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6BAbstract 

 

The lower extremities are the most frequently injured body region in frontal crashes, 

accounting for 36% of all injuries associated with a moderate and greater threat-to-life 

sustained by front-seat occupants (Kuppa and Fessahaie 2003).  To explore the 

biomechanical reasons for the effects of age, sex, and body mass index (BMI) on lower-

extremity (LX) injuries in frontal crashes, parametric FE models are needed.  Male and 

female finite element (FE) models that have skeletal geometry, external body shape, and 

seated posture that are parametric with occupant characteristics were developed and 

validated.  These parametric models are based on statistical models that predict LX 

geometry and material properties as functions of occupant characteristics and used mesh 

morphing techniques to morph a template whole-body model. 

 

Statistical models of femur, tibia, and pelvis surface geometry and femur and tibia cross-

sectional geometry were developed by (1) morphing and fitting template FE meshes onto 

bone geometries extracted from CT data, (2) applying principal component analysis to 

the resulting nodal coordinates and then (3) performing regression on principal 

component (PC) scores to develop models that describe how these scores, and in turn, 

lower-extremity geometry, vary with occupant age, stature, and BMI.  Because each 

statistical model is based on a template mesh, the geometries predicted by these models 

are the nodal coordinates of a FE mesh.  

 

FE models of the femur, tibia, and pelvis that have mesh geometry that is parametric with 

occupant characteristics were developed by linking the statistical models to meshes of 

similar bones from a baseline FE human model from Toyota’s THUMS 4 model.  The 

parametric FE femur models were validated by simulating combined compression and 



 

xiii 

 

bending tests of the femoral shaft from a previous study and comparing impactor force 

histories from the experiments to simulation results.  Impactor forces from simulations, 

on average, matched well to experimental values at the time of failure with an average 

error of 5% across the 25 validation simulations.  In addition, the simulations were able 

to match the trends seen in the experimental dataset. This was determined by fitting the 

same statistical model to the experimental and simulation data and comparing model 

predictions.  The femur tests were used for validation because sufficient information was 

available to effectively characterize specimen geometry and because the applied force 

histories were available for all tests.  Datasets with a similar level of detail on geometry, 

response, and specimen demographics are not available for the tibia, pelvis, and whole 

lower extremities.  Therefore, validation of the parametric model could not be performed 

for these components.  

 

Parametric FE whole-body models were developed using the parametric FE pelvis, 

femur, and tibia models with an external body surface shape model previously developed 

at UMTRI that predicts shape using age, sex, BMI, and stature.  The pelvis, femur, and 

tibia models were positioned inside the external surface model using landmarks predicted 

by the external body surface shape model.  The bone models and the external surface 

model were used to morph a template whole-body FE mesh to develop the whole-body 

models.  Frontal-crash simulations of drivers of different sexes, ages, statures, and BMIs 

were performed with the whole-body models to begin assessing the relative contributions 

of age, sex, and BMI on the risk of LX injury.  Results of these simulations are generally 

consistent with field data and indicate that increases in age and BMI cause increases in 

strains and forces in the lower extremities.  These results agree with the hypotheses that 

elderly and higher BMI occupants are at increased risk for lower-extremity injuries.  In 

addition, the results indicated that women have higher strain values in the right femur, 

right tibia, and pelvis than men, agreeing with the hypothesis that women are at increased 

risk for LX injury.  However the effects appear to differ between left and right sides of 

the body, likely because of asymmetric lower-extremity posture. 
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Chapter I  

Introduction 

 

14BTHE LOWER-EXTREMITY INJURY PROBLEM IN FRONTAL CRASHES 

 

Over the past decades the numbers of fatalities and severe injuries to the head, thorax, 

and abdomen in frontal motor-vehicle crashes have decreased due to significant increases 

in seatbelt usage and frontal-impact airbags in passenger vehicles, as well as 

improvements to vehicle structures.  Although rates of lower-extremity (LX) injuries 

have also decreased, the rates of their decrease have been disproportionately lower than 

those of other body regions (Moran et al. 2003). As a result, the lower extremities are 

now the most frequently injured body region in frontal crashes, accounting for 36% of all 

Abbreviated Injury Scale (AIS) 2+ injuries (i.e., injuries associated with a moderate and 

higher threat-to-life) sustained by front-seat occupants (Kuppa and Fessahaie 2003).   

 

As shown in Figure 1-1, the lower extremities are commonly divided into the three 

regions of 1) the knee-thigh-hip (KTH), where the hip includes the pelvic bone, 2) the 

leg, and 3) the foot-ankle.  LX soft-tissue injuries in motor-vehicle crashes are almost 

always associated with LX skeletal fractures; therefore, LX injury prevention efforts have 

focused on preventing skeletal injuries (Varellis et al. 2004).  About half of all LX 

injuries are to the KTH complex and the other half is to the leg and foot-ankle complex 

(Kuppa and Fessahaie 2003).  
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Figure 1-1. Lower extremities region definitions. 

 

LX injuries often significantly impact the lives of patients, their families, and society in 

general.  These impacts are manifested in reduced mobility which may limit or prevent 

return to work, affect behavioral functioning, and require rehabilitative efforts for 

treatment (Scarboro et al. 2005).  Psychosocial factors such as depression can impede 

recovery.  In addition, pain, decreased mobility, and increased dependence may affect 

lifestyle and the ability to return to baseline functioning.   

 

LX injuries can also be costly for patients and their families due to hospital, professional, 

and rehabilitation costs associated with the injuries (Read et al. 2004).  The average 

annual comprehensive cost of LX injuries for airbag-equipped vehicles has been 

estimated using the nonfatal injury unit cost based on the year 2000 dollar value in 

Economic Impact of Motor Vehicles Crashes (Blincoe et al. 2002).  The comprehensive 

cost includes the economic cost as well as an estimated cost of pain and suffering and 

loss in quality of life.  The total annual cost of LX injuries is $7.6 billion (Kuppa and 

Fessahaie 2003).  

 

15BPREVIOUS RESEARCH ON THE EFFECTS OF OCCUPANT 

CHARACTERISTICS ON THE OCCURRENCE OF LOWER-EXTREMITY 

INJURIES IN FRONTAL CRASHES 

 

Analyses of crash-injury databases, such as the probability sample of crashes contained in 

the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS), 
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demonstrate that occupant characteristics, including age, sex, and body mass index 

(BMI), affect the risk of AIS 3+ LX injuries in frontal motor-vehicle crashes (Carter et al. 

2014; Moran et al. 2003; Ridella et al. 2012; Rupp and Flannagan 2011).  Lower-

extremity AIS 3+ injuries include a displaced or comminuted fracture of the pelvis, tibia, 

or patella and any fracture of the femur.  Crash-injury database analyses have found that, 

when controlling for the effects of other significant predictors like crash severity and 

seatbelt use, the risk of AIS 3+ LX injuries in frontal crashes increases with age, is higher 

for women than men, and increases with increasing BMI.  Figures 1-2a and 1-2b show 

plots of statistical models developed by Rupp and Flannagan (2011) that illustrate the 

effects of age and BMI on LX injuries for men and women in frontal crashes with 

severities similar to those produced in regulatory compliance tests conducted by the 

National Highway Traffic Safety Administration (NHTSA).    

 

 

Figure 1-2. Risk of AIS 3+ LX injuries in frontal crashes for males and females with 

increasing BMI (a) and increasing age (b) adjusted to account for the of effects other 

significant predictors. 

 

Analyses of NASS-CDS and outcome-sampled databases, such as the Crash Injury 

Research and Engineering Network database, suggest that the effects of age, BMI, and 

sex on LX injuries are different for different parts of the lower extremities.  Rupp and 

Flannagan (2011) found that age has larger effects for injuries to the KTH complex than 

for the foot-ankle.  Crash-investigation studies have also found that women sustain more 

foot-ankle injuries than men and that men sustain more knee-thigh-hip injuries than 
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women (Chong et al. 2007; Dischinger et al. 1995; Rudd 2009; Wang et al. 2004).  

However, there is disagreement as to whether these differences are caused by differences 

in stature or sex, with shorter people (mostly women) sustaining more foot-ankle injuries 

and taller people (mostly men) sustaining more KTH injuries.  

 

Multiple biomechanical explanations for the age, BMI, and sex effects on LX injury risk 

have been hypothesized.  Based on the results of computational modeling, Turkovich 

(2010) hypothesized that the increase in LX injury risk with BMI is caused by increased 

forward excursion of the knees for higher BMI occupants caused by increased amounts of 

adipose tissue over the anterior superior iliac spines (ASIS), which are the parts of the 

pelvis that the vehicle lap-belt restraint is intended to load in a frontal crash.  This finding 

is confirmed by a limited number of frontal-crash tests performed with obese and non-

obese cadavers, in which the hips and knees of obese cadavers moved further forward 

than non-obese cadavers (Kent et al. 2010).  In addition, the increase in mass with a 

larger BMI may also cause the increase the impact force. 

 

In addition to increasing BMI increasing the amounts of adipose tissue over the ASIS, 

higher BMI has also been associated with lap-belt positions that are farther above the 

ASIS (Reed et al. 2012).  Such belt positions are likely to prevent the lap belt from 

applying effective restraint forces to the pelvis in a frontal crash and thereby increase the 

forward movement of the knees as well as the forces applied to the knees as a result of 

knee bolster impact (Reed et al. 2012). These higher knee impact forces are associated 

with an increased likelihood of both KTH and below-knee injuries (Rupp et al. 2008).    

 

The effects of BMI on the risk of LX injury may also be different for men than for 

women because of differences in body fat distribution with sex.  Specifically, the 

tendencies for women to carry more fat in their hips and men to carry more fat in their 

abdomens, coupled with the hypothesized reasons for the BMI effect discussed above, 

suggest that the BMI effect may be more pronounced for men than for women. 
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Differences in LX injury risk and injury patterns with occupant sex may also be caused 

by differences in the size and shape of LX bones between men and women.  Men have a 

larger bone size, on average, than women, consistent with their larger body size (Riggs et 

al. 2004).  Bone shape also differs between men and women.  For example, the 

differences in pelvic-bone anatomy and shape between men and women could explain 

differences in the risk of some LX injuries.  In a study of pelvic CT scans, Wang et al. 

(2004) found that the female acetabulum (hip socket) tends to face more forward and 

thereby engage a greater proportion of the surface area of the femoral head in a given 

posture during frontal-impact loading through the KTH complex than the male 

acetabulum.  This factor could make the male hip joint more susceptible to injury during 

a frontal crash, while the higher-tolerance female hip joint may increase the possibility of 

a knee or thigh injury (Wang et al. 2004).   

 

Differences in male and female seated position and posture when driving a motor vehicle 

may also explain the differences in LX injury risk.  For example, women drivers are more 

likely than men to drive with the seat moved forward, and men tend to sit with more leg 

splay (i.e., angled outward) than women (Schneider et al. 1983 and Reed 1998).  These 

differences in position and posture could affect LX injuries during frontal crashes 

because of differences in the direction of KTH loading and the pre-impact distance 

between the knees and the knee bolster. 

 

Changes in cortical bone material properties and bone cross-sectional geometry with age 

and sex also contribute to the effects of occupant characteristics on LX injuries.  Age 

affects bone material properties and cross-sectional geometry such that increasing age 

results in decreasing bone mineral density and the thickness of cortical bone (Kent et al. 

2005).  In addition, the fracture toughness of cortical bone decreases with aging due to 

changes in the microstructure of bone (Nalla et al. 2004).  These changes in bone material 

properties and geometry with age decrease the amount of force necessary to fracture a 

bone, which increases the risk for LX injuries with increasing age (Beason et al. 2003; 

Moran et al. 2003).  Occupant sex also has an effect on changes in bone material 

properties and geometry in that older women have increased bone porosity and decreased 
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bone mineral density, and therefore a greater fracture risk than older men (Riggs et al. 

2004).   

  

16BAPPROACHES TO CHARACTERIZING THE INFLUENCE OF OCCUPANT 

CHARACTERISTICS ON LOWER-EXTREMITY INJURY IN FRONTAL 

CRASHES 

 

Developing vehicle restraint systems that will reduce the risk of LX injuries for the 

elderly, women, and high-BMI occupants requires an understanding of the biomechanical 

factors that explain how and why age, sex, and BMI affect the likelihood, location, and 

severity of LX injuries in frontal crashes.  Approaches used to consider the effects of 

occupant characteristics on injury in crashes during the development and/or evaluation of 

new restraint technologies include physical testing with anthropomorphic test devices 

(ATDs) or crash test dummies of different sizes, impact testing with cadavers, and/or 

simulations with finite element (FE) models of humans and ATDs (e.g., Kent et al. 2003; 

Kimpara et al. 2010; Loyd et al. 2012). 

  

Testing with ATDs involves physically reconstructing frontal crashes using the three 

available sizes of adult crash test dummies, including the midsize male (approximately 

50th percentile in both stature and weight), the small female (approximately 5th 

percentile in both stature and weight), and the large male (approximately 95th percentile 

in both stature and weight based on 1974 U.S. census data) and weighting these tests so 

that results from each represent segments of the crash-involved population.  However, 

testing with ATDs is inadequate to study the effects of occupant sex, age, and BMI 

because current ATDs do not accurately represent most of the factors that can affect LX 

injury risk, such as variability in skeletal geometry, compressible soft tissue over the 

pelvis and abdomen, bone material properties, and body shape and posture.  

 

Frontal-impact testing with human cadavers of varying age, sex, and BMI could be used 

to characterize age, sex, and BMI effects on LX injury.  However, a large number of 

cadavers and tests would be required to appropriately estimate the effects associated with 
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age, sex, and BMI on LX injuries.  Further, obtaining suitable cadavers and cadaveric 

material would be difficult because almost all cadavers available for injury biomechanics 

research are elderly and often have multiple co-morbid conditions.  As a result, the 

available cadavers do not appropriately represent the younger (and living) crash-involved 

population. 

 

Finite element modeling, however, has the potential to study the effects associated with 

occupant age, sex, and BMI on LX injuries at a reasonable cost.  In particular, 

simulations with a set of validated computational human FE models with geometry and 

material characteristics that appropriately represent the distributions of age, sex, and BMI 

in the adult occupant population could be used to identify the biomechanical basis for the 

effects of occupant characteristics on LX injuries.  However, such a set of validated FE 

models is not currently available.  

 

17BPREVIOUS EFFORTS TO DEVELOP HUMAN FINITE ELEMENT MODELS 

WITH VARYING GEOMETRY 

 

Previous whole body and lower-extremity component FE models only represent an 

occupant who is midsize in stature and weight or an occupant who is the same size as 

adult crash test dummies (Iwamoto et al. 2002; Kim et al. 2005; Robin 2001; Ruan et al. 

2008; Silvestri and Ray 2009; Torigian 2011; van Rooij et al. 2004; Vavalle et al. 2014).  

Almost all FE models of adults have the same size and shape specifications as adult crash 

test dummies (i.e. the midsize male, small female, and large male) because of the desire 

to compare predictions between human FE models and crash test dummy models (Hu et 

al. 2012).  As a result, these FE models are limited in the same way that adult crash test 

dummies are limited.  The models are not able to capture the variability in body size and 

shape with occupant characteristics at a level that is sufficient to isolate the effects of 

these parameters on LX injury. 

 

One approach to investigating the effects of occupant characteristics on injury involves 

performing simulations with validated finite element models with occupant geometry that 
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has been modified using simple linear scaling either with a single scale factor or different 

scale factors for different axes (Kimpara et al. 2005).  However, such methods are limited 

by the linearity assumptions and the limited data on which scale factors are based (Hu et 

al. 2012).  Specifically, most scaling methods are based on a ratio of single length values, 

with stature being the most common.  Such an approach may be inappropriate if shape 

varies with size or other characteristics, such as BMI and age.  However, the effects of 

this assumption on model predictions have not been well characterized.  Further, linear 

scaling on either a whole body or a regional level is likely to result in models that do not 

accurately represent the geometry of portions of the population that are most vulnerable 

(e.g., osteoporotic women with thinner cortical bone relative to younger women). 

 

Some FE models have been developed that have bones with parametric geometry to use 

primarily for exploring the effects of patient-specific skeletal geometry on surgical 

planning, implant biomechanics, and to predict the risk of femur fracture in falls.  These 

models use patient images such as CT scans to determine geometry of relevant anatomy, 

which allows inter-subject variability in bone geometry and bone quality to be taken into 

account in pre-surgery planning (Bryan et al. 2009).  However, the bone models are 

limited in application because they are patient-specific and used for implant 

biomechanics instead of injury biomechanics.  In addition, these models are 

parameterized with variables such as femur dimensions, and not parameterized with 

subject characteristics, such as BMI, that are known to be important for vehicle crash 

safety assessment, and do not cover the needed range of population characteristics since 

the studies primarily focus on the older population that needs implants (Bryan et al. 2010; 

Bryan et al. 2009; Kurazume et al. 2009; Nicolella and Bredbenner 2012). 

 

Human FE models with detailed skeletal geometry, external body surface geometry, and 

soft tissue geometry that are parametric with subject descriptors, such as stature, have 

been developed to incorporate population variability into crash simulations and overcome 

the limitations associated with traditional scaling methods.  These models are made 

parametric through linkages to statistical models that predict the locations of landmarks 

on bones as functions of subject descriptors.  Landmark-based mesh morphing techniques 
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such as Kriging or radial basis functions are used to morph FE meshes to fit the predicted 

landmark locations while maintaining mesh quality (Hu et al. 2012).   

 

A body region FE model with geometry that is parametric with occupant characteristics 

has been developed for the ribcage.  Gayzik et al. (2008) developed a statistical model 

that characterizes age-related changes in human rib shape using Procrustes alignment and 

regression analysis.  Generalized Procrustes Analysis or Procrustes alignment is a method 

used to study shape differences in populations and can be applied to landmark-based data 

to reduce the complexity of the overall structure while still reflecting the shape variation.  

Landmark locations on the ribcage were extracted from CT scans to describe the form of 

each ribcage.  Generalized Procrustes Analysis was used to analyze the shape differences 

between subjects, and regression analysis was used to determine predictive models of 

landmark location as a function of age.  These models were linked to a template FE 

model and used in simulations to demonstrate that age affected thoracic response.   

 

Another body region FE model with geometry that is parametric with occupant 

characteristics has been developed for the pediatric head.  Li et al. (2011) developed a 

statistical model to characterize the effects of cranium geometry and material properties 

on pediatric head impact response for use in development of a pediatric head FE model.  

Landmark locations were extracted from CT scans of pediatric craniums, and a 

combination of principal component analysis (PCA) and regression analysis was used to 

develop a statistical model characterizing changes in cranium geometry with age for 0-3-

month-old children.  PCA is a statistical technique used for data compression and 

organization in many research fields, such as facial feature recognition, ergonomics, and 

crash dummy design (Reed and Parkinson 2008).  The dimensionality of a data set 

consisting of a large number of interrelated variables can be reduced while retaining as 

much as possible of the variation present in the data set (Joliffe 2002).  Radial basis 

functions (RBFs) were used to morph the geometry of a baseline child head FE model 

into models with geometries representing 0-3-month-old heads.  RBFs are widely used in 

diverse fields, including image processing, meteorology, and medical MRI data operation 

for morphing data and include several function options such as equations based on thin 
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plate splines (Carr et al. 2001 and Bennink et al. 2007).  The morphed FE models were 

validated and demonstrated that the statistical model of cranium geometry produced 

realistic cranium size and shape and had mesh quality comparable to the baseline model. 

 

A few other parametric models have been developed for the pelvis, liver, clavicle, and 

ribcage (Besnault et al. 1998; Gayzik et al. 2008; Lu et al. 2013; Lu and Untaroiu 2013).  

Shi et al. (2014) developed a statistical ribcage geometry model accounting for variations 

in age, sex, stature, and BMI that can serve as a geometric basis for developing a 

parametric human thorax finite element model for quantifying effects from different 

human attributes on thoracic injury risks.  In addition, Shi et al. (2015) developed a 

whole-body FE model with external surface geometry and ribcage skeletal geometry that 

could be simultaneously varied with BMI based on the predictions of statistical geometry 

models and used this model to explore how obesity affects occupant responses in frontal 

crashes.   

 

Most current whole-body FE models are not parametric.  Table 1-1 lists some of the more 

recent available human whole-body FE models, the sizes they represent, and their LX 

applications.  The H-model is an older FE model that only represents a 50th percentile 

male and 5th percentile female. The THUMS model was first developed in 2002 and has 

been updated with newer versions to represent a 5th percentile female and a 50th and 

95th percentile male in seated and standing postures.  Ford Motor Company developed a 

FE model that only represents a 50th percentile male to study whole-body responses in 

frontal and side impacts.  Wayne State University developed a whole-body model based 

on their body region component models, but the model only represents a 50th percentile 

male and uses a dummy model’s lower extremities for limited LX applications.  The 

Global Human Body Models Consortium (GHBMC) was formed in 2006 “to consolidate 

individual research and development activities in human body modeling into a single 

global effort to advance crash safety technology” and the model is now available for free 

academic use (Torigian 2011; Yaeger and Flores 2013).  GHBMC has been morphed to 

represent a 95
th

 percentile seated male, but a parametric version of GHBMC is not yet 

available (Vavalle et al. 2014). 
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The HUMOS2 project developed one of the first existing parametric whole-body FE 

models.  This model is described in Table 1-1 and uses parametric anthropometry to scale 

a mid-size male FE model (Vezin and Verreist 2005).  However, this specific model has 

some limitations.  The HUMOS2 is based only on a small number of whole-body skeletal 

landmark locations from mostly young, non-obese subjects and does not capture 

variability in cross-sectional geometry.  This model and all other subject-specific models 

do not consider variability in external body geometry with occupant characteristics, 

which is important to study when modeling high-BMI occupants and may be important in 

studying older occupant response.  These subject-specific models are still limited in their 

applications, and they do not account for cross-sectional geometry and material property 

changes in the population.  
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Table 1-1. An overview of recent human whole-body FE models, their sizes, and their 

LX applications 
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Conventional validation of human-body FE models is generally performed with midsize 

or scaled models with their results compared to response corridors determined from 

experiments with post-mortem human surrogates (PMHS).  The goal is to obtain 

responses that fit within the bounds of corridors developed from the PMHS test data that 

are normalized to a reference size.  This is the same approach used for validating 

anthropomorphic test devices (Maltese et al. 2002).  

