$$
\begin{array}{ll}
88023 & 329590 \\
& 030225 \text { Parent }
\end{array}
$$

Generic Data for Representing Truck Tire Characteristics in Simulations of Braking and Braking-in-a-Turn Maneuvers

Sponsors:
Navistar International (\#329590)
Great Lakes Center for Truck \& Transit Research (\#033204)

UMTRI No.: 95-34

Final Report

Paul S. Fancher

September, 1995

Technical Report Documentation Page

Table of Contents

Introduction 1
Structure of the Spreadsheet 2
Discussion of the Input Parameters 3
Generic Truck Tire Properties for a Good Dry Road 3
Generic Truck Tire Properties for a Wet, Slippery Surface 5
Concluding Statements 5Acknowledgements/References7

Appendix A - Modeling the Truck Tire for Vehicle Dynamics Analysis

Introductory Remarks	A-1
Inputs to the Tire Representation	A-2
A Semiempirical Model of the Braking Properties of Truck Tires .	A-2
A Semiempirical Model of the Lateral Force Properties of Truck Tires.	A-8
Combined Longitudinal and Lateral Slip	A-10
Summary	A-12

Appendix B - Tire Equations Used in the Spreadsheet
A. Sliding Velocity B-1
B. Friction B-1
C. Direction of Sliding and Friction Factors for Combined Slip B-1
D. Longitudinal and Lateral Fractions of the Contact Patch that are in Adhesion B-2
E. Longitudinal and Lateral Forces
E. Longitudinal and Lateral Forces B-3 B-3
Appendix C-Generic Truck Tire Data for a "0.9 Surface" C-1

$\mathrm{Ez}=3000 \mathrm{lbs}$,	$\mathrm{Ez}=6000 \mathrm{lbs}$.
.9-3000-22-0 ---------C-2	.9-6000-22-0 ---------C-19
.9-3000-22-1 --------C-3	.9-6000-22-1 ---------20
.9-3000-22-2 ---------C-4	.9-6000-22-2 --------C-21
.9-3000-22-4 --------C-5	.9-6000-22-4 ---------C-22
.9-3000-44-0 ---------6-6	.9-6000-44-0 ----------23
.9-3000-44-1 ----------7	.9-6000-44-1 --------C-24
.9-3000-44-2 --------C-8	.9-6000-44-2 ---------C-25
.9-3000-44-4 --------C-9	.9-6000-44-4 --------C-26
.9-3000-66-0 ---------C-10	.9-6000-66-0 ---------C-27
.9-3000-66-1 --------C-11	.9-6000-66-1 --------C-28
.9-3000-66-2 --------C-12	.9-6000-66-2 ---------C-29
.9-3000-66-4 --------C-13	.9-6000-66-4 --------C-30
.9-3000-88-0 ---------C-14	.9-6000-88-0 ---------C-31
.9-3000-88-1 ----------15	.9-6000-88-1 --------C-32
.9-3000-88-2 --------C-16	.9-6000-88-2 --------C-33
.9-3000-88-4 --------C-17	.9-6000-88-4 --------C-34

Appendix D - Generic Truck Tire Data for a " 0.5 Surface"
$\mathrm{Ez}=3000 \mathrm{lbs}$

$.5-3000-22-0$	$----------D-2$
$.5-3000-22-1$	$--------D-4$
$.5-3000-22-2$	$-------D-5$
$.5-3000-22-4$	$-------D-6$
$.5-3000-44-0$	$--------D-7$
$.5-3000-44-1$	$-------D-8$
$.5-3000-44-2$	$-------D-9$
$.5-3000-44-4$	$--------D-10$
$.5-3000-66-0$	$-------D-11$
$.5-3000-66-1$	$-------D-12$
$.5-3000-66-2$	$-------D-13$

$\mathrm{Ez}=6000 \mathrm{lbs}$.	
.5-6000-22-0	----D-15
.5-6000-22-1	----D-16
.5-5000-22-2	------D-17
.5-6000-22-4	----D-18
.5-6000-44-0	-----D-19
.5-6000-44-1	------D-20
.5-6000-44-2	------D-21
.5-6000-44-4	------D-22
.5-6000-66-0	---------D-23
.5-6000-66-1	--------D-24
.5-6000-66-2	--------D-25
.5-6000-66-4	------D-26

$\mathrm{Ez}=9000 \mathrm{lbs}$.

-1	
.9-9000-22-2	38
.9-9000-22-4	
.9-9000-44-0	
.9-9000-44-1	C-41
.9-9000-44-2	C-42
.9-9000-44-4	
.9-9000-66-0	C-44
.9-9000-66-1	--C-45
.9-9000-66-2	C-46
.9-9000-66-4	C-47
.9-9000-88-0	C-48
.9-9000-88-1	C-49
.9-9000-88-2	C-50
-9000-88	

GENERIC DATA FOR REPRESENTING TRUCK TIRE CHARACTERISTICS IN SIMULATIONS OF BRAKING AND BRAKING-IN-A-TURN MANEUVERS

Introduction

The generic data presented in this report are intended for use in studying the performance of trucks (including articulated vehicles) in braking and braking-in-a-turn maneuvers, such as those included in recent versions of FMVSS 121 [1]. These data are based on a semiempirical tire model that uses simplified theoretical concepts in conjunction with measured or specified tire stiffnesses and tire-road frictional qualities. (See Appendix A for a discussion of the physical reasoning and equations used in the semi-empirical tire model.)

The main body of this report provides a users manual for spread sheet calculations that compute longitudinal and lateral tire forces as functions of vertical load, velocity, longitudinal slip, and slip angle. The results of these calculations are tables of data containing values of tire forces that are suitable for use in computer simulations of heavy trucks (e.g. Phase 4 [2]).

Structure of the Spread Sheet

The particular spread sheet application used in this study is EXCEL [3]. Figure 1 shows a typical example of a calculation representing a truck tire that has a rib tread pattern and radial construction (tire designation 295 75R.XL4).

In order for the equations implemented in the spread sheet to compute tire forces, one needs to enter values for longitudinal slip, slip angle, speed, and vertical load. In addition, one needs parametric values for longitudinal stiffness Cs, lateral stiffness Calpha, and friction parameters muo, muf, and Vf. The spread sheet program will compute a number of intermediate variables pertaining to the tire model as well as the longitudinal force Fx , which is in the direction of the wheel plane, and the lateral force Fy, which acts perpendicularly to the wheel plane. (Appendix B contains a list summarizing the equations used in the spread sheet calculations. The equations in Appendix B are labelled with letters to indicate the applicable columns of the spread sheet shown in Figure 1.)

Although the equations in the tire model may seem difficult to understand, they are typical of those used in semiempirical tire models [4]. This model differs from previous models in the manner in which friction is treated.

	A	B	C	D	E	F	G	H
1	s	\tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.069926787	66	6000	48000	43200	4.61516798	0.8467696
3	0.05	0.069926787	66	6000	48000	43200	5.673603356	0.835383621
4	0.1	0.069926787	66	6000	48000	43200	8.053556671	0.810830157
5	0.2	0.069926787	66	6000	48000	43200	13.98355373	0.75550731
6	0.25	0.069926787	66	6000	48000	43200	17.13329434	0.729218897
7	0.3	0.069926787	66	6000	48000	43200	20.33075933	0.704519742
8	0.35	0.069926787	66	6000	48000	43200	23.55652298	0.681479257
9	0.4	0.069926787	66	6000	48000	43200	26.80036893	0.660067331
10	0.5	0.069926787	66	6000	48000	43200	33.32116107	0.62182679
11	0.6	0.069926787	66	6000	48000	43200	39.86802949	0.589088874
12	0.75	0.069926787	66	6000	48000	43200	49.7146837	0.548718438
13	0.99999	0.069926787	66	6000	48000	43200	66.16050677	0.499577596
14								
15	alpha (deg)=		muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41

Discussion of the Input Parameters

To use the spread sheet effectively one should know what the input parameters mean. Briefly, Cs is the longitudinal stiffness of the tire. It is an elastic property of the tire that changes with vertical load Fz. (The following equation has been used to estimate Cs as a function of vertical load: $\mathrm{Cs}=10 \mathrm{Fz}-\mathrm{Fz}^{2} / 3000 \mathrm{lbs}$.) The cornering stiffness Calpha is also an elastic property of the tire that changes with vertical load. (Calpha has been estimated using Calpha $=0.9$ Cs.) With regard to test data Calpha is the slope of the longitudinal force curve in the vicinity of zero slip angle, while Cs is the slope of the longitudinal force curve in the vicinity of zero longitudinal slip. Both Cs and Calpha are functions of tread wear and inflation pressure. If suitable test data exist over a range of pertinent vertical loads, Cs and Calpha can be estimated from the slopes of the curves for longitudinal force versus longitudinal slip and lateral force versus slip angle.

The frictional characteristics of the tire depend on properties of both the tire and the road surface. The friction "mu" also depends upon vertical load and sliding velocity. The quantities used in the spread sheet to represent frictional characteristics (that is, muo, muf, and Vf) might be estimated or determined for each vertical load. However, for providing generic data we have considered mu to be a function of sliding velocity per equation (H) in Appendix B.

A recommended procedure for determining friction related quantities at a given load is to choose a measured μ-slip curve ($\mathrm{Fx} / \mathrm{Fz}$ versus longitudinal slip s) and to use this curve in estimating how friction varies with sliding velocity at that load. (Equations (H) and (H15) in Appendix B express the ideas involved.)

As a function of sliding velocity, friction decreases as sliding velocity increases. Hence the specifications involving peak or slide values of longitudinal tire force need to state speed and load at which the specifications are to be met.

Generic Truck Tire Properties for a Good Dry Road

Appendix C provides generic tire data for a " 0.9 surface" at $\mathrm{Fz}=3000,6000$, and 9000 lbs and forward speeds (" u " in the direction of the wheel plane) of $22,44,66$, and 88 $\mathrm{ft} / \mathrm{sec}$. The example results given in Figure 2 provide longitudinal and lateral force characteristics at near rated load (6000 lbs), $66 \mathrm{ft} / \mathrm{sec}$, and 4 degrees of slip angle for values of longitudinal slip varying from 0 to 1 . The spread sheet can be used to make similar calculations at different loads, speeds, and slip angles. See Appendix C for numerous examples.

	A	B	C		D	E	F	G	H	
1	s	tan alpha	u	Fz		Cs	Calpha	Vs	mu	
2	0.00001	0.06992679	66		6000	48000	43200	4.61516798	0.8467696	
3	0.05	0.06992679	66		6000	48000	43200	5.67360336	0.83538362	
4	0.1	0.06992679	66		6000	48000	43200	8.05355667	0.81083016	
5	0.15	0.06992679	66		6000	48000	43200	10.9229014	0.78306162	
6	0.2	0.06992679	66		6000	48000	43200	13.9835537	0.75550731	
7	0.25	0.06992679	66		6000	48000	43200	17.1332943	0.7292189	
8	0.3	0.06992679	66		6000	48000	43200	20.3307593	0.70451974	
9	0.4	0.06992679	66		6000	48000	43200	26.8003689	0.66006733	
10	0.5	0.06992679	66		6000	48000	43200	33.3211611	0.62182679	
11	0.6	0.06992679	66		6000	48000	43200	39.8680295	0.58908887	
12	0.75	0.06992679	66		6000	48000	43200	49.7146837	0.54871844	
13	0.99999	0.06992679	66		6000	48000	43200	66.1605068	0.4995776	
14										
15	alpha (deg)=	4	muo=	0.9		muf=	0.4	$\mathrm{V} \mathbf{f}=$	41	
16										
17	s	Fy	FX							
18	0	2944.42029	0		3500	$\square \square$				
19	0.05	2770.25849	2074.28103							
20	0.1	2209.006	3241.81605		3000 为					
21	0.15	1707.94507	3723.18072		2500	8		Fx		
22	0.2	1347.90622	3897.57745							
23	0.25	1092.35559	3936.17808						$\square \mathrm{Fx}$	
24	0.3	906.231914	3910.80213					$\square-\mathrm{Fy}$		
25	0.4	658.906926	3782.33609		1000					
26	0.5	505.709103	3623.89091		500					
27	0.6	403.619597	3467.97395							
28	0.75	303.702704	3259.43732							
29	1	209.094599	2990.1633			0.2	0.4	$0.6 \quad 0.8$		
30										

Generic Truck Tire Properties for a Wet, Slippery Surface

The model provides results that are in qualitative agreement with those measured by Ervin many years ago [5]. Unfortunately, recent tire measurements do not include tests on wet surfaces (nor do they include tests at speeds other than 45 mph). Nevertheless, we can use the tire model to produce generic data for use in simulations of braking-in-a-turn maneuvers on a wet, slippery surface.

Since the surface conditions do not influence the elastic properties of the tire, the values of Cs and Calpha used previously can be used again. In order to represent a poor, wet road we have chosen $\mathrm{muo}=0.5$, muf $=0.3$ and $\mathrm{Vf}=37 \mathrm{ft} / \mathrm{sec}$. Examination of Figure 3 shows that this combination of parameters gives a peak normalized force of $2363 / 6000=0.39$ at $66 \mathrm{ft} / \mathrm{sec}(45 \mathrm{mph})$ and alpha $=0$.

Appendix D contains a generic set of tire data for a " 0.5 surface." The values of Fx and Fy in Appendix D can be used directly to make tables for use in the Phase 4 simulation program. Or, these results can be processed to generate "roll-off tables" for use along with tables of longitudinal force at alpha $=0$ and lateral force at $s=0$.

Concluding Statements

Basic data for representing a generically reasonable set of truck tire shear force characteristics have been developed in this study. These data need to be structured to put them into the user's version of the Phase 4 simulation program.

Another alternative is to replace the tire model currently existing in Phase 4 with the tire model described in Appendices A and B. This would take some programming effort, however.

It is recommended that the generic data used in the simulations cover the ranges of velocities and vertical loads pertinent to the vehicle situation to be studied. For example, in a braking-in-a-turn maneuver at $30 \mathrm{mph}(44 \mathrm{ft} / \mathrm{sec}$) on a 500 ft radius turn, the lateral acceleration required to follow the curve on a level surface is equal to $\mathrm{V}^{2} / \mathrm{R}=(44)^{2} / 500=$ $3.87 \mathrm{ft} / \mathrm{sec}^{2}$ or 0.12 g . For an $80,000 \mathrm{lb}$ vehicle with 18 tires this would mean approximately 535 lbs of lateral force per tire. For a cornering stiffness of about $37,500 \mathrm{lbs}$ at 4400 lbs of load, this would mean just under one degree of slip angle at each tire. Even if slip were to be around 0.3 , the tires would not need more than about a 3 degree slip angle in order for the vehicle to negotiate the turn. Hence, for vehicles with ABS systems that keep longitudinal slip below 0.3 , there would be limited use for lateral force data exceeding 4 degrees of slip angle. However, if wheel lock or vehicle spinning or swinging were to occur, large slip angles would be involved.

The data need to be concentrated at the smaller slip angles for the purpose of studying vehicle performance in 121 like maneuvers. Also, static vertical loads around 4500 lbs per tire seem appropriate for these simulations.

Acknowledgement

This work received matching support from Navistar and the Great Lakes Center for Truck and Transit Research.

References

[1] National Highway Traffic Safety Administration. "Federal Motor Vehicle Safety Standards". 49 CFR 571.121. Washington, D.C.: Government Printing Office, 1994.
[2] University of Michigan Transportation Research Institute, Engineering Research Division, Research into the Dynamic Performance of Heavy Trucks. December 1988.
[3] User's Guide, Microsoft Excel, Microsoft Corporation, Bothell, WA, 1994.
[4] Swets \& Zeitlinger, B.V. Amsterdam/Lisse. Tyre Models for Vehicle Dynamics Analysis, Proceedings 1st International Colloquium on Trye Models for Vehicle Dynamics Analysis held in Delft, The Netherlands, October 21-22, 1991.
[5] U.S. Department of Transportation and Motor Vehicle Manufacturers Association of the United States, Inc., Noise and Traction Characteristics of Bias-Ply and Radial Tires for Heavy Duty Trucks. Joint DOT/MVMA Study. Final Report, October 1977.

APPENDIX A

MODELING THE TRUCK TIRE FOR VEHICLE DYNAMICS ANALYSIS

Introductory Remarks

This appendix examines the modeling of truck tires from the perspective of analyzing and simulating the braking and handling responses of commercial vehicles. The overall thesis underlying the following discussion is that a semiempirical model of the shear force properties of truck tires aids in understanding the interaction between tire properties and vehicle response variables.

The development of methods for representing the longitudinal and lateral force properties of pneumatic tires has received considerable attention in recent years [1,2]. A curve fitting approach associated with the so-called "magic formula" [3] has been the basis for many studies and papers on representing tire force and moment data in a manner suitable for use in analyses of the dynamics of pneumatic-tired vehicles. Nevertheless, there is still discussion concerning the advantages and disadvantages of different methods for representing tires in general, and truck tires are no exception. A particularly difficult situation has been the representation of tire force characteristics when the tire is simultaneously generating both longitudinal and lateral force, such as in a braking-in-a-turn maneuver. Since there are now new requirements in FMVSS 121 concerning the performance of heavy trucks in a braking-in-a-turn maneuver, there is renewed interest in understanding how tire characteristics influence vehicle dynamics.

Rather than emphasizing either curve fitting or pure empiricism, this lecture will emphasize a combined theoretical and empirical approach to modeling the truck tire. This approach involves considering the deformations that take place in the tire contact patch. The goal is to develop insight into the concepts of longitudinal and lateral slip. The discussion explores ideas concerning whether tread elements are adhering to the road surface or sliding over the road surface. Even though the tire is a very complex structure and the phenomena involved with sliding friction are difficult to understand, a simple set of equations for describing tire deformation and frictional characteristics is developed here.

Inputs to the Tire Representation

In addition to vertical load and the velocity of the wheel center, two primary inputs to a computerized representation of tire shear force properties are lateral and longitudinal slip, or as they are commonly referred to, slip angle and slip. In a computerized model of a vehicle, slip angle is calculated from the ratio of (a) the component of velocity normal to the wheel plane to (b) the component of velocity lying along the wheel plane. These velocity components are determined from the variables describing the motions of the entire vehicle plus the characteristics of any steering system associated with particular wheels. Hence, the solutions to the basic equations of motion of the vehicle provide the information needed to determine slip angle.

On the other hand, the determination of longitudinal slip requires knowledge of the rotational speed of the wheel. Hence, wheel rotational degrees of freedom are included in computerized models involving braking dynamics.

A Semiempirical Model of the Braking Properties of Truck Tires

For braking studies, the development of a method for representing the longitudinal force properties of tires is clearly essential. Prior to the availability of data from an over-the-road, truck-tire dynamometer, semiempirical models were developed and used. A semiempirical model consists of a phenomenological description of the deflection and shear force characteristics of a tire [4,5]. Empirical data (or estimated shear force characteristics of the tire) are needed to evaluate the parameters used in this type of model. The values of the parameters are selected so that the forces predicted by the model match test results or a desired set of tire properties.

In this type of model, a quasistatic analysis of the rotating tire is made. The tread is envisioned as a continuum of elastic elements that touch the ground in the contact patch. Even through the wheel is rotating, some tread element is assumed to be deflected by a determinable amount at each point in the contact patch. The following sketches (Figures 1 and 2) and the subsequent analysis are intended to clarify the form of the tire model.

As shown in Figure 1, tread elements are assumed to become elongated longitudinally as they pass through the contact patch. For an arbitrary element at a distance, x , from the front of the contact patch (see Figure 2), the deflection, δ, of that element may be determined from the longitudinal slip, using the following reasoning. For an element entering the contact patch $\Delta \mathrm{t}_{\mathrm{x}}$ seconds ago, the carcass end of the element has traveled a distance equal to $\mathrm{R} \omega \Delta \mathrm{t}_{\mathrm{x}}$. The road-contact end of this element has traveled a distance equal to $\mathrm{V} \Delta \mathrm{t}_{\mathrm{x}}$ if this end of the element adheres to the road. (The case of sliding friction between tire elements and the road will be treated later.) Hence, the deflection of the element at point x in the carcass is given by:

$$
\delta(x)=(V-R \omega) \Delta t_{x}
$$

By noting that $\mathrm{x}=\mathrm{R} \omega \Delta \mathrm{t}_{\mathrm{x}}$., it is possible to express the deflection as a function of slip, viz.:

$$
\frac{\delta(x)}{x}=\frac{(V-R \omega) \Delta t_{x}}{R \omega \Delta t_{x}}=\frac{V}{R \omega}\left(1-\frac{R \omega}{V}\right)
$$

or, since $s=\left(1-\frac{R \omega}{V}\right)$,

$$
\begin{equation*}
\delta(x)=\frac{x s}{1-s} \tag{4}
\end{equation*}
$$

Figure 1. Sketch of an idealized tire.

Figure 2. The longitudinal deflection, δ, of a tread element at location x in the contact patch.

Figure 3 illustrates the predicted form of the deflection pattern along the length of the contact patch for a situation in which no elements are sliding with respect to the road.

