P. vivax malaria rate with C temperature and D rainfallFigure 4
Cross-wavelet coherency and phase of Plasmodium falciparum malaria rate with A temperature and B rainfall and of P. vivax 
malaria rate with C temperature and D rainfall. The coherency scale is from zero (blue) to one (red). Red regions in the upper 
part of the plots indicate frequencies and times for which the two series share variability. The cone of influence (within which 
results are not influenced by the edges of the data) and the significant (p < 0.05) coherent time-frequency regions are indicated 
by solid lines. The colors in the phase plots correspond to different lags between the variability in the two series for a given 
time and frequency, measured in angles from -PI to PI. A value of PI corresponds to a lag of 17 mo. The procedures and soft-
ware are those described in [31,32]. A smoothing window of 15 mo (2w + 1 = 31) was used to compute the cross-wavelet 
coherence.
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can obscure the qualitative changes of a system, because
jumps from one state to another are not always instanta-
neous, complicating our ability to identify regime shifts
[39,41]. This is likely one of the main differences between
the dynamics of P. falciparum and P. vivax, since a consist-
ent estimate for the breakpoint was easy to find for the
former, while the estimates for the latter differed signifi-
cantly. This was especially true for KZAF, which identified
a later breakpoint. Assumptions underlying the employed
techniques [25-33] might favour the estimate from KZAF,
since the F statistic is quite sensitive to the stationarity
(i.e., constant mean) of the time series, while the CUSUM
EFP may be too sensitive given the quality of the data
examined, identifying the change of policy in slide exam-
ination. By contrast, the KZAF is an adaptive technique
that allows control of the time scale at which changes may
be occurring [27]. This is a very useful characteristic for
addressing one of the major recurrent problems in the

study of ecological systems, i.e. finding the appropriate
temporal scale of a natural phenomenon [42]. In this
study, the adaptive ability of KZAF allowed for breaks to
be distinguished from natural cycles associated with exog-
enous factors (i.e., climate). The fact that the basin (or
regime) shift in the time series can be attributed to the
effects of bed net use appears robust. During the study
period no other major changes in control strategies, land-
scape cover, medication or drug resistance were reported
[10,11,19] after controlling for the policy change in data
collection [19].

The analysis identified a major difference between P. falci-
parum and P. vivax, namely the earlier breakpoint for P.
falciparum. This pattern would not be expected under con-
ditions of cross or heterologous immunity [43], and its
evaluation with cross-infection studies is limited because
quality data that are necessary to make such inferences
[44] are lacking [19,21]. However, this pattern should be
studied further, because it might reflect the dynamics of
immunity in the population, where a generalized density-
dependent immunity may be triggered by the within-host
density of each parasite species [45]. Alternatively, if P. fal-
ciparum was the first species to be cleared, as shown in the
classical co-infection neuro-syphilis malariotherapy
experiments of Boyd and Kitchen [46], temporal patterns
can only be appreciated when studying the dynamics of
the within-host parasitic infection [47]. In addition, the
pattern simply could arise by the ability of P. vivax to
relapse [19,21], possibly in conjunction with the immu-
nity dynamics described above.

Although regime shifts tend to be thought of in terms of
increased variability as the best diagnostic condition [48],
they can occur in the opposite direction, with systems
becoming more stable. For both P. falciparum and P. vivax
not only did the mean value of incidence decrease, but
also the variance of the models decreased, which is a more
robust measure of stability [38] than just looking at mean
values [1] in dynamical systems. The patterns seen for the
two species differed: falciparum malaria declined more
abruptly, in total and relative terms, than in vivax malaria.
Perhaps there are differences in the life history strategies
of the parasites under different scenarios for transmission,
with the most virulent parasite (P. falciparum) being more
successful in environments with high transmission rates
and the least virulent (P. vivax) being less sensitive to the
intensity of transmission.

A surprising result was that the breakpoint occurred after
just 20% of the population was covered with bed nets,
which is half that predicted for Anopheles gambiae trans-
mission by Killeen et al [49]. Perhaps Anopheles farauti, the
main vector in Vanuatu [9,50] is less efficient. Regardless,
the fact that such ITN coverage could explain the decrease

Table 1: Parameter values and % reduction for Plasmodium 
falciparum and Plasmodium vivax rate before and after the 
breakpoint obtained by using the variance of the Kolmogorov 
Zurbenko adaptive filter.