 

Previous parametric FE models of humans have either not been revalidated when their 

geometry is varied (i.e., it is assumed that if the model is valid at one size, age, and sex it 

is valid at all sizes and ages and for both sexes) or models are validated by comparing 

their predicted responses to corridors describing the variability in experimental responses 

that have been adjusted to represent target model size using mass-scaling techniques 

(e.g., Eppinger et al. 1984; Vavalle et al. 2014; Yoganandan et al. 2014).  The primary 

reason for this latter approach is that experimental data on human impact response, 

geometry, and material properties that are needed to assess model fidelity over the ranges 

of ages and body sizes present in the adult vehicle occupant population are rare.  For 

example, the only study with sufficient information for revalidation of a lower-extremity 

model is the work done by Ivarsson et al. (2009).  However, mass-scaled corridors may 

not be appropriate for validation of models with parametric geometry because the 

underlying methodology assumes that members of the population have the same shape 

but different size as well as the same modulus of elasticity. 

 

Hu et al. (2012) proposed a paradigm for parametric model validation in which well-

validated baseline FE models are morphed to represent the geometries of whole post 

mortem human subjects (PMHS) or PMHS components from previous studies using 

reported information on the age, stature, BMI, and sex of the associated PMHS.  

Simulations are then performed with these parametric models using the corresponding 

loading conditions applied to each PMHS or component in the previous studies.  The 

validity of the parametric model is then assessed by comparing individual model 

predictions to associated experimental responses and assessing how well the model 

matches responses across the entire dataset and how well the model matches any trends in 
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responses in the dataset.  Material properties that are parametric with occupant 

characteristics may also be incorporated into the Hu et al. (2012) validation process. 

 

18BTHE NEED FOR A NEW PARAMETRIC FINITE ELEMENT MODEL 

 

As indicated above, there are several hypothesized reasons for the effects of occupant 

characteristics on LX injury, including variations in LX skeletal geometry and material 

properties, pre-crash posture of the lower extremities, and body size, mass, and external 

shape with sex, age, and/or BMI.  These variations affect LX injury occurrence and the 

directions and magnitudes of loading to the lower extremities in frontal crashes.  The 

relative contributions of these hypothesized reasons for the effects of age, sex, and BMI 

on LX injury in frontal crashes can best be assessed using a parametric FE model.  This 

FE model needs to have skeletal geometry, external surface geometry, posture, and 

material properties that are parametric with occupant characteristics.  However, such a 

model does not currently exist. 

  

19BRESEARCH OBJECTIVES 

 

The objectives of this research were to investigate the effects of age, sex, and BMI on 

variations in LX geometry, material properties, body size, and body shape and to begin 

understanding the effects of these variations on lower-extremity injury risk.  This was 

accomplished by developing, validating, and performing simulations with male and 

female human-body finite element models that have geometry and material properties 

that are parametric with, age, BMI, and stature. 

   

20BRESEARCH OVERVIEW 

 

The research project involves the four steps described below: 
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(1) Extract LX skeletal geometries from CT scans of male and female patients with a 

wide range of ages, statures, and BMIs and perform statistical analyses of the CT 

data to develop models that describe the variance in skeletal geometry for the 

femur, tibia, and pelvis with subject characteristics.   

(2) Link the statistical models to a baseline FE mesh of the human occupant from 

Toyota’s THUMS 4 model, resulting in a FE mesh with geometry and material 

properties that are parameterized with subject characteristics.   

(3) Validate the ability of the femur model (as an example of methods for all lower-

extremity bones) to reproduce the responses of subjects with different geometry 

insofar as possible given the available data. 

(1) Perform frontal-crash simulations of drivers of different sexes, ages, statures, and 

BMIs to begin exploring the extent to which variations in LX geometry, material 

properties, body size, and body shape with sex, age, and BMI explain the 

observed effects of these parameters on LX injuries in frontal crashes. 
 

Figure 1-3 outlines the methods for developing, validating, and using the parametric FE 

lower-extremity and whole-body models.  These models rely on geometric information 

obtained from other models including a model that predicts driver body surface shape 

previously developed by UMTRI and statistical models describing how LX bone 

geometry varies with age, sex, stature, and BMI.  The work to develop these bone 

geometry models is described in Chapter II and involves extracting LX skeletal 

geometries from a CT scan database and performing statistical analyses to develop the 

femur, tibia, and pelvis geometry models using mesh morphing and PCAR methods.  The 

development of the parametric FE LX models and the validation of the FE femur model 

as an example of component level validation are described in Chapter III.  The 

development of the whole-body parametric FE model by combining the component level 

models with the existing body surface shape model and the application of the whole-body 

model are described in Chapter IV.  Chapters V and VI include discussion and 

conclusions of this research, respectively.  
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Figure 1-3. Flowchart for development, validation and application of the parametric FE 

lower-extremity and whole-body models. 
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Chapter II  

Development and Validation of the Statistical Models 

 

22BINTRODUCTION 

 

Finite element models, and in particular FE models that have geometry and material 

properties that are parameterized with respect to occupant characteristics are the most 

efficient method for investigating the reasons for the effects of occupant characteristics 

on lower-extremity injury risk.  However, most current FE human models represent 

occupants who are one of the three adult size categories for which crash test dummies are 

available, i.e., the midsize male, small female, and large male (Hu et al. 2012).  Previous 

studies demonstrate that skeletal geometry is an important factor in determining the 

response and tolerance during potentially injurious loading.  Therefore, this chapter 

describes the methods used to develop and validate statistical models of male and female 

femur, tibia, and pelvis shape that describe variations in bone geometry with age, BMI, 

and either bone length (femur and tibia) or bispinous breadth (pelvis).  Statistical models 

for the other lower-extremity bones (patella, fibula, and foot) were not used in this work.  

Instead, the patella, fibula, and feet are morphed in relation to the external body surface 

geometry and the femur and tibia models when the whole-body model is developed, as is 

described in Chapter IV.  Parametric models for the femur, tibia, and pelvis only are 

sufficient for the lower-extremity model because these are the bones that are most 

relevant in frontal crash loading. 

 

23BMETHODS OVERVIEW 
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The steps for developing the statistical femur, tibia, and pelvis geometry models are 

shown in Figure 2-1.  The process for developing these models involved extracting 

geometry from clinical CT scans, fitting template FE meshes to the surface geometries of 

each patient, and then programmatically determining thickness at each nodal location for 

the femur and tibia.  Principal component analysis and regression (PCAR) analysis was 

then performed on the geometry nodal coordinates for all bones and thickness for the 

femur and tibia, and linear regression models were developed to predict geometry as 

functions of age, BMI, and either bone length (femur and tibia) or bispinous breadth 

(pelvis) for men and women.  The geometry models were validated by comparing bones 

predicted by the models to the bones from the underlying data set.  In addition, the femur 

models were further validated by comparing model predictions to extracted geometry 

from a different set of cadaver femurs (Ivarsson et al. 2009).  The validity of the tibia and 

pelvis geometry models was also investigated by comparing the observed landmarks 

from a small set of different data to the landmarks predicted by the geometry models.  

This set of data comes from clinical CT scans, but it was not used in the development of 

the statistical models.  A linear mixed models (LMM) analysis was performed for the 

femur to investigate whether interactions between model predictors could be ignored.  

The methods for development of the PCAR models facilitate their use as parts of a 

parametric lower-extremity model. 
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Figure 2-1. Flowchart for the steps used to develop the statistical femur, tibia, and pelvis 

geometry models. 

 

24BFEMUR MODEL METHODS  

 

54BGeometry Extraction 

Clinical CT scans of male and female femurs were obtained from the University of 

Michigan Department of Radiology through a protocol approved by an institutional 

review board at the University of Michigan.  The CT scans were collected using a 

resolution of 512 x 512 pixels with 1.25 x 10
-3 

m between slices.  The in-plane resolution 

varied from 0.625 x10
-3

 m to 0.977 x 10
-3

 m across studies.  As shown in Figure 2-2, the 

patients were selected for age with groups between 18-89 years, patient femur length 

range was 0.385 m to 0.535 m, and the patient BMI range was 16-46 kg/m
2
.  Figure 2-2 

shows that no predictor (age, BMI, femur length) was highly correlated with another for 

men and women.  Femur length was measured as described in Figure 2-6.  
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Figure 2-2. Distributions of subject characteristics for the femur data. 

 

Thirty-six female and sixty-two male right femurs were segmented and 3D surfaces were 

extracted using OsiriX (Pixmeo, Switzerland).  The 3D volume rendering mode was used 

for surface extraction with a Hounsfield Unit threshold value of 300, which was a value 

sufficiently low enough to capture detailed bone surface geometry.  The coordinates of 

easily distinguishable anatomic landmarks, such as the most lateral point on the greater 

trochanter of the femur, were manually digitized in Rhinoceros 3D (Robert McNeel & 

Associates, Seattle, WA).  The locations of additional landmarks were calculated 

programmatically from the locations of the original anatomic landmarks.  A total of fifty-

nine landmarks were digitized for each femur with thirteen anatomic landmarks used to 

determine forty-six additional landmarks, and the locations of these are shown in Figure 

2-3.  The thirteen anatomic landmarks included femoral head center, intercodylar notch, 

lateral greater trochanter, medial lesser trochanter, superior greater trochanter, medial 

epicondyle, lateral epicondyle, anterior lateral condyle, posterior lateral condyle, anterior 

medial condyle, posterior medial condyle, distal lateral condyle, and distal medial 

condyle.  All forty-six additional landmarks were determined using the locations of the 

thirteen anatomic landmarks, and these forty-six landmarks were calculated to account 
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for regions with no anatomic landmarks. Thirty-six landmarks were evenly distributed in 

medial/lateral and anterior/posterior directions along the shaft of the femur, and eight 

landmarks were on cross-sections of the femoral head and neck to account for the shape 

of these regions. The last two landmarks were midpoints of lines calculated from 

anatomic landmarks in the intertrochanteric region and in the neck region.  All landmark 

locations were reviewed to ensure that no errors in selection were made.  The errors in 

landmark locations were investigated to ensure that differences between observers in 

landmark placement on the same anatomic areas were small.  To do this, several people 

landmarked the same patient and the selected locations were compared.  The average 

difference in landmark locations identified by different observers was 3.8x10
-3

 m across 

five femurs, which is a small value compared to the overall size of the femur. 

 

 

Figure 2-3. The fifty-nine landmark locations on the femur. 

 

55BMorphing and Fitting Processes 

Figure 2-4 illustrates the processes for morphing and fitting a template FE femur mesh 

onto extracted bone surface geometries.  The template mesh comes from the right femur 

of the Total Human Model for Safety (THUMS) version 4 (Toyota Motor Corporation 

2011).  The first step in the morphing process involved landmarking the template mesh 

with the same landmarks that were digitized for the extracted surface geometries from the 

previous step.  These landmarks were manually reviewed to ensure the locations were the 
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same as for the extracted femur geometries.  The nodal coordinates from the template 

meshes were then morphed into the approximate geometry of each femur using the 

landmarks on the template meshes and the extracted surface geometries.  Morphing was 

performed using radial basis function (RBF) morphing (Bennink et al. 2006; Carr et al. 

2001).  RBF morphing is used to morph one surface to another surface based on a set of 

landmarks and includes several function options such as equations based on thin plate 

splines (ɸ(r) = r
2
 ln(r)).  Thin plate splines (Bennink et al. 2006) were used in this work 

because they gave the best accuracy in mesh morphing.  RBF morphing was performed 

by calculating a radial basis interpolation between the source landmarks on the template 

mesh and each set of target landmarks on each subject’s geometry.  The radial basis 

interpolation based on thin plate splines was then applied to the source nodes (template 

mesh nodes) to obtain sets of morphed nodes for each subject’s geometry.  Code 

developed in Mathematica by Bennink et al. (2006) and adapted by researchers at 

UMTRI was used to implement the RBF morphing, and this code is provided in 

Appendix A.  Next, the morphed meshes were fitted to the surface of each patient’s 

femur to match the patient geometries.  Using a method similar to the one described in 

Reed et al. (Reed et al. 2009), the morphed nodes were moved to the extracted bone 

surfaces using an implicit surface methodology. 

 

 

Figure 2-4. Example of the morphing and fitting processes for a template femur FE mesh 

onto an extracted bone surface geometry. 
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56BCortical Bone Thickness Calculation 

An algorithm was developed using Mathematica to calculate the thickness of cortical 

bone at each nodal coordinate from the morphed and fitted femur meshes, and this 

algorithm is shown in Figure 2-5.  Before this algorithm was applied, the inner surfaces 

of cortical bone were extracted from the original CT scans in a similar method as for the 

outer surface using a calculated threshold value determined for each femur to extract only 

the cortical bone.  The surface normals were then calculated at each nodal coordinate, and 

thickness values were determined based on distances between the outer and inner 

surfaces along the normal direction using the algorithm.  If the thickness value was found 

to be zero at a nodal location, which occasionally happened near the condyles or the 

head, an average value from the eight closest points to the node was used to ensure all 

nodes had a non-zero value.  In addition, if the thickness value fell below the 1.25x10
-3

 m 

minimum value in the ends of the femur, the value was set to 1.25x10
-3

 m in those 

locations.   

 

 

Figure 2-5. Cortical thickness calculation algorithm. 
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57BPrincipal Component Analysis and Regression 

Statistical models of femur external surfaces and thicknesses at nodal locations for men 

and women were developed using PCAR techniques (Joliffe 2002; Reed and Parkinson 

2008).  The principal component analysis method used here follows the method discussed 

by Li et al. (2011).  The coordinates of the fitted template meshes were rigidly aligned 

using Procrustes alignment and rescaling (Slice 2007).  Three coordinates at each of the 

nodes or the associated cortical thickness formed a geometry vector with a length of l (= 

total number of nodes x 3 for coordinates, or total number of nodes for thicknesses) 

denoted as g for one subject (gi for i subjects).  The geometry vector for each subject was 

joined together to construct a geometry matrix G1.  To make the PCA method work 

properly, the geometry matrix G1 was centered by subtracting the mean  ̅ from each of 

the subject’s gi.  This matrix is called the data centered matrix G.  PCA was computed by 

calculating the eigenvalues and eigenvectors of the covariance matrix of the centered 

geometry matrix G.  G was decomposed as follows, 

 

     (1) 

      (2) 

 

where S is an N x l matrix called principal component (PC) scores and P is the 

eigenvectors of G, which is an l x l-normalized matrix.  Any subject’s nodal coordinates 

or thicknesses could be obtained based on Equation 3, 

 

  
   ̅    

    
  (3) 

 

where SNi is the row of matrix SN corresponding to the ith subject’s PC scores. 

 

To use the parameters such as age, BMI, and bone length to predict PC scores (Sk), and in 

turn, to predict detailed LX geometry, a regression analysis was performed.  A regression 

model was generated following the procedure used in Reed et al. (Reed et al. 2009), 

 

  
         (4) 
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where F is the feature matrix, C is the coefficient matrix,    is a vector of zero mean and 

normally distributed residuals.  

 

Regression model predictions of PC scores were then used to reconstruct external femur 

surface coordinates and nodal thicknesses.  Femur nodal coordinates were predicted using 

this regression analysis as functions of age, BMI, and femur length (which strongly 

correlates with stature) with separate models for men and women.  Femur length is 

defined here as the distance along the long axis of the femur (determined from a line 

between midpoints of lines determined from anatomic landmark locations  in the 

landmarking process) between the most superior point on the femoral head and most 

inferior point on the femoral condyles, and is shown in Figure 2-6.  This femur length 

definition was used for comparison to validation data and can be altered depending on 

model use.  Femur nodal thicknesses were predicted using the regression analysis as 

functions of age, BMI, and significant PC scores from the surface geometry models.  The 

significant PC scores from the femur nodal coordinates models were used as potential 

predictors in the thickness regression functions due to the possible effects of external 

geometry on thickness.  Significant PC scores were determined using a forward stepwise 

approach.  The first 10 PC scores were considered since they accounted for most of the 

variance in external surface geometry, and a PC score was kept if its p-value was less 

than 0.05.   
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Figure 2-6. Femur length defined as the distance along the long axis of the femur 

(determined from anatomic landmark locations in the landmarking process) between the 

most superior point on the femoral head and most inferior point on the femoral condyles. 

 

Right femurs were predicted and used in this study because the FE models that will 

eventually be used are symmetric and left femurs can be determined from reflecting the 

femur about the symmetric (Y) axis.  The PCAR models used the same number of PC 

scores as number of subjects used to develop the models (36 for women and 62 for men).  

These numbers of PCs covered more than 99% of the variance in the data. 

 

Evaluating the error in regression models predicting PC scores is of minimal value as 

error in the original coordinate system is the metric of interest.  Instead, goodness of fit 

was investigated by assessing the improvement in femur geometry prediction obtained 

when using the regression model rather than the average femur.  Values for cross-

sectional area and cortical bone thickness along the shaft were compared between the 

femur data used to develop the statistical model and the femurs predicted using the 

original data’s characteristics.  A leave-one-out cross validation was performed for the 

female femurs to further validate the statistical models.  This leave-one-out cross 

validation was done by removing one subject from the data, refitting the regression model 

to the data with one less subject, predicting the subject that was left out, calculating the 

error in the resulting model, and repeating for each subject.  In addition, model 
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predictions for the femur were compared to extracted geometry from a different set of 

cadaver femurs (Ivarsson et al. 2009).  

 

58BLinear Mixed Models Analysis  

A LMM analysis was performed on cross-sectional areas at six different locations along 

the femur to investigate whether interaction effects between model parameters from 

PCAR models could be ignored.  Random effects with an assumed normal distribution in 

this analysis were age, stature, and BMI, and fixed effects were sex and femur location.  

Separate models were developed to characterize the effects of these random and fixed 

effects on total cross-sectional bone area (total bone area) and cortical cross-sectional 

bone area (cortical bone area).  Sex was included as a predictor to assess potential 

interactions.  Cortical bone areas and the total bone areas were calculated at five evenly 

spaced locations along the shaft of the right femur.  Total bone area was also calculated at 

a sixth location on the femoral neck.  These six locations along the femur and the 

definitions of total bone area and cortical bone area are shown in Figure 2-7.  Location 1 

is located at 25% of the total femur length below the most superior point on the femur 

and location 5 is located at 25% of the total femur length above the most inferior point.  

Locations 2, 3, and 4 are spaced evenly between locations 1 and 5.  Cortical bone area at 

the femoral neck was not calculated because cortical bone thickness was similar to the 

CT scan slice size and, as a result, the cortical thickness could not be accurately 

calculated.  Similar to the methods in Shi et al. (2014), a stepwise procedure was used to 

find the significant predictors starting with fixed effects from single predictors and 

adding interaction terms between the significant predictors in the following steps.  The 

model with the lowest Akaike Information Criterion (AIC) value was used (Akaike 

1974).  

 



 

28 

 

 

Figure 2-7. The five area locations (1-5) along the shaft of the femur and the one neck 

location (0) used for area measurements and the definitions of total bone area and cortical 

bone area. 

 

25BFEMUR MODEL RESULTS  

 

59BPrincipal Component Analysis and Regression  

Overall R
2 

values for the external geometry models and thickness models were calculated 

using Equation 5 where the residual sum of squares was the sum of squared errors 

between the observed and predicted coordinates or thicknesses, and the total sum of 

squares was the sum of squared differences between the observed coordinates and 

average coordinates or the observed thickness values and the average thicknesses.  The 

overall calculated R
2
 values for the male and female external geometry models were 0.77 

and 0.74, respectively.  The overall calculated R
2
 values for the male and female femur 

thickness models were 0.31 and 0.36, respectively.  The p-values from analysis of 

variance tests for the predictors on the first five principal components for the male and 

female femur external geometry models and thickness models are shown in Tables 2-1 

and 2-2.  The predictors used in the analysis of variance test for the geometry models 

were age, BMI, and femur length.  The predictors used for the femur thickness models 

were age, BMI, and significant PC scores from the geometry models.  Femur length had 
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the largest coefficient value in the male and female external geometry model regressions, 

indicating that length explains the largest portion of variance.  BMI explained the largest 

portion of the variance in the male and female thickness models.  

 

     
                       

                    
 (5) 

 

Table 2-1. p-values of predictors in the female and male femur external geometry models 

Predictor 
p-value 

1st PC 2nd PC 3rd PC 4th PC 5th PC 

Female 

Geometry 

Age 0.300 0.378 0.019* 0.823 0.227 

Femur Length 0.000* 0.602 0.550 0.799 0.978 

BMI 0.001* 0.001* 0.832 0.903 0.011* 

Male 

Geometry 

Age 0.057 0.000* 0.058 0.894 0.103 

Femur Length 0.000* 0.934 0.574 0.570 0.813 

BMI 0.115 0.069 0.399 0.923 0.089 

*p<0.05 

 

Table 2-2. p-values of predictors in the female and male femur thickness models 

Predictor 
p-value  

1st PC 2nd PC 3rd PC 4th PC 5th PC 

Female 

Thickness 

Age 0.739 0.056 0.063 0.138 0.098 

BMI 0.030* 0.210 0.026* 0.178 0.621 

Geometry PC Score 2 0.140 0.213 0.158 0.998 0.315 

Geometry PC Score 5 0.018* 0.614 0.050 0.454 0.837 

Geometry PC Score 6 0.238 0.194 0.395 0.246 0.011* 

Geometry PC Score 7 0.017* 0.489 0.243 0.135 0.638 

Male 

Thickness 

Age 0.109 0.646 0.000* 0.080 0.090 

BMI 0.015* 0.150 0.313 0.050 0.224 

Geometry PC Score 3 0.949 0.001* 0.110 0.653 0.528 

Geometry PC Score 6 0.223 0.000* 0.219 0.863 0.920 

Geometry PC Score 9 0.011* 0.843 0.400 0.054 0.162 

*p<0.05 

 

The effects of age, femur length, BMI, and gender on femur geometry predicted by the 

femur parametric models are shown in Figure 2-8.  These femur models were created by 
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varying one parameter at a time and holding the other parameters constant.  The cross-

sections for five evenly spaced locations along the shaft are also shown for comparison.  