For simplicity, variations in deformation over the width, w, of the contact patch are assumed to be averaged out, and the deflection pattern in Figure 3 may be thought of as an average over the lateral direction.

To compute the total shear force due to the deflection pattern, the tire is assumed to be characterized by a stiffness per unit area of the contact patch. This stiffness parameter, k_{x}, will be replaced ty an empirically determined longitudinal stiffness parameter, C_{s}, in the final form of the brake-force model. Nevertheless, k_{x} serves as a means for converting deflection into shear stress. Specifically, the following integral defines the braking force, F_{x}, when no sliding occurs:

$$
\mathrm{F}_{\mathrm{x}}=\int_{\mathrm{x} 0}^{\mathrm{L}} \delta(\mathrm{x}) \mathrm{k}_{\mathrm{x}} \mathrm{wdx}
$$

Substituting for $\delta(x)$ from (4) and on evaluating the above integral, we obtain

$$
\begin{equation*}
F_{x}=\left(\frac{k_{x} L^{2} w}{2}\right)\left(\frac{s}{1-s}\right)=\frac{C_{s} s}{1-s} \tag{5}
\end{equation*}
$$

The quantity $\frac{\mathrm{K}_{\mathrm{x}} \mathrm{L}^{2} \mathrm{w}}{2}$ in Equation (5) is equal to $\left.\frac{\partial \mathrm{F}_{\mathrm{x}}}{\partial \mathrm{s}}\right|_{\mathrm{s}=0}$, and it is defined as the longitudinal stiffness parameter, C_{s}. Furthermore, C_{s} may be evaluated empirically from the slope of test data for F_{x} versus s without knowing k_{x} or the dimensions of the contact patch.

Figure 3. Tire deflection pattern, no sliding.
Sliding starts to occur in the contact patch at the point where the frictional potential per unit area cannot support any more deflection. That is, sliding starts when

$$
\begin{equation*}
\frac{\mu \mathrm{F}_{\mathrm{Z}}}{\mathrm{~A}}=\frac{\mathrm{k}_{\mathrm{x}} \mathrm{x}_{\mathrm{s}} \mathrm{~s}}{1-\mathrm{s}} \tag{6}
\end{equation*}
$$

where
μ is the tire-road friction coefficient,
A is the area of the contact patch ($\mathrm{A}=\mathrm{Lw}$),
F_{z} is the vertical load (a uniform pressure distribution of magnitude $\mathrm{F}_{\mathrm{z}} / \mathrm{A}$ is assumed in developing the simplest model),
and x_{s} is the value of x at which sliding starts.
Figure 4 illustrates the estimated form of a deflection pattern with sliding at the rear of the contact patch.

Figure 4. Tire deflection pattern, with sliding.
For the deflection pattern shown in Figure 4, the longitudinal shear force, F_{x}, is given by

$$
\mathrm{F}_{\mathrm{x}}=\int_{\mathrm{x}=0}^{\mathrm{x}_{4}} \delta(\mathrm{x}) \mathrm{k}_{\mathrm{x}} \mathrm{wdx}+\frac{\mu \mathrm{F}_{\mathrm{z}}}{\mathrm{~A}} \mathrm{w}\left(\mathrm{~L}-\mathrm{x}_{\mathrm{s}}\right)
$$

or

$$
\begin{equation*}
\mathrm{F}_{\mathrm{x}}=\frac{\mathrm{k}_{\mathrm{x}} \mathrm{x}_{\mathrm{s}}^{2}}{2}\left(\frac{\mathrm{~s}}{1-\mathrm{s}}\right)+\mu \mathrm{F}_{2}\left(1-\frac{\mathrm{x}_{\mathrm{s}}}{\mathrm{~L}}\right) \tag{7}
\end{equation*}
$$

It is convenient to re-express (7) in terms of C_{s}, the longitudinal stiffness, and $\mathrm{x}_{\mathrm{s}} / \mathrm{L}$, the fraction of the contact patch which is not sliding. Using Equation (6), we see that

$$
\begin{equation*}
\frac{x_{s}}{L}=\frac{\mu F_{z}}{k_{x} A L \frac{s}{1-s}}=\frac{\mu F_{z}((1-s)}{2 C_{s} s} \tag{8}
\end{equation*}
$$

and, using Equations (8) and (7), we find that

$$
\begin{equation*}
F_{x}=\frac{\left(\mu F_{z}\right)^{2}}{4 C_{s}}\left(\frac{l-s}{s}\right)+\mu F_{z}\left(1-\frac{x_{s}}{L}\right) \tag{9}
\end{equation*}
$$

In numerical computations, x_{s} / L, is evaluated from Equation (8) if $s>0$. If x_{s} / L is greater than 1.0 , then no sliding takes place in the contact patch and F_{x} is evaluated using Equation (5). Note that for a locked wheel (i.e., $s=1.0$), all of the contact patch is sliding $\left(x_{s} / L=0\right)$, and F_{x} is determined exclusively by tire-road friction (i.e., $F_{x}=\mu F_{z}$).

If the friction coefficient, μ is treated as a constant, then the model will predict that the maximum braking force occurs at locked-wheel conditions. However, in practice, μ is not constant and the braking force reaches a maximum at some intermediate value of slip, usually around $s=0.2$ to 0.3 . Experiments with pieces of tire tread indicate that tire-road
friction tends to decrease with sliding velocity. A simple method for including this phenomenon in the model is to make μ an exponential function of sliding velocity; viz.,

$$
\begin{equation*}
\mu=\operatorname{muf}+(\text { muo }- \text { muf }) \exp \left(-V_{s} / V f\right) \tag{10}
\end{equation*}
$$

where
muf $=$ the minimum friction for the surface, and
muo = the maximum friction for the surface, and
Vf determines the shape of the friction function,
and V_{s} is the sliding velocity of the tread elements with respect to the ground (i.e., $\mathrm{V}_{\mathrm{s}}=\mathrm{Vs}$) .

Insight into the frictional process and what is going on in the sliding region can be obtained by using the model to study tire deflection and sliding velocity. The assumption of a nearly uniform pressure distribution makes the discussion much easier to understand. Figure 5, which is similar to Figure 4, shows where the ends of the tread elements in the sliding region would have been if they had adhered to the ground. However, once an element enters the sliding region it is sliding by an amount that depends upon the distance from the adhesion point (where the sliding velocity would be zero) to the amount of deflection that can be supported by its local friction factor. In steady state, the sliding velocity of an arbitrary point in the sliding region is given by its virtual displacement divided by the length of time it takes the tire to rotate to that arbitrary point. See Figure 6. Translating these words into equations yields:

$$
\begin{equation*}
\mathrm{Vs}\left(\mathrm{x}^{\prime}\right)=\left[\mathrm{x}^{\prime}(\mathrm{s} /(1-\mathrm{s}))\right] /\left[\mathrm{x}^{\prime} / \mathrm{R} \omega\right]=\mathrm{V}-\mathrm{R} \omega \tag{11}
\end{equation*}
$$

where the time to rotate an amount x^{\prime} is given by $\Delta t^{\prime}=x^{\prime} / R \omega$.

Figure 5. The difference between sliding and no sliding.

Figure 6. Examination of the sliding velocity in the sliding region.
Equation 11 is an extraordinary result even if it seems obvious once it is understood. The point is that each element in the contact patch is sliding at the same sliding velocity. Clearly, if the pressure distribution is not uniform and friction varies with vertical pressure and sliding velocity, the result would not be so simple. Nevertheless, to first approximation, the steady state sliding velocity is approximately equal for the tread elements that have nearly the same vertical load in the heavily laden area of the contact patch. This means that a single friction factor can be used to represent the entire sliding region. (There does not need to be a different value of μ for each tread element in this simplified model.)

Equations (5), (8), (9), and (10) represent a very simplified model of highly complicated elastic and frictional processes between the tire (a complex structure) and the road, which may have random frictional characteristics due to dirt, liquid contamination, variable composition, and nonuniform texture from one contact patch area to another. Nevertheless, this model has proven to be quite satisfactory for simulating passenger car tires and, when combined with lateral slip (slip angle) effects, it has been very useful in simulating combined braking and steering maneuvers [4].

As a practical matter, given the assumptions made in the model, its parameters need to be evaluated as functions of vertical load and forward velocity. Vertical load influences the contact patch length and the rolling radius of the tire. This means that the longitudinal stiffness Cs needs to be evaluated as a function of vertical load. It also means that the value of longitudinal slip varies because the rolling radius changes as the vertical load changes. In addition, the friction factor varies with load and sliding velocity, thereby making it necessary to account for these effects as a function of load and velocity. Fortunately, test data are often measured at various loads and velocities, thereby facilitating the determination of the friction factor given by equation 10. In practice, it is convenient to determine muo, muf, and Vf such that the model does a good job of fitting the peak and slide longitudinal force values for a given set of data or for a desired set of tire characteristics.

In addition to the longitudinal force characteristics of tires, a vehicle braking simulation must account for the change in the rolling radius of tires and thus the radial compliance of tires must be modeled. Specifically, the locations and velocities of the wheel centers are computed, and these quantities are used to determine the vertical forces between the tire and the road and the "equal but opposite" forces accelerating the unsprung masses. The vertical force versus deflection property of the tire is represented by a spring constant measured
under rolling conditions. A small amount of viscous damping (approximately $35 \mathrm{lbs}-\mathrm{sec} / \mathrm{in}$ for a 10×20 truck tire) is included, thereby providing a relatively small, dissipative force opposing wheel-hop motions. This small amount of tire damping is included to prevent the prediction of transient wheel-hop oscillations in response to rapid changes in vertical motion. Experimental results from tire tests under conditions of varying vertical load, as well as the examination of vehicle test data from antilock braking studies, indicate that a certain amount of damping is present in the tire.

A Semiempirical Model of the Lateral Force Properties of Truck Tires

A nonobvious, but nevertheless, straightforward analogy exists between the role of longitudinal slip in determining braking force and the role of slip angle in determining lateral force. Again the concept of an adhesion region is central to the arguments leading to the development of a semiempirical model. The basic idea is that points along the "equatorial" line of the tire-road contact patch lie along the direction of the velocity vector of the wheel, that is, a point at the bottom of the tread adheres to the ground as long as that point remains in the adhesion region of the contact patch. These points, that are adhering to the ground, represent the end of tread elements that are connected to a section of the carcass, which is essentially parallel to the wheel plane (even through the carcass is deflected out of the wheel plane in the vicinity of the contact patch). If there is no longitudinal slip present and the tire is operated at a small slip angle, α, the lateral deformation of the tread is approximated by the situation illustrated in Figure 7.

Point C represents the location of the carcass end of a tread element that entered the contact patch at a time equal to x / u seconds ago. The end of this tread element is contacting the ground at point P. That is, the tread element at a distance x from the front of the contact patch is deflected laterally by a distance equal to $\mathrm{x} \cdot \tan \alpha$; hence, $\delta_{\mathrm{y}}(\mathrm{x})=\mathrm{x} \tan \alpha$

Figure 7. Lateral deformation of the tread elements, no sliding in the contact patch, $s=0$.

Now let us define a lateral stiffness, k_{y}, per unit area of the contact patch. Then the lateral shear force can be calculated by integrating the shear stresses, $\mathrm{k}_{\mathrm{y}} \delta_{\mathrm{y}}(\mathrm{x})$, over the contact patch; viz.,

$$
\begin{aligned}
F_{y(\alpha)}= & -\int_{0}^{L}{k_{y}}_{y}(x \tan \alpha) L w d x \\
= & -\frac{k_{y} L^{2} w}{2} \tan \alpha \\
& =C_{\alpha} \tan \alpha
\end{aligned}
$$

where

$$
\mathrm{C}_{\alpha}=-\left(\mathrm{k}_{\mathrm{y}} \mathrm{~L} 2_{\mathrm{w}} / 2\right)
$$

(Note that the algebraic signs have been chosen in this case, such that

$$
\mathrm{C}_{\alpha}=\left.\frac{\partial \mathrm{F}_{\mathrm{y}}}{\partial \alpha}\right|_{\mathrm{a}=0}
$$

i.e., lateral force is of a polarity opposite to the polarity of the slip angle.)

At this point, the analogy between modeling longitudinal and lateral force should be fairly apparent. The quantity, C_{α}, the tire cornering stiffness, is similar to $\mathrm{C}_{\mathbf{s}}$, the longitudinal stiffness. The analysis of lateral force can be extended to include a sliding region as before. The resulting equations are the same as those for longitudinal force except that C_{S} is replaced with C_{α} and $\mathrm{s} / 1-\mathrm{s}$ is replaced by $\tan \alpha$.

The difficulties in knowing how to represent the limiting frictional characteristics of truck tires pertain to lateral force properties as well as to longitudinal force properties. However, the limiting values of tire lateral force are rarely encountered by heavy vehicles except on slippery surfaces. In practice, the frictional qualities derived from longitudinal force data are often used in lateral force calculations.

In computerized models for simulating the directional response to steering, the truck tire is often represented by its cornering and aligning torque stiffnesses with these stiffnesses varying as functions of vertical load. Clearly, the exclusive use of these stiffness coefficients is only appropriate for simulating small disturbances or moderate maneuvers. Although the influence of vertical load on contact patch length was not considered in the development of the semiempirical models, the influence of vertical load variations can be included by treating the model parameters as functions of load. The essential idea behind this simplified approach is to represent tire characteristics as accurately as possible over a limited range of values adequate for studying particular steering maneuvers of special interest.

Combined Longitudinal and Lateral Slip

Only a small amount of shear force data has been gathered on truck tires undergoing combined longitudinal and lateral slip [6]. To make predictions of vehicle performance in maneuvers, such as braking-in-a-turn, for example, the influences of both longitudinal and lateral slip on both longitudinal and lateral force need to be represented in a computerized model of the vehicle. Since little or no data are available for this situation, simulation users and developers have resorted to simple theoretical approaches for extrapolating from the available longitudinal and lateral force data to the combined slip case.

A tabular function approach can be used to provide a very general means for representing the influence of combined longitudinal and lateral slip on the shear force characteristics of truck tires. In this approach, "roll-off" factors are defined in tabular form as functions of two variables, namely, longitudinal slip and slip angle. One roll-off factor multiplies the "free-rolling" lateral force to estimate the lateral force under braking slip and the other roll-off factor multiplies the longitudinal force, computed without considering slip angle, to obtain a "rolled-off" value of force corresponding to the combined slip situation. Since little or no test data are available, the roll-off values in these tables are usually obtained from theoretical considerations, such as those used in a semiempirical model of the combined slip case.

The concepts employed in the previously described semiempirical models that are applicable to a longitudinally slipping tire or a laterally slipping tire have been extended to treat the combined slip case. Figure 8 illustrates the deflection pattern that is predicted for the adhesion region. Note that the presence of longitudinal slip increases the amount of lateral deflection at an arbitrary point in the adhesion region. Hence, a small amount of braking can cause an increase in side force at low slip angles. Aside from this interaction and the need to treat friction as a two-dimensional quantity, the development of the semiempirical model is straightforward even though it requires considerable attention to algebraic detail.

$$
\delta_{y}(x)=v \cdot \Delta t
$$

$$
\delta_{x}(x)=(u-R \cdot \omega) \cdot \Delta t
$$

$$
\delta_{y}(x)=\frac{x \cdot \tan (\alpha)}{1-s}
$$

$$
\delta_{x}(x)=\frac{s \cdot x}{1-s}
$$

Figure 8. Combined slip model
When there is both longitudinal and lateral slip and their levels are sufficient to cause sliding in the contact patch, the friction factor has a directional aspect. The total sliding velocity is given by the following equation:

$$
\begin{equation*}
V s=\left[(u-R \omega)^{2}+(v)^{2}\right]^{0.5} \tag{12}
\end{equation*}
$$

The angle of friction θ pertains to the direction of sliding such that:

$$
\sin \theta=v / V s \text { and } \cos \theta=(u-R \omega) / V s .
$$

To account for the directional influence of the friction factor, there is a longitudinal component and a lateral component of the friction such that:

$$
\mu_{\mathrm{X}}=\mu \cos \theta \text { and } \mu_{\mathrm{y}}=\mu \sin \theta
$$

These directional friction factors are used in dividing the contact patch into regions of adhesion and sliding (either longitudinally, laterally, or both) per the following equations for the fraction of the contact patch that is in adhesion longitudinally or laterally:

$$
\begin{align*}
& \left(\mathrm{x}_{\mathrm{S}} / \mathrm{L}\right)_{\mathrm{x}}=\mu_{\mathrm{X}} \mathrm{Fz}(1-\mathrm{s}) / 2 \mathrm{C}_{\mathrm{S}} \mathrm{~s} \tag{13}\\
& \left(\mathrm{x}_{\mathrm{S}} / L\right)_{\mathrm{y}}=\mu_{\mathrm{y}} \mathrm{Fz}(1-\mathrm{s}) / 2 \mathrm{C}_{\alpha} \tan \alpha \tag{14}
\end{align*}
$$

Based upon equations 13 and 14, the equations for longitudinal and lateral force under combined slip are now as follows:

$$
\begin{gather*}
\left.\mathrm{Fx}=\mathrm{C}_{\mathrm{S}}\left(\mathrm{x}_{\mathrm{S}} / \mathrm{L}\right)_{\mathrm{x}}^{2} \mathrm{~s} /(1-\mathrm{s})\right]+\left[\left(1-\left(\mathrm{x}_{\mathrm{S}} / L\right)_{\mathrm{x}}\right) \mu_{\mathrm{x}} \mathrm{Fz}\right] \tag{15}\\
\mathrm{Fy}=-\left[\mathrm{C}_{\alpha}\left(\mathrm{x}_{\mathrm{S}} / \mathrm{L}\right)_{\mathrm{y}}{ }^{2} \tan \alpha /(1-\mathrm{s})\right]-\left[\left(1-\left(\mathrm{x}_{\mathrm{S}} / \mathrm{L}\right)_{\mathrm{y}}\right) \mu_{\mathrm{y}} \mathrm{Fz}\right] \operatorname{sign}\{\alpha\} \tag{16}
\end{gather*}
$$

(where sufficient checks are made to avoid dividing by zero or using values of $\left(x_{s} / L\right)>1$).
The aligning torque is difficult to predict accurately using a simple theoretical model. However, semiempirical results can be obtained using empirically obtained values of Xp (the pneumatic trail) and Cy (the lateral deflection stiffness of the tire). In this approach, the aligning torque, A_{T}, is approximated as follows:

$$
\mathrm{A}_{\mathrm{T}}=-\mathrm{Xp}\left\{\mathrm{Fya}\left[4\left(\mathrm{x}_{\mathrm{S}} / L\right)_{\mathrm{y}}-3\right]+\mathrm{Fys} 3\left(\mathrm{x}_{\mathrm{S}} / L\right)_{\mathrm{y}}\right\}+\mathrm{Fx} \mathrm{Fy} / \mathrm{Cy}
$$

where Fya $=-\left[C_{\alpha}\left(x_{S} / L\right) y^{2} \tan \alpha /(1-\mathrm{s})\right]$ and Fys $=-\left[\left(1-\left(x_{s} / L\right) y\right) \mu_{y} F z\right] \operatorname{sign}\{\alpha\}$. (Further study of tire modeling is needed to develop a better understanding of the factors influencing aligning torque.)

Summary

This Appendix addresses the subject of representing the shear force properties of truck tires in computerized models of commercial vehicles. Emphasis has been placed on interpreting the meaning of slip angle and longitudinal slip in terms of simplified descriptions of the elastic properties of the tire and the adhesion characteristics of the tireroad interface. This approach to interpreting slip angle and longitudinal slip serves to illustrate the analogies that exist between longitudinal and lateral slip and the generation of longitudinal and lateral force.

Semiempirical models for representing the longitudinal, lateral, and combined longitudinal and lateral force situations have been presented. The derivation of the equations for the tire model is detailed, but straightforward (once the assumptions are understood). The primary assumptions are:

1) The contact patch can be divided into a sliding region and an adhesion region,
2) the shear force generated in the adhesion region depends upon elastic properties of the tire, and
3) the shear force generated in the sliding region depends upon the frictional properties of the tire-road interface.

The simplified tire model described here differs from previous versions in three main respects: (1) aligning torque is approximated even in the case of combined longitudinal and lateral slip, (2) the resultant force produced by the sliding portion of the contact patch opposes the direction of sliding, and (3) frictional characteristics are computed to match a desired μ-slip curve.

The insights into tire performance properties as provided by these models should be very useful in (a) interpreting differences in the measured characteristics of various tires and (b) understanding how tire properties interact with vehicle motion variables in dynamic maneuvers.