Species P
a
r
a
m
e
t
e
r

Before After % Reduction P

P.falciparum 11.56 ± 1.02 3.90 ± 1.15 66.26 B/A

1.43 ± 0.42 0.72 ± 0.35 48.59 B/A

1.36 ± 0.44 0.94 ± 0.33 30.88 B/A

5.76 3.84 33.31 -

P.vivax 4.83 ± 0.62 2.33 ± 0.43 51.76 B/A

0.55 ± 0.18 0.11 ± 0.16 80.00 B

1.17 0.53 54.31 -

. % Reduction is defined as 1- (parameter value before breakpoint/
parameter value after breakpoint). For P. falciparum the final model 
was:
yt = μ + φ1(yt-1 - μ) + φ12(yt-12 - μ) + α1Tt-3 + α2Tt-12 + εt and for P.vivax:
yt = μ + φ1(yt-1 - μ) + φ12(yt-12 - μ) + α1Tt-10 + εt Model selection 
process and all parameter values can be seen in Additional file 6. 
Column P (<0.05) indicates the significance of any parameter B 
(before breakpoint)/A(after breakpoint)

m̂

â1

â 2

ŝ e
2

m̂

â1

ŝ e
2
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has a robust theoretical explanation as presented in the
groundbreaking work of Becker and Dietz [51], later con-
firmed using field data as the 80/20 rule for several infec-
tious diseases [52,53] where the control, which targets
20% of the population, could benefit the other 80% of
people.

Interestingly, this rule has been derived by looking at local
populations, but the pattern seen in Vanuatu is more
likely to arise from the subdivided nature of the popula-
tion in villages, or patches if seen from the perspective of
metapopulations [54]. The coverage per patch was high
enough (80% with a very low dispersion around this
value) to guarantee the local interruption of transmission
according to mechanistic models of bed net action in set-
tings with a higher entomological inoculation rate [49,55]
than that observed in Vanuatu [16,50].

As a control strategy, ITNs outperform similar strategies
aimed at reducing vectorial capacity, such as the indoor
residual spraying, mainly because of its cost-effectiveness,
as well as for its ease of implementation and distribution
[56,57]. Several studies have shown that bed nets reduce
total infant mortality in endemic areas [58,59], are a sus-
tainable option for control in terms of the reduction of
relative risk of malaria death in the medium- to long-term
time scales [60], and are successful across several cultural
settings [57,61-64]. The advantages of bed nets also go
beyond the immediate effects, since so far there is no evi-
dence for selection of insecticide-resistant mosquitoes
[65], and they are protective even in areas where mosquito
resistance to the insecticides used for bed net impregna-
tion has been reported [66]. This result also has been the-
oretically reinforced by models that consider the use of
bed nets in conjunction with other control strategies, such
as zooprophylaxis [67], provided that both measures in
conjunction are likely to counteract any selective pressure
for the development of insecticide resistance, since mos-
quito fitness would not be under a selective pressure, and
may even be under selection for feeding preferences in
non-human hosts [68,69]. However, urban settings pose
a major challenge since effective zooprophylaxis might be
diminished because of higher human densities. Behavio-
ral changes in mosquitoes and decreased bed net effective-
ness have been documented in urban areas [70]. From a
wider perspective, bed nets are also a more ecologically-
sound strategy since they reduce impacts on natural ene-
mies of vectors via positive feedbacks loops that can be
generated by large scale insecticide spraying [68,71,72]. A
large body of literature supports that idea that in relatively
undisturbed environments mosquito abundance is regu-
lated by interactions with other animals, e.g., tadpoles,
fish and other insects [e.g., [71-76]], however such natural
control is diminished by anthropogenic disturbances of
food webs.