The models in these figures were aligned using a Procrustes approach rather than section 

centroids.   

 

 
Figure 2-8. The effects of age, BMI, femur length, and gender on femur geometry 

predicted by the parametric models. 

 

Midshaft cross-sectional cortical bone areas were calculated for the femur predicted 

geometries and the actual femur geometries, and the mean of the errors in predicted areas 

calculated as percentages of the original areas was 4.4%.  The mean Euclidean distance 

between predicted and measured nodal coordinates and 95
th

 percentile errors in nodal 

coordinate locations between the fitted meshes to the actual data and the predicted 

meshes were calculated.  The distributions of errors in femur surface geometry are shown 

for both the male and female models in the left side of Figure 2-9.  The mean and 95
th

 

percentile absolute differences between the actual thicknesses and predicted thicknesses 
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were also calculated. The distributions of these differences are shown in the right side of 

Figure 2-9.  For the nodal coordinates, the larger errors occur in the ends of the femur.  

The residuals for each model were checked for normal distributions and no trends were 

seen with any model predictor. The leave-one-out cross validation gave a mean error of 

3.49x10
-3

 m in overall Euclidean distance errors compared to 3.42x10
-3

 m for the original 

models, indicating that these models were valid.  

 

 

Figure 2-9. Distribution of mean and 95th percentile absolute errors in nodal coordinate 

locations (left two columns) and cortical thickness values at nodal locations (right two 

columns) between the actual femur data and predicted geometries. 

 

The average Euclidean distance error in nodal coordinate locations based on the morphed 

template nodes between the 13 predicted shaft geometries from the statistical models and 

the shaft geometries from the CT scans of the Ivarsson et al. (Ivarsson et al. 2009) study 

after alignment using Procrustes alignment and rescaling was 4.8x10
-3

 m.  The difference 

between the predicted error and average error indicates that predicting geometry using 

subject characteristics can more closely match real geometry than the average models 

normally used.  The average error in midshaft cross-sectional cortical bone area between 

the predicted geometries and the PMHS geometries was 7.6%, and the average error 

between the predicted areas and the PMHS areas across the 5 locations was 2.9%.  The 

errors in cortical bone area calculated at 5 different locations along the shaft between the 
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actual shafts and the predicted shafts are given in boxplots in Figure 2-10 with the 

average error indicated.  The cortical bone areas were also compared qualitatively at 

midshaft to validate the predicted models, and Figure 2-11 shows the midshaft PMHS 

femur cross-sectional areas overlaid on the predicted areas. 

 

 

Figure 2-10. Cortical bone cross-sectional areas at five locations along the shafts of the 

PMHS femurs and the errors in the predicted shaft cross-sectional areas. 
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Figure 2-11. Midshaft cross-sectional areas of the 13 PMHS femurs and the predicted 

femur models. 

 

60BLinear Mixed Models Analysis 

Figure 2-12 shows the sex effects on total bone area at the neck (location 0) and 5 

locations along the shaft (locations 1-5) and cortical bone area at the same 5 shaft 

locations by sex and location.  In general, male femurs have a higher total bone area and 

larger cortical bone area than female femurs when other predictors are held constant at 

the same levels.  Total bone area and cortical bone area at each of the levels increase with 

increasing stature, and total bone area increases with increasing age. 

 

 

Figure 2-12. Distribution of femur cross-sectional areas by sex and location level. 
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The LMM results for cortical bone area and total bone area are shown in Tables 2-3 and 

2-4, respectively.  The significance of the predictors is listed with their coefficients 

determined from the regression.  LMM analyses were performed with 2-way interactions, 

but 3-way interactions were also investigated since significant 3-way interactions were 

postulated.  Although significant 3-way interactions were identified, the AIC score was 

not different when these interactions were included; therefore, the most parsimonious 

model was used.  For the cortical area model, all fixed effect predictors were significant, 

and all random effect predictors except for BMI were significant in the total bone area 

model.  The interaction of Stature*Location_Level was significant for the cortical bone 

model, while the interactions of Age*Location_Level and Location_Level*Sex were 

significant for the total bone area model (p<0.05).  These results indicate that the stature 

effects on cortical bone area vary significantly by location, and the models predict that 

the increase in cortical area with increasing stature is greater for locations 2 and 4  (above 

and below midshaft) than the other locations.  In addition, the age and sex effects on total 

bone area vary significantly by location.  The models predict that the increase in total 

bone area with increasing age is greater for location 0 (the femoral neck) and smaller for 

locations 4 and 5 (bottom of the shaft) than the other locations.  Larger differences in 

total bone areas between men and women exist for locations 1 (top of shaft) and 4 (below 

midshaft) than for the other locations.  The significance levels for the predictors are 

shown in Tables 2-5 and 2-6. 
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Table 2-3. Cortical cross-sectional bone area model data 

Effect Estimate0 F

1 Standard Error DF 1F

2 t Value Pr > |t| 

Intercept -483.6 132.2 93.5 -3.7 0.0004 

Age (years) 0.7 0.3 93.0 2.7 0.0084 

Stature (m) 373.9 82.8 93.0 4.5 <.0001 

BMI (kg/m2) 3.8 0.9 93.0 4.4 <.0001 

Male 48.3 17.5 93.0 2.8 0.0069 

Female -48.3 - - - - 

Location 

Level 2F

3 

1 162.8 10.4 388.0 15.7 <.0001 

2 111.1 10.4 388.0 10.7 <.0001 

3 104.1 10.4 388.0 10.0 <.0001 

4 56.0 10.4 388.0 5.4 <.0001 

5 0 - - - - 

  

Table 2-4. Total cross-sectional bone area model data 

Effect Estimate1 Standard Error DF2 t Value Pr > |t| 

Intercept -620.8 158.4 93.7 -3.9 0.0002 

Age (years) 1.5 0.3 93.0 5.0 <.0001 

Stature (m) 685.4 99.1 93.0 6.9 <.0001 

BMI (kg/m2) 1.7 1.0 93.0 1.7 0.0947 

Male 67.5 20.9 93.0 3.2 0.0017 

Female -67.5 - - - - 

Location 

Level3 

0 -47.8 14.7 485.0 -3.3 0.0012 

1 -39.7 14.7 485.0 -2.7 0.0070 

2 -149.4 14.7 485.0 -10.2 <.0001 

3 -141.8 14.7 485.0 -9.7 <.0001 

4 -123.7 14.7 485.0 -8.4 <.0001 

5 0 - - - - 

                                                 
1
 Coefficient values for the linear model. 

2
 Degrees of freedom of each predictor. 

3
 Location levels as defined in Figure 2-3. 



 

36 

 

 

 

Table 2-5. Significance levels of predictors in the cortical bone mixed models 
Effect Num DF Den DF F Value Pr > F 

Age 1 93.02 7.25 0.0084 

Stature 1 93.02 20.40 <.0001 

BMI 1 93.02 19.76 <.0001 

Gender 1 93.02 7.64 0.0069 

Location_Level 4 384 5.20 0.0004 

Stature*Location_Level 4 384 5.51 0.0003 

 

 

Table 2-6. Significance levels of predictors in the total bone mixed models 
Effect Num DF Den DF F Value Pr > F 

Age 1 94.01 25.91 <.0001 

Stature 1 94.01 60.76 <.0001 

Gender 1 94.01 8.14 0.0053 

Location_Level 5 475 7.09 <.0001 

Age *Location_Level 5 475 2.75 0.0184 

Location_Level*Gender 5 475 2.41 0.0354 

 

26BTIBIA MODEL METHODS 

 

61BGeometry Extraction  

Tibia geometry was extracted using the same methods as those used for femur geometry 

extraction described above.  As shown in Figure 2-13, the patient age groups were 

between 21-89 years, patient tibia length range was 0.328 m to 0.454 m, and patient BMI 

range was 15-43 kg/m
2
.  Figure 2-13 shows that no predictor (age, tibia length, and BMI) 

was highly correlated with another for the tibia data set. 
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Figure 2-13. Distributions of subject characteristics for the tibia data. 

 

Tibias were segmented and 3D surfaces were extracted from twenty-eight female and 

forty-eight male subjects.  Seventy-six landmarks were digitized for each tibia with seven 

anatomic landmarks used to determined sixty-nine additional landmarks, and the 

locations of these landmarks are shown in Figure 2-14. The seven anatomic landmarks 

include the intercondylar tubercles, points on the tibial plateau, the tibial tuberosity, and 

two points on the medial malleolus.  Forty of the sixty-nine additional landmarks were 

evenly distributed in medial/lateral and anterior/posterior directions along the shaft of the 

tibia, and twenty of those points were evenly spaced along the edge of the tibial plateau. 

The last nine additional points were midpoints of lines calculated between anatomic 

landmark locations and interpreted points based on points placed on the fibula. 
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Figure 2-14. The seventy-six landmark locations on the tibia. 

 

62BMorphing and Fitting Processes  

The same morphing and fitting processes used for the femur were also used for the tibia. 

The template mesh comes from the right tibia of the Total Human Model for Safety 

(THUMS) version 4 (Toyota Motor Corporation 2011).   

 

63BCortical Bone Thickness Calculation  

The thickness values of cortical bone were calculated at each nodal coordinate of the 

morphed and fitted tibia meshes using the same algorithm as was used for the femur.  In 

addition, if the thickness value fell below the 1.25x10
-3

 m minimum value in the ends of 

the tibia, the value was set to 1.25x10
-3

 m in those locations.   

 

64BPrincipal Component Analysis and Regression  

Statistical models of tibia external surfaces and thicknesses at nodal locations for men 

and women were developed using the same PCAR techniques as for the femur models.  

Tibia nodal locations and the associated cortical thickness values were predicted using 

this regression analysis as functions of age, BMI, and tibia length (which strongly 

correlates with stature) with separate models for men and women.  In addition, the 
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thickness models used significant PC scores from the geometry models as potential 

predictors in their regression functions due to the possible effects of external geometry on 

thickness.  Tibia length is defined as the Euclidean distance between the most anterior 

point on the tibial tuberosity and the most inferior point on the medial malleolus, and is 

shown in Figure 2-15.  This length is used to correspond to landmark locations from a 

body surface model that will be used when morphing the whole-body FE model in 

Chapter IV.  Right tibias were predicted and used in this study because the FE models are 

symmetric and left tibias can be determined from reflecting the tibia.  The PCAR models 

use the same number of PC scores as number of subjects used to develop the models (28 

for women and 48 for men).  These numbers of PCs cover more than 99% of the variance 

in the data. 

 

 

Figure 2-15. Tibia length defined as the Euclidean distance the most anterior point on the 

tibial tuberosity and the most inferior point on the medial malleolus. 

 

To investigate the validity of the statistical tibia models, values for cross-sectional area 

and cortical bone thickness along the shaft were compared between the tibia data used to 

develop the statistical model and the tibias predicted using the original data’s 

characteristics.  In addition, errors between the actual data and the predicted geometries 

were determined.  As a further validation, the errors between model-predicted landmarks 

and a small set of different data not included in the original dataset were determined. 
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27BTIBIA MODEL RESULTS  

 

65BPrincipal Component Analysis and Regression 

Overall R
2 

values for the tibia external geometry models and thickness models were 

calculated in the same way as for the femur models using Equation 5 defined previously.  

The overall calculated R
2
 values for the male and female external geometry models were 

0.68 and 0.84, respectively.  The overall calculated R
2
 values were 0.39 and 0.38 for the 

male and female tibia thickness models, respectively.  The p-values from analysis of 

variance tests for the predictors on the first five principal components for the male and 

female tibia external geometry models and tibia thickness models are shown in Tables 2-

7 and 2-8.  The predictors used in the analysis of variance test for the geometry models 

were age, BMI, and tibia length.  The predictors used for the tibia thickness models were 

age, BMI, and significant PC scores from the geometry models.  Tibia length explained 

the largest portion of variance for the male and female external geometry models, while 

geometry PC score 5  in the male thickness models and age in the female thickness 

models explained the greatest portion of variance.  

 

Table 2-7. p-values of predictors in the female and male tibia external geometry models 

Predictor 
p-value 

1st PC 2nd PC 3rd PC 4th PC 5th PC 

Female 

Geometry 

Age 0.544 0.040* 0.560 0.694 0.454 

Tibia Length 0.000* 0.556 0.591 0.986 0.819 

BMI 0.213 0.190 0.243 0.717 0.783 

Male 

Geometry 

Age 0.021* 0.199 0.642 0.015* 0.051 

Tibia Length 0.000* 0.955 0.600 0.732 0.750 

BMI 0.628 0.386 0.878 0.022* 0.865 

*p<0.05 
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Table 2-8. p-values of predictors in the female and male tibia thickness models 

Predictor 
p-value  

1st PC 2nd PC 3rd PC 4th PC 5th PC 

Female 

Thickness 

Age 0.000* 0.373 0.048* 0.635 0.709 

BMI 0.009* 0.531 0.902 0.155 0.800 

Geometry PC Score 3  0.620 0.003* 0.894 0.311 0.817 

Geometry PC Score 4  0.009* 0.968 0.253 0.456 0.546 

Geometry PC Score 6  0.020* 0.654 0.566 0.588 0.376 

Male 

Thickness 

Age 0.561 0.626 0.012* 0.705 0.847 

BMI 0.973 0.500 0.895 0.885 0.266 

Geometry PC Score 2  0.802 0.806 0.305 0.005* 0.000* 

Geometry PC Score 5  0.009* 0.051 0.672 0.000* 0.092 

Geometry PC Score 6 0.036* 0.199 0.593 0.003* 0.032* 

Geometry PC Score 8 0.159 0.659 0.734 0.026* 0.877 

Geometry PC Score 9 0.729 0.155 0.285 0.001* 0.941 

*p<0.05 

 

The effects of age, tibia length, BMI, and gender on tibia geometry predicted by the tibia 

parametric models are shown in Figure 2-16.  These tibia models were created by varying 

one parameter at a time and holding the other parameters constant.  The cross-sections at 

midshaft are also shown for comparison.  The models in these figures were aligned using 

a Procrustes approach rather than section centroids.   
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Figure 2-16. The effects of age, BMI, tibia length, and gender on tibia geometry predicted 

by the parametric models. 

 

Midshaft cross-sectional cortical bone areas were calculated for the tibia predicted 

geometries and the actual tibia geometries, and the mean of the errors in predicted areas 

calculated as percentages of the original areas was 16.1%.  The mean distance errors and 

95
th

 percentile errors in nodal coordinate locations between the fitted meshes to the actual 

data and the predicted meshes were calculated, and the distributions of errors in the tibia 

can be seen for both the male and female models in Figure 2-17.  The mean and 95
th

 

percentile absolute differences between the actual thicknesses and predicted thicknesses 

were also calculated for the tibia, and the distributions of differences are shown in Figure 

2-17.  For the nodal coordinate errors, the larger errors occur in the ends of the tibia.  The 

residuals for each model were checked for normal distributions and no trends were seen 

with any model predictor.  The mean distance errors between observed and predicted 
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landmark locations for a set of nine males and six females spanning several decades of 

ages were determined.  Male models had a mean distance error of 11x10
-3

 m, and female 

models had a mean distance error of 9x10
-3

 m. The landmark errors were evenly 

distributed throughout the tibia surface, and the errors were similar to the errors seen in 

the comparisons to the underlying dataset. 

 

 

Figure 2-17. Distribution of mean and 95th percentile absolute errors in nodal coordinate 

locations (left two columns) and cortical thickness values at nodal locations (right two 

columns) between the actual tibia data and predicted geometries. 

 

28BPELVIS MODEL METHODS  

 

66BGeometry Extraction 

Pelvis geometry was extracted using the same methods as the femur and tibia extraction.  

As shown in Figure 2-18, the patient age groups were between 17-88 years, patient 

bispinous breadth range was 0.179-0.277 m, and patient BMI range was 15-46 kg/m
2
.  

Figure 2-18 shows that no predictor was highly correlated with another for the pelvis data 

set.   
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Figure 2-18. Distributions of subject characteristics for the pelvis data. 

 

Pelves were segmented and 3D surfaces were extracted from seventy-seven female and 

thirty-nine male subjects.  Forty-seven landmarks were digitized for each pelvis with 

thirty-one anatomic landmarks used to determine sixteen additional landmarks, and the 

locations of these landmarks are shown in Figure 2-19. The thirty-one anatomic 

landmarks included three places on the right and left iliac wings, posterior superior iliac 

spine, anterior superior iliac spine, inferior iliac spine, symphyseal pole, pubic 

symphysis, ischial tuberosity, acetabular notch, ischial spine, and points on the first sacral 

segment.  The additional sixteen landmarks were determined from cross-sections at the 

pubic rami.   
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Figure 2-19. The locations of the forty-seven landmarks on the pelvis. 

 

67BMorphing and Fitting Processes 

The same morphing and fitting processes used for the femur and tibia were used for the 

pelvis.  The template mesh comes from the pelvis of the Total Human Model for Safety 

(THUMS) version 4 (Toyota Motor Corporation 2011).   

 

68BPrincipal Component Analysis and Regression  

Statistical models of pelvis external geometry for men and women were developed using 

the same PCAR techniques as the femur and tibia external surfaces.  Pelvis nodal 

locations were predicted using this regression analysis as functions of age, BMI, and 

bispinous breadth with separate models for men and women.  Bispinous breadth is 

defined as the distance between the anterior superior iliac spines (ASIS) on the left and 

right side of the pelvis, and is shown in Figure 2-20. This parameter is used instead of 

stature because it corresponds to landmarks from the external body surface shape model 

and is useful for the whole-body morphing that will be described in Chapter IV.  The 

PCAR models use the same number of PC scores as number of subjects used to develop 

the models (77 for women and 39 for men).  These numbers of PCs cover more than 99% 

of the variance in the data.  To investigate the validity of the statistical pelvis models, 

errors between the actual pelvis data and the predicted geometries were determined.  As a 

further validation, the errors between model-predicted landmarks and a small set of 

different data not included in the original dataset were determined. 
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Figure 2-20. Bispinous breadth defined as the distance between the anterior superior iliac 

spines on the left and right side of the pelvis. 

 

29BPELVIS MODEL RESULTS 

 

69BPrincipal Component Analysis and Regression 

Overall R
2 

values for the external geometry models were calculated using Equation 1 

where the residual sum of squares was the sum of squared errors between the observed 

and predicted coordinates, and the total sum of squares was the sum of squared 

differences between the observed coordinates and average coordinates.  The overall 

calculated R
2
 values for the male and female external geometry models were 0.15 and 

0.18, respectively.  The p-values from analysis of variance tests for the predictors on the 

first five principal components for the male and female pelvis external geometry models 

are shown in Table 2-9.  The predictors used in the analysis of variance test for the 

geometry models were age, BMI, and bispinous breadth.  The greatest portion of variance 

was explained by age for the male external geometry models and bispinous breadth for 

the female external geometry models.  
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Table 2-9. p-values of predictors in the female and male external geometry models 

Predictor 
p-value 

1st PC 2nd PC 3rd PC 4th PC 5th PC 

Female 

Geometry 

Age 0.004* 0.729 0.895 0.382 0.000* 

Bispinous Breadth 0.000* 0.014* 0.000* 0.015* 0.725 

BMI 0.169 0.155 0.584 0.873 0.399 

Male 

Geometry 

Age 0.007* 0.111 0.042* 0.826 0.008* 

Bispinous Breadth 0.441 0.000* 0.242 0.000* 0.959* 

BMI 0.850 0.955 0.074 0.670 0.081 

*p<0.05 

 

The effects of age, bispinous breadth, BMI, and gender on pelvis geometry predicted by 

the pelvis parametric models are shown in Figure 2-21.  These pelvis models were 

created by varying one parameter at a time and holding the other parameters constant.  

The models in these figures were aligned using a Procrustes approach rather than section 

centroids.   

 

 
Figure 2-21. The effects of age, BMI, bispinous breadth, and gender on pelvis geometry 

predicted by the parametric models. 
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The mean distance errors and 95
th

 percentile errors in nodal coordinate locations between 

the fitted meshes to the actual data and the predicted meshes were calculated, and the 

distributions of errors in the pelvis can be seen for both the male and female models in 

Figure 2-22.  The larger errors occur in the symphysis region.  The residuals for each 

model were checked for normal distributions and no trends were seen with any model 

predictor.  The mean distance errors between observed and predicted landmark locations 

for a set of seven males and seven females spanning several decades of ages were 

determined.  Male models had a mean distance error of 15x10
-3

 m, and female models 

had a mean distance error of 17x10
-3

 m. The largest errors occurred in the symphysis and 

ischium regions, and the errors were similar to the errors seen in the comparisons to the 

underlying dataset.  An example of the landmark comparisons performed for one subject 

are shown in Figure 2.23, with the extracted surface shown with observed landmarks in 

red and predicted landmarks in blue. 

 

 

Figure 2-22. Distribution of mean and 95th percentile absolute errors in nodal coordinate 

locations between the actual pelvis data and predicted geometries. 
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Figure 2-23. Example of the comparison between observed and predicted landmarks for a 

single subject from a separate set of data. 

 

30BDISCUSSION  

 

70BSummary 

Statistical models of femur, tibia, and pelvis surface geometry and femur and tibia cross-

sectional geometry were developed based on CT data and using PCAR methods to 

predict nodal coordinates for the associated predicted geometries.  These models were 

used to investigate the variations in femur, tibia, and pelvis geometry with subject 

parameters.  The statistical models describe the variance in bone shapes with a small 

number of variables and PCs well representing the data in orthogonal directions.  The 

resulting statistical models are readily implemented to enable rapid generation of 

geometries associated with a particular set of subject characteristics since nodal 

coordinates are predicted by the models.  Distance error distributions and thickness error 

distributions, as well as average midshaft errors for the femur and tibia were calculated.  