References

1. Pacejka, H.B., editor, "Tyre Models for Vehicle Dynamics Analysis," Proceedings of the 1st International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Delft , Netherlands, 1991 (Supplement to "Vehicle System Dynamics", Volume 21).
2. Radt, H.S.,"Processing Tire Force and Moment Data", SAE Paper No. 951048, 1995.
3. Pacejka, H.B. "The Magic Formula Tyre Model", First International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Delft, Netherlands,1991.
4. Dugoff, H., Fancher, P. S., and Segel, L."An Analysis of Tire Traction Properties and Their Influence on Vehicle Dynamic Performance", SAE Paper No. 700030, 1970.
5. Fancher, P.S. and Bareket, Z. "Including Roadway and Tread Factors in a Semiempirical Model of Truck Tires" First International Colloquium on Tyre Models for Vehicle Dynamics Analysis, Delft, Netherlands,1991.
6. Pottinger, M. G., Pelz, W., Winkler, C. B., Tapia, G. A. "A Combined Cornering and Braking Test for Heavy Duty Truck Tires", Proceedings of the 4th International Symposium on Heavy Vehicle Weights and Dimensions, University of Michigan (UMTRI), June, 1995.

APPENDIX B

TIRE EQUATIONS USED IN THE SPREAD SHEET

The letters in parentheses at the right border (for example, (G) after the equation for Vs) indicate the applicable columns of the example spread sheet shown in Figure 1.

A. Sliding Velocity

$$
\begin{equation*}
\mathrm{Vs}=\left((\mathrm{s})^{2}+(\tan \alpha)^{2}\right)^{0.5} \mathrm{u}^{2} \tag{G}
\end{equation*}
$$

where Vs = sliding velocity, $s=$ longitudinal slip, $\alpha=$ slip angle, and $u=$ forward velocity component in the wheel plane.

B. Friction

$$
\begin{equation*}
\mathrm{mu}=\mathrm{muf}+(\mathrm{muo}-\mathrm{muf}) \mathrm{e}^{-\mathrm{Vs} / \mathrm{Vf}} \tag{H}
\end{equation*}
$$

where $\mathrm{mu}=$ frictional potential, muf $=$ minimum friction at high sliding velocity, muo $=$ maximum friction at zero sliding velocity, $\mathrm{Vf}=$ exponential velocity constant for "shaping" the mu versus s curve.

$$
\begin{equation*}
\text { In general, } \mathrm{Vf}=[\mathrm{Vs} /(\ln ((\mathrm{muo}-\mathrm{muf}) /(\mathrm{mu}-\mathrm{muf}))] \tag{H15}
\end{equation*}
$$

Example 1. For $\mathrm{muo}=0.9$, $\mathrm{muf}=0.4$, and $\mathrm{mu}=0.5$ at $45 \mathrm{mph}(66 \mathrm{ft} / \mathrm{sec})$,

$$
\begin{gathered}
0.5=0.4+(0.9-0.4) \mathrm{e}^{-66 / \mathrm{Vf}} \\
\text { or, } \mathrm{Vf}=66 /(\ln (0.5 / 0.1))=41 \mathrm{ft} / \mathrm{sec} \text {. for a " } 0.9 \text { surface." }
\end{gathered}
$$

Note:

- For this example, $0.5=$ the locked wheel $(s=1)$ value when the tire is sliding at 66 $\mathrm{ft} / \mathrm{sec}$. In the next example, $0.25=$ the locked wheel value.

Example 2. For $\mathrm{muo}=0.5, \mathrm{muf}=0.2$, and $\mathrm{mu}=0.25$ at $45 \mathrm{mph}(66 \mathrm{ft} / \mathrm{sec})$,

$$
\begin{gathered}
0.25=0.2+(0.5-0.2) \mathrm{e}^{-66 / \mathrm{Vf}} \\
\text { or, } \mathrm{Vf}=66 /(\ln (0.3 / 0.05))=36.8 \mathrm{ft} / \mathrm{sec} \text { for a "0.5 surface." }
\end{gathered}
$$

C. Direction of Sliding and Friction Factors for Combined

 Slip$$
\begin{equation*}
\text { Vs }=\left((u-R \omega)^{2}+(v)^{2}\right)^{0.5} \tag{G}
\end{equation*}
$$

where $\mathrm{v}=\mathrm{u} \tan \alpha, \omega=$ the angular velocity of the wheel, and $\mathrm{R}=$ the rolling radius.

The angle of friction θ defines the direction of sliding such that:

$$
\begin{gather*}
\sin \theta=\mathrm{v} / \mathrm{Vs} \tag{I}\\
\text { and, } \cos \theta=(\mathrm{u}-\mathrm{R} \omega) / \mathrm{Vs} \tag{J}
\end{gather*}
$$

The longitudinal friction factor is:

$$
\begin{equation*}
\operatorname{mux}=\operatorname{mu} \cos \theta \tag{N}
\end{equation*}
$$

The lateral friction factor is:

$$
\begin{equation*}
m u y=m u \sin \theta \tag{K}
\end{equation*}
$$

Notes:

- Force components under total sliding oppose the direction of sliding. That is, θ defines the direction of sliding with respect to the wheel plane.
- The total friction is divided into lateral and longitudinal friction factors (capabilities). These factors determine the maximum amount of frictional force that can be generated in any direction.

D. Longitudinal and Lateral Fractions of the Contact Patch that Are in Adhesion

Longitudinally, for $1 \geq s>0$,

$$
\begin{equation*}
(\mathrm{xsx} / \mathrm{L})^{\prime}=[(\operatorname{mux}) \mathrm{Fz}(1-\mathrm{s})] /\left[2 \mathrm{C}_{\mathrm{S}} \mathrm{~s}\right] \tag{N}
\end{equation*}
$$

where $\mathrm{xsx}=$ the point in the contact where longitudinal sliding starts (and adhesion ends), $\mathrm{L}=$ the length of the contact patch, $\mathrm{Fz}=$ the vertical load, $\mathrm{C}_{\mathrm{S}}=$ the longitudinal stiffness of the tire.

Note:

- In the spread sheet, $\mathrm{C}_{\mathrm{S}}=10 \mathrm{Fz}-\mathrm{Fz}^{2} / 3000 \mathrm{lbs}$.

Laterally, for $\alpha \neq 0$,

$$
\begin{equation*}
(x s y / L)^{\prime}=[(\text { muy }) \mathrm{Fz}(1-\mathrm{s})] /[2 \text { Calpha }|\tan \alpha|] \tag{N}
\end{equation*}
$$

where $\mathrm{xsy}=$ the point in the contact where lateral sliding starts (and adhesion ends), L $=$ the length of the contact patch, $\mathrm{Fz}=$ the vertical load, $\mathrm{C}_{\mathrm{alph}}=$ the lateral stiffness of the tire.

Note:

- In the spread sheet, $\mathrm{C}_{\mathrm{alpha}}=0.9 \mathrm{C}_{\mathrm{S}} \mathrm{lbs}$.

$$
\begin{align*}
& \text { If }(\mathrm{xsx} / \mathrm{L})^{\prime}>1,(\mathrm{xsx} / \mathrm{L})=1 ; \text { otherwise, }(\mathrm{xsx} / \mathrm{L})=(\mathrm{xsx} / \mathrm{L})^{\prime} \tag{0}\\
& \text { If }(\mathrm{xsy} / \mathrm{L})^{\prime}>1,(\mathrm{xsy} / \mathrm{L})=1 ; \text { otherwise, }(\mathrm{xsy} / \mathrm{L})=(\mathrm{xsy} / \mathrm{L})^{\prime}
\end{align*}
$$

Notes:

- If ($\mathrm{xsx} / \mathrm{L})^{\prime} \geq 1$, the entire contact patch is in adhesion longitudinally.
- If ($\mathrm{xsy} / \mathrm{L})^{\prime} \geq 1$, the entire contact patch is in adhesion laterally.
- The regions of adhesion can be different longitudinally and laterally. In the longitudinal adhesion region, C_{S} applies, and in the lateral adhesion region, $\mathrm{C}_{\text {alpha }}$ applies.

E. Longitudinal and Lateral Forces

$$
\begin{equation*}
F x=\left[C_{s}(x s x / L)^{2}(s /(1-s))+(1-(x s x / L))(\operatorname{mux}) F z\right] \tag{P}
\end{equation*}
$$

where $\mathrm{Fx}=$ the braking force for $1>\mathrm{s}>0$. If $\mathrm{s}=0, \mathrm{Fx}=0$. If $\mathrm{s}=1, \mathrm{Fx}=(\mathrm{mux}) \mathrm{Fz}$.

$$
\begin{equation*}
\mathrm{Fy}=\left[\mathrm{C}_{\text {alpha }}(\mathrm{xsy} / \mathrm{L})^{2}(\tan \alpha /(1-\mathrm{s}))+(1-(\mathrm{xsy} / \mathrm{L}))(\text { muy }) \mathrm{Fz}\right] \tag{M}
\end{equation*}
$$

where Fy $=$ the magnitude of the lateral force for $s<1$. If $\alpha>0$, the lateral force is negative. If $\alpha<0$, the lateral force is positive. If $\mathrm{s}=1, \mathrm{Fy}=(\mathrm{muy}) \mathrm{Fz}$.

Notes:

- The spread sheet is set up to use positive slip angles and return positive values for the magnitude of the lateral force. The idea that positive slip angle produces negative lateral force (and vice versa) needs to be used in applying the spread sheet results in a simulation context.
- Aligning torque AT may also be calculated using empirically obtained values for the pneumatic trail xp and the lateral deflection stiffness Cy for the tire: viz.,

$$
\mathrm{AT}=-\mathrm{xp}\{\mathrm{Fya}[(4)(\mathrm{xsy} / \mathrm{L})-3]+3 \text { Fys }(\mathrm{xsy} / \mathrm{L})\}+\mathrm{Fx} \text { Fy } / \mathrm{Cy}
$$

where $\mathrm{Fya}=-\left[\right.$ Calpha $\left.(\mathrm{xsy} / \mathrm{L})^{2} \tan \alpha /(1-\mathrm{s})\right]$ and Fys $=-[(1-(\mathrm{xsy} / \mathrm{L}))($ muy $) \mathrm{Fz}] \operatorname{sign}(\alpha)$.

APPENDIX C

GENERIC TRUCK TIRE DATA FOR A "0.9 SURFACE"

The first set of data is for $\mathrm{Fz}=3000 \mathrm{lbs}$ per the following chart. There are similar sets of data for $\mathrm{Fz}=6000$ and 9000 lbs .

	A	B	C	D	E	F	G	H
1	s	tan alpha	U	Fz	Os	Calpha	Vs	mu
2	0.00001	1.7453E-08	22	3000	27000	24300	0.00022	0.89999732
3	0.05	1.7453E-08	22	3000	27000	24300	1.1	0.88676372
4	0.1	1.7453E-08	22	3000	27000	24300	2.2	0.87387784
5	0.2	1.7453E-08	22	3000	27000	24300	4.4	0.84912041
6	0.25	1.7453E-08	22	3000	27000	24300	5.5	0.83723104
7	0.3	1.7453E-08	22	3000	27000	24300	6.6	0.82565642
8	0.35	1.7453E-08	22	3000	27000	24300	7.7	0.8143882
9	0.4	1.7453E-08	22	3000	27000	24300	8.8	0.80341829
10	0.5	1.7453E-08	22	3000	27000	24300	11	0.78234197
11	0.6	1.7453E-08	22	3000	27000	24300	13.2	0.76236677
12	0.75	1.7453E-08	22	3000	27000	24300	16.5	0.73434356
13	0.99999	1.7453E-08	22	3000	27000	24300	21.99978	0.69237233
14								
15	alpha (deg) $=$	0.000001	muo=	0.9	muf $=$	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	FX					
18	0.00001	0.00042412	0.2700027					
19	0.05	0.00044644	1415.23716					
20	0.1	0.00034649	2048.88666					
21	0.2	0.000199	2307.02607					
22	0.25	0.00016176	2336.45417					
23	0.3	0.00013554	2344.41482					
24	0.35	0.00011615	2340.52216					
25	0.4	0.00010126	2329.56974					
26	0.5	7.9948E-05	2296.02099					
27	0.6	6.5485E-05	2254.81125					
28	0.75	5.088E-05	2188.05121					
29	0.99999	3.6253E-05	2077.1166					
30								

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Os	Calpha	Vs	mu
2	0.00001	0.01745506	22	3000	27000	24300	0.38401135	0.8953388
3	0.05	0.01745506	22	3000	27000	24300	1.16510286	0.88599141
4	0.1	0.01745506	22	3000	27000	24300	2.23326323	0.87349354
5	0.2	0.01745506	22	3000	27000	24300	4.41672556	0.84893723
6	0.25	0.01745506	22	3000	27000	24300	5.51338958	0.83708828
7	0.3	0.01745506	22	3000	27000	24300	6.61116213	0.82554055
8	0.35	0.01745506	22	3000	27000	24300	7.70956968	0.81429149
9	0.4	0.01745506	22	3000	27000	24300	8.80837469	0.80333589
10	0.5	0.01745506	22	3000	27000	24300	11.0067009	0.78227949
11	0.6	0.01745506	22	3000	27000	24300	13.2055846	0.76231742
12	0.75	0.01745506	22	3000	27000	24300	16.504468	0.73430712
13	0.99999	0.01745506	22	3000	27000	24300	22.0031312	0.69234843
14								
15	alpha $(\mathrm{deg})=$	1	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	FX					
18	0.00001	424.162168	0.2700027					
19	0.05	446.3219	1401.58518					
20	0.1	342.891307	2026.12632					
21	0.2	198.312261	2298.75179					
22	0.25	161.387154	2330.83672					
23	0.3	135.317177	2340.37005					
24	0.35	116.00657	2337.47872					
25	0.4	101.16319	2327.20107					
26	0.5	79.9028211	2294.47501					
27	0.6	65.4606404	2253.72753					
28	0.75	50.8685053	2187.35514					
29	0.99999	36.2497805	2076.72855					
30								

エ	$\overrightarrow{\vec{E}}$		N 0 N 0 0 0 0 0 0 0 0	0.87237442	$\begin{aligned} & N \\ & \hline \end{aligned}$					∞ 0 0 0 0 0 0 0 0 0 0 0		$\begin{gathered} \mathbf{8} \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$				$\dot{\tau}$															
$\boldsymbol{\sigma}$	8	0 0 0 10 0 0 0 0 1 0 0	N N N N + N \vdots	2.33028288							10 1 0 0 0 0 0 0 \vdots	13.2223379				$\stackrel{11}{>}$															
-	$\begin{array}{\|l\|} \hline \frac{\pi}{\frac{1}{2}} \\ \frac{1}{\sigma} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { on } \\ & \dot{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{ll} 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \text { N } \\ & \text { N } \end{aligned}$					$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{\sim} \end{aligned}$	0 0 O + N	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { o } \\ & \dot{N} \\ & \text { N } \end{aligned}$			$\begin{aligned} & \dot{0} \\ & 0 \end{aligned}$															
$\boldsymbol{\omega}$	8	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$						$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \mathrm{~N} \\ \mathrm{~N} \end{array}$	O 0 0 O N				$\begin{aligned} & 111 \\ & \stackrel{11}{3} \\ & \hline \end{aligned}$															
0	N	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { M } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$			$\begin{aligned} & 9 \\ & 0 \end{aligned}$															
0	J	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$$	$\begin{array}{l\|l} N & N \\ N & N \end{array}$	$\begin{array}{l\|l} \underset{\sim}{N} \\ \underset{\sim}{*} \end{array}$	$\begin{array}{l\|l} \underset{N}{N} & \underset{N}{\prime} \end{array}$	$\stackrel{N}{N}$	$\underset{\sim}{N}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\underset{\sim}{N}$	$\underset{\sim}{N}$		$\underset{\mathbf{N}}{\mathbf{N}}$				$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & \mathbf{N} \\ & 0 \end{aligned}$		0 0 0 0 0 0 \dot{u} 0 0 0			2328.34314				N 0 \sim 0 \vdots \vdots 0 N N N	$\begin{array}{\|c\|} \hline N \\ 0 \\ 0 \\ 0 \\ N \\ N \\ \dot{N} \\ 0 \\ N \end{array}$	9 10 10 0 10 10 1 0 0	
m		0.03492076									0 1 0 0 0 0 \vdots \vdots 0 0 0					N			- ∞ 0 0 0 0 0 ∞ ∞ ∞ ∞			1 0 0 1 10 0 0 \vdots j 0 0	9 0 \vdots 0 0 0 0 0 0 0 0			$\begin{aligned} & 9 \\ & 0 \\ & 10 \\ & 0 \\ & \\ & \\ & \hdashline \mathbf{0} \\ & 0 \end{aligned}$	N 0 0 N N 0 1 0 0 0 n	1 0 0 0 N N \vdots 0 0			
<		$\begin{aligned} & 5 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	10		0	0 0 0 0			$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\dot{0}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\dot{0}$							$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	\bigcirc	$\stackrel{0}{0}$	$$	$\begin{aligned} & \boldsymbol{m} \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	$\stackrel{1}{\square}$	O	
	-	N	∞	\pm	10	0	0 N	$\cdots \infty$	∞	0	\bigcirc	「	\sim	\cdots	$\stackrel{+}{\square}$	$\stackrel{\square}{\square}$	\bigcirc	N	\cdots	9	0	$\stackrel{\sim}{N}$	$\underset{\mathbf{N}}{\mathbf{N}}$		$\stackrel{ \pm}{N}$	$\left\lvert\, \begin{aligned} & \mathbf{n} \\ & \mathbf{N} \end{aligned}\right.$	$\stackrel{+}{\sim}$	$\stackrel{N}{N}$	${ }_{\sim}^{\infty}$	$\stackrel{\sim}{\sim}$	0

```
.9-3000-22-4
```

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	22	3000	27000	24300	1.53838933	0.88158676
3	0.05	0.06992679	22	3000	27000	24300	1.89120112	0.87746041
4	0.1	0.06992679	22	3000	27000	24300	2.68451889	0.86831073
5	0.2	0.06992679	22	3000	27000	24300	4.66118458	0.84626845
6	0.25	0.06992679	22	3000	27000	24300	5.71109811	0.83498564
7	0.3	0.06992679	22	3000	27000	24300	6.77691978	0.82382362
8	0.35	0.06992679	22	3000	27000	24300	7.85217433	0.81285302
9	0.4	0.06992679	22	3000	27000	24300	8.93345631	0.80210728
10	0.5	0.06992679	22	3000	27000	24300	11.1070537	0.78134495
11	0.6	0.06992679	22	3000	27000	24300	13.2893432	0.761578
12	0.75	0.06992679	22	3000	27000	24300	16.5715612	0.7337605
13	0.99999	0.06992679	22	3000	27000	24300	22.0535023	0.69198949
14								
15	alpha (deg) =	4	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	Fx					
18	0.00001	1615.65822	0.24576682					
19	0.05	1500.4313	1118.68294					
20	0.1	1197.71136	1755.00466					
21	0.2	755.276003	2183.82631					
22	0.25	624.516728	2250.71358					
23	0.3	528.617719	2281.78385					
24	0.35	455.931355	2292.96922					
25	0.4	399.223572	2292.33684					
26	0.5	316.90804	2271.5432					
27	0.6	260.366698	2237.58343					
28	0.75	202.815789	2176.94889					
29	0.99999	144.813598	2070.91101					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	44	3000	27000	24300	0.00044	0.89999463
3	0.05	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	2.2	0.87387784
4	0.1	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	4.4	0.84912041
5	0.2	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	8.8	0.80341829
6	0.25	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	11	0.78234197
7	0.3	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	13.2	0.76236677
8	0.35	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	15.4	0.74343516
9	0.4	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	17.6	0.72549263
10	0.5	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	22	0.69237076
11	0.6	1.7453E-08	44	3000	27000	24300	26.4	0.66261935
12	0.75	$1.7453 \mathrm{E}-08$	44	3000	27000	24300	33	0.62357123
13	0.99999	1.7453E-08	44	3000	27000	24300	43.99956	0.57096316
14								
15	alpha (deg) =	0.000001	muo $=$	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	Fx					
18	0.00001	0.00042412	0.2700027					
19	0.05	0.00044644	1412.50126					
20	0.1	0.00033973	2006.60713					
21	0.2	0.00018947	2195.09454					
22	0.25	0.00015198	2194.01117					
23	0.3	0.00012575	2174.0886					
24	0.35	0.00010648	2144.76923					
25	0.4	9.1777E-05	2110.68543					
26	0.5	7.0955E-05	2037.16418					
27	0.6	5.7036E-05	1963.46559					
28	0.75	$4.3254 \mathrm{E}-05$	1859.91254					
29	0.99999	2.9896E-05	1712.88921					
30								

```
.9-3000-44-1
```