Conclusion
The success of the Vanuatu malaria control programme
also stems from the strategy of bed net distribution, where
large fractions of the population were locally covered at
the village level, ensuring the reduction in transmission,
even leading to local elimination in some islands [21]. As
stressed by Killeen et al [49] and Ilboudo-Sanogo et al
[65], an efficient bed net programme needs to cover a
large proportion of the population in order to ensure that
both sources (e.g., asymptomatic people) and sinks (e.g.,
pregnant women and young children) of infection are
effectively covered. The erroneous targeting of transmis-
sion groups for control can exacerbate the conditions for
transmission [77]. Additionally, as suggested by Math-
anga et al [78], for ethical and humanitarian reasons the
goal should be to cover as much of the population present
in the endemic setting as possible, retaining traditional
practices (e.g., voluntary work) for the exchange of goods
when mainstream means of commercialization are not
enough to achieve such a goal. In Vanuatu, special care
was taken to address these factors by implementing a
strategy where children under five years of age, their
mothers and pregnant women received free nets. Cost was
half price for school children and other adults were
charged the full price, ensuring an equitable coverage of
the population [21] and an equitable distribution of this
valued resource.

A factor that deserves further study is the role that con-
comitant knowledge transfer associated to the distribu-
tion of bed nets have on the awareness of the population
about the risk leading to malaria transmission. Unlike
insecticide residual spraying whose effectiveness depends
mostly on being applied correctly, the effective use of bed
nets requires knowledge for its proper use. In Vanuatu,
parents' awareness was likely to play a role in diminishing
incidence among young children (<5 years), because of
the free distribution to this age group and training to par-
ents about the benefits of using the nets [21]. But, the pos-
itive effects of knowledge transfer are likely to be more
comprehensive. For example, Mathanga et al [78] showed
that even though children didn't regularly use bed nets,
those in communities where malaria transmission plum-
meted after the introduction of widespread bed net use
were aware of the benefits. Similar knowledge transfers
are known to be present among some Native American
tribes whose mythology has associated malaria risk with
the blossoming of water-retaining flowers where vector
larvae develop [79]. Changes in collective behavior in vil-
lages that were stricken by malaria have been seen before
community-based educational campaigns were imple-
mented [80-82] and more generally, traditional knowl-
edge has been shown to be a robust strategy to handle
issues of pest management by native populations in
Meso-America [83].
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The association between climatic forces and malaria
dynamics in Vanuatu presents features that make it unu-
sual when compared to other settings, where the climate
and ecological dynamics have been studied [e.g., [36],
reviewed in [84]]. None of the ENSO indices led the
dynamics of malaria, yet clear signals of association at
interannual time scales were found with local climatic var-
iables. This may be a result of the relationship of ENSO
with the local climate in the area [85] which influences
rainfall during a season, October to January [86-88], that
probably is not relevant for the biology of mosquitoes in
regards to transmission. The unusual pattern is less likely
because of a demographic effect of small insular popula-
tion size as suggested in [89]. Mechanisms for the action
of rainfall across a wide range of landscapes have been
very well described, it increases the rate of a disease when
new mosquito habitats are created by increased precipita-
tion [90], and the additional weakening of inter-specific
interactions regulating mosquito populations [91]. How-
ever, ecological studies of vectors are needed to under-
stand their local population dynamics in Vanuatu.
Similarly it may be understood why hotter temperatures
can increase the transmission of vector-borne diseases,
because of known effects of temperature on the rate of
insect and parasite development [85,92]. However,
increased resilience to the effects of climate in an infec-
tious disease as a result of control measures, in our knowl-
edge, has not been reported before. The fact that such a
measure also decreases the incidence of malaria under
changing climatic conditions is a remarkable fact strength-
ening the usefulness of this strategy.

Finally, a precautionary note on bed nets should be posed.
Even though they are a very robust strategy to control
malaria from evolutionary, ecological, conservation and
cost-effectiveness perspectives [56,57,65,78], the use of
bed nets should not be viewed as a exhaustive solution if
the long-term goal of population health is to be pursued.
As shown in [93] a fraction of the death toll that was
avoided by controlling malaria through the use of insecti-
cide treated curtains in areas of Burkina Faso was shifted
to meningococcal meningitis. Evidence also suggests that
in urban settings, for a series of factors that go from the
absence of alternative hosts to behavioural shifts in
humans, insecticide treated nets are not going to be a suf-
ficient strategy to keep malaria under control [70]. To
achieve this goal, a wide research agenda, fully integrated
with policies beyond disease control is a path that needs
to be taken [34,94-97], where ultimate goals are aimed at
pushing out the stressful contextual conditions that make
human populations vulnerable to infectious diseases [2],
especially malaria.
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