However, it is difficult to determine whether these values are low enough to result in FE 

models with reasonable performance without comparing the outputs of simulations using 

geometries predicted by the geometry models to experimental responses.  Such a 

comparison is presented in the next chapter for the femur. 

 

71BPCAR Models 

Template pelvis, femur, and tibia meshes were morphed and fit to subject geometries, 

which resulted in reasonably smooth meshes to use for the femur and tibia PCAR models.  
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However, some individual pelvis surfaces did not result in smooth meshes.  The femur 

and tibia fitting method used the fact that the shapes were similar to cylinders to clean out 

any inside faces before fitting, but the pelvis is not shaped like a cylinder and did not 

correctly remove inside faces for some surfaces.  Eventually these surfaces will need to 

be remeshed to remove any inside faces.  However, the PCAR analysis inherently will 

smooth the meshes and remove some roughness when calculating PC scores and fitting 

regressions to the data.  The roughness is not well predicted by the regression models and 

is not included in the PC scores used in the models, which allows for predictions with 

smoother geometry than the meshes used to develop the models.  

 

The male and female external surface geometry models for the femur and tibia better fit 

the underlying data than the thickness models with R
2
 values of 0.77 and 0.74 vs. 0.31 

and 0.36 for the femur surface and thickness male and female models, and R
2
 values of 

0.68 and 0.84 vs. 0.39 and 0.38 for the tibia surface and thickness male and female 

models.  This indicates that overall sizes and shapes of the femur and tibia are 

substantially better predicted by subject age, bone length, and BMI, but the variations in 

thickness are not well explained by these predictors or geometric features captured by the 

geometry PC models.  In addition, the inclusion of external geometry model PC scores 

did not result in substantial improvement in predictive ability of the thickness models.  It 

is possible that variation in thickness could be better explained if other predictors were 

used, such as the presence of diseases (e.g. osteoporosis).  In addition, the models can 

best predict the geometry at values closest to the average values of the parameters and 

predict geometry least well at the extreme ends of the parameter values, as is expected.  

Since the models are simple linear regressions, the results are not much affected by 

leaving out a single point, as was done in the leave-one-out cross-validation.   

 

External surface geometry models were developed for the pelvis, but thickness models 

were not developed because the thickness values of cortical bone in most regions of the 

pelvis are lower than the resolution of the CT scans.  The pelvis surface models explain 

less of the variance in the experimental data compared to the femur and tibia models (R
2
 

of 0.15 and 0.18 for male and female pelvis surface models vs. 0.77 and 0.74 for femur 
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and 0.68 and 0.84 for tibia surface models) because age, BMI, and bispinous breadth do 

not capture all of the variation in pelvis shape.  However, these parameters were used for 

the pelvis models to provide consistent model inputs between lower-extremity bones so 

that only one set of subject characteristics was needed to predict all bone geometries.  In 

addition, these parameters are the best local or whole body level predictors of geometry.  

 

Femur length, tibia length, and bispinous breadth are used as predictors in statistical 

models developed in this study as surrogates for stature.  Relationships between stature 

and bone length or bispinous breadth can be developed from existing datasets and used to 

reparameterize models so that stature is a predictor.  However, using bone length as a 

predictor is advantageous as femur length or tibia length can be determined from other 

existing statistical models that are useful for defining geometry targets for whole-body 

FE models as functions of age, BMI, and stature, such as driver posture prediction 

models and models of external body shape   (Manary et al. 1998; Reed et al. 2013).  This 

approach of using lengths determined from statistical models of whole body posture and 

external body shape that are parameterized based on stature, BMI, age, and sex ensures 

that geometries predicted by each of the statistical models are consistent, even if the 

models are based on different patient/occupant populations.  

 

The pelvis, femur, and tibia geometry could be predicted using multiple regressions 

without PCAR, but PCAR has several benefits.  PCAR was used for three reasons: (1) the 

principal modes can be explored in the data set to aid in the understanding of the 

geometric variance, (2) the number of modes of variance (PCs) that are significantly 

related to potential predictors can be quantified, and (Moran et al. 2003) the orthogonality 

of the PCs can be exploited, along with the approximate normality of the PC scores, to 

generate femurs, tibias, or pelves that span a desired range of the population for future 

applications.  In addition, PC scores were used as predictors for the femur and tibia 

thickness models to account for effects of outer surface geometry on bone thickness, 

rather than directly predicting thickness from subject descriptors.  This enables an 

explicit linkage between geometry and thickness, even when the thickness in a particular 

region of the bone may not be related to overall subject descriptors. 
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The sample sizes used for development of the statistical models described in this chapter 

could be considered a limitation in the development process.  However, the effects of 

BMI and size on geometry are generally linear, and since subjects exist on both the low 

and high ends of the ranges of these parameters across all age groups for all datasets, the 

predictions of data between these extremes is likely reasonable.  In addition, the variation 

seen in the population can occur due to factors not covered by the parameters, regardless 

of the ability of the parameters to capture that variation.  

 

72BLinear Mixed Models 

The LMM analysis found that age, sex, stature, and BMI affect femur cross-sectional 

area.  The effects of subject characteristics on femur geometry therefore vary by level, 

and these effects must be taken into account when predicting bone geometry.  As was 

expected, both total area and cortical bone area increased with increasing stature.  Total 

bone area also increased with increasing age, agreeing with bone literature that femur 

bone geometry changes with age (bones normally increase in total diameter and marrow 

space normally expands with aging), leading to a larger total cross-sectional area with age 

but weaker bones due to the change in moment with the increase in marrow space (Clarke 

2008).  The significant interactions between subject characteristics and location level 

indicate that effects need to be accounted for by models that can predict the geometry of 

any given set of subject characteristics, highlighting the utility of the PCAR models, 

which include these effects. 

 

LMM analyses performed for the femur and tibia showed that no meaningful interactions 

existed between the parameters (age, BMI, bone length).  In addition, a LMM analysis 

was not performed for the pelvis since cross-sectional areas useful in a LMM analysis did 

not exist. Finally, no significant interactions were found between model parameters for 

the pelvis in the PCAR analysis.   

 



 

53 

 

73BModel Errors 

Errors in calculated femur cross-sections were determined as mean overall errors for each 

location considering both positive and negative values.  This type of error calculation is 

more appropriate than using absolute errors because the models are intended to be used to 

generate FE models representing the entire occupant population, and average errors close 

to zero indicate that the models reasonably represent the population.  Some models may 

predict higher or lower results than the average, but as long as the average error in 

geometry is close to zero and is unrelated to subject characteristics, the model predictions 

should be reasonable.  These FE models will be based on the statistical model predictions 

and then simulations will be performed with this population of models.   

 

Cortical thickness calculation errors were due to the inherent problem with the resolution 

of clinical CT scans. However, these errors did not affect the thickness values in the 

shafts of the femurs and tibias where thickness values were robustly calculated.  An 

average value was used to allow for the models to have cortical bone in all locations, 

which is particularly important for finite-element modeling using solid elements.  Since 

the locations of the zero values were not concentrated in one particular area in the ends of 

the femurs and tibias, the averaging process should not have meaningfully affected 

results. 
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Chapter III  

Development and Validation of the Parametric Finite Element Models 

3 

32BINTRODUCTION 

 

FE models with parametric geometry have been developed for many body regions, 

including some lower-extremity models (Gayzik et al. 2008; Hu et al. 2012; Li et al. 

2011; Lu et al. 2013; Lu and Untaroiu 2013; Shi et al. 2014; Shi et al. 2015; Besnault et 

al. 1998; Bryan et al. 2010; Bryan et al. 2009; Kurazume et al. 2009; Nicolella and 

Bredbenner 2012).  However, none of these existing models include lower extremities 

that are parametric with occupant characteristics.  In addition, the traditional validation 

methods where models are compared to scaled corridors developed from normalized data 

are not appropriate for parametric FE models.   

 

This chapter describes the use of the statistical models of the femur, tibia, and pelvis to 

generate parametric FE models of the femur, tibia, and pelvis.  The parametric FE femur 

models were validated using the methods proposed by Hu et al. (2012).  Specifically, the 

responses of parametric FE femur models were compared with individual male and 

female specimen responses from a previous study by Ivarsson et al. (2009) of the 

tolerance of the cadaveric femoral shaft to combined axial-compression and three-point 

bending. The Ivarsson data were selected because detailed information on impact 

response, femur geometry, and subject BMI, age, and stature were available.  These 

validation methods serve as an example for all parametric FE lower-extremity model 

components since the methods of comparing experimental results with simulation results 

predicted based on subject-specific data can be applied for validating the parametric tibia 
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and pelvis models.  However, studies with all relevant information for the tibia and pelvis 

could not be found in the previous literature.   

 

33BMETHODS 

 

74BParametric FE Femur Model 

Parametric FE models of adult male and female femurs were developed by using existing 

statistical models to predict nodal coordinate locations as functions of age, BMI, and 

femur length and then applying these nodal coordinates to a baseline/template FE model.  

The statistical geometry models are described in Chapter II and by Klein et al. (2015).  

These models were developed by extracting femur geometry from a stratified sample of 

clinical CT scans of the adult population, fitting a template finite element femur mesh to 

the surface geometry of each subject, and programmatically determining thickness of 

cortical bone at each nodal location.  Principal component analysis (PCA) was performed 

on the thickness and nodal coordinates and linear regression models were developed to 

predict principal component scores as functions of age, BMI, and femur length.  The right 

femur of the Total Human Model for Safety (THUMS) 4 (Toyota Motor Corporation 

2011) model was used as the template and, as a result, the statistical models directly 

predict target nodal locations of the parametric FE femur models.   

 

75BParametric FE Tibia and Pelvis Models 

Parametric FE models of adult male and female tibias and pelves were developed by 

using the existing statistical models to predict nodal coordinate locations as functions of 

age, BMI, and tibia length/pelvis bispinous breadth and then applying these nodal 

coordinates to the baseline/template FE models.  The template FE tibia mesh came from 

the right tibia of the THUMS 4 and consists of 2,417 hexahedral elements with a total of 

4,836 nodes.  The template FE pelvis mesh came from the pelvis of the THUMS 4 and 

consists of 5,958 quad shell elements with a total of 5,956 nodes.  The predicted meshes 

were combined with material property values from the template FE models to generate 

the final parametric FE tibia and pelvis models. 
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76BFemur Validation Data 

Data for model validation were obtained from a study by Ivarsson et al. (2009) from 

which individual femur response histories and information on the subject age, sex, and 

size were available.  In the Ivarsson et al. study, PMHS femoral shaft specimens were 

subjected to combined axial compression and anterior-to-posterior or posterior-to-anterior 

three-point bending.  PMHS from which femurs were obtained for this study included 

nine male and four female subjects with ages between 40 and 65 years, BMI between 18 

and 42 kg/m
2
, and femur lengths from 0.430 to 0.572 m.  Additional detail on these 

specimens is provided in Appendix B.   

 

Figure 3-1 illustrates the setup for the Ivarsson tests.  Denuded femoral shaft specimens 

were potted in cups that were attached to hinge joints. Bending was applied to the 

isolated femoral shafts by impacting at midshaft in either the anterior-to-posterior or 

posterior-to-anterior direction at a velocity of about 1.5 m/s.  At the same time, a 

predetermined level of axial compressive force was applied along the long-axis of the 

femoral shaft by gussets whose motion was controlled by a mechanism linked to the 

impactor so that downward motion of the impactor caused the gussets to move toward 

each other.  This motion of the gussets compressed a block of aluminum honeycomb; the 

width of the honeycomb block was varied between tests (with crush strength 4-16 kN) to 

control the applied force at the desired level.   
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Figure 3-1. Ivarsson et al. (Ivarsson et al. 2009) test set-up with combined bending and 

axial compression due to the impactor and moving gussets. 

 

77BMaterial Properties 

A single femur material property was used in the validation simulations.  Similar to the 

template femur model from THUMS 4, an elasto-plastic material definition was used 

(MAT_024, MAT_PIECEWISE_LINEAR_PLASTICITY).  Parameters used in this 

model were those of the template THUMS 4 femur with the exception of the yield stress 

(34.5 MPa), which was outside the 100 - 150 MPa range in the literature (Burstein et al. 

1976; Dokko et al. 2009).  Therefore, a material optimization was performed using an FE 

model of the femoral shaft with the average geometry from the Ivarsson study to identify 

the yield stress that was associated with a predicted force history that best matched the 

average experimental force history.  Optimization was performed using modeFRONTIER 

version 4.3.0 (ESTECO, Italy) and resulted in a value of 140 MPa for yield stress.  This 

value was used in all validation simulations.  All other material properties for the non-

femur components in the simulations were matched to the values reported for the 

Ivarsson study. 

 

78BValidation Simulations 

The subject characteristics in the Ivarsson study were used to predict femur geometry for 

use in the validation simulations, using subject femur length, BMI, and age as inputs.  

Thirteen right femurs were predicted from the statistical model results, and twelve left 
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femurs were determined using a reflection of the corresponding right femurs about the 

long axis of the femur.  As previously noted, the optimized material property (yield stress 

= 140 MPa) that matched the average response of all subjects was used in the simulations 

to remove the mean effect of material properties on loading results.  The model setup 

used to match these tests is the same as the experimental setup shown in Figure 3-1.  The 

measured impactor displacement histories from the tests were applied to the impactor in 

the simulations.  

 

All simulations were configured in HyperMesh Version 11.0 (Altair Engineering Inc., 

Troy, MI) and performed using LS-DYNA version 971 (Livermore Software Technology 

Corporation, Livermore, CA).  Impactor force histories were compared between the 

experimentally measured combined loading tests and the parametric simulations to assess 

model validity.  Peak impactor forces at the time of femoral shaft fracture in the tests 

were compared to the parametric impactor forces at the same time.  Fracture was not 

simulated for the parametric femur models so that the predicted forces at the time of 

experimental fracture could be compared to the experimental peak impactor forces.  The 

percent errors in impactor force at the time of experimental failure between the tests and 

the simulations were calculated using Equation 1, and the percent differences in the slope 

values of the force histories between the tests and simulations were also determined.  The 

slope values of the force histories were calculated by fitting a straight line using linear 

regression between the time at 5% of peak experimental force and the time at 95% of 

peak experimental force for both experimental and model predicted data, and then using 

the slope of this fitted line.  

 

Percent error = (Simulation–Test)/Test*100% (1) 

 

Trends in the experimental peak forces and the forces predicted by the FE models at the 

time of experimental fracture with age, BMI, and femur length were characterized using 

linear mixed models (LMM).  LMMs were used to account for the reduction in variance 

associated with using right and left femurs from the same subjects in different test 

conditions.  Effect estimates from the LMM analysis for the model predicted dataset were 
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compared to the mean and 95% confidence intervals predicted in the LMM analysis on 

the experimental dataset to assess how well the predicted data matched trends in the 

experimental data.  Due to the small number (n = 8) of female femurs, only the male 

femurs were used in the LMM analysis to characterize trends.   

 

34BRESULTS 

 

79BParametric FE Models Development 

The parametric FE femur models generated from the previously developed statistical 

models consist of 3,060 hexahedral elements with a total of 6,124 nodes each.  The mesh 

quality for the parametric models was minimally affected by the morphing process.  The 

minimum Jacobian value for the template THUMS 4 femur was 0.38, and this value was 

used to evaluate the mesh quality for the predicted femurs based on the Ivarsson data.  

Approximately 5% of all the elements for each femur fell below the 0.38 level.  The 

majority of these elements were located at the ends of the femurs (in the femoral head, 

neck, and condyles).  Since the ends of the femur were potted in the simulations, the 

minimum Jacobian value was calculated for the shaft of each femur.  The average of the 

minimum Jacobian in the shaft for each subject was 0.25 (range 0.20-0.31). 

 

80BValidation Simulations 

The average error in peak force predicted by the parametric models was 5%, and the 

average error for the 17 male models was 4%, while the average error for the 8 female 

models was 8%.  The average slope for the experimentally measured results was -472 

kN/s, and the average slope for the parametric results was -471 kN/s.  The average 

difference in slope values for the right and left parametric femurs was -1%, and the 

average difference for the male models was -2%, while the average difference for the 

female models was 1%.   

 

A typical comparison of predicted and measured force histories is shown in Figure 3-2.  

The times at 5% and 95% of the peak force experimental fracture are indicated.  Figure 3-
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3 compares the peak impactor forces and slopes for the experimental values and the 

values predicted by the parametric models.  The R
2
 value for the force values was 0.632 

and the R
2
 value for the slope values was 0.638.  The values for peak forces and slopes 

and the average and absolute errors in peak forces and slopes for each parametric model 

simulation are provided in Appendix C and the resulting impactor force histories for the 

experiments and the simulations are provided in Appendix D.   

 

 
Figure 3-2. Example of impactor force history from an experimental result compared to 

impactor force results from a simulation with the parametric model. 
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Figure 3-3. Comparison between the peak impactor forces (left) and slope values (right) 

for the experimental values and values predicted by the parametric models. 

 

The effect estimates generated when LMM analysis was used to fit the same set of 

parameters to the experimentally measured peak force and the predicted force at the time 

of experimental fracture are shown in Table 3-1.  All parameters used in the parametric 

models were included in the LMM analysis and the 68% confidence intervals for the 

LMM results on experimental data are also given.  68% confidence intervals were used to 

consider an interval of plus or minus a standard deviation, which indicates that the 

models are not statistically different.  Model estimates all fall within the experimental 

confidence intervals, indicating that the male parametric femur model reproduces trends 

present in the experimental dataset.    

 

Table 3-1. Linear mixed models analysis results for male experimental and model 

predicted results 

Effect 
Experimental Coefficient 

Estimate 

68% Confidence Interval 

(±1σ) 

on Experimental Estimate 

Model Coefficient 

Estimate 

Intercept -24.0 (-33.7, -14.4) -25.0 

Age 0.183 (0.116, 0.249) 0.0852 

Femur 

Length 
0.0286 (0.0140, 0.0431) 0.0390 

BMI -0.265 (-0.321, -0.208) -0.229 
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35BDISCUSSION  

 

Summary 

Parametric FE models of the femur, tibia, and pelvis were developed in this chapter.  The 

parametric FE femur models were validated by performing simulations of combined 

compression and bending tests of the femoral shaft from a previous study.  These tests 

were used for validation because sufficient information was available to effectively 

characterize specimen geometry and because the applied force histories were available 

for all tests.  Impactor forces from simulations, on average, matched well to experimental 

values at the time of failure with an average error of 5% across the 25 validation 

simulations.  In addition, the simulations were able to match the trends in the 

experimental dataset.  However, there was substantial variation between predicted and 

measured peak forces between subjects, likely because the parametric femur model does 

not exactly predict the geometry of any specimen and because average material properties 

were used in all validation simulations.  This suggests that the parametric femur models 

should be used in simulations aimed at understanding the response of a population rather 

than predicting the response of any individual, at least until data on how material 

properties vary with model predictors (in particular age and gender) are available.  

Specifically, the parametric models should be used to generate a set of FE models 

associated with occupant characteristics that span the population and the simulation 

results should be weighted based on the exposure of the subset of occupants represented 

by the model to motor-vehicle crashes. 

 

Validation Simulations 

Only one set of femur data was used for validation because this dataset is the only study 

known to include the information on subject characteristics and the response histories 

needed for subject-specific validation.  This dataset has a small range of ages (40-65 

years), but the parametric models were able to reproduce the trends present in the 

experimental dataset with subject characteristics for male femurs.  More validation data 
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will be needed in the future, but this validation method follows the paradigm proposed by 

Hu et al. (2012) for validating parametric models.   

 

While the male parametric femur model reproduced trends present in the experimental 

dataset, each individual subject may not have fit the experimental results.  Subjects with 

characteristics at the extremes of the ranges used to develop the models, such as a very 

small stature, may not have fit as closely as those with characteristics near the averages.  

These types of results are acceptable according to the Hu et al. (2012) methods for 

validation, as long as the models are able to match the trends overall, as was the case for 

the validation simulations.  

 

The only validation simulations performed here were for the male and female femur FE 

models.  Similar types of validation simulations could be performed for the pelvis and 

tibia, but no studies were found that have the necessary level of detail about the 

specimens for complete parametric model validation.  In addition, more data is needed in 

the studies that describe testing with the entire lower extremities before validation 

simulations can be performed for the lower extremities.   

  

Material Properties 

Although it is well established that material properties vary between specimens and as a 

function of age (Clarke 2008), material properties were not varied in the validation 

simulations.  Excluding the effects of specimen characteristics on material properties can 

result in errors in model predictions.  For example, force at failure could increase with 

increasing age if material properties are not varied instead of force decreasing with 

increasing age.  Despite this possibility, a single average material property was used in 

validation simulations as this approach allowed geometry effects to be compared and 

because the age range in the experimental dataset used for validation was relatively small.   

 

The average material properties used in the validation simulations have an effect on the 

error seen in the results.  The average material property was used to consider only the 

effect of geometry (and thus the error in geometry) in the simulation results, but the 
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choice for average material property values has an effect as well.  Eventually improved 

material models will be needed so that less error will be seen in the simulations. 

  

Future Work 

The models developed here are an important step toward developing a parametric FE 

model of the entire lower extremities that can be used to improve understanding of the 

effects of age, gender, and BMI on the likelihood, location, and severity of lower-

extremity injuries in frontal crashes.  Future work will involve additional validation of the 

femoral head, neck, and condyles.  However, these validation simulations require studies 

with the necessary subject characteristics and response histories, which are not yet 

available in the scientific literature.  In addition, material properties that are parametric 

with occupant characteristics should be included in future simulations with the parametric 

models.  Specifically, future work should consider relationships between bone density 

and material properties when developing parametric material models as such 

relationships have been used to determine material properties for previous FE models 

(e.g., Bredbenner et al. 2014; Keaveny et al. 2008; Keyak and Falkinstein 2003).    