		A	B	C	D	E	F	G	H
	1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
	2	0.00001	0.01745506	44	3000	27000	24300	0.76802271	0.89072105
	3	0.05	0.01745506	44	3000	27000	24300	2.33020572	0.87237531
	4	0.1	0.01745506	44	3000	27000	24300	4.46652647	0.84839226
	5	0.2	0.01745506	44	3000	27000	24300	8.83345112	0.80308928
	6	0.25	0.01745506	44	3000	27000	24300	11.0267792	0.78209232
	7	0.3	0.01745506	44	3000	27000	24300	13.2223243	0.76216952
	8	0.35	0.01745506	44	3000	27000	24300	15.4191394	0.74327488
	9	0.4	0.01745506	44	3000	27000	24300	17.6167494	0.72535968
	10	0.5	0.01745506	44	3000	27000	24300	22.0134018	0.69227521
	11	0.6	0.01745506	44	3000	27000	24300	26.4111692	0.66254782
	12	0.75	0.01745506	44	3000	27000	24300	33.008936	0.6235225
	13	0.99999	0.01745506	44	3000	27000	24300	44.0062625	0.57093521
	14								
i	15	alpha (deg) $=$	1	muo $=$	0.9	$\mathrm{muf}=$	0.4	$\mathrm{Vf}=$	41
	16								
	17	s	Fy	Fx					
	18	0.00001	424.162168	0.2700027					
	19	0.05	445.965438	1396.80962					
	20	0.1	336.043823	1983.40179					
	21	0.2	188.78333	2186.78527					
	22	0.25	151.61431	2188.40364					
	23	0.3	125.534915	2170.07592					
	24	0.35	106.340866	2141.76956					
	25	0.4	91.6858844	2108.36677					
	26	0.5	70.9108525	2035.67279					
	27	0.6	57.0119721	1962.43632					
	28	0.75	43.2435865	1859.26751					
	29	0.99999	29.8928631	1712.5445					
	30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.03492076	44	3000	27000	24300	1.53651337	0.8816088
3	0.05	0.03492076	44	3000	27000	24300	2.68344427	0.868323
4	0.1	0.03492076	44	3000	27000	24300	4.66056575	0.84627518
5	0.2	0.03492076	44	3000	27000	24300	8.93313344	0.80211045
6	0.25	0.03492076	44	3000	27000	24300	11.106794	0.78134737
7	0.3	0.03492076	44	3000	27000	24300	13.2891261	0.76157991
8	0.35	0.03492076	44	3000	27000	24300	15.4764619	0.74279528
9	0.4	0.03492076	44	3000	27000	24300	17.6669429	0.72496161
10	0.5	0.03492076	44	3000	27000	24300	22.0535909	0.69198886
11	0.6	0.03492076	44	3000	27000	24300	26.4446757	0.66233335
12	0.75	0.03492076	44	3000	27000	24300	33.0357514	0.62337636
13	0.99999	0.03492076	44	3000	27000	24300	44.0263802	0.57085136
14								
15	alpha (deg)=	2	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	Fx					
18	0.00001	848.582881	0.2700027					
19	0.05	868.897171	1333.25485					
20	0.1	651.249171	1918.12919					
21	0.2	373.517541	2162.35331					
22	0.25	301.039946	2171.79869					
23	0.3	249.774482	2158.1458					
24	0.35	211.862721	2132.82901					
25	0.4	182.827643	2101.44459					
26	0.5	141.554731	2031.21155					
27	0.6	113.879805	1959.35406					
28	0.75	$86.423630 \dot{6}$	1857.33418					
29	0.99999	59.7678407	1711.51055					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	44	3000	27000	24300	3.07677865	0.86385162
3	0.05	0.06992679	44	3000	27000	24300	3.78240224	0.85593688
4	0.1	0.06992679	44	3000	27000	24300	5.36903778	0.83862988
5	0.2	0.06992679	44	3000	27000	24300	9.32236916	0.79831105
6	0.25	0.06992679	44	3000	27000	24300	11.4221962	0.77842502
7	0.3	0.06992679	44	3000	27000	24300	13.5538396	0.75925292
8	0.35	0.06992679	44	3000	27000	24300	15.7043487	0.74089524
9	0.4	0.06992679	44	3000	27000	24300	17.8669126	0.72338053
10	0.5	0.06992679	44	3000	27000	24300	22.2141074	0.69084794
11	0.6	0.06992679	44	3000	27000	24300	26.5786863	0.6614773
12	0.75	0.06992679	44	3000	27000	24300	33.1431225	0.62279215
13	0.99999	0.06992679	44	3000	27000	24300	44.1070045	0.57051572
14								
15	alpha $(\mathrm{deg})=$	4	muo $=$	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	Fx					
18	0.00001	1603.44181	0.24343362					
19	0.05	1478.96117	1101.11057					
20	0.1	1166.51224	1707.55235					
21	0.2	716.892722	2071.44206					
22	0.25	585.38556	2108.46214					
23	0.3	489.526686	2111.98078					
24	0.35	417.331347	2097.91834					
25	0.4	361.381552	2074.25178					
26	0.5	280.997149	2013.55834					
27	0.6	226.614449	1947.10801					
28	0.75	172.340633	1849.62688					
29	0.99999	119.392619	1707.37757					
30								

								0ε
					6L1606．66ヶL	S0－398 1 19 2	666660	62
					1LOL10t91	S0－ヨャ¢ヶ18．と	S <0	82
					L69929 LS 1	S0－ヨ20680 9	90	$\angle 2$
					9S己O1ع8881		90	92
					LOS 26 2e61	S0－ヨ8SLOt＇8	＋0	9 ¢
					S62se 1861	S0－ヨย 10 ¢86	S80	七乙
					881098 1202	SちEL1 10000	$\varepsilon \cdot 0$	ε 巩
					ESSSLて＇8902	とャをとャ10000	SCO	て 2
					676998．860Z	2080810000	20	12
					298 189.9961	こ918880000	10	02
						LEt9ャヤ 0000	50.0	61
					LZOOOLZO	6レレでヤ0000	100000	81
					x_{J}	K_{J}	－ s	$\angle 1$
								91
เ	$= \pm \wedge$	＋0	jnus	60	＝onus	$100000 \cdot$	＝（бәр）eцdןе	S1
								¢1
96L69666t＇0	七8666 ${ }^{\circ} 9$	00sャて	000 22	0008	99	80－ヨعとstし1	666660	$\varepsilon 1$
86166t6ts 0	S6t	008ちて	000 22	000ε	99	80－ヨعとstL゙し	S <0	ट1
¢S062E06s 0	96ε	008ャて	000 2	000ε	99	80－ヨعestL	9.0	11
92ZเくSEZ9＊0	$\varepsilon \varepsilon$	008ちて	000 22	000	99	80－ヨecst 1	50	01
จ¢86192990	＋92	008ちこ	000 22	000\＆	99	80－ヨعとらtL1	$\checkmark 0$	6
96089789 0	$1 \cdot \varepsilon 己$	00\＆ちて	000 2	000ε	99	80－ヨعとstL゙	980	8
88t $\angle 8 \downarrow 80<0$	8.61	008ちこ	000 22	000ε	99	80－ヨعยstL	$\varepsilon \cdot 0$	L
9ssetretelo	S．91	008ャて	000 2	0008	99	80－ヨعとらもL1	SCO	9
LLL99829 ${ }^{\circ}$	己と1	008ャを	000 2	000\＆	99	80－ヨعとstL	20	5
Llt9s9sz80	$9 \cdot 9$	008ャて	000 22	000s	99	80－ヨعcst $\stackrel{\text {－}}{ }$	$1 \cdot 0$	$\stackrel{\square}{\square}$
8LOE\＆と198＇0	$\varepsilon \cdot \varepsilon$	00\＆ャて	000 22	0008	99	80－ヨعとらtL	50.0	ε
LS6166668＇0	1000990000	008ャて	000 2	000ε	99	80－ヨยest	100000	Σ
nu	s \wedge	eydies	so	27	n	eydje uel	－ s	1
H	5	\pm	3	a	5	G	\forall	

								0ε
					12L09 66t	LてE66SL1．92	66666.0	62
					七088こら6891	LL929SE1．88	S $\angle 0$	82
					とt099909 1	8ヤてSt 29809	9.0	$\angle 2$
					ع09868．988	1 $\angle 8 \angle 9000{ }^{\circ} \dagger 9$	50	92
					SSLEEL＇0861	$\angle \angle\llcorner 02 \angle 86 . \varepsilon 8$	$\checkmark 0$	S
						8S699992：86	980	†て
					69L916．EZOZ	$6 \square ¢ 10 \varepsilon 1<11$	$8 \cdot$	$\varepsilon 乙$
					91699 2902	し6くヤ9く6でで	Sて．0	こて
					七とャ890．580己	6989211．081	20	12
						七698968．6を8	10	02
					とعと9991681	カてカャてから切	$50 \cdot 0$	61
					$\angle 2000 \angle 20$	くく91291＊	$10000 \cdot 0$	81
					x_{J}	K_{J}	s	$\angle 1$
								91
เt	$=1 \wedge$	\dagger－	jnum	6.0	＝onus	1	（6əp）eqdןe	S1
								ャ1
S8ZSt666ャワ	$\nabla \angle 868600 \cdot 99$	008ャを	000 22	000ε	99	690sst $\angle 100$	$66666{ }^{\circ}$	$\varepsilon 1$
عcost 6 ts 0	90tOtels 6 t	008ヶて	00022	0008	99	690sst $\angle 100$	S <0	ट1
962Lsz06s 0	88S 191968	008ちて	000 22	0008	99	6SOSSt $\angle 100$	90	11
ャع919ャ¢ ${ }^{\text {¢ }}$	$\angle 201020$ ®	008ャを	000 2	0008	99	6SOSSt $\angle 100$	S＇0	01
S $\angle 785 \dagger 299^{\circ}$	LOヤてLSで92	00cャ2	000 22	0008	99	6SOSSt＜100	$\checkmark 0$	6
	ヤ060L821．E己	00\＆ちて	000 22	0008	99	6SOSStL100	S8\％	8
己\＆9sez80＜0	8898ち888 61	008ちを	000 2	0008	99	6SOSSt $\angle 100$	$\varepsilon \cdot 0$	L
LSL910telo	т $\angle 8910 \pm 9$ 91	00とャて	000 2	000ε	99	6sosst $\angle 100$	SCO	9
LSE261910	899 1 Los E1	008ャて	000 2	000ε	99	6S0sst $\angle 100$	20	$\underline{5}$
ヤ $19129 \downarrow 28^{\circ}$	20L68L669 9	00とって	000 2	0008	99	690sst $\angle 100$	10	\dagger
L890才16980	LLS80ES6t ${ }^{\circ}$	00とちて	000 2	0008	99	6sosst $\angle 100$	S0．0	ε
8t¢9ヶ19880	290ヤを0こら1．1	008ちて	000 2	0008	99	6SOSSb $\angle 100$	100000	乙
nu	s＾	eydjes	so	2.	n	eydje uel	－ s	1
H	5	\pm	\exists	a	3	9	\forall	

								0ε
					† 29180 96ャ1		666660	62
					8015SLOE91	62Z 2896 191	S 10	82
					185798．98	St89 $11.20 己$	90	$\angle 己$
					8869689181	Ss\＆t89t	50	92
					S08ELL 2681	62LS9ELOE\＆	$t 0$	S
					86610L9861	6012102988	Sco	ャて
					こしヤとヤ8．9961	†8886 10.956	$\varepsilon 0$	$\varepsilon 乙$
					6L009 E861	297¢ 296.095	Sco	2 2
					190186．6961	LES6S81－289	20	12
					80920ع 2991	て1IS99．981」	1.0	02
					911 $\angle 98.8801$	己S06ELLSちレ	S0\％	61
					66ち80レヤで0	69 $2 \angle 88.0691$	100000	81
					x_{J}	K_{J}	\square	$\angle 1$
								91
$1 \downarrow$	$=1 \wedge$	± 0	$=\operatorname{lnm}$	6.0	＝onus	\checkmark	＝（bəp）eydje	91
								$\downarrow 1$
96S $\angle \angle 966 \square^{\circ} 0$	LL909091＇99	00\＆ャて	000 22	000ε	99	L8L9266900	666660	$\varepsilon 1$
8\＆t8L $\angle 8 \downarrow \mathrm{~S}^{\circ} 0$		00\＆ャて	000 2	0008	99	L8L926690＇0	S 20	21
$\dagger \angle 8880689^{\circ}$	6ヵ6208986と	008ャて	000 2	0008	99	L8L9Z6690＇0	90	11
$6 \angle 9281290$	LOL91Lटع $ع$ ¢	008ャて	000＜2	000ε	99	$\angle 8 \angle 9266900$	50	01
1ع8 190099°	ع6898008 9 ¢	00sャを	000 2	0008	99	L8L926690 0	$\checkmark 0$	6
	862ZS9ss ε ¢	00\＆ャて	000 2	000ε	99	L8L9Z66900	SE\％	8
てt 26 LSt0 0	\＆と6S $108 \varepsilon 02$	008ャを	000 2	000ε	99	L8L926690 0	$\varepsilon \cdot 0$	2
L688L262 ${ }^{\circ}$		008ャて	000 22	000ε	99	L8L9266900	SCO	9
LELOSSS 10		008ャを	000 2	000ε	99	L8L9Z6690 0	20	9
LS10880180	1＜999scso 8	00とャて	000 2	0008	99	L8L9Z6690＇0	10	\dagger
Lz9E8ESE80	9SE\＆098 19 S	00\＆ャて	000 2	000ε	99	L8L926690＇0	50.0	ε
969 $9978{ }^{\circ}$	86L91519	00ヶャを	000 2	0008	99	L8L926690 0	100000	乙
nu	s A	eydjes	so	23	n	eydje uel	－ s	1
H	5	\pm	\exists	\square	0	8	\forall	

		A	B	C	D	E	F	G	H
	1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
	2	0.00001	1.7453E-08	88	3000	27000	24300	0.00088	0.89998927
	3	0.05	1.7453E-08	88	3000	27000	24300	4.4	0.84912041
	4	0.1	1.7453E-08	88	3000	27000	24300	8.8	0.80341829
	5	0.2	1.7453E-08	88	3000	27000	24300	17.6	0.72549263
	6	0.25	1.7453E-08	88	3000	27000	24300	22	0.69237076
	7	0.3	1.7453E-08	88	3000	27000	24300	26.4	0.66261935
	8	0.35	1.7453E-08	88	3000	27000	24300	30.8	0.63589542
	9	0.4	1.7453E-08	88	3000	27000	24300	35.2	0.6118909
	10	0.5	1.7453E-08	88	3000	27000	24300	44	0.57096133
	11	0.6	1.7453E-08	88	3000	27000	24300	52.8	0.53793785
	12	0.75	1.7453E-08	88	3000	27000	24300	66	0.49996819
	13	0.99999	1.7453E-08	88	3000	27000	24300	87.99912	0.4584568
	14								
1	15	alpha (deg) $=$	0.000001	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
$\stackrel{\sim}{\square}$	16								
	17	s	Fy	FX					
	18	0.00001	0.00042412	0.2700027					
	19	0.05	0.00044643	1405.76923					
	20	0.1	0.00032679	1926.14415					
	21	0.2	0.00017292	2001.03136					
	22	0.25	0.00013571	1957.26797					
	23	0.3	0.00011013	1902.48443					
	24	0.35	9.1662E-05	1845.10628					
	25	0.4	7.7827E-05	1788.87139					
	26	0.5	5.8737E-05	1685.71757					
	27	0.6	$4.6424 \mathrm{E}-05$	1597.73704					
	28	0.75	3.4725E-05	1492.961					
	29	0.99999	2.4005E-05	1375.37024					
	30								

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Os	Calpha	Vs	mu
2	0.00001	0.01745506	88	3000	27000	24300	1.53604542	0.8816143
3	0.05	0.01745506	88	3000	27000	24300	4.66041144	0.84627686
4	0.1	0.01745506	88	3000	27000	24300	8.93305294	0.80211124
5	0.2	0.01745506	88	3000	27000	24300	17.6669022	0.72496193
6	0.25	0.01745506	88	3000	27000	24300	22.0535583	0.69198909
7	0.3	0.01745506	88	3000	27000	24300	26.4446485	0.66233352
8	0.35	0.01745506	88	3000	27000	24300	30.8382787	0.63567529
9	0.4	0.01745506	88	3000	27000	24300	35.2334988	0.61171785
10	0.5	0.01745506	88	3000	27000	24300	44.0268036	0.5708496
11	0.6	0.01745506	88	3000	27000	24300	52.8223384	0.53786272
12	0.75	0.01745506	88	3000	27000	24300	66.0178721	0.49992462
13	0.99999	0.01745506	88	3000	27000	24300	88.012525	0.4584377
14								
15	alpha $(\mathrm{deg})=$	1	muo $=$	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	FX					
18	0.00001	424.162168	0.2700027					
19	0.05	444.714778	1386.19332					
20	0.1	322.952291	1902.22305					
21	0.2	172.234805	1992.78419					
22	0.25	135.35053	1951.79418					
23	0.3	109.91961	1898.63355					
24	0.35	91.5316313	1842.27721					
25	0.4	77.7420155	1786.7228					
26	0.5	58.6968183	1684.38347					
27	0.6	46.4031992	1596.84734					
28	0.75	34.7159775	1492.42925					
29	0.99999	24.0027509	1375.10344					
30								

```
.9-3000-88-2
```


\begin{tabular}{|c|}
\hline \pm \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& $\overline{+}$ \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \checkmark \& \& $$
\begin{aligned}
& \bar{n} \\
& \hat{n} \\
& \hat{n} \\
& \hat{n} \\
& \dot{0} \\
& 0
\end{aligned}
$$ \& \& 0
n
n
0
0
0

\vdots

\vdots \& \& \& \& \& \& \& \& \& \& \& $$
\frac{11}{4}
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline - \& $$
\left|\begin{array}{c}
\frac{\mathrm{v}}{\frac{2}{2}} \\
\frac{1}{\mathrm{c}}
\end{array}\right|
$$ \& \& O- \& - \& + \& O- \& - \& - \& $\xrightarrow{\circ}$ \& - \& \& - \& \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \underset{\sim}{2}
\end{aligned}
$$
\] \& \pm \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline \cdots \& \& 0
$\stackrel{O}{2}$

$\stackrel{n}{N}$ \& O \& - \& - \& - \& O \& - \& O \& $\xrightarrow{\circ}$ \& \& \& \& \& $$
\begin{array}{|l|}
\hline \text { II } \\
\boldsymbol{E}
\end{array}
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 0 \& \& 앙 \& O \& O \& O \& O \& O \& 0 \& $$
\begin{aligned}
& \mathbf{O} \\
& 0 \\
& \hline
\end{aligned}
$$ \& 웅 \& \& \[

$$
\begin{aligned}
& \hline 8 \\
& \hline 0 \\
& \hline 0 \\
& \hline \text { O } \\
& \hline 1
\end{aligned}
$$
\] \& \& \& - \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline 0 \& I \& $$
{ }_{\infty}^{\infty}
$$ \& - \& ∞_{∞}^{∞} \& ${ }_{0}^{\infty}$ \& - \& \[

$$
\begin{array}{ll}
\infty \\
\infty \\
\infty \\
\infty
\end{array}
$$

\] \& \& \[

0

\] \& - \& \& ∞ \& 8 \& \& \[

$$
\begin{aligned}
& ! \\
& 0 \\
& \underline{E}
\end{aligned}
$$
\] \& \& ㄴ \& \& O- \& (1) \& \& \& \& \& N \& \& \& \&

\hline ∞ \& \& 6 $2926690^{\circ} 0$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& - \& N \& \& \& \& \& \& N \& $$
\begin{gathered}
o \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{gathered}
$$ \& O \& \&

\hline 4 \& \& $$
\begin{aligned}
& -\bar{O} \\
& \hline 0 \\
& \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 3 n \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& 0° \& \bigcirc \& \& \& - \& $\stackrel{+}{0}$ \& $\pm{ }_{-}^{0}$ \& 0 \& \& \& \& \[

$$
\begin{aligned}
& \hline \frac{11}{0} \\
& \frac{\mathbf{0}}{0} \\
& 0 \\
& \frac{\pi}{\sigma} \\
& \hline \frac{0}{\sigma}
\end{aligned}
$$
\] \& \& \& - \& $\stackrel{1}{0}$ \& \bigcirc \& No \& $\stackrel{\sim}{0}{ }_{0}^{0}$ \& \bigcirc \& $\stackrel{+}{\circ}$ \& - \& \bigcirc \& $\stackrel{n}{n}$ \& - \&

\hline \& - \& - N \& \& \& \% 10 \& 0 \& 0 N \& - \& 0 \& $8{ }^{\circ}$ \& - \& \cdots \& \& \& 5 \& $\stackrel{0}{-}$ \& N \& - \& $\stackrel{\square}{\square}$ \& (i) \& - \& N/ \& $\stackrel{\sim}{*}$ \& $\stackrel{1}{\sim}$ \& $\stackrel{\sim}{*}$ \& N \& $\stackrel{\infty}{\infty}$ \& N \& 0

\hline
\end{tabular}

Appendix C - Generic Truck Tire Data for a "0.9 Surface" - Fz = 6000 lbs.

