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Abstract

Homogeneous charge compression ignition (HCCI) combustion has been investigated by many

researchers as a way to improve gasoline engine fuel economy through highly dilute unthrottled

operation while maintaining acceptable tailpipe emissions. A major concern for successful imple-

mentation of HCCI is that it’s feasible operating region is limited to a subset of the full engine

regime, which necessitates mode transitions between HCCI and traditional spark ignition (SI)

combustion when the HCCI region is entered/exited. The goal of this dissertation is to develop a

methodology for control-oriented modeling and model-based feedback control during such SI/HCCI

mode transitions. The model-based feedback control approach is sought as an alternative to those

in the SI/HCCI transition literature, which predominantly employ open-loop experimentally derived

actuator sequences for generation of control input trajectories. A model-based feedback approach has

advantages both for calibration simplicity and controller generality, in that open-loop sequences do

not have to be tuned, and that use of nonlinear model-based calculations and online measurements

allows the controller to inherently generalize across multiple operating points and compensate for

case-by-case disturbances.

In the dissertation, a low-order mean value modeling approach for multi-mode SI/HCCI com-

bustion that is tractable for control design is described, and controllers for both the SI to HCCI

(SI-HCCI) and HCCI to SI (HCCI-SI) transition are developed based on the modeling approach.

The model is shown to fit a wide range of steady-state actuator sweep data containing conditions

pertinent to SI/HCCI mode transitions, and is extended to capture transient SI-HCCI transition

data through using an augmented residual gas temperature parameter. The mode transition con-

trollers are experimentally shown to carry out SI-HCCI and HCCI-SI transitions in several operating

conditions with minimal tuning, though the validation in the SI-HCCI direction is more extensive.

The model-based control architecture is also equipped with an online parameter updating routine,

to attenuate error in model-based calculations and improve robustness to engine aging and cylinder

to cylinder variability. Experimental examples at multiple operating conditions illustrate the ability

of the parameter update routine to improve controller performance by using transient data to tune

the model parameters for enhanced accuracy during SI-HCCI mode transitions.
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Mathematical Symbols

Symbol Description

bbd Burned gas fraction after blowdown

cp/cv Constant pressure/constant volume specific heat

θsoc Crank angle at start of ignition
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Chapter 1

Introduction

1.1 Problem Background and Motivation

1.1.1 Overview of Gasoline Multi-mode Combustion

In recent years, research in highly dilute, low temperature combustion modes for gasoline engines has

gained increasing attention [1], [2]. The key benefit of these combustion modes is that the unreactive

diluents that accompany the combustible fuel and air in the cylinder charge absorb additional heat

release from combustion, lowering the burn temperature. The lower burn temperature increases the

ratio of specific heats γ = cp/cv of the mixture and also reduces heat losses to the cylinder walls,

both of which effects increase thermal efficiency [3], [4]. As automotive manufacturers continue to

push gasoline engines to their limits for fuel economy, introducing low temperature combustion

modes into conventional spark ignition (SI) engine operation is one option that has been extensively

pursued.

Perhaps the most well-known gasoline low temperature combustion mode is homogeneous charge

compression ignition (HCCI). First reported on by Onishi et al. [5], HCCI is often viewed as the

“best of both worlds” between diesel and SI engines, in that it runs unthrottled with a dilute charge

and ignites the mixture from high compression as in a diesel engine, but pre-mixes the fuel and air

as in an SI engine. The dilution and high compression increase fuel efficiency, allowing HCCI to reap

the same fuel economy benefits as diesel engines, but without the associated emissions problems

from mixing controlled combustion since these are avoided by pre-mixing the charge. In many

cases, HCCI is run so dilute that burn temperatures are prevented from reaching the formation

threshold for nitrogen oxides (NOx) of ≈1600 to 1800 K, offering the potential for ultra-low NOx

emissions. These outstanding benefits of HCCI have made it a subject of much research in the

engines community [6], [7].

An inherent drawback of HCCI is that it lacks a direct trigger to ignite the cylinder charge. The

reason is that the charge is pre-mixed, so when it is compressed to ignition, it auto-ignites due to

high temperatures and pressures in the cylinder without any external trigger. The implication is

that the ignition timing is controlled by the intensive thermodynamic state of the charge, instead of
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a direct control actuator such as the spark in SI combustion or the fuel injection event in diesel

combustion. As a consequence, careful control of the in-cylinder conditions must be exerted to

achieve successful HCCI combustion [6].

HCCI can be realized through several methods, each of which require some type of hardware

addition beyond what is commonly available on standard SI engines. Each method is centered

around manipulating the thermodynamic state of the cylinder charge so as to plan for appropriate

combustion timing relative to TDC, or combustion phasing. Adequate dilution must also be supplied,

with the two most common diluents being air that is in excess of the stoichiometric amount and

exhaust gas recirculation (EGR). EGR is typically recirculated internally in HCCI by retaining

burned residual gasses in the cylinder because these gasses possess a high internal energy and so

have a great authority to influence the auto-ignition properties of the charge [8], [9], [10], [11],

though external EGR that is rerouted from the exhaust manifold back to the intake manifold can

be used as well [12]. Both excess air and EGR are almost always present to some degree, since

HCCI runs unthrottled and lean, and there is always some fraction of exhaust gas that does not

leave the cylinder that is recycled. The methods then differ in the amount of each diluent they

employ. The most commonly used method is to equip the engine with a variable valve timing (VVT)

device, which allows the valve timings to be phased relative to the motion of the crank in order to

promote internal exhaust gas recirculation, where the recirculated exhaust gas amount is chosen

such that it transfers an appropriate amount of heat to the intake charge on the following cycle to

ensure proper auto-ignition timing. The internal exhaust gas recirculation can be achieved by either

closing the exhaust valve early in the exhaust stroke to trap residual gas in the cylinder [8], [9], [10],

or by holding the exhaust valve open during the intake stroke to rebreathe exhaust gas into the

cylinder [11], [12]. Another method to enable HCCI is to heat the intake air with a heat exchanger

or electric heater to give the appropriate in-cylinder charge temperature for proper combustion

phasing [13], [14]. A last method is to design the cylinder so that compression ratio can be varied

during engine operation, so that the compression ratio can be continuously adjusted by the control

system to give the correct amount of compression for auto-ignition of the mixture [15].

Another gasoline low temperature combustion mode that has experienced a growing research

focus is spark assisted compression ignition (SACI). SACI operates with a pre-mixed charge as in SI

and HCCI, but combines characteristics of both these combustion modes. The mixture is ignited

with the spark to induce pre-mixed flame propagation as in SI, however the thermodynamic state

of the charge is controlled such that as the pre-mixed flame expands into the unburnt charge, the

unburnt charge crosses the auto-ignition threshold and detonates through auto-ignition as in HCCI.

In this regard SACI occurs through the same mechanism as knock in SI engines, however SACI

operates with much more dilution than standard SI so that when auto-ignition occurs, the pressure

rise rates are tolerable [16], [17]. Other gasoline combustion methods that seek to take advantage

of the efficiency gains associated with high charge dilution also exist, such as stratified lean direct
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injection [18].

The scope of this research is limited to the HCCI combustion mode, which is assumed to be

achieved through the recompression method with early exhaust valve closure to trap hot exhaust

gases to enable auto-ignition. The ideas presented herein may be helpful as a baseline for future

applications to the SACI combustion mode, as SACI is “between” SI and HCCI and so many

of the concerns which are addressed for SI/HCCI multi-mode combustion also play a role for

SI/SACI multi-mode combustion. As will be seen in the upcoming sections, integration of HCCI

into conventional engines presents several significant control challenges.

1.1.2 The Necessity of Mode Transitions

A major limitation of the HCCI combustion mode is that it can only function in a subsection of the

full operation space of conventional engines. The reason is that the range for reliable auto-ignition

combustion is bounded in terms of auto-ignition phasing. When the charge auto-ignites too early,

the mixture burns very quickly, releasing the heat of combustion over a short period of time and

causing high pressure rise rates. Pressure rise rates that are too high can cause audible noise and

damage the engine hardware. When pressure rise rates become very high, oscillations emerge in

the cylinder pressure trace in a phenomenon known as ringing. When the charge auto-ignites too

late, the mixture is pushed closer to the point where the auto-ignition threshold is barely crossed

and misfires can occur. The late phasing region is usually characterized by high cyclic variability

(CV), because as auto-ignition gets closer to the misfire limit, stochastic fluctuations in the cylinder

charge can result in very poor auto-ignition burns, which can then lead to oscillatory patterns by

recycling of unburnt fuel and air to subsequent cycles [19].

A diagram illustrating the combustion phasing limits for HCCI on a single cylinder research

engine is shown in Fig. 1.1, which is modified after [19], [16]. The diagram plots the limits in terms

of load vs. phasing, where load is represented by the indicated mean effective pressure (IMEP) and

combustion phasing is represented by the crank angle at which 50% of the charge mass has burned

(θ50 ). As can be seen, as the load increases, the early phasing limit for ringing index (RI) shifts

later because the fuel quantity is greater and so it cannot be burned as quickly without causing

pressure rise rates that are too high. At the top of the diagram, the early and late phasing limits

become very close together, marking the point where HCCI is no longer practically feasible without

violating either of these limits. A similar meeting of the early and late phasing limits happens at low

loads, where the internal energy of the mixture must be higher in order to sustain auto-ignition with

the now smaller amount of fuel in the diluted charge. As a result, the late phasing limit advances

and becomes very close to the early phasing limit. Note that engine speed also has an effect in

limiting the feasibility region of auto-ignition combustion, with low engine speeds causing the charge

to lose too much energy to heat transfer and enter the late phasing region, and high engine speeds
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Figure 1.1: Experimental data of HCCI combustion phasing limits at different loads.

causing aggressive combustion by reducing the time for heat transfer from the combustion products

between consecutive cycles [6]. A speed-load operating map which defines approximate ranges of

feasibility for SI and HCCI for the experimental multi-mode combustion engine that will be used in

this study is shown in Fig. 1.2. The diagram makes clear that HCCI combustion can only cover a

fraction of the range of SI combustion.

The boundaries on the feasible operating conditions for HCCI combustion imply that to realize

this combustion mode, it must be integrated into a multi-mode combustion framework wherein

conventional SI combustion is engaged at operating conditions outside the regions where HCCI

is possible. A further implication is that transitions must be carried out between SI and HCCI

combustion modes during online operation, in a manner that does not violate standard gasoline

engine performance objectives. In the next section, the challenges involved with conducting online

mode transitions while maintaining engine performance will be discussed.

1.1.3 The Challenges of Mode Transitions

The difficulty in transitioning between SI and HCCI lies in the drastically different conditions in

which these modes operate. The differences between the operating conditions of the modes depends
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Figure 1.2: Experimental speed-load map of the multi-mode combustion engine considered in this
study with the operating ranges for SI, HCCI, and SACI combustion modes shown.

on the method that is used to enable HCCI (EGR, intake air heating, or variable compression ratio,

see Sec. 1.1.1 for an explanation of these methods), but all cases present underlying challenges that

overlap. Here the recompression method is taken for example in order to highlight the differences

between the combustion modes, since it is the focus of this research. While in standard SI mode, the

engine will be throttled with a stoichiometric air-fuel ratio (AFR), a low amount of EGR dilution,

and positive valve overlap (PVO), where valve overlap (VO) is defined as the difference in exhaust

valve closing (EVC) and intake valve opening (IVO) timings

V O = θevc − θivo (1.1)

where θ has been used to designate a crank angle at some point in the engine cycle. On the other

hand, while in HCCI, the engine will be unthrottled with an AFR ≥ stoichiometric, a large amount

of EGR dilution, and negative valve overlap (NVO). NVO is the result of closing the exhaust valve

early in the exhaust stroke, which makes θevc < θivo in (1.1). In addition, to attain NVO and trap a

high residual gas amount, the lift and duration of the cams that open/close the cylinder valves must

be smaller for HCCI than for nominal SI operation; thus, not only the valve timings have to change

between the modes, but the cam profiles as well. A last major difference is that SI combustion

produces a much higher exhaust gas temperature than HCCI because SI does not possess as high a

diluent concentration to absorb the heat of combustion. This is of concern because recompression
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HCCI depends on a large amount of internally recycled exhaust gas to manipulate the temperature

of the cylinder charge for proper auto-ignition timing, and so if the exhaust temperature changes

drastically during a mode transfer, it can result in undesirable transients in combustion phasing. A

summary of the differences between SI and HCCI is given in Table 1.1.3.

Attribute SI HCCI

Air control Throttled Unthrottled

Air-Fuel Ratio Stoichiometric Lean

EGR Low High

Valve Overlap PVO NVO

Cam Profile High-lift Low-lift

Exhaust temperature High Low

Table 1.1: Summary of operating condition differences among SI, and HCCI combustion modes for
the recompression HCCI method.

The myriad of differences between SI and HCCI implies that at least one combustion mode

must pass through conditions outside it’s normal operating regime during a transition between the

two, because several of the differing attributes (e.g. throttling, valve timings) cannot be changed

instantaneously to give an immediate shift of operating condition from one mode to the other.

Which mode(s) goes outside nominal conditions and to what degree is to be determined by the

control strategy.

Despite having to transfer through atypical, potentially adverse operating conditions during

a mode transition, the combustion must be regulated such that driver comfort is not disturbed,

emissions are kept to an acceptable level, and no hazardous combustion abnormalities occur that

can threaten the cylinder hardware or the safe operation of the engine. Moreover, the transition

should be completed in the shortest time possible, to reach the desired mode quickly and minimize

the window where the control system is occupied in carrying out the mode transition, and also to

mitigate potential fuel economy losses that can occur as the combustion passes through conditions

outside its nominal optimized operation. These performance criteria are restated in the list below

as they will play a central role in formulating the control strategy and tracking design for SI-HCCI

transitions:

Performance Objectives for SI-HCCI Mode Transitions

1. Deviations of the engine torque from the driver pedal demand must be kept small enough to
prevent disturbances to driver comfort

2. Emissions must be kept to an acceptable level throughout the duration of the mode transition,
where the acceptable level depends on the emissions tier that is targeted for the engine.

3. Combustion abnormalities such as ringing and misfire must be avoided during a mode transition
for engine durability and safe operation.

4. Mode transitions should be carried out in the minimum time possible while satisfying the
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above criteria.

1.2 Previous Research in SI/HCCI Mode Transitions

1.2.1 Open-loop Experimental Studies

Many mode transition studies have focused on developing SI/HCCI transition strategies through

purely open-loop experimentation [20–29]. Actuator sequences for the mode transition are proposed

and experimentally optimized on a test engine until the final control sequences are ascertained. The

experimental mode transition studies to date have overwhelmingly employed the recompression

method for enabling HCCI combustion, with all the studies [20–30] utilizing recompression HCCI.

This is important to keep in mind when interpreting the strategies and results of these studies as

their approaches are shaped around the recompression method.

Koopmans et al. [20] first demonstrated an SI-HCCI-SI mode switch in 2003 on both a single

cylinder and multi-cylinder engine equipped with electromechanical cylinder valves. The core idea of

their strategy was to dethrottle the engine in SI mode while regulating the cylinder air charge through

use of the flexible cylinder valves. It was noted that careful optimization of actuator sequences was

necessary during the first few cycles following a mode switch in order to avoid undesirable transients.

The SI-HCCI direction of the mode transition was concluded to be more difficult than its HCCI-SI

counterpart due to the precise actuator manipulation necessary to attain successful auto-ignition

when the mode changes from SI to HCCI. In 2005, Santoso et al. [21] used a similar strategy to

Koopmans et al., running the SI combustion mode fully dethrottled and controlling the air charge

with a fully flexible electromagnetic valve train. To compensate for delays in air charge regulation

due to dynamics of their valve train, a policy of using a reduced fuel quantity on the first cycle of

HCCI during an SI-HCCI transition was applied in order to avoid rich and advanced combustion on

the first HCCI cycle. Conversely, the fuel quantity was increased on the first cycle of SI during an

HCCI-SI transition to avoid lean misfire from the higher intake manifold pressure. This yielded

a stable transition, but a noticeable fluctuation was apparent in the engine torque response. The

strategy of switching into HCCI from a dethrottled SI state and controlling air charge with a fully

flexible valve train was also employed by Widd et al. [30], with the distinguishing feature that the SI

combustion was dethrottled using early IVC timing. Milovanovic et al. [23] conducted SI-HCCI-SI

mode transitions on a single cylinder engine with a fully flexible valve train as well, though their

strategy differed from the previous studies in that the SI combustion mode was not kept perpetually

dethrottled. Instead, the throttle opening/closing during a mode change was coordinated with

the cam profile switching, with the throttle command being issued one cycle prior to cam profile

switching in both SI-HCCI and HCCI-SI directions. Noticeable torque fluctuations were apparent
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in both directions, though the fluctuation was larger in the HCCI-SI direction as a result of lean

misfire during the first few SI cycles due to the intake manifold requiring several cycles to reduce

after throttling and switching the cams. This corresponds to the same effect that Santoso et al.

avoided by injecting a higher fuel quantity in the first SI cycle of the HCCI-SI transition, though the

effect was less pronounced in their work because they relied on the faster fully flexible valve train to

control the air charge instead of the throttle. Milovanovic et al. also noted that, when performing

mode transitions at different operating conditions, actuator sequences had to be optimized specific

to the operating condition.

In 2007, Zhang et al. [22] performed a SI/HCCI mode switching study on a single cylinder

engine with fully flexible valve actuation wherein they explored what they termed “hybrid SI-HCCI”

combustion, which corresponds to SACI. Using SACI as an intermediate mode between SI and

HCCI was found to be beneficial for transition smoothness. The existence of a “residual gas fraction

(RGF) gap” was also highlighted, which is a region between SI and SACI where the internal recycled

exhaust gas amount is too high for stable SI combustion but too low to give auto-ignition for SACI

combustion, resulting in poor combustion work output. Kakuya et. al [29] acknowledged the same

“RGF gap” in a 2008 mode transition study on a multi-cylinder fully flexible valve train engine, which

they referred to as the “unstable area”. Their mode transition strategy involved passing through

the “unstable area” with the assistance of advanced spark timing and a stratified split injection

to give locally rich areas in the cylinder charge that are more likely to burn and prevent misfires.

This strategy of passing through the unstable area by directly phasing the exhaust cam earlier to

gradually increase internal residual while simultaneously opening the throttle differs from many

other studies in the literature where HCCI is engaged suddenly with a switch of the cams and fast

opening of the throttle. The differences between these two strategy types will be considered later

when the high-level strategy for the mode transition is explained. Matsuda et. al [31] studied the

afore mentioned “RGF gap” or “unstable area” region and found that for a certain range of loads

at 1200 RPM, combustion could be achieved in this region which maintained cylinder pressure rise

rates within 6 bar/CAD and COV IMEP less than 10%. This suggests that transitioning through

this region may be possible in the load range determined in [31]. However, a very high compression

ratio of 14.3:1 was used in these experiments, which offers greater authority in stabilizing highly

dilute combustion. Additionally, the load range where acceptable combustion could be achieved was

limited to greater than 3.5 bar NMEP, which is near the high end of the HCCI spectrum.

The above studies all utilized fully flexible cylinder valve actuation devices, which give benefits for

speed and range of actuator manipulation, but are not practical from an implementation standpoint

due to their high cost. Other studies [8]-[12] have used a more practical two-stage cam system with

a set of long duration, high-lift cams for SI operation, and a set of short duration, low-lift cams for

HCCI operation. A hydraulic actuator switches which cam profile is active when a mode transition

is commanded. In 2007, Tian et al. [24] carried out a “stepped switch” strategy on a two cylinder
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engine, wherein the cam profile was switched prior to opening the throttle valve in the SI-HCCI

direction, giving a rich and advanced combustion on the first HCCI cycle. To reduce the richness

and ringing of the first HCCI cycle, a policy of injecting a lower fuel quantity on the first HCCI cycle

was adopted, similar to the approach in [21]. This gave the stepped switch strategy good stability

at the cost of increased torque fluctuations when the combustion mode was changed. Cairns and

Blaxill [25] studied SI-HCCI-SI mode transitions on a four cylinder engine, where it was noted that

SACI (which was referred to as hybrid SI/CAI) is helpful in smoothing the transition as Zhang

et al. [22] did. Cairns and Blaxill also showed that incorporating external EGR in the SI-HCCI

direction could help reduce ringing on the first HCCI cycle where the exhaust temperature was

much higher. In 2008, Kalian et. al [26] carried out an investigation on a six cylinder engine mainly

focused on how to on schedule the throttle opening/closing command and EVC timing to attain

stable combustion in SI-HCCI-SI mode transitions. The investigation concluded that the throttle

should only be partially opened during SI-HCCI transitions, and that the throttle closure during

HCCI-SI transitions should be accompanied by a late EVC timing. Wu et al. [27] also explored

multiple strategies for coordinating the timing of the throttle opening/closing with the cam profile

switching, in addition to varying the fuel injection amount. Their results show a smooth transition

from SI to HCCI, but lean misfire was experienced in the SI phase of the HCCI-SI direction from

the same phenomena seen in [23] of the intake manifold pressure requiring several to reduce to

acceptable SI levels even when the throttle is closed and the cams are switched. In 2012, Nier

et al. [28] investigated SI-HCCI-SI mode transitions during boosted HCCI operation on a single

cylinder HCCI engine. A major concern of this study was maintaining acceptable pressure rise rates

during mode transitions at the higher load HCCI operating conditions that can be accessed via

boosting. Towards this end, a policy of leaning the SI combustion to reduce exhaust temperatures

before switching into HCCI combustion as well as using a compression stroke fuel injection during

the first few HCCI cycles was adopted.

The perceptive reader will note from the above discussion that the body of open-loop experimental

work on SI/HCCI mode transitions is vast and complex, with numerous studies that each put forth

multi-faceted strategies and experimental results, which sometimes overlap with other studies, and

sometimes conflict with other studies. Despite that this myriad of strategt options and experimental

conclusions can be difficult to collect into a summary suited for making engineering design decisions,

several common themes throughout the experimental literature can be discerned and are listed

below:

Recurring Observations in Experimental Mode Transition Literature

• For successful mode transitions to be executed via open-loop actuator sequences, extensive
tuning and calibration is necessary, and the calibration must be specific to the operating point.
• Incorporation of SACI as an intermediate mode between SI and HCCI may help to smooth
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SI/HCCI transitions.
• The use of a practical two-stage cam switching system to enable SI-HCCI operation makes

the mode transition task more difficult than when a fully flexible valve train is used.
• The throttle must be coordinated with the cam timing and cam profile switching to give

adequate cylinder charge regulation and avoid combustion abnormalities.
• There is a region between SI and HCCI modes where the in-cylinder residual amount is too

high for robust flame propagation in SI combustion but not high enough for autoignition in
HCCI, and so it is not desirable to operate in this region.
• Injection timing strategies, such as stratifed injection to stabilize combustion in highly dilute

SI conditions or late injection in HCCI to retard combustion and avoid ringing, are often used
and appear to be helpful.
• During an SI-HCCI transition, the first cycle of HCCI tends to have an early combustion

with high pressure rise rates due to the higher exhaust temperature of SI raising the charge
temperature and advancing combustion.
• During an HCCI-SI transition, there is a danger of lean misfire during the first few SI cycles

because the intake manifold requires a few cycles to discharge its stored air mass and reduce
from the near-atmospheric pressures of HCCI to the sub-atmospheric pressures of SI.

Open-loop Experimental Studies on Computational Fluid Dynamics Models

To gain additional insight into the dynamics of the unmeasurable quantities during SI/HCCI mode

transitions and afford greater flexibility in actuator sequence tuning, a few studies have implemented

open-loop mode transition sequences on computational fluid dynamics models instead of directly in

experiment. In [32], the authors of [27] used a stochastic reactor HCCI combustion model embedded

within GT-Power to simulate the mode transitions carried out in [27]. The model reproduces most

trends in the in-cylinder pressure, air-fuel ratio, and residual gas fraction, all of which were measured

in the experiments of [27], and is able to shed some light on the thermodynamic processes that

occur during the SI-HCCI mode transition. However, the model is only validated at one operating

condition and simulated for a single SI-HCCI mode transition sequence from [27], and so it provides

little insight into how varying the input sequence for the SI-HCCI mode transition affects the

evolution of the thermodynamic state . In 2012, Kuboyama et al. [33] also employed a GT-Power

model to simulate SI/HCCI mode transitions on an engine equipped with their blowdown super

charging system, though a simple Arrhenius model for HCCI combustion was employed instead a

detailed chemical kinetic model. In simulation, the authors are able to transition from HCCI to SI

without the problem of lean misfire observed in [23], [27], though this seems to necessitate use of

their proposed blowdown super charging system. The authors also simulate the SI-HCCI direction,

and are able to complete the transition but not without excessively advanced combustion on the

first several HCCI cycles.
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1.2.2 Modeling and Model-Based Control Approaches

While experimental open-loop studies are useful for physical insight into the mode transition problem,

the studies in literature concur that extensive calibration is necessary to develop open-loop actuator

sequences that can successfully transition among combustion modes. Moreover, the calibration must

be carried out for each operating point in a grid defined over the entire speed-load region where

transitions are feasible. Model-based feedback control methods have the advantage that a feedback

controller determines the transient actuator commands, and so the calibrator must only specify set

points and/or controller gains and tuning parameters. If designed appropriately, this can result in

a much simpler calibration task as opposed to specifying open-loop actuator sequences over the

entire transition speed-load region. In a real situation where open-loop control sequences must

interpolate between calibrated operating points, model-based feedback control may have advantages

for generality and robustness it can respond to case-by-case disturbances and variations by operating

condition using online measurements. These advantages suggest that model-based feedback control

may be a useful alternative to open-loop methods, and so it has been pursued by some researchers

in the literature.

The work in modeling and model-based control methods for SI/HCCI transitions has been

sparser than the work experimental open-loop methods. Widd et al. [30] employed a simple linear

system identification around one HCCI operating condition to determine a black box model in

addition to their open-loop experimental work. The model was used to design a linear proportional

+ integral (PI) and linear quadratic regulator (LQR) state feedback controllers to control torque

and combustion phasing using valve overlap and fuel quantity. The controllers, however, was not

activated until 3-4 cycles after entering HCCI during the SI-HCCI transition, and so did not address

the first few critical cycles of HCCI where the in-cylinder thermodynamic state rapidly shifts from

SI conditions to HCCI conditions. Moreover, it is unclear whether an approach based on simple

black box linear system identification around an operating condition could manage such a transient,

as large regions of the state and input space are traversed in a short number of cycles. A more

sophisticated model was developed by Roelle et al. in 2004 [34]. The crank angle-based HCCI

combustion model contained states for the in-cylinder concentrations of dominant chemical species,

the cylinder temperature, as well as for the thermodynamic state of the exhaust manifold because

the model was developed for rebreathing HCCI operation. The model was shown to reproduce

qualitative trends in in-cylinder pressure during an SI-HCCI mode switch, though a comparison

of performance outputs was not given. The model was modified in a later paper [35] to include a

Wiebe function [36] for SI combustion and a few additional states. While useful for physical insight

and simulation purposes, the crank angle-based high dimensional (7-9 states) model possesses a

high amount of complexity for control design purposes. Additionally, mode transitions are modeled

assuming that intake pressure is maintained at atmospheric throughout the transition, which

overlooks the complexity associated with dethrottling the SI combustion when a fully flexible valve
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train is not available that was observed in [26], [27].

Another higher order crank-angle based model for use in SI-HCCI mode transitions was put

forth by Yang et al. [37, 38] . The model was first introduced as one-zone in 2010 [37] and was

expanded to two-zones in 2011 [38], where one-zone indicates a lumped model for both the burned

and unburned gas and two-zone indicates a model with separate burned and unburned gas zones.

The modeling approach has the advantage of being able to simulate SI, SACI, and HCCI with a

single model, so that the combustion mode can be changed solely by changing the model inputs

without having to switch among separate models for each combustion mode. However, the modeling

approach is complex, especially in the two-zone case where the solution of a system of five nonlinear

equations must be carried out at each crank angle during the burning process. Moreover, it is not

clear from the papers how to parameterize the multiple Wiebe functions and Arrhenius rate integral

employed by the model in order to match measured engine performance outputs, and in the paper

the model is only sparsely validated by comparison with a GT-Power model.

The later controls work of Yang and Zhu [39] employed iterative learning control to generate

sequences for the fuel command in offline SI-HCCI transition simulations on the previously developed

model, which were proposed to be stored in a look-up table and implemented as open-loop maps in

conjunction with a PI controller. An LQR throttle feedback controller was also included to track an

intake manifold pressure reference. The remainder of the control architecture was given by open-loop

calibrated sequences, similar to the experimental approaches in Sec. 1.2.1. Considering that the

iterative learning control fuel commands and throttle intake manifold pressure reference trajectory

were also tuned as open-loop sequences, it is clear that the control structure still relies strongly on

the principle of open-loop sequence scheduling put forth in the experimental works in Sec. 1.2.1,

with model-based and/or feedback elements playing a lesser role. Perhaps influenced by this fact, it

was found that the control approach of [39] was not robust to case-by-case variations [40], and so

in a later work a sensitivity-based feedforward controller for the fuel command was designed. The

controller was shown to attenuate disturbances to the torque in simulation at one operating condition,

however modeling error in the sensitivity calculation was not considered, and the remainder of the

control structure was still given by open-loop scheduled sequences. Another work by Ravi et al. [41]

addressed the problem of combustion phasing control in the HCCI portion of the SI-HCCI transition

with closed-loop linear quadratic Gaussian (LQG) control of fuel injection timing. The controller

was shown in experiments on a single cylinder engine to aid in combustion phasing regulation

relative to a purely open-loop scheduled controller at two different operating points. However, all

control inputs other than injection timing were still given by open-loop scheduled sequences, which

had to vary significantly between the two operating points. It can thus been seen that the works

of [39–41] focus on integrating model-based and/or feedback control elements into SI-HCCI transition

control architectures whose baseline design consists of open-loop scheduled input sequences as in the

works of Sec. 1.2.1. While undoubtedly advantageous for improving the robustness of such control
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architectures to operating condition and helping them compensate for disturbances, the underlying

principle of open-loop sequence scheduling for SI/HCCI mode transitions still persists. Additionally,

the HCCI to SI direction of the mode transition was not addressed in these works.

1.3 Contribution of the Research

As explained in Sec. 1.2, the SI/HCCI transition control problem has been approached predominantly

with open-loop calibration of control input sequences in the literature to date. Few studies have

explored the use of model-based and/or feedback control elements in SI/HCCI transitions [30,39–41],

and have done so from the standpoint of introducing a small number of model-based/feedback

elements into a baseline architecture which remains comprised of open-loop input sequences. While

these studies represent important steps for improved robustness and reduced calibration complexity

in SI/HCCI transitions, they are still largely dependent on the original notion of experimental

calibration for determination of input sequences. Moreover, the studies in [30,39–41] are fragmented

in that each only addresses a subset of the SI-HCCI transition control objectives, with [30] addressing

torque and combustion phasing after the first 3-4 HCCI cycles only, [39,40] addressing torque and

air-fuel ratio (AFR), and [41] addressing combustion phasing in the HCCI mode only. Additionally,

the high-level SI-HCCI transition strategies employed by [39–41] are all similar to that of [29] in

that HCCI is gradually transitioned to with direct phasing of the valve timings, where as many

studies in literature [20–28] employ a different strategy where HCCI is engaged abruptly by a cam

profile switch. The work of [30] counts itself amongst one of these whose strategy relied on a fully

flexible valve actuation system, which is impractical for production implementation. Lastly, none of

the works which employed feedback and/or model-based elements [30,39–41] addressed the HCCI-SI

direction of the transition, and were tested either only in simulation [39,40] or on single cylinder

engines [30,41].

The focus of this research is on the development of a methodology for control-oriented modeling

and model-based feedback control of cam switching SI/HCCI transitions which easily generalizes

to multiple operating conditions and requires calibration of only set points and gains, as opposed

to entire actuator sequences. The term “cam switching” refers to a high-level strategy like those

in [20–28] where the combustion mode is abruptly changed with a cam profile switch. The target

engine platform is taken to be a multi-cylinder engine with a practical two-stage cam switching

mechanism for enabling dual SI/HCCI operation similar to [24–28], so that the control approach

addresses additional difficulties that arise with this practical hardware compared to when a more

costly fully flexible valve actuation device is used [20–22,34,35].

The modeling approach focuses on low-order mean value combustion models which are tractable

for control design and real-time implementation, while many previous models for SI/HCCI transitions

[34,35,37,38] are crank angle-based in nature, imposing long computation time and complex and
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implicit input/output dependencies. The combustion models are shown to fit a wide range of

steady-state data that encompasses conditions which are pertinent to mode transitions, such as

AFRs which vary from sweep from rich to very lean in and throttled conditions in HCCI. Models

with the ability to capture this range of conditions were instrumental for enabling model-based

SI/HCCI transition control, and appeared in [42]. Transient validation of the model in the SI-HCCI

direction of the mode transition is also considered, and additional measures are taken which allow

the model to reproduce SI-HCCI transition data in multiple conditions.

Control architectures for the SI-HCCI and HCCI-SI transitions are proposed which integrate the

model predictions into online nonlinear calculations which inherently generalize across operating

points and are reactive to the measured outputs of the engine. Tracking of torque, combustion

phasing, and AFR based on the performance objectives listed in Sec. 1.1.3 are all considered in the

control design. The controllers are shown in experimental implementation to carry out successful

SI/HCCI transitions at multiple operating conditions while requiring calibration of only controller

gains and several physically intuitive set points. The validation in the SI-HCCI direction is more

extensive than the HCCI-SI direction, however.

A parameter adaptation method is given which uses online SI/HCCI transition data to contin-

uously update the controller model’s parameters, in order to make the controller more robust to

engine drifts, cylinder to cylinder variability, and parameterization error in general. The parameter

adaptation is shown to achieve notable benefits over the baseline controller performance in multiple

operating conditions in SI-HCCI transitions, and is also used in HCCI-SI transitions to compensate

for the fact that the conditions during the first few cycles after switching to SI are outside the

baseline parameterization.

1.4 Outline of the Dissertation

The thesis proceeds by first presenting the mean-value modeling methodology for SI/HCCI multi-

mode combustion in Chapter 2, which forms the foundation of the model-based control approach.

Models for the engine air path and SI and HCCI combustion are described, as well as the details

involved with transitioning between the SI and HCCI models and capturing instantaneous cam

switching. Parameterization results over a wide range of steady-state actuator sweep data which

are pertinent to SI/HCCI mode transitions are presented for the SI and HCCI combustion models,

and the models are shown to reproduce the data with good accuracy.

Chapter 3 considers the model’s ability to capture transient phenomena in SI-HCCI mode

transitions. It is found that, despite fitting a wide range of steady-state parameterization data with

good accuracy, the model encounters difficulty reproducing data from SI-HCCI mode transitions.

The cause of the model error is explored and a corrective parameter is introduced based on the

residual gas temperature, after which the model is shown to reproduce transient data in multiple
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SI-HCCI mode transition conditions with good accuracy. Following its introduction, an adaptive

algorithm to tune the corrective residual temperature parameter using online SI-HCCI transition

data is described, which allows feedback to be used to compensate for model errors on the initial

HCCI cycle of the transition. The adaptive algorithm is shown in simulation examples to compensate

for imposed model prediction errors and improve the model’s reproduction of SI-HCCI transient

data.

After the modeling methodology is described, Chapter 4 presents the first major control

component of the dissertation, the control architecture for the SI-HCCI direction of the mode

transition. An overview of the progression of SI-HCCI transitions as well as the high-level strategy

to carry out the transition is described, noting several possible choices for actuator trajectories

and discussing their advantages and disadvantages. The control acrchitecture which implements

the chosen high-level strategy through nonlinear model-based calculations with several physically

intuitive set points is then presented. The control architecture is implemented on an experimental

engine and shown to be capable of carrying out successful SI-HCCI transitions over the HCCI load

range at 2000 RPM with only very simple set point adjustments from one operating condition to

the next.

Chapter 5 seeks to improve the model-based calculations in the control architecture of Chapter

4 by augmenting an adaptive parameter update scheme to the baseline controller. The purpose

of the parameter update scheme is to adjust the controller model’s parameters through learning

over time, in order to enable the proposed control approach to better handle the effects of engine

aging, cylinder to cylinder variability, and model error in general. These attributes are especially

pertinent in SI/HCCI transitions where the engine goes through a large state and input transient

in a short time period, which gives direct output feedback control a small window over which to

act. Application of the parameter adaptation method in experimental SI-HCCI transition examples

shows significant performance benefits over the baseline controller in compensating for model errors

and cylinder to cylinder variability.

The final major control component of the dissertation covers the HCCI-SI direction of the mode

transition and is presented in Chapter 6. The Chapter is structured similar to the presentation of the

SI-HCCI control architecture in Chapter 3, first presenting the high-level strategy and progression

of the HCCI-SI transition, then moving onto the control design, and finally presenting experimental

results. Similar to the SI-HCCI direction, the controller calibration includes only set points and

gains with one minor actuator sequencing variable for a cam phasing ramp constant. The torque

regulation performance of the controller cannot attain the levels of the SI-HCCI direction, mainly due

to physical constraints imposed by air path dynamics when torque and emissions control objectives

are simultaneously considered. However, relative to other studies with similar hardware [23–28]

which only considered torque and not emissions performance objectives, the controller performance

is encouraging and generalizes to multiple operating conditions more easily.
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Chapter 2

Mean Value Engine Model for Multi-Mode
SI/HCCI Combustion

2.1 Engine Modeling Overview

The engine platform for which the model of this work is developed is a direct injected downsized

2.0 liter 4 cylinder engine with variable valve timing (VVT), which is exhaust gas turbocharged

to maintain a high peak power capacity. A schematic of a turbocharged 4 cylinder engine with

variable valve timing is shown in Fig. 2.1, which is adapted from [43]. The major variables used to

characterize the engine in the control-oriented modeling approach are pressures p and temperatures

T at key points throughout the air path, one dimensional flows W , and engine and turbocharger

speeds Neng and Ntc. Also of concern for controller performance are combustion features such as

cycle work and combustion phasing. The control inputs which are pertinent to SI/HCCI mode

transitions are the intake throttle valve θt, the intake and exhaust cam phasing characterized

by intake valve opening (IVO) timing θivo and exhaust valve closing (EVC) timing θevc, the fuel

injection quantity and timing mf and θsoi, and the spark timing θsp.

The geometry of the experimental engine is summarized in Table 2.1. The engine air path

contains standard measurements for induction volume and intake manifold pressure and temperature,

as well as cylinder averaged flow rate and exhaust AFR which are only used in steady-state due to

transport delays and sensor dynamics. Engine speed is measured by way of a crankshaft encoder.

Feedback of combustion features on a cylinder-individual basis is made available through in-cylinder

pressure sensors.

Operation in both SI and HCCI combustion is enabled with a two-stage cam system with a set

of high lift cams for SI operation and low lift cams for HCCI operation, similar to the configurations

in [24–28]. Each low-lift cam is offset from its corresponding high lift cam by a fixed crank angle

amount, such that when the cam profiles are switched, all of the valve events instantaneously shift

by some constant crank angle difference, where the shift occurs during the closed-valve portion of

the cycle. A sketch of the two-stage cam profiles is displayed in Fig. 2.2 to clarify this concept.

The offset between the cams is characterized by the difference in EVC timings ∆EV CH−L for the
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Figure 2.1: Schematic of a turbocharged 4 cylinder engine with variable valve timing.

Compression Ratio (Geometric) 11.7:1

Bore 86 mm

Stroke 86 mm

Connnecting Rod Length 145.5 mm

Wrist Pin Offset 0.8 mm

High/low cam lifts 10 mm/4 mm

High/low cam durations 225◦/114◦

Intake Valve Opening High-Low Lift Cam Offset 47◦

Exhaust Valve Closing High-Low Lift Cam Offset 34◦

Table 2.1: Geometry of experimental engine used for model development and controller implementa-
tion.

exhaust cams and the difference in IVO timings ∆IV OH−L for the intake cams,

∆EV CH−L = θhighevc − θlowevc ≡ constant, ∆IV OH−L = θhighivo − θ
low
ivo ≡ constant. (2.1)

The EVC and IVO timings have been chosen to represent the high-lift to low-lift offset because

these timings serve as the valve timing control inputs, which makes them most pertinent to the

control system.
An overview of the approach taken to model multi-mode combustion operation is:
• The air path is modeled as a series of steady-flow devices connected by plenums with continuous

manifold filling dynamics that are governed by conservation of mass, conservation of energy,
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Figure 2.2: Two-stage cam profiles to enable dual SI/HCCI operation.

and the ideal gas law.
• The combustion is modeled as a modified Otto cycle with empirical relations for quantities

that are difficult to calculate physically, such as residual gas fraction and combustion phasing.
The combustion operates in discrete time, executing once per engine cycle following the mean
value modeling approach. A separate model is used for each combustion mode.
• Switching between combustion modes is carried out by disengaging the present combustion

mode’s model and engaging the destination combustion mode’s model. The combustion models
are coupled through reisudla gas temperature and composition states which carry over from
the final cycle of the terminating combustion mode to the initial cycle of the destination
combustion mode.

The above summary will be expanded in detail in what follows.

2.2 Air Path Model

The air path modeling approach is similar to that employed in [44], [45], [46] wherein each of the
major engine components are described by a combination of thermodynamic relations and empirical
regressions. These major components are:
• The compressor of the turbocharger
• The intake air throttle
• The cylinder array
• The turbine of the turbocharger
• The catalyst

To capture transient mass and energy storage effects along the air path, 0-D manifold filling dynamics
are introduced between each of the major engine components at the following locations:
• The induction volume (intercooler outlet)
• The intake manifold
• The exhaust manifold
• The pre-catalyst or ”back” volume
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2.2.1 Manifold Dynamics and Flow Restrictions

The states of pressure and temperature are chosen to characterize the manifold filling dynamics,

giving the state equations [44]

Ṫ =
RT

pV cv
(Ḣin + Ḣout − cvp(Win +Wout)) (2.2)

ṗ =
R

cvV
(Ḣin + Ḣout) (2.3)

where T represents temperature of the control volume (K), p represents pressure of the control

volume (bar), V is the volume of the control volume (m3), R is the ideal gas constant taken = 287

J/kgK everywhere, cv is the constant volume specific heat, Ḣ represents an enthalpy flow rate (J/s),

and W represents a mass flow rate (g/s). To obtain a simpler model, temperature dynamics may

be taken to be algebraic, which reduces the state description of the manifold dynamics to a single

equation [44]

ṗ =
RT

V
(Win +Wout) (2.4)

The intake air throttle valve as well as the wastegate valve of the turbine are modeled using

a modified form of the compressible flow orifice equation, which enforces a linear slope at high

pressure ratios to avoid the very large derivatives exhibited by the standard orifice flow equation in

this region, since such high derivatives can be problematic for numerical simulation:

W = Aeff
pin√
RTin

φ (2.5)

φ =



√
γ
(

2
γ+1

) γ+1
γ−1

, pout
pin

<
(

2
γ+1

) γ
γ−1

(
pout
pin

)1/γ

√
2γ
γ−1

(
1−

(
pout
pin

) γ−1
γ

)
,
(

2
γ+1

) γ
γ−1 ≤ pout

pin
< prlin

Φ(prlin)
pout
pin
−1

prlin−1 , prlin ≤ pout
pin
≤ 1

where W is the mass flow rate (g/s), γ is the ratio of specific heats, Tin is the inlet temperature (K),

pin is the inlet pressure (bar), pout is the outlet pressure (bar), and Aeff is the effective area (cm2),

which is regressed to the valve position. A simplified incompressible form of the orifice equation is

used to model the flow out of the back volume (into the catalyst)

Wcat =

√
pin(pin − pout)

CTin
(2.6)
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where the flow resistance C is modeled as a function of pressure drop across the catalyst

1

C
= f(pbk − patm) (2.7)

where the function f can be linear, quadratic, or logarithmic, with the linear dependence being

sufficient but the logarithmic dependence fitting the best.

2.2.2 Turbocharger

The compressor and turbine of the turbocharger are considered as steady-flow, constant specific

heat devices, which allows each of their thermodynamic outputs to be calculated when their flow

rate and isentropic efficiency are known. Thus, the main task of the compressor and turbine models

is to regress the mass flow rate and isentropic efficiency to manufacturer map data; the rest of the

quantities can then be calculated through well-known thermodynamic equations.

The compressor mass flow is regressed using a functional form put forth in [47] which is elaborated

on in [48],

W =
π

4
Φρd2U, U =

π

60
Ntc,cord (2.8)

Φ =
k3Ψ− k1

k2 + Ψ
, each ki = ki1M + ki2 (2.9)

Ψ =
cpTin((poutpin

γ−1
γ − 1)

U2

2

(2.10)

Here, ρ is the air density (kg/m3), d is compressor diameter (mm), U is the blade tip speed,

M = U√
γRTin

is the Mach number, and Φ and Ψ are dimensionless quantities for the mass flow and

pressure ratio, respectively. The compressor efficiency regression is unmodified from that in [46].

The regression first correlates the dependence peak efficiency and the corresponding volumetric flow

rate at peak efficiency to turbocharger speed, and then uses the functional form of Eq. (2.13) to

regress the actual efficiency to the peak efficiency. The regression to peak efficiency (2.13) depends

on whether the current flow rate is above or below the flow rate for the peak efficiency at the current

turbocharger speed.