 

36 
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Chapter IV  

Application of the Parametric Whole-body Models 

 

INTRODUCTION 

 

 

The relative contributions of the hypothesized reasons for the effects of age, sex, and 

BMI on LX injury in frontal crashes described in Chapter I can best be assessed using a 

parametric FE model.  This FE model needs to have skeletal geometry, external surface 

geometry, posture, and material properties that can be varied with occupant 

characteristics. The development and application of techniques to generate male and 

female whole-body parametric FE models using the parametric FE pelvis, femur, and 

tibia models described in Chapters II and III and an external body surface shape model 

previously developed at UMTRI is described in this chapter.  These parametric FE 

models were whole-body FE models with geometry that spans a range of occupant age, 

BMI, and stature combinations for both men and women.  This set of models was used in 

frontal impact simulations to begin to explore the effects of variations in occupant 

characteristics on lower-extremity injury. 

 

METHODS  

 

Overview 

Male and female parametric whole-body models were developed by combining the 

femur, tibia, and pelvis models described in Chapters II and III with an existing model of 
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external body surface shape using methods adapted from Hwang et al. (2014).  Figure 4-1 

shows the process used to combine these models and to generate FE model geometry 

associated with a target set of occupant age, stature, and BMI.  Landmarks from the 

external body surface shape model that corresponded to landmarks from the skeletal 

component models were used to link and position the bones inside the predicted external 

body surface shape.  The other skeletal components and the soft tissues were then 

morphed using a thin plate spline RBF using the external surface and femur, tibia, and 

pelvis models as boundaries.  The resulting whole-body model consists of target external 

surface geometry, target pelvis, femur, and tibia geometry, morphed other skeletal 

components and soft tissue, and material properties.  The external body surface shape 

model was developed using principal component analysis and regression analysis with 

age, BMI, stature, and sex predicting the external body surface, external surface 

landmarks, and joint landmarks.  The lower half of the body (below the diaphragm) used 

the predicted external body surface and predicted parametric pelvis, femurs, and tibias as 

morphing targets.  The upper half of the body (above the diaphragm) was only morphed 

based on the external surface since the focus of this work is on the lower extremities.  
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Figure 4-1. Flowchart of the process for developing a whole-body model with target 

geometry and material properties from statistical geometry and material models and a 

template mesh. 

  

 

Parametric Whole-body Model Development 

For development of a parametric whole-body model, femur length was defined as the 

distance between the center of the femoral head and the midpoint of the femoral 

epicondyles.  This allowed the joint landmark locations predicted by the external body 

shape model to be used to align the femur inside the surface model.  The new definition 

of femur length is shown in Figure 4-2.   
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Figure 4-2. Femur length defined as the Euclidean distance between the center of the 

femoral head and the midpoint of the femoral epicondyles. 

 

The steps used to develop the male and female parametric whole-body models are listed 

below.  

 

 Input age, stature, BMI, and sex. 

 Calculate bispinous breadth using regression equations for men and women, given in 

Equations 1 and 2, that predict bispinous breadth as a function of stature. 

 

Bispinous breadth (Male) = 0.176 + 0.0371*Stature (m)  (1)  

Bispinous breadth (Female) = 0.0864 + 0.0852*Stature (m) (2) 

 

 Predict body surface shape using age, stature, BMI, and sex using existing surface 

model. Examples of predicted body surface shapes are shown in Figure 4-3. Then 

morph template external THUMS surface to predicted body surface shape. 
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Figure 4-3. Examples of small, midsize, and large male body surface shapes predicted by 

the external body surface shape model. 

 

 Use landmarks from surface model to calculate femur length and tibia length to use 

for predicting femur and tibia models. The lengths determined from the surface model 

are shown in Figure 4-4. 

 

 
Figure 4-4. Femur and tibia length determined from landmark locations predicted by the 

external body surface shape model. 

 

 Predict parametric pelvis, right femur, and right tibia using existing pelvis, femur, and 

tibia models described in Chapters II and III. 

o Reflect predicted right femur and predicted right tibia along y-axis to get 

predicted left femur and predicted left tibia since the template THUMS is 

symmetric. 

 Position parametric pelvis, femur, and tibia inside morphed external surface model. 

o Calculate landmarks for predicted pelvis, femur, and tibia corresponding 

to landmarks from morphed THUMS bones based on predicted surface 

model (template THUMS bones are morphed based on morphing of 

external surface to determine target landmarks for positioning). The 

specific landmarks used for the positioning include pelvis ASIS, PSIS, and 

L5S1, femoral head center and lateral and medial epicondyles, and tibia 

medial malleolus and ankle joint location. All landmarks are listed in 

Hwang et al. (2014) and the ASIS, PSIS, femoral head center, lateral 
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epicondyle, tibial tuberosity, and medial malleolus are shown in Figure 4-

5. 

 

 
Figure 4-5. Landmarks used to position the pelvis, femur, and tibia. 

 

o Use singular value decomposition (SVD) (Weisstein 2015) and distance 

minimization to align the predicted pelvis with the original pelvis.  An 

example of this process is shown in Figure 4-6. 

 

 
Figure 4-6. Example of process for positioning the predicted bones inside the external 

surface using SVD. 

 

o Align predicted femurs using SVD and distance minimization.  Repeat for 

left femur. 

o Align the predicted right tibia using SVD and distance minimization.  

Repeat for left tibia. 

 Morph femur and tibia trabecular bone to match predicted and aligned right and left 

femurs and tibias.  Figure 4-7 shows trabecular bone inside the right femur. 
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Figure 4-7. Morphed trabecular bone inside the right femur. 

 

 Divide whole body into segments for morphing of soft tissues between bones and the 

external body surface.  An example of the three body segments for the right leg is 

shown in Figure 4-8. 

 

 
Figure 4-8. Three segments for right leg. 

 

 Morph nodes in the shared surfaces between segments of body. 

o Shared surfaces include: pelvis-upper body, thorax-right arm, thorax-left 

arm, upper-lower, pelvis-right thigh, pelvis-left thigh, right thigh-right 

knee, left thigh-left knee, right knee-right lower leg, left knee-left lower 

leg. 

 Morph each segment of the whole-body beginning with the lower half of the body 

and then the upper half of body. The two halves are split by the diaphragm. 

o Use shared areas, pelvis, femurs, tibias, and external body surface as 

targets. 

 After morphing is complete, update all nodes in new file. 

 Export node IDs and nodal coordinates. 
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o This exported file is then included in the template file with all other model 

definitions, such as material properties. An example of the morphed model 

is shown in Figure 4-9. 

 

 
Figure 4-9. An example of the morphed whole-body model. 

 

Examples of male and female morphed whole-body models are shown in Figure 4-10.  A 

table of 27 male and 27 female morphed models with three levels each for age, BMI, and 

stature to show the ranges of occupant characteristics is provided in Appendix E.  The 

levels include ages 20, 50, and 75 years for age; BMI values of 25, 30, and 35 kg/m
2
; and 

statures of 5
th

, 50
th

, and 95
th

 percentile statures for men and women (1.636, 1.763, and 

1.887 m and 1.507, 1.622, and 1.731 m, respectively).    

  

 

Figure 4-10. Female and male morphed whole-body model examples. 

 

Parametric Whole-body Model Application Simulations 

A series of simulations was performed with the whole-body models inside a single 

vehicle package representing a midsize sedan using the set-up shown in Figure 4-11.  
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This simulation set-up represents a frontal crash with deltaV or ∆V (total change in 

vehicle center of gravity velocity over the duration of the crash event) of 56 kph.  The 

boundary conditions and vehicle package parameters were from a validated model 

provided by General Motors to represent the 56 kph deltaV, but each whole-body model 

had to be positioned and set up in the simulation.  A partial factorial design of 

experiments was used to select 12 male models and 12 female models with three levels 

for each of the three parameters of age, BMI, and stature determined from the 27 male 

and 27 female models described above.  The Uniform Latin Hypercube method was used 

to select 12 male models and 12 female models to use for the simulations to represent the 

entire 27 male and 27 female models generated.  24 simulations were performed out of 54 

total possible simulations to limit the time needed.  Table 4-1 lists the 24 sets of subject 

characteristics used to predict the whole-body models.  A table with all 54 sets of 

occupant characteristics is provided in Appendix F. The three levels for each parameter 

included ages of 25, 50, or 75 years, BMI of 25, 30, or 35 kg/m
2
, and statures of 5

th
, 50

th
, 

or 95
th

 percentile for men and women.  The minimum age of 25 was chosen because there 

was limited data below this age on which to base the models.  The age of 50 was chosen 

because it is the highest age before the risk of osteoporosis increases, thus having an 

effect on bone material properties (National Osteoporosis Foundation).  The maximum 

age of 75 was chosen because it is the age at which fatal crash rates start increasing for 

the elderly population (defined as 65 or older by the CDC).  The minimum BMI value 

was chosen because the baseline model has a BMI of 25, and the larger values were 

chosen to consider the effects of obesity since larger BMI has been shown to have an 

effect on lower-extremity injury risk.  The stature ranges were chosen because they span 

the three sizes of crash test dummies (5
th

 percentile female, 50
th

 percentile male, and 95
th

 

percentile male) and the 5
th

 percentile to 95
th

 percentile choices for both sexes considers 

the range in the population.   
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Figure 4-11. Simulation set-up. 

 

Table 4-1. Subject characteristics used for simulations 
Female Models Male Models 

Female 

Test ID 

Age 

(years) 

BMI 

(kg/m
2
) 

Stature 

(m) 

Male 

Test ID 

Age 

(years) 

BMI 

(kg/m
2
) 

Stature 

(m) 

F1 25 25 1.507 M1 25 25 1.636 

F4 25 30 1.507 M4 25 30 1.636 

F7 25 35 1.507 M7 25 35 1.636 

F9 25 35 1.731 M9 25 35 1.887 

F11 50 25 1.622 M11 50 25 1.763 

F15 50 30 1.731 M15 50 30 1.887 

F17 50 35 1.622 M17 50 35 1.763 

F18 50 35 1.731 M18 50 35 1.887 

F19 75 25 1.507 M19 75 25 1.636 

F20 75 25 1.622 M20 75 25 1.763 

F23 75 30 1.622 M23 75 30 1.763 

F24 75 30 1.731 M24 75 30 1.887 

 

The fore-aft and vertical positions of the 24 models were set relative to the vehicle seat 

using hip locations predicted by a statistical posture-prediction model developed by Reed 

et al. (2002) that used stature, sitting height, and BMI, as well as vehicle package factors 

to predict posture including hip joint center location.  Equations 3a and 3b give the 

regression equations adapted from Reed et al. and used in this work with constant values 
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used for vehicle package factors.  For simplicity, and because it was unlikely to 

meaningfully affect lower extremity responses in frontal crashes, the vehicle seat was set 

to the same fore-aft position in all simulations. When using the posture prediction model, 

sitting height was determined using a sitting height to stature ratio of 0.52, which is the 

average value in the population (ANSUR II report).   

 

HJCX= -0.1315 + S*0.0000482 – BMI*0.002677 + 0.005*C (3a) 

 

Where, HJCx is the hip joint center location along the X axis (fore-aft, with positive 

being fore), S is stature in m, BMI is body mass index in kg/m
2
, and C is cushion angle in 

degrees, which was held constant at 14.5˚ for this study. 

 

HJCz = -0.1434 + BMI*0.002009 + 0.0007*H +0.0001375*SWBoF+ 0.00049*C  (3b) 

 

Where HJCz is the hip joint center along the Z axis (with positive being upward), H is the 

sitting height determined using 0.52*Stature, and SWBoF is the steering wheel to ball of 

foot distance calculated using a steering wheel diameter of 0.541 m and a seat height of 

0.255 m in this study. 

 

For each model, pre-simulations were used to position the hands and right foot on the 

steering wheel and pedal, respectively.  In these pre-simulations, the hands, arms, and 

right leg were allowed to move and the rest of the body was set as rigid so that the 

position relative to the seat did not change.   

 

Following each pre-simulation, the seatbelt was fit to the model’s external body surface 

shape.  The belt fitting process was based on a statistical model of seat belt fit developed 

by Reed et al. (Reed et al. 2013) that predicts the locations of the lap belt and shoulder 

belt.  The lap belt location is predicted in a sagittal plane passing through the left anterior 

superior iliac spine (ASIS) landmark of the pelvis as a function of age, stature, BMI, and 

belt angle for the x-coordinate and as a function of BMI only for the z-coordinate.  

Equations 4a and 4b give the statistical models used to determine the x and z locations of 
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the lap belt.  Age, BMI, and stature were used to predict the location of the belt relative to 

the left ASIS of the pelvis using the same belt angle of 75 degrees from the vehicle set-up 

for each whole-body models.  The location of the belt relative to the right ASIS was also 

predicted using the model assuming the same location in two dimensions as the left 

ASIS.  The shoulder belt was fit to a corresponding location on the chest for each whole-

body model rather than using the statistical model since the focus was on variations in 

lower-extremity response.  An example of the seatbelt fit is shown in Figures 4-12 and 4-

13. 

 

LBx = 0.156 + 0.000297*L – 0.0003*A – 0.00512*BMI – 0.00004*S (4a) 

 

Where LBx is the lap belt position relative to the ASIS in the X axis in m, L is the 

lap belt angle, which was 75 degrees in this study, A is age in years, BMI is body 

mass index in kg/m
2
, and S is stature in m. 

 

LBz = -0.0701 + 0.0047*BMI    (4b) 

 

Where LBz is the lap belt position relative to the ASIS in the Z axis in m. 

  

 

Figure 4-12. Seatbelt fit determined from ASIS landmark. 
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Figure 4-13. Seatbelt fit determined from ASIS landmarks and thorax landmark. 

 

Material Properties 

Femur and pelvis material properties were varied to account for the reported decrease in 

yield stress and Young’s Modulus with increasing age based on Equations 5 and 6.  

These equations were developed using data reported in the meta analysis performed by  

Dokko et al. (2009).  

 

Young’s modulus (GPa) = -0.06*age + 18GPa (5) 

Yield stress (MPa) = -0.16*age + 136MPa  (6) 

 

The effects of age on the modulus and yield stress in the tibia were incorporated in the 

parametric tibia model by scaling Equations 7 and 8, using the scale factors shown in 

Equations 5 and 6.  These scale factors were determined from previously published data 

(Burstein et al. 1976; Dokko et al. 2009). 

 

Young’s modulus scale factor = 1.23  (7) 

Yield stress scale factor = 1.27  (8) 
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Simulation Outputs 

To compare the effects of age, BMI, and stature on lower-extremity injury risk, several 

outputs were determined, including principal strain values for the pelvis, right and left 

femur, and right and left tibia, and contact forces at the knees, hips, and distal tibias.  The 

maximum principal strain values in the pelvis, right and left femurs, and right and left 

tibias were determined and were normalized using the ultimate strain values determined 

for each age group to be able to compare a predictor of injury across the age groups.  

Equation 9 was used to determine the ultimate strain value for the femur and pelvis based 

on data reported by Dokko et al. (2009), and the tibia value was scaled using Equation 

10.    A multivariate regression was performed for each bone with age, BMI, and stature 

as the predictors to determine if these characteristics had a significant effect (p<0.05) on 

the ratio of predicted strain to ultimate strain, or normalized strain.  In addition, a 

multivariate linear regression was performed for the forces at the knees, hips (proximal 

femurs), and distal tibias with age, BMI, and stature as the predictors to determine if 

these characteristics had a significant effect (p<0.05) on force results for the male and 

female simulations. The effects of age, BMI, and stature were also assessed by 

determining kinematics of the belt relative to the spine in the simulations. 

 

Ultimate strain = (-0.0087*age + 2)/100 (9) 

Ultimate strain scale factor = 1.08  (10) 

 

RESULTS  

 

Parametric Whole-body Model Development 

Similar to the baseline THUMS models, each morphed model had a total of 1,313,685 

solid elements and 395,024 shell elements.  The minimum solid element Jacobian value 

for the baseline THUMS model was 0.25 and the minimum shell element Jacobian was 

0.28 for the baseline model.  These values were used to compare to the parametric 

models, and the results are shown in Tables 4-2 and 4-3.  Some of the models had bad 

elements in which the Jacobian value was less than zero, especially the shortest and 
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thinnest female models with a stature of 1.507 m and a BMI of 25 kg/m
2
.  These elements 

were fixed prior to simulations by either translating some of the nodes of the element to 

obtain positive Jacobian values or by deleting a small area of elements where the bad 

values occurred.  The minimum Jacobian values listed in Tables 4-2 and 4-3 were the 

values for the set of 24 models used in the simulations. 

  

Table 4-2. Female mesh quality results after the morphing process 

Female 

Test ID 

Min. 

Solid 

Element 

Jacobian 

Num. 

Solid 

Elements  

< 0.25 

% Solid 

Elements 

< 0.25 

Min. 

Shell 

Element 

Jacobian 

Num. 

Shell 

Elements 

< 0.28 

% Shell 

Elements 

< 0.28 

F1 0.01 43 0.00327 0.00 3 0.00076 

F2 0.05 5 0.00038 0.28 0 0.00000 

F3 0.24 2 0.00015 0.28 0 0.00000 

F4 0.16 11 0.00084 0.25 3 0.00076 

F5 0.22 2 0.00015 0.27 4 0.00101 

F6 0.23 1 0.00008 0.28 0 0.00000 

F7 0.19 11 0.00084 0.18 3 0.00076 

F8 0.19 3 0.00023 0.20 4 0.00101 

F9 0.17 4 0.00030 0.22 2 0.00051 

F10 0.03 16 0.00122 0.28 0 0.00000 

F11 0.17 5 0.00038 0.28 0 0.00000 

F12 0.26 0 0.00000 0.28 0 0.00000 

F13 0.22 4 0.00030 0.27 2 0.00051 

F14 0.27 0 0.00000 0.28 0 0.00000 

F15 0.24 1 0.00008 0.28 0 0.00000 

F16 0.22 7 0.00053 0.20 2 0.00051 

F17 0.20 1 0.00008 0.22 2 0.00051 

F18 0.17 2 0.00015 0.24 2 0.00051 

F19 0.03 26 0.00198 0.28 0 0.00000 

F20 0.23 2 0.00015 0.28 0 0.00000 

F21 0.24 2 0.00015 0.28 0 0.00000 

F22 0.23 7 0.00053 0.27 2 0.00051 

F23 0.25 0 0.00000 0.28 0 0.00000 

F24 0.24 2 0.00015 0.28 0 0.00000 

F25 0.23 4 0.00030 0.22 3 0.00076 

F26 0.21 1 0.00008 0.24 2 0.00051 

F27 0.17 10 0.00076 0.26 2 0.00051 
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Table 4-3. Male mesh quality after the morphing process 

Male 

Test ID 

Min. 

Solid 

Element 

Jacobian 

Num. 

Solid 

Elements  

< 0.25 

% Solid 

Elements 

< 0.25 

Min. 

Shell 

Element 

Jacobian 

Num. 

Shell 

Elements 

< 0.28 

% Shell 

Elements 

< 0.28 

M1 0.07 8 0.00061 0.11 3 0.00076 

M2 0.25 0 0.00000 0.28 0 0.00000 

M3 0.25 0 0.00000 0.28 0 0.00000 

M4 0.22 2 0.00015 0.25 2 0.00051 

M5 0.25 0 0.00000 0.27 2 0.00051 

M6 0.26 0 0.00000 0.28 0 0.00000 

M7 0.01 21 0.00160 0.12 5 0.00127 

M8 0.09 4 0.00030 0.25 2 0.00051 

M9 0.15 5 0.00038 0.27 2 0.00051 

M10 0.10 6 0.00046 0.27 2 0.00051 

M11 0.24 1 0.00008 0.28 0 0.00000 

M12 0.25 0 0.00000 0.28 0 0.00000 

M13 0.24 2 0.00015 0.26 2 0.00051 

M14 0.25 0 0.00000 0.27 2 0.00051 

M15 0.25 0 0.00000 0.28 0 0.00000 

M16 0.01 22 0.00167 0.21 5 0.00127 

M17 0.21 4 0.00030 0.26 2 0.00051 

M18 0.09 7 0.00053 0.24 2 0.00051 

M19 0.11 8 0.00061 0.28 0 0.00000 

M20 0.24 2 0.00015 0.28 0 0.00000 

M21 0.24 1 0.00008 0.28 0 0.00000 

M22 0.23 4 0.00030 0.26 2 0.00051 

M23 0.24 2 0.00015 0.28 0 0.00000 

M24 0.14 2 0.00015 0.22 3 0.00076 

M25 0.03 12 0.00091 0.23 3 0.00076 

M26 0.23 2 0.00015 0.26 2 0.00051 

M27 0.02 15 0.00114 0.27 2 0.00051 

 

Parametric Whole-body Model Application Simulations 

 

Male Strain Results 

Table 4-4 gives the resulting normalized strains for each model for the femurs, tibias, and 

pelvis from the male simulations.  For the male simulations, BMI was significant for the 

right femur, age and BMI were significant for the left femur, and age was significant for 

the pelvis.  For the femurs, an increase in age from 25 to 75 years and BMI from 25 to 35 

years caused an increase in the normalized strain while holding other parameters 

constant, indicating that older and higher BMI occupants will have larger strain values in 

the femur.  For the pelvis, an increase in age from 25 to 75 years caused an increase in 

the normalized strain while holding other parameters constant, indicating that older 
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occupants will have larger strain values in the pelvis.  The coefficient values for each 

parameter for the linear multivariate regression equations determined for the right femur, 

left femur, and pelvis are given in Table 4-5. 