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	22	6000	48000	43200	0.00022	0.89999732
3	0.05	1.7453E-08	22	6000	48000	43200	1.1	0.88676372
4	0.1	1.7453E-08	22	6000	48000	43200	2.2	0.87387784
5	0.2	1.7453E-08	22	6000	48000	43200	4.4	0.84912041
6	0.25	1.7453E-08	22	6000	48000	43200	5.5	0.83723104
7	0.3	1.7453E-08	22	6000	48000	43200	6.6	0.82565642
8	0.35	1.7453E-08	22	6000	48000	43200	7.7	0.8143882
9	0.4	1.7453E-08	22	6000	48000	43200	8.8	0.80341829
10	0.5	1.7453E-08	22	6000	48000	43200	11	0.78234197
11	0.6	1.7453E-08	22	6000	48000	43200	13.2	0.76236677
12	0.75	1.7453E-08	22	6000	48000	43200	16.5	0.73434356
13	0.99999	1.7453E-08	22	6000	48000	43200	21.99978	0.69237233
14								
15	alpha (deg) $=$	0.000001	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	Fx					
18	0.00001	0.00075399	0.4800048					
19	0.05	0.00079367	2526.31579					
20	0.1	0.00066521	3954.5866					
21	0.2	0.00039217	4553.96836					
22	0.25	0.00032011	4629.09861					
23	0.3	0.00026893	4655.69103					
24	0.35	0.00023087	4655.3837					
25	0.4	0.00020153	4638.9682					
26	0.5	0.0001594	4579.29076					
27	0.6	0.00013071	4501.55024					
28	0.75	0.00010166	4372.35756					
29	0.99999	7.2506E-05	4154.23309					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.03492076	22	6000	48000	43200	0.76825669	0.89071825
3	0.05	0.03492076	22	6000	48000	43200	1.34172213	0.88390237
4	0.1	0.03492076	22	6000	48000	43200	2.33028288	0.87237442
5	0.2	0.03492076	22	6000	48000	43200	4.46656672	0.84839182
6	0.25	0.03492076	22	6000	48000	43200	5.553397	0.83666198
7	0.3	0.03492076	22	6000	48000	43200	6.64456306	0.82519402
8	0.35	0.03492076	22	6000	48000	43200	7.73823095	0.81400198
9	0.4	0.03492076	22	6000	48000	43200	8.83347147	0.80308908
10	0.5	0.03492076	22	6000	48000	43200	11.0267955	0.78209217
11	0.6	0.03492076	22	6000	48000	43200	13.2223379	0.7621694
12	0.75	0.03492076	22	6000	48000	43200	16.5178757	0.73419782
13	0.99999	0.03492076	22	6000	48000	43200	22.0131901	0.69227672
14								
15	alpha (deg)=	2	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	Fx					
18	0.00001	1508.59179	0.4800048					
19	0.05	1584.92192	2477.17699					
20	0.1	1281.50767	3796.94392					
21	0.2	773.918274	4490.63175					
22	0.25	634.520589	4585.48762					
23	0.3	534.446856	4624.02729					
24	0.35	459.561788	4631.42996					
25	0.4	401.610813	4620.25553					
26	0.5	318.081839	4567.01891					
27	0.6	261.025805	4492.92309					
28	0.75	203.148793	4366.80206					
29	0.99999	144.962016	4151.12907					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	22	6000	48000	43200	1.53838933	0.88158676
3	0.05	0.06992679	22	6000	48000	43200	1.89120112	0.87746041
4	0.1	0.06992679	22	6000	48000	43200	2.68451889	0.86831073
5	0.2	0.06992679	22	6000	48000	43200	4.66118458	0.84626845
6	0.25	0.06992679	22	6000	48000	43200	5.71109811	0.83498564
7	0.3	0.06992679	22	6000	48000	43200	6.77691978	0.82382362
8	0.35	0.06992679	22	6000	48000	43200	7.85217433	0.81285302
9	0.4	0.06992679	22	6000	48000	43200	8.93345631	0.80210728
10	0.5	0.06992679	22	6000	48000	43200	11.1070537	0.78134495
11	0.6	0.06992679	22	6000	48000	43200	13.2893432	0.761578
12	0.75	0.06992679	22	6000	48000	43200	16.5715612	0.7337605
13	0.99999	0.06992679	22	6000	48000	43200	22.0535023	0.69198949
14								
15	alpha (deg) $=$	4	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	Fx					
18	0.00001	2974.04092	0.45842073					
19	0.05	2840.64566	2134.26144					
20	0.1	2321.65522	3415.06607					
21	0.2	1489.89255	4314.47269					
22	0.25	1236.47358	4461.01388					
23	0.3	1049.1313	4532.27613					
24	0.35	906.405599	4561.35572					
25	0.4	794.657641	4565.1644					
26	0.5	631.877592	4530.61165					
27	0.6	519.704227	4467.21924					
28	0.75	405.247582	4350.19108					
29	0.99999	289.627188	4141.82193					
30								

								0ε
						S0－3 $1616 \angle 69$	666660	62
						S0－3988t9 8	S 10	82
					LLOE88 0 26E	S $\angle 88110000$	90	$\angle 2$
					8とをレセどち90t	ヤてらเャ10000	50	92
					SSLZ ${ }^{\text {ctitozt }}$	LSLE81000\％	＋ 0	S己
					S6をちら1．89で	てLLLLLOOOO	sco	ゅ乙
						$6 \angle 96 \pm 20000$	$\varepsilon \cdot$	$\varepsilon 乙$
					てS9891．6もをt	108000 0	sco	こ己
					S0066と 98Et	8टLE 280000	20	12
					8ZLSE0 8 $28 E$	8ちことS90000	10	02
					68L9เع 9 ¢	S9986 $\angle 0000$	50%	61
					8ヤ0008ャワ	$6685 \angle 0000$	100000	81
					x_{J}	Kı	S	$\angle 1$
								91
\downarrow	$= \pm \wedge$	± 0	$=1 \mathrm{nma}$	6.0	＝onus	$100000 \cdot$	＝（бәр）eydje	S1
								$\dagger 1$
1918960 ${ }^{\circ} \mathrm{O}$	99666 ${ }^{\circ}$	0028t	0008t	0009	カナ	80－ヨعとstし1	666660	$\varepsilon 1$
9ZZ1LSEZ9 0	$\varepsilon \varepsilon$	00ことt	0008t	0009	カカ	80－ヨعとstじ1	S 10	2L
†986192990	ナ92	0028t	0008t	0009	カャ	80－ヨとをstL！	90	11
ع9 $0 \angle \angle E 2690$	乙己	00ことt	0008t	0009	カナ	80－ヨعとstじ	50	01
92926tszlo	$9 \angle 1$	OOZ\＆t	0008 7	0009	カャ	80－ヨะとらtL！	$\checkmark 0$	6
カ9198tをtく0	\checkmark ¢ 1	Oozet	0008t	0009	カー	80－ヨะとstし1	980	8
1LL99829LO	て． 1	00ことt	0008 ${ }^{\text {b }}$	0009	カャ	80－ヨ®とstじ	$\varepsilon \cdot$	L
696เャをて8＜ 0	11	00ことt	0008t	0009	カャ	80－ヨะとらもし1	SE：	9
S8281ヵ¢080	8.8	0028t	0008t	0009	カカ	80－ヨعとstし1	20	9
เヤOこと678．0	－\downarrow	0028t	0008 \dagger	0009	カナ	80－ヨยとstL1	10	\dagger
888 $\angle 188 \angle 8 \circ$	ごて	OOZ\＆t	0008t	0009	カナ	80－ヨยとらャレ1	50\％	ε
†¢9ャ66668 0	1000tt0000	00ことt	0008t	0009	ヤt	80－ヨعとらtL！	10000	乙
nu	$s \wedge$	eydjes	so	2 l	n	eydje ue］	s	1
H	9	\pm	\exists	0	5	9	\forall	

								0ε
					¢6880 ¢ ¢ ¢ ¢	ャ6ャ2L98L69	666660	62
					\＆ $29988^{\circ} \mathrm{S}$ L $\angle \varepsilon$	60ヤ6とくเナ 98	S $\angle 10$	82
					98608L8168		90	LZ
					6SヤELE 190才	ャ968ちをヤしゃし	50	92
					くLくこ己ど00こt	L8909 ${ }^{\text {c }}$＇281	＋0	SZ
					としをくしでて9ても	82て00s しL	seo	ャて
					808800 ${ }^{\text {でとも }}$	こ8てヤ0s己 6ちて	$\varepsilon \%$	$\varepsilon 乙$
					65ヤE9く88をも	ssclll 008	s2．0	て
					c080cて Oことt		20	12
					七60L88．9888	8 $28 \varepsilon \angle 89.9 \downarrow 9$	10	02
					689660＇s ${ }^{\text {c }}$	S928StL 66	90\％	61
					8t0008t＇0	6S $20990 \downarrow 9 \angle$	10000	81
					x_{1}	Kı	S	$\angle 1$
								91
$1 \pm$	$= \pm \wedge$	± 0	＝$n \mathrm{~nm}$	6.0	＝onus	1	＝（бәр）eydje	91
								¢1
SIZSE60 ${ }^{\circ} \mathrm{O}$	S292900 \downarrow ¢	002¢ャ	0008t	0009	カt	6S09st＜100	666660	$\varepsilon 1$
toszzsez90	ャ0986800 ¢	00こをャ	0008t	0009	カナ	6909st $\angle 100$	S 10	L1
して8LtG2990	2691トレセ92	00ことャ	0008t	0009	カt	6sosst $\angle 100$	90	11
LZSLZ269＊0	810tELOZ己	00こをも	0008t	0009	カナ	6sosst $\angle 100$	50	01
289698sz 10	8867 $2919<1$	002\＆ャ	0008t	0009	カ	6G09st 2100	＋0	6
188ヤくでヤち゚0	986とし6しt「	002をャ	0008t	0009	カナ	6909st $\angle 100$	$98 \cdot 0$	8
8196912910	乌てってとて己でと1	00ことャ	0008t	0009	カナ	690sst $\angle 100$	$\varepsilon \cdot 0$	L
七てعえ6028 ${ }^{\circ}$	916LL920 11	002をt	0008t	0009	t	6sosst $\angle 100$	SCO	9
8L26808080	こいITロE8．8	002\＆ャ	0008t	0009	七	6sosst $\angle 100$	20	9
69己己688ヤ80		00ことャ	0008t	0009	七七	6sosstl100	10	D
LOES $\angle 82 \angle 8{ }^{\circ}$	8LLS0Z0عく	00ことャ	0008t	0009	カ	6S0sst $\angle 100$	$50 \cdot 0$	ε
6ャ0にく1068 0	80L2Z089LO	00こをャ	0008t	0009	カt	6sosst $\angle 100$	100000	乙
nu	s \wedge	eydjes	so	$2 \pm$	n	eydje uel	s	1
H	5	\pm	\exists	－	0	8	\forall	

	A	B	C	D	E	F	G	H
1	s	tan alpha	U	F_{2}	Cs	Calpha	V s	mu
2	0.00001	0.069926787	44	6000	48000	43200	3.076778653	0.86385162
3	0.05	0.069926787	44	6000	48000	43200	3.782402238	0.855936883
4	0.1	0.069926787	44	6000	48000	43200	5.36903778	0.838629879
5	0.2	0.069926787	44	6000	48000	43200	9.322369156	0.798311053
6	0.25	0.069926787	44	6000	48000	43200	11.42219623	0.778425017
7	0.3	0.069926787	44	6000	48000	43200	13.55383956	0.759252917
8	0.35	0.069926787	44	6000	48000	43200	15.70434866	0.740895236
9	0.4	0.069926787	44	6000	48000	43200	17.86691262	0.72338053
10	0.5	0.069926787	44	6000	48000	43200	22.21410738	0.690847944
11	0.6	0.069926787	44	6000	48000	43200	26.57868632	0.661477296
12	0.75	0.069926787	44	6000	48000	43200	33.14312246	0.622792146
13	0.99999	0.069926787	44	6000	48000	43200	44.10700451	0.570515721
14								
15	alpha $(\mathrm{deg})=$	4	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	Fx					
18	0.00001	2959.855362	0.455073218					
19	0.05	2805.46903	2104.112842					
20	0.1	2264.213875	3326.541275					
21	0.2	1415.401154	4095.560742					
22	0.25	1159.855188	4181.800632					
23	0.3	972.1698378	4197.382988					
24	0.35	830.1289985	4175.413693					
25	0.4	719.6809743	4132.636					
26	0.5	560.478845	4017.364287					
27	0.6	452.452494	3888.220337					
28	0.75	344.4046328	3696.583437					
29	0.99999	238.7852335	3414.755076					
30								

	A	B	C	D	E	F	G	H
1	S	tan alpha	U	Fz	Cs	Calpha	V s	mu
2	0.00001	1.74533E-08	66	6000	48000	43200	0.000660001	0.899991951
3	0.05	1.74533E-08	66	6000	48000	43200	3.3	0.861333078
4	0.1	1.74533E-08	66	6000	48000	43200	6.6	0.825656417
5	0.2	1.74533E-08	66	6000	48000	43200	13.2	0.762366771
6	0.25	1.74533E-08	66	6000	48000	43200	16.5	0.734343556
7	0.3	1.74533E-08	66	6000	48000	43200	19.8	0.708487483
8	0.35	1.74533E-08	66	6000	48000	43200	23.1	0.68463096
9	0.4	1.74533E-08	66	6000	48000	43200	26.4	0.662619354
10	0.5	1.74533E-08	66	6000	48000	43200	33	0.623571226
11	0.6	1.74533E-08	66	6000	48000	43200	39.6	0.590329054
12	0.75	1.74533E-08	66	6000	48000	43200	49.5	0.549499198
13	0.99999	1.74533E-08	66	6000	48000	43200	65.99934	0.499969796
14								
15	alpha $(\mathrm{deg})=$	0.000001	muo =	0.9	muf=	0.4	$V \mathrm{f}=$	41
16								
17	S	Fy	Fx					
18	0.00001	0.00075399	0.4800048					
19	0.05	0.000793665	2526.315789					
20	0.1	0.000641537	3803.555377					
21	0.2	0.000356908	4138.298307					
22	0.25	0.000284071	4102.727326					
23	0.3	0.000233113	4031.319799					
24	0.35	0.000195798	3944.570917					
25	0.4	0.000167486	3852.229257					
26	0.5	0.000127773	3668.519657					
27	0.6	0.000101624	3498.413278					
28	0.75	$7.62366 \mathrm{E}-05$	3278.12335					
29	0.99999	5.23572E-05	2999.818306					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	U	Fz	Cs	Calpha	V s	mu
2	0.00001	0.034920757	66	6000	48000	43200	2.304770056	0.872668452
3	0.05	0.034920757	66	6000	48000	43200	4.025166404	0.853245222
4	0.1	0.034920757	66	6000	48000	43200	6.990848631	0.82161796
5	0.2	0.034920757	66	6000	48000	43200	13.39970017	0.76060607
6	0.25	0.034920757	66	6000	48000	43200	16.66019101	0.733039791
7	0.3	0.034920757	66	6000	48000	43200	19.93368919	0.707483232
8	0.35	0.034920757	66	6000	48000	43200	23.21469286	0.68383585
9	0.4	0.034920757	66	6000	48000	43200	26.50041442	0.661976951
10	0.5	0.034920757	66	6000	48000	43200	33.0803864	0.623133312
11	0.6	0.034920757	66	6000	48000	43200	39.66701356	0.59001822
12	0.75	0.034920757	66	6000	48000	43200	49.55362716	0.549303783
13	0.99999	0.034920757	66	6000	48000	43200	66.0395703	0.499871751
14								
15	alpha $(\mathrm{deg})=$	2	muo $=$	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	Fx					
18	0.00001	1508.591788	0.4800048					
19	0.05	1578.556925	2453.894446					
20	0.1	1231.284435	3638.754165					
21	0.2	703.2664116	4074.568316					
22	0.25	562.4384696	4059.475534					
23	0.3	462.8593215	4000.374622					
24	0.35	389.4760462	3921.513093					
25	0.4	333.5723056	3834.496369					
26	0.5	254.8665139	3657.262542					
27	0.6	202.8862033	3490.760368					
28	0.75	152.3172405	3273.438327					
29	0.99999	104.672625	2997.402952					
30								

								0ε
					962891．0662	886st60 602	666660	62
					61عLEt＇6乌己を	980 $20<208$	S <0	82
					8t6 $6 \angle 6 \angle 9 \downarrow$ ¢		90	LZ
					L06068 $\frac{1}{}$ 298	EOL60LSOS	90	92
					88098¢ $28 \angle 8$	8SZ6906．859	$\checkmark 0$	SZ
							SEO	\downarrow ¢
					己としこ080168	6¢1618て 906	$\varepsilon \%$	$\varepsilon 乙$
					8L08L1．9868	889SSE＇2601	SCO	こ己
					8tナ $\angle \angle S^{\circ} \angle 688$	L12906 $\angle \downarrow$ ¢	20	12
					ES09181ヵてE	900602己	10	02
					SてO18でヤLOZ	て6ち8s2 0LL己	50\％	61
					Sて60291st＊	く8て0こt゚ヤヤ6て	10000	81
					x_{J}	K_{J}	S	$\angle 1$
								91
$1 t$	$=1 \wedge$	to	＝n nus	60	＝onur	\downarrow	＝（бәр）eцdје	S1
								± 1
969 $\angle \angle 966 \square^{\circ}$	LL909091．99	0028t	0008t	0009	99	L8L9266900	666660	$\varepsilon 1$
8とt8 L $\angle 8 t 9^{\circ} 0$		002et	0008t	0009	99	L8L926690 0	S <0	21
† $\angle 8880689^{\circ}$	6ち6て08986と	00こと	0008t	0009	99	L8L926690	90	11
6L928129＇0	L0191128とを	00こet	0008t	0009	99	L8L926690 0	50	01
เعย 190099°	86898008＇92	00こをt	0008t	0009	99	L8L926690＇0	$\checkmark 0$	6
LSて6 1 ¢1890	862ટS9ss＇\＆	00ことt	0008t	0009	99	$\angle 8 \angle 926690{ }^{\circ}$	98.0	8
てヵL615t0 0	\＆と6S 108ε Oz	00こをt	0008t	0009	99	L8L926690 0	$8 \cdot 0$	L
L688126210		00ことt	0008t	0009	99	L8L926690 0	SCO	9
LعLOSSSLO		002et	0008t	0009	99	L8L926690 0	20	S
$\angle S 10880180$	LL99SSES0 8	0028t	0008t	0009	99	$\angle 8 \angle 926690{ }^{\circ}$	10	\checkmark
L2988Es880	998809¢ 29.9	00こをt	0008t	0009	99	L8L926690 0	50.0	ε
969 29780	86L9LSL9 ${ }^{\text {t }}$	0028t	0008t	0009	99	L8L926690	10000	乙
nu	s \wedge	eydies	so	2」	n	eydje uel	s	1
H	9	\pm	\exists	0	3	8	\forall	

								0 \＆
					とヤ0ャレ゚0GLZ	S0－ヨ108＊	$66666{ }^{\circ} 0$	62
					1ト981．786て	S0－ヨS0ヶ6．9	SLO	82
					96ャSガレ61と	S0－ヨ61LZ 6	9.0	LZ
					S¢عャ9＊ャ9عと	1ZLIL000＊0	$\mathrm{S}^{\circ} 0$	$9 Z$
					Sヤてヤ0＊99GE	60GSL000＊0	$\succ^{\circ} 0$	S 2
						9ヶZ81000＊0	S $\varepsilon^{\circ} 0$	七て
					ヤヤGて9＊と8Lと	88812000＊0	$\varepsilon \cdot 0$	$\varepsilon 乙$
						1692000＊0	Sて＇0	て
					6010て＊896を	6GIヤE000＊0	て＇0	12
						108900000	$1 \cdot 0$	02
					6LG1E92GZ	L9E6 20000	S0\％	61
					8ヤ0008＊＊	668GL000＊0	10000\％	81
					x－1	K_{-}	s	L1
								9 －
$1 \downarrow$	$= \pm \Lambda$	t＇0	$=$ ！nu	6．0	＝onus	1000000	＝（бәр）eydje	S 1
								ヤレ
89Gt8G＊＊0	21666＊ 28	00ことも	00088	0009	88	80－ヨESヤL゙1	$66666^{\circ} 0$	$\varepsilon \downarrow$
6189666t＊	99	00ことャ	0008t	0009	88	80－ヨEStL＇1	GLO	Z 1
98LE6LEG＇0	8＇ZS	00乙をも	0008t	0009	88	80－ヨEStL＇1	90	トレ
عと $1960 \angle 9^{\circ} 0$	七も	00乙をも	0008t	0009	88	80－ヨEStL＇1	$9^{\circ} 0$	01
60681190	Z＇SE	00ことも	00088	0009	88	80－ヨEStL＇1	$\checkmark^{\circ} 0$	6
てヤG68989＊0	808	00ことャ	0008t	0009	88	80－ヨESヤL！	SE＇0	8
Sع619299＊0	－ 92	00ことャ	0008t	0009	88	80－ヨعSャL゙1	$\varepsilon \cdot 0$	L
9 020 ¢ $69^{\circ} 0$	こて	00ことャ	0008t	0009	88	80－ヨEStL＇1	Sて＇0	9
と9て6ちSてL0	9＊ 12	00乙をも	0008 ${ }^{\text {d }}$	0009	88	80－ヨEStL＇1	て＇0	S
6て8トヤを080	8.8	00ことャ	0008t	0009	88	80－ヨESヤL゙1	$1 \cdot 0$	t
レヤOZ16ヤ8．0	$\nabla^{\circ} \downarrow$	00ことャ	0008t	0009	88	80－ヨยGャL＇1	S0．0	ε
LZ686668＊	88000＊0	00ことャ	0008t	0009	88	80－ヨعSヤL1	100000	2
nu	s＾	eydjej	50	z－	n	eydje uet	s	\downarrow
H	5	\pm	3	O	5	8	\forall	