V̇ =
WRTin
pin

, V̇η∗ = a1Ntc + a0 (2.11)

η∗ = b2N
2
tc + b1Ntc + b0 (2.12)
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η =

η∗[c1(V̇ − V̇η∗)c2 + 1], V̇ > V̇η∗

η∗[c3(V̇η∗ − V̇ )c4 + 1], V̇ ≤ V̇η∗
(2.13)

Here, V̇ is the volumetric flow rate, η is the compressor efficiency, and η∗ is the peak efficiency

at a given turbocharger speed in the manufacturer data. Once the compressor mass flow and

efficiency have been obtained, the output temperature and enthalpy flow can be calculated from the

thermodynamic relations [48]

∆h =
hin

η + 10−4

pout
pin

γ−1
γ

(2.14)

(10−4 added in denominator to avoid division by 0.)

hout = hin + ∆h Ḣout = houtW Tout =
hout
cp

(2.15)
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Figure 2.3: Compressor mass flow and efficiency regressions to manufacturer maps.

Since the turbine acts as a restriction to the exhaust gas flow, the turbine mass flow is modeled

with the same compressible orifice flow equation (2.5) used to model the throttle and wastegate

valves, following the approach in [48]. The major regression involved with this approximation is the

effective area for the equivalent orifice, which has been modeled here as a piece-wise linear function
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of turbocharger speed and pressure ratio:

Aeff,t = a1
pout
pin

+ a0, each ai = α1(Ntc)Ntc + α0(Ntc) (2.16)

where the values for the coefficients α1 and α0 are split into 3 turbocharger speed regions. The

turbine efficiency typically takes the form of an inverted parabola in the blade-speed ratio U/C

U

C
=

πdNtc

60

√
2cpTin(1− pout

pin

γ−1
γ )

(2.17)

and hence is often fit using a quadratic polynomial in U/C as in [48]. However, manufacturer maps

typically contain only of narrow range of U/C values (from about 0.5 to 0.7 while U/C can vary

from 0 to 1), and so when required to extrapolate outside the available range of U/C, a quadratic

polynomial quickly falls < 0 giving unrealistic behavior. To obtain a regression that more reasonably

extrapolates to U/C values outside the manufacturer maps, a Gaussian curve in U/C is used to

model the turbine efficiency

ηnom = a1e

(
−
(
U
C
−a2
a3

)2
)

+ 0.2, each ai = α1Ntc + α0 (2.18)

where the +0.2 term limits the efficiency at a minimum value of 0.2, based on the physical reasoning

that the turbine will always be spinning and producing work to some extent while the engine is in

operation. In addition to the nominal regression to manufacturer maps, a correction factor is added

in order to increase the peak boosting capacity of turbocharger between engine speeds of 1500 and

2500 RPM

ηcor = [us(Neng − 1500)− us(Neng − 2500)][0.1− .00017|2000−Neng|] (2.19)

η = ηnom + ηcor (2.20)

where us is the Heaviside step function. This correction factor was added because it was found that

the turbocharger model was unable to achieve boost pressures near the peak boosting capacity of

1.8-2.2 bar observed in experiment between engine speeds of 1500-2500 RPM, despite fitting the

manufacturer maps fairly well. A similar underboosting effect between 1500 and 2500 RPM was

observed in a higher fidelity GT-Power model which used the same turbocharger maps. The problem

may be that the manufacturer turbine map data are all recorded a constant intake temperature

which is fairly low (873 K), and so as the exhaust temperature gets higher there may be some strong

nonlinear effect that increases the work extracted by the turbine which is not captured by the map.
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Once the turbine mass flow and efficiency have been obtained, the output temperature and enthalpy

flow can be calculated from the thermodynamic relations [48]

∆h = ηhin

(
(
pout
pin

)
γ−1
γ − 1

)
(2.21)

hout = hin + ∆h Ḣout = houtW Tout =
hout
cp

(2.22)
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Figure 2.4: Turbine mass flow and efficiency regressions to manufacturer map. Note that a version
of the turbine mass flow scaled by pin/

√
Tin is shown as this was the only quantity available from

the map, however this scaling does not affect the accuracy of the fit. Additionally, the Gaussian
efficiency regression profile of (2.18) is shown along with a standard quadratic efficiency regression
profile so that the desirable extrapolation characteristics of the Gaussian can be seen.

To estimate the turbocharger shaft speed, a state is introduced whose dynamics are governed by

a power balance between the compressor and turbine as in [48], [46]

Ṅtc =
1

JtcNtc
(Wturb∆hturb −Wcomp∆hcomp) (2.23)

where Jtc is the turbocharger moment of inertia and P = W∆h has been used to calculate the

power of the turbine and compressor. The intercooler at the outlet of the compressor is modeled as
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a steady-flow, zero pressure drop heat exchanger as in [45], [46]

Tout = Tin − ηic(Tin − T ∗ic) (2.24)

ηic = a1Wc + a0 (2.25)

where the efficiency of temperature exchange ηic is linearly dependent on air flow and T ∗ic is the set

point temperature of the cooler.

2.2.3 Actuator Dynamics

Because the manifold dynamics and cycle to cycle combustion dynamics can vary on a time scale of

tens of milliseconds, it is important to consider the dynamics of the valves in the air path because

the electronic actuators that move these valves have time constants on the scale of tens to even

hundreds of milliseconds. The actuator dynamics are modeled considering the effect of the lower level

proportional + integral + derivative (PID) controllers which govern the tracking of the actuators to

the commanded set points in the loop. This loses some generality in that the parameterization of

the actuator dynamics depends on the tuning of the lower level PID controllers, however it simplifies

the modeling task in that the dynamics of the full closed-loop system consisting of both the actuator

and PID controller does not have to be considered.

The throttle and VVT dynamics are modeled as prototype second order linear systems

θ̈ + 2ζωnθ̇ + ω2
nθ = ω2

nu (2.26)

where θ is the valve position, u is the input command, ζ is the damping ratio, and ωn is the natural

frequency. The values of ζ and ωn are identified from measured step and ramp response data, and

take the values

ζt ≡ .7265, ωn,t ≡ 30.665 rad/s (2.27)

ζvvt ≡ .4842, ωn,vvt ≡ 15.2 rad/s (2.28)

Plots of the linear second order approximations of the measured throttle (left) and exhaust valve

timing (right) actuator dynamics are shown in Fig. 2.2.3. The overshoot predicted by the throttle

modeled response when in fact there is none is perhaps the most unfavorable aspect of the simple

second order approximations, however the accuracy of the predictions are sufficient for controls

purposes. Note that the exhaust valve timing is shown in units of crank angle degrees relative to

the max retard position, because throughout this trial the exhaust cam was switched from high lift

to low lift in order to subject the model to both cam lifts. The cam switch shifts the EVC timing

as explained in Sec. 2.1, but does not affect the relative phasing. More details on this matter are
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given in Sec. 2.2.4. Also note that the dynamics of the intake and exhaust cam phaser were very

similar (both use the same actuator), and so the same ζ and ωn values are used for both intake and

exhaust valve timings.
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Figure 2.5: Linear second order actuator dynamics model predictions for the throttle (left) and cam
phasing (right).

The remaining air path actuator is the wastegate of the turbocharger. No time response data

for wastegate position was available for identification of the wastegate dynamics, so a simple first

order linear approximation is imposed as a rough estimate.

θ̇wg +
1

τwg
θwg =

1

τwg
uwg (2.29)

τwg ≡ 125 msec (2.30)

The time constant τwg is chosen to give a significantly slower response than that of the throttle, as

the wastegate is typically slower than the throttle. Additionally, this model is selected assuming

an electronic wastegate which can be freely actuated; for a pneumatically actuated wastegate,

the dynamics could be even more significant and contain several saturation type nonlinearities.

While the choice of wastegate actuator dynamics is a crude approximation, the wastegate is not

an important actuator for SI/HCCI transitions with naturally aspirated HCCI operation, as these

transitions occur in the lower load regime of SI operation where turbocharging effects are negligible.
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2.2.4 Integrating Continuous Cam Phaser Dynamics with Instantaneous Cam
Switching

Though the VVT device has significant actuator dynamics as portrayed in Fig. 2.5, instantaneous

shifting of the valve timings can occur during a cam switch due to the offset between the high lift

and low lift cam profiles of the two-stage cam mechanism (see Fig. 2.2). This implies that to model

the dynamics of the valve timings with the two-stage cam mechanism, it is necessary to include

continuous actuator dynamics as well as discrete jumps that occur when the cams are switched.

In order to capture both of these effects, observe from Fig. 2.2 that because the crank angle offset

between the high-lift and low-lift cams is fixed, if the high-lift cams are phased by a given amount so

that the high-lift profile shifts to the left or right along the crank angle axis, then the low-lift cams

must also necessarily be phased by the same amount. A single variable must thus be sufficient to

characterize the phasing of both the high-lift and low-lift cams, which is here chosen to be the angle

of the cam phaser relative to its max retard position, which we define as θrel. θrel can be calculated

by taking the difference between the crank angle of any valve event and the crank angle of the same

valve event when the cam phaser is at its max retard position θmax. For example, the intake θrel

can be calculated by taking the difference between the current IVO timing and IVO timing at max

retard, and similarly the exhaust θrel can be calculated by taking the difference between the current

EVC timing and EVC timing at max retard,

θreli = θivo − θmaxivo , θrele = θevc − θmaxevc (2.31)

where θreli and θrele denote the intake and exhaust cam shaft relative phasing, respectively. While

IVO and EVC are obvious choices of valve events to use to calculate θrel, any valve event such as

IVC or EVO can be used as long as the corresponding θmax value is correct.

With the definition of θreli and θrele in Eq. (2.31), both the high-lift and low-lift IVO and EVC

timings can be calculated by knowing the θrel value for the intake and exhaust cam phasers:

θHivo = θreli + θH,maxivo , θHevc = θrele + θH,maxevc (2.32)

θLivo = θreli + θL,maxivo , θLevc = θrele + θL,maxevc (2.33)

where superscript H indicates a value for high-lift cams and superscript L indicates a value for

low-lift cams. Note θH,maxivo − θL,maxivo = ∆IV OH−L and θH,maxevc − θL,maxevc = ∆EV CH−L as defined

in Eq. (2.1). Thus, the continuous cam phaser dynamics can be captured solely through θreli and

θrele , and when the cams switch, the instantaneous shift of the valve timings is captured simply

by changing the θmax values to those of the cams that are now in place. A block diagram of the

method to capture continuous cam phaser dynamics with instantaneous cam profile switching is

depicted in Fig. 2.6 taking the IVO position for example, where Λcam represents the cam profile
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(high or low lift) that is in place.

Figure 2.6: Method to model continuous cam phaser dynamics with discrete jumps in valve timings
due to cam profile switching. IVO timing used for example.

It is briefly noted here that for simulation implementation of continuous VVT dynamics with

instaneous cam switching, characterizing the exhaust valve timing dynamics with respect to EVO

instead of EVC becomes advantageous because the cams switch during the closed-valve portion

of the cycle, and the cycle division is drawn at EVO. This means that on a cycle where the cams

switch, the EVO at the end of the engine model’s cycle will have a different lift than that at the

start (i.e. the EVO which is delayed from the end of the previous cycle), and so the shift needs to

be taken into consideration directly on the switching cycle. For the EVC timing, the effect of the

cam switch is not felt until the first cycle after the cams are switched. This convention does not

change the actuator dynamics model Eq. (2.26) and need not be considered in controller design.

2.3 SI Combustion Model

2.3.1 Overview

The SI combustion model follows a structure similar to that of [46], with extensive modifications

for additional functionalities and better agreement with data. The basic premise of the model is

to carry out a modified Otto cycle, with polytropic compression and expansion processes and an

instantaneous combustion. The model’s most challenging tasks are to obtain the necessary quantities

for the thermodynamic cycle calculation to be carried out, and to introduce realistic effects into the

idealized Otto cycle so that the model can accurately predict outputs seen in experiment.

The combustion model operates in discrete time, executing its calculations once per engine cycle
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Figure 2.7: Cycle definition of the SI combustion model.

following the mean value modeling approach. Note that this approach assumes that the engine speed

is known and changes slowly relative the cycle duration. The combustion model cycle is divided at

the exhaust valve opening (EVO) event as depicted in Fig. 2.7. It is clear from the diagram 2.7 that

with this cycle definition, the EVC timing for the current cycle is dictated by the EVO timing for

the past cycle,

θevc(k) = θevo(k − 1) + ∆EV (2.34)

where ∆EV is the exhaust cam duration and k is the cycle index. This EVC convention is

not a consequence of the valve event’s underlying physical process, but rather a necessity for

implementation of the mean value model in simulation. Also indicated in Fig. 2.7 are the instants

where control inputs can be calculated and applied to the combustion model, so the interface

between a controller and the model can be seen. Each control action is assumed to occur at the end

of the combustion model cycle, so that the cycle completes and any combustion outputs can be fed

back to the controller to calculate the control inputs to be applied to the next cycle. Note that

the valve timings θevc and θivo are technically states and not input commands due to the actuator

dynamics (see Sec. 2.2.3), but are taken to be externally specified by the air path model and so

are input once per cycle as with the other input variables. The injection timing θsoi is not counted

amongst the inputs to the SI model as it is not used in control of the SI combustion mode, as it has

been found to have minimal effect on combustion for a wide range of timings in the intake stroke.

Lastly, note that both the intake and exhaust valves in Fig. 2.7 follow the high lift profile with PVO;

in a later Section, SI/HCCI mode transitions will be considered where the SI combustion operates

with a low lift intake cam profile and high lift exhaust cam profile, which is chosen based on the
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mode transition strategy. For SI/HCCI transitions with that strategy, the SI combustion model will

be parameterized assuming a low lift intake cam profile, and any adjustments to the model with the

high lift intake profile presented here will be described.

Before going onto describe the combustion model equations, we first note the following assump-

tions employed by the combustion model.

Model Assumptions

1. The mixture can be treated as an ideal gas with constant specific heats. The specific heat
during the intake and compression strokes is equivalent to the specific heat of atmospheric air;
the specific heat of the gases during combustion is indeterminate, and can be chosen to give a
reasonable temperature rise due to combustion.

2. The compression and expansion strokes can be treated as polytropic processes with a constant
polytropic coefficient, and the combustion can be treated as constant volume, adiabatic heat
addition.

3. The point of instantaneous combustion is taken at |θ50 − θ50,MBT | as in [49], where θ50 is
the crank angle where 50% of the fuel mass has burned and θ50,MBT is the θ50 timing for
maximum brake torque, taken = 7◦ aTDC. This selection logic causes the cylinder volume
during combustion to be larger as θ50 moves further from its max brake torque position, which
causes the extracted work and hence torque output to reduce in a trend similar to that seen
in experiments as spark is advanced/retarded from its optimal position.

4. Cylinder to cylinder variations can be neglected - the combustion model is parameterized to a
single cylinder only.

5. Cycle to cycle couplings are negligible in the SI combustion mode due to a low quantity of
recycled exhaust gas. The combustion can be modeled as a static nonlinear mapping that is
independent of previous cycles, and so contains no states. To justify this assumption, it is
noted that the maximum residual gas fraction as processed from steady-state actuator sweep
data in SI/HCCI transtion relevant conditions is ≈ 25%, and will in general tend to be lower
than this value because of the EVC placement necessary to attain the residual gas fraction this
large. Also note that this is only about half of the minimum residual gas fraction observed in
HCCI steady-state sweep data of ≈ 47%.

2.3.2 Model Calculations

Cylinder Charge and IVC Conditions

The SI combustion model calculations begin by determining the charge mass and composition. The

flow rate into the cylinders is obtained through a speed-density like regression modified after [50]

Wcyl = α1(θevc, θivo)pim + α0(θevc, θivo) (2.35)

αi = ai1θ
2
evc + ai2θevc + ai3θ

2
ivo + ai4θivo + ai5 (2.36)
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where pim is the intake manifold pressure and all ai represent regression coefficients. In general,

the coefficients α1 and α0 will be functions of engine speed, valve timings, and intake temperature,

however the parameterization data contained only one engine speed and a small variation in intake

temperature and so the α1 and α0 are simple quadratic functions of valve timings. The mass of

fresh air can then be calculated assuming a uniform cylinder flow rate over the duration of the

intake stroke

min
a =

Wcyl

Neng/120Ncyl
(2.37)

where Ncyl is the number of cylinders.

To calculate the total in-cylinder mas, it is also necessary to know the residual gas amount,

which is obtained from a regressed through the residual gas fraction xr := mr/mc, where mr is the

residual mass and mc is the total mass. The regression is developed manually to fit post-processed

data and takes the form

xr = a1θ
2
evc + a2θevc + a3θivo + a4pim + a5m

0
f + a6θ

0
sp + a7 (2.38)

which has a quadratic dependency on θevc to capture the inflection in residual quantity between

rebreathing (θevc aTDC) and trapping (θevc bTDC). θivo and pim are included to represent effects

on intake air charge affecting the fraction of residal gas, and cycled delayed values for fuel mass and

spark timing m0
f and θ0

sp are included to capture the affect of these inputs on exhaust temperature,

which can affect the storage of residual gas. Note that the cycle delays on inputs m0
f and θ0

sp are

trivial to implement as these quantities are specified by the control system and so are always known

explicitly.

With mf
a and xr determined, the complete charge mass can then be obtained from the equation

mc =
min
a +mf

1− xr
(2.39)

where the relation mr = xrmc has been used. The AFR can also be calculated, which we quantify

in terms of the relative to the stoichiometric air-fuel ratio λ

λ =

mina
mf

AFRs
(2.40)

where AFRs ≈ 14.6 for gasoline. Here it is assumed that ma ≡ min
air, i.e. that there is no recycled

air, so that λ represents the AFR in the exhaust. In typical SI operation with near-stoichiometric

mixtures and small residual amounts, this should also be very close to the AFR in the cylinder,

which includes recycled air.

After the cylinder charge mass and composition have been determined, the pressure and

temperature at IVC are found, starting with the pressure pivc which is obtained as a linear function
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intake manifold pressure as in [46]

pivc = β1pim + β0. (2.41)

The temperature Tivc can be calculated using the ideal gas law with the known cylinder charge

mass

Tivc =
pivcVivc
Rmc

. (2.42)

Here R ≈ 287J/kgK is the ideal gas constant for air, and the volume at IVC is calculated from the

crank-slider equation

V (θ) = Vcl +
πB2

cyl

4

(
Lcr + ac − ac cos(θ)−

√
L2
cr − (ac sin(θ))2

)
(2.43)

where θ is the crank angle of a given event (here IVC), Vcl is the chamber clearance volume, Lcr is

connecting rod length, Bcyl is the cylinder bore, and ac is one half the stroke length.

Polytropic Compression/Expansion and Constant Volume Combustion

The next step of the engine cycle is to proceed with polytropic compression and constant volume

combustion. Before doing this, the crank angle of instantaneous combustion θcmb must be found. As

discussed in Assumption 3 in Sec. 2.3.1, the point of instantaneous combustion is defined through

the 50% burn angle θ50 following [49],

θcmb = |θ50 − θMBT
50 | (2.44)

where the θ50 for max brake torque θMBT
50 is taken ≡ 7◦. This implies that θ50 must be found prior

to polytropic compression, which is determined through the regression

θ50 = a1θ
2
sp + a2θsp + a3mf + a4θ

2
evc + a5θevc + a6θ

2
ivo + a7θivo + a8 (2.45)

Now polytropic compression can be carried out

pbc = pivc

(
Vivc
Vcmb

)nc
(2.46)

Tbc = Tivc

(
Vivc
Vcmb

)nc−1

(2.47)

where Vcmb = V (θcmb) is the volume where combustion occurs, nc is the (constant) polytropic

exponent during compression, and the subscript “bc” indicates before combustion. At θcmb, combus-

tion is taken to occur as constant volume adiabatic head addition, giving the expression for the
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temperature rise

Tac = Tbc +
mfQlhv
cvmc

(2.48)

where Qlhv is the lower heating value for the fuel, cv is the constant volume specific heat during

combustion (taken constant), and the subscript“ac” indicates after combustion. The assumption of

constant volume combustion causes the ideal gas law for the pressure after combustion to reduce to

pac = pbc

(
Tac
Tbc

)
. (2.49)

The cylinder gasses are then expanded polytropically to EVO from the point of instantaneous

combustion

pevo = pac

(
Vcmb
Vevo

)ne
(2.50)

Tevo = Tac

(
Vcmb
Vevo

)nexp−1

(2.51)

where ne is the (constant) polytropic exponent during expansion.

End of Cycle Outputs

After the EVO event, the outputs from the cylinders to the air path including the exhaust temperature

and flow rate are calculated, along with the cycle work. Exhaust gas blowdown is assumed to occur

immediately following the EVO event at constant volume, giving a polytropic expansion down to

exhaust manifold pressure

Tbd = Tevo

(
pem
pevo

)1− 1
nbd

(2.52)

where Tbd represents the temperature after blowdown and nbd is the (constant) polytropic exponent

during blowdown. From the blowdown temperature, the temperature of the gas flowing into the

exhaust manifold is calculated using an expression based on steady-state heat convection for pipe

flow put forth in Model 1 of [51]

Tem = Tw + (Tcyl,out − Tw) exp

(
h(Wcyl)A

cpWcyl

)
(2.53)

where the temperature at the cylinder exhaust port Tcyl,out is calculated assuming a temperature

drop during the exhaust stroke that linearly increases with mass flow, and the convection coefficient
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h is a cubic regression to mass flow rate

Tcyl,out = Tbd − kWcyl (2.54)

h(Wcyl)A

cp
= a3W

3
cyl + a2W

2
cyl + a1Wcyl + a0 (2.55)

This calculation is different from the model in [51] in that it introduces a temperature drop to the

cylinder exhaust port using (2.54) and the wall temperature Tw is let vary as a coefficient in the

regression instead of being taken at atmospheric temperature.

The mass and enthalpy flow output to the exhaust manifold are computed from

Wex = (min
a +mf )

Neng

120
Ncyl (2.56)

Ḣex = Wexcp,exTex (2.57)

cp,ex = a1Tex + a0 +R (2.58)

where the constant volume specific heat of the exhaust gas has been approximated as a linear

function of exhaust manifold temperature for the SI combustion operation regime. Note that

expression (2.56) assumes that the exact amount of mass that entered the cylinder on the current

cycle also leaves the cylinder during the exhaust stroke, i.e. the system is in steady-state. Another

way to state this is that the residual mass is assumed to be the same on the upcoming cycle as on

the current cycle.

The gross work output of the cycle is calculated noting that the compression and expansion

strokes were assumed to be polytropic processes, so that the expression for work of a polytropic

process can be used

Wcig =
pbcVcmb − pivcVivc

1− nc
+
pevoVevo − pacVcmb

1− ne
(2.59)

where Wcig refers to the gross indicated cycle work. The gross indicated mean effective pressure

(IMEP) can be obtained by dividing out by the cylinder displacement volume Vd

IMEP =
Wcig

Vd
(2.60)

and finally the net indicated mean effective pressure (NMEP) is calculated assuming a rectangular

pumping loop

NMEP = IMEP − (pem − pim) (2.61)

A last detail of the SI model calculations concerns syncing the SI model with HCCI model during

mode transitions. Because the HCCI model contains states for cycle-cycle couplings as will be noted
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in Sec 2.4, during an SI-HCCI transition these states must be initialized by the SI combustion to be

passed to the HCCI model for the first HCCI cycle. Thus, these state values are calculated during

the SI/HCCI coupling cycle of an SI-HCCI transition, and are otherwise discarded. One of these

states is the blowdown temperature Tbd, which is already necessary for the SI model in Eq. 2.52.

The other states correspond to the compositional variables of burned gas fraction and fuel mass

fraction. The burned gas fraction bbd can be shown to reduce to an algebraic function of AFR in

steady-state, so that the cycle to cycle coupling in the following equation is not necessary

bbd =
mf (AFRs + 1)

mc
+ xrbbd(k − 1) =

AFRs + 1

λAFRs + 1
in steady-state (2.62)

The fuel mass fraction fbd is set to 0 unless the mixture is rich past a specified threshold λmin until

which it is declared that all fuel burns for simplicity in the model’s compositional relations

muf = max{0, (λmin − λ)mf}, λmin ≤ 1 (2.63)

fbd =
muf

mc
(2.64)

where muf is the mass of unburnt fuel and λmin is chosen = 0.97.

2.3.3 Steady-State Parameterization Results

The parameters of the SI combustion model are determined in regression against a grid of steady-

state actuator sweep data at 2000 RPM with a constant stoichiometric AFR. Because the SI

model contains no cycle to cycle couplings, fitting of the model coefficients can be done easily by

determining each regesssion’s coefficients from a least squares fit from the measured inputs to the

measured outputs of the regression. In the HCCI case where cycle to cycle couplings play a role, the

regression method is not as straightforward because it depends on states from the previous cycle

whose values inherently change as the regression fit changes, creating an internal feedback. The

regressions of the SI model are fit sequentially, starting with Wcyl and xr, and then moving onto θ50

and finally Wcig, using the modeled values from previous regressions as inputs to those which follow,

in order to account for the effects of compounding model error.

In the parameterization data, fuel and air were varied simultaneously to change the load through

adjusting the throttle with constant AFR. The innermost variable of the input grid was spark

timing, followed by fuel (and hence air) mass, then the intake valve timing and finally exhaust valve

timing. The exhaust valve timing was swept to very advanced positions, as the mode transition

strategy involves advanced EVC timings in SI mode as will be explained in future Chapters. The

451 point input grid and modeled versus measured outputs of θ50, NMEP , and air mass ma are

shown in Fig. 2.8. Air mass is shown as opposed to λ because AFR is held fixed. A summary of
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the ranges swept and fit statistics are given in Table 2.2. Inspection of the results in Fig. 2.8 and

Table 2.2 shows that the model fits the data with good accuracy considering the simplicity of the

model and the wide range of actuator settings.
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Figure 2.8: Input grid and modeled vs. measured outputs for steady-state SI model parameterization
data. Mass of air ma shown in place of λ as because a stoichiometric AFR was maintained throughout
the sweeps.

2.4 HCCI Combustion Model

The basic structure of the HCCI combustion model is similar to that of the SI combustion model, in

that it carries out polytropic compression and expansion processes with an instantaneous combustion

and uses regressions for quantities which are difficult to estimate physically. The HCCI model’s cycle

division is also drawn at EVO for easy integration of the two models for multi-mode combustion,

which means that Eq. (2.34) applies to the HCCI model as well. The model draws several ideas

from the model of [52], the main ones being the cycle division at EVO, recycled exhaust gas thermal

and compositional states, an energy balance at IVC to determine the charge properties before
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Min Max Mean Abs. Error Max Abs. Error

θsp (aTDC) -33 -6 - -
mf (mg) 8.19 15.95 - -

θivo (aTDC) 344 370 - -
θevc (aTDC) 297 370 - -
θ50 (aTDC) 0.4 34.2 0.89◦ 4.38◦

NMEP (bar) 1.7 3.95 2.43% 9.13%
ma (mg) 120 226 1.57% 6.44%

Table 2.2: Swept range of inputs and outputs in SI model parameterization data. Mean and max
absolute error between model and measurement listed for outputs. θ50 error reported in CAD to
avoid division by small numbers at θ50 near TDC.

combustion, and an integrated Arrhenius rate to determine combustion phasing. However, the

cylinder charge determination and combustion phasing correlation are extensively modified to fit a

wider range of steady-state conditions and better extrapolate to SI-HCCI mode transitions than the

model of [52], so that the governing equations for these components which encompass all major

correlations of the model are significantly different than in [52]. The portion of the model that

remains similar to that [52] is the Otto cycle-like component relating to polytropic The model

also uses relationships from previous work [19,53] to introduce recompression heat release (RCHR)

effects.

Unlike the SI combustion mode, recompression HCCI typically operates with a high amount

of internal residual gas, which creates a strong coupling from one cycle to the next. This means

that Assumption 5 of the SI combustion model (see Sec. 2.3.1) does not hold for HCCI. All other

assumptions of the SI combustion model are applied to the HCCI model as well, however. The HCCI

model captures the cycle to cycle couplings with three cycle delayed thermal and compositional

states, which are the temperature, burned gas fraction, and fuel mass fraction at blowdown,

Tbd := Tcyl|EV O+ (2.65)

bbd :=
mb

mc

∣∣∣∣
EV O+

(2.66)

fbd :=
muf

mc

∣∣∣∣
EV O+

(2.67)

where mb denotes the mass of complete combustion products, muf denotes the mass of unburnt

fuel from main combustion, and EV O+ indicates immediately after EVO. The states Tbd and bbd

are the same as in the model of [52], while the fbd state is modified after the unburnt fuel state

muf from [53] to eliminate steady-state assumptions. Note that the model’s basic composition

calculations lump the cylinder mass into three categories, being fuel, air, and combustion products.
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A schematic diagram depicting how the combustion model states preserve cycle to cycle couplings

is shown in Fig. 2.9 for the important case of capturing couplings across combustion modes in an

SI-HCCI transition. The SI combustion model executes on the final SI cycle k − 1 and generates

Tbd, bbd, and fbd values for the exhaust gas, which are stored with a discrete unit (cycle) delay. The

delayed state values are passed to the HCCI combustion model on the next cycle, k, so that the

effect of the thermal and compositional properties of the SI exhaust gas on the HCCI combustion

can be felt. The cycle to cycle state passing of the HCCI model follows the same procedure in

nominal HCCI to preserve cyclic couplings within the HCCI mode. In the description of the HCCI

model calculations which follows, the manner in which the cycle delayed states affect the HCCI

model will be shown explictly through the model’s equations.

SI Combustion Model, Cycle k-1 

EVO(k -1) IVO(k -1) EVC(k -1) IVC(k-1) EVO(k-2) 

Cylinder Pressure 

Exhaust Valve Profile 

Intake Valve Profile 

z-1 

Tbd(k-1) 

EVO(k) EVC(k) IVO(k) IVC(k) EVO(k -1) 

HCCI Combustion Model, Cycle k   

Cycle Increment 

z-1 

z-1 

bbd(k-1) 

fbd(k-1) 
PVO 

NVO 

Figure 2.9: Diagram of combustion model cycle division showing how exhaust gas states link SI and
HCCI combustion models during an SI-HCCI switch.

A summary of the input/output and state differences between the SI and HCCI combustion

models is given in Table 2.4. Notice that the control inputs of the HCCI combustion model are

different from the SI combustion model, namely in that there is no spark timing, and the start

of injection (SOI) timing θsoi has been added as an input. The injection timing is included as an

input because it has been observed to have a significant effect on the auto-ignition timing through

thermal effects from fuel evaporation and heat release during recompression as well as chemical

effects on the fuel ignition delay through pyrolisis (advancing) and reformation (retarding) chemical

reactions [54,55]. In general, earlier SOI tends to give earlier ignition by increasing the time and

temperature for reactions during recompression, though the investigation of which reaction types

dominate and the importance of chemical versus thermal effects is still an open topic.
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Model Inputs Outputs States

mf θ50

SI θsp NMEP -
θevc λ
θivo Tem
mf θ50 Tbd

HCCI θsoi NMEP bbd
θevc λ fbd
θivo Tem

Table 2.3: Summary input/output listing for SI and HCCI models.

2.4.1 Model Calculations

In the following equations, ai represent fitting coefficients and superscript 0 indicates a delayed state

from the previous cycle,

x0 = xk−1 (2.68)

where xk is the value of some state quantity on cycle k. All volumes V are calculated using the

crank-slider equation (2.43).

Recompression Period

The HCCI model’s calculations start with the delayed states T 0
bd, b

0
bd, and f0

bd during the recompression

period, as the recompression event plays an important role in the outcome of the cycle due to a

high amount of NVO. The first calculation is for the trapped residual mass, which is obtained from

a regression of the form

mr =
(a1θevc + a2)Vevc
R(a3T 0

bd + a4)
(2.69)

where Vevc is the volume at EVC and R ≡ 287 is the gas constant. This regression was developed

based on the form of the expression for the ideal gas law at EVC. Some HCCI models [56], [57] directly

employ the ideal gas law at EVC with pressure approximated as atmospheric and temperature

approximate as Tbd. This calculation was found to give a poor fit to data, which motivated

introducing the additional regressor dependencies of Eq. (2.69). A regression for residual mass was

selected in place of residual gas fraction as in [52] because the residual gas fraction relation includes

a monotonically decreasing dependence on Tbd, which does not capture the effect that higher exhaust

temperature tends to reduce the inducted air mass, hence giving an increase in residual gas fraction.

This caused problems when extrapolating to the high exhaust temperatures involved in SI-HCCI
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transitions, where the residual gas fraction relation of [52] lead to strong underpredicitons of the

in-cylinder temperature at IVC and necessitated an unreasonably large correction parameter for

residual gas temperature. The residual temperature correction parameter mentioned here will be

explained when transient SI-HCCI transtion data is considered in Ch. 3.

Using the estimated mr value from Eq. (2.69), the portion of the residual mass that corresponds

to unburnt fuel and air from the previous cycle can be found from

mrf =
mr

m0
c

m0
uf = mrf

0
bd (2.70)

mra =
mr

m0
c

m0
ua = mr(1− b0bd − f0

bd) (2.71)

where mrf is the mass of residual fuel, mra is the mass of residual air, and mua indicates the unburnt

air from main combustion which is not calculated explicitly. The temperature of the trapped mass

at EVC is modeled as a linear function of the blowdown temperature

Tevc = a1T
0
bd + a0 (2.72)

Recompression heat release of the unburnt residual fuel mass mrf is incorporated in a simple manner

by injecting an instantaneous heat addition to the temperature at EVC. The heat release is assumed

to occur with unity combustion efficiency, a decision which is motivated mainly by observations

from post-processed experimental data which shows very little trends in recompression combustion

efficiency. The RCHR is thus more intended to capture the trend of cyclic couplings through

unreacted chemical energy, as opposed to absolute numerical values:

Trc = Tevc + ∆Trc (2.73)

∆Trc = µ
mb
rfQlhv

cvmr
(2.74)

where Trc is the temperature after recompression heat release and µ is a tuning factor to account for

idealities of constant volume, adiabatic heat release. The term mb
rf accounts for slightly lean/ rich

scenarios where there is not enough oxygen present in the residual gas to combust all the residual

fuel,

mb
rf = min[mrf , mra/AFRs]. (2.75)

After the mass of fuel that burns during recompression is known, it can be used in conjunction with

the injected fuel mass to determine the total fuel mass

mtot
f = mf + (mrf −mb

rf ). (2.76)

The relative AFR during recompression λr is calculated to characterize the oxygen concentration
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during recompression, which was noted in [?, 55] to have a significant impact on the outcome of

recompression chemical reactions.

λr =
mra

AFRsmtot
f

(2.77)

where mtot
f = mf +mrf is the total fuel mass. Note that λr is allowed to take negative values in

order to detect that the mixture was rich during the previous combustion and the resulting effect

on the recompression period. This is simply a construct based on the model’s basic composition

dynamics which assume that the stoichiometric amount of air burns during main combustion, which

imposes that rich mixtures produce negative values for residual air mra. These negative values are

used as an indicator of rich combustion. mra is saturated at 0 when used in the model’s cylinder

breathing calculations, however, to retain physicality.

Air Induction and IVC Conditions

The cylinder charge properties after the intake process are determined from a combination of

conservation of mass and energy along with several empirical regressions at the intake valve closing

(IVC) event. The pressure at IVC pivc is obtained from a linear regression to intake manifold

pressure as with the SI model

pivc = a1pim + a0 (2.78)

The mass of inducted air min
a is determined from an equation whose functional form is derived by

substituting the ideal gas law for mc into an energy balance at IVC, upon which the mean gas

temperature term cancels and min
a can be isolated

min
a =

1

Tim

[
a1pivcVivc − (mr +min

f )Tr + a2

]
(2.79)

where Vivc is volume at IVC, and Tim is the intake manifold temperature which is assumed to be

the temperature of the inducted air. The coefficients a1 and a2 are introduced to improve the fit to

data. The temperature which serves to characterize the effect of the residual gas internal energy on

Eq. (2.79) is modeled as a linear function of Trc representing energy losses during recompression

Tr = a1Trc + a2λrθsoi + a3 (2.80)

where 0 ≤ a1 ≤ 1. The term λrθsoi is meant to capture increases to the residual gas temperature

from reforming and exothermic reactions during recompression, the extent of which are proportional

to the amount of available oxygen during recompression and the time allowed for reactions to

take place as noted in [55]. Hence a2 > 0 in Eq. (2.80), assuming that θsoi is defined bTDC main
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combustion. The coefficients a1 - a3 in Eq. (2.80) are ultimately regressed in conjunction with

the coefficients in Eq. (2.79) to match the inducted air mass, and so the model’s Tr calculation

represents an intermediate variable as opposed to the actual residual temperature in data.

With pivc and ma obtained, the total mass and mean gas temperature at IVC Tivc can be found

from conservation of mass and the ideal gas law, respectively

mc = mr +ma +mf (2.81)

Tivc =
pivcVivc
Rmc

(2.82)

The total air mass (including residual air) is then calculated and used to determine the burned gas

fraction before combustion bc

ma = min
a +mra (2.83)

bc =
mb

mc

∣∣∣∣
IV C

=
mc −ma −mf

mc
(2.84)

Finally, the relative AFR is calculated both in the exhaust (excluding residuals) and in the cylinder

λex =
min
a

mfAFRs
(2.85)

λc =
ma

mtot
f AFRs

(2.86)

Integrated Arrhenius Rate for Combustion Phasing

As in many other HCCI models [52, 57–59], the combustion phasing is determined through an

integrated Arrhenius rate which dictates the start of combustion θsoc and the resulting θ50. The

Arrhenius rate expression takes the same form as in [52], however the Arrhenius threshold Kth

is expanded from a linear function of θsoi to a linear function of θsoi whose coefficients depend

quadratically on λr. This functional form is based on observations from [55], which found that

an optimum point for advancing combustion phasing via recompression reaction was achieved at

intermediate AFRs where a balance was struck between ignitability enhancing pyrolysis reactions

and ignitability inhibiting fuel reformation reactions. The quadratic λr dependence captures such

an optimum, which is cross-coupled to θsoi since injection timing affects the recompression reaction

duration. [55] also found that the temperature during recompression affected the rate of reactions,

and so a term for Trc is included with a cross coupling to λr and θsoi . These recompression reaction
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dependencies are incorporated into Kth following the logic in [60].

Kth(θsoi, λr, Tevc) =

∫ θsoc

θivc

1

ω
pc(θ)

npe

(
−Ea
RTc(θ)

)
dθ (2.87)

Kth(θsoi, λr, Trc) = (a12λ
2
r + a11λr + a10)θsoi + a02λ

2
r + a01λr + a00 + (aT1λrθsoi + aT0)Trc (2.88)

pc(θ) = pivc

(
Vivc
V (θ)

)nc
, Tc(θ) = Tivc

(
Vivc
V (θ)

)nc−1

(2.89)

where ω is the engine speed in rad/s, Ea is the activation energy, and the polytropic compression

exponent nc ≡ 1.32. Without these added recompression reaction dependencies, fits to combustion

phasing data were poor, even when multiple correlations from the literature [57, 58, 61, 62] were

tried. Note that as a precautionary measure to prevent extreme sensitivity to λr if the quadratic

dependence Eq. (2.88) is extrapolated far outside the parameterized range, the λr value used in

Eq. (2.88) is modified by a hypertangent function which has negligible effect within the parameterized

range but forces λr to roll off if it significantly exceeds this range

λ̃r = asatλ
max
r tanh

(
λr

asatλmaxr

)
(2.90)

where λmaxr represents the maximum λr to which the model parameterization extends, and asat is

such that the value of λ̃r ultimately saturates at asatλ
max
r . λmaxr is let vary as a linear function of

θsoi which upper bounds the maximum λr values in the data, as typically earlier θsoi timings allow

higher λr values to be reached while maintaining stable combustion phasing. After θsoc is found, it

is used to calculate θ50 in a linear regression

θ50 = a1θsoc + a0 (2.91)

Polytropic Compression/Expansion and Constant Volume Combustion

The polytropic compression and expansion strokes and constant volume combustion are carried out

with the same procedure as in the SI model, following Eqs. (2.44), (2.46) - (2.51). The temperature

rise due to combustion is modified with two efficiency terms

Tac = Tbc + ηλη50
mfQlhv
cvmc

(2.92)
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The first efficiency term ηλ represents a combined thermal and combustion efficiency as a function

of AFR,

ηλ =
a1λc + a2

λc + a3
(2.93)

The ηλ term was necessary to capture the combustion work output over a wide range of AFRs,

where significant changes were observed as AFR was varied as exemplified in the constant fuel

actuator sweeps in Fig. 2.10. Note that IMEP is plotted as opposed NMEP in order to rule out

the effects of pumping. As can be seen, the slope of ηλ becomes sharper at AFRs near stoichiometric,

representing the effects of combustion efficiency and unburnt fuel, while the slope is milder at

significantly lean AFRs, representing modest changes to the thermal efficiency from the effect of

varying air dilution on the mixture’s ratio of specific heats.
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Figure 2.10: Top: IMEP measurements in steady-state actuator sweeps with high AFR variation.
Bottom: Profile of model combined thermal and combustion efficiency as a function of λc.

The second efficiency term η50 is adopted after [53], which found that late phasing HCCI cycles

could produce partial burns which create a coupling to the following cycle through the unburnt fuel

quantity. The η50 term is parameterized as a sigmoidal function which rolls off at late combustion

phasing where the combustion approaches the misfire limit. The dependent variable is taken to

be θ50 , and the roll-off of the combustion efficiency curve is taken to vary with fuel quantity to

account for changes in the late phasing limit with load:

η50 =
a1

1 + exp
(
θ50−θ∗50(mf )

a2

) (2.94)

θ∗50(mf ) = a3mf + a4 (2.95)

Note that it is ideal to tune the coefficients a1 - a4 with post-processed combustion efficiency

estimates from late combustion phasing data as in [53], however such data was not available for the

current study. Instead, the coefficients were manually tuned to position the roll-off of the sigmoid

near the late phasing limit observed from steady-state data across different loads. Example profiles
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of η50 are shown in Fig. 2.11, where it should be noted that the curve is upper saturated at 1 at any

θ50 values where it slightly exceeds 1.
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Figure 2.11: Profile of late phasing combustion efficiency η50 across different loads.

End of Cycle Outputs

After the expansion process completes, the HCCI model calculates the outputs at the end of the cycle

at EVO, including the thermal and compositional states, the exhaust flow rate and temperature to be

passed to the air path model, and the cycle work. The blowdown temperature Tbd is calculated with

the same expression (2.52) as in the SI model, and the exhaust manifold temperature also follows

from the same equations (2.53) - (2.55), though now the convection coefficient term in Eq. (2.55)

is a simpler linear function of cylinder flow rate. The mass of unburnt fuel muf is necessary to

determine the fuel mass fraction state, and is calculated from the total incomplete combustion due

to both mixture richness and partial burns at late combustion phasing. The unburnt fuel due to

mixture richness is calculated assuming a lower AFR threshold λmin below which no additional fuel

burns to allow for dissociation effects past stoichiometric as in the SI model,

muf = mf (1−max[(λmin − λc), 0]η50) (2.96)

where again λmin is chosen equal to 0.97. To maintain consistency with the ηλ efficiency, the λc

value in Eq. (2.93) is lower saturated at λmin, and the burnt fuel mass is linearly interpolated from

λmin to 0 at λc = 0. The unburnt fuel mass fraction can then be found from

fbd =
muf

mc
(2.97)

The burned gas fraction after combustion is calculated assuming that the stoichiometric amount of

air burns during main combustion, considering the effect of unburnt fuel

bbd =
(AFRs + 1)(mtot

f −muf )

mc
+ bc (2.98)
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The same expressions as in the SI model are used to calculate the exhaust mass and enthalpy flow

rate (2.56) - (2.58), as well as the cycle work (2.59) (2.60). The NMEP is calculated assuming

a constant PMEP , as attempts to match PMEP values in data using polytropic processes to

approximate the recompression period gave poor results.

NMEP = IMEP + PMEP, PMEP = ¯PMEP ≡ constant (2.99)

2.4.2 Steady-State Fitting Results

As discussed in Sec. 2.3.3, a simple approach can be used for parameterization of the SI model

wherein each of the model’s regressions is fit individually to match its respective measured/post-

processed data values. However, for the HCCI model, the inherent cycle to cycle feedback induced by

the recycled exhaust temperature and composition states of the model can result in large prediction

errors from compounding of modeling error over many cycles, even if the individual regressions

are satisfactory. To cope with this issue, the HCCI model parameters are regressed in an iterative

routine wherein the exhaust gas states are recycled between subsequent iterations until the state

values converge. A description of the iterative parameterization routine is given in Appendix B,

which also takes measures to incoporate additional parameters which are later introduced to capture

transient SI-HCCI transition data (see Ch.3).

The dataset used to parameterized the HCCI model consists of a 526 point grid of actuator

sweeps at a single engine speed of 2000 RPM with the outermost swept variable being fuel mass,

followed by intake manifold pressure (adjusted via throttle) and then EVC timing, and the innermost

variable being injection timing. Several direct throttle and EVC sweeps were also carried out to

clearly discern the trend in the outputs with respect to these variables. Intake valve timing was

held fixed with intake valve closing (IVC) near BDC, as it was observed to have only a small effect

on combustion when maintained in the vicinity of BDC. The grid of inputs and corresponding

performance outputs of θ50,NMEP, and λ are shown in Fig. 2.12 with the model reproduction of

the performance outputs plotted alongside the data values. Note that λ is plotted as it describes

both AFR and trapped air mass, as opposed to the SI model parameterization data of Sec. 2.3.3

where AFR was held constant. As can be seen in Fig. 2.12, the model reproduces the performance

outputs with good accuracy for a low-order model considering the wide range of actuator settings

over which it is fit. A summary of the swept input and output range and mean and max absolute

errors is given in Table 2.4.