   

Table 4-4. Male model normalized strain results 

Male 

Test ID 

Right 

Tibia 

Left 

Tibia 

Right 

Femur 

Left 

Femur 

Upper 

Pelvis 

Surface 

Lower 

Pelvis 

Surface 

M1 0.211 0.424 0.142 0.176 0.489 0.499 

M4 0.254 0.530 0.148 0.181 0.439 0.455 

M7 1.428 1.272 0.249 0.370 0.433 0.439 

M9 0.329 0.366 0.230 0.277 0.314 0.276 

M11 0.267 0.498 0.162 0.283 0.388 0.399 

M15 0.355 0.445 0.261 0.292 0.528 0.423 

M17 0.447 0.309 0.258 0.337 0.369 0.447 

M18 0.307 0.513 0.408 0.373 0.327 0.314 

M19 0.302 0.556 0.148 0.270 0.491 0.577 

M20 0.316 0.637 0.203 0.341 0.976 1.189 

M23 0.482 0.428 0.236 0.417 1.194 1.218 

M24 0.595 0.678 0.317 0.452 0.586 0.722 

 

Table 4-5. Coefficient values for each parameter for the male linear multivariate 

regression equations determined for the right femur, left femur, and pelvis 

 Intercept 
Age 

Coefficient 

BMI 

Coefficient 

Stature 

Coefficient 

Right Femur -0.692 0.001 0.012 0.0002 

Left Femur -0.386 0.003 0.010 0.0001 

Pelvis 1.363 0.011 -0.004 -0.0007 

 

Figure 4-14 shows the distributions of normalized strain in the right femur for BMI, the 

left femur for BMI and age, and the pelvis for age for the male models.  Only the 

parameter indicated was allowed to vary in these plots since the other values were held 

constant at the middle value from the ranges.  Figures 4-15a, 4-15b, 4-15c, and 4-15d 

show the changes in the distributions for principal strain for the right femur for BMI, the 

left femur for BMI and age, and the pelvis for age for the male models.  The male model 

with age 25 years, BMI 25 kg/m
2
, and stature 1.636 m had normalized strain values that 

exceeded the ultimate strain value in tension in a contiguous group of elements in the 

right and left tibias, indicating the prediction of tibia fractures.  The locations of both of 

these fractures were along the inferior lateral edge of the bones.  In addition, the male 
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subjects with age 75 years, BMI 25 kg/m
2
, and stature 1.763 m and age 75 years, BMI 30 

kg/m
2
, and stature 1.763 m had strain values in the pelvis that exceeded the ultimate 

strain values.  The locations predicted for fracture in both of these subjects were along the 

edge of the left acetabulum.  

 

 

Figure 4-14. Distributions of normalized strains for the right femur with BMI (top left), 

the pelvis with age (top right), the left femur with BMI (bottom left), and the left femur 

with age (bottom right). 
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Figure 4-15a. Change in distributions of principal strain with BMI for the right femur. 

 

 

Figure 4-15b. Change in distributions of principal strain with BMI for the left femur. 
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Figure 4-15c. Change in distributions of principal strain with age for the left femur. 

 

 

Figure 4-15d. Change in distributions of principal strain with age for the pelvis. 

 

Male Force Results 

The multivariate regression indicated that an increase in BMI from 25 to 35 kg/m
2
 and 

stature from 1.636 to 1.887 m both caused a significant increase in force at both the right 

and left knee while holding other parameters constant.  An increase in BMI from 25 to 35 
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kg/m
2
 caused significant increases in the forces at the right and left hips. No significant 

effects were seen for the right distal tibia, while an increase in age and stature caused a 

significant decrease in force at the left distal tibia.  One data point had a much higher left 

distal tibia force than the others, but without this data point in the analysis, the effects of 

age and stature were still significant.  Table 4-6 gives the resulting contact forces at the 

knees, hips, and distal tibias for the male simulations.  Figure 4-16 shows the 

distributions of forces in the right and left knee for BMI and stature, the right and left 

hips for BMI, and the left distal tibia for age and stature for the male models.  Only the 

parameter indicated was allowed to vary in these plots since the other values were held 

constant at the middle value from the ranges. 

 

Table 4-6. Male model force results 

Male 

Test ID 

Right 

Knee 

(kN) 

Left 

Knee 

(kN) 

Right 

Hip (kN) 

Left Hip 

(kN) 

Right 

Distal 

Tibia 

(kN) 

Left 

Distal 

Tibia 

(kN) 

M1 1.255 1.123 1.160 0.763 1.489 2.321 

M4 1.145 1.313 0.908 1.236 2.330 2.924 

M7 1.292 2.534 3.074 2.784 7.072 6.373 

M9 2.231 3.530 2.617 2.274 3.508 2.480 

M11 1.363 2.209 1.181 1.089 2.151 1.871 

M15 1.564 4.025 2.204 2.328 4.722 1.734 

M17 1.699 2.111 2.043 1.986 2.504 2.414 

M18 2.250 4.031 1.942 2.568 3.464 2.285 

M19 1.136 1.627 0.956 0.877 1.719 2.096 

M20 1.348 2.622 1.085 1.122 2.127 1.290 

M23 1.186 2.540 1.381 1.814 3.969 1.555 

M24 1.608 4.118 1.885 2.398 4.201 1.715 
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Figure 4-16. Distributions of forces for the male simulations. 

 

Female Strain Results 

Table 4-7 gives the resulting normalized strains for each model for the femurs, tibias, and 

pelvis from the female simulations.  For the female simulations, BMI was significant for 

the right tibia, stature was significant for the left tibia, and age was significant for the left 

femur.   For the right tibia, an increase in BMI from 25 to 35 kg/m
2
 caused an increase in 

the normalized strain while holding other parameters constant, indicating that higher BMI 

occupants will have larger strain values in the right tibia.  For the left tibia, an increase in 

stature from 1.507 m to 1.731 m caused a decrease in the normalized strain, indicating 

that taller occupants will have smaller strain values in the left tibia.   For the left femur, 

an increase in age from 25 to 75 years caused an increase in the normalized strain, 
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indicating that older occupants will have larger strain values in the left femur. The 

coefficient values for each parameter for the linear multivariate regression equations 

determined for the right tibia, left tibia, and left femur are given in Table 4-8. 

 

Table 4-7. Female model normalized strain results 

Female 

Test ID 

Right 

Tibia 

Left 

Tibia 

Right 

Femur 

Left 

Femur 

Upper 

Pelvis 

Surface 

Lower 

Pelvis 

Surface 

F1 0.393 0.734 0.167 0.192 0.527 0.589 

F4 0.375 0.571 0.202 0.209 0.613 0.694 

F7 0.481 0.755 0.229 0.238 0.528 0.570 

F9 0.741 0.357 0.270 0.256 0.649 0.861 

F11 0.262 0.488 0.238 0.198 0.455 0.461 

F15 0.437 0.559 0.839 0.418 0.734 0.824 

F17 0.543 0.597 0.288 0.360 0.566 0.445 

F18 0.691 0.337 0.329 0.285 0.400 0.388 

F19 0.618 0.872 0.233 0.296 1.343 1.406 

F20 0.278 0.537 0.334 0.290 0.400 0.403 

F23 0.851 0.907 0.337 0.376 0.389 0.419 

F24 0.594 0.466 0.319 0.477 1.513 1.120 

 

Table 4-8. Coefficient values for each parameter for the female linear multivariate 

regression equations determined for the right tibia, left tibia, and left femur 

 Intercept 
Age 

Coefficient 

BMI 

Coefficient 

Stature 

Coefficient 

Right Tibia -0.466 0.004 0.031 -0.0001 

Left Tibia 2.947 0.004 0.008 -0.001 

Left Femur -0.503 0.003 0.007 0.0003 

 

Figure 4-17 shows the distributions of normalized strains in the right tibia for BMI, the 

left tibia for stature, and the left femur for age for the female models.  Only the parameter 

indicated was allowed to vary in these plots since the other values were held constant at 

the middle value from the ranges.  Figures 4-18a, 4-18b, and 4-18c show the changes in 

the distributions for principal strain for the right tibia for BMI, the left tibia for stature, 

and the left femur for age for the female models.  The female subjects with age 75 years, 

BMI 30 kg/m
2
, and stature 1.731 m and age 75 years, BMI 25 kg/m

2
, and stature 1.507 m 

had normalized strain values that exceeded the ultimate strain value in the pelvis, 

indicating a fracture prediction.  The location predicted for fracture was along the edge of 

top part of the first sacral segment for both subjects.  
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Figure 4-17. Distributions of normalized strains for the right tibia with BMI (top left), the 

left tibia with stature (top right), and the left femur with age (bottom left). 

 

 

Figure 4-18a. Change in distributions of principal strain with BMI for the right tibia. 
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Figure 4-18b. Change in distributions of principal strain with stature for the left tibia. 

 

 

 

Figure 4-18c. Change in distributions of principal strain with age for the left femur. 
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Female Force Results 

The multivariate regression indicated that an increase in BMI from 25 to 35 kg/m
2
 and 

stature from 1.507 m to 1.731 m both caused a significant increase in force at the right 

and left knee.  In addition, an increase in age from 25 years to 75 years caused an 

increase of force at the left knee.  An increase in BMI from 25 to 35 kg/m
2
 and stature 

from 1.507 to 1.731 m caused significant increases in the forces at the right hip, and an 

increase in BMI from 25 to 35 kg/m
2
 caused an increase in force at the left hip.  An 

increase in BMI from 25 to 35 kg/m
2
 caused an increase in force at the right distal tibia, 

while an increase in age from 25 to 75 years and stature from 1.507 to 1.731 m caused a 

significant decrease in force at the left distal tibia. Table 4-9 gives the resulting contact 

forces at the knees, hips, and distal tibias for the female simulations.  Figure 4-19 shows 

the distributions of forces in the right and left knee for BMI and stature, the left knee for 

age, the right hip for BMI and stature, the left hip for BMI, the right distal tibia for age, 

and the left distal tibia for age and stature for the female models.  Only the parameter 

indicated was allowed to vary in these plots since the other values were held constant at 

the middle value from the ranges. 

 

Table 4-9. Female model force results 

Female 

Test ID 

Right 

Knee 

(kN) 

Left 

Knee 

(kN) 

Right 

Hip (kN) 

Left Hip 

(kN) 

Right 

Distal 

Tibia 

(kN) 

Left 

Distal 

Tibia 

(kN) 

F1 0.740 1.045 0.991 1.003 2.117 3.039 

F4 1.304 0.890 1.376 1.673 2.396 3.059 

F7 1.143 0.911 1.158 1.756 3.004 3.460 

F9 1.725 2.230 2.332 1.934 4.327 2.333 

F11 0.826 1.500 0.778 0.703 1.576 1.973 

F15 1.352 2.025 1.745 1.525 2.531 1.610 

F17 1.386 1.851 1.700 2.036 4.468 2.474 

F18 1.612 2.047 2.225 1.958 5.160 2.487 

F19 0.682 0.908 1.005 1.438 2.467 2.721 

F20 0.960 1.927 0.983 0.934 1.665 1.795 

F23 1.335 1.867 1.234 1.361 3.536 2.086 

F24 1.397 2.123 1.474 1.542 3.689 1.356 
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Figure 4-19. Distributions of forces for the female simulations. 

 

Male and Female Kinematics Results 

The kinematics of the spine relative to the lap belt (abdomen compression) was also 

investigated for the application simulations to further investigate the effects of age, BMI, 

and stature.  For the male simulations, an increase in BMI, stature, and age caused an 
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increase in compression of the abdomen.  For the female simulations, an increase in BMI 

and stature caused an increase in compression of the abdomen.   

 

DISCUSSION 

 

Summary 

The development process for the whole-body parametric models with target skeletal 

geometry and material properties was described in this chapter.  Twelve male and twelve 

female models were generated for use in simulations representing a single frontal crash to 

investigate the effects of age, BMI, and stature on lower-extremity injury.  For the male 

simulations, an increase in age caused an increase in normalized strain values (peak strain 

normalized by age-adjusted ultimate strain) in the left femur and pelvis and an increase in 

BMI caused an increase in normalized strain values for the right and left femur.  In 

addition, an increase in BMI and stature both caused a significant increase in force at the 

right and left knee.  For the female simulations, an increase in BMI caused an increase in 

the normalized strains for the right tibia, and an increase in stature caused a decrease in 

the normalized strains for the left tibia.   An increase in age caused an increase in the 

normalized strain for the left femur.  In addition, an increase in BMI and stature both 

caused a significant increase in force at the right and left knee, and an increase in BMI 

caused significant increases in the forces at the right and left hips.  These results indicate 

that, for similar crash conditions, increasing age and BMI cause increases in strain values 

and BMI causes increases in forces such that elderly and higher BMI occupants may be at 

increased risk for lower-extremity injuries, although the effects differ between left and 

right sides of the body. This is likely because of asymmetric lower-extremity posture and 

vehicle-specific factors like differences in left-to-right knee bolster geometry. 

   

BMI Effects 

The strain, force, and kinematic results of the whole-body simulations agree with 

hypotheses that the increase in LX injury risk with BMI is caused by increased amounts 

of adipose tissue over the ASIS with increasing BMI, which prepositions the belt farther 
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above the ASIS.  As a result, the belt has to compress more flesh before it engages 

skeletal structures that can resist belt load. In addition, the severity of the knee bolster 

interaction increases (higher forces are seen at the knees).  

 

Age Effects  

Substantive differences did not exist in kinematics with age.  The effects of age on strain 

can be attributed to the differences in geometry seen with age in the femur and pelvis 

predicted by the models as well as the use of age-dependent material properties in 

simulations.  Figure 4-20 is taken from Figure 2-8 in Chapter II and shows the increase in 

overall cross-section geometry (total area of cross-sections of bone) and the decrease in 

cortical thickness in the femur with age.  It is important to note that these geometric 

changes are not sufficient to produce an increase in strain with age.  In fact, a series of 

simulations of femur response in which material properties were not changed with age 

produce an opposite effect, where strain decreased with increasing age.  This finding 

indicates that it is critical to consider age-related changes in material properties when 

performing simulations with parametric FE models. 

 

 

 

Figure 4-20. The effects of age on femur geometry predicted by the male femur models. 
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Sex and Stature Effects 

Differences exist between men and women in the strains and forces predicted from the 

whole-body model simulations.  Larger strains were predicted for women than for men in 

the right femur, right tibia, and pelvis.  This result agrees with the finding that women are 

at increased risk for injury.  However, it is difficult to determine the reasons for this 

difference due to the separate male and female models used.  The effects of occupant 

characteristics on strains were different for different bones for men and women (femur 

versus tibia and right side versus left side).  Again, the reasons for these differences are 

difficult to determine using the separate models because sex is not a parameter in the 

separate models. The results of the male versus female simulations can be compared for 

stature effects, but the same statures were not used in the models.  Future work could 

develop a model with gender as a parameter, but then the stature effects would be 

difficult to investigate due to these interactions. 

 

Other Effects 

The left versus right sided differences in the effects of age, BMI, and stature on 

normalized strain results were likely due to differences in pre-crash posture.  The right 

foot was positioned on the pedal for each simulation, which caused differences in the 

position of the right foot versus the left foot.  These pre-crash postures were also different 

for varying statures due to the predicted location of the foot relative to the pedal.  These 

differences suggest that posture (and likely vehicle interior geometry) has an effect on 

injury risk.  In addition, the effects of occupant characteristics were not seen for all 

bones.  These findings suggest that existing crash test dummies, such as the Hybrid III 

midsize male, which represent a fit young male (normal BMI), may not be useful for 

studying the effects of occupant characteristics on injury. 

 

The hypotheses that women are at increased risk for foot-ankle injuries, while men are at 

increased risk for KTH injuries, and that men will have more hip injuries compared to 

women and women will have more knee and thigh injuries compared to men were neither 

proved nor disproved by the application simulations.  Meaningful differences were not 

found between knee, thigh, hip, and foot-ankle strain responses for men and women, but 
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further work could determine the differences between men and women and these injuries 

by performing more simulations with similar sizes of men and women to compare 

predicted injury locations.  In addition, the hypothesis that the effects of BMI are greater 

for men could not be tested.  Also, the effect of age causing more KTH injuries was not 

found due to the limited number of simulations.  

 

Knee Bolster Contact 

Every simulation performed in this work resulted in knee-to-knee bolster contact.  In 

most crash test simulations with Hybrid III dummy models and in physical testing with 

these same dummies, the knees of the dummy rarely contact the knee bolster.   This is 

because the dummy has an unrealistic anterior pelvis geometry that results in the ASIS 

always capturing the lap belt.  Assessing lower extremity injury risk could be better 

performed with a dummy with more realistic pelvis geometry, like the THOR midsize 

male, and perhaps with more flesh over the ASIS.  

 

Fore-aft Seat Position 

The fore-aft seat position of the vehicle seat was kept the same in the simulations 

performed in this work, although the location of the hips of the FE model relative to the 

knee bolster was set to size appropriate locations.  As described in the methods, this was 

done for simplicity and because the position was unlikely to meaningfully affect the 

results in the lower extremities.  However, the posture model used can also predict seat 

fore-aft position, and this position is affected by subject characteristics.  Therefore, future 

work should include the varying seat fore-aft positions predicted by the posture model. 

 

Poor Quality Elements 

Some of the whole-body models listed in Tables 4-2 and 4-3 had elements with negative 

Jacobian values, as described in the results above. The areas where most of the bad 

elements occurred were in the soft tissue between the ribcage and pelvis because the 

baseline THUMS model had a smaller area in this region than a human.  The THUMS 

model could be improved before using it for morphing, or a different baseline model 
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could be used.  While it was straightforward to determine where elements with negative 

Jacobian values occurred in the models so that they could be fixed before simulations, a 

few other female models had elements that only caused an issue during simulations.  

These models were the highest BMI models in which the external body surface shape was 

affected by seatbelt locations.  The skin folds predicted by the surface model would 

produce elements that would turn into bad elements during simulations due to 

interactions with the seatbelt.  In these few instances, the location of the shoulder belt 

was changed slightly to allow the simulations to run to completion. 

 

Foot Model 

While the pelvis, femur, and tibia geometries were determined from the existing 

parametric models described in Chapters II and III, the feet were morphed based on 

targets from the external body surface model.  This approach ignores changes in skeletal 

geometry that are not related to changes in external body surface shape.  Considering 

these changes would require a parametric foot model that considers foot skeletal 

geometry.  Such a model should be developed in the future. 
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Chapter V  

Summary and Discussion 

SUMMARY 

 

The lower extremities are the most frequently injured body region in frontal crashes, 

accounting for 36% of all AIS 2+ injuries sustained by front-seat occupants (Kuppa and 

Fessahaie 2003).  The effects of age, sex, and BMI on lower-extremity (LX) injury in 

frontal crashes can best be assessed using a FE model with geometry that is parametric 

with these occupant characteristics.  Therefore, the main goal of this research was to 

develop such a parametric FE whole-body model and use it to begin to explore the effects 

of age, sex, and BMI on variations in LX geometry, material properties, body size, and 

body shape on lower-extremity injury risk.  Male and female finite element models that 

have geometry and material properties that are parametric with, age, BMI, and stature 

were developed and validated in this work.  Simulations were performed with these 

models to investigate the effects of age, sex, and BMI on variations in LX geometry, 

material properties, body size, and body shape, and to begin understanding the effects of 

these variations on lower-extremity injury risk.   

 

Statistical models of femur, tibia, and pelvis surface geometry and femur and tibia cross-

sectional geometry were developed based on CT data and using PCAR methods to 

predict nodal coordinates for the associated predicted geometries.  These models were 

used to investigate the variations in femur, tibia, and pelvis geometry with subject 

parameters.  This work generated parametric models that predict femur, tibia, and pelvis 

geometry based on age, BMI, and stature for men and women.  In addition, age, BMI, 

and stature were found to significantly affect bone geometry.   
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Parametric FE models of the femur, tibia, and pelvis were developed in this work by 

linking the statistical models to meshes of similar bones from a baseline FE model of the 

human occupant from Toyota’s THUMS 4 model, thus allowing the mesh geometries of 

these bones to be predicted based on occupant characteristics.  The ability of the femur 

model (as an example of methods for all lower-extremity bones) to reproduce the 

responses of occupants with different geometry was validated by morphing the model to 

simulate responses of cadaver femurs used in studies of LX injury tolerance reported in 

the literature.  The loading conditions applied to each femur were simulated and 

compared to the predicted and measured responses within and across test series.  The 

validation simulations performed suggest that these types of models produce reasonable 

results compared to previous models and experimental studies.   

 

Parametric FE whole-body models were developed by combining the parametric FE 

pelvis, femur, and tibia models with an external body surface shape model previously 

developed at UMTRI that predicts shape using age, sex, BMI, and stature.  The pelvis, 

femur, and tibia models were fit inside the surface model, and the bone models and the 

external surface model were used to morph the template mesh to develop the whole-body 

models.  Frontal-crash simulations of drivers of different sexes, ages, statures, and BMIs 

were performed with the whole-body models to begin assessing the relative contributions 

of age, sex, and BMI on the risk of LX injury.  Results of these simulations are generally 

consistent with field data and indicate that increases in age and BMI cause increases in 

strains and forces in the lower extremities such that elderly and higher BMI occupants are 

at increased risk for particular types of lower-extremity injuries. However, the effects 

appear to differ between left and right sides of the body, likely because of asymmetric 

lower-extremity posture and vehicle-specific factors like differences in left-to-right knee 

bolster geometry.  The results of the kinematics analysis of the lap belt also agree with 

hypotheses about the increase in compression of the abdomen with BMI.  These 

hypotheses include that the increase in LX injury risk with BMI is caused by increased 

amounts of adipose tissue over the ASIS, which is thought to be because the belt sits 

farther above the ASIS as BMI increases and because the belt has to compress more flesh 
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before it engages skeletal structures that can resist belt load  (Turkovich 2010).  In 

addition, the results from the simulations neither support nor refute the hypotheses about 

sex effects. These hypotheses include that differences in LX injury risk and injury 

patterns with occupant sex may also be caused by differences in the size and shape of LX 

bones between men and women.  Men have a larger bone size, on average, than women, 

consistent with their larger body size (Riggs et al. 2004).  In addition, the differences in 

pelvic-bone anatomy and shape between men and women could explain differences in the 

risk of some LX injuries, i.e., the female acetabulum of the pelvis faces more forward 

than the male acetabulum (Wang et al. 2004).   