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.01745506	88	6000	48000	43200	1.53604542	0.8816143
3	0.05	0.01745506	88	6000	48000	43200	4.66041144	0.84627686
4	0.1	0.01745506	88	6000	48000	43200	8.93305294	0.80211124
5	0.2	0.01745506	88	6000	48000	43200	17.6669022	0.72496193
6	0.25	0.01745506	88	6000	48000	43200	22.0535583	0.69198909
7	0.3	0.01745506	88	6000	48000	43200	26.4446485	0.66233352
8	0.35	0.01745506	88	6000	48000	43200	30.8382787	0.63567529
9	0.4	0.01745506	88	6000	48000	43200	35.2334988	0.61171785
10	0.5	0.01745506	88	6000	48000	43200	44.0268036	0.5708496
11	0.6	0.01745506	88	6000	48000	43200	52.8223384	0.53786272
12	0.75	0.01745506	88	6000	48000	43200	66.0178721	0.49992462
13	0.99999	0.01745506	88	6000	48000	43200	88.012525	0.4584377
14								
15	alpha (deg)=	1	muo=	0.9	muf=	0.4	$\mathrm{V} \mathbf{f}=$	41
16								
17	s	Fy	Fx					
18	0.00001	754.066076	0.4800048					
19	0.05	793.745827	2519.69311					
20	0.1	623.199932	3687.3787					
21	0.2	340.254563	3942.10197					
22	0.25	268.390563	3873.8055					
23	0.3	218.465246	3776.01406					
24	0.35	182.199078	3668.95905					
25	0.4	154.918124	3561.77411					
26	0.5	117.130621	3361.98626					
27	0.6	92.6766296	3189.68008					
28	0.75	69.3870982	2983.12386					
29	0.99999	48.005501	2750.20684					
30								

$$
.9-6000-88-2
$$

$$
.9-6000-88-4
$$

$.9-9000-22-0$

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	22	9000	63000	56700	0.00022	0.89999732
3	0.05	1.7453E-08	22	9000	63000	56700	1.1	0.88676372
4	0.1	1.7453E-08	22	9000	63000	56700	2.2	0.87387784
5	0.2	1.7453E-08	22	9000	63000	56700	4.4	0.84912041
6	0.25	1.7453E-08	22	9000	63000	56700	5.5	0.83723104
7	0.3	1.7453E-08	22	9000	63000	56700	6.6	0.82565642
8	0.35	1.7453E-08	22	9000	63000	56700	7.7	0.8143882
9	0.4	1.7453E-08	22	9000	63000	56700	8.8	0.80341829
10	0.5	1.7453E-08	22	9000	63000	56700	11	0.78234197
11	0.6	1.7453E-08	22	9000	63000	56700	13.2	0.76236677
12	0.75	1.7453E-08	22	9000	63000	56700	16.5	0.73434356
13	0.99999	1.7453E-08	22	9000	63000	56700	21.99978	0.69237233
14								
15	alpha (deg) $=$	0.000001	muo=	0.9	muf $=$	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	Fx					
18	0.00001	0.00098961	0.6300063					
19	0.05	0.00104169	3315.78947					
20	0.1	0.00094427	5655.73409					
21	0.2	0.00057701	6715.07666					
22	0.25	0.00047362	6859.1577					
23	0.3	0.00039926	6919.62637					
24	0.35	0.00034356	6933.58722					
25	0.4	0.00030041	6919.55054					
26	0.5	0.00023815	6844.34449					
27	0.6	0.00019556	6736.75742					
28	0.75	0.00015231	6551.31409					
29	0.99999	0.00010876	6231.34944					
30								


```
.9-9000-22-4
```

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	22	9000	63000	56700	1.53838933	0.88158676
3	0.05	0.06992679	22	9000	63000	56700	1.89120112	0.87746041
4	0.1	0.06992679	22	9000	63000	56700	2.68451889	0.86831073
5	0.2	0.06992679	22	9000	63000	56700	4.66118458	0.84626845
6	0.25	0.06992679	22	9000	63000	56700	5.71109811	0.83498564
7	0.3	0.06992679	22	9000	63000	56700	6.77691978	0.82382362
8	0.35	0.06992679	22	9000	63000	56700	7.85217433	0.81285302
9	0.4	0.06992679	22	9000	63000	56700	8.93345631	0.80210728
10	0.5	0.06992679	22	9000	63000	56700	11.1070537	0.78134495
11	0.6	0.06992679	22	9000	63000	56700	13.2893432	0.761578
12	0.75	0.06992679	22	9000	63000	56700	16.5715612	0.7337605
13	0.99999	0.06992679	22	9000	63000	56700	22.0535023	0.69198949
14								
15	alpha (deg) $=$	4	$\mathrm{muO}=$	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	Fx					
18	0.00001	3964.88846	0.62377048					
19	0.05	3951.97869	3002.54789					
20	0.1	3340.21692	4939.49429					
21	0.2	2194.99559	6369.14773					
22	0.25	1830.48776	6613.58091					
23	0.3	1558.06753	6738.06619					
24	0.35	1349.08397	6794.62408					
25	0.4	1184.67813	6810.12155					
26	0.5	944.077875	6771.85902					
27	0.6	777.571513	6685.50131					
28	0.75	607.130809	6518.13798					
29	0.99999	434.440768	6212.7327					
30								

$$
.9-9000-44-0
$$

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	44	9000	63000	56700	0.00044	0.89999463
3	0.05	1.7453E-08	44	9000	63000	56700	2.2	0.87387784
4	0.1	1.7453E-08	44	9000	63000	56700	4.4	0.84912041
5	0.2	1.7453E-08	44	9000	63000	56700	8.8	0.80341829
6	0.25	1.7453E-08	44	9000	63000	56700	11	0.78234197
7	0.3	1.7453E-08	44	9000	63000	56700	13.2	0.76236677
8	0.35	1.7453E-08	44	9000	63000	56700	15.4	0.74343516
9	0.4	1.7453E-08	44	9000	63000	56700	17.6	0.72549263
10	0.5	1.7453E-08	44	9000	63000	56700	22	0.69237076
11	0.6	1.7453E-08	44	9000	63000	56700	26.4	0.66261935
12	0.75	1.7453E-08	44	9000	63000	56700	33	0.62357123
13	0.99999	1.7453E-08	44	9000	63000	56700	43.99956	0.57096316
14								
15	alpha (deg) $=$	0.000001	muo $=$	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	FX					
18	0.00001	0.00098961	0.6300063					
19	0.05	0.00104169	3315.78947					
20	0.1	0.00092931	5556.31786					
21	0.2	0.00055053	6400.8605					
22	0.25	0.00044578	6450.87801					
23	0.3	0.000371	6425.39862					
24	0.35	0.00031537	6360.9909					
25	0.4	0.0002726	6275.66278					
26	0.5	0.00021154	6077.25131					
27	0.6	0.00017043	5869.48895					
28	0.75	0.00012952	5570.47949					
29	0.99999	8.9688E-05	5138.6674					
30								

```
.9-9000-44-1
```

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.01745506	44	9000	63000	56700	0.76802271	0.89072105
3	0.05	0.01745506	44	9000	63000	56700	2.33020572	0.87237531
4	0.1	0.01745506	44	9000	63000	56700	4.46652647	0.84839226
5	0.2	0.01745506	44	9000	63000	56700	8.83345112	0.80308928
6	0.25	0.01745506	44	9000	63000	56700	11.0267792	0.78209232
7	0.3	0.01745506	44	9000	63000	56700	13.2223243	0.76216952
8	0.35	0.01745506	44	9000	63000	56700	15.4191394	0.74327488
9	0.4	0.01745506	44	9000	63000	56700	17.6167494	0.72535968
10	0.5	0.01745506	44	9000	63000	56700	22.0134018	0.69227521
11	0.6	0.01745506	44	9000	63000	56700	26.4111692	0.66254782
12	0.75	0.01745506	44	9000	63000	56700	33.008936	0.6235225
13	0.99999	0.01745506	44	9000	63000	56700	44.0062625	0.57093521
14								
15	alpha $(\mathrm{deg})=$	1	muo $=$	0.9	muf $=$	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	FX					
18	0.00001	989.711725	0.6300063					
19	0.05	1041.7914	3315.78947					
20	0.1	921.044696	5501.17741					
21	0.2	548.615735	6377.4767					
22	0.25	444.723965	6434.77497					
23	0.3	370.366797	6413.73736					
24	0.35	314.971729	6352.20533					
25	0.4	272.329538	6268.83461					
26	0.5	211.406356	6072.82825					
27	0.6	170.360805	5866.42331					
28	0.75	129.491518	5568.55087					
29	0.99999	89.6785849	5137.63326					
30								

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.03492076	44	9000	63000	56700	1.53651337	0.8816088
3	0.05	0.03492076	44	9000	63000	56700	2.68344427	0.868323
4	0.1	0.03492076	44	9000	63000	56700	4.66056575	0.84627518
5	0.2	0.03492076	44	9000	63000	56700	8.93313344	0.80211045
6	0.25	0.03492076	44	9000	63000	56700	11.106794	0.78134737
7	0.3	0.03492076	44	9000	63000	56700	13.2891261	0.76157991
8	0.35	0.03492076	44	9000	63000	56700	15.4764619	0.74279528
9	0.4	0.03492076	44	9000	63000	56700	17.6669429	0.72496161
10	0.5	0.03492076	44	9000	63000	56700	22.0535909	0.69198886
11	0.6	0.03492076	44	9000	63000	56700	26.4446757	0.66233335
12	0.75	0.03492076	44	9000	63000	56700	33.0357514	0.62337636
13	0.99999	0.03492076	44	9000	63000	56700	44.0263802	0.57085136
14								
15	alpha (deg) $=$	2	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	Fx					
18	0.00001	1980.02672	0.6300063					
19	0.05	2084.21781	3311.98638					
20	0.1	1794.52411	5344.02689					
21	0.2	1085.94521	6308.67508					
22	0.25	883.204367	6387.07753					
23	0.3	736.988008	6379.06236					
24	0.35	627.554257	6326.01779					
25	0.4	543.061961	6248.4487					
26	0.5	422.022831	6059.59722					
27	0.6	340.293074	5857.24291					
28	0.75	258.793263	5562.77021					
29	0.99999	179.303513	5134.53142					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	66	9000	63000	56700	0.00066	0.89999195
3	0.05	1.7453E-08	66	9000	63000	56700	3.3	0.86133308
4	0.1	1.7453E-08	66	9000	63000	56700	6.6	0.82565642
5	0.2	1.7453E-08	66	9000	63000	56700	13.2	0.76236677
6	0.25	$1.7453 \mathrm{E}-08$	66	9000	63000	56700	16.5	0.73434356
7	0.3	1.7453E-08	66	9000	63000	56700	19.8	0.70848748
8	0.35	1.7453E-08	66	9000	63000	56700	23.1	0.68463096
9	0.4	1.7453E-08	66	9000	63000	56700	26.4	0.66261935
10	0.5	1.7453E-08	66	9000	63000	56700	33	0.62357123
11	0.6	1.7453E-08	66	9000	63000	56700	39.6	0.59032905
12	0.75	1.7453E-08	66	9000	63000	56700	49.5	0.5494992
13	0.99999	1.7453E-08	66	9000	63000	56700	65.99934	0.4999698
14								
15	alpha $(\mathrm{deg})=$	0.000001	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	FX					
18	0.00001	0.00098961	0.6300063					
19	0.05	0.00104169	3315.78947					
20	0.1	0.0009145	5458.8224					
21	0.2	0.0005263	6114.03982					
22	0.25	0.00042106	6089.09085					
23	0.3	0.00034663	5999.92146					
24	0.35	0.00029176	5881.88177					
25	0.4	0.00024995	5751.88242					
26	0.5	0.00019105	5487.15641					
27	0.6	0.00015213	5238.28541					
28	0.75	0.00011425	4913.14106					
29	0.99999	7.8536E-05	4499.72736					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.03492076	66	9000	63000	56700	2.30477006	0.87266845
3	0.05	0.03492076	66	9000	63000	56700	4.0251664	0.85324522
4	0.1	0.03492076	66	9000	63000	56700	6.99084863	0.82161796
5	0.2	0.03492076	66	9000	63000	56700	13.3997002	0.76060607
6	0.25	0.03492076	66	9000	63000	56700	16.660191	0.73303979
7	0.3	0.03492076	66	9000	63000	56700	19.9336892	0.70748323
8	0.35	0.03492076	66	9000	63000	56700	23.2146929	0.68383585
9	0.4	0.03492076	66	9000	63000	56700	26.5004144	0.66197695
10	0.5	0.03492076	66	9000	63000	56700	33.0803864	0.62313331
11	0.6	0.03492076	66	9000	63000	56700	39.6670136	0.59001822
12	0.75	0.03492076	66	9000	63000	56700	49.5536272	0.54930378
13	0.99999	0.03492076	66	9000	63000	56700	66.0395703	0.49987175
14								
15	alpha (deg) $=$	2	muo $=$	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	s	Fy	Fx					
18	0.00001	1980.02672	0.6300063					
19	0.05	2084.21781	3307.2854					
20	0.1	1762.50651	5240.55829					
21	0.2	1037.39539	6021.62646					
22	0.25	833.797636	6025.68331					
23	0.3	688.301028	5954.26432					
24	0.35	580.383929	5847.72015					
25	0.4	497.815992	5725.53413					
26	0.5	381.094973	5470.3684					
27	0.6	303.728331	5226.84735					
28	0.75	228.26725	4906.12514					
29	0.99999	157.008934	4496.10433					
30								

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	66	9000	63000	56700	4.61516798	0.8467696
3	0.05	0.06992679	66	9000	63000	56700	5.67360336	0.83538362
4	0.1	0.06992679	66	9000	63000	56700	8.05355667	0.81083016
5	0.2	0.06992679	66	9000	63000	56700	13.9835537	0.75550731
6	0.25	0.06992679	66	9000	63000	56700	17.1332943	0.7292189
7	0.3	0.06992679	66	9000	63000	56700	20.3307593	0.70451974
8	0.35	0.06992679	66	9000	63000	56700	23.556523	0.68147926
9	0.4	0.06992679	66	9000	63000	56700	26.8003689	0.66006733
10	0.5	0.06992679	66	9000	63000	56700	33.3211611	0.62182679
11	0.6	0.06992679	66	9000	63000	56700	39.8680295	0.58908887
12	0.75	0.06992679	66	9000	63000	56700	49.7146837	0.54871844
13	0.99999	0.06992679	66	9000	63000	56700	66.1605068	0.4995776
14								
15	alpha $(\mathrm{deg})=$	4	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	FX					
18	0.00001	3958.87387	0.61851535					
19	0.05	3875.32134	2931.19035					
20	0.1	3189.45514	4703.05927					
21	0.2	1990.10407	5764.6243					
22	0.25	1620.05862	5844.82179					
23	0.3	1347.91749	5822.06844					
24	0.35	1142.45268	5747.86475					
25	0.4	983.41125	5648.02477					
26	0.5	756.195816	5420.59861					
27	0.6	604.241836	5192.79015					
28	0.75	455.13991	4885.15825					
29	0.99999	313.64189	4485.24484					
30								

$.9-9000-88-0$

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	88	9000	63000	56700	0.00088	0.89998927
3	0.05	1.7453E-08	88	9000	63000	56700	4.4	0.84912041
4	0.1	1.7453E-08	88	9000	63000	56700	8.8	0.80341829
5	0.2	1.7453E-08	88	9000	63000	56700	17.6	0.72549263
6	0.25	1.7453E-08	88	9000	63000	56700	22	0.69237076
7	0.3	1.7453E-08	88	9000	63000	56700	26.4	0.66261935
8	0.35	1.7453E-08	88	9000	63000	56700	30.8	0.63589542
9	0.4	1.7453E-08	88	9000	63000	56700	35.2	0.6118909
10	0.5	1.7453E-08	88	9000	63000	56700	44	0.57096133
11	0.6	1.7453E-08	88	9000	63000	56700	52.8	0.53793785
12	0.75	1.7453E-08	88	9000	63000	56700	66	0.49996819
13	0.99999	1.7453E-08	88	9000	63000	56700	87.99912	0.4584568
14								
15	alpha (deg) =	0.000001	muo=	0.9	muf=	0.4	$\mathrm{Vf}=$	41
16								
17	S	Fy	Fx					
18	0.00001	0.00098961	0.6300063					
19	0.05	0.00104169	3315.78947					
20	0.1	0.00089989	5363.48042					
21	0.2	0.00050418	5852.71135					
22	0.25	0.00039917	5769.08021					
23	0.3	0.00032566	5634.27588					
24	0.35	0.00027201	5481.67886					
25	0.4	0.00023154	5326.49875					
26	0.5	0.00017531	5033.86724					
27	0.6	0.00013883	4779.43126					
28	0.75	0.00010402	4472.93137					
29	0.99999	7.2015E-05	4126.11057					
30								

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.01745506	88	9000	63000	56700	1.53604542	0.8816143
3	0.05	0.01745506	88	9000	63000	56700	4.66041144	0.84627686
4	0.1	0.01745506	88	9000	63000	56700	8.93305294	0.80211124
5	0.2	0.01745506	88	9000	63000	56700	17.6669022	0.72496193
6	0.25	0.01745506	88	9000	63000	56700	22.0535583	0.69198909
7	0.3	0.01745506	88	9000	63000	56700	26.4446485	0.66233352
8	0.35	0.01745506	88	9000	63000	56700	30.8382787	0.63567529
9	0.4	0.01745506	88	9000	63000	56700	35.2334988	0.61171785
10	0.5	0.01745506	88	9000	63000	56700	44.0268036	0.5708496
11	0.6	0.01745506	88	9000	63000	56700	52.8223384	0.53786272
12	0.75	0.01745506	88	9000	63000	56700	66.0178721	0.49992462
13	0.99999	0.01745506	88	9000	63000	56700	88.012525	0.4584377
14								
15	alpha $(\mathrm{deg})=$	1	muo $=$	0.9	muf=	0.4	$\mathrm{V} f=$	41
16								
17	s	Fy	Fx					
18	0.00001	989.711725	0.6300063					
19	0.05	1041.7914	3315.78947					
20	0.1	891.012359	5305.2952					
21	0.2	502.252824	5829.3249					
22	0.25	398.129886	5753.26986					
23	0.3	325.04806	5623.03306					
24	0.35	271.631974	5473.36177					
25	0.4	231.285795	5320.15188					
26	0.5	175.188686	5029.90237					
27	0.6	138.764676	4776.77766					
28	0.75	103.994138	4471.3404					
29	0.99999	72.0082499	4125.31017					
30								

\pm		N 0 \mathbf{O} 0 0 0 0 0 0 	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$			$\begin{array}{lc} 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 10 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \vdots \\ 0 \\ 0 \end{array}$	$\begin{array}{ll}0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0 & 0 \\ 0\end{array}$		Nor	(1)	(10	-	($\overline{7}$												
\bigcirc		$\begin{gathered} \mathbf{N} \\ \hat{0} \\ \mathbf{N} \\ \mathbf{N} \\ \hat{0} \\ \mathbf{o} \end{gathered}$	-	$\begin{aligned} & \frac{\bar{n}}{m} \\ & \frac{n}{n} \\ & \tilde{n} \\ & \vdots \end{aligned}$											$\frac{11}{>}$												
4	$\begin{aligned} & \frac{\mathbf{x}}{\frac{0}{0}} \\ & \frac{0}{0} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \hat{0} \\ \hline 0 \\ 10 \end{array}$	-	O	(180	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	(1)	-	-	-	O	-			\%												
w	8	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	O	O	O	O	O	O	O	O	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	O			$\begin{array}{\|c\|} \hline \stackrel{\prime \prime}{\vec{s}} \\ \mathbf{n} \\ \hline \end{array}$												
\bigcirc	\mathbf{N}	응	O	O	-	응	O	O	O	\%	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 8 \end{aligned}$	O			0												
0		-	-	${ }_{\infty}^{\infty}$	∞	${ }_{\infty}^{\infty}$	${ }_{0}^{\infty}$	∞	-	${ }_{\infty}^{\infty}$	${ }^{\infty}$	${ }_{\infty}^{\infty}$	${ }^{\infty}$!		$\begin{array}{r}9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$	¢	$\begin{gathered} \dot{d} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ i \end{gathered}$			(c\|c					
∞			O	O-	-										\sim				$\begin{gathered} 0 \\ \vdots \\ \underset{\sim}{2} \\ \end{gathered}$			-					-
<		0 0 0 0 0	$0 \begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}$	-	$\stackrel{\sim}{0}$	Non	$\stackrel{0}{0}$	0	$\stackrel{0}{0}{ }_{0}^{+}$	0	$\stackrel{-}{\circ}$	$\stackrel{\sim}{\sim}$		$$			\cdots			No	$\stackrel{\sim}{\sim}$	-	${ }^{\circ}$	\bigcirc	\bigcirc	Cor	¢ 0
	-		0			\bigcirc			$\infty 0$	0					\sim	\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\circ}{\text { N }}$	N	,	N	눙	$\stackrel{0}{\sim}$	$\stackrel{\sim}{\sim}$		

$$
.9-9000-88-4
$$

APPENDIX D

GENERIC TRUCK TIRE DATA FOR A "0.5 SURFACE"

The first set of data is for $\mathrm{Fz}=3000 \mathrm{lbs}$ per the following chart. There is a similar set of data for $\mathrm{Fz}=6000 \mathrm{lbs}$.