The bottom subplot of Fig. 2.12 shows that for much of the parameterized range, the model’s

prediction of unburnt fuel mass muf follows the same trend as the combustion phasing standard

deviation σ(θ50). This is consistent with the logic in [19], which explains that unburnt fuel from

incomplete burns at late combustion phasing can create a cycle to cycle coupling which leads to
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Figure 2.12: Input grid and modeled vs. measured outputs for steady-state HCCI model parameter-
ization data. Bottom subplot shown with close-ups so that the θ50 standard deviation σ(θ50) can
be compared to the model’s mass of unburnt fuel calculation muf more clearly.

oscillatory behavior and hence higher standard deviation in the combustion phasing. There are some

regions where the model’s muf prediction does not follow σ(θ50) as exemplified in the left-hand

close-up plot between points 20 and 80, at which points the model’s θ50 fit can be observed to

underpredict some of the late phasing conditions which give rise to unburnt fuel. This θ50 error may

be influenced by the high sensitivity of the model’s Arrhenius correlation for combustion phasing

at very late, near-misfire conditions, which makes small modeling errors have a large effect. The

model’s trends in muf vs. σ(θ50) may also be enhanced if the model is conditioned on long duration

cycle to cycle high cyclic variability data as in [53], which was not available for the current study.
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Min Max Mean Abs. Error Max Abs. Error

θsoi (bTDC) 300 390 - -
θevc (aTDC) 248 283 - -
pim (bar) 0.85 1 - -
mf (mg) 7.2 10.5 - -
θ50 (aTDC) -2 11 0.86◦ 5.16◦

NMEP (bar) 1.7 3 2.06% 12.2%
λ 0.92 1.5 2.81% 11.2%

Table 2.4: Swept range of inputs and outputs in HCCI model parameterization data. Mean and
max absolute error between model and measurement listed for outputs. θ50 error reported in CAD
to avoid division by small numbers at θ50 near TDC.
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Chapter 3

Capturing Transient Data in SI-HCCI Mode
Transitions

As shown in Sec. 2.4.2, the baseline parameterization of the HCCI combustion model to steady-state

data fits a wide range of actuator sweeps with good accuracy. For model-based control functionality

during an SI-HCCI mode transition, it is desirable that the model also be able to capture transient

data from SI-HCCI mode transitions. This Chapter considers the validation of the control-oriented

multi-mode combustion model with SI-HCCI mode transition data, and is based on [42]. As will

be seen, the baseline model of Ch. 2 experiences difficulties in reproducing performance output

time histories in the HCCI phase of the SI-HCCI transition, despite its adequate steady-state fit.

The source of the model’s short comings are examined with a simplified GT-Power simulation,

which motivates the introduction of a corrective parameter on the model’s residual gas temperature

calculation. Following its introduction, the corrective residual gas temperature parameter is used as

a medium to assimilate transient SI-HCCI feedback to improve the model prediction accuracy for

control applications in an online adaptation routine. With the baseline steady-state parameterization

and augmented residual gas temperature parameter, the model is shown to reproduce transient

performance output time histories from SI-HCCI transitions with considerable accuracy.

3.1 Augmented Parameter for SI-HCCI Mode Transitions

This Section motivates the introduction of a corrective model parameter for SI-HCCI mode transitions

by examining data from an open-loop experimental SI-HCCI transition at a single operating

condition.

3.1.1 Overview of Open-Loop Mode Transtion Experiments

The format for the mode transition experiments was to drive the engine to a steady-state condition

in SI mode which was appropriate for switching to HCCI, then to switch the intake and exhaust

cams to low lift simultaneously. While the mode transition sequence of this Section implements
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a strategy of switching both intake and exhaust cam profiles simultaneously, later on a different

strategy will be pursued where the intake cam is switched to low lift prior to the exhaust cam, though

the dominant physical effects and modeling considerations remain the same for both approaches.

The actuator trajectories of the mode transition were not optimized, as the goal was not to carry

out a high performance mode transition, but rather implement a simple mode transition sequence

for use in transient model validation. Details of actuator strategies to obtain good performance in

SI-HCCI mode transitions will be covered in Sec. 4.1.3 and so are not discussed here. It is noted for

interpretation of the data however that the SI switch point condition was set with an advanced

exhaust cam phasing and late intake cam phasing, and so the resulting SI pressure traces include a

slight recompression event. As stated in Section 2.1, the cams switch from high to low lift during

the closed-valve portion of the final SI cycle, so that at the EVO event of this final SI cycle the

low lift cams are in place. The throttle was commanded wide open roughly 20-30 milliseconds

before the first low lift breathing event, and the spark timing is placed 20◦ aTDC when HCCI

engages to prevent interaction with the combustion. To simulate the mode transition, the measured

throttle position is input to the air path model on a time-sampled basis and the measured cam

phaser positions and commanded fuel quantity, injection timing, and spark timing are input to the

combustion model on a cycle by cycle basis.

The combustion response and corresponding input sequences for an SI-HCCI mode transition

trial are shown in Fig. 3.1, where SI -1 and HCCI 0 designate the final SI cycle and first HCCI cycle,

respectively, following the notation in [35]. The independent axis of the time-based measurements

of intake manifold pressure and throttle command is transformed in order to plot these variables

against the engine cycle. The cams switch during the closed-valve portion of cycle SI -1 which

causes a sudden increase in the recompression pressure and jump in the valve timings θevc and θivo.

In anticipation of the high exhaust temperature that is carried over from the final SI cycle, both

the θevc and θsoi timings are placed much later than their steady-state set points when HCCI is

entered to retard combustion phasing. However, on cycle HCCI 0, the combustion phasing is still

early, accompanied by a high pressure rise rate. The combustion phasing then shifts later on cycle

HCCI 1 where the exhaust temperature is now lower as a result of HCCI combustion. This initially

early and then late combustion phasing caused by the cycle to cycle temperature coupling is the

same phenomenon observed in the mode transition portrayed in [35]. Following the late combustion

phasing and weak heat release on the cycle HCCI 1, the recompression event exhibits an enlarged

peak pressure which occurs significantly after TDC, which indicates recompression heat release of

unburnt fuel from the main combustion event. This recompression heat release in conjunction with

the earlier injection timing cause the combustion phasing to advance on cycle HCCI 2, and from

here the transient becomes milder and the combustion settles to steady-state.

As is apparent from the dash-square θ50 response in Fig. 3.1, the baseline model does not

capture the extremely advanced combustion phasing on cycle HCCI 0 in the data, despite that it
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Figure 3.1: Cycle by cycle input and outputs and crank angle resolved in-cylinder pressure during
open-loop SI-HCCI mode transition. SI -1 indicates the final SI cycle and HCCI 0 indicates the first
HCCI cycle. Model reproduction of outputs with and without the introduced residual temperature
correction are shown.

is equipped with exhaust temperature dynamics and fits a large steady-state dataset with good

accuracy (see Sec. 2.4.2). Significant phasing and torque errors follow the next few transient cycles

as well, which are influenced by the large initial error as will be seen. The plot of the predicted

in-cylinder temperature at IVC, Tivc, shows that the baseline model predicts a Tivc value on cycle

HCCI 0 which is similar to the value at cycles HCCI 6, HCCI 7 towards the end of the transition.

Due to the higher exhaust temperature of SI combustion that is carried over into cycle HCCI 0,

the Tivc on this first HCCI cycle may be expected to be higher than the cycles towards the end of

the transition where the residual temperature falls closer to nominal HCCI levels. If the model’s

Tivc is under predicted on cycle HCCI 0, it could be responsible for the erroneous θ50 prediction.

However, a competing effect is that the residual mass mr is very low on cycle HCCI 0 due to the

very late θevc timing as well as low exhaust gas density from the higher exhaust temperature, which

should act to reduce Tivc. The uncertainty in the model’s in-cylinder temperature prediction on
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cycle HCCI 0 warrants further investigation with higher fidelity modeling tools.

3.1.2 Mode Transition Predictions Using Crank Angle-Based Model

A simplified single-cylinder GT-Power simulation was carried out to aid in drawing conclusions about

the baseline model’s combustion phasing error on cycle HCCI 0. The GT-Power simulation is not

intended to reproduce absolute values from the experiment, but rather to gain a better understanding

of the unmeasured variables during the transient phase of the SI-HCCI mode transition, such as

the in-cylinder temperature. Measured intake and exhaust manifold pressures and temperatures

were specified as intake and exhaust runner boundary conditions on a crank angle basis, and the

valve profiles/timings from the experiment were imposed to capture the effect of the cam switch

from high to low lift and rapid cam phasing. The combustion portion of each cycle is specified by

imposing measured burn angles and Weibe function parameters on a cycle by cycle basis, and the

remainder of the cycle is generated through a crank angle-based engine model and 1-D gas dynamics

calculations. To validate the GT-Power simulation, experimental pressure traces are compared

versus those generated by the simulation in Fig. 3.2. The adequate agreement between GT-Power

and experiment suggests reasonable GT-Power model prediction accuracy.
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Figure 3.2: Comparison of experimental versus GT-Power simulation in-cylinder pressure during an
SI-HCCI mode transition.

Fig. 3.3 plots consecutive in-cylinder temperature traces calculated by GT-Power during the

mode switch from SI to HCCI. The switch of the cams from high to low lift is marked by a shift

from an earlier blowdown process and milder recompression peak on cycle SI -2 to a larger an

approximately symmetric recompression peak on cycle SI -1. The sudden drop temperature drop

near TDC of recompression on SI -2 is due to an earlier IVO from the high lift intake cam, which is

followed by a reversion process of the in-cylinder residual that is ejected into the intake manifold.
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Comparing the recompression period on cycle SI -1 leading into HCCI 0 to the remainder of the

HCCI cycles, there is a clear trend the temperature at the end of recompression is roughly 200 K

higher than the others, which goes onto yield a significantly higher temperature after the intake

event. This suggests that the baseline model does indeed under predict in-cylinder temperature on

cycle HCCI 0 in Fig. 3.1, as it’s Tivc shows only minor differences from the later HCCI cycles.

In tracing the source of model error on cycle HCCI 0, it can be noted that the exceedingly

high recompression temperature leading into cycle HCCI 0 only occurs during SI-HCCI switch

transients when the high temperature SI exhaust undergoes recompression with the low-lift cams.

It is thus uncertain how the low-order model will extrapolate to such a condition as it is outside

the nominal steady-state HCCI parameterized range. The competing effect of low residual mass

noted in Sec. 3.1.1 further complicates this extrapolation. Several other transient effects which

occur only during SI-HCCI transitions may also be influencing the model error, such as amplified

manifold dynamics due to the rapid dethrottling and increased intake temperature due to higher

fluid velocities. However, for the simplified low-order modeling approach, the prediction error is

lumped into the excursion of the residual temperature from nominal HCCI conditions, as this is an

effect which clearly introduces model uncertainty.
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Figure 3.3: In-cylinder temperature traces generated by GT-Power SI-HCCI mode transition
simulation. The final SI cycle whose recompression event yields an extremely high temperature
leading into the first HCCI cycle is highlighted.
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3.1.3 Residual Gas Temperature Correction for Initial HCCI Cycle

Based on the observations from Secs. 3.1.1, 3.1.2, the model’s prediction error when entering HCCI

is attributed solely the high residual temperature that is carried over from SI. To maintain low

model order, the model error on cycle HCCI 0 is accounted for with an empirical correction factor

which parameterizes the model error into the residual temperature. The correction factor is placed

on the model’s residual gas temperature calculation Tr that appears in the energy balance type

regression Eq. 2.79 for the mass of inducted air:

min
a =


1
Tim

[
a1pivcVivc − (mr +min

f )(krTr) + a2

]
, HCCI 0

1
Tim

[
a1pivcVivc − (mr +min

f )Tr + a2

]
, else

(3.1)

where kr > 0 is the residual gas correction factor, Tim is the intake manifold temperature, pivc and

Vivc are pressure and volume at IVC, and HCCI 0 indicates the first cycle when switching to HCCI.

In parameterization, kr is regressed to match combustion phasing during the transient HCCI phase

of the SI-HCCI transition. The reason for this choice is that kr is coupled to the combustion phasing

through the in-cylinder temperature, and that the combustion phasing is directly measurable during

the transient SI-HCCI phase which makes it convenient for implementation. For the mode transition

of Fig. 3.1, kr = 1.14.

With the augmented residual temperature correction, the Tivc predicted by the model on cycle

HCCI 0 in Fig. 3.1 is increased relative to its steady-state value, following the trend observed in

the GT-Power simulation. Comparison of the model’s Tr prediction with the temperature at IVO

Tivo produced by GT-Power suggested that the trend in residual temperature also matches the

GT-Power simulation more closely when the residual temperature correction is applied, taking

Tivo as indicative of residual temperature in GT-Power. Comparing on a percentage basis to omit

steady-state offsets between the model and GT-Power predictions, the model’s Tr calculation on

cycle HCCI 0 was elevated by 37% relative to its steady-state value with the residual temperature

correction active as opposed to only 14% without the correction, while the Tivo in GT-Power was

elevated by 33% relative its steady-state value on cycle HCCI 0. Fig. 3.1 also shows that the θ50

response predicted by the model in now matches the data well not only on cycle HCCI 0 where

the correction is active, but for the entire transient process. This indicates that the main effect

driving the erroneous transient response predicted by the nominal model is the error induced by the

extreme conditions on the cycle HCCI 0, which goes onto affect subsequent cycles though the cycle

to cycle states. Once this error is corrected for, the nominal model can capture the remainder of

the transient response, as the conditions become much closer to nominal HCCI.
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3.2 Adaptive Tuning of Augmented Parameter

3.2.1 Motivation and Description of Adaptive Tuning Method

An important consideration from a control design standpoint for SI-HCCI transitions is that on

the first HCCI cycle of the transition, no HCCI combustion feedback is yet available, and so a

model-based controller must rely completely on the model predictions. The only way to incorporate

feedback to improve the controller response on this first HCCI cycle is thus to assimilate transient

data after the fact, to improve the model predictions for the next mode transition. It has also been

discussed that the conditions on the first HCCI cycle tend to be outside the steady-state HCCI

operating regime used to parameterize the model, and so using online data to improve the model

predictions when such conditions are entered can help alleviate any shortcomings of the model in

extrapolating to these conditions. The mode transition corrective parameter kr serves as an ideal

candidate for such an online model update, as it is specifically introduced to improve the model

predictions on the first HCCI switching cycle, and is tuned exclusively to transient SI-HCCI mode

transition data. Adjusting kr may yield performance benefits for the transient cycles following the

initial HCCI cycle as well, as the degree of model error on the first HCCI cycle has been shown to

have a significant impact on the following cycles through the dynamic cycle to cycle coupling.

To develop an online parameter update method for kr, a simplified approach is taken where kr

is adjusted to match combustion phasing on the first and only the first HCCI cycle of the SI-HCCI

transition. This method neglects how the choice of kr affects cycles after the first HCCI cycle

through the thermal and compositional coupling, and so may yield suboptimal predictions for the

overall transient response. However, limiting attention to the first HCCI cycle yields a far more

tractable algorithm, and can still give significant improvements in model accuracy during the mode

transition as will be shown.

The high-level method for the kr parameter update is to back-track through the model to solve

for the kr value that yields a perfect match of θ50 on the first HCCI cycle of the transition, so that

a linear update law can be used. The algorithm starts with the measured θ50 on the first HCCI

cycle θy50, which is used with Eqn. (2.91) to solve for the corresponding start of combustion θ∗soc:

θ∗soc =
1

a1
(θy50 − a0)

∣∣∣∣
HCCI 0

(3.2)

where the coefficients a1 and a0 come from Eq. (2.91) and |HCCI 0 indicates a quantity evaluated on

the first HCCI cycle. Since kr affects θsoc through the in-cylinder temperature, it must ultimately

be back-solved from the Arrhenius integral (2.87), which requires a numerical inversion. Towards

this end, a simple Newton-Raphson inversion can be applied to solve for the Tivc value which gives

θsoc = θ∗soc when inserted into the Arrhenius integral, which is denoted T ∗ivc. A method that is more
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computationally tractable and better tailored for real-time implementation is to store the value

of the Arrhenius integrand in Eq. (2.87) in a look-up table with Tivc as an indepdent variable. A

method to do this which is shown to be feasible in real-time will be given when the model and

parameter adaptation are implemented in control of SI-HCCI mode transitions in Ch. 4. When T ∗ivc
is found, it can be combined with Eqns. (3.1), (2.81), (2.42) to solve for the target correction k∗r ,

k∗r =
pivcVivc

(
a1 − Tim

RT ∗ivc

)
+ (mr +mf )Tim + a2

(mr +mf )Tr

∣∣∣∣∣∣
HCCI 0

(3.3)

where the coefficients a1, a2 come from Eq. (3.1).

In the general case where mode transitions must take place at varying operating conditions

throughout a drive cycle [63], k∗r will most likely vary with engine operating variables such as

speed and load, as well as with time as the engine behavior drifts over the life-cycle of the engine.

To capture this variation, it is advisable to parameterize kr as a function of operating condition,

and update the parameterization with each new mode transition measurement using a recursive

parameter update method. This is in contrast to simply reseting the value of kr equal to the

solution of Eq. (3.3) after each new mode transition, which will not capture any operating condition

dependency and will increase susceptibility to noise and disturbances by discarding older data.

A simple linear parameterization for kr based on EVC timing is employed in Sec. 3.3 and in

implementation for controls purposes in Ch. 5 to capture an SI-HCCI transition dataset that

extends to multiple operating conditions. For simplicity of illustration, the example adaptive tuning

simulations in the current Section consider the case where kr is adapted to account for drifts and

parameter errors over time at a single operating condition. In this case, the operating condition

dependence of k∗r is unnecessary, and the so the estimate of k∗r takes the form a single parameter k̂r

with only a time dependence,

k∗r ≈ k̂r(m) (3.4)

where m is the iteration index which increments at each successive mode transition and so represents

an event-based time dependence.

To facilitate real-time implementation of the proposed adaptation, it is desirable to use a linear

parameter update law to tune the kr value, which is applicable under the condition that the

parameterization of kr is linear in the fitting coefficients. Several linear parameter update laws exist,

such as the recursive least squares and simplified the projection (gradient) algorithms, along with

the stochastic counterpart to the projection algorithm, the stochastic approximation algorithm [64].

All of these algorithms follow a parameter update law of the form

k̂r(m) = k̂r(m− 1) +G(m)
(
k∗r(m)− k̂r(m− 1)

)
(3.5)
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where the selection of the adaptive gain G(m) is main differentiating factor among the algorithms.

In general, the recursive least squares algorithm is preferable to use when possible, for its faster

convergence and bounded parameter variance properties as compared to the simplified algorithms.

However, the recursive least squares algorithm is more computationally demanding than the others,

so that if the number of parameters becomes high, it may be prudent to use one of the simplified

algorithms. For the basic example cases considered where only one parameter (k̂r) is being estimated

as a function of time, it can be shown that each algorithm’s expression for G(m) reduces to a

constant, so that all algorithms are equivalent and G(m) ≡ G becomes a constant tuning factor.

Parameter adaptation results are thus representative of all the mentioned algorithms. When more

parameters are included in the kr expression to capture dependency on operating condition, the

value of G(m) must be calculated for each new data point following the formula for the chosen

algorithm, all of which can be found in, e.g., [64]. The parameter update method is summarized in

the block diagram Fig. 3.4, where intermediate model variables necessary to carry out the update

have been shown with a superscript “mod” and must be evaluated with Eqs. (2.69) - (2.80).

(Eqs. 2.86-2.88)-1

(Newton-Raphson or Look-
Up Table)

Eq. 3.5Eq. 3.3Eq. 3.2
𝜃𝜃50
𝑦𝑦

𝜆𝜆𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚𝑓𝑓
𝑖𝑖𝑖𝑖
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z-1

Figure 3.4: Block diagram summary of kr parameter update method. All quantities evaluated on
cycle HCCI 0 during an SI-HCCI transition.

3.2.2 Adaptive Tuning Simulations

To demonstrate the effect of the kr adaptation, a simple example is given wherein the estimate

k̂r is initialized with an error of 0.1 from the nominal value for the mode transition sequence in

Fig. 3.1, and adapted to consecutive trials of the same mode transition sequence. For simplicity,

only the HCCI phase of the mode transition is simulated on each mode transition trial, because on

each iteration of the mode transition sequence the SI model predictions are exactly the same. The

initial conditions generated by the SI model for cycle HCCI 0 are stored and used to initialize each

trial. Fig. 3.5 plots the k̂r parameter dynamics as a function of mode transition iteration for several

values of the adaptive gain G, along with the model’s transient θ50 prediction as k̂r adapts for a

fixed G = 0.1 in the bottom subplot. The left column shows the perfect case where each iteration
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of the mode transition yields exactly the same θ50 on cycle HCCI 0, which is the reason for the

constant line in the middle subplot. In the right column, zero-mean Gaussian white noise with a

standard deviation of 2 CAD is added to the base θ50 from the perfect case to emulate the effect of

process and measurement noise altering the measured θ50 on each iteration of the mode transition

sequence.
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Figure 3.5: Demonstration of kr adaptation for the SI-HCCI mode transition sequence of Fig. 3.1
with perfect repeatability (left) and additive noise (right) in the θ50 measurement that is assimilated
on cycle HCCI 0. Top: Adaptive parameter dynamics as a function of mode transition iteration.
Middle: θ50 value on cycle HCCI 0 that is fed to the adaptation after being corrupted by ensemble
noise. Bottom: Refinement in model θ50 response as k̂r adapts for fixed G = 0.1.

Starting from the initialized value of k̂r in Fig. 3.5, the model θ50 prediction has large errors

both on the cycle HCCI 0 as well as the following HCCI cycles. As consecutive iterations are carried

out, the k̂r estimate increases, resulting in a significant improvement in the model’s θ50 prediction.

The value to which k̂r converges is the same for the both the clean and noisy θ50 measurement

cases, though close comparison of the right and left columns of Fig. 3.5 shows that convergence

speed can be slightly inhibited by the presence of noise. This indicates that the adaptation may be

hindered to a minor extent in the presence of noise, but it is still able to converge robustly. The

multiple G lines show how the adaptation can be sped up by increasing the gain, at the cost of

increased noise amplification. Experimental tuning of the gain in further mode transition testing is

necessary to definitively balance this trade off.

Another concern with the kr adaptation is the effect of modeling error on the convergence of the
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algorithm. To examine a scenario where the model parameters are perturbed from the nominal case,

a 5% error is introduced into two uncertain quantities which affect the in-cylinder the temperature

and hence the kr adaptation: the model’s prediction of residual mass mr, and the initial condition

for the exhaust temperature on cycle HCCI 0 that is carried over from SI, denoted Tbd(HCCI 0) .

The parameter adaptation is rerun starting from the same condition as in Fig. 3.5, using a constant

G = 0.1 with no noise for simplicity. The results are plotted in Fig. 3.6, where the left column

considers the mr perturbation and the right column considers the Tbd(HCCI 0) perturbation. As

can be seen, for both positive and negative 5% error in these quantities, the adaptation adjusts

the k̂r so that the θ50 is matched cycle HCCI 0. The final value to which the parameter converges

varies from the nominal case depending on the perturbation, as is necessary to match θ50 on cycle

HCCI 0 when the perturbation is applied. The model θ50 prediction as shown in the middle and

bottom subplots improves with increasing adaptive iterations, however in the case of -5% error

in mr, the model θ50 predictions on the cycles following cycle HCCI 0 still have large error after

many iterations. This is because the combustion phasing on cycle HCCI 1 is very late and near a

misfire condition, where the Arrhenius integral for combustion phasing becomes very sensitive, and

so the -5% error in mr can result in large errors in combustion phasing for the model. In controller

implementation, the controller will be tuned to avoid these near-misfire conditions so that the model

predictions do not become so sensitive.

3.3 Model Evaluation in Multiple SI-HCCI Transition Conditions

To examine the ability of the proposed residual temperature correction method and to extend

to various mode transition conditions with the mutli-mode combustion model of Ch. 2, several

additional SI-HCCI transition experiments were carried out for comparison of the model predictions

versus transient data. These experiments were run on a replica of the engine which was used to

generate the data in Secs. 3.1, 3.2 and parameterize the combustion models in Secs. 2.3.3, 2.4.2. All

the geometric specifications of this second instance of the engine remain the same as the original

(see Table 2.1) except the geometric compression ratio, which takes a slightly lower value of 11.45:1.

Before carrying out simulations of SI-HCCI transitions from the replica engine, the SI and HCCI

combustion models were reparameterized to steady-state data from the replica engine, to eliminate

the possibility of obscuring the results through differences in prediction accuracy between the

two engine instances. The reparameterization data and the model fit of the data are given in

Appendix A, as well as some minor modifcations to the model’s regressions which were made in

reparameterization.

The format of the SI-HCCI transitions in this Section differ from the previously presented mode

transition in Sec. 3.1 and 3.2 in that the intake cam is switched to low lift prior to the exhaust cam,

so that the SI phase of the transition operates with a low lift intake cam and the point of entry to

58



0 10 20 30 40 50 60 70 80 90 100

1.05

1.1

1.15

C
or

re
ct

iv
e 

P
ar

am
et

er
 k

r

Iteration Index

Parameter Adaptation with Scaling Error in m
r
 Regression

 

 

G = 0.1

−2 −1 0 1 2 3 4 5 6

−10

0

10

20

θ 50
 (

aT
D

C
)

m
r
 x 1.05

 

 

−2 −1 0 1 2 3 4 5 6

−10

0

10

20

θ 50
 (

aT
D

C
)

Cycle

m
r
 x 0.95

 

 

0 10 20 30 40 50 60 70 80 90 100

1.05

1.1

1.15

C
or

re
ct

iv
e 

P
ar

am
et

er
 k

r

Iteration Index

Parameter Adaptation with Perturbed T
bd

(HCCI 0) Initial Condition

 

 

G = 0.1

−2 −1 0 1 2 3 4 5 6

−10

0

10

20

θ 50
 (

aT
D

C
)

T
bd

(HCCI 0) x 1.05

 

 

−2 −1 0 1 2 3 4 5 6

−10

0

10

20

θ 50
 (

aT
D

C
)

Cycle

 

 
T

bd
(HCCI 0) x 0.95

Data
0 Iterations
15 Iterations
50 Iterations

Data
0 Iterations
15 Iterations
50 Iterations

Data
0 Iterations
15 Iterations
50 Iterations

Data
0 Iterations
15 Iterations
50 Iterations

m
r
 x 1.05

m
r
 x 0.95

Nominal Value

T
bd

 x 1.05

T
bd

 x 0.95

Nominal Value

Increasing
Adaptive Iterations

Increasing
Adaptive Iterations

Increasing
Adaptive Iterations

Increasing
Adaptive Iterations
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dynamics with consecutive mode transition iterations. Middle/Bottom: Model reproduction of
measured θ50 response from the mode transition with varying amounts of adaptive iteration for +/-
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HCCI is defined solely by the switch of the exhaust cam to low lift. This strategy is in line with

the final closed-loop SI-HCCI mode transition approach that will be developed in Ch. 4. As will

be discussed in Sec. 4.1.3, there is not much difference in mode transition effectiveness between

the strategy of switching the intake cam to low lift prior to the exhaust cam and switching both

the intake and exhaust cams simultaneously. The important thing to note is that experimentation

indicates that for a wide range of intake cam phasings, the switch of the intake cam from high to low

lift has minimal effect on the air path and combustion, so that the modeling considerations change

little between either approach. In any case, the ability of the model to predict the combustion

outputs in both Fig. 3.1 and the mode transitions of this Section corroborates that it can be used

with either intake switching strategy.

As stated in Sec. 3.2.1, when multiple SI-HCCI transition conditions are considered, the value of

the residual temperature correction kr to match transient data will most likely vary with operating

condition. Hence, the model accuracy can be improved by introducing a dependency of kr on the

engine operating variables, as opposed to the constant value in Secs. 3.1, 3.2 where a single mode

transition case was considered. A simple linear parameterization of kr to the EVC timing on cycle

HCCI 0 provided adequate model accuracy for a dataset of multiple mode transition trials at 2000
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Figure 3.7: Experimental SI-HCCI mode transitions at low load HCCI with varying initial conditions
for the HCCI phase of the transition. Left: Delayed throttle opening when switching to HCCI.
Middle: Higher fuel quantity on final SI cycle. Right: Earlier EVC timing when switching to HCCI.

RPM engine speed which includes those presented in this Section,

kr ≈ a1θ
HCCI0
evc + a0 (3.6)

The logic behind this choice of kr parameterization is that the EVC timing when switching to HCCI

presents significant uncertainty to the nominal model, because it tends to be later than any setting

that can be reached in steady state HCCI for a given fuel injection quantity/timing due to the high

exhaust temperature carried over from SI. The linear form of Eq. (3.6) maintains compatibility

with the adaptive tuning method of Sec. 3.2, though now the adaptive gain G will vary based on

measured quantities according to the chosen parameter update law.

Given that kr in Eq. (3.6) depends on more than one parameter, a method to systematically

regress the kr parameters is warranted. In Appendix B, a parameterization routine is given which

determines the parameters in both the base HCCI model and the kr expression. The routine is

iterative to account for cycle to cycle couplings and compounding of modeling error throughout

the HCCI model’s equations, and incorporates simulations of SI-HCCI transient data for use in

determining the kr parameters.

One aspect that was explored with additional mode transition experiments was the ability of
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Figure 3.8: Experimental SI-HCCI mode transitions across the HCCI load range at 2000 RPM. Left:
Low load. Middle: Mid load. Right: High load.

the model to capture the output responses when the initial conditions for switching to HCCI are

changed, while keeping the operating condition similar to that in Fig. 3.1. The initial conditions

are altered through adjusting several different input commands to the final SI cycle. Fig. 3.7 plots

the most important inputs and modeled versus measured outputs for several different methods

of perturbing the HCCI initial conditions. In the left column, the time at which the throttle is

commanded open to switch to HCCI is delayed, so that the intake pressure is lower on cycle HCCI

0. In the center column, the fuel injected into cycle SI -1 is increased relative to the nominal fuel

sequence, increasing the exhaust temperature of the residual gas passed to cycle HCCI 0. In the

right column, the SI switch point is set with an earlier exhaust valve timing, to increased the trapped

residual mass leading into the cycle HCCI 0. Throughout these various perturbations to the HCCI

initial condition, the model reproduces the general trend of the output time histories well, with

quantitative accuracy that is acceptable for controls purposes. Note that the somewhat non-obvious

reason for the increase of NMEP on cycle SI -1 is the exhaust cam switch to low lift, which shifts

the EVO timing later and elongates the expansion stroke, increasing the work output. The effect

is more dramatic at the earlier exhaust valve timings present in the low load mode transitions of

Fig. 3.7. It will be seen in the next set of experiments with higher load trials that the effect is

mitigated at later exhaust valve timings.

Another set of SI-HCCI mode transition experiments were concerned with evaluating the model’s
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performance in varying operating conditions. The operating condition is adjusted by sweeping the

load from near the lower HCCI limit to near the upper HCCI limit for the experimental engine at

2000 RPM. The engine speed is not changed because the model parameterization did not contain

speed variation. The results for three of these experiments are presented in Fig. 3.8, starting near

the lower load limit in the left column and increasing to the high load limit in the right column.

As the load condition varies, the actuator sequences for the EVC timing and the fuel injection

quantity/timing vary as well, which adds diversity to the dataset. Throughout the multiple actuator

sequences, again the model is able to reproduce the output time histories well, with the only problem

occurring with the NMEP prediction on cycle HCCI 1 of the low load sequence. The model’s

overestimation of the NMEP on this cycle can be explained by the late combustion phasing present

in the data, where the roll-off of combustion efficiency with combustion phasing becomes steep [19]

and so even a few degrees of θ50 error can make a large difference in the NMEP prediction. The

model predicted θ50 is several degrees earlier than the data value on this cycle, and so the model

does not register the reduced torque from the late phasing. As with the late phasing observed

on cycle HCCI 1 in Sec. 3.2.2, in implementation the controller will be tuned to avoid these late

phasing points so the model predictions do not become so sensitive. A last note is that the NMEP

rise on cycle SI -1 of the low load case is less pronounced than in the mode transition in the left

column of Fig. 3.7 despite similar actuator settings, which may be due to deviation of the injected

fuel quantity from the commanded value or other stochastic disturbances.
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Chapter 4

SI-HCCI Mode Transition Control

This Chapter develops a model-based feedback control methodology for the SI-HCCI direction of

SI/HCCI mode transitions based on the control-oriented SI/HCCI combustion model in Chapters 2

and 3. The chapter is modified after [65] with additional discussion on the investigation of actuator

strategies for the SI-HCCI transition. The Chapter begins by first looking at SI-HCCI mode

transitions from a high level, in order to elucidate the steps involved with switching from SI to HCCI

and to establish the strategy which dictates the general trends in the control input trajectories

throughout the transition. Once the strategy is decided, controllers for both the SI and HCCI

phase of the SI-HCCI transition are developed which implement this strategy through model-based

calculations and several physically intuitive set points. Following their development, the controllers

are implemented in a multi-mode combustion control architecture on an experimental prototype

engine, and are shown to carry out successful SI-HCCI transitions at multiple operating points.

4.1 High-Level Mode Transition Strategy

Before developing a control design, it is prudent to explore from a high-level the actuator manipula-

tions involved with transitioning from SI to HCCI and determine an overall strategy. The strategy

defines the general shape of the control input trajectories throughout the mode transition, and so

will influence the selection of the controller structure, set points, and logical elements.
The core idea of the SI-HCCI transition is to shift the engine condition from one of stoichiometric

AFR with low in-cylinder temperature and internal residual to one of a lean AFR with high
in-cylinder temperature and internal residual. The initial condition is characteristic of flame-based
SI combustion due to the lower temperatures needed to avoid end gas knock and lower dilution
to facilitate flame propagation, while the final condition promotes auto-ignition combustion due
to high pressures and temperatures. The major actuator alterations to accomplish this shift of
condition are:
• Switching the cam profiles from higher lift SI settings to lower lift HCCI settings to enable

entrapment of high amount of residual gas (see Fig. 2.2 for example high lift - low lift cam
profiles)
• Advancing the (EVC) timing before TDC to trap a large quantity of residual exhaust gas
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• Opening the throttle to compensate for the reduction in air flow caused by the advanced EVC
and high residual quantity, and to lean the mixture

The timing and transient paths of these actuator changes are the main features defining the mode

transition strategy. Numerous studies have investigated SI-HCCI mode transition strategies, but all

these studies can be divided into two broad categories which will be discussed next.

4.1.1 Cam Phasing Versus Cam Switching Strategies

While the details of mode transition strategies in the literature vary from one study to the next, all

studies tend to fall into one of two broad categories, which will be referred to as “cam phasing” and

“cam switching”. In cam phasing strategies [29,39–41], the cam profiles are switched to low lift at

the start of the mode transition, prior to entry to HCCI, and then the EVC timing is gradually

advanced to its HCCI position while the throttle is gradually opened to compensate for the increase

in trapped residual. In cam switching strategies [20–28,30,35], the cam switch is postponed until

the valve timings are phased to a condition such that when the exhaust cam switches to low lift,

enough residual is trapped to induce auto-ignition on the cycle immediately following. HCCI is thus

abruptly engaged by a switch of the exhaust cam to low lift, which is accompanied by an opening of

the throttle. A schematic illustrating the differences in the general trajectories of the throttle and

EVC timing between cam phasing and cam switching strategies in shown in Fig. 4.1. A jump in the

EVC timing is apparent when the exhaust cam switches to low lift due to the offset between the

cam profiles (see Fig. 2.2). Note that the degree to which the EVC timing is phased in prior to

switching to low lift in the cam switching strategy depends on how large the ∆EV CH−L value from

Eq. (2.1) is, with larger offsets requiring less phasing.

In weighing the costs and benefits fo the cam phasing and cam switching strategy, the type

of valve train hardware first needs to be considered. In studies which employ fully flexible valve

actuation systems [20–22,30,35], the cam switching strategy is relatively easy to implement, because

the flow into the cylinders can be regulated through the flexibility in the valve train while running

the engine with a wide-open throttle. This allows cylinder air charge to be kept to an appropriate

level for stoichiometric SI combustion at the low loads pertinent for HCCI even with a wide-open

throttle, so that the intake pressure can reach atmospheric levels before engaging HCCI. The valve

lifts/timings can then be switched in one cycle to appropriate values to trap the correct amount

of residual to engage HCCI on the cycle immediately following. When a more practical two-stage

cam mechanism is used [23–28], however, it becomes infeasible to fully dethrottle the SI combustion

prior to switching to HCCI while also maintaining the commanded load with a stoichiometric AFR.

In this case, the abrupt entry to HCCI from the exhaust cam switch requires precise coordination of

the throttle opening [23,24,26], and tends to result in high pressure rise rates on the first few cycles

of HCCI due to high exhaust temperature advancing combustion phasing [25, 28]. The discrete
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Figure 4.1: Schematic illustrating main differences between actuator trajectories of cam switching
(left) and cam phasing (right) SI-HCCI mode transition strategies.

jump from SI to HCCI of cam switching strategies thus introduces additional difficulties and more

sensitivity to imprecisions in practical scenarios.

Despite the disadvantages introduced by the abrupt nature of the cam switching SI-HCCI

transition strategy, it offers one major benefit relative to the gradual nature of the cam phasing

counterpart. The benefit has to do with what has been termed the “residual gas fraction gap” [22]

or “ unstable area” [29] which can arise between SI and HCCI combustion. This regions refers to

operating conditions where the internal residual is significantly increased realtive to nominal SI,

making flame propagation difficult due to high dilution, however it is not increased enough to give

sufficient in-cylinder temperature for auto-ignition. Operation in this region is thus unfavorable

because SI combustion is not robust, yet HCCI combustion cannot be achieved. With the cam

switching SI-HCCI transition strategy, the abrupt switch of the exhaust cam to engage HCCI

allows such conditions to be “jumped over” by the offset between the high lift and low lift cam

sets (see Fig. 2.2) which discretely switches the residual quantity from SI levels to HCCI levels.

With the cam phasing strategy, however, the residual quantity must be gradually increased, making

passage through the “unstable area” inevitable. The studies [29, 41] have shown the ability to pass

through the “unstable area” through use of advanced spark timing and fuel injection strategies,

however the transition seems to be more robust at high loads due to the larger fuel quantity in the

cylinder making flame propagation easier. Indeed, at the low load condition addressed in [41], a

significant reduction in torque coupled with a late combustion phasing is apparent in the highly

dilute SI portion of the experimental SI-HCCI transition. The data available in the literature may

thus suggest that the cam phasing strategy is ideal at higher load HCCI conditions, while the cam
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switching strategy becomes advantageous at lower load HCCI conditions.

Despite that experimental results in the literature seem to suggest that a combination of the

cam phasing and cam switching strategies may give the best overall SI-HCCI topology, a policy of

using a uniform cam switching SI-HCCI transition strategy is adopted here. It will be shown that

proposed model-based controller built on the cam switching strategy is able to function robustly

across the full HCCI load range, so that the complexity of integrating the cam phasing strategy into

the overall SI-HCCI architecture is not necessary. The use of the cam phasing strategy may help

reduce pressure rise rates near the high load end of the HCCI spectrum, however the pressure rise

rates with the proposed control method still remain tolerable in this region. Thus, for the remainder

of the Section, the cam switching strategy is the focus of the discussion.

4.1.2 Considerations for the Cam Switching Strategy

The Notion of Dethrottling the SI Combustion Mode

A major discrepancy between SI and HCCI operating conditions which must be overcome during a

mode transition is the intake pressure at which each mode operates. At the low loads pertinent

for HCCI combustion, SI tends to operate signifcantly throttled with intake manifold pressures

of pim ∈ [0.3, 0.5] bar, while HCCI will be unthrottled with pim ≈ 1 bar. In the cam switching

strategy, it is ideal to close this gap in intake pressure as much as possible before switching to HCCI,

to promote a higher cylinder air charge during the first HCCI breathing event. Higher fresh air

charge aids in moderating the in-cylinder temperature in the cam switching strategy, because the

abrupt change of combustion mode implies that the residual gas will be the result of SI combustion

and so will be much hotter than typical in HCCI operation. The higher residual temperature and

hence in-cylinder temperature tends to give undesirable advanced auto-ignition timing and increased

pressure rise rates.

The difficulty in increasing intake manifold pressure while in SI operation lies in the conflicting

constraints of stoichiometric operation and drivability. Increasing the intake manifold pressure via

opening the throttle necessitates greater fuel quantity maintain a stoichiometric AFR, which tends

to increase the engine torque and make it deviate from the driver demand. This is illustrated in the

stoichiometric throttle sweep data in the left column of Fig. 4.2, where it can be seen that even mild

increase in pim from opening the throttle induces a large change in NMEP when the mixture is held

stoichiometric. It is possible to compensate for the higher NMEP by retarding the spark timing to

reduce the torque output via non-optimal combustion phasing, however experiments showed that

this method actually worsens the situation for the first HCCI cycle because the retarded spark and

increased fuel quantity raise the exhaust temperature. Another option is to decouple the throttle

and fuel control and open the throttle without increasing the fuel, leaning the mixture. This method
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was employed in [28], and helps to both increase the intake pressure as well as reduce exhaust

temperature. However, it is not considered as a viable approach here, because manipulation of the

throttle to increase the intake pressure necessitates several lean cycles due to the finite response

time of the manifold dynamics, and the degree of leaning must be high in order to achieve any

worthwhile increase in intake pressure; for example, in one experiment at 2.4 bar NMEP at 2000

RPM, the mixture had to be leaned to λ = 1.35 to increase intake manifold pressure by 0.1 bar.

Such large amounts of excess oxygen can quickly fill the catalyst oxygen capacity, which can be a

major influencing factor for the allowable duration of the HCCI mode in regards to NOx emissions

levels [63] . A high amount of leaning can also cause a high cyclic variability and engine roughness

due to over-dilution of the SI combustion. In the finalized strategy in Sec. 4.1.3, an optional leaning

of the mixture to reduce exhaust temperatures will be provided, but will be kept to one cycle

through manipulation of the fuel command.
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Figure 4.2: Steady-state actuator sweep data of throttle (left) and EVC (right) under constraints of
stoichiometric AFR and MBT combustion phasing. In the EVC sweep, the throttle is opened as
necessary with advancing EVC to maintain constant torque.

Another, more subtle way to increase the intake pressure is to advance the EVC timing prior to

switching the exhaust cam to low lift, in order to increase trapped residual and restrict cylinder

air flow and so increase the mass stored in the intake manifold. The sweep data in right column

of Fig. 4.2 shows how this can be done while maintaining a constant load and a stoichiometric

AFR. Note that the throttle must be opened throughout the sweep to maintain constant load, as

the earlier EVC reduces the torque output from increased pumping losses and a shorter expansion

stroke caused by earlier EVO, and so more fuel is necessary to offset these effects. The opening
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of the throttle compounds with the advancing EVC to yield a very significant increase in pim at

the earlier end of the EVC spectrum, while maintaining constant load. Note that the intake valve

timing can also be adjusted to increase intake pressure; this will be discussed in the next section.

The EVC sweep data in Fig. 4.2 suggests that the optimal way to carry out cam switching

SI-HCCI mode transitions is to advance the exhaust valve timing very far before TDC prior to

switching to low lift. While this tactic undoubedtly has advantages, it can be counterbalanced by

one other aspect of the choice of EVC timing which has not been considered yet; that the EVC

position on the final SI cycle dictates the EVC position on the first HCCI cycle through the constant

high lift - low lift offset (see Fig. 2.2). This implies that if the EVC timing is excessively advanced

in the SI mode, then the resulting EVC timing after the cam switch to low lift may be excessively

advanced as well, trapping a high residual mass and leading to large in-cylinder temperature and

high pressure rise rates. The optimal choice of the EVC placement in the SI mode thus depends

on the offset between the high lift and low lift cams, ∆EV CH−L. If ∆EV CH−L is large, then if

the EVC is advanced far before TDC in SI mode, the corresponding low lift EVC timing will be

very early, and give a high amount of residual mass in HCCI and cause unwanted high pressure rise

rates. However, if ∆EV CH−L is small, then a very early EVC in SI mode may be acceptable, and

can help bridge the gap in intake pressure between SI and HCCI. For the experimental hardware of

this dissertation with ∆EV CH−L = 34◦, it was found that the placement of the EVC timing when

switching to HCCI had a far stronger impact on the first HCCI combustion event than the effect of

advancing EVC to dethrottle the SI combustion, and so the EVC tended not to be advanced too far

in SI mode, typically falling between 10 and 40 degrees bTDC GE.

Low Lift Versus High Lift Intake in SI Mode

As described in the previous Section, it is ideal to orient the engine actuators while in SI mode such

that when the exhaust cam switches to low lift and HCCI engages, the air flow on the first HCCI

cycle is maximized. One tactic which may have potential to assist in this regard is to switch the

intake cam to low lift prior to the exhaust cam, so that the SI mode runs with a low lift intake cam.

The logic behind this manuever is that the low lift intake cam should restrict cylinder air flow due

to lower effective flow area, and hence increase the stored mass and pressure in the intake manifold.

Additionally, switching the intake cam to low lift prior to HCCI may allow the low lift intake timing

to be phased for the optimal cylinder breathing upon entering HCCI, while it may be difficult to

reach such a phasing with the high lift intake cam in SI mode depending on the offset between the

intake cams ∆IV OH−L.