 

LIMITATIONS 

 

Development and Validation of the Statistical Models 

 

Sample Size 

The size of the samples used in development of the female femur and tibia statistical 

models could be considered low with 36 female subjects for the femur model and 28 

female subjects for the tibia model (compared to 62 male subjects for the femur and 48 

male subjects for the tibia).  This is especially true in the young end of the distribution 

where a very few number of young female subjects were used.  However, the addition of 

more data is likely not a good use of resources other than to improve the fit of the model 

for younger subjects.  For example, fifteen additional female femurs were added to the 

female femur statistical model, and the new R
2
 value for the external surface geometry 

was 0.75.  Since this value is only slightly higher than the original value (0.74), more data 

is not necessarily useful for the female femur statistical model.  This result would be 

similar for the female tibia statistical model.  Therefore, no additional subjects were 

included in the development of the statistical models since the female subjects cover 

similar ranges in ages and BMIs as the male subjects. 
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Residual Variance 

Residual variance exists in the PCAR models, and this residual variance could be 

considered when generating models of the population.  However, residual variance was 

not considered in the statistical models in this work.   If it was considered, occupants with 

anatomic variants that might affect injury response might be better represented.  No 

methods were developed to consider the residual variance, but PCAR can be used to 

develop such methods.  For example, a term that takes into account the residuals would 

need to be calculated and added to the regression equations along with the terms for the 

parameters.  Future work could consider ways to include more of the residual variance to 

even better fit the subjects the models are trying to represent.  Methods that consider 

more of the residual variance may be able to account for more anatomical variations that 

affect impact response. 

 

Linearity Assumption 

The PCAR methods assume that subject characteristics have a linear effect on PC scores.   

While this assumption is valid and produces reasonable statistical models, a nonlinear 

model may be able to fit the underlying data even better.  For example, the effects of age 

may increase nonlinearly in the older age ranges.  Future work should consider nonlinear 

effects of subject characteristics on PC scores in the regression analysis or nonlinear PCA 

to determine if the linear assumption holds true. 

 

Foot Statistical Model 

For this study, a simple scaled and morphed foot model based on the external body 

surface shape was used in simulations with the FE models described in Chapter IV.  The 

overall trend in foot size should be captured by this method, which should allow for 

reasonable predictions of foot-ankle injury risk.  A statistical model of the foot was not 

included in this study that explicitly considers variations in individual foot bone geometry 

with occupant characteristics that are independent from external geometry.  Eventually 

such a model will need to be developed so that it can be used in the entire lower-

extremity parametric model.   
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Sex 

Separate models were developed for men and women in this study so that the effects of 

age, BMI, and stature on lower extremity injury response in frontal crashes could be 

studied for both sexes.  However, this approach prevents the characterization of sex 

effects on lower extremity injury response.  Sex could have been used as a binary 

variable in one model, instead of two separate models, where male or female were the 

two options.  This type of model would have allowed the effects of sex on injury 

response to be estimated, but such estimates would likely have been confounded with the 

effects of stature, which covaries with sex. 

 

Development and Validation of the Parametric Finite Element Models 

 

Validation Simulations 

The validation simulations performed with the femur served as an example of the 

methods used for validation of parametric models in this work because there were not 

sufficient data in the literature to validate the responses of other body regions of the 

parametric model in a similar manner.  The existing data do not include the necessary 

cross-sectional geometry, material properties, and response data for complete validation.  

Further validation of the femur and other skeletal components as well as the whole lower 

extremity response is needed.  However, the results of the femur validation simulations 

suggest that the process for varying model geometry does not affect model validity, and 

by extension, that the morphed tibia and pelvis models, as well as the entire morphed 

lower extremities, are likely valid. 

 

Material Properties 

Material properties determined from CT were not considered in this work, despite 

previous research that has done exactly this.  Bone density values derived from calibrated 

CT can be used to determine material properties, and CT data, along with relationships 
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between density and material properties, have been used to develop subject-specific FE 

models (e.g., Keaveny et al. 2008 and Keyak and Kalkinstein 2003).  However, other 

studies indicate that the relationship between bone density and material properties may 

vary with predictors of bone geometry, such as age.  For example, Heaney (2003), Nalla 

et al. (2004), and a series of related papers suggest that age-related changes in fracture 

toughness on a material level contribute to increased fracture risk for older adults.  This 

suggests that statistical models of material properties that are based on the spatial 

distribution of bone and bone density for a body region should be supplemented with data 

from physical testing of bone material from that body region.  Parametric material models 

could be generated using methods similar to those described by Bredbenner et al. (2014), 

where CT scan data can be used to determine relationships between density and material 

properties at all locations on the bone.  These density-based models will, at best, apply 

regionally and not at the single element level.  Reasons for this are that such material 

models are not available for a wide range of anatomic regions and that implementing 

these models would fundamentally change the baseline FE model and thus require 

extensive revalidation.   

 

Application of the Parametric Whole-Body Models 

 

Parameters Used in Simulations 

Age, BMI, and stature were varied for the male and female models used in the 

simulations described in Chapter IV.  In addition, pelvis, femur, and tibia material 

properties were varied with age for these models.  However, the location of model hips 

relative to the seat H-point was used, and the posture of the models was determined by 

the external surface model which is based on body shape in a single seat. Fore-aft seat 

position was not varied, and as a result, the pelvis interacted with different parts of the 

seat than it would in a real world situation where an occupant would adjust fore-aft 

position. In addition, the average predicted seatbelt fit was used for each set of 

characteristics by determining the position of the lap belt based on regression equations.  

Seatbelt fit and posture will need to be varied in the future as they are known to affect 
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lower-extremity injury risk.  Eventually material models that consider the effects of bone 

disease will also need to be used in the parametric models.   

 

Simulation Approach 

A Uniform Latin Hypercube design of experiments approach was used in this work to 

determine a reduced set of simulations to begin to explore the effects of occupant 

characteristics on lower-extremity injury.  A reduced set of simulations was needed 

because each simulation requires over 13 hours to run on 80 nodes on cluster space at the 

University of Michigan.  The set of 24 simulations is small, and therefore, the results of 

the simulation study should be considered as an initial investigation into the effects on 

injury.  Despite this small number of simulations, there were some significant trends in 

model predictions with occupant characteristics.  This indicates that the approach used in 

this work represents a reasonable first step in using simulations with parametric FE 

models to explore the effects of occupant characteristics on lower-extremity injury. 

 

Shoes 

The whole body models developed in this work did not include shoes because the 

template THUMS model lacks shoes.  Shoes can affect the response of the lower 

extremities in a crash.  Variations in leg loads can exist and differences in ankle stability 

occur with different sizes of heels (Crandall et al. 1996).  These variations can change 

how the lower leg and foot-ankle regions are loaded in a frontal crash, which can change 

the risk for injury.  However, the large variation in style of shoe worn by drivers makes it 

difficult to determine effects of shoes on lower-extremity injury. 

 

Fracture Prediction 

Although fracture was not simulated in this work, it is possible to implement ultimate 

strain-based failure criteria and use element deletion methods to estimate the effects of 

bone fracture on subsequent injury.   However, fracture prediction is difficult as it is 

affected by mesh quality, density, and element type, and post yield behavior varies with 

age and strain rate.  Fortunately, simulating fracture prediction is not necessary for most 
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applications of parametric FE models as loading should be in the sub-fracture regime. 

Therefore, predicted strain normalized by ultimate strain can be considered in an 

objective function for optimization.   

 

BENEFITS OF PARAMETRIC MODELS  

 

To further investigate the parametric FE models, the benefits of using parametric models 

were quantified by comparing the results of simulations with the male and female 

parametric femur models to simulations with (1) femur models with geometry derived 

from length scaling, (2) the midsize male femur (which represents the scenario in which 

no attempt is made to account for the effects of occupant characteristics on injury), (3) 

femur models with specimen-specific geometry, and (4) femur models with specimen-

specific geometry and yield stress fit to match individual specimen responses. 

 

Comparison between Parametric Models and Scaled/Midsize Models 

The benefits of the parametric FE modeling approach for generating different model 

geometries over traditional geometric scaling methods for the femur were assessed by (1) 

uniformly scaling the THUMS 4 FE femur models in all three axes to match the femurs 

from the Ivarsson study using a scaling ratio determined from femur length, (2) 

performing simulations of the test conditions applied to the femurs in the Ivarsson study, 

and (3) comparing the results of these simulations with similar simulations performed 

using the parametric femur models.  In generating scaled femurs, left femurs were 

generated using a reflection about the long axis of the corresponding right scaled femurs.   

 

In addition, simulations were performed with the unmodified right midsize male THUMS 

4 femur in the 25 test setups for right and left femurs from the Ivarsson study to compare 

the parametric models to the midsize-male model.  The right midsize femur was reflected 

about the long axis to compare simulations with the average left femur to the 12 left-side 

tests.   
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An average material property for the scaled femurs was calculated in the same way as for 

the parametric femurs, and this value (yield stress=160 MPa) was used in the scaled 

femur and midsize-male femur simulations.  Similar to the validation simulations 

described in Chapter III, the errors of the impactor forces at the time of experimental 

failure between the tests and the midsize and scaled simulations were calculated using 

Equation 1, and the differences in the slope values of the force histories between the tests 

and simulations were also determined using the same method as for the parametric 

models. 

 

Percent error = (Simulation–Test)/Test*100% (1) 

 

Comparison between Parametric Models and Specimen-specific Models with and 

without Specimen-specific Yield Stress  

An estimate of the error in parametric model FE predictions that is associated with 

geometry was obtained by comparing the results of simulations of the Ivarsson tests using 

femurs with specimen-specific geometry to the results of corresponding simulations with 

the parametric FE models.  Femur models with specimen-specific geometry were 

developed from CT scans of the PMHS femoral shaft by morphing and fitting the shaft of 

the THUMS 4 femur template mesh onto bone surfaces from the 25 PMHS femurs from 

the Ivarsson study and calculating cortical thickness values along the shafts.  The same 

yield stress value that was used in the validation simulations (140 MPa) was used for all 

simulations to isolate the effects of errors in geometry from those of material properties. 

 

In addition, a specimen-specific yield stress was obtained by optimizing the fit to the 

loading curves for each of the models of the Ivarsson femurs.  The baseline THUMS 

material values were used for all material properties except yield stress.  Impactor force 

errors at the time of experimental failure between the tests and the specimen-specific 

simulations, with and without specimen-specific yield stress, were calculated using 

Equation 1, and the differences in the slope values of the force histories between the tests 

and simulations were also determined.  The results from these comparisons were used to 

assess the relative performance of specimen-specific and parametric models.  The 
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comparisons between the parametric, specimen-specific, and specimen-specific yield 

stress models provided an estimate of the contributions of geometry and material 

properties to model errors. 

 

Benefits of Parametric Models Results 

The average error in peak force (5%) and the average slope (-1%) predicted by the 

parametric models were provided in Chapter III.  Figure 5-1 shows boxplots of the 

distributions of differences between impactor forces at the time of experimental failure 

for the tests and parametric simulations and distributions of differences between the slope 

of the force histories from the time of impactor contact until the time of fracture between 

the experimentally measured results and the simulation results.  The first box plot on the 

left gives the percent error for the force, and the first box plot on the right gives percent 

error for slope.  

 

 

Figure 5-1. Distributions of percent differences between peak impactor forces (left) and 

slopes (right) for the experimentally measured test results and the values for parametric, 

scaled, midsize, specimen-specific, and yield stress fit results. 
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The next two box plots on the left side of Figure 5-1 show the distributions of differences 

between peak impactor forces for the experimentally measured results and the results of 

the scaled and midsize femur simulations.  The average error for the scaled femurs was -

18% and the average error for the midsize femurs was -20%.  Therefore, the parametric 

femurs had the lowest average error of the 3 sets of simulations (parametric, scaled, and 

midsize femur simulations) at 5%.  The parametric femurs also had the lowest absolute 

average error at 18% compared to scaled at 19% and midsize at 21%.  The results for the 

slope values follow similar trends, as can be seen on the right side of Figure 5-1.  The 

values for and the average and absolute errors in peak forces and slopes for each of the 

midsize and scaled tests are provided in Appendix G. 

 

The last two box plots on the left side of Figure 5-1 show the distributions of differences 

between the experimentally measured results and the results of the specimen-specific 

with and without specimen-specific yield stress femur simulations.  The average error for 

the specimen-specific femurs was -14% and the average error for the yield stress fit 

femurs was -4%.  Therefore, the parametric femur models had similar error to the yield 

stress fit specimen-specific models.  The parametric femurs also had similar absolute 

error to the specimen-specific with and without specimen-specific yield stress femurs.   

The results for the slope values follow similar trends, as can be seen on the right side of 

Figure 5-1.  The values for and the average and absolute errors in peak forces at the time 

of fracture in the tests and slopes for each of the specimen-specific with and without 

specimen-specific yield stress tests are provided in Appendix G.  The response curves for 

all parametric, scaled, midsize, specimen-specific, and yield stress fit specimen-specific 

simulations are provided in Appendix H. 

 

Similar to the results of previous parametric model studies (Gayzik et al. 2008; Li et al. 

2011; Shi et al. 2015), the results of this study indicate that parametric models can, on 

average, more accurately predict human responses than models of different sizes 

developed using simple scaling methods.  Comparisons of parametric model predictions 

to the predictions of FE models generated using the different approaches to simulating 

population variability in geometry indicated that the average error in the peak force was 
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much smaller for the parametric models (5%) than for either the midsize-male femur 

model (-18%) or the uniformly scaled femur models (-20%).  In addition, the error in 

peak force for the parametric models (5%) was similar to the error in peak force for the 

specimen-specific models with an individually fit yield stress (-4%).  The error in peak 

force for the specimen-specific geometry only models was larger than the parametric 

models due to the average material property better fitting the parametric model results.  

While these results only apply to the femur, they are likely generalizable to long bones, 

such as the tibia, where similar errors in geometry and similar material properties are 

expected. 

 

FUTURE WORK 

 

Population-Based Simulations 

The parametric modeling approach proposed in this work enables the use of whole-body 

FE models for population-based simulations.  Such population-based simulations are 

performed by using the parametric model to generate FE models with geometries that 

span the ranges of distributions of occupant characteristics and using these models in 

simulations of crashes.  Given that the relative exposure of occupants with different 

characteristics involved in crashes is known from real world crash injury data, simulation 

results can be weighted to estimate population response and injury risk.  For example, if 

more elderly occupants experience a certain type of injury in a certain type of crash, then 

this can be taken into account when running that type of crash simulation. 

 

Effects of Muscle Forces on Lower-extremity Injury Risk 

While no muscle models were included in this work, the effects of muscle forces on 

lower-extremity injury risk cannot be ignored.  For example, Chang (2009) proved that 

muscle tension increases knee impact forces by increasing the effective mass of the KTH 

complex due to tighter coupling of muscle mass to bone.  Age, BMI, and stature will 

have an effect on muscle tension in both men and women in crashes, and eventually 

muscle models should eventually be included in parametric models.  
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Residual Variance 

As described above, the statistical models do not incorporate residual variance into their 

predictions, which means the parametric FE models do not consider residual variance as 

well.  To include residual variance in the simulations with FE models, a term that takes 

into account the residuals in the statistical models would need to be added to the 

regression equations.  Then the parametric models would account for the residuals since 

the statistical models predict the locations of nodal coordinates for the parametric FE 

models, and simulations with the FE models would consider residuals, as well. 

 

Validation Simulations 

The shafts of the femur models were the only component of the lower-extremity FE 

models that were validated using PMHS data due to the lack of necessary information in 

most other PMHS studies.  Validation simulations need to be performed with the whole 

femur, tibia, and pelvis, as well as all lower-extremity components combined, and then 

with the whole-body model.  However, very few studies exist with the necessary 

information on cross-sectional geometry, external geometry, response data, and posture 

that are needed to completely validate the lower-extremity or whole-body models.  Once 

sufficient data is found or becomes available, the validation simulations can be performed 

using similar methods to the FE femur model validation described in Chapter III in which 

the ability of the femur model to reproduce the responses of subjects with different 

geometry was validated.   Further validation of the femur and validation of the tibia and 

pelvis should be one of the main focuses of future work, as well as validation of the lower 

extremities combined.  However, future work should also focus on performing PMHS 

tests with the necessary detail for complete validation so that the validations can be done. 

 

Effects of Occupant Characteristics on Lower-extremity Injury Risk 

Only one series of application simulations in a frontal crash scenario with the whole-body 

model was performed in this work because the lower extremities are the most frequently 

injured body region in frontal crashes sustained by front-seat occupants (Kuppa and 
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Fessahaie 2003).  Eventually more simulations with an improved whole-body model will 

be necessary to further investigate the effects of subject characteristics on lower-

extremity injuries and other body region injuries.  For example, more simulations than 

the 24 performed in this work could be performed to cover more of the ranges of ages, 

statures, and BMIs for both sexes seen in the crash-involved population.  In addition, 

different boundary conditions than the 56 kph frontal crash scenario could be used.  Other 

parameters such as seatbelt fit and posture could be varied with occupant characteristics 

instead of choosing the average fit or posture.  Finally, all other parameters mentioned in 

the discussion of Chapter IV above could also be included such as seat position and 

material properties.  All of these future simulations can be used to design better occupant 

protection systems to protect the entire population (not only the vulnerable populations of 

female, elderly, and high BMI occupants).  Parametric material models especially should 

be one of the main focuses of future work since material properties also vary significantly 

with occupant characteristics, as has been described previously.  In addition, analyses of 

the future simulations should include nonlinear effects, particular those of age.  Next 

steps for this work include using all 27 male and 27 female models generated as 

described in Chapter IV to run simulations in the frontal crash scenario, as well as 

generating models where one parameter is varied at a time while the other two parameters 

are held constant for the male and female models and performing frontal crash 

simulations with those models.  This second set of simulations allow for independent 

estimates of the effects of occupant characteristics on injury at the expense of realistic 

simulations.  In addition, more than 27 female and 27 male models will be developed to 

further investigate the effects of age seen at ages above 50 years.   
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Chapter VI  

Conclusions 

 

The effects of age, sex, and BMI on variations in LX geometry, material properties, body 

size, and body shape were investigated in this work to begin understanding the effects of 

these variations on lower-extremity injury risk.  This was accomplished by developing, 

validating, and performing simulations with male and female human-body finite element 

models that have geometry and material properties that are parametric with, age, BMI, 

and stature.  Major contributions of this work include: 

 

 Using principal component analysis and regression analysis to develop statistical 

models that predict the external surface geometry of the pelvis, femur, and tibia as 

functions of age, BMI, and a size parameter reasonably well.   

 Validating the parametric FE femur model successfully as an example of new 

validation methods by matching the mean overall in the experimental dataset and 

following the trends in the dataset. 

 That this is one of the first applications of whole-body model development using 

morphing of body shape, posture, and skeletal geometry. 

 Performing frontal-crash simulations of drivers of different ages, statures, and 

BMIs with 12 male and 12 female whole-body models to begin assessing the 

relative contributions of age, sex, and BMI on the risk of LX injury. 

 That age and BMI significantly affect the response of the lower-extremities in 

frontal crash simulations such that an increase in age and BMI caused increases in 

predicted risk of injuries, agreeing with the hypotheses that elderly and high BMI 

occupants are at increased risk for lower-extremity injuries. 

 Developing whole-body models that can eventually be used to design occupant 

protection systems to reduce the risk of lower extremity injuries for vulnerable 

populations, as well as the entire population. 
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13BAppendices 

APPENDIX A 

 

Mathematica code for radial basis function interpolation from Bennink et al. (2006): 

 

Options[RadialBasisInterpolation] = 

{RadialBasisNorm → Automatic, Smoothness 0.}; 

ThinPlateSplineNorm[1] = 

Compile [{{#1, _Real, 1}}, √( #1.#1)]; 

ThinPlateSplineNorm[2] = 

Compile[{{#1, _Real, 1}}, 

(If[#1>0., #1[Log[√#1], 0.] &) [#1.#1]; 

ThinPlateSplineNorm[p_ ?OddQ] = 

Compile[{{#1, _Real, 1}},( #1.#1)
p/2

, {{p, _Integer}}]; 

ThinPlateSplineNorm[p_ ?EvenQ] = 

Compile[{{#1, _Real, 1}}, 

(If [#1>0., #1
p/2 

Log[√#1] , 0.] &} [#1.#1], {{p, _Integer}}] ; 

GaussianNorm[σ _] = Compile[{{#1, _Real, 1}}, 

(If[#1>0.,  
 
   

   , 1.] &) [#1.#1], , {{σ_Real}}]; 

RadialBasisInterpolation[data_List, opts___?OptionQ] := 

Module[{points, values, n, pointDim, valueDims,  

valueRank, ɸ, B, Q, O, A, λ, x, w, a, slots}, 

{ɸ,λ} = (RadialBasisNorm, Smoothness) /. {opts} /. 

Options[RadialBasisInterpolation]; 

{points, values} = N[Transpose[data]]; 

If[Depth[points] == 2, points = List /@ points]; 

{n, pointDim} = Dimensions[points]; 

valueDims = Rest[Dimensions[values]]; 

valueRank = Length[valueDims]; 

If[ɸ == Automatic, 

ɸ = ThinPlateSplineNorm[Max[2, pointDim]]]; 

O = Table[0., {pointDim + 1} , {pointDim + 1}]; 

B = Outer[ɸ[ #1 - #2] &, points, points, 1]; 

Q = (Prepend[#1, 1] &) /@ points; 

A = MapThread[Join, 
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MapThread[Join, (
                       

   
)    

b = PadRight[Transpose[values, 

RotateRight[Range[valueRank + 1]]], 

Append[valueDims, n pointDim + 1] , 0]; 

x = Map[LinearSolve[A, #1] &, b, {valueRank}]; 

w = Map[Take[#1, n] &, x, {valueRank}]; 

a = Map[Take[#1, -(pointDim  + 1)] &, x, {valueRank}]; 

slots = Array[Slot, {pointDim}]; 

(Compile[#1, #3.#4 /@ Transpose [#5-  #6] + #2, 

{{#4[ _] , _Real, 0}}] &) [({#1, _Real} &) /@ slots, 

a.Prepend[slots, 1] , w, ɸ, slots, Transpose[points]]] 

 

Mathematica code for an example of radial basis function morphing from Bennink et al. 