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	22	3000	27000	24300	0.00022	0.49999822
3	0.05	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	1.1	0.49121236
4	0.1	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	2.2	0.48268212
5	0.2	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	4.4	0.46636394
6	0.25	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	5.5	0.45856156
7	0.3	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	6.6	0.45098774
8	0.35	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	7.7	0.44363577
9	0.4	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	8.8	0.43649916
10	0.5	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	11	0.42284694
11	0.6	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	13.2	0.40998282
12	0.75	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	16.5	0.39206551
13	0.99999	$1.7453 \mathrm{E}-08$	22	3000	27000	24300	21.99978	0.36553685
14								
15	alpha (deg) =	0.000001	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	0.00042412	0.2700027					
19	0.05	0.00036622	1091.59523					
20	0.1	0.00021885	1273.30984					
21	0.2	0.00011506	1326.59337					
22	0.25	9.1963E-05	1323.11502					
23	0.3	7.6156E-05	1313.41518					
24	0.35	$6.468 \mathrm{E}-05$	1300.4482					
25	0.4	5.5983E-05	1285.68103					
26	0.5	4.3703E-05	1253.64086					
27	0.6	3.5476E-05	1220.61035					
28	0.75	2.7261E-05	1171.92667					
29	0.99999	$1.914 \mathrm{E}-05$	1096.61044					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.01745506	22	3000	27000	24300	0.38401135	0.4969025
3	0.05	0.01745506	22	3000	27000	24300	1.16510286	0.49070041
4	0.1	0.01745506	22	3000	27000	24300	2.23326323	0.4824281
5	0.2	0.01745506	22	3000	27000	24300	4.41672556	0.46624356
6	0.25	0.01745506	22	3000	27000	24300	5.51338958	0.45846801
7	0.3	0.01745506	22	3000	27000	24300	6.61116213	0.45091203
8	0.35	0.01745506	22	3000	27000	24300	7.70956968	0.44357276
9	0.4	0.01745506	22	3000	27000	24300	8.80837469	0.43644563
10	0.5	0.01745506	22	3000	27000	24300	11.0067009	0.42280659
11	0.6	0.01745506	22	3000	27000	24300	13.2055846	0.40995113
12	0.75	0.01745506	22	3000	27000	24300	16.504468	0.39204232
13	0.99999	0.01745506	22	3000	27000	24300	22.0031312	0.36552186
14								
15	alpha $($ deg $)=$	1	muo=	0.5	muf=	0.2	$V f=$	37
16								
17	s	Fy	Fx					
18	0.00001	424.162168	0.2700027					
19	0.05	353.379391	1050.01387					
20	0.1	216.008944	1256.33615					
21	0.2	114.638737	1321.5206					
22	0.25	91.7410038	1319.77048					
23	0.3	76.0268384	1311.05079					
24	0.35	64.599507	1298.6916					
25	0.4	55.9297646	1284.32668					
26	0.5	43.6765834	1252.76856					
27	0.6	35.4619296	1220.00452					
28	0.75	27.2547335	1171.54151					
29	0.99999	19.1378903	1096.39844					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.03492076	22	3000	27000	24300	0.76825669	0.49383512
3	0.05	0.03492076	22	3000	27000	24300	1.34172213	0.48931606
4	0.1	0.03492076	22	3000	27000	24300	2.33028288	0.4816885
5	0.2	0.03492076	22	3000	27000	24300	4.46656672	0.46588515
6	0.25	0.03492076	22	3000	27000	24300	5.553397	0.45818869
7	0.3	0.03492076	22	3000	27000	24300	6.64456306	0.45068563
8	0.35	0.03492076	22	3000	27000	24300	7.73823095	0.44338416
9	0.4	0.03492076	22	3000	27000	24300	8.83347147	0.43628531
10	0.5	0.03492076	22	3000	27000	24300	11.0267955	0.42268561
11	0.6	0.03492076	22	3000	27000	24300	13.2223379	0.40985609
12	0.75	0.03492076	22	3000	27000	24300	16.5178757	0.39197274
13	0.99999	0.03492076	22	3000	27000	24300	22.0131901	0.36547686
14								
15	alpha (deg) =	2	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	834.88079	0.25759557					
19	0.05	642.797838	948.678312					
20	0.1	416.23327	1209.17029					
21	0.2	226.778099	1306.61651					
22	0.25	182.167563	1309.86956					
23	0.3	151.287462	1304.02197					
24	0.35	128.718803	1293.45614					
25	0.4	111.542104	1280.28331					
26	0.5	87.1980272	1250.1591					
27	0.6	70.8400596	1218.19019					
28	0.75	54.4723696	1170.38703					
29	0.99999	38.26524	1095.76255					
30								

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	22	3000	27000	24300	1.53838933	0.48778233
3	0.05	0.06992679	22	3000	27000	24300	1.89120112	0.48505123
4	0.1	0.06992679	22	3000	27000	24300	2.68451889	0.4790045
5	0.2	0.06992679	22	3000	27000	24300	4.66118458	0.46449028
6	0.25	0.06992679	22	3000	27000	24300	5.71109811	0.45709058
7	0.3	0.06992679	22	3000	27000	24300	6.77691978	0.44979048
8	0.35	0.06992679	22	3000	27000	24300	7.85217433	0.4426358
9	0.4	0.06992679	22	3000	27000	24300	8.93345631	0.43564766
10	0.5	0.06992679	22	3000	27000	24300	11.1070537	0.4222031
11	0.6	0.06992679	22	3000	27000	24300	13.2893432	0.40947639
12	0.75	0.06992679	22	3000	27000	24300	16.5715612	0.3916944
13	0.99999	0.06992679	22	3000	27000	24300	22.0535023	0.36529667
14								
15	alpha $(\mathrm{deg})=$	4	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	S	Fy	FX					
18	0.00001	1148.29627	0.16871951					
19	0.05	987.85422	720.351733					
20	0.1	733.699005	1062.08018					
21	0.2	435.00948	1251.30589					
22	0.25	354.321881	1272.14275					
23	0.3	296.649838	1276.83324					
24	0.35	253.689355	1273.01462					
25	0.4	220.591174	1264.39854					
26	0.5	173.168481	1239.83162					
27	0.6	141.014263	1210.98032					
28	0.75	108.648914	1165.78376					
29	0.99999	76.446148	1093.22032					
30								

エ	$\begin{array}{\|c} \hline \\ \hline \\ \hline \end{array}$	9 9 0 		\pm 0 \vdots \vdots 0 0					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathbf{y} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	 0 0 10 0 10 10 0 0 0 0 0	10 0 10 1 0 0 1 0 0 0 0				N													
$\boldsymbol{\top}$	9	$\begin{array}{\|l\|} \hline \mathbf{J} \\ \mathbf{J} \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \mathbf{N} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \dot{寸} \\ & \dot{寸} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	\bar{r}	$\begin{aligned} & \boldsymbol{N} \\ & \boldsymbol{m} \\ & \boldsymbol{\tau} \end{aligned}$	$\begin{gathered} 7 \\ \dot{\omega} \end{gathered}$	$\begin{aligned} & 0 \\ & \vdots \end{aligned}$	$\underset{N}{N}$	$\begin{aligned} & \underset{\sim}{*} \\ & \dot{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & m \\ & m \end{aligned}$	0 0		$\stackrel{11}{4}$													
4		$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \dot{N} \\ \text { N } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{N} \\ & \mathbf{N} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & \dot{\sim} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & w \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \\ & \dot{d} \\ & \mathrm{~N} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{w} \\ & \mathbf{N} \end{aligned}$		O 0 0 o d N	O 0 0 0 \vdots 			N 0 0													
Ш	8	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ \mathrm{~N} \\ \mathrm{~N} \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{l\|l} \hline 3 & 0 \\ 3 & 0 \\ 0 \\ N & \\ N \end{array}$			$\begin{gathered} 11 \\ \stackrel{11}{3} \\ \underline{E} \end{gathered}$													
0	N	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	O	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$													
0	J	$\begin{aligned} & \dot{寸} \\ & 寸 \end{aligned}$	$\dot{寸}$	$\underset{8}{8}$	$\stackrel{+}{\mathbf{\nabla}}$	$\dot{\mathbf{v}}$	$\begin{aligned} & \pm \\ & \hline \end{aligned}$	$\underset{寸}{\dot{\nabla}}$	$\begin{aligned} & \dot{寸} \\ & \dot{寸} \end{aligned}$	$\stackrel{寸}{寸}$	$\underset{\sim}{*}$	$\begin{array}{l\|l\|} \hline \dot{J} & \mathbf{I} \end{array}$	$\begin{array}{l\|l} \dot{A} & \dot{\sim} \end{array}$		II O E					1245.98696		0 0 0 1 0 N 1 \vdots 0				965.994234	con	
\boldsymbol{m}			1．7453E－08	1．7453E－08	$1.7453 \mathrm{E}-08$	1．7453E－08	1．7453E－08	1.7453E-08	$1.7453 \mathrm{E}-08$	1．7453E－08					- 0 0 0 0 0 0			N 9 \sim 0 $\dot{+}$ 0 0 0 0 0 0 0	10 N N N 0 0 0 0 0	N N 0 0 0 0 0 0 0	c	10 0 1 1 0 0 0 0 0						
＜	∞	$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\because	$\begin{aligned} & \mathbf{N} \\ & 0 \end{aligned}$	$\begin{gathered} 1 \\ N \\ 0 \end{gathered}$	$\begin{aligned} & m \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\dot{0}$	0	$?$			$\begin{aligned} & \mathbf{8} \\ & \mathbf{8} \\ & \mathbf{8} \\ & \mathbf{8} \\ & \mathbf{0} \end{aligned}$	$\begin{array}{\|l\|} \hline \frac{11}{0} \\ \frac{0}{0} \\ \frac{0}{\sigma} \\ \frac{0}{2} \\ \hline \end{array}$		∞		0°	$\stackrel{\sim}{0}$	$\stackrel{1}{N}$	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{l\|l} \hline 0 \\ 0 \\ 0 \end{array}$	0	$\stackrel{10}{\sim}$	O	
	\checkmark	N	\cdots	＋	10	\bullet	N	∞	0	\bigcirc	－	\cdots	\cdots	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\bullet}{\bullet}$	$\stackrel{\sim}{\text { N }}$	\cdots	${ }^{\circ}$	\cdots	N	$\stackrel{\sim}{\sim}$	$\left\lvert\, \begin{array}{c\|c} \mathbf{N} \\ \mathbf{N} \end{array}\right.$	$\begin{array}{l\|l} \bullet \\ \sim & \bullet \\ \sim \end{array}$	$\underset{N}{N}$	$\begin{aligned} & \boldsymbol{\infty} \\ & \mathbf{N} \end{aligned}$	$\stackrel{\sim}{\sim}$	O

L-カt - $000 \varepsilon-\mathrm{s}^{\circ}$

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Os	Calpha	Vs	mu
2	0.00001	0.01745506	44	3000	27000	24300	0.76802271	0.49383697
3	0.05	0.01745506	44	3000	27000	24300	2.33020572	0.48168909
4	0.1	0.01745506	44	3000	27000	24300	4.46652647	0.46588544
5	0.2	0.01745506	44	3000	27000	24300	8.83345112	0.43628544
6	0.25	0.01745506	44	3000	27000	24300	11.0267792	0.42268571
7	0.3	0.01745506	44	3000	27000	24300	13.2223243	0.40985616
8	0.35	0.01745506	44	3000	27000	24300	15.4191394	0.39775897
9	0.4	0.01745506	44	3000	27000	24300	17.6167494	0.38635512
10	0.5	0.01745506	44	3000	27000	24300	22.0134018	0.36547592
11	0.6	0.01745506	44	3000	27000	24300	26.4111692	0.34693159
12	0.75	0.01745506	44	3000	27000	24300	33.008936	0.32293418
13	0.99999	0.01745506	44	3000	27000	24300	44.0062625	0.29132495
14								
15	alpha (deg) =	1	muo $=$	0.5	muf=	0.2	$\mathrm{V} f=$	37
16								
17	s	Fy	Fx					
18	0.00001	424.162168	0.2700027					
19	0.05	349.266118	1036.85731					
20	0.1	209.689811	1218.86519					
21	0.2	107.692007	1240.93115					
22	0.25	84.8727567	1220.52847					
23	0.3	69.3153495	1194.93954					
24	0.35	58.0833252	1167.37126					
25	0.4	49.6278209	1139.34005					
26	0.5	37.8218816	1084.64274					
27	0.6	30.0497904	1033.67352					
28	0.75	22.4663661	965.644983					
29	0.99999	15.25311	873.841667					
30								

```
.5-3000-44-2
```

0
1
∞

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.03492076	44	3000	27000	24300	1.53651337	0.48779692
3	0.05	0.03492076	44	3000	27000	24300	2.68344427	0.4790126
4	0.1	0.03492076	44	3000	27000	24300	4.66056575	0.46449471
5	0.2	0.03492076	44	3000	27000	24300	8.93313344	0.43564971
6	0.25	0.03492076	44	3000	27000	24300	11.106794	0.42220466
7	0.3	0.03492076	44	3000	27000	24300	13.2891261	0.40947762
8	0.35	0.03492076	44	3000	27000	24300	15.4764619	0.39745283
9	0.4	0.03492076	44	3000	27000	24300	17.6669429	0.38610249
10	0.5	0.03492076	44	3000	27000	24300	22.0535909	0.36529628
11	0.6	0.03492076	44	3000	27000	24300	26.4446757	0.34679859
12	0.75	0.03492076	44	3000	27000	24300	33.0357514	0.32284511
13	0.99999	0.03492076	44	3000	27000	24300	44.0263802	0.29127531
14								
15	alpha $(\mathrm{deg})=$	2	$\mathrm{muo}=$	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	S	Fy	Fx					
18	0.00001	832.482279	0.25645868					
19	0.05	633.338534	933.954591					
20	0.1	403.44738	1171.34793					
21	0.2	212.887059	1226.07931					
22	0.25	168.439168	1210.72391					
23	0.3	137.873317	1188.02711					
24	0.35	115.694605	1162.26103					
25	0.4	98.9453614	1135.425					
26	0.5	75.4937931	1082.15965					
27	0.6	60.01942	1031.97905					
28	0.75	44.8977199	964.598203					
29	0.99999	30.496376	873.293533					
30								

$.5-30 \cap ก-44-4$

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	44	3000	27000	24300	3.07677865	0.47606223
3	0.05	0.06992679	44	3000	27000	24300	3.78240224	0.47084735
4	0.1	0.06992679	44	3000	27000	24300	5.36903778	0.45947837
5	0.2	0.06992679	44	3000	27000	24300	9.32236916	0.4331837
6	0.25	0.06992679	44	3000	27000	24300	11.4221962	0.42031855
7	0.3	0.06992679	44	3000	27000	24300	13.5538396	0.40798428
8	0.35	0.06992679	44	3000	27000	24300	15.7043487	0.39624044
9	0.4	0.06992679	44	3000	27000	24300	17.8669126	0.38509939
10	0.5	0.06992679	44	3000	27000	24300	22.2141074	0.36458073
11	0.6	0.06992679	44	3000	27000	24300	26.5786863	0.34626786
12	0.75	0.06992679	44	3000	27000	24300	33.1431225	0.32248914
13	0.99999	0.06992679	44	3000	27000	24300	44.1070045	0.29107663
14								
15	alpha (deg)=	4	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	1128.09373	0.16561651					
19	0.05	964.493363	702.839848					
20	0.1	707.301717	1023.30469					
21	0.2	407.25474	1170.99613					
22	0.25	326.931131	1173.38502					
23	0.3	269.89211	1161.30237					
24	0.35	227.705964	1142.31807					
25	0.4	195.45457	1120.0513					
26	0.5	149.801231	1072.33621					
27	0.6	119.402046	1025.24786					
28	0.75	89.5163018	960.425631					
29	0.99999	60.9140175	871.102643					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	66	3000	27000	24300	0.00066	0.49999465
3	0.05	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	3.3	0.47440175
4	0.1	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	6.6	0.45098774
5	0.2	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	13.2	0.40998282
6	0.25	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	16.5	0.39206551
7	0.3	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	19.8	0.37567705
8	0.35	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	23.1	0.36068696
9	0.4	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	26.4	0.34697595
10	0.5	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	33	0.32296387
11	0.6	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	39.6	0.30287475
12	0.75	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	49.5	0.27872373
13	0.99999	$1.7453 \mathrm{E}-08$	66	3000	27000	24300	65.99934	0.25040128
14								
15	alpha (deg)=	0.000001	muo $=$	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	0.00042412	0.2700027					
19	0.05	0.00035859	1066.86497					
20	0.1	0.00020655	1200.42077					
21	0.2	0.0001019	1173.91982					
22	0.25	7.9133E-05	1137.7677					
23	0.3	6.3794E-05	1099.58856					
24	0.35	5.2843E-05	1061.92713					
25	0.4	$4.4689 \mathrm{E}-05$	1025.87881					
26	0.5	$3.3484 \mathrm{E}-05$	960.199475					
27	0.6	2.6266E-05	903.527958					
28	0.75	$1.9403 \mathrm{E}-05$	834.013221					
29	0.99999	$1.3111 \mathrm{E}-05$	751.203781					
30								

[-99-000E-G

	A	B	C	D	E	F	G	H
1	S	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.01745506	66	3000	27000	24300	1.15203406	0.4908031
3	0.05	0.01745506	66	3000	27000	24300	3.49530858	0.47295711
4	0.1	0.01745506	66	3000	27000	24300	6.6997897	0.45031173
5	0.2	0.01745506	66	3000	27000	24300	13.2501767	0.40969825
6	0.25	0.01745506	66	3000	27000	24300	16.5401687	0.39185711
7	0.3	0.01745506	66	3000	27000	24300	19.8334864	0.37551812
8	0.35	0.01745506	66	3000	27000	24300	23.128709	0.36056233
9	0.4	0.01745506	66	3000	27000	24300	26.4251241	0.34687618
10	0.5	0.01745506	66	3000	27000	24300	33.0201027	0.32289708
11	0.6	0.01745506	66	3000	27000	24300	39.6167538	0.30282818
12	0.75	0.01745506	66	3000	27000	24300	49.5134041	0.27869522
13	0.99999	0.01745506	66	3000	27000	24300	66.0093937	0.25038758
14								
15	alpha (deg) =	1	muo $=$	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	S	Fy	Fx					
18	0.00001	424.162168	0.2700027					
19	0.05	345.195534	1023.88992					
20	0.1	203.670204	1183.22499					
21	0.2	101.478704	1168.9124					
22	0.25	78.9157155	1134.51462					
23	0.3	63.6696046	1097.32547					
24	0.35	52.7663632	1060.27439					
25	0.4	44.6395399	1024.62735					
26	0.5	33.4599272	959.423535					
27	0.6	26.2536977	903.009923					
28	0.75	19.3975356	833.702946					
29	0.99999	13.109723	751.048293					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	66	3000	27000	24300	4.61516798	0.46481943
3	0.05	0.06992679	66	3000	27000	24300	5.67360336	0.45735124
4	0.1	0.06992679	66	3000	27000	24300	8.05355667	0.44131878
5	0.2	0.06992679	66	3000	27000	24300	13.9835537	0.40558274
6	0.25	0.06992679	66	3000	27000	24300	17.1332943	0.38880608
7	0.3	0.06992679	66	3000	27000	24300	20.3307593	0.37317497
8	0.35	0.06992679	66	3000	27000	24300	23.556523	0.35871652
9	0.4	0.06992679	66	3000	27000	24300	26.8003689	0.34539413
10	0.5	0.06992679	66	3000	27000	24300	33.3211611	0.32190116
11	0.6	0.06992679	66	3000	27000	24300	39.8680295	0.30213221
12	0.75	0.06992679	66	3000	27000	24300	49.7146837	0.27826828
13	0.99999	0.06992679	66	3000	27000	24300	66.1605068	0.25018221
14								
15	alpha (deg)=	4	muo $=$	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	1108.37211	0.16259588					
19	0.05	941.985387	686.000318					
20	0.1	682.484014	986.898199					
21	0.2	382.597599	1099.70936					
22	0.25	303.303061	1088.25383					
23	0.3	247.485308	1064.61547					
24	0.35	206.586928	1036.1439					
25	0.4	175.625536	1006.233					
26	0.5	132.439275	947.926314					
27	0.6	104.277588	895.299637					
28	0.75	77.2766107	829.067494					
29	0.99999	52.3559855	748.718262					
30								

Appendix D - Generic Truck Tire Data for a " 0.5 Surface" - Fz = 6000 lbs .