To explore the potential advantages of running the SI combustion with the low lift intake cam

during SI-HCCI transitions, Fig. 4.3 plots steady-state intake valve timing sweeps over the majority

of the cam phaser range for both high lift and low lift intake cams. The exhaust cam is kept in high
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lift with EVC fixed at 4◦ aTDC throughout the sweeps. The most immediately apparent observation

is that the low lift intake cam tends to result in lower intake manifold pressure in most cases than

the high lift intake cam, despite that the cylinder air flow Wcyl changes little between the high lift

and low lift intake cam phasing. This is contrary to the original hypothesis that the lower orifice

area caused by the low lift intake cam would restrict air flow, and so drive pim up for constant Wcyl.

However, as can be seen in the bottom subplot, the low lift intake cam induces significantly large

pumping losses. While somewhat counterintuitive, these results appear to indicate that the lower

lift intake cam does not restrict air flow relative to the high lift intake cam, but simply make the

piston work harder to pull the air into the cylinders. Additionally, the high lift intake cam is able

to significantly increase pim with late phased IVC timings, where the intake valve closure in the

compression stroke causes a large quantity of the charge to be expelled back into the intake manifold.

As can be seen, though, the degree to which late IVC timing can increase pim is practically limited

by high coefficient of variation (COV) in IMEP at very late IVC timings, mostly likely caused by

strong cycle to cycle differences in the amount of air and fuel rejected into the intake manifold.
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Figure 4.3: Steady-state intake valve timing sweeps with both high lift and low lift intake cam to
examine which intake lift to use in SI phase of SI-HCCI transition.

The sweeps in Fig. 4.3 indicate that low lift intake SI operation offers no gains for increasing

intake manifold pressure relative to standard high lift intake operation. However, it does allow the

IVC timing to be freely adjusted with minimal effect on air flow to reach the optimal breathing

position, which is the point at which the sweep in Fig. 4.3 bottoms out in pim for relatively constant
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air flow. Depending on the high lift-low lift intake cam offset, it may not be feasible to orient the

high lift intake cam to result in an IVC timing near the optimal low lift setting upon switching the

cams while also giving a strong increase in pim prior to switching. For example, with the two-stage

cam hardware of this dissertation, the high lift-low lift IVC timing is ∆IV CH−L = −67◦ (this can

be calculated from ∆IV OH−L and the cam duration), which necessitates a high lift IVC timing

around 240◦ to induce a low lift IVC timing near the optimum around 175◦ in Fig. 4.3. Comparing

the pim value near IVC = 240◦ to that near the IVC=175◦ with the low lift timing, it can be seen

that the difference in pim between the two cam sets is not large. Additionally, the low lift intake

cam gives larger PMEP, which necessitates additional dethrottling to compensate for the reduction

in torque at fixed stoichiometric AFR.

The experimental results thus suggest that, for the given cam hardware, the choice of running

the SI mode with either the high lift or low lift intake cam profile has little impact on the efficacy

of the strategy. The choice is thus made to operate the SI mode with the low lift intake cam,

for the simple reason that this reduces the calibration complexity in that the intake and exhaust

cam do not have to be calibrated to both switch to low lift at the same time. If errors arise in

the calibration of a simultaneous cam switching strategy due to improper estimation of the delays

associated with the cam switching mechanism, the exhaust cam can switch to low lift prior to the

intake cam. This can cause a large amount of residual to be ejected back into the intake manifold,

which disrupts the cylinder air flow and can overheat the intake temperature sensors. Switching

the cams separately avoids such scenarios and negates the need for precise calibration of the intake

cam switching mechanism. It should be noted, however, that with different two-stage cam hardware

with a different high lift-low lift intake cam offset, it may be possible to reap significant benefits for

the SI-HCCI transition strategy with operation of the SI mode using the high lift intake cam, based

on the analysis presented here. The control methodology that will be developed applies for both

high lift and low lift intake SI operation, with the only consideration being that the SI model must

be functional with whichever cam lift is used.

4.1.3 Walkthrough of SI-HCCI Transitions with Chosen Strategy

Based on the discussion in Secs. 4.1 and 4.1.2, the qualitative actuator paths for the SI-HCCI

transition are defined through the cam switching strategy illustrated in Fig. 4.4. The figure shows

the trajectories of the throttle θt and EVC timing θevc actuators discussed earlier, as well as those

for the other relevant inputs θsp, θsoi, mf , and intake valve timing characterized by θivo. Notice

that at the start of the SI phase of the transition, the θivo instantaneously jumps, signifying a cam

switch to low lift based on the conclusions arrived at in Sec. 4.1.2. Note that the data in Sec. 4.1.2

indicated minimal influence on cylinder air flow from switching between high lift and low lift intake

cams for a significant range of intake valve timings, meaning that the intake cam switch to low lift
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can be accomplished with only minor compensation measures.
θ t
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Advance after HCCI entry

Figure 4.4: Representative depiction of high-level actuator trajectories for cam switching SI-HCCI
transition strategy. θsoi shown with reference to bTDC; all other timings shown with reference to
aTDC.

After the intake cam switches to low lift, the SI phase of the mode transition proceeds. The

EVC timing is advanced to its switch point for entry to HCCI, while the IVO timing is adjusted to

its optimal breathing position for maximum air flow when HCCI is entered. While the valve timings

adjust, the throttle compensates for the disturbance to the air flow and engine torque, which usually

involves opening past its in nominal SI set point. The fuel quantity tends to increase for torque

neutrality because the valve timings are phased to non-ideal conditions for SI combustion, and so

more fuel is necessary to attain the same work output while maintaining a stoichiometric AFR. The

spark timing adjusts as necessary to keep the combustion phasing in the desired range, which tends

to require spark advance due to the advancing EVC increasing the in-cylinder dilution. The fuel

injection timing is unused and left at its nominal SI set point, as it has been observed to have a

minor effect on the SI combustion as long as the injection is in the intake stroke.

When the SI-HCCI switching boundary point is reached, a number of notable changes occur.

Firstly, the throttle is commanded wide-open to increase the intake manifold pressure and allow for
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sufficient air flow on the first HCCI cycle. This wide-open command comes slightly in advance of

the first HCCI breathing event, to account for the transport delay and manifold/actuator dynamics

which require time to overcome and build intake pressure. The fuel may be specified to reduce

on cycle SI -1, in order to lean the mixture to reduce the exhaust temperature and combat early

combustion phasing on the first HCCI cycle. This reduction in fuel was observed to have minimal

impact on the torque for the two-stage cam system used in experiments, because it is compensated

by an increase in the torque on the final SI cycle which results from the exhaust cam switch shifting

the EVO timing shifting later (see Fig. 2.2) and elongating the expansion stroke. The spark timing

is advanced to compensate for the increased dilution caused by the reduction in fuel.

When the exhaust cam switches to low lift, the EVC timing instantaneously jumps by the

offset between the high and low lift cam sets, the spark is placed very late so as to not interact

with combustion, and the injection timing actuator becomes active as HCCI engages. As stated in

Sec. 2.4, the injection timing is hypothesized to affect the auto-ignition phasing through changing

the degree of chemical reactions in recompression [54, 55], with earlier injection giving a longer time

for reaction and tending to advance combustion phasing. Hence, SOI is typically late when HCCI

is first entered in order to retard the combustion phasing in compensation of the high SI exhaust

temperature. As the HCCI phase of the transition carries on, the exhaust temperature drops to

HCCI levels, which tends to lower the in-cylinder temperature and retard combustion phasing.

This is compensated for by advancing the EVC timing to trap greater residual mass, along with

advancing the SOI timing as well. After several cycles, the exhaust temperature transient settles

out and the EVC timing reaches its nominal HCCI condition, marking the start of nominal HCCI

operation.

To gain a better grasp on the combustion dynamics throughout cam switching SI-HCCI mode

transitions following the strategy of Fig. 4.4, in-cylinder pressure data from an SI-HCCI mode

transition experiment is shown in Fig. 4.5. A key feature which distinguishes the characteristics of

the the mode transition is the exhaust recompression/gas exchange event, and so this is pointed out

in the Figure. The cycles are indexed with reference to the first HCCI cycle, defined as HCCI 0, as in

Ch. 3. Starting several SI cycles before the switch to HCCI, the combustion can be observed to follow

a typical SI profile with a mild and gradual pressure rise, and negligible recompression pressure

is apparent during gas exchange. As the SI phase of the transition proceeds, the recompression

pressure becomes slightly higher, which is caused by the advancing of the EVC timing while the

high lift cam is still in place. The purpose of this advancing is to reach a point in SI such that

when the exhaust cam profile is switched to low lift, the EVC timing that results with the low lift

cam in place is early enough to trap sufficient residual gas to give auto-ignition. The recompression

pressure remains mild because the high lift cam cannot trap a high amount of residual mass.

On the final SI cycle SI -1 of Fig. 4.5 there is a drastic increase in recompression pressure between

the start of the cycle and end of the cycle, which is the result of the exhaust cam switching to low
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Figure 4.5: In-cylinder pressure data from a cam switching SI-HCCI mode transition illustrating
the changes in combustion features over the course of the transition.

lift and suddenly increasing the trapped residual mass. The cam switch mechanism is designed

to switch cam profiles during the closed valve portion of the cycle, so that after combustion on

the EVO event of cycle SI -1, the low-lift cam is engaged. At this point, both the EVO and EVC

timings have shifted by the high lift-low lift exhaust cam offset, which causes a significant advance of

the EVC which significantly increases trapped residual and leads to a larger recompression pressure.

Following the cam switch to low lift, the combustion exhibits a much faster and larger pressure rise,

signifying auto-ignition and hence HCCI. After cycle HCCI 0, the recompression pressure continues

to rise on subsequent cycles as the EVC timing advances to its nominal HCCI condition, which is

earlier than the HCCI entry point due to the reduction in exhaust temperature from SI to HCCI.

4.2 SI Phase Controller

4.2.1 Control Problem Overview

The purpose of the SI phase of the SI-HCCI transition strategy outlined in Sec. 4.1.3 is to adjust
the valve timings to a point suitable for the switch of the exhaust cam to low lift and entry to
HCCI. Throughout this adjustment, there are four main control objectives to consider, based on
the performance objectives in Sec. 1.1.3:
• Deviations of the engine torque from the driver demand should be minimized as per performance

objective 1.
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• Deviations of the combustion phasing from max brake torque (MBT) timing should be small
enough to avoid deleterious effects on the engine torque and knock/misfire in the early/late
extreme cases, as per performance objectives 1 and 3.
• AFR should be kept in the vicinity of stoichiometric for catalyst efficiency. Any leaning that

occurs should be small relative to the catalyst oxygen storage capacity, as filling of the oxygen
storage may affect the allowable stay duration in HCCI in regards to NOx emissions [63] and
so can threaten performance objective 2.
• The SI-HCCI switch point should be reached as quickly as possible as per performance

objective 4.

The controller development addresses these objectives assuming the intake cam has already been

switched to low lift, which is the first action of the strategy given in Sec. 4.1.3. As stated in Sec. 4.1.3,

the intake cam switch to low lift has been experimentally observed to have minimal impact on the

engine breathing and combustion for a significant range of IVO timings, and so this component of

the strategy is of little concern.

Given the stated control objectives and the model of Ch. 2, the control problem is formulated

according to the logic in Table 4.1. The utilized control inputs are the throttle command, EVC

command, IVO command, fuel quantity, and spark timing, which have units of %, aTDC GE, aTDC

GE, mg/cycle, and aTDC comb, respectively. The performance variables of torque, combustion

phasing, and AFR are characterized by the net mean effective pressure (NMEP), 50% burn angle

θ50, and relative AFR λ. Torque and combustion phasing are treated as reference inputs to be

tracked to specified values, targeting the ideal case where the torque follows the driver command

perfectly and the combustion phasing stays at the optimal point. The AFR is allowed to fluctuate

within some constraints which are chosen in the vicinity of stoichiometric to retain acceptable after

treatment performance. This policy affords some flexibility for the fuel control to compensate torque

disturbances with minimal impact on emissions due to the short duration of the SI phase of the

SI-HCCI transition. The feedback variables include the intake manifold pressure and temperature

pim and Tim, as well as the cam phasing and angles and engine speed Neng which are assumed to

be measured and treated as disturbances. Values for saturation limits for the actuators are listed,

however all actuators tend to take values within the middle of their saturation range for the SI

phase of the transition, and so input constraints are not a serious concern. The states of the air

path model are reduced to contain only the intake manifold pressure actuator dynamics, where

the intake temperature is eliminated with the isothermal assumption Eq. (2.4), and the exhaust

manifold, post-turbine, and post-compressor pressures are assumed constant at atmospheric for low

load operation in the relevant regime for switching to HCCI.

The structure of the SI phase controller to address the control problem laid out in Table 4.1

contains two separate subsystems for the air path and combustion control. This decentralized

architecture circumvents the hyrbid nature of the control problem which arises from simultaneous

consideration of the continuous air path dynamics in conjunction with discrete cycle to cycle
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Control Inputs u =
[
ut uivo uevc mf θsp

]T
Feedback Variables y =

[
pim Tim θivo θevc Neng

]T
Performance Variables w =

[
NMEP θ50 λ

]T
Reference Commands r =

[
NMEP ∗ θ∗50,S

]T
λ Output Bounds λrich ≤ λ ≤ λlean

Input Lower Bounds ulow =
[
0 10 −85 5 −60

]T
Input Upper Bounds uhigh =

[
100 110 15 50 50

]T
Model States x = [pim θt θ̇t θevc θ̇evc θivo θ̇ivo]T

Table 4.1: Control problem formulation for SI phase of SI-HCCI transition.

combustion inputs/outputs. It also allows the air path actuators to operate on a time-synchronous

loop given their continuous nature and the combustion actuators to operate on a cycle-synchronous

loop given their discrete cycle to cycle nature. Additionally, the decentralized architecture is also

more convenient for multi-cylinder engines than a centralized approach that considers air path and

combustion control simultaneously, because each cylinder has separate combustion outputs and so it

becomes ambiguous which cylinder’s outputs to select for feedback control of the air path actuators.

A block diagram of the control architecture for the SI phase of the SI-HCCI transition is shown in

Fig. 4.6. In what follows, each subsystem and the elements therein are explained.
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Figure 4.6: Block diagram of controller for SI phase of the transition. Variable names are as defined
in Table 4.1. P blocks indicate calculations using the plant model, and C blocks indicate output
feedback controllers.
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4.2.2 Air path control

The overall architecture of the air path control is:
• uivo is stepped to the set point θ∗ivo, which is calibrated for optimal low lift breathing and is

stored in a look-up table versus engine speed.
• uevc is stepped to the set point θswchevc , which is calibrated to give a favorable starting point for

the HCCI combustion when the exhaust cam is switched to low lift. It is stored in a look-up
table versus engine speed and load.
• ut is commanded through a linear feedback controller Ct(z) to track a time-varying reference

intake manifold pressure p∗im.
• The reference p∗im is derived from a model-based calculation to achieve NMEP = NMEP ∗

under the constraints λ = 1 and θ50 = θ∗50,S with one step look-ahead valve timing disturbances.

The purpose of the IVO reference θ∗ivo is to adjust the IVO timing for maximum air flow when HCCI

is entered, in order to combat the high in-cylinder temperatures which can arise from the high SI

exhaust temperatures and cause early combustion phasing as discussed in Sec. 4.1.2. The θswchevc

set point represents a key calibration factor, as it defines what the EVC timing will be on cycle

HCCI 0 through the high lift - low lift cam profile offset (see Fig. 2.2). This affects the EVC timing

not only HCCI 0, but several cycles thereafter due to the cam phasing actuator dynamics. The

EVC timing plays a large role in the first few HCCI cycles of the transition, because the exhaust

temperature initially comes from SI combustion and so is much higher than that of HCCI, so that

the trapped residual mass has a large effect on the in-cylinder temperature and combustion phasing.

The motivation for the simple step commands for uivo and uevc is to phase them to their desired

HCCI entry points as quickly as possible, in order to minimize the time required to reach HCCI.

This also results in a simple structure which requires specification of only set points as opposed to

actuator sequences or possibly additional feedback control elements.

The intake manifold pressure reference p∗im and throttle tracking controller Ct(z) are meant to

adjust ut throughout the SI phase to compensate for the disturbance of the valve timing changes to

the engine air flow. The reference p∗im is estimated from the SI combustion model such that the

resulting air flow is predicted to give NMEP = NMEP ∗ when the stoichiometric amount of fuel is

injected (λ = 1) and θ50 is at its reference. Thus, for perfect p∗im tracking, the model predicts that

torque can perfectly be maintained with a stoichiometric AFR. To assist the throttle in leading the

valve timing disturbances, the θevc and θivo values fed to the p∗im calculation are first propagated

one sample time ahead, using the identified second order actuator dynamics models of Sec. 2.2.3

discretized at the sampling frequency:

θk+1 = b1u
k − (a1θ

k + a0θ
k−1) (4.1)

where θk, θk−1 are the current and previous valve timing measurements, uk is the valve timing

command, and the coefficients a1, a0, b1 come from discretization of the continuous second order

dynamics and are based on ζ, ωn, and the sample period.
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The throttle controller Ct(z) is designed as a linear lead filter,

Ct(z) = kt
z + nt
z + pt

(4.2)

where kt, nt, and pt < nt are the gain, zero, and pole, respectively. The linearity of the controller is

justified given that the throttle orifice profile and manifold dynamics are strongly linear in the lower

SI load range where it is possible to switch to HCCI, where the throttle position remains until it is

commanded wide-open. The lead filter structure is chosen in order to follow the high frequency

content in the p∗im profile, which changes quickly as the valve timings change. The steady-state

error of the controller suffers, however it is not as important because the SI phase of the transition

does not dwell at steady-state; as soon as the desired HCCI entry point is reached, the cams are

switched and SI phase terminates. The controller parameters kt, nt, pt are initially estimated from

a linearized and discretized version of the air path model, however they are ultimately tuned in

experiment. The set point θ̄t for the controller is taken equal to the throttle set point in nominal SI

operation for simplicity.

The reference p∗im is derived from an inversion of the SI combustion model using the current

measurements y defined in Table 4.1 under the constraints that NMEP = NMEP ∗, θ50 = θ∗50, and

λ = 1. The derivation starts with the model’s gross cycle work calculation (2.59). This expression

can be simplified using the expressions for polytropic compression and expansion

pbc = pivc

(
Vivc
Vcmb

)nc
:= b1pivc (4.3)

pevo = pac

(
Vcmb
Vevo

)ne
:= b2pac (4.4)

where the Vivc and Vevo are evaluated with the measured valve timings, and Vcmb is calculated from

the definition of θcmb in Eq. (2.44). Substituing into (2.59),

Wcig = pivc
b1Vcmb − Vivc

1− nc
+ pac

b2Vevo − Vcmb
1− ne

(4.5)

:= c1pivc + c2pac (4.6)

From Eq. (2.49), (2.48),

pac = pbc

(
Tac
Tbc

)
= b1pivc

(
Tbc +

mfQlhv
cvmc

Tbc

)
(4.7)

Substituting Eqs. (2.39), (2.47) into (4.7), the expression can be shown to reduce to

pac = b1pivc +
mfQlhvR

cvVcmb
:= b1pivc + c3 (4.8)
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Substituting back into Eq. (4.6) gives,

Wcig = c1pivc + c2(c1pivc + c3) (4.9)

Now write from Eqs. (2.60), (2.61),

Wcig = (NMEP − (pim − pem))Vd (4.10)

and combine Eqns. (2.40), (2.37), (2.35) to write

mf =
ma

λAFRs
=

Wcyl

λAFRs

120

NengNcyl
:=

1

c4
α1pim + α0 (4.11)

Finally, apply the constraints

NMEP = NMEP ∗ (4.12)

θ50 = θ∗50 (4.13)

λ = 1 (4.14)

in Eqs. (4.10), (4.8), (4.11) and substitute into Eq. (4.9) with the relation (2.41) for pivc. This

allows pim to be isolated, giving the expression for p∗im,

p∗im =
(NMEP ∗ + pem)Vd − (β0c1 + β0c2b1 + c2c3α0/c4)

c1β1 + c2b1β1 + c2c3α1/c4 + Vd
(4.15)

where the βi coefficients come from Eq. (2.41) and pem is approximated at atmospheric pressure. In

the reparameterized model for the replica engine which will provide the experimental apparatus

for implementation of the SI-HCCI controller, pivc is approximated ≈ pim, in which case Eq. (4.15)

reduces to

p∗im =
(NMEP ∗ + pem)Vd − c2c3α0/c4

c1 + c2b1 + c2c3α1/c4 + Vd
(4.16)

4.2.3 Combustion Control

The overall architecture of the combustion control is:
• mf is calculated to give NMEP = NMEP ∗ assuming θ50 = θ∗50,S while maintaining λ ∈

[λrich, λlean] through a nonlinear model inversion. If the required mf value for torque tracking
violates the AFR constraints, mf is chosen on the boundary of the AFR constraints.
• θsp is calculated to give θ50 = θ∗50,S through a nonlinear model inversion.

The idea behind the combustion control structure is to use model inverse-base calculations to cancel

any disturbances to the performance outputs which result from valve timing changes and imperfect
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air path control performance throughout the transition. The model inverse nature of the control

laws is advantageous due to the relative degree 0 relationship between the combustion actuators

and performance variables, which allows the outputs to be adjusted to their reference without any

dynamics for immediate compensation for disturbances. Moreover, the controller need only invert

static functions as opposed to system dynamics.

The mf control input calculation is structured to take into account both torque tracking and

the AFR constraints. The fuel quantity mτ
f to attain NMEP = NMEP ∗ with θ50 = θ∗50,S is

first evaluated by inverting the mf → NMEP relationship with the measured intake conditions

and valve timings, signified by Pf−τ in Fig. 4.6. The AFR that will result with mf = mτ
f is then

calculated using Eq. (2.40),

λτ =
ma

mτ
fAFRs

(4.17)

where ma is the estimated air mass based on measured intake and valve conditions. Finally the mf

value is selected from the following logic, in order to enforce AFR constraints:

mf =


ma

λleanAFRs
, λτ > λlean

ma
λrichAFRs

, λτ < λrich

mτ
f , else

(4.18)

where the relation ma
λAFRs

evaluates the fuel quantity necessary to enforce the λ constraints, denoted

mλ
f in Fig. 4.6.

The derivation of mτ
f is similar to the derivation of p∗im in that it involves an inversion of the

SI combustion model subject to certain constraints, but now the constraints change to NMEP =

NMEP ∗ and θ50 = θ∗50,S without the λ = 1 constraint, and pim is taken at its measured value pyim.

Eq. (4.11) is also omitted. Substituting for c3 from Eq. (4.8) into Eq. (4.9) allows mf to be isolated

Wcig = c1pivc + c2(c1pivc +
mfQlhvR

cvVcmb
) (4.19)

Substituting the definitions of c1, c2 from Eq. (4.6) along with Eq. (4.10) into Eq. (4.19), and finally

setting pivc = β1p
y
im + β0, the result for mτ

f is

mτ
f =

cvVcmb(θ
∗
50,S)

QlhvR
((NMEP ∗ − (pyim − pem))Vd − (β1p

y
im + β0)c1(1 + c2)) (4.20)

where the constraints NMEP = NMEP ∗ and θ50 = θ∗50,S have been imposed. Again it is easy to

see how this equation simplifies when pivc is approximated ≈ pim by setting β1 = 1, β0 = 0.

The θsp input comes from a direct inversion of the model’s θ50 correlation. The SI-HCCI

transition strategy of Sec. 4.1.3 assumes that the SI mode operates with a low lift intake cam,
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and so the result will be derived for the reparameterized θ50 correlation in Appendix A.1 which is

developed for low lift intake SI operation. Choosing the coefficients

A2 = a2 (4.21)

A1 = a3 (4.22)

A0 = a1mf + a4θ
2
evc + a5θevc + a6λ

′2 + a7λ
′ + a8 − θ∗50,S (4.23)

where ai represent parameters in the θ50 correlation Eq. (A.4), the correlation can be arranged into

a quadratic function of spark timing

A2θ
2
sp +A1θsp +A0 = 0 (4.24)

whose solution gives θ50 = θ∗50,S . The maximum root (in units of aTDC) is chosen as the correct

root because inspection shows that the minimum root occurs unreasonably early spark timings after

the quadratic dependence on θsp shifts inflection. Note that to carry out this calculation, λ′ must

first be calculated using measured inputs in Eq. (A.5) which also depend on Eqs. (2.37), (2.38).

Also note that the θsp input is calculated after the mf input due to the dependence of the θ50

correlation on mf .

While the model inverse-based control laws employed here are advantageous for immediate

compensation of disturbances and retaining accuracy of the full nonlinear model, they still lack

a direct means to account for modeling error. Direct output feedback control for compensation

of model errors becomes difficult for the mf control loop, because its output variable can change

back and forth between NMEP and λ during the transition. Also, the transport delay and sensor

dynamics of the λ measurement are almost as long as the entire SI phase of the transition. For the θsp

control loop, on the other hand, direct output feedback compensation is more readily implemented,

given that the input-output coupling is solely to θ50 which is available on a cycle by cycle basis

through in-cylinder pressure measurements. Despite this fact, in the control architecture presented

here, no measures were taken to apply θsp → θ50 output feedback compensation. The reason is

that in the SI phase of the SI-HCCI transition, the transient in the in-cylinder conditions was

generally observed to be fairly mild, so that a wide margin of error was allowable for the θsp → θ50

without the combustion experiencing any significant deleterious effects. The main concern for the

accuracy of the spark timing control will instead come in the HCCI-SI direction, where the θ50

reference to the spark timing control will become time-varying as will be discussed in Ch. 6. In this

case, efforts at implementing direct cylinder pressure output feedback for the spark timing gave

poor results, because the feedback design was chosen following the internal model control scheme

which will shortly be proposed for HCCI combustion control in Sec. 4.3.2. This design could not

respond quickly enough to the rapid time variation in the spark timing’s θ50 reference trajectory.
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However, the opportunity still exists to apply a standard output feedback compensator architecture

which is additive with the spark timing model-inverse control calculation, e.g. a PI controller whose

input command is added to the model-inverse command for a simple example. Exploring this

kind of design option is an open opportunity for future work. For the control architecture of this

dissertation, measurements will be used in the SI phase combustion control to attenuate model error

in an adaptive online parameter update scheme, instead of for direct output compensation. The

mentioned parameter update scheme will be the subject of Ch. 5.

4.2.4 Cam Switching Logic and the Final SI Cycle

The dominant factor responsible for initiating HCCI is the EVC timing, as it determines the trapped

residual which is the main thermal actuator to enable auto-ignition. Hence, the decision to switch

the exhaust cam profile Λcam to low lift exhaust and engage HCCI is based on the simple logic of

θevc being within some window δevc of θswchevc . The tolerance δevc is tuned to account for the delay in

the cam profile switching mechanism, which for the experimental two-stage cam mechanism is on

the order of 1-2 cycles.

When the decision to switch to HCCI occurs, several other modifications are made to ease the

transition to ease the first HCCI cycles. One is to command the throttle to wide-open in advance of

the cam switching time, following the actuator strategy depicted in Fig. 4.4. This is done by setting

θ̄t = 100 when there are NWOT
pre time steps left before the first low lift breathing event, where NWOT

pre

is a calibration parameter. Additionally, the mf control is modified to bypass the calculation of mτ
f

and exclusively track a user defined AFR set point λPS , which enables leaning of the final SI cycle

for reduced exhaust temperature and torque compensation of the shifting EVO timing. The λPS

value must be balanced with catalyst oxygen fill-up, however.

4.2.5 Controller Tuning Variables

To summarize the calibration requirements for the SI phase controller, the controller tuning variables

are collected in Table 6.4. The Table clearly shows that calibration variables include only a handful

of gains and set points, as opposed to entire actuator sequences. Moreover, many of the set points

are intuitive to tune and fall in a small feasible range, e.g. NWOT
pre ∈ {0, 1, 2, 3, 4, 5}, λrich ∈ [.95, 1],

λlean ∈ [1, 1.05], etc. It is reasonable to assume that the θ∗50,S and θ∗ivo set points can be taken from

the baseline engine calibration, which reduces the number of tuning variables even further.
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Type Symbol Description

Gains kt, nt, pt Gain, zero, and pole of throttle controller

Set θswch
evc θevc at HCCI switch point

Points NWOT
pre Number of time steps prior to cam switch that throttle is commanded open

λPS λ set point for lean final SI cycle

λrich/λlean Rich/lean λ bounds

θ∗50,S θ50 set point in SI

θ∗ivo θivo set point for optimal low lift breathing

δevc θevc tolerance for switching to HCCI

Table 4.2: Tuning variables of SI phase controller.

4.3 HCCI Phase Controller

4.3.1 Control Problem Overview

The HCCI phase of the SI-HCCI transition presents the problem of recovering from an unfavorable
initial condition to reach a desirable operating point while mitigating disturbances to the performance
variables throughout. The main unfavorable aspects of the initial condition are a higher exhaust
temperature and later EVC timing than any value that can be reached in nominal HCCI operation.
For the first few cylinders entering HCCI, the intake manifold pressure may be subatmospheric as
well due to air path dynamics, even though the throttle is opened prior to to switching to HCCI
(see Sec. 4.2.4. While the HCCI phase carries out, the controller should target two main objectives,
based on the performance criteria in Sec. 1.1.3:
• Deviations of the engine torque from the driver demand should be minimized as per performance

objective 1.
• Combustion phasing should be kept late enough to minimize pressure rise rate excursions

beyond the desired threshold and early enough to avoid combustion instability/misfire based
on performance objectives 1 and 2. Misfire can also lead to unacceptably high hydrocarbon
emissions and violate perforamnce objective 2.

Note that no AFR objective is specified because it is assumed that the HCCI AFR is always lean,

though in general the controller should prevent rich AFRs in HCCI should such conditions arise.

As depicted in Fig. 4.4, when HCCI is engaged, the throttle is commanded wide-open and the

spark timing is placed very late so as not to interact with combustion, eliminating ut and θsp from

the set of control inputs. Moreover, θivo is kept constant at the optimal breathing condition θ∗ivo
to which it was commanded in the SI phase of the transition, and so it too requires no control

consideration. On the other hand, the SOI timing, which was unused in SI, now becomes and

important actuator. Additionally, the combustion model from Sec. 2.4 now involves states for cycle

to cycle couplings, which must be considered in model-based control laws.

Considering the changes to the control objectives, control inputs, and model topology in the

HCCI phase of the transition, the control problem is formulated according to the logic in Table 4.3.
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Torque and combustion phasing are taken as performance variables to be tracked to a specified

reference and are again characterized by NMEP and θ50, respectively. The feedback variables

y now include NMEP and θ50, which are assumed to be available from an in-cylinder pressure

measurement. These variables will be used in the HCCI phase for output feedback control and

observer-based estimation of the combustion model states of blowdown temperature Tbd, burned gas

fraction bbd, and fuel mass fraction fbd, as these cannot be measured. The input saturation limits for

uevc now change to represent the range of feasible timings with the low lift exhaust profile. The lower

saturation limit of θsoi is allowed as late as 180◦ bTDC on cycle HCCI 0 to compensate for the high

residual temperature carried over from SI; this was found to have minor but non-negligible effect

on retarding the combustion phasing on the first HCCI cycle, which may be due to the very high

recompression temperature carried over from SI that was explored in Sec. 3.1 amplifying reaction

rates with fuel pyrolysis or reforming. To prevent potential emissions issues associated with late

injection and reduced time for homogeneous mixing, the θsoi late saturation limit is fixed at 280◦

bTDC on all other cycles besides HCCI 0, where its authority on θ50 tends to diminish in nominal

HCCI operation. This extension of the lower θsoi saturation limit on cycle HCCI 0 conveys that

θsoi input constraints are a major concern in the HCCI phase of the transition in that they limit

the ability of θsoi to compensate for disturbances to combustion phasing.

Control Inputs u =
[
uevc mf θsoi

]T
Feedback Variables y = [NMEP θ50 pim Tim θivo θevc Neng]T

Performance Variables w =
[
NMEP θ50

]T
λ Rich Bound λ > λmin

Reference Commands r =
[
NMEP ∗ θ∗50,H

]T
Input Lower Bounds ulow =

[
−120 5 180/280

]T
Input Upper Bounds uhigh =

[
−20 50 390

]T
Model States x =

[
pim θevc θ̇evc Tbd bbd fbd

]T
Table 4.3: Control problem formulation for HCCI phase of SI-HCCI transition.

A block diagram of the control architecture for the HCCI phase of the SI-HCCI transition is

shown in Fig. 4.7, where x̂c =
[
T̂bd b̂bd f̂bd

]
denotes estimates of the combustion model states.

Notice in the diagram that θevc is governed by a simple step command to a set point as in the SI

phase of the transition. The symbol θ∗evc denotes the nominal HCCI θevc set point for the given

speed and load. The logic behind this step command is to quickly advance the EVC timing to its

HCCI set point after cycle HCCI 0, in order to increase trapped residual to compensate for the fast

decay of exhaust temperature on the first few HCCI cycles. A pre-step factor NEV C
pre is included to

allow the step command to be issued prior to switching to HCCI to give the EVC timing a “head

start” in this regard. Given the simplicity of the EVC step command based control, the remainder

of the discussion focuses on the combustion control.
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Figure 4.7: Block diagram of controller for HCCI phase of the transition. Variable names are as
defined in Table 4.3 with xc representing combustion states. P blocks indicate calculations using
the plant model, and C blocks indicate output feedback controllers.

4.3.2 Combustion Control

The overall architecture of the combustion control is:
• mf tracks NMEP = NMEP ∗ through a nonlinear internal model controller assuming
θ50 = θ∗50,H . If the required fuel quantity for NMEP = NMEP ∗ causes λ < λmin ≈ 1, the
fuel is calculated to fulfill λ = λmin.
• θsoi tracks θ50 = θ∗50,H through a nonlinear internal model controller

Like the SI phase, the combustion control architecture for the HCCI phase is based on relative degree

0 nonlinear model inverse calculations. The main difference is that corrective combustion output

feedback for attenuation of model error is incorporated through the internal model control (IMC)

structure. Inclusion of combustion output feedback is more prudent for the HCCI phase because the

combustion is more sensitive than SI combustion so that modeling errors have a larger effect, and in

general the HCCI phase experiences a more severe transient than the SI phase with the strategy of

Sec. 4.1.3 so that corrective output feedback compensation can have a greater impact. Additionally,

combustion output feedback control is easier to implement for the HCCI fuel controller than for

the SI counterpart, as the lower λ bound is rarely encountered and so the output can be taken

to be solely NMEP . Lastly, since HCCI is the destination mode of the transition, steady-state

tracking and disturbance attenuation become more pertinent than for the SI phase, which are aided

by combustion output feedback.

The IMC structure by which combustion output feedback is incorporated is depicted in general

form in Fig. 4.8. In the diagram, P represents the true plant and P̃ the modeled approximation,

while Q(z) represents a linear low pass filter included to keep the inversion P̃−1 causal. The basic
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idea behind the controller structure is that when the model is perfect, P̃ = P, ỹIMC = yIMC , then

the output feedback does nothing and the controller is left to perfectly invert the plant model. When

P̃ 6= P, ỹIMC 6= yIMC , then the output feedback modifies the reference signal for the inversion

until the measured output tracks the predicted output. This structure was chosen because it only

intervenes with corrective output feedback when it detects a model prediction error, so that if the

model inverse calculations are ideal and generate outputs that are close to the expected value, the

output feedback does not induce additional control effort. This was found to be especially helpful for

combustion phasing control on the first few HCCI cycles of SI-HCCI transitions, where combustion

phasing often became early due to high exhaust temperature, even with a saturated θsoi command.

Because the model prediction of IMC acknowledged an expected early θ50 timing on these cycles,

unwanted control effort was not generated which could interfere with the model inverse cancellation

of disturbances. The IMC structure also offers several favorable theoretical properties, such as

guaranteed zero-offset steady-state tracking and closed-loop stability within a sufficient model error

tolerance [66]. A technical note is that the low pass filter Q(z) is not strictly necessary to keep the

control system causal because of its relative degree 0 nature, however a first order low pass filter is

still included in order to smooth the controller response and reduce sensitivity to noise.
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Figure 4.8: Diagram of IMC structure. Q(z) represents a linear low pass filter, and P and P̃
represent the true and controller model of the plant.

The model inverse calculation for the mf IMC loop is derived from an inversion of the HCCI

torque model with respect to fuel using the measured intake conditions and valve timings and

estimated combustion states, following a similar procedure to that for mτ
f in the SI phase controller.

The equation for the gross cycle work is given by Eq. (2.59), and the constraint equations NMEP =

NMEP ∗ and θ50 = θ∗50,H are imposed. The main difference in solving for mf is caused by the

appearance of the combined thermal and combustion efficiency ηλ in Eq. (2.92), so that the equivalent

of Eq. (4.19) takes the form

Wcig = c1pivc + c2(c1pivc +
mfQlhvR

cvVcmb

aη1λc + aη2

λc + aη3
) (4.25)

where aηi, i = 1, 2, 3 are coefficients in the ηλ expression (2.93) and all intermediate quantities

bi, ci are as defined in Sec. 4.2.2. Evaluating ma and mr with the current state estimates and
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measured quantities and substituting in for λc, it can be shown that Eq. (4.25) reduces to a quadratic

polynomial in mf

B2m
2
f +B1mf +B0 = 0 (4.26)

with the following coefficients

B2 = aη2 (4.27)

B1 =
aη1(ma +mr)

AFRs
− d2aη3

d1
(4.28)

B0 = −d2(ma +mr)

d1AFRs
(4.29)

where

d1 :=
QlhvRVcmb(θ

∗
50)nc−1

cvpivcV
nc
ivc

(4.30)

d2 :=
(NMEP ∗ − ¯PMEP )Vd − c1pivc

c2b1pivc
− 1 (4.31)

and hence can be readily solved for mf with pivc obtained from the measured pim. The maximum

root of the quadratic equation is selected, as the minimum root tends to be negative which is not

physical.

Note that to maintain the decentralized mf/θsoi structure, the assumption that the θsoi controller

maintains θ50 = θ∗50,H is necessary to decouple the torque from the combustion phasing. This is a

good assumption for most of the HCCI phase of the transition, however its validity can weaken

on cycle HCCI 0 of the transition and possibly a few thereafter due to high residual temperatures

advancing the combustion phasing beyond the authority of θsoi to compensate. Such early combustion

phasing can cause a reduction in torque if the mf controller assumes θ50 = θ∗50,H . For this reason,

the combustion phasing decoupling assumption is modified to θ50 = θ0
50,f on cycle HCCI 0, where

θ0
50,f is tuned to be earlier than θ∗50,H to alert the fuel control loop to compensate for the effect on

the torque. On all other cycles the decoupling assumption remains unchanged.

The model inverse calculation for the θsoi IMC loop is derived by solving for the θsoi timing

to make the Arrhenius threshold of the HCCI combustion model perfectly match the integrated

Arrhenius rate when θ50 = θ∗50,H . The calculation begins by first solving Eq. (2.91) for the SOC

timing that results in the reference θ∗50,H ,

θ∗soc = (θ50 − asoc,0)/asoc,1 (4.32)

where asoc,i come from Eq. (2.91). The Arrhenius rate integral in Eq. (2.87) is then evaluated up to

θ∗soc using the pivc and Tivc values estimated from the current state estimates and measurements.
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This gives the value of the Arrhenius threshold to perfectly match the desired ignition timing for

the current estimates of the in-cylinder conditions, K∗th:

K∗th =

∫ θ∗soc

θivc

1

ω
pc(θ)

npe

(
−Ea
RTc(θ)

)
dθ (4.33)

where pc and Tc are evaluated with Eq. (2.89). Finally, the appropriate θsoi value to yield Kth = K∗th
is solved from the Arrhenius threshold correlation,

θsoi =
K∗th − a02λ

2
r − a01λr − a00 − aTTrc

a12λ2
r + a11λr + a10

(4.34)

where the slightly simplified Arrhenius threshold correlation of the reparameterized model for the

replica engine Eq. (A.9) has been used, because the SI-HCCI control experiments are carried out on

the replica engine.

Note that the evaluation of K∗th in Eq. (4.33) requires iteration and is thus computationally

intensive. To facilitate real-time implementation, pivc and ω are factored out of the Arrhenius

integral to give
K∗thω

p
np
ivc

=

∫ θ∗soc

θivc

(
Vivc
V (θ)

)ncnp
e

(
−Ea
RTc(θ)

)
dθ (4.35)

since pivc and Neng are assumed constant during one cycle. The right-hand side of this equation

can be solved as a function of Tivc and θ∗soc (neglecting the impact of IVC timing) and stored in

a two-dimensional look-up table. The term
K∗thω

p
np
ivc

can then be solved for K∗th, hence bypassing the

iterative calculation in real-time.

Given that the HCCI combustion model is equipped with cycle to cycle dynamics, the stability

of the combustion control is of concern, as opposed to the SI combustion model which contains

no dynamics and hence cannot be unstable. To check the stability of the HCCI internal model

combustion control, a linear analysis is performed at several operating conditions which span the

load range of HCCI on the experimental engine at the parameterized engine speed of 2000 RPM.

The analysis is carried out on a single input-single output basis, neglecting cross couplings between

the θsoi → θ50 and mf → NMEP loops. To corroborate the validity of the linear analysis, the

output and state response of the linearized model about one considered operating point is compared

to the response of the full nonlinear model for moderate input steps over a range of 30◦ θsoi and

1 mg mf in Fig. 4.9.

Being that the IMC structure is always stable when the controller model matches the true

plant, error is introduced between the approximate model P̃ and true plant model P in the IMC

diagram 4.8. The introduced error is based on the difference between the baseline combustion model

parameters, and those obtained after application of an adaptive parameter update law in engine

experiments, which will be covered in Chapter 5. The error thus represents a parametric uncertainty,
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Figure 4.9: Linearized versus full nonlinear HCCI model input and state responses for steps of θsoi
(left) and mf (right).

as opposed to a structural uncertainty. To analyze the stability of the perturbed plant/controller

model system, the open-loop transfer function of the IMC structure in Fig. 4.8 is formed using the

linearized models as

L(z) = Q(z)P̃−1(z)(P (z)− P̃ (z)) (4.36)

where P (z) and P̃ (z) are the linearized true and controller plant models, and Q(z) =
1−pQ
z−pQ is the

first order IMC filter. The stability of the closed-loop system can then be analyzed by inspection

of the frequency response of L(z). Note that the values of pQ = 0.85 for the θsoi → θ50 loop and

pQ = 0.8 for the mf → NMEP loop which were used in experimental implementation were chosen

to form the respective open-loop transfer functions. Fig. 4.10 plots the frequency response of L(z)

for both the θsoi → θ50 loop (top) and mf → NMEP loop (bottom) for low (left), mid (center),

and high (right) load linearization points. As can be seen, for the given plant/controller model

perturbance, the stability margins of the control loops are very generous. This suggests that a

significantly larger plant/controller model mismatch is tolerable by the controller, which is desirable

for stability robustness. However, the effect of the combustion state estimator was left out of the
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analysis, which can lead to significant reductions in stability margins. Structural uncertainties were

also not considered. Thus, while the analysis method here displays encouraging results for controller

robustness to basic parametric model uncertainty, further analysis would be necessary to definitively

characterize the controller stability robustness.

10
−1

10
0

10
1

10
2

−40

−30

−20

−10

0
Gain Margin: Inf / Phase Margin: Inf

10
−1

10
0

10
1

10
2

−200

−150

−100

−50

0

10
−1

10
0

10
1

10
2

−60

−40

−20

0
Gain Margin: 35 dB / Phase Margin: Inf

10
−1

10
0

10
1

10
2

−300

−200

−100

0

ω (rad/sec)

10
−1

10
0

10
1

10
2

−40

−30

−20

−10

0

|L
θ so

i −
 θ

50

|  
(d

B
) Gain Margin: Inf / Phase Margin: Inf

10
−1

10
0

10
1

10
2

−200

−150

−100

−50

0

∠
 L

θ so
i −

 θ
50

  (
de

g)

10
−1

10
0

10
1

10
2

−60

−40

−20

0

|L
m

f −
 N

M
E

P
|  

(d
B

) Gain Margin: 40 dB / Phase Margin: Inf

10
−1

10
0

10
1

10
2

−300

−200

−100

0

∠
 L

m
f −

 N
M

E
P
  (

de
g)

ω (rad/sec)

10
−1

10
0

10
1

10
2

−40

−30

−20

−10

0
Gain Margin: Inf / Phase Margin: Inf

10
−1

10
0

10
1

10
2

−200

−150

−100

−50

0

10
−1

10
0

10
1

10
2

−60

−40

−20

0
Gain Margin: 43 dB / Phase Margin: Inf

10
−1

10
0

10
1

10
2

−300

−200

−100

0

ω (rad/sec)

Low Load (1.8 bar NMEP) Mid Load (2.4 bar NMEP) High Load (3.2 bar NMEP)

Figure 4.10: Frequency response of linearized IMC open-loop transfer function at low (left), mid
(center), and high (right) load linearization points. Frequency response for θsoi → θ50 open-loop
transfer function shown in upper two subplots; Frequency response for θsoi → θ50 open-loop transfer
function shown in lower two subplots.

4.3.3 Combustion State Estimator

The dependence of the HCCI combustion control laws given in Sec. 4.3.2 on the HCCI model

in-cylinder temperature and composition conditions indicates that combustion model states Tbd,

bbd, fbd must be available to carry out the controller calculations. Because these states represent

properties of the in-cylinder gases, they are not directly measurable, and so an observer is included

for their estimation. The overall structure of the observer is to use the full nonlinear model in the

prediction step of the estimation, while keeping a linear output injection

x̂c(k|k − 1) = f(x̂c(k − 1|k − 1), u(k − 1), y(k − 1)) (4.37)

x̂c(k|k) = x̂c(k|k − 1) + L(w(k)− ŵ(k|k − 1)) (4.38)
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where f represents the dynamics of the nonlinear combustion model, and L is the observer gain.