(2006): 

 

source = Table[Random[Real, {10, 90}], {7} , {2}]; 

target = source + Table[Random[Real, {-5, 5}], {7} , {2}]; 

grid = Table[{x, y} , {x, 1, 100, 2.5} , {y, 1, 100, 2.5}]; 

Show[Graphics[{Gray, Line/@ grid, Line/@grid
T
 , Blue, 

PointSize[0.02] , Point/@source, Red, 

Circle[#1, 2] &/@ target}], AspectRatio→1, Frame→True]; 

rbn [v_] := If[#== 0, 0.5, 
          

 

 
√  

 

 
√ 

] & [v.v]; 

rbi = RadialBasisInterpolation[{source, target}
T
 , RadialBasisNorm→rbn]; 

newgrid = Map[rbi @@ #1 &, grid, {2}]; 

Show[Graphics[{Gray, Line/@newgrid, Lin/@ newgrid
T
, 

PointSize[0.02], Blue, Point /@ (rbi @@ #1 &) /@ source, 

Red, (Circle[#, 2] &) /@target}], AspectRatio→1, Frame→True]; 
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APPENDIX B 

 

 

Table B-1. Subject characteristics from Ivarsson et al. (2009) data 

Test ID 
Subject 

ID 
Femur Side 

Age 

(years) 

Femur 

Length (m) 

BMI 

(kg/m
2
) 

Gender 

1.01 373 Left 51 0.548 19.5 Male 

1.02 373 Right 51 0.548 19.5 Male 

1.03 374 Left 62 0.491 27.2 Male 

1.04 374 Right 62 0.491 27.2 Male 

1.05 375 Left 62 0.484 25.9 Male 

1.06 375 Right 62 0.484 25.9 Male 

1.07 376 Left 49 0.572 26.8 Male 

1.08 376 Right 49 0.572 26.8 Male 

1.09 377 Right 62 0.501 29.1 Male 

1.10 378 Left 44 0.512 22.0 Male 

1.11 378 Right 44 0.512 22.0 Male 

1.12 379 Left 58 0.525 42.1 Male 

1.13 379 Right 58 0.525 42.1 Male 

1.14 380 Left 65 0.496 27.2 Male 

1.15 380 Right 65 0.496 27.2 Male 

1.16 381 Left 53 0.488 18.5 Male 

1.17 381 Right 53 0.488 18.5 Male 

1.18 382 Left 64 0.445 31.7 Female 

1.19 382 Right 64 0.445 31.7 Female 

1.20 383 Left 40 0.430 20.0 Female 

1.21 383 Right 40 0.430 20.0 Female 

1.22 387 Left 45 0.436 38.3 Female 

1.23 387 Right 45 0.436 38.3 Female 

1.26 389 Left 50 0.440 23.3 Female 

1.27 389 Right 50 0.440 23.3 Female 
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APPENDIX C 

 

Table C-2. Percent differences between impactor forces for experimentally measured and 

parametric simulations at time of failure 

Test 

ID 

Subject 

ID 

Femur 

Side 
Gender 

Test 

Force 

(kN) 

Parametric 

Force 

(kN) 

Percent 

Difference 

Absolute 

Percent 

Difference 

1.01 373 L M -5.00 -4.26 -15 15 

1.02 373 R M -2.48 -2.18 -12 12 

1.03 374 L M -3.78 -4.58 21 21 

1.04 374 R M -6.88 -6.59 -4 4 

1.05 375 L M -5.48 -6.14 12 12 

1.06 375 R M -7.40 -7.71 4 4 

1.07 376 L M -5.44 -4.67 -14 14 

1.08 376 R M -7.47 -5.80 -22 22 

1.09 377 R M -6.31 -7.87 25 25 

1.10 378 L M -6.23 -4.65 -25 25 

1.11 378 R M -6.66 -6.30 -5 5 

1.12 379 L M -9.66 -10.53 9 9 

1.13 379 R M -9.70 -8.44 -13 13 

1.14 380 L M -5.47 -7.81 43 43 

1.15 380 R M -3.58 -4.48 25 25 

1.16 381 L M -6.18 -6.79 10 10 

1.17 381 R M -6.30 -7.64 21 21 

1.18 382 L F -5.21 -6.71 29 29 

1.19 382 R F -2.56 -2.78 8 8 

1.20 383 L F -5.07 -4.54 -10 10 

1.21 383 R F -6.48 -5.53 -15 15 

1.22 387 L F -4.30 -5.77 34 34 

1.23 387 R F -3.97 -5.91 49 49 

1.26 389 L F -7.09 -5.67 -20 20 

1.27 389 R F -6.69 -5.99 -10 10 

Mean    -5.8 -6.0 5 18 

SD    1.8 1.8 21 12 
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Table C-3. Percent differences between slope values for experimentally measured and 

parametric simulations from time of contact until time of failure 

Test 

ID 

Subject 

ID 

Femur 

Side 
Gender 

Test 

Slope 

(kN/s) 

Parametric 

Slope 

(kN/s) 

Percent 

Difference 

Absolute 

Percent 

Difference 

1.01 373 L M -173 -138 -20 20 

1.02 373 R M -225 -174 -23 23 

1.03 374 L M -516 -611 18 18 

1.04 374 R M -450 -393 -13 13 

1.05 375 L M -615 -659 7 7 

1.06 375 R M -643 -634 -1 1 

1.07 376 L M -534 -464 -13 13 

1.08 376 R M -469 -353 -25 25 

1.09 377 R M -560 -688 23 23 

1.10 378 L M -375 -235 -37 37 

1.11 378 R M -524 -446 -15 15 

1.12 379 L M -638 -715 12 12 

1.13 379 R M -709 -593 -16 16 

1.14 380 L M -405 -587 45 45 

1.15 380 R M -331 -393 19 19 

1.16 381 L M -367 -378 3 3 

1.17 381 R M -450 -498 11 11 

1.18 382 L F -476 -526 11 11 

1.19 382 R F -368 -397 8 8 

1.20 383 L F -468 -403 -14 14 

1.21 383 R F -362 -304 -16 16 

1.22 387 L F -497 -592 19 19 

1.23 387 R F -486 -665 37 37 

1.26 389 L F -562 -407 -28 28 

1.27 389 R F -604 -523 -13 13 

Mean    -472 -471 -1 18 

SD    128 159 21 10 
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APPENDIX D 
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Figure D-1. Impactor force histories for the parametric model simulations compared to 

the experimentally measured results. 
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APPENDIX E 

 

Table E-4. Examples of male morphed models 
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Table E-5. Examples of female morphed models 
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APPENDIX F 

  

Table F-6. List of subject characteristics 
Female Models Male Models 

Female 

Test ID 

Age 

(years) 

BMI 

(kg/m
2
) 

Stature 

(m) 

Male 

Test ID 

Age 

(years) 

BMI 

(kg/m
2
) 

Stature 

(m) 

F1 25 25 1.507 M1 25 25 1.636 

F2 25 25 1.622 M2 25 25 1.763 

F3 25 25 1.731 M3 25 25 1.887 

F4 25 30 1.507 M4 25 30 1.636 

F5 25 30 1.622 M5 25 30 1.763 

F6 25 30 1.731 M6 25 30 1.887 

F7 25 35 1.507 M7 25 35 1.636 

F8 25 35 1.622 M8 25 35 1.763 

F9 25 35 1.731 M9 25 35 1.887 

F10 50 25 1.507 M10 50 25 1.636 

F11 50 25 1.622 M11 50 25 1.763 

F12 50 25 1.731 M12 50 25 1.887 

F13 50 30 1.507 M13 50 30 1.636 

F14 50 30 1.622 M14 50 30 1.763 

F15 50 30 1.731 M15 50 30 1.887 

F16 50 35 1.507 M16 50 35 1.636 

F17 50 35 1.622 M17 50 35 1.763 

F18 50 35 1.731 M18 50 35 1.887 

F19 75 25 1.507 M19 75 25 1.636 

F20 75 25 1.622 M20 75 25 1.763 

F21 75 25 1.731 M21 75 25 1.887 

F22 75 30 1.507 M22 75 30 1.636 

F23 75 30 1.622 M23 75 30 1.763 

F24 75 30 1.731 M24 75 30 1.887 

F25 75 35 1.507 M25 75 35 1.636 

F26 75 35 1.622 M26 75 35 1.763 

F27 75 35 1.731 M27 75 35 1.887 
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APPENDIX G 

 

Table G-7. Percent differences between peak impactor forces for experimentally 

measured test results and parametric, scaled, midsize, specimen-specific, and specimen-

specific with yield stress fit femur simulations at time of failure 

 
Parametric 

Models 

Scaled 

Models 

Midsize 

Models 

Specimen-
specific 

Models 

Yield Stress 

Fit Models 

T
es

t 
ID

 

S
u

b
je

ct
 I

D
 

F
em

u
r 

S
id

e 

S
ex

 Test 
Force 

(kN) 

Force 

(kN) 

% 

Diff.  

Force 

(kN) 

% 

Diff.  

Force 

(kN) 

% 

Diff.  

Force 

(kN) 

% 

Diff.  

Force 

(kN) 

% 

Diff.  

1.01 373 L M -5.00 -4.26 -15 -4.50 -10 -4.24 -15 -3.28 -34 -3.28 -34 

1.02 373 R M -2.48 -2.18 -12 -1.36 -45 -1.27 -49 -1.79 -28 -2.21 -11 

1.03 374 L M -3.78 -4.58 21 -3.21 -15 -3.62 -4 -2.89 -23 -2.89 -23 

1.04 374 R M -6.88 -6.59 -4 -4.43 -36 -4.38 -36 -7.21 5 -6.59 -4 

1.05 375 L M -5.48 -6.14 12 -4.32 -21 -4.08 -26 -6.09 11 -6.07 11 

1.06 375 R M -7.40 -7.71 4 -5.45 -26 -5.47 -26 -7.26 -2 -7.71 4 

1.07 376 L M -5.44 -4.67 -14 -5.33 -2 -4.11 -24 -4.30 -21 -3.71 -32 

1.08 376 R M -7.47 -5.80 -22 -6.68 -11 -4.35 -42 -5.50 -26 -4.86 -35 

1.09 377 R M -6.31 -7.87 25 -6.12 -3 -5.84 -7 -7.54 19 -8.16 29 

1.10 378 L M -6.23 -4.65 -25 -5.32 -15 -4.16 -33 -3.40 -45 -3.62 -42 

1.11 378 R M -6.66 -6.30 -5 -6.08 -9 -5.32 -20 -5.67 -15 -6.74 1 

1.12 379 L M -9.66 -10.53 9 -6.61 -32 -6.65 -31 -11.91 23 -10.89 13 

1.13 379 R M -9.70 -8.44 -13 -6.03 -38 -4.65 -52 -8.88 -8 -8.08 -17 

1.14 380 L M -5.47 -7.81 43 -5.79 6 -4.88 -11 -4.61 -16 -4.66 -15 

1.15 380 R M -3.58 -4.48 25 -2.81 -21 -2.46 -31 -2.23 -38 -4.84 35 

1.16 381 L M -6.18 -6.79 10 -5.65 -8 -5.44 -12 -5.18 -16 -5.26 -15 

1.17 381 R M -6.30 -7.64 21 -6.11 -3 -5.68 -10 -5.78 -8 -7.72 22 

1.18 382 L F -5.21 -6.71 29 -4.53 -13 -5.01 -4 -5.31 2 -5.41 4 

1.19 382 R F -2.56 -2.78 8 -1.89 -26 -2.09 -19 -2.25 -12 -3.30 29 

1.20 383 L F -5.07 -4.54 -10 -3.95 -22 -4.86 -4 -3.07 -40 -3.16 -38 

1.21 383 R F -6.48 -5.53 -15 -4.89 -25 -5.66 -13 -4.21 -35 -6.66 3 

1.22 387 L F -4.30 -5.77 34 -4.34 1 -4.70 9 -4.25 -1 -4.02 -6 

1.23 387 R F -3.97 -5.91 49 -2.88 -28 -3.41 -14 -2.92 -27 -5.70 44 

1.26 389 L F -7.09 -5.67 -20 -4.78 -33 -5.47 -23 -6.03 -15 -5.83 -18 

1.27 389 R F -6.69 -5.99 -10 -5.40 -19 -5.76 -14 -6.13 -8 -6.00 -10 

Mean    -5.8 -6.0 5 -4.7 -18 -4.5 -20 -5.1 -14 -5.5 -4 

SD    1.8 1.8 21 1.4 13 1.3 15 2.3 18 2.0 24 
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Table G-8. Absolute percent differences between peak impactor forces for experimentally 

measured test results and parametric, scaled, midsize, specimen-specific, and specimen-

specific with yield stress fit femur simulations at time of failure 

 
Parametric 

Models 

Scaled 

Models 

Midsize 

Models 

Specimen-

specific 
Models 

Yield Stress 

Fit Models 

T
es

t 
ID

 

S
u

b
je

ct
 I

D
 

F
em

u
r 

S
id

e 

S
ex

 Test 

Force 
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(kN) 
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Force 
(kN) 

% 
Diff.  

Force 
(kN) 

% 
Diff.  

Force 
(kN) 

% 
Diff.  

Force 
(kN) 

% 
Diff.  

1.01 373 L M -5.00 -4.26 15 -4.50 10 -4.24 15 -3.28 34 -3.28 34 

1.02 373 R M -2.48 -2.18 12 -1.36 45 -1.27 49 -1.79 28 -2.21 11 

1.03 374 L M -3.78 -4.58 21 -3.21 15 -3.62 4 -2.89 23 -2.89 23 

1.04 374 R M -6.88 -6.59 4 -4.43 36 -4.38 36 -7.21 5 -6.59 4 

1.05 375 L M -5.48 -6.14 12 -4.32 21 -4.08 26 -6.09 11 -6.07 11 

1.06 375 R M -7.40 -7.71 4 -5.45 26 -5.47 26 -7.26 2 -7.71 4 

1.07 376 L M -5.44 -4.67 14 -5.33 2 -4.11 24 -4.30 21 -3.71 32 

1.08 376 R M -7.47 -5.80 22 -6.68 11 -4.35 42 -5.50 26 -4.86 35 

1.09 377 R M -6.31 -7.87 25 -6.12 3 -5.84 7 -7.54 19 -8.16 29 

1.10 378 L M -6.23 -4.65 25 -5.32 15 -4.16 33 -3.40 45 -3.62 42 

1.11 378 R M -6.66 -6.30 5 -6.08 9 -5.32 20 -5.67 15 -6.74 1 

1.12 379 L M -9.66 -10.53 9 -6.61 32 -6.65 31 -11.91 23 -10.89 13 

1.13 379 R M -9.70 -8.44 13 -6.03 38 -4.65 52 -8.88 8 -8.08 17 

1.14 380 L M -5.47 -7.81 43 -5.79 6 -4.88 11 -4.61 16 -4.66 15 

1.15 380 R M -3.58 -4.48 25 -2.81 21 -2.46 31 -2.23 38 -4.84 35 

1.16 381 L M -6.18 -6.79 10 -5.65 8 -5.44 12 -5.18 16 -5.26 15 

1.17 381 R M -6.30 -7.64 21 -6.11 3 -5.68 10 -5.78 8 -7.72 22 

1.18 382 L F -5.21 -6.71 29 -4.53 13 -5.01 4 -5.31 2 -5.41 4 

1.19 382 R F -2.56 -2.78 8 -1.89 26 -2.09 19 -2.25 12 -3.30 29 

1.20 383 L F -5.07 -4.54 10 -3.95 22 -4.86 4 -3.07 40 -3.16 38 

1.21 383 R F -6.48 -5.53 15 -4.89 25 -5.66 13 -4.21 35 -6.66 3 

1.22 387 L F -4.30 -5.77 34 -4.34 1 -4.70 9 -4.25 1 -4.02 6 

1.23 387 R F -3.97 -5.91 49 -2.88 28 -3.41 14 -2.92 27 -5.70 44 

1.26 389 L F -7.09 -5.67 20 -4.78 33 -5.47 23 -6.03 15 -5.83 18 

1.27 389 R F -6.69 -5.99 10 -5.40 19 -5.76 14 -6.13 8 -6.00 10 

Mean    -5.8 -6.0 18 -4.7 19 -4.5 21 -5.1 19 -5.5 20 

SD    1.8 1.8 12 1.4 1 1.3 14 2.3 13 2.0 13 
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Table G-9. Percent differences between slope values for experimentally measured test 

results and parametric, scaled, midsize, specimen-specific, and specimen-specific with 

yield stress fit femur simulations from time of contact until time of failure 
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1.01 373 L M -173 -138 -20 -124 -28 -125 -28 -92 -47 -92 -47 

1.02 373 R M -225 -174 -23 -81 -64 -93 -59 -156 -31 -190 -16 

1.03 374 L M -516 -611 18 -404 -22 -413 -20 -406 -21 -406 -21 

1.04 374 R M -450 -393 -13 -215 -52 -212 -53 -441 -2 -390 -13 

1.05 375 L M -615 -659 7 -421 -32 -387 -37 -674 10 -674 10 

1.06 375 R M -643 -634 -1 -442 -31 -442 -31 -606 -6 -624 -3 

1.07 376 L M -534 -464 -13 -386 -28 -360 -33 -458 -14 -388 -27 

1.08 376 R M -469 -353 -25 -332 -29 -269 -43 -362 -23 -330 -30 

1.09 377 R M -560 -688 23 -479 -15 -459 -18 -620 11 -681 22 

1.10 378 L M -375 -235 -37 -226 -40 -190 -49 -173 -54 -187 -50 

1.11 378 R M -524 -446 -15 -373 -29 -346 -34 -398 -24 -450 -14 

1.12 379 L M -638 -715 12 -412 -35 -415 -35 -776 22 -713 12 

1.13 379 R M -709 -593 -16 -436 -39 -348 -51 -659 -7 -579 -18 

1.14 380 L M -405 -587 45 -389 -4 -350 -14 -347 -14 -348 -14 

1.15 380 R M -331 -393 19 -227 -31 -166 -50 -147 -56 -380 15 

1.16 381 L M -367 -378 3 -289 -21 -289 -21 -284 -23 -286 -22 

1.17 381 R M -450 -498 11 -414 -8 -380 -16 -380 -16 -498 11 

1.18 382 L F -476 -526 11 -345 -27 -370 -22 -404 -15 -407 -15 

1.19 382 R F -368 -397 8 -216 -41 -245 -33 -291 -21 -436 18 

1.20 383 L F -468 -403 -14 -308 -34 -335 -28 -257 -45 -264 -44 

1.21 383 R F -362 -304 -16 -264 -27 -298 -18 -213 -41 -389 7 

1.22 387 L F -497 -592 19 -429 -14 -480 -4 -436 -12 -425 -14 

1.23 387 R F -486 -665 37 -274 -44 -367 -25 -335 -31 -652 34 

1.26 389 L F -562 -407 -28 -336 -40 -371 -34 -438 -22 -431 -23 

1.27 389 R F -604 -523 -13 -445 -26 -466 -23 -518 -14 -509 -16 

Mean    -472 -471 -1 -331 -31 -327 -31 -395 -20 -429 -10 

SD    128 159 21 105 13 106 14 177 19 162 22 
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Table G-10. Absolute percent differences between slope values for experimentally 

measured test results and parametric, scaled, midsize, specimen-specific, and specimen-

specific with yield stress fit femur simulations from time of contact until time of failure 
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1.01 373 L M -173 -138 20 -124 28 -125 28 -92 47 -92 47 

1.02 373 R M -225 -174 23 -81 64 -93 59 -156 31 -190 16 

1.03 374 L M -516 -611 18 -404 22 -413 20 -406 21 -406 21 

1.04 374 R M -450 -393 13 -215 52 -212 53 -441 2 -390 13 

1.05 375 L M -615 -659 7 -421 32 -387 37 -674 10 -674 10 

1.06 375 R M -643 -634 1 -442 31 -442 31 -606 6 -624 3 

1.07 376 L M -534 -464 13 -386 28 -360 33 -458 14 -388 27 

1.08 376 R M -469 -353 25 -332 29 -269 43 -362 23 -330 30 

1.09 377 R M -560 -688 23 -479 15 -459 18 -620 11 -681 22 

1.10 378 L M -375 -235 37 -226 40 -190 49 -173 54 -187 50 

1.11 378 R M -524 -446 15 -373 29 -346 34 -398 24 -450 14 

1.12 379 L M -638 -715 12 -412 35 -415 35 -776 22 -713 12 

1.13 379 R M -709 -593 16 -436 39 -348 51 -659 7 -579 18 

1.14 380 L M -405 -587 45 -389 4 -350 14 -347 14 -348 14 

1.15 380 R M -331 -393 19 -227 31 -166 50 -147 56 -380 15 

1.16 381 L M -367 -378 3 -289 21 -289 21 -284 23 -286 22 

1.17 381 R M -450 -498 11 -414 8 -380 16 -380 16 -498 11 

1.18 382 L F -476 -526 11 -345 27 -370 22 -404 15 -407 15 

1.19 382 R F -368 -397 8 -216 41 -245 33 -291 21 -436 18 

1.20 383 L F -468 -403 14 -308 34 -335 28 -257 45 -264 44 

1.21 383 R F -362 -304 16 -264 27 -298 18 -213 41 -389 7 

1.22 387 L F -497 -592 19 -429 14 -480 4 -436 12 -425 14 

1.23 387 R F -486 -665 37 -274 44 -367 25 -335 31 -652 34 

1.26 389 L F -562 -407 28 -336 40 -371 34 -438 22 -431 23 

1.27 389 R F -604 -523 13 -445 26 -466 23 -518 14 -509 16 

Mean    -472 -471 18 -331 31 -327 31 -395 23 -429 21 

SD    128 159 10 105 13 106 14 177 15 162 12 
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Figure H-2. Time histories of impactor forces for the parametric model simulations, 

scaled THUMS 4, midsize THUMS 4, specimen-specific, and specimen-specific with 

yield stress fit simulations compared to the experimentally measured test results. 
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