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	22	6000	48000	43200	0.00022	0.49999822
3	0.05	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	1.1	0.49121236
4	0.1	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	2.2	0.48268212
5	0.2	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	4.4	0.46636394
6	0.25	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	5.5	0.45856156
7	0.3	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	6.6	0.45098774
8	0.35	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	7.7	0.44363577
9	0.4	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	8.8	0.43649916
10	0.5	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	11	0.42284694
11	0.6	1.7453E-08	22	6000	48000	43200	13.2	0.40998282
12	0.75	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	16.5	0.39206551
13	0.99999	$1.7453 \mathrm{E}-08$	22	6000	48000	43200	21.99978	0.36553685
14								
15	alpha (deg) =	0.000001	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	0.00075399	0.4800048					
19	0.05	0.0006954	2087.68001					
20	0.1	0.00042922	2502.93555					
21	0.2	0.00022837	2635.06213					
22	0.25	0.00018291	2633.08761					
23	0.3	0.00015167	2616.94334					
24	0.35	0.00012894	2593.28163					
25	0.4	0.00011168	2565.40794					
26	0.5	8.7261E-05	2503.55674					
27	0.6	7.0876E-05	2438.88618					
28	0.75	$5.4494 \mathrm{E}-05$	2342.78587					
29	0.99999	3.8279E-05	2193.22085					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.01745506	22	6000	48000	43200	0.38401135	0.4969025
3	0.05	0.01745506	22	6000	48000	43200	1.16510286	0.49070041
4	0.1	0.01745506	22	6000	48000	43200	2.23326323	0.4824281
5	0.2	0.01745506	22	6000	48000	43200	4.41672556	0.46624356
6	0.25	0.01745506	22	6000	48000	43200	5.51338958	0.45846801
7	0.3	0.01745506	22	6000	48000	43200	6.61116213	0.45091203
8	0.35	0.01745506	22	6000	48000	43200	7.70956968	0.44357276
9	0.4	0.01745506	22	6000	48000	43200	8.80837469	0.43644563
10	0.5	0.01745506	22	6000	48000	43200	11.0067009	0.42280659
11	0.6	0.01745506	22	6000	48000	43200	13.2055846	0.40995113
12	0.75	0.01745506	22	6000	48000	43200	16.504468	0.39204232
13	0.99999	0.01745506	22	6000	48000	43200	22.0031312	0.36552186
14								
15	alpha (deg)=	1	muo $=$	0.5	muf $=$	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	754.066076	0.4800048					
19	0.05	673.804577	2015.07017					
20	0.1	423.804719	2470.32439					
21	0.2	227.534071	2625.06289					
22	0.25	182.467805	2626.46764					
23	0.3	151.416868	2612.25124					
24	0.35	128.778224	2589.78947					
25	0.4	111.571456	2562.71202					
26	0.5	87.2088814	2501.81737					
27	0.6	70.848473	2437.67684					
28	0.75	54.4818812	2342.01626					
29	0.99999	38.2757801	2192.79686					
30								

```
.5-6000-22-2
```

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.03492076	22	6000	48000	43200	0.76825669	0.49383512
3	0.05	0.03492076	22	6000	48000	43200	1.34172213	0.48931606
4	0.1	0.03492076	22	6000	48000	43200	2.33028288	0.4816885
5	0.2	0.03492076	22	6000	48000	43200	4.46656672	0.46588515
6	0.25	0.03492076	22	6000	48000	43200	5.553397	0.45818869
7	0.3	0.03492076	22	6000	48000	43200	6.64456306	0.45068563
8	0.35	0.03492076	22	6000	48000	43200	7.73823095	0.44338416
9	0.4	0.03492076	22	6000	48000	43200	8.83347147	0.43628531
10	0.5	0.03492076	22	6000	48000	43200	11.0267955	0.42268561
11	0.6	0.03492076	22	6000	48000	43200	13.2223379	0.40985609
12	0.75	0.03492076	22	6000	48000	43200	16.5178757	0.39197274
13	0.99999	0.03492076	22	6000	48000	43200	22.0131901	0.36547686
14								
15	alpha (deg)=	2	muo $=$	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	1508.10545	0.4735281					
19	0.05	1236.16203	1833.65485					
20	0.1	817.421164	2379.56469					
21	0.2	450.150977	2595.68071					
22	0.25	362.337667	2606.86918					
23	0.3	301.314962	2598.30217					
24	0.35	256.602705	2579.38111					
25	0.4	222.511576	2554.66334					
26	0.5	174.108612	2496.61412					
27	0.6	141.529753	2434.05518					
28	0.75	108.88966	2339.7094					
29	0.99999	76.530479	2191.52508					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Os	Calpha	Vs	mu
2	0.00001	1.7453E-08	44	6000	48000	43200	0.00044	0.49999643
3	0.05	1.7453E-08	44	6000	48000	43200	2.2	0.48268212
4	0.1	1.7453E-08	44	6000	48000	43200	4.4	0.46636394
5	0.2	1.7453E-08	44	6000	48000	43200	8.8	0.43649916
6	0.25	1.7453E-08	44	6000	48000	43200	11	0.42284694
7	0.3	1.7453E-08	44	6000	48000	43200	13.2	0.40998282
8	0.35	1.7453E-08	44	6000	48000	43200	15.4	0.3978613
9	0.4	1.7453E-08	44	6000	48000	43200	17.6	0.3864395
10	0.5	1.7453E-08	44	6000	48000	43200	22	0.36553587
11	0.6	1.7453E-08	44	6000	48000	43200	26.4	0.34697595
12	0.75	1.7453E-08	44	6000	48000	43200	33	0.32296387
13	0.99999	1.7453E-08	44	6000	48000	43200	43.99956	0.2913415
14								
15	alpha $(\mathrm{deg})=$	0.000001	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	FX					
18	0.00001	0.00075399	0.4800048					
19	0.05	0.00068901	2066.09424					
20	0.1	0.0004172	2431.16026					
21	0.2	0.00021469	2476.0963					
22	0.25	0.00016932	2436.50691					
23	0.3	0.00013836	2386.35933					
24	0.35	0.00011599	2332.04768					
25	0.4	9.9133E-05	2276.6364					
26	0.5	7.5586E-05	2168.1621					
27	0.6	6.0072E-05	2066.80666					
28	0.75	4.4926E-05	1931.26412					
29	0.99999	$3.051 \mathrm{E}-05$	1748.04881					
30								

.5-6000-22-4

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	22	6000	48000	43200	1.53838933	0.48778233
3	0.05	0.06992679	22	6000	48000	43200	1.89120112	0.48505123
4	0.1	0.06992679	22	6000	48000	43200	2.68451889	0.4790045
5	0.2	0.06992679	22	6000	48000	43200	4.66118458	0.46449028
6	0.25	0.06992679	22	6000	48000	43200	5.71109811	0.45709058
7	0.3	0.06992679	22	6000	48000	43200	6.77691978	0.44979048
8	0.35	0.06992679	22	6000	48000	43200	7.85217433	0.4426358
9	0.4	0.06992679	22	6000	48000	43200	8.93345631	0.43564766
10	0.5	0.06992679	22	6000	48000	43200	11.1070537	0.4222031
11	0.6	0.06992679	22	6000	48000	43200	13.2893432	0.40947639
12	0.75	0.06992679	22	6000	48000	43200	16.5715612	0.3916944
13	0.99999	0.06992679	22	6000	48000	43200	22.0535023	0.36529667
14								
15	alpha (deg)=	4	muo $=$	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	2217.82987	0.32730179					
19	0.05	1926.74989	1409.19716					
20	0.1	1444.94917	2095.26734					
21	0.2	863.795157	2486.59096					
22	0.25	704.879917	2532.17476					
23	0.3	590.883886	2544.33868					
24	0.35	505.760512	2538.73972					
25	0.4	440.064485	2523.04206					
26	0.5	345.770958	2476.02084					
27	0.6	281.731007	2419.66308					
28	0.75	217.188403	2330.51125					
29	0.99999	152.892294	2186.44062					
30								

.5-6000-44-1

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.01745506	44	6000	48000	43200	0.76802271	0.49383697
3	0.05	0.01745506	44	6000	48000	43200	2.33020572	0.48168909
4	0.1	0.01745506	44	6000	48000	43200	4.46652647	0.46588544
5	0.2	0.01745506	44	6000	48000	43200	8.83345112	0.43628544
6	0.25	0.01745506	44	6000	48000	43200	11.0267792	0.42268571
7	0.3	0.01745506	44	6000	48000	43200	13.2223243	0.40985616
8	0.35	0.01745506	44	6000	48000	43200	15.4191394	0.39775897
9	0.4	0.01745506	44	6000	48000	43200	17.6167494	0.38635512
10	0.5	0.01745506	44	6000	48000	43200	22.0134018	0.36547592
11	0.6	0.01745506	44	6000	48000	43200	26.4111692	0.34693159
12	0.75	0.01745506	44	6000	48000	43200	33.008936	0.32293418
13	0.99999	0.01745506	44	6000	48000	43200	44.0062625	0.29132495
14								
15	alpha $(\mathrm{deg})=$	1	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	754.066076	0.4800048					
19	0.05	666.777273	1991.84876					
20	0.1	411.72006	2398.23694					
21	0.2	213.857454	2466.12012					
22	0.25	168.883444	2429.94466					
23	0.3	138.104575	2381.74083					
24	0.35	115.828293	2328.6364					
25	0.4	99.029898	2274.02426					
26	0.5	75.535954	2166.5061					
27	0.6	60.0455906	2065.67676					
28	0.75	44.9140148	1930.56615					
29	0.99999	30.5062196	1747.68332					
30								

\pm				－	¢					－					¢														
\checkmark				n n 0 0 0 0 0 0 $\dot{8}$ $\dot{0}$				0 0 0 0 0 0 \vdots \vdots \vdots							$\stackrel{71}{\prime \prime \prime}$														
			O－	－	－			－	－		O N O					No													
$\boldsymbol{\omega}$			O－	－	－		0 8 0 0 +	\circ 0	－		$\stackrel{+}{\circ}$				$\begin{gathered} 411 \\ \vdots \\ \underline{E} \end{gathered}$														
0	N	O	O	O	O	O	O	O	O		O				\bigcirc	？													
0			\％	\％	\％	寸接	$f+\underset{f}{f}$		＋		＊	\％	\％${ }_{\text {d }}$		$\begin{aligned} & \text { U1 } \\ & \stackrel{0}{\varepsilon} \\ & \mathbf{E} \end{aligned}$						－	（cos		¢			N	n 0 0 0 n 0 0 \vdots	
－			$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{gathered}$			－	－	－				$\begin{aligned} & 0 \\ & \hat{N} \\ & \stackrel{1}{2} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{c}{0} \\ & 0 \\ & 0 \end{aligned}$							－	（10	N	\％			N	N in N 0 0 0 0	N
＜			$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	－	$\stackrel{+}{0}$	$\begin{gathered} n \\ \mathbf{N} \\ 0 \\ 0 \end{gathered}$	$\stackrel{\substack{0}}{\stackrel{\circ}{0}} \stackrel{0}{\circ}$	－	－${ }_{\circ}^{\text {of }}$		\bigcirc							－	$0_{0}^{0} 0^{\circ}$	\bigcirc	$\stackrel{N}{0}$	$\stackrel{\text { ¢ }}{0}$	－	${ }^{\circ}$	$\stackrel{0}{0}$	\bigcirc	$\dot{\circ}$	－	－
	－	N	の	－	n	0	N	－	O	\bigcirc	－	\cdots	\cdots	m	$\pm{ }^{10}$	\bigcirc	N	\cdots	9	N		$\stackrel{\sim}{\sim}$	$\stackrel{+}{\sim}$	$\stackrel{10}{\sim}$	$\stackrel{+}{\circ}$	N	$\stackrel{\sim}{\sim}$		0

カ-功-0009-s*

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.06992679	44	6000	48000	43200	3.07677865	0.47606223
3	0.05	0.06992679	44	6000	48000	43200	3.78240224	0.47084735
4	0.1	0.06992679	44	6000	48000	43200	5.36903778	0.45947837
5	0.2	0.06992679	44	6000	48000	43200	9.32236916	0.4331837
6	0.25	0.06992679	44	6000	48000	43200	11.4221962	0.42031855
7	0.3	0.06992679	44	6000	48000	43200	13.5538396	0.40798428
8	0.35	0.06992679	44	6000	48000	43200	15.7043487	0.39624044
9	0.4	0.06992679	44	6000	48000	43200	17.8669126	0.38509939
10	0.5	0.06992679	44	6000	48000	43200	22.2141074	0.36458073
11	0.6	0.06992679	44	6000	48000	43200	26.5786863	0.34626786
12	0.75	0.06992679	44	6000	48000	43200	33.1431225	0.32248914
13	0.99999	0.06992679	44	6000	48000	43200	44.1070045	0.29107663
14								
15	alpha (deg)=	4	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	2181.16423	0.32157707					
19	0.05	1882.85352	1375.99159					
20	0.1	1393.9475	2020.02395					
21	0.2	809.096371	2328.05826					
22	0.25	650.679645	2336.5295					
23	0.3	537.796636	2314.93031					
24	0.35	454.115177	2278.79466					
25	0.4	390.03564	2235.6056					
26	0.5	299.180411	2141.95639					
27	0.6	238.591335	2048.85275					
28	0.75	178.95843	1920.13527					
29	0.99999	121.828034	1742.20527					
30								

. 5 - $6000-66-0$

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	1.7453E-08	66	6000	48000	43200	0.00066	0.49999465
3	0.05	$1.7453 \mathrm{E}-08$	66	6000	48000	43200	3.3	0.47440175
4	0.1	$1.7453 \mathrm{E}-08$	66	6000	48000	43200	6.6	0.45098774
5	0.2	$1.7453 \mathrm{E}-08$	66	6000	48000	43200	13.2	0.40998282
6	0.25	1.7453E-08	66	6000	48000	43200	16.5	0.39206551
7	0.3	1.7453E-08	66	6000	48000	43200	19.8	0.37567705
8	0.35	1.7453E-08	66	6000	48000	43200	23.1	0.36068696
9	0.4	$1.7453 \mathrm{E}-08$	66	6000	48000	43200	26.4	0.34697595
10	0.5	$1.7453 \mathrm{E}-08$	66	6000	48000	43200	33	0.32296387
11	0.6	$1.7453 \mathrm{E}-08$	66	6000	48000	43200	39.6	0.30287475
12	0.75	$1.7453 \mathrm{E}-08$	66	6000	48000	43200	49.5	0.27872373
13	0.99999	$1.7453 \mathrm{E}-08$	66	6000	48000	43200	65.99934	0.25040128
14								
15	alpha (deg) $=$	0.000001	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	FX					
18	0.00001	0.00075399	0.4800048					
19	0.05	0.00068262	2044.64487					
20	0.1	0.00040571	2362.70592					
21	0.2	0.00020244	2333.83249					
22	0.25	0.00015752	2265.92819					
23	0.3	0.00012714	2192.31648					
24	0.35	0.00010541	2118.82082					
25	0.4	8.9196E-05	2047.99536					
26	0.5	6.6883E-05	1918.22592					
27	0.6	5.2491E-05	1805.78185					
28	0.75	3.8792E-05	1667.48695					
29	0.99999	2.6222E-05	1502.40755					
30								

	A	B	C	D	E	F	G	H
1	s	tan alpha	u	Fz	Cs	Calpha	Vs	mu
2	0.00001	0.03492076	66	6000	48000	43200	2.30477006	0.4818828
3	0.05	0.03492076	66	6000	48000	43200	4.0251664	0.46907609
4	0.1	0.03492076	66	6000	48000	43200	6.99084863	0.44835039
5	0.2	0.03492076	66	6000	48000	43200	13.3997002	0.40885253
6	0.25	0.03492076	66	6000	48000	43200	16.660191	0.39123577
7	0.3	0.03492076	66	6000	48000	43200	19.9336892	0.37504343
8	0.35	0.03492076	66	6000	48000	43200	23.2146929	0.36018964
9	0.4	0.03492076	66	6000	48000	43200	26.5004144	0.34657761
10	0.5	0.03492076	66	6000	48000	43200	33.0803864	0.32269701
11	0.6	0.03492076	66	6000	48000	43200	39.6670136	0.30268859
12	0.75	0.03492076	66	6000	48000	43200	49.5536272	0.27860971
13	0.99999	0.03492076	66	6000	48000	43200	66.0395703	0.25034651
14								
15	alpha (deg)=	2	muo=	0.5	muf=	0.2	$\mathrm{Vf}=$	37
16								
17	s	Fy	Fx					
18	0.00001	1505.96558	0.47092298					
19	0.05	1202.67133	1780.54153					
20	0.1	769.569797	2237.35456					
21	0.2	398.336957	2294.89434					
22	0.25	311.634051	2240.3922					
23	0.3	252.326638	2174.45374					
24	0.35	209.600342	2105.72981					
25	0.4	177.601199	2038.05913					
26	0.5	133.389465	1912.04684					
27	0.6	104.784462	1801.64949					
28	0.75	77.4994193	1665.00823					
29	0.99999	52.4223027	1501.16388					
30								

								0ε
					LS9をもく6ヤレ	L6ト1L゙ヤO1	66666＊	62
					68109＊ 2991	S66L6t＇もS1	S 10	82
					とヶ8七ع 68L1	861ع6を＇80Z	$9{ }^{\circ} 0$	LZ
					8ZG\＆Lと681	6ZG6ャG＊ャ9Z	S＊0	92
					Z9878．8002	60t8tG＊0GE	$\dagger^{\circ} 0$	SZ
					8009： $290 乙$	1801トレ「てレも	S $\varepsilon^{\circ} 0$	も
					とて018ででて	9ZLLOE•86t	$\varepsilon \cdot 0$	$\varepsilon 乙$
					809ヶL＊ 2912	Gع8て88＊ 09	Sて＇0	て
					880で 28 L	てZ66ャt＊09L	2．0	12
					980LZ 6 ¢61	9Sて16＊Sカを1	10	02
					90066＊とャを1		90\％	61
					S986S1E0	L9てZでSt1Z	100000	81
					X］	K_{-}	s	L1
								91
$\angle \varepsilon$	＝\downarrow へ	$2 \cdot 0$	$=$ Inul	9＇0	＝onur	เ	＝（бәр）eydje	S1
								七1
レてZ8เ09て＊	890G091．99	00乙をも	0008t	0009	99	6L926690＇0	66666＊	$\varepsilon 1$
8て89て8Lて＊0	Lع89力 126 ¢	00乙をも	0008t	0009	99	6 $2926690{ }^{\circ} 0$	SLOO	こ
レてZとLて0ع＊0	9620898＊6を	00ことも	0008t	0009	99	6L926690＇0	$9{ }^{\circ} 0$	$1 \downarrow$
911061てE＊0	レレ91レてをとを	00ことも	0008t	0009	99	6L926690＇0	$\mathrm{S}^{\circ} 0$	01
	6898008．9乙	00ことt	0008t	0009	99	6 29266900	$\dagger^{\circ} 0$	6
ZG91／8GE＊0	عZS9GS ${ }^{\text {c }}$	00ことも	0008t	0009	99	6 $2926690{ }^{\circ}$	$9 \varepsilon^{\circ} 0$	8
L6ヤ $21 E \angle \varepsilon^{\circ} 0$	ع6GL0عE 0 Z	00ことも	0008t	0009	99	6L926690＇0	$\varepsilon^{\circ} 0$	L
8090888E＊0	とャ6てとを1＊L	00ことも	0008t	0009	99	6L926690＇0	sて＇0	9
ヤLZ8GG0＊＊	LEGSE86．と1	00てをも	0008t	0009	99	6 $2926690{ }^{\circ}$	2．0	9
8L81とトヤナ＊	L99GSEG0＊8	00ことャ	0008t	0009	99	6L926690＇0	$1 \cdot 0$	t
カてISELS＊＊	9ع8098 ${ }^{\circ} 9^{\circ} \mathrm{G}$	00ことャ	0008t	0009	99	629266900	90\％	ε
とヶ6！8ャ9ャ＊	86L91519＊	00乙をャ	0008t	0009	99	6L926690＇0	$10000 \cdot 0$	2
nu	s＾	eydiej	s0	z］	n	eydje uet	s	\downarrow
H	5	\pm	3	0	5	日	\forall	