Note that the combustion performance outputs w are used in the output injection as opposed to the

entire output vector y defined in Table 4.3. A block diagram of the observer is shown in Fig. 4.11.
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Figure 4.11: Diagram of HCCI combustion state estimator.

The idea behind the observer structure is that when first switching to HCCI, little combustion

feedback information for the HCCI mode is accrued until several cycles elapse, starting from HCCI 0

where there is none at all. Hence the model predictions are very important, and so the full nonlinear

model is employed to carry out the prediction step for improved accuracy over a linearized prediction

model. The output injection is kept linear mainly for ease of implementation, and is tuned with

linear Kalman filter methodology to balance the trade off between process noise and measurement

noise which both play an important role for the HCCI mode. Given the three combustion states

and two combustion outputs, the Kalman filter covariance matrices have dimension West ∈ R3×3 for

process noise and Vest ∈ R2×2 for measurement noise. Note that this simpler nonlinear prediction

- linear output injection design was compared in SI-HCCI transition experiments with a more

sophisticated unscented Kalman filter (UKF) design, and it was found that both designs produced

similar output injection profiles and overall state estimates. Hence, experiments indicated that

there was not much to be gained from the more computationally intensive UKF, and so the simpler

design was kept.

The state estimation structure also includes several logical decisions as is apparent from Fig. 4.11.

The first of these logical actions concerns the estimation on cycle HCCI 0, where the exhaust gas

states are given not by the HCCI model, but by the SI model. If on cycle HCCI 0, the observer

executes the SI combustion model to generate the prediction step estimates x̂c(k|k − 1), which is

possible without any prior x̂c estimates due to the static nature of the SI model. Additionally, the

output injection is set to 0, because HCCI combustion feedback is not yet available (w(k) comes
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from SI). The last logical action involves switching of the observer gains between the values Lest

and L0
est, which is included as an optional design modification. The motivation for this modification

is that, during the first few HCCI cycles, there is a large transient in the combustion dynamics

with strong deterministic features. Hence the deterministic response of the system far outweighs

stochastic disturbances from noise, and so measurements can be trusted more closely allowing for

a higher observer gain. The observer gain L0
est for the first N0

est cycles is thus tuned to be more

aggressive than the nominal observer gain Lest. In the experiments of this paper, L0
est is generated

simply by reducing the variance of the θ50 measurement in the Kalman filter Vest matrix. The

logical implementation of the two observer gains corresponds a simple switch that activates the L0
est

gain if the number of cycles in HCCI NHCCI is less than the pre-specified threshold N0
est, chosen to

be 5 in all cases.

4.3.4 Controller Tuning Variables

As was done for the SI phase controller, the tuning variables of the the HCCI phase controller

are collected to convey calibration requirements and displayed in Table 4.3.4. As with the SI

phase controller, the HCCI phase controller calibration involves tuning only several gains and

set points, and again multiple set points are constrained to a small and intuitive tuning set (e.g.

N evc
pre ∈ {0, 1, 2, 3, 4}, θ0

50,f ∈ [−10, 0], λmin ∈ [1, 1.05], etc.). Also, it is reasonable to assume

that the nominal set points for HCCI EVC timing and θ50 θ
∗
evc and θ∗50,H come from the baseline

engine calibration, in which case these variables need not be included in the HCCI phase controller

calibration.

Type Symbol Description

Gains pf/psoi Pole of fuel/spark IMC filter

West, /Vest Kalman filter covariance matrices for combustion state observer

W 0
est, /V

0
est Kalman filter covariance matrices for optional more aggressive

observer on first several HCCI cycles

Set Points θ∗evc Nominal HCCI θevc set point

Nevc
pre Number of time steps prior to cam switch the θevc is commanded

to θ∗evc
θ∗50,H θ50 set point in HCCI

θ050,f Assumed θ50 in fuel IMC on cycle HCCI 0

λmin Lower λ bound for lean HCCI operation

Table 4.4: Tuning variables of HCCI phase controller.
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4.4 Experimental Results

The combined SI-HCCI control architecture described in Secs. 4.2, 4.3 is implemented on the second

instance of the experimental SI/HCCI engine which was used to generate the transient data in

Sec. 3.3. As noted in Sec. 3.3 and Appendix A, this second engine has the same geometry as in

Table 2.1 but with a slightly modified compression ratio of 11.45:1. The reparameterized SI/HCCI

combustion models based on the data from the replica engine given in Appendix A are used in the

controller’s model-based calculations. The controller is implemented using an ETAS ES910 rapid

prototyping module to communicate with the engine control unit (ECU). The fuel used to carry

out the mode transition experiments is a 93 anti-knock index (AKI) 10% ethanol pump gasoline.

Because of its generic nature, the properties for the specific fuel batch used in the experiments could

not be obtained; however, some properties for a similar batch of 93 AKI pump gasoline are listed in

Table 4.4 which can be expected to be at least close to those of the experimental fuel batch. Note

that no value for the sensitivity of the fuel was given; being that the fuel is gasoline, it is likely

that its sensitivity is close to 8. In the SI-HCCI transition experiments, two of the four cylinders

displayed unreasonable torque and AFR responses in HCCI mode (e.g. increases in indicated torque

accompanied by decreases in AFR for constant fueling), which indicated possible fuel metering

errors and/or leakage of lubricant oil into these cylinders. The responses of these two anomalous

cylinders are omitted in the following results.

Fuel Property Value

Specific Gravity 0.7468

Net Heating Value 41.94 MJ/kg

Carbon Weight % 82.31 %

Hydrogen Weight % 13.75 %

Oxygen Weight % 3.94 %

Stoichiometric Air-Fuel Ratio (CH-based) 14.77

Stoichiometric Air-Fuel Ratio (CHO-based) 14.02

Anti-Knock Index 93

Table 4.5: Properties of 93 AKI pump gasoline used as fuel in SI-HCCI transition experiments.

The first experimental SI-HCCI mode transition takes place at an intermediate HCCI load of

2.4 bar NMEP at 2000 RPM and is displayed in Fig. 4.12. The presented cylinders correspond to

the first and second of the four to fire on cycle HCCI 0, which serves as a limiting case because the

intake manifold pressure dynamics have less time to reach atmospheric levels than for the third

and fourth cylinders. The first and second cylinders to enter HCCI are referred to as cylinder H1

and cylinder H2, respectively. Continuous air path valve and output responses are interpolated to

be plotted versus cycle along with the discrete combustion input/output responses. As stated in

Sec. 4.2.1, the mode transitions are carried out starting after the intake cam has been switched to
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Figure 4.12: Controlled SI-HCCI transition at mid load HCCI at 2000 RPM. Inputs shown in left
column and outputs shown in right column. The first and second cylinders to enter HCCI are
referred to as H1 and H2, respectively.

low lift at the beginning of the SI phase, which is designed for NVO and so gives late θivo.

The most notable change in the SI phase of the transition in Fig. 4.12 is the advancing of the

EVC timing from its nominal SI set point of 9◦ aTDC to the θswchevc set point, which is chosen at 23◦

bTDC for this condition. The disturbance caused by the shift of EVC timing causes the throttle to

respond first by slightly closing and then slightly opening relative to its nominal position, as the EVC

timing passes through inflection point between rebreathing and trapping residual that is around

TDC. Throughout this adjustment, the fuel quantity rises to account for the torque disturbance

caused by the earlier EVC timing and hence earlier EVO timing reducing the length of the expansion

stroke, while respecting the AFR bounds outlined in Sec. 4.2.1 (here chosen to be [0.97, 1.03]). It

can be seen that the NMEP stays close to its reference and λ deviation from stoichiometric is

minimal for both cylinders, which suggests that the throttle and fuel control perform adequately.

Note though that the exhaust oxygen sensors have strong low pass filtering characteristics, and so

λ deviations may be larger than they appear in Fig. 4.12. The spark timing control allows some

errors in the θ50 response, most notably with late θ50 for cylinder H2 at the beginning and early

θ50 for cylinder H1 towards the end. However, SI combustion is more robust to perturbations in
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θ50 than is HCCI, and so the effect on the torque response is minimal.

When cycle HCCI 0 is approached, the throttle is commanded wide-open, giving a rapid rise

in intake manifold pressure. The spark is placed very late so as not to interact with combustion,

and the EVC timing jumps by the high lift - low lift cam offset (see Fig. 2.2) as the exhaust cam

switches to low lift and HCCI engages. Upon entering HCCI, uevc is stepped to the nominal HCCI

set point θ∗evc and so θevc advances. The λ measurements rise lean, with a slower rise in cylinder

H2 potentially due to differences in oxygen sensor dynamics and transport delay, or cylinder to

cylinder fuel injector offsets. On cycle HCCI 0, the combustion controller places θsoi at the extended

lower saturation limit of 180◦ bTDC in anticipation of the high SI exhaust temperature advancing

combustion phasing. However, θ50 is still very early on cycle HCCI 0, signifying that the exhaust

temperature effect is outside the authority of θsoi to compensate, despite that the EVC timing that

is ≈ 25◦ later than the nominal HCCI set point. Due to the tuning factor θ0
50,f (here chosen = −6◦

aTDC), the fuel controller anticipates the early θ50 and injects a larger quantity, so that the torque

is minimally affected on cycle HCCI 0. However, θ50 is again early on cycle HCCI 1 which the

fuel controller does not anticipate, and so a torque reduction results. The SOI controller makes

the optimal response to this early θ50 for cylinder H1 by placing θsoi at its nominal late saturation

limit of 280◦ bTDC, though for cylinder H2 the controller advances θsoi past the saturation limit.

Cylinder H2 θ50 is more advanced than that of H1 over the next few HCCI cycles as well. Further

inspection of the controller response data suggests that the more advanced θsoi timing for cylinder

H2 than H1 over the first few HCCI cycles is primarily due to a difference in cylinder air mass and

temperature estimation on cycle HCCI 0, which carries over to the next few HCCI cycles due to

the model’s temperature and composition states. This difference is caused by cylinder H1 being

predicted to have a lower air mass and hence higher temperature on cycle HCCI 0 because it occurs

earlier in the cycle when the intake pressure has not risen as much. The controller thus predicts an

earlier θ50 for cylinder H1 than H2, resulting in a later θsoi timing for H1. Other effects which

may cause the θ50 of cylinder H2 to retard more slowly than that of H1 include potentially higher

estimation error for H2 and cylinder to cylinder variability, because a single set of control model

parameters is used for all cylinders and cylinder H2 is often observed to knock more readily than

H1.

Despite some imperfections in the combustion controller, the NMEP stays close to its reference

value throughout the transition, with a peak deviation ≈ 0.18 bar NMEP (8%). Peak pressure rise

rates dp/dθmax are higher on the first few HCCI cycles due to earlier combustion phasing, though

they remain within the preferred steady-state limit of 6 bar/degree, and so are more than acceptable

for the short HCCI transient period. The mode transition is thus largely successful.

To demonstrate the ability of the controller to generalize to multiple conditions, it is exercised

to carry out SI-HCCI mode transitions near the low load (≈ 1.8 bar NMEP) and high load (≈ 3.2

bar NMEP) HCCI limits at 2000 RPM on the experimental engine. In the high load case, cylinder
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H2 began experiencing problems with runaway knocking and unreasonable AFR/torque responses

which were uncorrelated with the fuel command in HCCI, which are hypothesized to be influenced

by carbon deposit build up in the cylinder based on boroscope investigations. This cylinder could

not be operated safely in HCCI with the necessary fuel quantity for the high load condition, and so

its response is omitted in this case.

−10 −5 0 5 10
−50

−40

−30

θ sp
 (

aT
D

C
)

Low Load HCCI

−10 −5 0 5 10

200

250

300

350

θ so
i (

bT
D

C
)

−10 −5 0 5 10

6

7

8

m
f (

m
g)

−10 −5 0 5 10

1.6

1.8

2

N
M

E
P

 (
ba

r)

 

 

−10 −5 0 5 10
−10

0

10

θ 50
 (

aT
D

C
)

−10 −5 0 5 10
0

5

10

dp
/d

θ m
ax

(b
ar

/d
eg

) 
   

   

Cycle

1st HCCI Cyl
2nd HCCI Cyl
Reference

−10 −5 0 5 10
−50

−40

−30

−20

High Load HCCI

−10 −5 0 5 10

200

250

300

350

−10 −5 0 5 10
10

11

12

13

−10 −5 0 5 10

2.8

3

3.2

 

 

−10 −5 0 5 10
−10

0

10

20

−10 −5 0 5 10
0

5

10

Cycle

SI Phase HCCI SI Phase HCCI
Open−
Loop SI

Open−
Loop SI

Figure 4.13: Controlled SI-HCCI transition experimental results across the HCCI load regime at
2000 RPM. Left: Low load of 1.8 bar NMEP Right: High load of 3.1 bar NMEP. The first and
second cylinders to enter HCCI are referred to as H1 and H2, respectively.

Summary experimental results for the low load (left) and high load (right) SI-HCCI transition

conditions are presented in Fig. 4.13, where the top three subplots show the combustion inputs

and bottom three subplots show the combustion outputs. The θsp axis is enlarged to show more

detail, omitting the late placement of θsp in HCCI. The plots show that several main features of

the actuator trajectories remain common through each condition, with the spark timing advancing

and fuel increasing throughout the SI phase, and the SOI timing retarding at the start of the

HCCI phase and eventually advancing. However, the absolute values of the actuator trajectories

vary significantly from case to case, which the controller is able to deduce automatically through

model-based calculations. The θ50 follows a similar response in all cases, starting early and retarding

to the reference in a few cycles. In the high load case, the early initial HCCI cycles dp/dθmax to
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rise above the desired 6 bar/degree threshold, which is not favorable but acceptable for a the short

transient period given that the threshold is only exceeded by ≈ 2.5 bar/degree for one cycle. Such

pressure rise rate excursions are difficult to avoid in SI-HCCI transitions near the upper HCCI

load limit where fuel quantity is high. The early θ50 on the first few HCCI cycles also causes a

torque reduction, which is minimal in the high load case but larger in the low load case, most

likely because θ50 is advanced to a greater extent in the low load case. The maximum NMEP

reduction in the low load case occurs over the first two HCCI cycles and reaches ≈ 0.2 bar = 11%

for cylinder H1 and ≈ 0.35 bar = 19% for cylinder H2. It can be seen that in terms of absolute

values, the maximum reduction is not very much worse than other cases, however because of the

lower load reference the disturbance is larger on a percentage basis. After the first two HCCI cycles,

the NMEP is increased to within ≈ 8% of the reference value, however takes several more cycles to

converge to the reference. While this amount of error in the torque response may still be passable

for drivability, it can be said that it is the least desirable of all cases examined.

One obvious potential reason for the weaker torque tracking at low load is higher error in the

HCCI torque model at the low load operating condition (which has fuel quantity outside the range of

parameterized conditions). The gradual increase of mf after the start of the HCCI phase in Fig. 4.13

supports this hypothesis, as it signals that the IMC output feedback is increasing mf to compensate

for model error. While the output feedback is able to attenuate the model error after several cycles,

higher model accuracy would be preferable to minimize the chance of the error occurring. An online

adaptation scheme which aids in attenuating such model error will be developed later [67]. Another,

more subtle possible reason is that the EVC timing at the SI-HCCI switch point θswchevc was tuned

too early for the low load condition, which caused θ50 to advance even earlier on the first few HCCI

cycles than in other cases.

To gauge the repeatibility of the SI-HCCI mode transition experiments, a repeated trial was

carried out at each of the previously presented operating conditions, without any modifications

to the controller calibration. The results are depicted in Fig. 4.14 for the low load (left), mid

load (center), and high load (right) cases. Observing the plots, it can be seen that, although the

trajectories do not follow the same path on a cycle by cycle basis as in the original trials, the

overall qualitative behavior and general controller performance is similar. This is characterized by

satisfactory torque and combustion phasing tracking in the SI mode, and early combustion phasing

and amplified pressure rise rates along with a mild torque disturbance during the first few HCCI

cycles. The peak torque deviations maintain similar levels, with values of 18%, 9%, and 7% in the

low, mid, and high load cases, where the trend of the lowest load case having the largest torque

deviation is again observed. Some slightly less favorable aspects relative to the original trials can

be seen in the high load case, where the torque decreases by nearly the peak deviation amount for

three cycles, and the pressure rise rate on cycle HCCI 1 is slightly higher than in the original case.

However, overall effect of these differences on performance is likely to be negligible, given that the
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peak torque deviation is already minimal and the reduced torque cycles are interspersed with cycles

of good torque tracking, and also that the increased pressure rise rate is only slightly higher for

one cycle. One other noticeable difference between the repeat and original runs appears in the mid

load on cycle HCCI 2 for cylinderH2, where the θ50 suddenly advances. The increase in torque

which accompanies the advanced θ50 suggests that the effect is related to the anomalous behavior

exhibited by cylinder H2 at high loads, where torque could increase without stimulus from the fuel

command. This anomalous behavior may have surfaced to a minor extent on cycle HCCI 2 at this

mid load condition. However, given the small impact of such behavior at mid loads, the overall

performance in terms of torque tracking and pressure rise rate remains minimally affected for the

repeated trial.

−10 −5 0 5 10
1.4

1.6

1.8

2

N
M

E
P

 (
ba

r)

 

 

−10 −5 0 5 10
−10

0

10

θ 50
 (

aT
D

C
)

−10 −5 0 5 10
0

5

10

dp
/d

θ m
ax

(b
ar

/d
eg

)

Cycle

−10 −5 0 5 10
6

7

8

9

m
f (

m
g)

−10 −5 0 5 10

200

250

300

350

θ so
i (

bT
D

C
)

−10 −5 0 5 10

−40

−20

0

θ sp
 (

aT
D

C
)

Low Load

1st HCCI Cyl
2nd HCCI Cyl
Reference

−10 −5 0 5 10
2

2.2

2.4

2.6

 

 

−10 −5 0 5 10
−10

0

10

−10 −5 0 5 10
0

5

10

Cycle

−10 −5 0 5 10

8

9

10

−10 −5 0 5 10

200

250

300

350

−10 −5 0 5 10

−40

−20

0

Mid Load

−10 −5 0 5 10
2.8

3

3.2

 

 

−10 −5 0 5 10
−10

0

10

−10 −5 0 5 10
0

5

10

Cycle

−5 0 5 10

10

11

12

−10 −5 0 5 10

200

250

300

350

−10 −5 0 5 10

−40

−20

0

High LoadOpen−
Loop SI SI Phase HCCI

Open−
Loop SI SI Phase HCCI

Open−
Loop SI HCCISI Phase

Figure 4.14: Repeated SI-HCCI mode transition experiments at 2000 RPM. Left: Low load of 1.8
bar NMEP. Center: Mid load of 2.4 bar NMEP. Right: High load of 3.1 bar NMEP.

4.4.1 Calibration Effort

To convey the effort involved in calibration of the SI-HCCI transition controller, all tuning variable

values for the both the SI and HCCI phases of the presented mode transition experimental results
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are listed in Table 4.4.1. The table separates the tuning variables which remained constant across

all experimental conditions from those which were varied, as the adjustment of calibration variables

by operating condition may present significantly more calibration effort. Those calibration variables

which can be assumed to be specified by the baseline engine calibration as necessary for nominal SI

and HCCI mode control are also placed in a separate category. Looking over the list of variables, it

can be seen that there are 20 variables in total which must be tuned, where the variables which are

included in the baseline calibration have been left out of the count. The number 20 is based on

the fact that the Kalman filter covariance matrices West and Vest include 3 and 2 tuning elements,

respectively, and that the faster Kalman gain is obtained by simply reducing the θ50 variance

in the matrix V 0
est and leaving all other estimator tuning parameters costant. Three of these 20

elements are trivially easy to tune, referring to λrich, λlean, λmin, which will always be within some

small margin of stoichiometric. Additionally, only four of the 20 tuning variables are adjusted by

operating condition in the SI-HCCI transition experiments, and of these four θswchevc is the main

factor influencing the smoothness of the transition with the other three variables being adjusted

only with minor tweaks. The experimental results thus show that the controller generalizes across

the nearly the full load range of HCCI combustion at 2000 RPM on the experimental engine with

adjustments made only to one major and three minor calibration variables.

It is difficult to draw a quantitative comparison between the calibration effort of the proposed

model-based feedback control scheme and that of open-loop experimental approaches in the literature,

as the details of the input sequence tuning for SI-HCCI transitions are not clear in many experimental

works. In the most extreme case, each control input command at every control action can be

considered as a calibration variable, i.e. every point in the open-loop input sequence is a separate

calibration variable. For the air path actuators, this can amount to a very large number of calibration

parameters if considered on the same basis as the model-based feedback control scheme, which

operates the air path actuators on a 10 msec sample time giving six calibration variables per cycle

at 2000 RPM for each air path control input. However, for simplicity it is assumed that the air path

inputs in an open-loop scheme can be commanded on a cycle-cycle basis similar to the combustion

inputs. Roughly assuming a five cycle duration for the SI phase of the transition, which is around

average for the experimental SI-HCCI trials, and also a five cycle transient phase after switching

to HCCI mode, this amounts to 5 inputs × 5 cycles = 25 calibration variables in the SI phase,

and 3 inputs × 5 cycles = 15 calibration variables in the HCCI phase, for a total of 40 calibration

variables.

In a practical open-loop SI-HCCI mode transition method, simplifications to the approach of

treating all control actions as calibration variables are likely to be made so that the number of

calibration variables is not as high as 40. Some such simplifcations are already suggested in the

proposed model-based feedback control structure, wherein the valve timing commands were governed

by simple step inputs, which reduces the 5 calibration variable sequence to a one calibration variable
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Variable Low Load Mid Load High Load Dependence

kt 50 . . . . . .

nt 0.97 . . . . . .

pt 0.91 . . . . . .

NWOT
pre (time steps) 4 . . . . . .

λrich/λlean 0.97/1.03 . . . . . .

δevc (CAD) 8 . . . . . . Constant w/

pf 0.8 . . . . . . Operating

psoi 0.85 . . . . . . Condition

West diag[5 .02 10−6] . . . . . .

Vest diag[0.8 0.05] . . . . . .

W 0
est West . . . . . .

V 0
est diag[0.1 0.05] . . . . . .

λmin 1.05 . . . . . .

θswch
evc (aTDC GE) -40 -23 -14 Vary w/

Nevc
pre (cyl steps) 2 2 3 Operating

λPS 1 1.05 1.05 Condition

θ050,f (aTDC) -9 -6 -3

θ∗50,S (aTDC) 7 . . . . . .

θ∗ivo (aTDC GE) 60 . . . . . . Baseline

θH50 (aTDC) 3 5 7 Calibration

θ∗evc (aTDC GE) -101 -89 -79

Table 4.6: Tuning variable values for SI-HCCI transition controller.

set point, and so reduces the number of calibration variables from 40 to 28. Another simplification

that was apparent in the approach of [21] was to tune the HCCI fuel command to be constant after

the first HCCI cycle, which reduces the 5 cycle sequence to a 2 cycle sequence, which can drop the

number of calibration variables to 25. Other such simplifications may also exist which can reduce

the number of calibration variables even further.

In comparison of the number of calibration variables to open-loop methods, the number that

should be used for the proposed model-based feedback control scheme is 18, given that the variables

NWOT
pre and δevc are used for planning the throttle opening and cam switch timing which must also

be done for open-loop schemes. Additionally, 3 of these 18 variables are trivially easy to tune, as

already noted. However, comparison purely on the basis of the number of calibration variables

can be misleading, in that the variables may become more time intensive to calibrate without

the presence of model-based feedback control. Take for example the tuning of the EVC timing

at the SI-HCCI switch point, θswchevc , which must be calibrated both in the proposed model-based

feedback scheme and in any open-loop sequence type method. With the proposed model-based

feedback control scheme, θswchevc is relatively straightforward to tune, in that its value can be freely
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adjusted and the model-based controller takes the necessary actions to ensure adequate conditions

at the SI-HCCI switch point, e.g. keeping the torque close to the reference, keeping the mixture

stoichiometric, etc. Therefore several different values can be iterated through very quickly for a

fast tuning. However, if all inputs are applied in open-loop, then everytime a new θswchevc is tested,

the calibrator must manually deduce the necessary values of the other inputs to give adequate

conditions at the SI-HCCI switch point, and so trial and error tuning of the θswchevc value can take

substantially longer. Another point to make is that the gains and set points of the model-based

feedback control scheme may be more intuitive to tune than specification of actuator sequences on

a cycle by cycle basis, since they have a simpler interpretation (e.g. higher gain → faster response)

and generate the input command profile automatically.
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Figure 4.15: Data from open-loop SI-HCCI transition wherein all input commands are specified
through a linear ramp from the nominal SI condition to the SI-HCCI switch point in the SI phase
of the transition, for examination of efficacy of simple open-loop actuator profiles.

One other possible simplification to open-loop scheduled sequences which should be noted is to

specify the shapes of the actuator profiles (e.g. a ramp) as opposed to cycle by cycle trajectories,

in which case only the actuator profile shape and ending point of the profile must be selected for

each actuator. While it is unclear from the literature if such an approach has ever had success,

an observation can be made from the open-loop SI-HCCI transition sequences used for transient

model validation in Chapter 3, where the SI phase of the SI-HCCI transition was carried out

with simple ramp inputs for all actuators. This part of the transient was not shown in Chapter 3

because it was not the focus of the model validation, and so it is depicted for one example open-loop
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SI-HCCI transition in Fig. 4.15. As can be seen, all actuators are ramped from their nominal SI

condition to the SI-HCCI switch point condition. Throughout this transient, a moderate torque

reduction and AFR fluctuations occur over several cycles, giving significantly worse performance

than any of the previously examined closed-loop SI-HCCI transitions in the SI phase. While not

constituting a definitive conclusion that simple actuator trajectories for SI-HCCI open-loop sequence

are unnacceptable, the data at least cautions that more sophisticated open-loop mode transition

actuator profiles may be necessary to attain satisfactory performance, while will again increase

calibration time.

One last point needs to be made when considering the calibration effort of the proposed

model-based controller against an open-loop mode transition method. While it was stated that

simplifications may exist which can reduce the number of calibration variables of open-loop mode

transition methods, in any method where the actuator commands are specified by open-loop

sequences, most if not all calibration variables of the controller are required to change between

operating condition. As was previously mentioned, for the proposed model-based feedback control

scheme, only one major and three minor variables were adjusted between operating points. Thus,

from the stand point of scheduling the SI-HCCI transition controller across the feasible HCCI range,

the ability of the model-based feedback controller to generalize to many operating conditions with

minimal tuning can be expected to significantly reduce calibration effort relative to an open-loop

method.
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Chapter 5

Online Parameter Adaptation for Improved
Model-Based Combustion Control in

SI/HCCI Transitions

In Ch. 4, a model-based feedback control architecture for SI-HCCI transitions was developed

which was shown to generalize to several operating conditions with minimal calibration. A major

component which contributes to the controller generality are the nonlinear model-based calculations

using the SI and HCCI combustion models. The model-based calculations are especially important

given the nature of SI/HCCI mode transitions, wherein a large state and input transition occurs

in a very short time. Direct output feedback control thus has a limited window over which to

empirically compensate for errors during several key transient cycles, so that the model-based

calculations must make up a large portion of the control input. This is most obvious in the HCCI

phase of the transition, where upon entry, no HCCI combustion feedback is yet available, and so

the control input is determined entirely through model predictive calculations. The model on which

the control architecture is built was shown to fit a wide range of SI and HCCI data in Secs. 2.3.3

and 2.4.2, however model accuracy may decrease as the engine ages and conditions are extrapolated

outside those in the model parameterization. Additionally, cylinder to cylinder and engine to engine

variability is not accounted for in the model parameterization.

This Chapter aims to improve performance and robustness of the model-based control architecture

of [65] by using transient SI/HCCI transition feedback to tune the combustion model parameters

in online operation with an adaptive parameter update scheme. The controller thus makes use of

transient data not only for immediate corrective output feedback action, but for improving the

model-based control input calculations for successive transitions. The adaptive scheme is developed

from the standpoint of being used in the control architecture of Ch. 4 for SI-HCCI transitions,

however it will be seen in Ch. 6 that the scheme also is helpful in HCCI-SI transitions without

any modifications to the development made in this chapter. In the SI-HCCI direction of the mode

transition, the adaptive method for the residual gas correction factor from Sec. 3.2.1 is employed on

the first HCCI cycle HCCI 0, while for all other cycles a new method is developed which involves

linear least squares updating of the torque and combustion phasing models. In what follows, the
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adaptive methodology is described, and experimental examples are given which show the effect of

the parameter adaptation on the controller response.

5.1 Parameter Adaptation Method

5.1.1 Overview

The online parameter update method focuses on the combustion phasing and torque calculations of

the SI and HCCI combustion models, which play a central role in all of the model-based calculations

of the controller in Ch. 4 for both SI and HCCI mode (including the pim reference derivation). The

parameter update problems will be formulated in the linear parameteric model framework where

the model estimate z̃ of the quantity z can be expressed as

z̃ = aTΦ (5.1)

where a is the parameter vector and Φ is the regressor vector. This allows standard linear parameter

update laws to be used [64], which are easy to implement and favorable for real-time calculations.

All parameter update laws follow the recursive least squares with forgetting factor algorithm,

which is chosen because of its desirable convergence and optimality properties [64]. The algorithm

is reproduced here for convenience:

a(m) = a(m− 1) +G(m)(z(m)− z̃(m)) (5.2)

G(m) = P (m− 1)Φ(m)(β + ΦT (m)P (m− 1)Φ(m))−1 (5.3)

P (m) = (I −G(m)ΦT (m))P (m− 1)/β (5.4)

where m is the update time index and β is a forgetting factor. The basis function matrix P of the

recursive least squares algorithm is initialized at 10−3I for torque adaptation laws and 10−2I for

combustion phasing adaptation laws, where these values were tuned in simulation to give some but

not too much sensitivity in the first several parameter updates. The combustion phasing update

laws are implemented using normalized regressor variables of the form

nx =
x− xmin

xmax − xmin
(5.5)

which vary from 0 to 1 as the physical variable x varies between some reasonable maximum and

minimum values. This was done for combustion phasing but not torque parameter update laws

because the combustion phasing parameterizations involve more variables with a wider span of units,

as will be seen.
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When a mode transition commences, parameter updates are executed after feedback is obtained

from each subsequent cycle. The adaptation is turned off after a certain number of cycles elapse after

the destination mode is reached, chosen to be ten for all cases. After each update, the parameters

are then used immediately in the following cycle model-based control calculations, creating an

indirect adaptive control architecture. Note that for all control loops, the model predicted quantity

z̃ that is necessary for parameter updating is easy to generate from its corresponding model inverse

calculation by simply running the calculation forward with the solved control input.

5.1.2 SI Model Adaptation

Torque Model

The torque model adaptation focuses on the model’s NMEP prediction. Because the NMEP

calculation in the SI model of Sec. 2.3 is largely based on simplified physics of polytropic compression

and expansion work, there are few parameters in the baseline model which lend themselves to

NMEP adaptation. For this reason, the NMEP adaptation is carried out by introduction of

correction parameters which depend on important influencing factors for the torque:

∆τ,S = NMEP − ˜NMEP (5.6)

∆̃τ,S = aTτ,SΦτ,S (5.7)

Φτ,S =
[
mf V 2

cmb Vcmb 1
]T

(5.8)

where ∆τ,S and ∆̃τ,S are the actual and predicted errors in the SI NMEP calculation. The

parameterization for the estimated prediction error ∆̃τ,S is based on the fact the torque is normally

a strong function of fuel quantity, and rolls off with a nonlinearly increasing slope as combustion

departs from MBT timing. Vcmb is meant to capture this nonlinear dependence of torque on

combustion phasing based on the logic in [49] and is expressed in units of dm3 × 10 when mf is in

milligrams, to keep the regressors on the same order of magnitude. The Vcmb terms are included

mostly for disambiguation in the SI-HCCI controller, so that in the event that a θ50 far from MBT

occurs, the controller can detect a torque reduction due to non-ideal combustion phasing, rather

than incorrectly attributing the effect to fuel quantity. The Vcmb terms will become more important

for control in the HCCI to SI direction, which will be covered in Ch. 6.

Combustion Phasing Model

The SI combustion phasing model is adapted by direct update of the model’s θ50 correlation. The θ50

correlation of the reparameterized model in Appendix A is used since the experimental adaptation
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results of Sec. 5.2 are generated with the replica engine to which the model is reparameterized,

θ̃50 = aT50Φ50 (5.9)

Φ50 = [nf n2
sp nsp n2

evc nevc n2
λ′ nλ′ 1]T (5.10)

nf =
mf − 5

20− 5
, nsp =

θsp − (−60)

0− (−60)
(5.11)

nevc =
θevc − (−50)

15− (−50)
, nλ′ =

λ′ − 1

2− 1
(5.12)

The maximum and minimum normalization limits are chosen based on physical reasoning for the

feasible range of the corresponding variable in the SI phase of the transition.

5.1.3 HCCI Model Adaptation

Residual Gas Temperature Correction: SI-HCCI Transition First HCCI Cycle

Based on the inspection in Sec. 3.1, any error in the combustion phasing prediction on cycle HCCI

0 of an SI-HCCI transition is attributed to the high SI exhaust temperature and low residual mass

pushing the model’s charge mass and temperature calculation far outside the nominal HCCI range.

Cycle HCCI 0 is thus distinct from all other HCCI cycles, where combustion phasing error will be

attributed directly to error in the Arrhenius combustion phasing correlation. This policy is chosen

following the results of Sec. 3.1, which suggest that the strongest source of error on cycle HCCI 0 is

in the excursion of the thermodynamic state far outside the nominal HCCI range, while for the

remainder of the cycles error is mostly due to nominal model error. The combustion phasing error

on cycle HCCI 0 is captured by the residual gas temperature correction factor kr introduced in

Sec. 3.1.3, and the same method as in Sec. 3.2.1 is applied to backtrack from the measured θ50 to the

necessary kr value for the parameter adaptation. The Arrhenius integral inversion involved in this

method is carried out using the Arrhenius tabulation explained in Sec. 4.3.2 which allows execution

in real-time. For the range of conditions examined, kr is parameterized as a linear function of θevc

as in Sec. 4.3.2,

k̃r = aTkrΦkr (5.13)

Φkr =
[
θevc 1

]T
(5.14)

Note that on cycle HCCI 0 during an SI-HCCI transition no parameter updates are executed other

than the residual temperature correction, and on all other cycles the residual temperature correction

update is deactivated.
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Torque Model

Similar to the SI case, the HCCI NMEP calculation in the model of Sec. 2.4 mainly comes from

simplified physics, with the exception of the combined thermal/combustion efficiency factor ηλ.

However, this factor is not convenient for use for adapting the torque model to match transient

data, because it only accounts for the dependency of NMEP on AFR and nothing else. Thus the

adaptation of the HCCI torque model is carried out following the same approach as in the SI case,

where corrective parameters are introduced to account for error in the NMEP prediction:

∆τ,H = NMEP − ˜NMEP (5.15)

∆̃τ,H = aTτ,HΦτ,H (5.16)

Φτ,S =
[
mf 1

]T
(5.17)

where ∆τ,H and ∆̃τ,H are the actual and predicted errors in the HCCI NMEP prediction. The

dependence of the torque error is simplified to be a function of fuel only, because combustion

phasing is typically constrained to a smaller window in HCCI than SI and so deviations of θ50

from the optimal cannot be as large. As is apparent from the SI-HCCI transitions of Sec. 4.4, the

validity of this simplification can weaken on the first several HCCI cycles of the transition due to

early combustion phasing caused by high exhaust temperatures. However, the torque model is not

updated on the first HCCI cycle HCCI 0 where only the kr adaptation executes, which is often

the point of earliest combustion phasing. A few early cycles may follow HCCI 0 which may not be

captured properly with the simplified ∆̃τ,H parameterization, however the simplified method was

still found to provide notable improvements in torque control.

Combustion Phasing Model

As previously stated, error in the HCCI combustion phasing model on all cycles other than HCCI 0

is attributed to the model’s Arrhenius correlation Eq. 2.87. This correlation is not straightforward

to work with for developing a linear parameter update method, since the integrated Arrhenius rate

creates a nonlinear and implicit function. However, it can be noted that many of the dependencies

in the Arrhenius correlation are parameterized into the Arrhenius threshold Kth, which is an explicit

expression that is linear in the parameters. The combustion phasing model update is thus carried out

targeting the parameters of the Arrhenius threshold, while leaving the parameters np and Ea which

are inside the nonlinear and implicit Arrhenius integral unchanged. Note that the correlation for the

Arrhenius threshold Kth is taken from Eq. (A.9) for the reparameterized model in Appendix A for

the replica experimental engine, since experiments with the proposed adaptive scheme are carried out

on this replica engine. A term to capture variation of in-cylinder temperature is augmented to the
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Arrhenius threshold, since the dependence of the Arrhenius correlation on in-cylinder temperature

enters through the Arrhenius integral and so is inaccessible

K∗th =

∫ θ∗soc

θivc

1

ω
pc(θ)

npe

(
−Ea
RTc(θ)

)
dθ (5.18)

θ∗soc = (θ50 − asoc,0)/asoc,1 (5.19)

pc(θ) = pivc

(
Vivc
V (θ)

)nc
, Tc(θ) = Tivc

(
Vivc
V (θ)

)nc−1

(5.20)

K̃th = athΦth (5.21)

Φth =

[
n2
λrnsoi nλrnsoi nsoi n2

λr nλr nTrc
1

Tivc − Tminivc

1

]T
(5.22)

nλr =
λr − 0

1− 0
, nsoi =

θsoi − 280

390− 280
, Trc =

Trc − 600

1000− 600
(5.23)

where θ∗soc is the start of combustion timing to match the measured θ50. Eqns. (5.18)-(5.20) convey

that the Arrhenius threshold K∗th to perfectly match the measured θ50 is obtained by inverting the

θsoc to θ50 linear fit (5.19) and then running the Arrhenius integration up to the desired θ∗soc with

the estimated pressure and temperature. K∗th then takes the place of the “measured” output which

the model prediction K̃th tries to approximate, with a normalized parameterization that follows

the same form as in Eq. (A.9) with an augmented term for Tivc. The hyperbolic dependence on

Tivc is chosen to approximate the profile of the full Arrhenius correlation, which tends to have a

nonlinearly increasing slope as Tivc decreases and misfire conditions are approached. The Tminivc

shift factor is chosen near the lower range of feasible Tivc values to increase the sensitivity of the

hyperbolic dependence in that region, but still outside the feasible Tivc range to avoid dividing by

zero. Note that the Arrhenius integration in Eq. (5.18) is evaluated using the look-up table method

described in Sec. 4.3.2 to faciliate real-time execution of the adaptive law.

5.2 Experimental Results

The effects of the SI and HCCI parameter update methods described in Sec. 5.1 are examined

in the SI-HCCI direction of the mode transition by augmenting the update methods to tune the

parameters of the baseline SI-HCCI transition controller from Ch. 4 in online operation. The

adaptive experiments are carried on the replica experimental engine from Appendix A, which

also served as the experimental apparatus for the baseline controller of Ch. 4. The experimental

conditions are perturbed from those in the baseline controller results of Sec. 4.4 in that a different

fuel batch is used, which is a reference type fuel without any ethanol content as opposed to the 10%

ethanol pump gas of Sec. 4.4. The fuel is of type Corrigan UTG 96, whose properties are listed in
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Table 5.2. Despite that both the reference and pump fuel batches have the same AKI, daily check

points and general SI-HCCI mode transition experimental observations indicate that reference fuel

tends to increase engine knocking relative to the original pump gas. The cause for this result could

not be discerned from the given information, which did not include the research and motor octane

number of the pump gas, or detailed information about the pump gas aromatics, olefins, etc. One

reason could be that the ethanol in the pump gas somehow provides better anti-knock properties,

and/or slows the rate of coking in the combustion chamber which will reduce deposit formation and

the associated combustion advancing effects. In any case, the performance of the baseline SI-HCCI

transition controller from Chapter 4 suffers in some experimental trials due to higher knocking, but

it will be seen that the parameter adaptation is able to restore performance and even surpass the

baseline results in Sec. 4.4 in most cases. As in Sec. 4.4, the responses of two of the four cylinders

which elicit anomalous torque and AFR responses are omitted.

Fuel Property Value

Specific Gravity 0.744

Vapor Pressure 9 psi

Net Heating Value 42.90 MJ/kg

Carbon Weight % 86.4 %

Hydrogen Weight % 13.6 %

Oxygen Weight % 0 %

Stoichiometric Air-Fuel Ratio (CH-based) 14.77

Anti-Knock Index 93

Sensitivity 7.9

Table 5.1: Properties of Corrigan UTG 96 gasoline used as fuel in adaptive SI-HCCI transition
experiments.

5.2.1 Successive Adaptations at One Operating Condition

The parameter adaptation is carried out in the simple case where successive SI-HCCI transitions

are repeated at single intermediate load operating condition at 2000 RPM with parameter updating

active during all trials. A total of 16 SI-HCCI trials are run with the forgetting factor of the

recursive least squares update tuned to an aggressive value of 0.94 to expedite convergence, which is

acceptable given the constant operating condition. The first experimental result compares SI-HCCI

transition responses prior to any parameter updating and after the adaptive trials complete at the

constant operating condition to illustrate the major effects of the adaptation. Fig. 5.1 plots the

responses before (left) and after (right) adaptation, where combustion inputs (top three rows) and

outputs (bottom three rows) are shown since the adaptation is concerned with the combustion

model. The θsp input is zoomed in upon to show more detail in the SI phase; in the HCCI phase, it
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Figure 5.1: SI-HCCI mode transitions before (left) and after (right) successive adaptations at an
intermediate HCCI load operating condition. The first and second cylinders to enter HCCI are
referred to as H1 and H2, respectively.

is placed aTDC as in Sec. 4.4. The displayed responses correspond to the first and second cylinders

to enter HCCI, which are referred to as cylinder H1 and H2, respectively, as in Sec. 4.4.

Observing the pre-adaptation responses in Fig. 5.1, it can be seen that minor errors are present

in the SI phase of the transition associated with late θ50 for cylinder H1 and slight reductions in

NMEP for cylinder H2, though the effects are not that significant. However, when the HCCI phase

commences, the controller makes significant errors in advancing θsoi on the 2-3 cycles following

HCCI 0, which amplifies early combustion phasing on these cycles and contributes to reductions in

NMEP . Additionally, the torque output of cylinder H2 tends to be lower than H1 for a given fuel

quantity, so that the NMEP of this cylinder remains low for multiple cycles after entering HCCI.

These errors are compensated by the IMC output feedback, however several cycles must elapse

before the output feedback can fully attenuate the errors because the bandwidth of the controller

cannot be arbitrarily high.

After the combustion model parameters are adapted, the problems displayed in the baseline

controller responses are for a large part inherently attenuated by the model-based calculations.

The θsp command for cylinder H1 is advanced relative to H2 , giving a θ50 response in SI which

stays closer to the reference. The NMEP dip of cylinder H2 in SI is kept to a lesser extent as
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well. In HCCI, the θsoi command is not as advanced on the first few cycles following HCCI 0, most

notably for cylinder H2. This causes θ50 to retard to its reference more readily after cycle HCCI 0,

which has positive effects for the NMEP and dp/dθmax responses. Additionally, the mf command

for cylinder H2 is increased relative to H1, which mitigates the excursion of cylinder H2 NMEP

below the reference that was observed in the pre-adaptation response. The adaptation thus enables

errors to be immediately compensated by improving the model predictions, giving performance

benefits during the cycles where direct output feedback would otherwise be adjusting to cancel

the errors. A last important comment is that the input trajectories for cylinders H1 and H2 are

further apart than they are prior to adaptation, which is due to the fact that the baseline model

is parameterized with a single set of coefficients. Differences in the cylinder’s input trajectories

in the baseline controller are thus only caused by corrective output feedback and differences in

measured disturbance quantities (valve timing, intake pressure, etc.) between the cylinders, and the

measured disturbances tend to be similar for both cylinders given that they are next to each other

in firing order. The adaptation is carried out on a per cylinder basis, allowing each cylinder to be

parameterized by its own set of coefficients and so inherently compensating for cylinder to cylinder

variability.
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Figure 5.2: Successive SI-HCCI mode transition trials at an intermediate HCCI load operating
condition with adaptation active. The first and second cylinders to enter HCCI are referred to as
H1 and H2, respectively.

For a more detailed view of how the parameter adaptation changes the controller response,
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Fig. 5.2 plots the input/output responses at the condition of Fig. 5.1 for several intermediate

instances throughout the 16 adaptive trials. Separate plots are given for cylinder H1 (left) and H2

(right) because the adaptation occurs on a per cylinder basis. Moving from the blue dot lines to the

black starred lines shows how a given trajectory changes with increasing adaptations. Observing

the θsp and mf input trajectories, a clear trend can be seen of advancing θsp on cylinder H1 and

increasing mf on cylinder H2 to compensate for the late SI θ50 of cylinder H1 and lower NMEP

of cylinder H2. The mf command also increases slightly in SI for cylinder H1, though the change to

the NMEP response is minor. Cylinder H2’s θsp command does not appear to have significant error

as its variation with increasing adaptations seems mainly influenced by noise. Generally speaking,

the θsp and mf input trajectories tend to converge within a small tolerance after eight adaptations.

The θsoi trajectory, however, shows more significant variation as the adaptation progresses beyond

eight trials, mainly in the first few HCCI cycles. As θ50 tends to be early on these cycles, θsoi

continues to retard with increasing adaptive trials, most notably on cycle HCCI 1 where the θsoi

retards by 17◦ for cylinder H1 and 27◦ for cylinder H2 between eight and sixteen trials. After

cycle HCCI 1, cylinder H1 ’s θsoi command is actually later for the zero and four adaptation cases,

which is most likely due to the IMC feedback retarding θsoi by a greater amount due to the earlier

θ50 on cycle HCCI 1 these cases. θ50 retards towards the reference, though to a lesser degree on

cycle HCCI 2 for the zero and four adaptation cases than in the more advanced adaptive cases,

which may be influenced by the cyclic coupling to the previous HCCI cycles which tend to have

slightly higher fuel mass in the zero and four adaptation cases. The θ50 response of cylinder H2 is

slower to retard to the reference value than that of cylinder H1, which is reasonable given that this

cylinder tends to have earlier combustion phasing and higher knocking in general. This promotes

a more dramatic retarding effect on the θsoi trajectory with increasing adaptations, to the point

where after sixteen adaptations cylinder H2’s θsoi command is close to the nominal 280◦ bTDC

θsoi saturation immediately after cycle HCCI 0. This gives a general trend of faster retarding θ50

and reduced pressure rise rates on the cycles following HCCI 0, however even with the much later

θsoi at higher degrees of adaptation the θ50 still takes several more cycles to retard to the reference

than for cylinder H1 due to the cylinder to cylinder variability.

Further information on the effect of the adaptation can be obtained by viewing how the model

parameters change in the sequential adaptative trials. It is difficult to interpret the trajectories of

the parameters based on their absolute values, as the parameterization is empirical and so absolute

values may have little physical meaning. However, some information may still be drawn by observing

the relative magnitudes and directionality of the parameter changes.

The first set of parameters that are examined are those of the SI combustion model, which are

portrayed in Fig. 5.3 for the combustion phasing (left) and torque (right) correlations at discrete

instances throughout the adaptive trials of Fig. 5.2. Given that the number of parameters for the

SI θ50 correlation is high (see Eq. (5.10)), the figure focuses on the parameters for several key
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dependencies within the correlation, to see how the sensitivity of the correlation to each of these

changes; note that the parameters for the corresponding second order terms of each dependence

followed a similar trajectory. Also, the parameter for the bias term in the torque correlation is not

shown because it was unfortunately not recorded.
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Figure 5.3: SI combustion phasing (left) and torque (right) model parameter variation with succesive
SI-HCCI adaptations. The first and second cylinders to enter HCCI are referred to as H1 and H2,
respectively.

Observing the combustion phasing parameter trajectories in Fig. 5.3, it can be seen that the

parameters for the cylinder H1 tend to increase with successive adaptations, while the parameters

of cylinder H2 tend to decrease. This is to be expected given that cylinder H2 was typically found

to have earlier combustion phasing that H1. For both the cylinder H1 and H2 parameters, one

attribute that stands out is that the trajectories for all parameters tend to follow the same shape,

and the final values are not very far from the initial values on a percentage basis. The highest

percentage change occurs for the bias parameter, which shifts by approximately 5% for cylinder

H1 and 10% for cylinder H2. These observations suggest that the adaptation did not change the

sensitivities of the θ50 regression to individual regressors much, but rather acted mostly to shift the

correlation in one direction or the other by acting as a bias or scaling gain. Further experiments

with different initial conditions and a wider set of operating conditions are necessary to confirm this

hypothesis, but if such behavior is consistently observed in implementation, then it may be possible

to simplify the adaptive parameterization for the SI θ50 regression to a simple gain or bias term. A

last observation is that, after16 adaptive trials, the θ50 parameters do not appear to have settled to a

steady-state value. It is unclear whether or not the parameters eventually converge to a steady value
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without having experimental data which continues the successive adaptations to a higher number of

trials. However, simulation investigation suggests that under idealized conditions, the parameter

estimates could diverge after a large number of adaptive iterations, due to an implementation issue

which was not addressed in the basic recursive least squares parameter update (5.2) - (5.4). However,

the simulation results indicate that divergence of the parameters and resulting deleterious effects

on controller performance only become significant after 50 or more adaptive iterations, so that the

presented experimental results with 16 or less adaptation iterations still convey the positive effects

of the adaptation without being distorted by problems of parameter divergence. This topic will be

discussed in detail in the following subsection.

Moving now to the torque parameter trajectories in Fig. 5.3, it can be seen that again the

relative difference between parameters of cylinders H1 and H2 matches the observations from the

experiment, where cylinder H2 was typically observed to produce a lower torque than H1 for a

given fuel command and so has lower (more negative) parameter values. Note that the parameters

for both the first and second order Vcmb term followed the same shape of trajectory, and so only the

first order term is shown for brevity. Returning to the topic of parameter convergence, it appears

that the torque model parameters stay much closer to a steady value after 8 adaptive trials than

was observed with the combustion phasing parameters. One simple possible reason for this behavior

is that the initial values of the torque parameters may not be as far away from the final values to

which they would converge over a large number of iterations as the combustion phasing parameters.

Another reason may be that the torque model contains a lower number of parameters than the

combustion phasing model, so that the torque parameters can be identified with a lesser degree

of excitation. Thus, as mode transition trials are repeated and similar input and output signals

emerge on each trial, causing parameter excitation to weaken, the torque model parameters remain

more readily estimable than the combustion phasing parameters.

The discussion now moves on to consider the trajectories of the HCCI model parameters

throughout sequential adaptations, which are plotted for the combustion phasing (left) and torque

(right) correlations in Fig. 5.4. As with the SI combustion phasing parameters, only the number

of parameters in the HCCI combustion phasing correlation is high, and so the figure focuses on a

reduced set of parameters to show how key dependencies within the combustion phasing correlation

change with successive adaptations. Observing these combustion phasing parameter trajectories,

once again the cylinder individual trajectories comply with experimental findings, in that the

parameters of cylinder H2 become more lower (more negative) than those of H1, giving a lower

threshold for combustion and earlier combustion phasing. It can also be seen that, in general,

cylinder H2’s parameters change to a much larger degree than those of cylinder H1, which is most

likely due to the much higher ringing observed with this cylinder in HCCI making it’s mismatch

with the baseline parameterization greater. Observing the shapes of the parameter trajectories, it

is apparent that, unlike the SI combustion model, different dependencies within the model take
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Figure 5.4: HCCI combustion phasing (left) and torque (right) model parameter variation with
succesive SI-HCCI adaptations. The first and second cylinders to enter HCCI are referred to as H1
and H2, respectively.

different parameter paths throughout the adaptation. For cylinder H1, the θsoi dependence follows a

mostly decreasing trend, while the λr dependence remains relatively flat with minor fluctuations. For

cylinder H2, the λr dependence follows a more strongly decreasing trend than the θsoi dependence,

and changes by a much greater extent on a percentage basis overall. Moreover, the parameter for

the cross coupling term λrθsoi tends to follow the same trend as the λr dependence for cylinder H1,

but for cylinder H2 it follows a trend closer to the θsoi dependence. It thus appears that during the

adaptative iterations, the combustion phasing correlation is adjusted on a regressor-individual basis,

to change the sensitivities of the correlation to different regressors. This is in contrast to the behavior

of the SI combustion phasing correlation, which seemed to be mainly affected through a constant

offset or scaling type adjustment. This result suggests that, for the HCCI combustion phasing

correlation, the higher order parameterization with multiple regressor dependencies is advisable.

One other facet of the HCCI combustion phasing parameter trajectories in Fig. 5.4, which is in

common with the SI combustion phasing correlation, is that again most parameters do not seem

to be converging to a steady-state at the end of the adaptive trials. However, as stated for the

SI combustion phasing correlation, simulations suggest that parameter divergence is not an issue

for the low number of iterations considered in the successive adaptation experiments. It is lastly

noted of Fig. 5.4 that the torque parameter trajectories exhibit similar behavior to those of the SI

model, being lower for cylinder H2 and appearing to converge more closely to a steady value after 8
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adaptive iterations.

In regard to the behavior of the parameters in the expression for the adaptive residual correction

factor kr, the experimental results suggested a lack of sufficient excitation to identify the two

parameters set out in the basis function of Eq. (5.14). This manifested as a noticeable change in

one of the basis function parameters, and a minute and negligible change in the other. Considering

that the kr adaptive method only operates on cycle HCCI 0, and that the operating condition was

not changed, this result makes sense because the kr adapation was essentially being carried out on

the same data point over and over again (within stochastic variations). To truly identify the kr

correlation when more than one parameter is used, future experiments must execute the adaption

at as least as many operating conditions as there are parameters in the kr correlation (here two).

Numerical Investigation of Closed-Loop Stability in Successive Adaptations

It was seen in the combustion phasing parameter trajectories of the successive adaptation experiments

that after 16 trials, most parameters did not appear to converge to a steady value. This raise the

question of whether or not the estimated parameters of the adaptive scheme will converge in the

limit, and if they do not if the closed-loop control system remains stable. Though it was noted

in Sec. 4.3.2 that the SI combustion controller is inherently stable and that HCCI combustion

controller displayed strong stability margins in the presence of parametric error, the stability of the

full closed-loop system with recursive parameter updating in the loop is still not ensured by these

facts.

Given the nonlinearities introduced by the use of recurisvely updated model parameters to drive

the control input calculation (which still appear when individual components are linearized) and the

high dimensionality introduced by adding dynamics to multiple parameters, analytical determination

of the system stability is difficult. For this reason, a numerical study is carried out, where the

full closed-loop SI-HCCI transition controller with adaptive parameter updating is simulated in

consecutive mode transitions. The simulation mimics the scenario of the successive adaptations

considered in the previously presented experimental results, in that the true plant model is set

with parameter values from the end of the successive adaptive trials, while the controller model is

set with the baseline parameters. A similar operating condition and forgetting factor are used as

well. The post-adaptation parameters are taken from cylinder H2, which represents a greater plant

model perturbation as cylinder H2’s parameters had a more substantial change during adaptation

than those of cylinder H1. The goal of the simulation is then to investigate, over a large number

of iterations, if the controller remains stable and if the estimated parameters converge to a steady

value, and if so does this steady value match the true plant parameters.

Fig. 5.5 plots the results of the closed-loop SI-HCCI transition adaptive simulations by showing

example parameter trajectories for each adapted correlation with successive adaptations. As can be
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Figure 5.5: Parameter trajectories for each adaptive model correlation in simulation of successive
closed-loop SI-HCCI adaptive trials for the baseline recursive least squares algorithm. HCCI model
correlations shown in upper two subplots; SI model correlations shown in bottom two subplots.
Forgetting factor kept at value of 0.94 from successive adaptation experiments.

seen, when starting the adaptive iterations, the parameters tend to shift by some reasonable amount

towards the true plant value, and from there taper off with a slight drift after 15 or so adaptive

iterations. However, as the number of adaptive iterations continues to increase, some parameters,

most notably in the HCCI model, start to diverge tremendously from their starting value, and

also the true plant value. These parameters then go through a period of very large fluctuations,

before settling back down to more reasonable values where they then continue to drift slightly.

The simulation thus predicts that the parameter estimates of the closed-loop adaptive system can

become unstable when a high number of adaptive iterations is carried out at a fixed operating point.

To obtain an idea of how the controller response changes as the parameter estimates shift and

eventually diverge during the successive adaptive trials, Fig. 5.6 plots the time histories of important

inputs and outputs of the closed-loop simulation at several instances throughout the adaptive

iterations. As can be seen, when starting from the baseline parameters with 0 adaptive iterations,

the controller response contains errors in the torque and combustion phasing tracking, with the

NMEP dropping significantly below the reference in both the SI and HCCI phases, and the θ50

having undesirable early excursions for several cycles after cycle HCCI 0. After 15 adaptive iterations,

most of these negative effects are cancelled out by the controller learning the modeling error. The
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torque remains close to its reference in both the SI and HCCI phases, save for an inevitable slight

increase on cycle SI -1 due to a shift of the EVO timing from the cam switch, and the θ50 tracks

an essentially flat line besides cycle HCCI 0 where the high exhaust temperature makes early

combustion phasing difficult to avoid. The controller thus obtains nearly perfect response, with

very little overall deviation in the outputs from their references. Examination of simulation results

as the number of adaptive iterations increases past 15 shows that the controller tends to reproduce

a similar near-perfect response, but as the number of adaptive iterations becomes very high and the

diverging parameter region is entered, fluctuations start to arise in the controller commands. These

fluctuations culminate on the 82nd adaptive iteration, where the command inputs wildly jump to

extreme values in the HCCI mode, leading to very bad performance as depicted in Fig. 5.6.
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To gain insight into the source of the adaptive parameter divergence and resulting degradation of

controller performance, Fig. 5.7 shows how the condition number of each correlation’s recursive least

squares P matrix (see Eq. (5.4)) changes throughout the adaptive trials. There is a clear trend that

as the number of adaptive iterations becomes large, the condition number of the P matrix grows

very large, so that the P matrix becomes very ill conditioned. Note that the P matrix is defined

through P =
(∑m

i=1 Φ(i)ΦT (i)
)−1

, so that it depends on the time history of the regressor vectors.

Thus, if the matrix becomes ill-conditioned, it signifies that the regressor vectors on each adaptive

iteration are nearly the same, which can lead to a linearly dependent set of vectors. This is not

surprising for a high amount of adaptive iterations, given that the controller attains nearly perfect

performance and so essentially just repeats the same ideal trajectory on each iteration. However,

because of the exponential discounting of data from the initial phases of the adaptive iteration

introduced by the forgetting factor of the algorithm, the regressor vectors begin to become purely
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based on the later, more repetitive trials as the number of adaptive iterations becomes high. Thus

the regressor vectors that comprise the P matrix become less unique with increasing adaptive trials,

causing it to become ill-conditioned. This phenomenon is referred to as estimator wind-up, and can

cause instability in recursive least squares updating schemes with exponential forgetting in periods

of repetitive control inputs and hence low excitation [64].
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Figure 5.7: P matrix condition number (CN) of baseline recursive least squares algorithm in
simulation of successive closed-loop SI-HCCI adaptive trials. Forgetting factor kept at value of 0.94
from successive adaptation experiments.

Given that the experimental implementation of the adaptive parameter estimation consistently

experiences stochastic fluctuations, and most likely has a higher order, structural uncertainty as

opposed to the simple parametric model uncertainty introduced in simulation, it is likely that

parameter excitation will be remain higher in experiment than was experienced in the simulation

study which will inhibit estimator wind-up. Additionally, an aggressive forgetting factor of 0.94 was

used to expedite the successive adaptation experiments, however in a real world implementation a

slower forgetting factor of 0.98 or 0.99 is more advisable, which will also slow the effects of estimator

wind-up. Despite these observations, it may still be prudent to take measures to avoid potentially

dangerous effects of estimator wind-up, and so a modified recursive least squares algorithm based on

a concept called directional forgetting [64] is employed in Appendix D for this purpose. Repeated

simulations of successive adaptive iterations with this modified parameter update show that the

parameters converge and remain within a small window for a high number of adaptive iterations, and

deleterious effects on controller performance are avoided. The converged values of the parameters

do not exactly match the true plant values, most likely due to a loss of persistance of excitation as

the control input sequence becomes repetitive with increasing adaptive trials, however it is of little
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consequence given that the tracking performance of the controller is strong.

The remaining step in examination of the convergence of the parameter adaptation is then to

return to experiment and repeat the successive SI-HCCI transition adaptive trials to a higher number

of adaptive iterations. This is necessary to ascertain parameter convergence from an experimental

standpoint, because the adaptive simulation results suggest that insufficient experimental adaptive

iterations were carried out to decisively gauge convergence. The reason is that the number of

adaptive iterations for parameter convergence in the simulation tends to be around 15, and the

successive adaptation experiments were carried out only to 16 adaptive iterations. Given that the

adaptive simulation considered a simple case of parametric uncertainty with a deterministic plant,

the convergence time for the parameters in experiment is likely to be much longer given the higher

order structural uncertainty and stochastic fluctuations presented by the true plant. For a more

thorough experimental characterization of parameter convergence, it may be advisable to carry

out at least double the convergence interval for the simulation, or 30 adaptive iterations. In these

follow-up experimental trials, it is advisable to use the previously mentioned directional forgetting

recursive least squares algorithm to mitigate potential estimator wind-up issues which can interfere

with parameter convergence.

5.2.2 Differing Operating Conditions

The results of Sec. 5.2.1 show that the proposed parameter adaptation can yield significant im-

provements when applied at one operating condition. The effect of the adaptation on the controller

response in differing operating conditions is now examined, in the limiting case where the adaptation

is conditioned on data only from a single operating condition. That is, the controller parameters

are adapted in successive SI-HCCI trials at a single operating condition, and then the controller is

taken outside this condition to carry out SI-HCCI transitions without first being adapted at the

altered conditions. This emulates the worst case scenario where a driver’s behavior tends to favor

entry to HCCI in a narrow range of conditions so that the controller adapts mainly in that range,

and then the controller is suddenly taken outside that range due to a change in driving pattern.

The danger is that the adaptation will “overfit” to a narrow range of conditions so that performance

will suffer when these conditions are exited. The operating condition for successive adaptations

corresponds to that of Sec. 5.2.1, so that the post-adaptation experimental results that follow are

generated using parameter values taken at the end of the adaptive trials in Sec. 5.2.1.

The first set of experimental results considers varying load conditions for the SI-HCCI transition

which span the HCCI load range of the experimental engine at 2000 RPM, similar to the low and

high load conditions of Sec. 4.4. As in Sec. 4.4, cylinder H2 experienced problems with runaway

knocking and unreasonable AFR/torque responses in the high load HCCI condition, and so its

response is omitted in this case. Figs. 5.8 and 5.9 plot the combustion responses with the baseline
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Figure 5.8: SI-HCCI mode transitions near the low load HCCI limit before (left) and after (right)
successive adaptations at the operating condition of Sec. 5.2.1.
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Figure 5.9: SI-HCCI mode transitions near the high load HCCI limit before (left) and after (right)
successive adaptations at the operating condition of Sec. 5.2.1.

controller (left) and after adaptation at the operating condition of Sec. 5.2.1 (right) for the low load

and high load cases, respectively. The general observation can be made from both plots that the

NMEP response appears more favorable after adaptation in all cases. In the low load case, the

adapted parameters induce a higher fuel quantity when HCCI is entered, which essentially eliminates

the drop in NMEP seen in the baseline controller response for which the IMC feedback must

compensate over multiple HCCI cycles. Note however that the higher fuel quantity commanded in
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the post-adaptation case appears to contribute to θ50 values which are similar or even slightly earlier

than the baseline case over the first few HCCI cycles. The post-adaptation controller commands later

θsoi than the baseline controller during these cycles to the point of saturating the θsoi command on

cylinder H2, however the effect on θ50 is not great enough to compensate for the higher fuel quantity

and so greater dp/dθmax values result for the post-adaptation controller. While the increased

pressure rise rates are not of too great concern because they do not exceed the preferred threshold of

6 bar/degree in this case, the example still shows that it is possible for some performance variables

to suffer while others benefit when the parameters are adapted over a small range and the operating

condition is then changed. In the high load case, mainly positive results are seen comparing the pre-

and post-adaptation responses, with the most notable benefit being the later θsoi commanded on

cycle HCCI 1 in the post-adaptation case. The later θsoi yields a less advanced θ50 than in the

baseline case, mitigating the torque reduction that results on cycle HCCI 1 in the baseline case and

giving slightly lower dp/dθmax.

The second set of experimental results considers perturbations to the engine speed in a 500 RPM

range about the nominally parameterized engine speed of 2000 RPM. Over this RPM range, the

controller model has no speed dependent parameterization, with the engine speed only showing up

in physical relationships such as the conversion of air flow to trapped mass. As with the high load

case previously considered, cylinder H2 began experiencing runaway knocking and unreasonable

AFR/torque responses at the higher speed perturbed condition, and so its response is omitted in this

case. The low and high speed perturbed cases of 1750 RPM and 2250 RPM at the load condition of

Sec. 5.2.1 are plotted in Figs. 5.10 and 5.11, respectively. Observation of the plots shows that both

the baseline and adapted controller are able to handle the engine speed perturbation without any

extreme pitfalls. However, comparison of the pre- and post-adaptation outputs shows that again

the responses in the adapted case are predominantly favorable to the baseline. In the low speed

perturbed condition, the SI phase NMEP and θ50 responses stay closer to their references after

adaptation, with the most notable effect being in the attenuation of the NMEP drop and early

θ50 observed in cylinder H2’s baseline response. In the HCCI phase, again the drop in cylinder

H2’s NMEP over the first several HCCI cycles is mitigated by the higher fuel command of the

adapted controller. The θsoi timing is also commanded later for both cylinders to aid in retarding

θ50 to its reference, which has the greatest impact for cylinder H1 on cycle HCCI 1 where θ50

retards significantly further than is seen with the baseline controller. In the high speed perturbed

condition, the NMEP and θ50 responses stay within a similar vicinity of their reference for both

the pre- and post-adaptation cases, and so there is not much difference in this case. However, when

HCCI is entered, the adapted controller commands a later θsoi than the baseline controller on cycle

HCCI 1, which yields a later θ50 and keeps the NMEP reduction to a similar level despite that

the fuel command is much lower in the adapted case. The lower fuel command of the adapted

controller causes significantly less overshoot of the NMEP reference after cycle HCCI, and also the
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Figure 5.10: SI-HCCI mode transitions with negative 250 RPM speed perturbation before (left)
and after (right) successive adaptations at the operating condition of Sec. 5.2.1.
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Figure 5.11: SI-HCCI mode transitions with positive 250 RPM speed perturbation before (left) and
after (right) successive adaptations at the operating condition of Sec. 5.2.1.

θsoi trajectory more quickly retards θ50 to its reference after entering HCCI in the adapted case,

giving lower pressure rise rates.
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Chapter 6

HCCI-SI Mode Transition Control

This Chapter considers the remaining portion of the SI/HCCI mode transition control problem,

the HCCI-SI direction of the transition. The presentation is structured similarly to that of the

SI-HCCI control architecture in Chapter 4, first examining the high-level actuator strategy and

performance concerns for transitioning from HCCI to SI, and then going onto develop model-based

feedback controllers for the HCCI and SI modes and testing them in experiment. The majority of

the development is centered around the air path control component, as the HCCI-SI direction of

the mode transition presents a more challenging scenario for proper air charge control than does the

SI-HCCI counterpart. The combustion control follows largely from the architecture for the SI-HCCI

direction, with one major modification necessary to cope with less favorable air path conditions.

The treatment of the HCCI-SI direction is not as extensive as for the SI-HCCI direction in

previous chapters in that only the essential components of the mode transition strategy and closed-

loop control architecture are given. Transient model validation against HCCI-SI transition data is

not considered, and the control architecture is tested in fewer experimental conditions. Additionally,

the effect of the parameter adaptation of Ch. 5 is not thoroughly explored, but rather the adaptation

is employed at the outset to give better controller functionality and the model parameters are

left at that state for all experiments. These less comprehensive aspects are due mainly to time

constraints. However, the fundamental control architecture and strategy components presented still

take significant strides past previous work, especially considering that all HCCI-SI transition studies

in the literature have been purely open-loop, and show encouraging experimental results for an

initial proof of concept.

6.1 High-Level Mode Transition Strategy

Following the procedure of the SI-HCCI controller development in Ch. 4, the high level strategy for

transitioning from HCCI to SI is first discussed, to define the general paths of the control inputs

throughout the transition. As in the SI-HCCI case, a cam switching type strategy is used wherein

the mode is abruptly changed through a switch of the exhaust cam profile which induces a drastic

change in internal residual quantity. The conceptual differences between this type of strategy and a
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cam phasing strategy wherein the internal residual quantity is gradually adjusted through phasing

of the exhaust cam instead of an abrupt switch are the same as in the SI-HCCI direction, which

was reviewed in Sec. 4.1. For this reason, the cam switching and cam phasing strategies are not

compared in detail here. It is simply noted that for whereas for the SI-HCCI direction the cam

phasing strategy involved gradual advancing of the EVC timing and opening of the throttle, in

the HCCI-SI direction the EVC timing is gradually retarded and throttle closed. The exhaust

cam profile is switched to high lift at the end of the transition when the SI mode is reached, as

opposed to the SI-HCCI direction where it was switched to low lift at the beginning of the transition.

The only study in the literature that appears to have implemented a cam phasing strategy for the

HCCI-SI direction of the mode transition is [29], where it was noted that the HCCI-SI direction is

more difficult than the SI-HCCI direction with the cam phasing strategy. The reason is that the

exhaust temperature is not initially higher so that in-cylinder temperatures are lower when passing

through the “unstable area” between HCCI and SI combustion, making it more challenging to

stabilize the combustion in the face of the high dilution. The ability of the cam switching strategy

to bypass the “unstable area” is thus of great utility, though it will be seen that very unfavorable

air path conditions must be passed through in order to do this, which makes HCCI-SI direction

more challenging than the SI-HCCI counterpart with cam switching strategies as well.

6.1.1 Considerations for the Cam Switching Strategy

The Problem of Intake Manifold Air Storage

Perhaps the most critical and challenging feature of cam switching type HCCI-SI mode transitions

is the difference in intake manifold pressure between HCCI and SI combustion. The reason the

intake manifold pressure difference is so critical is that the manifold dynamics are more sluggish

when decaying from higher HCCI levels to lower SI levels in an HCCI-SI transition than in the

converse situation in an SI-HCCI transition. Fig. 6.1 plots the throttle input alongside the intake

manifold pressure measurement during an experimental HCCI-SI transition to illustrate this point.

The SI mode begins at cycle 0, denoted SI 0, following the dual convention to that used in SI-HCCI

transitions in Chapters 4 and 5. The response is shown focusing on the instant where SI mode

engages to observe the characteristics of the intake manifold dynamics, and the details of the how

the transition is carried out and the controller design are left for later sections. Notice in the plot

that although the throttle is commanded nearly fully closed (with a 2% saturation margin) one

half cycle prior to the first SI cycle and held there for ≈ 2 cycles, there is still a 1.5-2 cycle decay

time wherein the intake manifold pressure is significantly higher than the steady-state SI value at

the given load. This is in contrast to the SI-HCCI pim response shown in Fig. 4.12, wherein pim

is increased from ≈ 0.4 bar to 1 bar in roughly 20-30 milliseconds (1/3-1/2 cycle at 2000 RPM).
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Efforts to command the throttle closed even sooner than in Fig. 6.1 to give a faster reduction in pim

were unsuccessful due to adverse effects on the HCCI combustion mode.
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Figure 6.1: Data from an experimental HCCI-SI transition at 2000 RPM illustrating the time
required for the intake manifold pressure to reduce to SI levels even with very aggressive throttle
control. Continuous air path variables interpolated to be plotted versus engine cycle.

The large discrepancy between the intake manifold pressure response time when opening the

throttle in an SI-HCCI transition and closing the throttle in an HCCI-SI transition is most likely due

to the fact that when opening the throttle, there is essentially an infinite reservoir of air upstream

of the intake manifold and so pressure can be built very fast. When closing the throttle, however,

there is a given mass of air stored in the intake manifold, and that mass must be expelled by being

pumped into the cylinders before a steady-state condition can be reached, which takes significantly

more time. The reason this increased intake manifold pressure in SI is so problematic is that the SI

AFR cannot stray too far from stoichiometric for emissions reasons. This is especially important

during HCCI-SI transitions, where the exhaust catalyst may be saturated with oxygen from lean

HCCI operation and so loses the ability to convert NOx [63]. The high air flow caused by the high

intake pressure thus necessitates a large quantity of fuel to be injected, which can cause the engine

torque output to greatly exceed the reference and interfere with drivability. Coping with this high

intake pressure on the first several SI cycles is the most critical aspect of cam switching HCCI-SI

mode transitions.
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SI Fuel Injection Strategies for Compensation of Air Storage

The problem of intake air storage in the HCCI-SI direction of the mode transition has been

witnessed in previous experimental studies. In cases where a fully flexible valve actuation device

was available [20–22], the problem could be dealt with relatively straightforwardly through selection

of the valve events and lifts to give appropriate air flow for stoichiometric SI combustion even

with an atmospheric intake pressure. However, with the use of more practical two-stage cam and

VVT hardware [23–28], the valve events and lifts cannot be adjusted as quickly and are limited in

their range, motivating other measures to be taken via the fuel injection strategy. All the previous

studies [23–28] employ the tactic of leaning the mixture when entering the SI mode by using a lower

fuel quantity which is appropriate for operation in the HCCI load region (see Fig. 1.1), instead

of increasing the fuel quantity as necessary to maintain a stoichiometric AFR with the higher air

flow. The torque can thus be maintained near the target low load value by virtue of the lower

fuel quantity. Some studies experience difficulties with partial burning/misfire and consequent

large torque fluctuations when leaning the mixture in this manner, due to the high air dilution

obstructing flame propagation [23,25,27,28]. Others though are able to circumvent this problem

using stratified fuel injection, which forms a locally rich area around the spark plug and aids the

burn process [24,26].

While combining the methods of lean AFR and stratified fuel injection appears capable of

maintaining satisfactory torque regulation in the face of the high intake pressure and air flow during

the initial cycles of the SI phase of the HCCI-SI transition, this strategy is not considered as a viable

option here. The reason is that the degree of leaning must be high due to the large discrepancy in

intake pressure, which promotes high NOx generation and leads to unburnt oxygen in the exhaust.

These issues are especially critical for HCCI-SI transitions because the catalyst oxygen storage is

charged while in lean HCCI operation, so that when switching back to SI operation, the catalyst

NOx conversion efficiency may be very low [63]. A high NOx generation in the cylinder thus leads

to very high tailpipe NOx emissions. NOx measurements during an HCCI-SI transition with lean SI

operation can be seen in [24]. Furthermore, the excess oxygen in lean SI exhaust contributes even

more to the catalyst oxygen storage, so that the catalyst may be rendered ineffective at converting

NOx for an even longer period of time after switching from HCCI to SI.

In this dissertation, the contrary SI fuel injection strategy to those in [23–28] is taken; the

AFR is commanded slightly rich when entering SI in an HCCI-SI transition, in order to mitigate

NOx emissions and also deplete the catalyst oxygen storage through unburnt hydrocarbons in

the exhaust. Fuel quantity is thus very high when first entering SI due to the intake air storage

phenomenon, which makes torque regulation very difficult. The problem is approached by adjusting

the valve timings and using aggressive throttle control to restrict air flow when entering the SI mode,

while retarding the spark timing to compensate for the higher fuel quantity through non-optimal

combustion phasing. Note that this retarded spark timing may also reduce NOx generation due
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to lower burn temperatures, though an emissions study is necessary to truly see the effect. As

will be seen, though, the degree of spark retard must be very high to reduce the torque to the

appropriate levels, giving more cyclic variability and less precise torque control overall than the

SI-HCCI direction of the mode transition. This is the main drawback of the cam switching HCCI-SI

transition strategy.

Throttling Down the HCCI Mode
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Figure 6.2: Steady-state throttle sweeps in HCCI mode for two different injection timings depicting
the loss in combustion stability as HCCI becomes throttled.

Given the problem of intake air storage and undesirably high intake pressure when entering SI

during an HCCI-SI transition, it is logical to throttle the intake flow while still in HCCI mode prior

to switching to SI, so that the SI mode commences with a lower pim initial condition. Though it

is preferable to throttle the HCCI intake pressure down as close to nominal SI levels as possible,

difficulty was found in significantly throttling the HCCI mode with respect to combustion stability.

To illustrate this difficulty, Fig. 6.2 plots results from steady-state throttle sweeps in HCCI mode

for two injection timings with all other quantities fixed. Note that the large jump from θt = 100%

to θt ≈ 40% is present because of the saturating nature of the throttle flow area, which causes the
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throttle opening to have little effect after ≈ 40% at 2000 RPM. The top two subplots show the

expected trends that as throttle is closed, intake pressure and AFR (hence flow rate) decrease. The

third subplot shows a less obvious trend, which is that as the HCCI combustion becomes more

and more throttled, cyclic variability and torque oscillations as characterized by the IMEP COV

sharply increase. This increase in cyclic variability prevented the further throttle closure in the

sweeps, as misfire became eminent. The bottom subplot of θ50 confirms that this loss of combustion

stability is not simply due to late combustion phasing, because even at the most throttled points,

the θ50 values are earlier than with the throttle wide-open. The data thus suggests that there is

some effect imposed by throttling the HCCI combustion which deteriorates combustion stability

in a sharply nonlinear manner. One potential source of combustion instability could be the AFR

approaching stoichiometric, around which point the sensitivity of combustion phasing to injection

timing varies strongly with the AFR affecting the amount of oxygen available for recompression

chemical reactions, so that cycle to cycle differences in AFR may have a large impact on combustion.

Experimentation with the EVC timing during throttle closure supports this hypothesis, in that

the throttle could be closed further without combustion instability at later EVC timings, which

increase the AFR further into the lean regime. Another potential source is the lower intake pressure

causing lower pressure in the cylinder and introducing variability into the chemical reaction rate that

governs the auto-ignition timing. Though the cause of the combustion instability upon throttling is

not certain, the implication on the HCCI-SI mode transition strategy is certain; that intake pressure

cannot be reduced to near-SI levels while in HCCI mode, so that a significant gap in intake pressure

will still be present upon switching to SI.

As noted above, the EVC timing was found to have an impact on how far the HCCI combustion

could be throttled, with later EVC timings allowing greater throttling. This result may suggest

that the optimal strategy is to retard the EVC timing as far as possible while in HCCI mode prior

to switching to SI. There is, however, a trade-off in the placement of the EVC timing with which

to switch to SI; as was shown in Fig. 4.2, earlier EVC timing in SI mode restricts the cylinder air

flow for a given intake pressure. Thus, a later EVC timing while in HCCI will result in greater air

induction for a given intake pressure when the exhaust cam is switched to high lift and SI is engaged.

This is because the high lift and low lift cams are linked through a constant crank angle offset as

reviewed previously (see Fig. 2.2). Additionally, it was found that the EVC timing is also limited in

how far it can be retarded in the HCCI mode, with very late EVC timings leading to combustion

instability due to lower in-cylinder temperature, even when trying to compensate with advanced

spark and injection timing and throttle coordination. The choice of EVC timing for switching from

HCCI-SI must take into account the trade-off between lower intake pressure and higher air flow

when entering SI mode and respect the late limit on EVC timing for combustion stability.
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6.1.2 Walkthrough of HCCI-SI Transitions with Chosen Strategy

Based on the considerations discussed in Sec. 6.1.1, the high-level actuator trajectories for the cam

switching HCCI-SI mode transition strategy are defined in Fig. 6.3. As in the SI-HCCI direction of

the transition, the intake cam is left in low lift for the duration of the mode transition transient, and

is switched back to high lift at the end of the transition when nominal SI operation resumes. The

reason for this decision is motivated by calibration simplicity given the minor impact of the high

lift versus low lift intake cam discussed in Sec. 4.1.2. The intake cam switch can be accomplished

with minimal effect on the engine flow rate for a significant range of intake valve timings, so that no

compensation for the switch with other actuators is taken.
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Figure 6.3: Representative depiction of high-level actuator trajectories for cam switching HCCI-SI
transition strategy. θsoi shown with reference to bTDC; all other timings shown with reference to
aTDC.

The HCCI phase of the HCCI-SI transition is characterized by a significant reduction of the

throttle opening to decrease the intake pressure for entry into SI as motivated in Sec. 6.1.1, along

with an EVC timing which tends to retard from the nominal HCCI set point at the given load. The

throttle reduction is large relative to the 100% nominal opening because of the inherent saturation

in the throttle’s effect on air flow above 40-50% opening at middle engine speeds. The EVC timing

will tend to retard to keep the AFR in the lean regime as the throttle is closed by reducing trapped
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residual and allowing more air to enter the cylinder, in order to avoid problems with combustion

stability upon throttling noted in Sec. 6.1.1. As stated, though, the EVC placement must be chosen

to balance the trade-off between stronger throttling while in HCCI with air flow restriction when SI

is entered, so that the degree of EVC retard may be small in HCCI conditions which already have a

high AFR.

Throughout the closure of the throttle and phasing of the EVC, the combustion actuators

take several actions to compensate for the effects of the air path actuators on the in-cylinder

conditions. The fuel mass tends to increase slightly as necessary to maintain constant torque, given

the increased pumping loss from throttling the intake and also the lower air dilution which can

reduce the mixture’s ratio of specific heats and give less expansion work. In light of the combustion

stability issues observed upon throttling HCCI in Sec. 6.1.1, the injection timing tends to advance in

an effort to bring the combustion phasing earlier where cyclic variability is mitigated. Also to assist

in this regard, the spark timing is placed very advanced during the HCCI phase of the transition.

While having a smaller effect in HCCI mode due to the high dilution obstructing flame propagation,

spark advance was still found to allow further throttling/later EVC timings to be achieved than

when the spark did not interact with combustion.
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Figure 6.4: In-cylinder pressure data from a cam switching HCCI-SI mode transition illustrating
the changes in combustion features over the course of the transition.

When the HCCI-SI switch point is reached, a pre-emptive command for closure of the throttle is

issued slightly prior to the exhaust cam switch from low to high lift, in order to lead the manifold

and actuator dynamics in decreasing the intake pressure in the SI phase of the transition. However,

the pre-emptive closure cannot be issued too far prior to the start of the SI mode without adversely
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affecting the HCCI combustion, so that when the SI mode engages, the intake manifold pressure is

still high. The high intake pressure tends to require a large increase in the fuel quantity to keep

the mixture stoichiometric or slightly rich as set out in Sec. 6.1.1, which also requires the spark

timing to be very retarded to prevent the torque from spiking upwards too far. The fuel quantity

and spark timing rapidly return to values close to those in nominal SI operation as the manifold

pressure drops over the first 1-2 SI cycles, and the throttle is gradually returned to its nominal

SI set point. From this point on, the main transient aspect corresponds to the EVC timing being

phased from the early value upon entering SI to the nominal SI condition that is aTDC. Through

this portion of the transition, the fuel quantity tends to decrease slightly as the EVC is phased

to a more optimal position for SI fuel economy, and the spark tends to retard as the in-cylinder

residual is reduced. The transition is ended when the intake cam switches back from low to high lift

to resume standard SI operation.

6.2 HCCI Phase Controller

6.2.1 Control Problem Overview

The goal of the HCCI phase of the HCCI-SI transition strategy covered in 6.1.2 is to throttle down
the HCCI combustion while adjusting the EVC timing to an appropriate position for switching to SI.
During this transient, there are three main control objectives to consider, based on the performance
objectives in Sec. 1.1.3:
• Deviations of the engine torque from the driver demand should be minimized as per performance

objective 1.
• The combustion phasing should be kept as advanced as possible without inducing excessive

pressure rise rates while the throttling down the HCCI combustion and retarding EVC, to
promote better combustion stability and combat the issues observed in Sec. 6.1.1. This is
motivated by performance objective 3, but also relates to performance objectives 1 and 2 in
that partial burns and misfires from unstable combustion can reduce the torque output and
give increased hydrocarbon emissions.
• The HCCI-SI switch point should be reached as quickly as possible as per performance

objective 4.

It should be noted that although the spark timing is included in the strategy of Sec. 6.1.2 to aid the

second control objective above, θsp is not considered as a control input because the HCCI model

developed in Sec. 2.4 does not account for effects of spark assist on auto-ignition. Instead, the spark

timing will be placed at a very advanced constant set point and treated as a disturbance to the

nominal HCCI combustion phasing controller. The reason that this simple approach is valid is that

the intention of using the spark timing in the HCCI phase is to advance combustion to help stabilize

it as much as possible, allowing for higher throttling, which is achieved when spark timing is at its

max advance.
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Control Inputs u =
[
ut uevc uivo mf θsoi

]T
Feedback Variables y = [NMEP θ50 pim Tim θivo θevc θt Neng]T

Performance Variables w =
[
NMEP θ50

]T
λ Rich Bound λ > λmin

Reference Commands r =
[
NMEP ∗ θE50,H λ∗

]T
Input Lower Bounds ulow =

[
−120 5 180/280 0

]T
Input Upper Bounds uhigh =

[
−20 50 390 100

]T
Model States x =

[
pim θt θ̇t θevc θ̇evc θivo θ̇ivo Tbd bbd fbd

]T
Table 6.1: Control problem formulation for HCCI phase of HCCI-SI transition.

Considering the stated control objectives in conjunction with the strategy outlined in Sec. 6.1.2

and the model in Ch. 2, the control problem is formulated following the logic in Table 6.1. Given

that throttling the intake is a significant constituent of the HCCI phase of the transition, the control

input suite expands from that in the SI-HCCI direction to include ut, and the state description

expands to include the throttle actuator dynamics. The IVO input and actuator dynamics states

are also added in order to allow the intake timing to be phased prior to entry to SI, however the

IVO timing will not be an important concern in the transition. As with the SI-HCCI direction,

the torque and combustion phasing control objectives are treated through tracking of NMEP and

θ50 references, respectively, though now a modified θ50 reference θE50,H is used. The symbol θE50

is intended to show that the θ50 reference can be placed earlier than the nominal θ50 reference

θ∗50,H in order for the controller to target earlier combustion phasing and improve combustion

stability as per the defined control objectives. θE50 must not be chosen so early as to induce excessive

pressure rise rates, however. In addition to the previously considered NMEP and θ50 references,

an AFR reference λ∗ is now introduced. The purpose of the AFR reference is to ensure that the

throttle regulates the cylinder air charge such that the intake pressure and cylinder air flow are in a

reasonable range as EVC is phased to its HCCI-SI switch point throughout the HCCI phase. If the

air flow is too high and λ >> λ∗, then the in-cylinder temperature can become low and lead to late

combustion phasing, and additionally the intake pressure will not be reduced as much as possible

for the switch to SI. If the air flow is too low and λ << λ∗, then the problems with combustion

instability observed in throttle sweeps of Sec. 6.1.1 as the AFR approaches stoichiometric can arise.

Control input saturation limits are listed for completeness, though they are the same as in Ch. 4.

The salient difference to acknowledge is that, while the lower saturation limit of θsoi was critical for

the SI-HCCI direction to reduce ringing, now the upper saturation limit is critical as it bounds the

ability of θsoi to stabilize the combustion.

Now that the throttle plays a significant role in the HCCI mode, the air path control problem is

not as basic as in the SI-HCCI direction, where the throttle was simply commanded wide-open. The

control architecture thus contains a more detailed air path control component, while the combustion
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Figure 6.5: Block diagram of controller for HCCI phase of the transition. Variable names are as
defined in Table 6.1. P blocks indicate calculations using the plant model, and C blocks indicate
output feedback controllers.

control follows the same design as in the SI-HCCI direction. The combustion control is not changed

because the motivating factors for its structure remain intact for the HCCI-SI direction; a large

transient occurs over a short amount of time and the combustion control loops are relative degree

0, so that model inverse calculations can compensate for disturbances before they occur without

any dynamics, and IMC output feedback can help attenuate model error. An added benefit can

be attained if the same combustion control structure is used in HCCI mode prior to initiating the

HCCI-SI transition, as the IMC feedback will have already adjusted to cancel the model error, so

that modeling error biases will be accounted for at the start of the transition. Note though that this

added bonus is not assumed to be available in the development or validation, however. The air path

and combustion control are integrated in the same way as the SI phase of the SI-HCCI transition,

where the air path control executes on a time synchronous sample loop and the combustion control

executes on a cycle synchronous sample loop. A block diagram of the control architecture for the

HCCI-SI transition is shown in Fig. 6.5, with the combustion control architecture reproduced for

convenience. Given that the combustion control is unchanged from the SI-HCCI direction, only the

air path control is explained in what follows.
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6.2.2 Air Path Control

The overall architecture of the air path control is:
• uivo is stepped to the set point θ∗ivo which is determined from the nominal SI set point at the

given operating condition, which is assumed to be available from a look-up table in engine
speed.
• uevc is ramped to the set point θswchevc , which is calibrated to give a favorable starting condition

for the air path when the exhaust cam is switched to high lift and SI mode engages. It is
stored in a look-up table versus engine speed and load.
• ut is commanded through a LQR feedback controller with gain KLQ to track a time-varying

reference cylinder flow rate W ∗cyl.
• The reference W ∗cyl is derived from a model-based calculation to achieve λ = λ∗ with the

constraints NMEP = NMEP ∗ and θ50 = θE50,H with one step look-ahead valve timing
disturbances.

The intake and exhaust valve timing control in the HCCI phase of the HCCI-SI transition is treated

in essentially the same way as in the SI phase of the SI-HCCI transition. The major feature is that

the EVC timing is adjusted to some set point θswchevc which is calibrated for favorable (or perhaps

least unfavorable) entry in SI. The selection of θswchevc must be based on the trade-off discussed in

Sec. 4.1.2, with later θswchevc allowing further throttling and greater intake manifold pressure reduction

prior to entering SI, but also imposing a later EVC timing when the SI mode begins, allowing more

air flow. Because the effect of θevc on the air path and combustion is so strong in HCCI mode, a

ramp interval NEV C
ramp is introduced over which uevc is linearly interpolated to θswchevc , to allow θevc

to more gradually approach θswchevc . This is not as preferable as a step input for uevc, which would

approach θswchevc the fastest and hence shorten the duration of the HCCI phase following the control

objective listed in Sec. 6.2.1. However, the more gradual EVC profile was found to yield better

performance in giving the throttle more time to move from its nominal 100% position to the 30-40%

range where it has authority, and in general slowed down the EVC disturbance to the air path and

combustion giving a gentler transient.

Throughout the motion of the valve timings to their HCCI-SI switch points, the throttle is

tasked with regulating the cylinder air flow to maintain the AFR at the λ∗ set point introduced

in Sec. 6.2.1. The method by which this is done involves the Wcyl reference derivation and LQR

throttle feedback controller depicted in Fig. 6.5. These controller components are explained in the

following subsections.

Wcyl Reference Derivation

For higher loop bandwidth, it is desirable to convert the setpoint λ∗ into something more readily

trackable by the throttle, since tracking λ directly necessitates uses of the exhaust oxygen sensors

which have a very large transport delay and sensor dynamics relative to the short duration of the

HCCI phase of the HCCI-SI transition. An obvious first choice is the intake manifold pressure,
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which was used as a reference for the throttle controller in the SI phase of the SI-HCCI transition.

However, when significant throttling and EVC phasing occurs in the HCCI phase of the transition,

the reference for intake manifold pressure exhibits significant time variation, making it harder to

track than in the SI phase of the SI-HCCI transition where the degree of variation was smaller. For

this reason, the choice is made to convert the λ∗ reference into a cylinder flow rate reference W ∗cyl,

since the cylinder flow rate for a given AFR changes much less throughout the HCCI phase because

the fuel and so air mass do not need to change much. The W ∗cyl reference can be thought of as

a nonlinear transformation on an intake manifold pressure reference, which takes other measured

variables and state dependencies into account to arrive at a set point with less time variation.

Indeed, if the predicted cylinder flow rate Ŵcyl perfectly tracks W ∗cyl in Fig. 6.5, then the measured

pim will perfectly track the required value to achieve λ = λ∗, because there is a one-to-one mapping

between pim and Wcyl for a given set of measured variables and state estimates.

The method to derive the reference W ∗cyl drives the last point home. W ∗cyl is derived by first

solving for the intake pressure to give λ = λ∗, and then converting this value to a required cylinder

flow rate using the model’s air charge calculations. This approach is taken to simplify the calculations,

because the IVC pressure pivc appears much more throughout the model equations than does Wcyl

or ma, and so it is easier to substitute for Wcyl in terms of pivc than the other way around. As

with the throttle reference calculation in the SI phase of the SI-HCCI transition, the valve timings

used to derive the Wcyl reference are propagated one time step into the future with the discretized

actuator dynamics model (4.1).

The principle behind the derivation of W ∗cyl is the same as that for the p∗im derivation for the SI

phase of the SI-HCCI transition in Sec. 4.2.2; the combustion model is inverted under constraints

for torque, combustion phasing, and AFR tracking, NMEP = NMEP ∗, θ50 = θE50,H , and λ = λ∗.

Again the derivation starts from the model’s gross work relation, which is given in reduced form for

the HCCI combustion model in Eq. (4.25). The problem in this equation is the efficiency factor

ηλ which is a function of λc, and so introduces higher order dependencies on the intake pressure

and air charge. If dealt with by direct substitution of the equations for the fresh and residual air

mass (2.79), (2.71), it can be shown that the resulting equations contain a third order polynomial

dependence on pivc, which is difficult to solve. In order to bypass this difficulty, an approximation is

made where the in-cylinder AFR λc is roughly correlated to the exhaust AFR λ through a linear

function,

λfitc ≈ aλ1λ+ aλ0. (6.1)

The fit of λc versus λ for the experimental HCCI actuator sweep data of Appendix A is shown in

Fig. 6.6. Note that the range of λ is constricted between 1 and 1.2 for a better fit in this range,

because it is likely that the set point λ∗ will be tuned within these limits.

With the approximation in Eq. (6.1), ηλ can be trivially evaluated under the constraint λ = λ∗
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Figure 6.6: Linear approximation of λc versus λ HCCI actuator sweep data of Appendix A. Note
that only λ ∈ [1, 1.2] is considered.

by substituting λ = λ∗ into Eq. (6.1) and then that result into Eq. (2.93). Then substituting

mf =
min
a

AFRsλ∗
(6.2)

which also follows from the constraint λ = λ∗ into Eq. (4.25), the equation becomes

Wcig = c1pivc + c2(c1pivc +

mina
AFRsλ∗

QlhvR

cvVcmb
ηfitλ ) (6.3)

where ηfitλ is evaluated from Eq. (2.93) using λfitc and the intermediate quantities c1 and c2 are as

defined in Eq. (4.6). Note Vcmb is evaluated at θE50,H as per the listed constraints. Defining

c3H :=
QlhvRη

fit
λ

cvVcmb
(6.4)

and substituting into Eq. (6.3) along with the expression (2.79) for min
a ,

Wcig = c1pivc + c2(c1pivc + c3H
a1apivcVivc −mrTr + a2a

TimAFRsλ∗
(6.5)

where a1a and a2a come from Eq. (2.79) and the simplification (mr + mf ) ≈ mr has been made

with minimal error to avoid introducing another mf dependency which has already been eliminated.

Finally, defining

c4H := Tr + TimAFRsλ
∗ (6.6)

and substituting into Eq. (6.5) with Wcig = (NMEP − ¯PMEP )Vd from Eq. (2.99), pivc can be
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isolated due to the linear dependence, which can be shown to result in

p∗ivc =
c4H(NMEP ∗ − ¯PMEP )Vd/(c2c3H) +mrTr − aa2

aa1Vivc + c4H(c1 + b1c2)/(c2c3H)
(6.7)

where b1 is as defined in Eq. (4.3), and the expressions for mr and Tr must be evaluated with the

HCCI model equations with the given state estimates and measured quantities. This gives the

required pivc to satisfy the constraints NMEP = NMEP ∗, θ50 = θE50,H , and λ = λ∗. Note that

this is equivalent to solving for a reference intake manifold pressure since pivc and pim are linearly

related in the model of Sec. 2.4 and are exactly the same in the reparameterized model of Appendix

A. Now p∗ivc is transformed to a cylinder flow rate reference using Eqs. (2.79) and (2.37),

min∗
a =

1

Tim
[a1ap

∗
ivcVivc −mrTr + a2a] (6.8)

W ∗cyl =
min∗
a Neng

120Ncyl
(6.9)

and the derivation is complete.

LQR Throttle Controller

While the throttle control in the SI phase of the SI-HCCI mode transition was addressed with

a simple lead filter, the control problem in the HCCI phase of the HCCI-SI direction presents

considerably more difficulty. The disturbance induced by the phasing of the exhaust cam has a

stronger effect due to the higher sensitivity of the HCCI mode to combustion phasing, and the

transition in the intake pressure is larger. Additionally, in the HCCI mode, the combustion is much

more sensitive to the thermodynamic state in the cylinder, on which the intake air flow has a strong

effect. This is especially important given the reduced combustion stability which can occur during

throttling which was observed in Sec. 6.1.1, which implies that errors in the in-cylinder conditions

caused by inappropriate air flow have a greater chance of causing combustion abnormalities. For

these reasons, a moderately more sophisticated throttle control design is pursued here.

The chosen design methodology for the ut → W ∗cyl controller is LQR with an augmented

integrator for set point tracking. The LQR methodology allows higher order, linear quadratic

optimal controllers to be synthesized while requiring tuning of only a few intuitive cost function

weighting parameters. The main drawback of LQR over simpler designs such as lead-lag and PI

is that it requires knowledge of the system state. However, this does not arise as a problem for

the ut →W ∗cyl system, however, as all air path states are measured, and the combustion states are

already estimated via the observer developed in Sec. 4.3.3. Additionally, for the SISO ut →W ∗cyl
structure with integral tracking, the tuning of the LQ weighting matrices becomes extremely simple
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in that only one input weight and one output weight are present, so only their ratio need be tuned.

Note that because the combustion states are estimated with a Kalman filter design, strictly speaking

the controller classifies as LQG, however the estimator is unchanged from its structure in Sec. 4.3.3

and so is not considered part of the air path controller.

A potential caveat with the LQR state feedback structure for the HCCI mode is the problem

of differing sample times between the air path and combustion states, with the air path states

defined on a 10 msec time synchronous loop and the combustion states defined on a quarter cycle

loop which can update at any sample time between 10-20 msec within the HCCI speed regime.

Also, the combustion states vary from one cylinder to the next, which may introduce variability in

the state feedback time sequences. Inspection shows that the only combustion state which has a

considerable impact on the Wcyl output is Tbd, and the effect is secondary compared with the air

path states of pim and θevc. This makes physical sense given that it affects the temperature and

so pressure of the residual gas. Throughout the HCCI phase of the transition, it is assumed that

the Tbd state estimate changes gradually without any extreme jumps, because the main impact on

the in-cylinder conditions are through the movement of the EVC and throttle which are inherently

gradual due to actuator dynamics and the EVC ramp interval. With a gradual Tbd change, it is

reasonable to assume that differences in the Tbd estimate within the sample time offsets of the

time synchronous and crank synchronous loops and between cylinders has a negligible effect on the

throttle control, especially because the effect of Tbd on Wcyl is smaller than that of pim and θevc.

The combustion state estimates are thus taken at their most recent estimates for the most recent

cylinder for feedback to the LQR throttle control. As will be seen in Sec. 6.4, throttle control input

commands with this convention remain smooth and devoid of chattering.

The LQR design is based on a linearized and discretized state space representation of the SISO

system

xk+1
t = Axkt + btu

k
t (6.10)

W k
cyl = cWx

k
t (6.11)

where the input and output vectors bt and cW are unique to the throttle input and air flow output,

respectively, and the state vector for the control problem xt is defined as the concatenation of the

air path state measurements xa and the combustion control state estimates x̂c

xt :=
[
xa x̂c

]T
(6.12)

xa :=
[
pim θt θ̇t θevc θ̇evc

]T
(6.13)

where x̂c is as defined in Sec. 4.3. The states for the IVO timing have been dropped from xa due to

their minimal influence when the low lift intake cam is in place. The linearization is carried out in
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a throttled HCCI condition where throttle is closed to the range of ≈ 25-35% where the throttle

orifice profile is roughly linear profile, making the assumption of linearity more valid.

For reference tracking, an integrated output error state is augmented to the system

qkW =

k∑
i=0

(W i
cyl −W i∗

cyl)Ts = qk−1
W + (cWx

k
t −W k∗

cyl)Ts (6.14)

where the simple forward Euler integration can be reduced to the depicted first order difference

equation. Augmenting this difference equation to the baseline system gives[
xk+1
t

qk+1
w

]
=

[
A 0

TscW 1

][
xkt

qkW

]
+

[
bt

0

]
ukt +

[
0

−TsI

]
W k∗
cyl (6.15)

W k
cyl =

[
cW 0

] [xk
qW

]
(6.16)

Defining

Aaug :=

[
A 0

TscW 1

]
(6.17)

Baug :=

[
bt

0

]
(6.18)

Caug :=
[
cW 0

]
(6.19)

a standard LQR solution can be applied to the augmented system, penalizing only the augmented

output error state as this is the only state which is intended to be tracked to 0,

Qt = diag[08×8, qW ], Rt = rt (6.20)

where qW > 0 and rt > 0 are scalar. The resulting gain KLQ is applied to the augmented state

vector to determine the LQ throttle command

uLQt = −KLQ

[
xkt

qkw

]
(6.21)

The control law is implemented as shown in the air path control block of Fig. 6.2, where the state

linearization point x̄ is subtracted off of the state feedback xt before execution of the control law,

and the control input linearization point ūt is added back into control input afterwards.
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6.2.3 Cam Switch Logic and the Final HCCI Cycle

Considering that the same structure of defining an EVC set point at the mode switch boundary

condition as in the SI-HCCI direction is also used in the HCCI-SI direction, the logic for determining

when to switch the exhaust cam and change combustion modes is kept the same. The exhaust cam

is switched to high lift to engage SI combustion when θevc is within some window δevc of θswchevc ,

where δevc is kept at the same value as in the SI-HCCI direction. This logic can be viewed in control

block diagram form in the SI phase of the SI-HCCI transition in Fig. 4.6; it is not reproduced in

the HCCI-SI control block diagram in Fig. 6.5 because of it’s extreme simplicity. Also similar to the

SI-HCCI direction, a throttle pre-step factor NCT
pre is included to give the throttle a “head start”

prior to the entry into SI mode to compensate for actuator and manifold dynamics. The difference

is that, whereas the throttle was stepped open in the SI-HCCI direction, in the HCCI-SI direction

it is stepped closed (with a 2% saturation margin for safety) in order to promote intake manifold

pressure discharge as set out in the strategy of Sec. 6.1.2.

Type Symbol Description

Gains qW
rt

Ratio of output to input weight in throttle LQR controller

Set Points θadvsp Set point for constant spark advance to help stabilize combustion

θswch
evc θevc at SI switch point

Nevc
ramp Number of cycles over which EVC command is linearly interpolated

to θswch
evc

NCT
pre Number of time steps prior to cam switch that throttle is com-

manded closed

θE50,H Adjusted early θ50 reference in HCCI

λ∗ λ reference in HCCI

λmin Lower λ bound for lean HCCI operation

Table 6.2: Tuning variables of HCCI phase controller.

6.2.4 Controller Tuning Variables

As in previous sections, the tuning variables for the controller for the HCCI phase of the HCCI-SI

transition are collected here to clarify calibration requirements. Those calibration variables which are

in common with the SI-HCCI direction are not repeated, as they are assumed to already be specified

for the SI-HCCI controller. Note though that λmin is listed again, as it may be tuned higher than in

the SI-HCCI direction to maintain greater stability upon throttling. As before, only a small number

of calibration parameters are present, with many setpoints constrained to small and intuitive sets

(e.g. N evc
ramp ∈ {0, 1, 2, 3, 4, 5}, NCT

pre ∈ {0, 1, 2, 3, 4, 5}, λ∗ ∈ [1, 1.2], θE50,H ∈ [θ∗50,H − 5, θ∗50,H ], etc.).
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6.3 SI Phase Controller

6.3.1 Control Problem Overview

The control problem for the SI phase of the HCCI-SI transition is similar to that of the HCCI phase
of the SI-HCCI transition in that the system is initialized at a very unfavorable condition, and must
recover from this condition while preventing excessive disturbances to the performance outputs.
The difference is that the dominant unfavorable aspects of the initial condition are associated with
the air path and the problem of intake manifold air storage, whereas in the SI-HCCI direction
they were associated with the combustion as influenced by high exhaust temperature and very late
EVC timing. While returning from this disadvantageous initial condition to a nominal SI operating
point, there are three main control objectives to consider, based on the performance objectives in
Sec. 1.1.3:
• Deviations of the engine torque from the driver demand should be minimized as per performance

objective 1.
• The AFR should not be allowed to become lean, where NOx generation is high and excess

oxygen in the exhaust contributes to the catalyst oxygen storage. This is motivated by
performance objective 2 in that the catalyst oxygen storage will often be filled during lean
HCCI combustion, so that the catalyst loses the ability to convert NOx [63]. The mixture can
however be enriched, to reduce NOx generation and also assist in depletion of the catalyst
oxygen storage to return NOx conversion functionality.
• The EVC timing should be retarded to its nominal SI set point as quickly as possible to

minimize fuel economy losses as per performance objective 4.

Notice that, unlike the SI phase of the SI-HCCI direction, no objective relating to maintaining

combustion phasing near MBT timing is listed. This is because in the SI-HCCI direction, the SI

combustion starts from a nominal operating point where the air path conditions are such that

stoichiometric fuel amount can be injected while maintaining θ50 = θMBT
50 without causing significant

deviation of the torque from its reference. When entering SI in the HCCI-SI direction, however,

injecting the stoichiometric fuel amount can cause a very large disturbance to the torque if the

combustion phasing is held at MBT, given the high intake pressure and hence trapped air mass

which necessitates a high quantity of fuel to be injected. In order to simultaneously satisfy the first

and second objectives listed above, it thus becomes necessary to phase θ50 significantly away from

its optimal timing to reduce the torque output, as noted in Sec. 6.1.1.

Based on the stated control objectives and considerations in Sec. 6.1.1 along with the model in

Ch. 2, the control problem for the SI phase of the HCCI-SI transition is formulated according to

the logic in Table 6.3. The input vector is nearly the same as that in the SI phase of the SI-HCCI

transition, with the minor change that the IVO timing input is removed because IVO is held at

its nominal set point θ∗ivo to which it is adjusted prior to entering SI. The performance variables

change to eliminate consideration of θ50, as now it will be allowed to float in order to track the

torque reference while preventing lean operation. The λ bounds remain in place but are constricted

to lower values in order to ensure that the mixture is always stoichiometric or slightly rich. The
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remainder of the formulation remains the same as for the SI phase of the SI-HCCI direction.

Control Inputs u =
[
ut uevc mf θsp

]T
Feedback Variables y =

[
pim Tim θivo θevc Neng

]T
Performance Variables w =

[
NMEP λ

]T
Reference Command r = NMEP ∗

λ Output Bounds λlo ≤ λ ≤ λhi

Input Lower Bounds ulow =
[
0 −85 5 −60

]T
Input Upper Bounds uhigh =

[
100 15 50 50

]T
Model States x = [pim θt θ̇t θevc θ̇evc θivo θ̇ivo]T

Table 6.3: Control problem formulation for SI phase of HCCI-SI transition.

A block diagram of the control architecture based on the above control problem formulation for

the SI phase of the HCCI-SI transition is shown in Fig. 6.7. Notice that several additional elements

are now present compared to the SI-HCCI direction, including a more elaborate multi-input air

path controller for the throttle and EVC timing, and a secondary θ50 reference generation for the

spark timing based on torque tracking requirements. These elements were added as necessary to

meet the control objectives in the presence of the more extreme conditions during the SI phase of

the HCCI-SI transition. As before, the control architecture is split into a time synchronous air path

control component and a crank synchronous combustion control component. In what follows, both

the air path and combustion control will be explained, focusing on the new elements which were not

present in the SI-HCCI direction.

6.3.2 Air Path Control

The overall architecture of the air path control is:
• ut and uevc are commanded through a two-input speed-gradient controller to a time-varying

reference cylinder flow rate W ∗cyl while also targeting fast convergence of the EVC timing to
its nominal SI set point θ∗evc.
• The reference W ∗cyl is derived from a model-based calculation to achieve NMEP = NMEP ∗

under the constraints λ = 1 and θ50 = θ∗50,S with one step look-ahead valve timing disturbances,
following the same procedure as for the p∗im derivation in the SI-HCCI direction.

The large discrepancy in intake pressure at the initiation of the SI phase of the HCCI-SI direction

poses a very difficult control problem for the air path actuators. In one respect, it is desirable to

aggressively throttle the intake to give a fast reduction in intake manifold pressure, however a fast

intake manifold pressure reduction can induce a large overshoot when the intake pressure reaches

nominal SI levels and cause a reduction in torque. Additionally, coordination of the EVC timing

with the throttle becomes much more important than in the SI-HCCI direction, in that the EVC

timing’s ability to obstruct air flow at advanced positions should be leveraged in order to reduce the

inducted air quantity while the intake manifold pressure is high. However, once the intake manifold
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( 𝒖𝒖𝒕𝒕 𝒖𝒖𝒆𝒆𝒆𝒆𝒆𝒆 Speed-Gradient Air Path Controller)

Figure 6.7: Block diagram of controller for SI phase of the transition. Variable names are as defined
in Table 6.3. P blocks indicate calculations using the plant model, and C blocks indicate output
feedback controllers.

pressure sufficiently reduces, the EVC timing should approach its optimized SI set point as quickly

as possible as per the control objectives listed in Sec. 6.2.1.

Given the difficulty of the air path control problem in the SI phase of the HCCI-SI transition, a

more elaborate control design method than those of previous chapters known as Speed-Gradient

Control (SGC) is employed to address the problem. The SGC method takes into account the plant

nonlinearities, which are significant in the conditions passed through in the SI phase of the HCCI-SI

transition given the strong variation in the EVC gain to intake pressure and flow at advanced

timings (see Fig. 4.2) and also in the throttle gain at low throttle openings (<≈ 10%). Additionally,

SGC is an optimal control method so that it inherently addresses the control allocation problem in

MIMO control topologies, and is intuitive to tune through LQR-like cost function weights. The

downside of SGC is that it is tailored for systems which take a certain form to which the air path

control problem in the SI phase of the transition does not exactly conform, which requires additional

considerations which increase mathematical and computational complexity.

To explain the SGC control design, an overview of the SGC method is first given and then the

procedure to apply it to the air path control problem in the SI phase of the transition is described.

The overview of the SGC method is modified after the description in [68], and is simplified in that
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no integral term is considered as it was not included in the control design here. Consider a nonlinear

system

ẋ = f(x, u) (6.22)

where the control input u is to be chosen to track the state x to some desired state xd. Let the

control input be divided into a feedforward term ud and a feedback term up,

u = ud + up (6.23)

where the ud attains x = xd at steady-state, f(xd, ud) = 0, and the feedback term is to be determined

by the SGC design method. The idea behind the SGC method is to minimize a cost function in

terms of the state and control effort over a one-step ahead predicted time interval ∆t,

J = Q(x(t+ ∆t)) +
1

2

∫ t+∆t

t
up(τ)TΠ−1up(τ) dτ (6.24)

where Q is some function of the state intended to penalize the error between x and xd, and Π > 0 is

a square weighting matrix. One straightforward choice for Q is Q = (x− xd)TS(x− xd), S > 0.

To obtain a more tractable optimization problem, the SGC method simplifies the one-step ahead

prediction with a simple forward Euler approximation

Q(x(t+ ∆t)) ≈ Q(x(t)) +
∂Q

∂x
(x(t))f(x(t), u(t))∆t (6.25)∫ t+∆t

t
up(τ)TΠ−1up(τ) dτ ≈ up(τ)TΠ−1up(τ)∆t (6.26)

reducing the cost function to

J = Q(x(t)) +
∂Q(x(t))

∂x
f(x(t), u(t))∆t+

1

2
up(t)

TΠ−1up(t)∆t (6.27)

The control law for up is then found by minimizing this cost function with respect to up.

To apply the SGC method to the SI phase air path control problem, a change of state variables

is first made to replace the pim state by Wcyl, in order allow Wcyl to be tracked as a performance

output. This is necessary because the SGC optimization is carried out with respect to the state and

so Wcyl must be a state if it is to be considered for tracking. Wcyl is taken as a performance output

in place of pim as in the air path control of the HCCI phase of the transition, which is motivated by

the same reasoning that the reference Wcyl changes less throughout the air path transient than does

the reference pim, but more so by the inclusion of the EVC timing in the control design. The reason

is that the EVC timing has a conflicting effect on Wcyl versus pim; retarding EVC reduces pim, but

allows more air flow into the cylinders so increases Wcyl. Thus, if pim is taken as a performance

output and the goal is to reduce pim as quickly as possible after switching to SI, this will result in
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immediate retard of the EVC timing which will increase flow rate and counteract the controller’s

intention. Directly considering Wcyl as a performance output bypasses this confusion.

The state equation for Wcyl is found by differentiating the SI model’s flow rate regression with

respect to time. The reparameterized model in Appendix A is used because it is regressed in low

lift intake SI operation, which is the focus of the strategy in Sec. 6.1.2,

Wcyl = α1(θevc)pim + α0(θevc)

α1 = aw1θ
2
evc + aw2θevc + aw3, α0 = aw4θ

2
evc + aw5θevc + aw6 (6.28)

where the fitting coefficients have been labeled as awi, i = 1, ..., 6 for simplicity in the following

derivation. Differentiating this equation with respect to time gives

Ẇcyl =

(
∂α1

∂θevc
pim +

∂α0

∂θevc

)
θ̇evc + α1ṗim = (α1,epim + α0,e)θ̇evc + kim(Wt −Wcyl) (6.29)

α1,e :=
∂α1

∂θevc
= 2aw1θevc + aw2, α0,e :=

∂α0

∂θevc
:= 2aw4θevc + aw5 (6.30)

where ṗim has been substituted for using the expression for isothermal manifold dynamics (2.4)

with kim := RTim
Vim

and the quantities αi,e := ∂αi
∂θevc

have been defined for convenience. It can be seen

that the equation (6.29) can be expressed completely in terms of Wcyl and the other model states

using pim =
Wcyl−α0

α1
to eliminate all occurences of pim. The state vector for the SGC design is then

xSG :=
[
Wcyl θt θ̇t θevc θ̇evc

]T
(6.31)

where the IVO timing has been dropped from the state description due to its minimal influence.

The design will be carried out using both throttle and EVC as control inputs, giving the input

vector

uSG := [ut uevc]
T (6.32)

To begin the derivation of the SGC control law, the state cost Q is first defined. A simple and

logical cost function is

Q =
qw
2

(Wcyl −W ∗cyl)2 (6.33)

where qw > 0 is a weighting factor and W ∗cyl is the reference flow rate. W ∗cyl is derived by first

executing the pim reference derivation explained in Sec. 4.2.2, and then transforming the pim

reference to a Wcyl reference using Eq. 6.28. Note here that no penalty for the distance of EVC

timing from its set point, θevc − θ∗evc , is incorporated in the cost function, although it was explained

that it is desirable to have the EVC timing reach its set point as quickly as possible. The reason

is that in Eq. (6.23), ud for the EVC input is simply θ∗evc, so that with the cost in Eq. (6.33), the

controller inherently commands uevc = θ∗evc when Wcyl is perfectly tracked and no EVC adjustment is
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necessary to aid in the tracking. If desired, a term for qevc/2(θevc−θ∗evc)2 for faster EVC convergence

can easily be added to the cost function and carried through the following derivation.

Inserting the state cost defined in Eq. (6.33) into the full SGC cost function in Eq. (6.27) gives

J =
qw
2

(Wcyl −W ∗cyl)2 + qw(Wcyl −W ∗cyl)ẆcylTs +
u2
t,pTs

πt
+
u2
evc,pTs

πevc
(6.34)

where the look-ahead time interval has been set equal to the sample time Ts, which is the most

natural time step to consider for a digital implementation. The input weights πt and πevc have also

been defined, and subscript p on a control input denotes that it constitutes the feedback portion of

the full input defined in Eq. (6.23). Substituting for Ẇcyl from Eq. (6.29) gives

J =
qw
2

(Wcyl −W ∗cyl)2 + qw(Wcyl −W ∗cyl)Ts×[
(α1,epim + α0,e)θ̇evc + α1kim

(
Aeff (θt)

pb√
RTb

φ

(
pim
pb

)
−Wcyl

)]
+
u2
t,pTs

2πt
+
u2
evc,pTs

2πevc
(6.35)

where the throttle flow rate Wt has been substituted for using the orifice equation (2.5) to expose

the dependence on the throttle angle. Inspection of this equation shows that the throttle and EVC

inputs ut and uevc do not appear explicitly in terms related to the state error cost, because of the

actuator dynamics between θt and ut and also θevc and uevc. The only place that ut and uevc appear

are in the input weighting terms
u2t,pTs
πt

and
u2evc,pTs
πevc

, for which minimization of J with respect to

ut,p and uevc,p simply gives ut,p = uevc,p ≡ 0, which is not correct. The actuator dynamics of the

throttle and EVC timing must be dealt with in order to obtain a valid Speed-Gradient control law.

One simple option is to ignore the actuator dynamics, and simply set θt ≈ ut and θevc ≈ uevc.
Due to the faster actuator dynamics of the throttle than the cam phaser, this method was found

in simulation to give functional throttle control. However, results were overall mediocre results

because the throttle’s actuator dynamics are still significant on the time scale of the severe intake air

transient that occurs over the first 1-2 cycles of the SI phase. The controller had to be tuned very

aggressively to compensate for the actuator dynamics, which tended to lead to oscillatory responses.

The EVC actuator dynamics could not be ignored due to their much slower nature. For this case,

another option was pursued where θ̇evc was defined as a virtual control input in Eq. (6.35) and

backstepping was applied to derive the uevc command [68]. Due to a high computational complexity

in deriving a traditional backstepping control law, backstepping through dynamic surface control

(DSC) [69] was applied. The DSC method proved to be of little help in that it could not achieve

convergence of the between the virtual SGC command and the actual θ̇evc value quickly enough,

due to limitations on DSC lowpass filter time constants imposed by the sampling rate. Controller

performance thus suffered during the first few critical cycles of the SI phase of the transition where

intake manifold pressure is very high, even when DSC gains were tuned very high and caused great
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noise amplification. Similar limitations were found when attempting to apply DSC backstepping for

the throttle, taking θt as a virtual control input. Thus, both methods of ignoring actuator dynamics

and DSC backstepping significantly weakened controller performance.

To circumvent the deleterious effects of actuator dynamics on the SGC performance, the state

cost is slightly modified in order to force the ut input to explicitly appear in the cost function. This

is done by forming the state cost with respect to a one-step ahead prediction of Wcyl,

Q(t) =
qw
2

(Wcyl(t+ Ts)−W ∗cyl(t))2 (6.36)

where it has been assumed that the cylinder flow rate reference remains constant across the look-

ahead interval. This is a reasonable assumption given the slow rate of change of the Wcyl reference,

however if greater fidelity is desired, W ∗cyl can be substituted in terms of the reference NMEP and

λ and the system state from the derivation in Sec. 4.2.2 and included in the following derivation,

at the cost of increased complexity. Note that from this point forward time dependencies will be

explicitly stated in all equations as they become important to consider given the differences in time

indices introduced by the one-step ahead Wcyl dependence. Expanding Wcyl(t+ Ts) in Eq. (6.36)

with a forward Euler approximation yields

Q(t) =
qw
2

(
Wcyl(t) + Ts

[
(α1,e(t)pim(t) + α0,e(t))θ̇evc(t)

+α1(t)kim

(
Aeff (θt(t))

pb√
RTb

φ

(
pim(t)

pb

)
−Wcyl(t)

)]
−W ∗cyl(t)

)2

(6.37)

where the pre-throttle pressure and temperature and intake manifold temperature (through kim)

have been assumed to be slowly varying and so are not given a time index. Now stepping the state

cost ahead in time following the SGC approach in (6.24), the expression (6.37) becomes

Q(t+ Ts) =
qw
2

(
Wcyl(t+ Ts) + Ts

[
(α1,e(t+ Ts)pim(t+ Ts) + α0,e(t+ Ts))θ̇evc(t+ Ts)

+α1(t+ Ts)kim

(
Aeff (θt(t+ Ts))

pb√
RTb

φ

(
pim(t+ Ts)

pb

)
−Wcyl(t+ Ts)

)]
−W ∗cyl(t)

)2

(6.38)

This rather complicated expression can be simplified multiple ways, though to bring out direct

dependencies on ut and uevc, the discrete approximation of the second order actuator dynamics for

the throttle and EVC timing given in Eq. (4.1) is applied, so that the substitutions

θt(t+ Ts) = b1tut(t)− (a1tθt(t) + a0tθt(t− Ts)) (6.39)

θevc(t+ Ts) = b1vuevc(t)− (a1vθevc(t) + a0vθevc(t− Ts)) (6.40)
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can be made, where the a and b coefficients are based on the identified damping ratio and natural

frequency of the throttle and valve timing dynamics. Noting that

α1(t+ Ts) = aw1θevc(t+ Ts)
2 + aw2θevc(t+ Ts) + aw3 (6.41)

α1,e(t+ Ts) = 2aw1θevc(t+ Ts) + aw2 (6.42)

α0,e(t+ Ts) = 2aw4θevc(t+ Ts) + aw5 (6.43)

in Eq. (6.38), it can be seen that through these terms and the θt(t + Ts) dependence of Aeff ,

the inputs ut(t) and uevc(t) appear in Eq. (6.38) when the approximations (6.39), (6.40) are

substituted for θt(t+ Ts) and θevc(t+ Ts). The term in Eq. (6.38) where difficulty arises in making

the approximations (6.39), (6.40) is the θ̇evc(t + Ts) term, which when expanded introduces a

dependence on uevc(t+ Ts) which is acausal. For this reason, θ̇evc(t+ Ts) is approximated equal

to its current value θ̇evc(t), which is reasonable given the significant actuator dynamics of the cam

phaser and the short sampling period Ts = 10 msec. One further simplification is made to expand

pim(t+Ts) using a forward Euler approximation, so that the expression for Q(t+Ts) takes the form

Q(t+ Ts) =
qw
2

(Wcyl(t+ Ts) + Ts [(α1,e(t+ Ts)(pim(t) + Tskim(Wt(t)−Wcyl(t)))

+α0,e(t+ Ts))θ̇evc(t) + α1(t+ Ts)kim×(
Aeff (θt(t+ Ts))

pb√
RTb

φ

(
(pim(t) + Tskim(Wt(t)−Wcyl(t)))

pb

)
−Wcyl(t+ Ts)

)]
−W ∗cyl(t)

)2

(6.44)

Note that though technically pim(t) is considered to be a function of Wcyl(t) in the transformed

coordinates xSG, it is left in the Q(t+ Ts) expression since it is easy to evaluate using the current

intake manifold pressure measurement. Also note that Wcyl(t+ Ts) terms are not expanded to keep

the equation more compact. Adding in the control effort weight as per Eq. (6.24) gives the final

SGC cost function

J =
qw
2

(Wcyl(t+ Ts) + Ts [(α1,e(t+ Ts)(pim(t) + Tskim(Wt(t)−Wcyl(t)))

+α0,e(t+ Ts))θ̇evc(t) + α1(t+ Ts)kim×(
Aeff (θt(t+ Ts))

pb√
RTb

φ

(
(pim(t) + Tskim(Wt(t)−Wcyl(t)))

pb

)
−Wcyl(t+ Ts)

)]
−W ∗cyl(t)

)2

+
u2
t,pTs

2πt
+
u2
evc,pTs

2πevc
(6.45)

The multivariable minimization of the cost function J in Eq. (6.53) with respect to ut,p and

uevc,p poses a very difficult problem, as multiple (ut,p, uevc,p) minimizer candidates may exist,
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and finding the roots of the system Jacobian requires the numerical solution of a system of

equations which is computationally demanding. To reduce complexity and facilitate real-time

implementation, an approximation is made which reduces the minimization of J to two single

variable optimization problems, which are much more tractable. The approximation is based on the

observation that the only cross-coupling between from ut and uevc in Eq. (6.53) comes through the

term α1(t+Ts)kimAeff (θt(t+Ts)), where α1(t+Ts) contains a dependence on uevc when Eq. (6.40)

is applied, and Aeff (θt(t+ Ts)) contains a dependence on ut when Eq. (6.39) is applied. Thus, if

θt(t+ Ts) is set ≈ θt(t), Eq. (6.53) can be minimized solely with respect to uevc, independently of

ut. The optimization is thus carried out in two stages, with the first stage setting θt(t+ Ts) ≈ θt(t)
in Eq. (6.53) and minimizing J with respect to uevc,p, and then inserting that command back into

Eq. (6.53) without the θt(t+ Ts) ≈ θt(t) approximation and minimizing J with respect to ut,p. This

method neglects the cross coupling from ut to uevc in the first stage of the optimization, and thus

loses some of the benefit of the centralized MIMO SGC approach. However, the performance of the

resulting controller is still adequate as will be seen in the experimental results of Sec. 6.4.

Before proceeding to derive the minimizing control inputs, it is first necessary to examine the

conditions for optimality for the cost function J . To ease the derivation of minimizing inputs, it is

preferable if J can be shown to have a convex dependence on both ut and uevc so that the minimizers

can be found by simple partial differentiation. To discuss the convexity of J , it is helpful to view J

according to the original definition from Eq. (6.24), which for the chosen state cost yields

J = qw(Wcyl((t+ Ts) + Ts)−W ∗cyl(t))2 +
u2
t,pTs

2πt
+
u2
evc,pTs

2πevc
(6.46)

where the simplification of the control cost from Eq. (6.26) has been applied. The control weighting

terms
u2t,pTs
πt

,
u2evc,pTs
πevc

are obviously convex in ut, p and uevc,p due to the quadratic dependence, which

means that if the term (Wcyl((t + Ts) + Ts) −W ∗cyl(t))2 can be shown to be convex in ut, p and

uevc,p, then J is also convex by the property that a sum of two convex functions is itself convex.

Examination of the dependency of (Wcyl((t+Ts)+Ts)−W ∗cyl(t))2 on the throttle and EVC timing is

thus in order. It is first noted both ut and uevc affect this quantity only through Wcyl and not W ∗cyl,

so that the dependence reduces to the same as that of Wcyl on throttle and EVC timing, which is

then shifted and squared. The general profile of Wcyl versus the ut and uevc actuators is exemplified

in Fig. 6.8, along with the resulting profile of the (Wcyl −W ∗cyl)2 term which comes from shifting

the Wcyl versus ut and uevc profiles by a constant W ∗cyl and then squaring them. For the throttle

input, the dependence of Wcyl is monotonic, with higher throttle giving greater flow in all cases,

so that the profile of (Wcyl −W ∗cyl)2 versus ut maintains convexity. For the EVC input, however,

the dependence of Wcyl has an inflection point near TDC, where the air flow falls off moving both

more advanced which increases trapped residual and also more retarded which increases rebreathed

residual. This results in a non-convex profile of (Wcyl −W ∗cyl)2 versus uevc which can have two
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minima, one with EVC before TDC and one with EVC after TDC. To cope with this problem, the

search for the minimizing uevc command is restricted to fall into the bTDC minimum by disallowing

uevc solutions which are significantly after TDC. The bTDC minimum is the most physically logical

choice because when entering the SI mode in the HCCI-SI transition, the EVC timing will be

advanced significantly before TDC, so so very large control signals would be necessary to overcome

the cam phase actuator dynamics and quickly reach the aTDC minimum. With this convention, the

(Wcyl −W ∗cyl)2 dependence on uevc has only a single minimizer and can be approximated as convex,

so that both the ut and uevc minimizations can be carried out by partial differentiation of the cost

function J .
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Figure 6.8: Illustrative profiles of cylinder flow rate and the cylinder flow rate state cost term versus
throttle (left) and EVC (right) inputs for inspection of minimization conditions.

The first stage of the two-step optimization is the minimization of the cost in Eq. (6.53) with

respect to uevc,p with θt(t+Ts) ≈ θt(t), which is done by partial differentiation with repsect to uevc,p.

The differentiation is simplied by differentiating the state cost term with respect to θevc(t + Ts),

since with the discrete actuator dynamics approximation (6.40), the only place where uevc terms

arise are in θevc(t+ Ts). The chain rule can then be applied to obtain the partial derivative with

respect to uevc,p,

∂Q(t+ Ts)

∂uevc,p
=

∂Q(t+ Ts)

∂θevc(t+ Ts)

θevc(t+ Ts)

∂uevc(t)

∂uevc(t)

∂uevc,p(t)
=

∂Q(t+ Ts)

∂θevc(t+ Ts)
(b1v)(1) (6.47)
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where the relations (6.40) and (6.23) have been used. Applying partial differentation,

∂J

∂uevc,p
= qw (Wcyl(t+ Ts) + Ts [(α1,e(t+ Ts)(pim(t) + Tskim(Wt(t)−Wcyl(t)))

+α0,e(t+ Ts))θ̇evc(t) + α1(t+ Ts)kim×(
Aeff (θt(t))

pb√
RTb

φ

(
(pim(t) + Tskim(Wt(t)−Wcyl(t)))

pb

)
−Wcyl(t+ Ts)

)]
−W ∗cyl(t)

)
×

Ts

[(
∂

∂θevc(t+ Ts)
(α1,e(t+ Ts))(pim(t) + Tskim(Wt(t)−Wcyl(t)))

+
∂

∂θevc
(α0,e(t+ Ts))

)
θ̇evc(t) +

∂

∂θevc
(α1(t+ Ts))kim×(

Aeff (θt(t))
pb√
RTb

φ

(
(pim(t) + Tskim(Wt(t)−Wcyl(t)))

pb

))]
(b1v) +

uevc,pTs
πevc

(6.48)

where all terms without θevc(t+ Ts) dependencies in the state cost term have been dropped and the

chain rule has been applied. Evaluating the terms with θevc(t+ Ts) derivatives,

∂

∂θevc(t+ Ts)
(α1,e(t+ Ts)) = 2aw1 (6.49)

∂

∂θevc(t+ Ts)
(α0,e(t+ Ts)) = 2aw4 (6.50)

∂

∂θevc(t+ Ts)
(α1(t+ Ts)) = 2aw1θevc(t+ Ts) + aw2 (6.51)

The final expresion for ∂J
∂uevc,p

is obtained by substituting these expressions into Eq. (6.48) and

then replacing θevc(t + Ts) with b1vuevc(t) − (a1vθevc(t) + a0vθevc(t − Ts)) everywhere it appears.

Note that within this expression the term uevc(t) must be substituted with uevc,d + uevc,p as per

Eq. (6.23). The forward Euler expansion

Wcyl(t+ Ts) = Wcyl(t) + Ts

[
(α1,e(t)pim(t) + α0,e(t))θ̇evc(t) + kim(Wt(t)−Wcyl(t))

]
(6.52)

must also be applied. The resulting equation after these substitutions is large and so is left out for

brevity. This equation contains a strongly nonlinear dependence on uevc,p and so its root cannot

be found analytically. In implementation, the expression for ∂J
∂uevc,p

is formed using the measured

quantities as necessary and numerically solved using a Newton-Raphson routine. Experiments show

that the routine tends to converge in 2-3 iterations, though can take 5-6 iterations at the start of

the SI phase of the transition when the guess of the uevc,p solution is first initialized. On control

actions thereafter, the guess of the uevc,p solution is initialized at the solution from the previous

control action.
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When the minimizing uevc,p value is found, the second step of the optimization commences by

taking the partial derivative of the cost function in Eq. (6.53) with respect to ut. Because the only

place where ut appears in the state cost is in the Aeff (θt(t+ Ts) term, the resulting expression is

simpler than that for the uevc command, taking the form

∂J

∂ut,p
= qw (Wcyl(t+ Ts) + Ts [(α1,e(t+ Ts)(pim(t) + Tskim(Wt(t)−Wcyl(t)))

+α0,e(t+ Ts))θ̇evc(t) + α1(t+ Ts)kim×(
Aeff (θt(t+ Ts))

pb√
RTb

φ

(
(pim(t) + Tskim(Wt(t)−Wcyl(t)))

pb

)
−Wcyl(t+ Ts)

)]
−W ∗cyl(t)

)
×

Ts

[
α1(t+ Ts)kim

∂Aeff (θt(t+ Ts))

∂θt(t+ Ts)

∂θt(t+ Ts)

∂ut

pb√
RTb

φ

(
(pim(t) + Tskim(Wt(t)−Wcyl(t)))

pb

)]
+
ut,pTs
πt

(6.53)

where ∂θt(t+Ts)
∂ut

= b1t from Eq. (6.39) and
∂Aeff (θt(t+Ts))

∂θt(t+Ts)
is straightforward to evaluate with the

throttle effective area profile. Similar to the case for the uevc command, the final expression is

obtained by subtituting θt(t+Ts) with b1tut(t)− (a1tθt(t) +a0tθt(t−Ts)) everywhere it appears, and

also expanding Wcyl(t+ Ts) using Eq. (6.52). The resulting equation for ∂J
∂ut,p

is again unsolvable

with respect to ut,p and so its root is found in the same way using a Newton-Raphson routine.

With the method for generation of the SG feedback control inputs described, the section is ended

with some last implementation notes for the controller. Firstly, in addition to the feedback control

terms up, the steady-state feedforward terms ud must also be generated as per Eq. (6.23). For the

EVC timing, the steady-state EVC timing is simply the nominal SI set point, uevc,d = θ∗evc. For

the throttle, an inversion of the engine model must be carried out at steady-state. This inversion

first applies the p∗im reference derivation method given in Sec. 4.2.2 to deduce the intake manifold

pressure value at the desired SI steady-state pssim when NMEP = NMEP ∗ and θevc = θ∗evc . The λ

value used in the derivation is λm = λlo+λhi

2 given that slightly rich mixtures may be targeted. Using

the steady-state pssim value, the throttle flow rate at steady-state is calculated by setting ṗim = 0 in

the intake manifold pressure state equation, giving

W ss
t = W ss

cyl = α1(θ∗evc)p
ss
im + α0(θ∗evc) (6.54)

The throttle orifice equation can then be inverted for the effective area to obtain the W ss
t ,

Aeff (θsst ) =

√
RTbW

ss
t

pbφ
(
pssim
pb

) (6.55)

after which point the throttle effective area can be inverted to give the steady-state throttle value.
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On another note pertaining to controller tuning, it was found that performance could be improved

by using a switching controller tuning between the early stage of the SI phase of the HCCI-SI

transition where intake manifold pressure is far above the reference, and the remainder of the SI

phase after the intake manifold pressure is much closer to the reference. The method employed

involved scaling up the throttle input weight πt during the first 2-3 cycles of the SI phase of the

transition, in order to give a more aggressive throttle response and achieve faster intake manifold

pressure reduction. After the first 2-3 cycles, πt was returned to its nominally tuned value, in order

avoid potential noise amplication and oscillations induced by the scaled up value. To implement

this strategy, two new calibration parameters were defined; kt,sg, a scaling factor on the nominal πt

value, and Nkt,sg, the number of control actions after the SI phase begins where the scaling factor is

applied.

6.3.3 Combustion Control

The overall architecture of the combustion control is:
• mf is calculated to give NMEP = NMEP ∗ assuming θ50 = θ∗50,S while maintaining λ ∈

[λlo, λhi] through a nonlinear model inversion. If the required mf value for torque tracking
violates the AFR constraints, mf is chosen on the boundary of the AFR constraints.
• θsp is calculated to give θ50 = θ∗50 through a nonlinear model inversion.
• The reference θ∗50 is derived from a nonlinear inversion of the torque model with respect to θ50

as necessary to match the reference torque through use of non-optimal combustion phasing
when the fuel quantity must be higher than is preferable to maintain a stoichiometric AFR

The basic functionality of the combustion controller for the SI phase of the HCCI-SI direction is

the same as the SI-HCCI direction; both the fuel and spark control inputs are determined through

relative degree 0 nonlinear model inverse calculations, with the fuel attempting to track torque while

keeping λ within its tolerable bounds, and the spark tracking combustion phasing. These methods

are covered in Sec. 4.2.3 are so are not reviewed here. The different aspect from the SI-HCCI

direction is that, instead of the spark’s θ50 reference being fixed at θ∗50,S , it is adjusted dynamically

as necessary to prevent torque excursions. As explained in the strategy in Sec. 6.1.2, due to the

problem of intake air storage when switching form HCCI-SI, more fuel must be injected during

the SI phase of the transition than the appropriate amount to match the reference torque at MBT

combustion phasing to maintain a stoichiometric AFR. The combustion phasing must thus take

non-optimal values in order to prevent an upwards torque spike. The dynamic calculation of θτ50 is

the means by which this non-optimal combustion phasing is achieved. Note the calculation of θτ50

is only carried out when it is found that the fuel quantity to match the torque at MBT phasing

mτ
f results in an AFR λτ that would force the mixture to be leaned above the upper bound λmax;

otherwise, the θ50 reference is set at MBT timing.
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The method for deriving θτ50 comes from an inversion of the SI combustion model with respect

to θ50 using the measured valve timings and air path conditions under the constraints NMEP =

NMEP ∗, λ = λmax. The set point for AFR is chosen at λmax because it is the highest allowable

AFR and so allows the minimum possible fuel quantity for a given air charge prediction. Observing

the model’s dependence of gross cycle work Wcig on θ50 in Eq. (2.59), it can be seen that the effect

of θ50 on Wcig enters through the volume at combustion Vcmb which is a function of θ50 through

Eqs. (2.43) and (2.44). Unfortunately, because Eq. (2.43) is not invertible, the model inversion from

torque to θ50 cannot be carried out analytically. In this dissertation, the inversion is carried out

with a simple numerical routine which steps the guess of the θ50 solution away from θMBT
50 until

the model’s NMEP prediction reduces below NMEP ∗, at which point the θ50 solution is linearly

interpolated backwards until the predicted NMEP is within some tolerance of NMEP ∗. Such an

approach is chosen over standard Newton-Raphson iteration because of the two θ50 roots which

always exist to give NMEP = NMEP ∗, where one solution is at late combustion phasing and

one is at early combustion phasing. The numerical routine described above can be set to move

the θ50 solution in only one direction, ensuring convergence to the desired root. Note that while

the numerical inversion from torque to θ50 is not exceedingly computationally demanding, a more

computationally efficienct way to find the solution may be to determine the required Vcmb to match

NMEP = NMEP ∗ from Eq. (2.59), then use a look-up table of cylinder volume versus crank angle

to determine the necessary crank angle to give the required Vcmb.

One last item involved with the θτ50 derivation concerns the direction in which θ50 is phased

away from MBT. In general, it is favorable to reduce the torque with advancing θ50 when possible,

as combustion stability is much greater in the advancing direction than in the retarding direction.

However, if the θ50 has to advance too far to give NMEP = NMEP ∗, unacceptably high knocking

can occur, in which case the only option is to retard the combustion phasing to reduce the torque.

The decision on whether θτ50 is advanced or retarded from MBT is made based on how large of

a fuel quantity must be injected to maintain a stoichiometric AFR, as higher fuel quantities will

require great perturbation from MBT timing to maintain the torque and will also lead to increased

knocking in general. The degree of fuel increase is gauged by the ratio of the fuel quantity necessary

to maintain a stoichiometric AFR mλ
f to the baseline fuel quantity necessary to match the torque at

MBT phasing mτ
f . If the ratio of mλ

f to mτ
f is greater than some threshold factor kf , then the θτ50

inversion carries out by retarding θ50 from MBT to avoid knock. Otherwise, θ50 is advanced from

MBT. A uniform θτ50 direction (strictly advance or strictly retard) can easily be enforced by setting

kf to 0 or ∞. The option is also provided to impose an upper bound θmax50 on how late θτ50 can be

retarded, beyond which point misfires become highly likely. Assuming that θτ50 will be retarded for

high fuel quantity discrepancies, the θmax50 bound essentially places a limitation on how much the

torque can be reduced using spark timing adjustment.
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6.3.4 Controller Tuning Variables

The calibration variables for the final constituent of the SI/HCCI control methodology, the SI

phase of the HCCI-SI transition, are collected as for the other control components to summarize

calibration requirements. The λ bounds λlo/λhi are listed again as they will most likely be tuned to

lower values than their counterparts for the SI-HCCI direction, λrich/λlean, to maintain a slightly

rich mixture. As before, only a small number of intuitive calibration parameters are present, and

the set point θ∗evc can be assumed to be taken from the baseline SI calibration which reduces the

calibration parameters by one.

Type Symbol Description

Gains qw SGC Wcyl state weight

πt, πe SGC throttle and EVC input weights

kt,sg Scaling factor on πt for initial portion of SI phase

Set Points kf Torque to AFR fuel ratio threshold for combustion phasing control
directionality

θmax
50 Maximum allowable θ50 retard to compensate for torque distur-

bances

Nkt,sg Number of control actions after SI phase commences over which
kt,sg is applied

λlo/λhi Minimum/maximum λ bounds

θ∗evc θevc set point for nominal SI operation

Table 6.4: Tuning variables of SI phase controller.

6.4 Experimental Results

As was done for the SI-HCCI direction, the combined HCCI-SI transition control architecture is

tested in experiment on the second instance of the prototype SI/HCCI engine using an ETAS ES910

rapid prototyping module. The model-based calculations of the HCCI-SI are carried out using the

reparameterized model for this replica engine which is discussed in Appendix A. The fuel used

in the experiments is the same 93 AKI, 10% ethanol pump gas used for the SI-HCCI transition

experiments, whose properties are listed in Table 4.4. The two of the four cylinders which were

observed to have unreasonable torque and AFR responses in the SI-HCCI direction continue to

display anomalous responses for the HCCI-SI experiments, and so are omitted in the following

experimental results.

Initial attempts to complete the HCCI-SI mode transition with the presented control architecture

and model of Appendix A gave poor results in the SI phase of the transition, with large torque

decreases at the start of the SI phase caused by partial burns and misfires as the combustion
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controller attempted to compensate for the increased fuel quantity by retarding the spark timing.

It is postulated that this inadequate combustion phasing control response was due to the initial

conditions of the SI phase of the transition (high intake pressure, high fuel quantity, early EVC

timing, late spark timing) being significantly outside the range of the SI model parameterization

in Appendix A. This is because the data used to parameterize the SI combustion model was

more tailored to the conditions of the SI-HCCI direction, where the intake pressure was kept

closer to nominal low load SI levels and the spark did not have to be retarded as much. To cope

with the shortcomings of the SI combustion model, the adaptation routine described in Sec. 5.1.2

was executed in consecutive HCCI-SI transition trials at on operating point to condition the SI

combustion model parameters on transient data from the conditions in HCCI-SI transition which

were outside the baseline parameterization. The HCCI combustion model was not adapted due to

use of the spark advance in the HCCI phase of the transition, which is an effect not considered in

the HCCI model. After several adaptive trials, the controller performance improved significantly,

though it is expected that explicit consideration of conditions pertinent for the HCCI-SI direction

in the SI model parameterization and potential modification of the SI model’s regression functions

could yield even better results. In all of the following experimental results, the SI model parameters

are fixed at their values from the end of the adaptive HCCI-SI transition trials, since the results

with initial the parameter values prior to adaptation were considered failures.

The first experimental HCCI-SI mode transition is carried out at the same mid-load HCCI

condition of 2.4 bar NMEP at 2000 RPM as in Sec. 4.4. Similar to the SI-HCCI direction, the

presented cylinders are the first two in the firing order to enter SI during the HCCI-SI transition,

which serves as a limiting case because it gives the intake manifold pressure the least time to be

reduced after switching out of HCCI. The first and second cylinders to enter HCCI are referred to

as cylinder H1 and cylinder H2, respectively, as in Sec. 4.4. The parallel cycle indexing convention

to that of the SI-HCCI direction is used where the first SI cycle is labeled as SI 0, as introduced in

Sec. 4.1.2. Continuous air path valve and output responses are interpolated to be plotted versus

cycle along with the discrete combustion input/output responses. In the response plots, the cylinder

flow rate reference of the HCCI and SI air path controllers in Secs. 6.2.2 and 6.3.2 is transformed to

an intake manifold pressure reference so that the air path tracking can be viewed in terms of intake

manifold pressure, which is more intuitive and clearly shows the differences between the HCCI and

SI phases. Also, the commanded EVC timing specified by the controller is shown because it is

dynamically adjusted in the air path control design of Sec. 6.3.2, however the IVO reference is left

out because it is governed by simple step commands. Note that a small error in the IVO timing

response is apparent where θivo is stepped only part way to θ∗ivo in the HCCI phase of the transition,

and the remainder of the way after the SI phase begins. This error however is not a concern due to

the minute effect of θivo over the distance between the end of the HCCI phase and the final θ∗ivo
value in the SI phase.
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Figure 6.9: Controlled HCCI-SI transition at mid load SI condition at 2000 RPM. Inputs shown in
left column and outputs shown in right column. The first and second cylinders to enter HCCI are
referred to as H1 and H2, respectively.

The input (left) and output (right) responses for the mid-load HCCI-SI transition are plotted in

Fig. 6.9. At the start of the HCCI phase of the transition, the first major change that is apparent

is the jump of θsp from its nominal aTDC HCCI set point to its transition set point θadvsp which

is significantly bTDC. This spark advance follows from the strategy in Sec. 6.1.2 in an attempt

to aid in combustion stabilization as the HCCI combustion is throttled. The other major change

is that the LQR throttle controller commands significant throttle closure in order to place the

throttle in the ≈ 30% range where it has authority on the intake flow, at first overshooting the

remainder of the response to more quickly move from the 100% open position. While the air path

becomes more throttled, the EVC timing is ramped from its nominal HCCI set point to the set

point for the cam switch θswchevc following the logic explained in Sec. 6.2.2. As the EVC timing

retards to θswchevc , the intake manifold pressure reference decreases, which arises from the air path

control structure of maintaining a constant λ = λ∗. This is because the retarding EVC reduces

trapped residual mass and lets more air into the cylinders, so that to maintain a constant AFR

the intake manifold pressure has to be reduced, given that the fuel quantity does not vary much as

can be seen. The pim measurement displays good tracking of the time varying reference, indicating

that the throttle controller keeps the cylinder flow rate close to the necessary value to achieve
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λ = λ∗ throughout the HCCI phase of the transition. Because λ∗ is less than the nominal HCCI λ

value, the λ measurements start to reduce during the HCCI phase of the transition, exhibiting a

delayed and gradual response due to transport delays and significant sensor dynamics. A similar

effect to that seen in the SI-HCCI transition of longer delay time in the response of the cylinder

H2 λ measurement as compared to that of cylinder H1 is again observed, which corroborates

that the discrepancy is due to differences in sensor placement and/or dynamics. Throughout the

retard of EVC and reduction of intake manifold pressure, the injection timing actuator tends to

advance, which is due both to the advance θE50,H reference as well as the model predictions of later

combusiton phasing induced by lower in-cylinder pressure and the AFR being reduced. It can be

seen that the θ50 response remains close to its reference throughout the HCCI phase except for a

small perturbation later on cycle HCCI -1, which suggests adequate combustion phasing control

performance. The NMEP experiences a modest dip for cylinder H1 at one cycle during the HCCI

phase, but overall the disturbances to the NMEP are minor throughout the HCCI phase of the

transition.

When the HCCI-SI switch point is reached, the throttle is commanded closed (with a 2%

saturation margin for safety) slightly prior to the switch of the exhaust cam to high lift. When the

exhaust cam is switched, the EVC timing instantaneously shifts later by the offset between the high

and low lift cam (see Fig. 2.2) and the SI phase of the transition commences. During the initial SI

cycles where pim is high, the SG air path control keeps the throttle at its lower saturation limit,

which is the optimal control action to reduce the intake pressure. Nevertheless, the intake pressure

still takes roughly two cycles to reach its reference. As pim approaches the reference value, the SG

control appropriately opens the throttle to give a soft landing of pim on the reference with minimal

overshoot, giving the ideal dynamic characteristics of fast response with minimal overshoot. The

SG control also commands earlier EVC timings at the initiation of the SI phase of the transition,

which are gradually retarded to the nominal SI set point θ∗evc as the intake pressure reduces closer

to its reference. When passed through the cam phaser actuator dynamics, this input trajectory

results in an EVC profile which stays early for the first 1-2 cycles of the SI phase to help restrict air

flow while intake manifold pumps down, and then quickly retards to its nominal reference once the

intake pressure reaches reasonable values. The SG control thus balances the objectives of air flow

regulation and fast EVC movement to θ∗evc well.

During the period of high intake pressure over the first ≈ 2 SI cycles, the fuel mass must be

greatly increased in order to prevent lean AFRs. As can be seen in the λ responses, the controller

appears to perform well in this regard, with the AFR measurements becoming slightly rich shortly

after entering SI. This suggests that the combustion is rich immediately upon entering SI mode,

which is necessary to bring the λ measurements down below 1 considering the transport delay and

sensor dynamics. The problem with the high fuel quantity arises in the torque regulation, where the

spark timing must become very retarded in order to reduce the torque to the vicinity of the reference.
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In these late phasing regimes, the torque output and combustion phasing can have strong stochastic

variability, so even if the controller chooses the perfect θsp to giveNMEP = NMEP in an average

sense, significant torque disturbances can result simply due to chance. The late combustion phasing

portion of the mode transition is contained to the first two SI cycles, after which the intake manifold

pressure sufficiently reduces to allow the spark timing to affect torque through advancing θ50 instead

retarding for the most part, based on the kf value of 1.1. Fluctuations in the torque response from

this point forward are due mainly to nominal model error as opposed to stochastic cyclic variability.

While the HCCI-SI transition controller performs most tasks set out in the HCCI-SI strategy

and control design fairly well, the main shortcoming is in the effect of cyclic variability at late

combustion phasing on the torque response during the first few cycles of the SI phase. Because such

late combustion phasings can result in high cyclic variability which affects the torque in a random

manner, the torque tracking performance of the controller may vary significantly from one run to the

next. To illustrate this point, Fig. 6.10 plots a second HCCI-SI transition experimental trial at the

same operating condition as in Fig. 6.9, with no controller parameters changed. Note that in this

figure and all following, the θivo response is omitted to show more detail on the θevc response, as θevc

is much more critical. Comparison of the two figures shows that though most characteristics of the

controller response remain generally the same, the torque deviation for both cylinders H1 and H2

is significantly greater during the first two late-phased SI cycles. Specifically, the upwards excursion

of torque for cylinder H1 now lasts for two cycles, and cylinder H2 experiences a noticeable torque

drop on cycle SI 0 whereas in Fig. 6.9 it was close to the reference. Overall, the peak excursions in

NMEP are roughly 17% for both cylinders H1 and H2, which may be acceptable for drivability

for a short time in transient. Torque tracking performance on the initial late phased SI cycles

may also be improved by including data from such conditions in the model parameterization and

potentially modifying the model’s regression functions, whereas here the model parameters were

simply subjected to transient HCCI-SI transition data for several consecutive trials. It may also

be possible to heurstically compensate for the torque excursions based in which HCCI is being

exited, e.g. bias the controller torwards upwards torque excursions when the driver is exiting the

HCCI region in the upper load direction. That being said, it is also possible that torque excursions

can be larger than those observed here due to the inherent randomness of cyclic variability, which

underscores the main drawback of the cam switching HCCI-SI control architecture given the inherent

physical limitations of the valve train hardware.

To corroborate the ability of the controller to handle differing conditions with minimal tuning, a

HCCI-SI transition is carried out at a different operating condition than in Figs. 6.9 and 6.10 near

the high load HCCI limit. This does not give as extensive validation as for the SI-HCCI direction of

the transition, where three different load conditions and a 500 RPM speed range were considered,

which is due mainly to experimental time constraints. However, as will be seen, few controller tuning

variables had to be changed between the mid load and higher load condition, which illustrates
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Figure 6.10: Second controlled HCCI-SI transition at mid load condition HCCI at 2000 RPM. Inputs
shown in left column and outputs shown in right column. The first and second cylinders to enter SI
are referred to as H1 and H2, respectively.

the controller’s generality in at least a minor sense. As was experienced in the SI-HCCI direction,

cylinder H2 elicited runaway knocking and unreasonable torque and AFR responses at the high

load condition, and so had to be operated with a reduced fuel quantity relative to cylinder H1. For

this reason, its response is omitted in the following results.

The results of the higher load HCCI-SI transition experiment are presented in Fig. 6.11, following

the same format as in Figs. 6.9, 6.10. Observing the left column of the figure shows the the inputs

follow mainly the same general trends as in the mid-load condition, with the only trajectory standing

out as significantly different being the SOI timing. Whereas the controller significantly advanced

θsoi during the HCCI phase of the transition at the mid load condition, in Fig. 6.11 the θsoi timing

is mildly advanced over most of the HCCI phase, and is placed significantly later on the final HCCI

cycle. Despite that θsoi does not advance much, the θ50 becomes significantly earlier on cycles

HCCI -3 and HCCI -2, resulting in a drop in torque and increased pressure rise rates at one point.

The underlying reason for this behavior may be in the advance of the spark timing in the HCCI

phase, which has a greater effect at this higher load condition due to increased fuel quantity and

lower residual dilution (later θevc). Since the effect of spark timing is not considered in the HCCI

combustion model, the controller does not predict the corresponding advance in combustion phasing,
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Figure 6.11: Controlled HCCI-SI transition at high load HCCI condition at 2000 RPM. Inputs
shown in left column and outputs shown in right column.

and allows the θ50 to become early. A simple retuning of the spark advance set point θadvsp to be

more retarded may help alleviate this problem. A more sophisticated method may be to include a

θsp term in the Kth adaptation basis function Eq. (5.22) and adapt the HCCI combustion model in

the HCCI direction of the HCCI-SI transition. The magnitude of the torque decrease caused by

the early combustion in the HCCI phase is ≈ 10%, which is not unacceptably high but lasts for a

three cycle period and so may present a noticeable disturbance to drivability, so that retuning of

the controller to mitigate this drop is warranted.

The most notable difference in the output responses between the high and mid load condition

concerns the torque in the SI phase, which in the high load case has very minimal disturbance from

the reference during the initial two SI cycles where fuel quantity is high and combustion phasing is

retarded. After the initial transient, the NMEP settles slightly below its SI reference, with a ≈ 3%

offset that is within a reasonable tolerance for nominal model error. The cause of the more favorable

torque response during the initial late phased SI cycles may be that at this higher load condition,

the combustion need not be retarded as far to maintain the torque reference for a given fuel quantity

as in lower load conditions. The combustion can thus be kept in a more stable regime, reducing

effects of cyclic variability and stochastic disturbances to the torque. The higher load experimental

result thus suggests that higher load conditions are favorable to mitigating the main drawback of

161



the cam switching HCCI-SI mode transition strategy associated with late combustion phasing and

high cyclic variability on the first few SI cycles where intake pressure and fuel quantity are high.

6.4.1 Calibration Effort

As was done for the SI-HCCI direction of the mode transition, all tuning variable values for the

presented HCCI-SI transition experimental results are listed in Table 6.4.1 to convey the effort

involved with controller calibration. The presentation of the tuning variable values is structured

similarly to the SI-HCCI transition, separating those variables which varied by operating condition

from those that did not, and also separating the variable which is necessary for the baseline engine

calibration. Table 6.4.1 shows that there are a total of 17 tuning variables for the HCCI-SI controller,

where the variable which is specified by the baseline calibration has been omitted. Of these 17

variables, 2 are trivially easy to tune, as the SI AFR bounds λlo/λhi must always be chosen to keep

the mixture slightly rich. Moreover, only 4 of the 17 tuning variables are adjusted with operating

condition, where θswchevc and πt are the more important of these, though λmin and θmax50 retained a

moderate impact on operating condition-dependent performance. The calibration of the HCCI-SI

controller across operating conditions thus involves tuning of two major and two moderate variables,

and so is slightly more complex than for the SI-HCCI direction where only 1 major had to be tuned

by operating condition with 3 minor variables.

Variable Mid Load High Load Dependence
qW
rt

500 . . .

θadvsp (aTDC) -50 . . .

Nevc
ramp (cycles) 3 . . .

NCT
pre (time steps) 2 . . .

θE50,H(aTDC) θ∗50,H − 3 . . . Constant w/

λ∗ 1.15 . . . Operating

qw 108 . . . Condition

πe 0.1 . . .

kt,sg 3 . . .

kf 1.1 . . .

Nkt,sg (time steps) 10 . . .

λlo/λhi 0.93/0.97 . . .

θswch
evc (aTDC GE) -70 -68 Vary w/

λmin 1.1 1.15 Operating

πt 0.15 0.12 Condition

θmax
50 (aTDC) 60 65

θ∗evc (aTDC GE) 9 . . . Baseline Cal.

Table 6.5: Tuning variable values for HCCI-SI transition controller.
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As discussed in Sec. 4.4.1, an approximate quantitative comparison between the calibration

complexity of the proposed model-based feedback control method and a generalized open-loop

sequence-based HCCI-SI mode transition method can be made starting from the most extreme

case where all inputs of all cycles in the HCCI-SI transition are considered calibration variables.

Assuming a duration of the HCCI phase of the transition at the experimental average of 4 cycles,

and a 5 cycle transient period after switching to SI, an open-loop method which treats all control

actions as calibration variables has 5 inputs × 4 cycles = 20 calibration variables in the HCCI

phase and 4 inputs × 5 cycles = 20 calibration variables in SI phase, for a total of 40 calibration

variables. As was explained in Sec. 4.4.1, simplifications to the approach of treating all control

actions as calibration variables are likely to be made in order to reduce the calibration complexity.

For the HCCI-SI transition, an examples of such a simplification may be to impose a constant fuel

quantity in the HCCI phase, which reduces the fuel trajectory from 4 to 1 calibration variables

and the total number of variables to 37. Another simplification may be to specifying simple set

points for the valve timings as opposed to full trajectories, which can reduce the number of HCCI

calibration variables by 6 and SI calibration variables by 4, dropping the number of variables down

to 27. Further simplification may also be possible by specifying the shape of the actuator profiles

(e.g. ramp) as opposed to cycle by cycle tuning of trajectories, however it was noted from some

simple open-loop mode transition data in Sec. 4.4.1 that sophisticated actuator profiles may be

required to yield sufficient performance. Finally, it should again be stated that, as in the SI-HCCI

direction, the proposed model-based control scheme handled operating condition changes with the

adjustment of only a few calibration variables, whereas for an open-loop method, most or all of the

calibration variables must be adjusted between operating conditions.

While the discussion and key points in the comparison of the calibration effort of the proposed

model-based feedback control scheme to that of open-loop scheduling based methods parallels the

SI-HCCI direction, there is a separate and important point to be made about the HCCI-SI direction.

This point is that, due to the severe air path transient in the HCCI-SI direction, the actuator

profiles can become very complex. Throttling down the HCCI combustion, coordination of the

throttle and EVC timing in the SI mode, choosing the correct fuel quantity and spark timing for

proper AFR and torque control on the first few high air flow SI cycles; all these things can be very

difficult to deduce through trial and error, and also have a large impact on engine performance

throughout the mode transition. It thus seems even more likely that a high degree of sophistication

with a large number of calibration variables would result in open-loop scheduling based approaches

in the HCCI-SI direction than the SI-HCCI counterpart, making the calibration burden of the

model-based feedback control scheme appear even lighter in comparison. Simplifications to the

strict sense open-loop scheduling scenario where all control actions for all inputs are treated as

calibration variables may also be more difficult to make. Note though that this hypothesis is drawn

from experimental observations of the dissertation, and cannot be definitively confirmed without
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the availability of an optimized open-loop HCCI-SI mode transition control architecture.

6.4.2 The SI/HCCI Transition Control Architecture as a Full HCCI Controller

The focus of the control development in this dissertation has been on the transient phases during

mode transitions between SI and HCCI. The control of the HCCI mode in nominal operation

between mode transitions has not been mentioned, and has been the subject of many previous

studies, e.g. [8, 52, 57]. While possible to switch between the proposed mode transition control

architecture and a different design for the nominal HCCI control, a simpler solution would be

to use the mode transition controller directly in HCCI. The proposed HCCI combustion control

architecture may also offer some advantages over others in literature, in that it is nonlinear in its

model-based calculations, giving better model accuracy across the range of parameterized conditions

as compared to linearized approaches, and also makes use of IMC feedback and adaptive parameter

tuning to compensate for model error. To test the prospect of using the proposed mode transition

control architecture to handle both mode transitions and transients within nominal HCCI mode, a

full SI-HCCI-SI scenario is considered wherein the engine starts in SI mode, then enters HCCI and

undergoes load steps across the HCCI load range, and finally switches back to SI mode. No tuning

variables of the controller are adjusted from their values which were tuned strictly based on mode

transition control.

The results of the scenario are presented in Fig. 6.12, with the inputs shown in the left column

and the outputs shown in the right column. Note that cylinder H2 has been omitted from the figure

because it contains high load operation which cylinder H2 exhibits anomalous responses and cannot

be run at the same fueling as cylinder H1. Also note that the convention of using HCCI 0 to define

the first HCCI cycle in an SI-HCCI transition and vice versa for an HCCI-SI transition has been

abandoned in this plot, because of the presence of both SI-HCCI and HCCI-SI mode transitions.

As can be seen, when starting in SI and switching to HCCI, there is a minor torque disturbance

related to the switch, but kept within a small margin. The controller then controls the fuel quantity

and injection timing to track load steps down to the low load HCCI limit and up to the high load

HCCI limit. During the load steps, the controller quickly brings the NMEP close to its reference,

though there is a more gradual tail to the response to achieve zero-offset tracking as the IMC

gradually drives the error to zero. Adjustment of the fuel quantity IMC filter constant may help

shorten the length of this tail. While tracking the load, the controller simultaneously tracks θ50 to

its load-dependent reference, without any large excursions and maintaining acceptable pressure rise

rates. At the end of the scenario, the controller switches back to SI at the same load condition at

which it switched into HCCI. The torque sees a similar upwards excursion of ≈ 18% to that observed

in Figs. 6.9 and 6.10 for one cycle, giving a larger torque disturbance than in the SI-HCCI direction

but which still may be acceptable for drivability for a short time. The downwards excursion of the
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Figure 6.12: Full SI-HCCI-SI experimental scenario using proposed SI/HCCI control architecture
to control mode transitions as well as nominal HCCI operation. Inputs shown in left column and
outputs shown in right column.

torque on the final HCCI cycle before switching to SI is the result of an implementation issue, where

spark advance was not used in the HCCI phase of the HCCI-SI transition, and so gave reduced

combustion stability and a torque drop on the final HCCI cycle. While the controller’s torque

tracking within the HCCI mode may deserve some fine tuning to alleviate the gradual tail in the

response, the scenario in Fig. 6.12 suggests that the proposed SI/HCCI mode transition controller

can at least reasonably be employed as a full HCCI mode controller to handle both transitions into

and out of HCCI as well as transients within HCCI.
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Chapter 7

Conclusions and Future Work

7.1 Research Summary and Conclusions

An inherent obstacle to attaining the fuel economy benefits of HCCI combustions is that its range of

feasible operation is limited to a low to mid speed and load region of the full regime of conventional

gasoline engines. Transitions between SI and HCCI combustion modes must thus be carried out

during online operation if HCCI is to be achieved, which poses a difficult control problem because

of the differences in operating variables between the two modes. Most SI/HCCI mode transition

studies in the literature employ the method of experimental calibration of control input trajectories

to carry out mode transitions, which are scheduled in look-up tables versus operating condition and

applied in open-loop. The calibration complexity involved with determining full actuator trajectories

may be large compared to that involved with tuning a closed-loop controller. The reason is that

the closed-loop controller itself generates the input trajectories based on engine measurements

and model-based predictions while requiring only gains and set points to be tuned. Moreover, the

use of online feedback allows for handling of disturbances and operating condition changes on a

case-by-case basis that is reactive to real-time engine feedback. Some studies have pursued the use

of model-based feedback control in SI-HCCI mode transitions [30,39–41]. However, these studies

are limited in their scope in that they only apply feedback control to a subset of the SI-HCCI

control problem, and take all other aspects of the control problem to be solved with open-loop

input sequence calibration. Furthermore, these studies address only the SI-HCCI direction of the

mode transition, and are based on high-level strategies which either employ a cam phasing type

approach [39–41] or require the use of a fully flexible valve system [30]. These strategies differ from

many previous experimental studies [23–28] which use cam switching type approaches and lower

cost two-stage cam hardware.

This dissertation pursued the development of a modeling and model-based control methodology

for SI/HCCI mode transitions which generalizes to multiple operating conditions through tuning

of only controller set points and gains, and incorporates feedback to compensate for errors and

disturbances which can arise in online operation. The methodology targets practical two-stage cam

SI/HCCI engine configurations that employ a type of mode transition strategy referred to as cam

166



switching, which to this point has only been investigated in purely open-loop studies. The modeling

component of the dissertation was concerned with capturing a wide range of steady-state conditions

pertinent for SI/HCCI mode transitions as well as transient SI-HCCI mode transition data with

low-order mean value models. The controls component of the dissertation first examined high-level

actuator strategies to carry out SI/HCCI transitions, and then developed a control architecture

that executed the SI/HCCI mode transition strategy using model-based calculations in conjunction

with online measurements.

7.1.1 Control-Oriented Modeling

During SI/HCCI mode transitions, the combustion must pass through conditions which are not

experienced in typical SI or HCCI operation. For reliable prediction accuracy during SI/HCCI mode

transitions, models must be developed which can adequately reproduce data in these conditions

while maintaining a simple structure suitable for control design. It was found that by modifying and

adding new features to previous Otto cycle-based control-oriented SI and HCCI models [46,52], a

wide range of steady-state actuator sweep data encompassing conditions passed through in SI/HCCI

mode transitions could be captured. The range of conditions in the SI mode included early EVC

timings, wide spark timing variation, and lean operation, while in the HCCI mode a wide range of

air-fuel ratios and EVC timings as well as throttled operation were included. The most significant

new model features were in the HCCI combustion model, and included a new Arrhenius threshold

correlation and refromulated cylinder breathing model. The Arrhenius threshold correlation was

intended to capture competing effects of recompression chemical reactions on ignition timing based

on the observations in [55]. The reformulated cylinder breathing model was able to fit steady-state

data better than the models in [56,57] while extrapolating more reasonably to SI-HCCI transition

conditions than the model of [52].

In addition to capturing a range of conditions pertinent for SI/HCCI transitions, the model’s

transient prediction accuracy during SI-HCCI mode transition is important as well. Despite that

the model was shown to fit a large range of steady-state conditions, it exhibited large prediction

errors which were much higher than the maximum steady-state error when tested against transient

SI-HCCI mode transition data. A simplified GT-Power simulation suggested that the source of

the error was in the model’s prediction of the in-cylinder temperature on the first HCCI cycle

where the conditions are far outside any which can be reached in nominal HCCI operation. A

simple empirical correction factor for the model’s residual gas temperature calculation on the first

HCCI cycle of the transition was introduced, after which the model was able to reproduce SI-HCCI

transition data in a variety of operating conditions. The modeling methodology thus maintains a

low-order nature suitable for controls purposes by correcting for the extreme conditions on the first

HCCI cycle, and letting the nominal model predict the remainder of the cycles where its accuracy
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is sufficient. An adaptation routine was also proposed which allowed the residual temperature

correction parameter to be updated in online operation, in order to use transient SI-HCCI data

to improve the model predictions on the first HCCI cycle where they are very important. The

adptation routine was shown in simulation examples to correct for model errors and reliably im-

prove the model prediciton accuracy in the presence of stochastic variations and model perturbations.

A summary of conclusions for the control-oriented modeling work is:

• An atypical SI and HCCI combustion range with conditions relevant for SI/HCCI mode
transitions was captured with low-order cycle to cycle models by introducing extensive
modifications into previously presented control-oriented SI and HCCI models [46,52].
• Transient data in SI-HCCI mode transitions could be reproduced with reasonable accuracy by

the low-order cycle to cycle SI and HCCI models when the HCCI model was augmented with
a transient residual gas temperature parameter, which accounts for the conditions on the first
HCCI cycle in SI-HCCI transitions being far outside the range of feasible steady-state HCCI
data.
• The SI-HCCI transient residual gas temperature was used as an adaptive tuning factor to

allow online feedback to be used to improve model predictions on the first HCCI cycle during
SI-HCCI transitions, where a model-based feedback controller must rely completely on the
model predictions.

7.1.2 Control Development

SI-HCCI Mode Transition Control

Based on the developed and validated model, a control architecture for the SI-HCCI direction of the

mode transition was established. The control architecture is built on a cam switching type strategy

wherein the mode is abruptly changed by switching the exhaust cam from a high lift to a low lift

profile. Several important features of the cam switching strategy were examined experimentally,

including methods to increase the intake manifold pressure prior to switching to HCCI, and the

choice of high lift versus low lift intake cam operation in SI mode. It was found that advancing the

EVC timing before TDC to increase trapped residual was significantly more effective at increasing

the intake manifold pressure at constant load than direct opening of the throttle. The effect of the

EVC timing itself on the first few HCCI cycles was found to be more critical than increasing the

intake pressure, however. Somewhat counter-intuitively, it was found that for a significant range of

intake valve timings, the low lift and high lift intake cams produced similar intake manifold pressure,

with the low lift cam actually giving slightly lower intake pressure in most cases. The decision was

made to operate the SI combustion with the low lift intake cam prior to switching to HCCI mainly

for convenience of calibration and set point phasing.

Once the high-level SI-HCCI mode transition strategy was finalized based on the examined
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considerations, a model-based feedback control architecture which implements this strategy while

tracking important performance outputs throughout the transition was developed. The combustion

control component of the architecture is based on relative degree 0 nonlinear model inverse calcula-

tions, which are advantageous because they do not require inversion of dynamics and inherently

generalize across operating conditions due to their nonlinear nature. The air path control component

uses a simple classical linear feedback controller to track a reference intake manifold pressure using

the intake throttle in the SI phase of the transition, which was sufficient due to the mild nature of

the air path transient in the SI phase. The valve timings are commanded through open-loop set

point based control and are treated as measured disturbances. This is done as a simple way to

hasten the movement of the EVC timing to appropriate set points throughout the mode transition,

as the EVC timing is the dominant factor determining which combustion mode is in operation and

it is desirable to carry out the mode transition as quickly as possible.

The SI-HCCI transition control architecture was experimentally implemented on an prototype

engine and exercised to carry out mode transitions at three operating points spanning the HCCI

load range at 2000 RPM. These transitions appeared mostly successful, with peak torque deviations

ranging from 0.17 bar NMEP (6%) in the highest load case to 0.35 bar (19%) in the lowest load case.

Note though that peak torque deviation is not a fully descriptive measure of drivability in that the

peak torque deviation tends to occur briefly for one or two cycles, which may have a reduced effect

considering the low pass filtering characteristic of the driveline. The larger torque deviation in the

lowest load case arises firstly from the lower load making torque disturbances larger on a percentage

basis, and also due to higher modeling error in that condition. The controller also maintained

acceptable peak pressure rise rates throughout the transition, respecting the preferred steady-state

limit of 6 bar/deg except for one cycle in the highest load case, which is tolerable for a short time

in transient. Over the three tested operating conditions, the SI-HCCI mode transition controller

required only one major calibration variable and three minor calibrations variables to be adjusted by

operating condition. Considering that control approaches in the literature would require calibrating

entire input trajectories for multiple actuators at each of these conditions, the results suggest that

the proposed SI-HCCI control method attains a notable improvement in controller generality and

calibration simplicity.

A summary of conclusions for the SI-HCCI mode transition control work is:

• In the cam switching mode transition strategy, advancing the EVC timing before TDC while in
SI mode can greatly help increase intake manifold pressure before switching to HCCI, but the
strongest effect on the first HCCI cycle is the EVC timing itself and not the intake pressure.
• Switching between low lift and high lift intake cam profiles made had little impact on the

cylinder breathing for a large range of intake valve timings, and so the choice of intake cam
profile had little effect on the SI-HCCI transition.
• A model-based feedback SI-HCCI transition controller was developed which showed the ability
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generalize to multiple operating conditions across the HCCI load range in SI-HCCI mode
transition experiments while requiring only one major and three minor tuning variables to be
adjusted between operating points. Peak torque deviations in the SI-HCCI experiments were
kept to 0.17, 0.18, and 0.35 bar NMEP (6%, 8%, and 19%) for the high, mid, and low load
operating points considered, and the preferred steady-state peak pressure rise rate threshold
of 6 bar/deg was respected in almost all cases except for a minor 1-2 cycle excursion in the
highest load case.

Online Parameter Adaptation

Given that the SI/HCCI control architecture relies heavily on model-based calculations for fast

cancellation of disturbances during the extreme transients and short time intervals of mode transitions,

the accuracy of the controller’s model has a large effect on the controller performance. While the

SI and HCCI combustion models were developed specifically to fit a wide range of data pertinent

to SI/HCCI mode transitions, model error may increase if the model is extrapolated outside its

parameterized range and the engine wears over time. Moreover, the model parameterization is

assumed to be carried out on one cylinder of a single engine unit, so that cylinder to cylinder and unit

to unit variation is not considered. To cope with these issues and improve robustness to modeling

error, a parameter adaptation routine for the model’s torque and combustion phasing calculations

was created which is tailored for online operation. The adaptation routine also incorporates the

HCCI model’s residual gas correction factor adaptation on the first HCCI cycle. The controller thus

uses feedback not only for direct output error compensation, but for continual improvement of the

model-based predictions as well.

The parameter adaptation method was tested in experimental SI-HCCI mode transitions in a

perturbed scenario where a different fuel batch was used, which tended to increase engine knocking.

Though the baseline SI-HCCI controller performance suffered, it was observed that consecutive

adaptations at one operating condition could restore the controller performance to levels better

than even prior to disturbance induced by the different fuel. A drawback of such successive

adaptations at a single condition was discovered in simulation, however, where it was found that

the parameter estimates of the adaptive update could become unstable after a large number of

adaptive iterations. The problem was traced to an issue known as estimator wind-up, wherein

the measurement information becomes repetitive and the recursive least squares parameter update

becomes unstable. The simulation results suggest that the experimental successive adaptive trials

were unaffected by this problem due to an insufficiently high number adaptive iterations, so the

experimental results are not obscured. However, to confidently prevent any such instability from

occuring in practice, a modified recursive least squares algorithm using a technique known as

directional forgetting [64] was employed, which was shown in simulation to alleviate the problem of

estimator wind-up.
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When tested in other operating conditions, the post-adaptation SI-HCCI transition controller

again gave predominantly positive results relative to the baseline case, even when the adaptation

was conditioned on data from only a single operating condition. Included in these varying operating

conditions was the original low load condition which had a peak torque deviation of 19% in the

baseline case, which was much improved after adaptation with a peak torque deviation of 10% and

tighter regulation to the reference torque overall. The range of conditions also included engine speed

perturbations in a 500 RPM window around the nominal parameterized speed of 2000 RPM. Both

the baseline and post-adaptation controllers were able to tolerate the speed perturbation without

any speed dependent model parameterization, though again the post-adaptation controller faired

better.

A summary of conclusions for the online parameter adaptation work is:

• An adaptation scheme for the SI and HCCI combustion model parameters which also incorpo-
rates the adaptive HCCI residual gas temperature parameter was developed in order to allow
online feedback to be used to improve model predictions and enhance controller performance.
• The parameter adaptation was found to yield notable performance improvements when applied

in successive SI-HCCI transition experiments at a single operating condition, in a perturbed
scenario where a different fuel batch was used which tended to increase engine knocking.
• The performance improvements attained by the parameter adaptation in successive SI-HCCI

transition experiments with a perturbed fuel batch suggest that the adaptive method can
compensate for disturbances caused by variations in fuel properties experienced in online
operation to at least a partial extent.
• Simulations suggested that carrying out a high number of repeated adaptive SI-HCCI mode

transition trials at a single operating condition could lead to instability of the parameter
estimates due to a phenomenon known as estimator wind-up. The number of adaptive
iterations in the successive adaption experiments was not high enough for such problems to
arise, however for reliability of the controller a modified recursive least squares update law
was employed which was validated in simulation to prevent estimator wind-up.
• Testing the post-adaptation SI-HCCI transition controller at differing operating conditions

showed that the parameter adaptation also had overwhelmingly positive effects on controller
performance at these differing operating conditions, even when the parameters were adapted
in successive SI-HCCI trials only at one operating condition. The range of conditions tested
spanned the HCCI load range at 2000 RPM and a 500 RPM speed range about 2000 RPM.

HCCI-SI Mode Transition Control

The last problem addressed in the dissertation was that of the HCCI-SI direction of the mode

transition. The treatment of this direction was not as extensive as for its SI-HCCI counterpart, mainly

due to time constraints. However, the results corroborate that the proposed control method performs

at least reasonably, and handles operating condition changes with significantly less calibration
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complexity than open-loop scheduling-based approaches in the literature.

The main difficulty experienced with the HCCI-SI direction from a high-level point of view

concerned the problem of intake manifold air storage with the cam switching type strategy. The

problem arises due to build up of air mass in the intake manifold during unthrottled HCCI operation,

which takes a finite time to discharge after switching back to SI operation. During this time, the

intake pressure and air flow are much higher than desired for stoichiometric SI operation. Effort was

made to throttle down the HCCI combustion prior to entry to SI, but experimental sweeps show

that the HCCI combustion cannot be throttled down to near-SI levels without inducing excessive

combustion instability. The high air charge is a serious problem for SI operation which is typically

not allowed to run lean for emissions reasons. Avoiding lean SI operation after switching back from

HCCI is especially critical because the catalyst may become saturated with oxygen during lean

HCCI operation, and lose the ability to convert NOx. Despite this fact, all experimental studies in

the literature employ the policy of operating lean when switching to SI from HCCI. This dissertation

departs from the practice of these previous studies and instead targets slightly rich mixtures in the

SI phase of the HCCI-SI transition to reduce NOx generation and help deplete the catalyst oxygen

storage, which poses a more challenging control problem.

Because the largest high-level concern of the HCCI-SI mode transition strategy relates to the

intake air charge, the focus of the control development was on the air path component. The

combustion control is kept predominantly the same as for the SI-HCCI direction, with one added

feature to allow the spark timing to be used as a secondary control input for the torque. The

main feature of the air path control in the HCCI phase of the transition consists of a LQR throttle

controller which attempts to maintain the cylinder air charge at an approprite level to give a

reasonable AFR as the HCCI combustion is throttled down. The EVC timing is commanded

through an open-loop ramp to an appropriate switch point into SI mode and treated as a measured

disturbance to the throttle controller. The air path control in the SI phase of the transition takes a

two-input nonlinear control structure which coordinates the throttle and EVC actuators to help

cope with undesirably high intake pressure initial condition as best as possible. The employed design

methodology is referred to as Speed-Gradient Control, and is formulated in an optimal control

framework giving intuitive tuning through cost function weights. The standard Speed-Gradient

formulation experiences problems when applied directly to the throttle and EVC air path control

problem due to actuator dynamics. To circumvent these problems, the Speed-Gradient cost function

is slightly reformulated and the new governing optimization equations are derived.

When implemented in experiment, the HCCI-SI controller attained good air path control

responses in both the HCCI and SI phases, and acceptable combustion control in the HCCI phase.

The problem with the controller response arises in the first few cycles of the SI phase, where the

intake pressure and so fuel quantity are very high, necessitating a large degree of spark retard to

prevent an upwards excursion in torque. At these late spark timings, cyclic variability is high, which
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makes the torque response more susceptible to stochastic disturbances, which can cause changes

in the torque tracking performance from one trial to the next. The examined experimental trials

maintain a peak torque deviation within roughly 18%, which may be acceptable for a short 1-2

cycle period in transient, and so the results are encouraging. However, it remains uncertain if the

employed cam switching strategy can attain sufficient torque tracking performance over many trials

at differing operating conditions. What could be established though is that the problem of high fuel

quantity and very late spark timing seems to be less troublesome at high load conditions, based on

an experimental HCCI-SI transition at a higher load operating point. The reason for this observation

is hypothesized to be that at higher loads, the spark need not retard as far to match the torque for

a given fuel quantity, so the combustion does not enter as high of a cyclic variability region. At

the baseline and higher load operating conditions at which HCCI-SI transition experiments were

conducted, only four calibration variables had to be adjusted by operating condition. While these

adjustments are slightly more complicated to make than for calibration of the SI-HCCI transition

controller, the results still suggest that the proposed HCCI-SI control method gives noteworthy

advantages for generality and calibration simplicity as compared to open-loop sequence calibration

approaches.

It was finally demonstrated that, with the combined SI-HCCI and HCCI-SI control architecture,

the proposed control methodology could act as a complete HCCI mode controller, handling both

transitions to and from HCCI as well as torque and combustion phasing tracking within nominal

HCCI operation. Using the SI/HCCI transition controller to also handle nominal HCCI operation

simplifies the multi-mode combustion control structure in that no additional controller for the HCCI

mode must be developed and calibrated. The controller’s tracking of HCCI load steps exhibited one

unfavorable feature pertaining to a protracted tail in the response when converging to zero-offset

reference tracking. However, the controller traversed the majority of the load steps in a short period

of time, and also was not at all adjusted from its tuning for the SI/HCCI mode transitions. Further

fine tuning of the controller in nominal HCCI operation may give favorable results for improving

the shape of the controller’s load step tracking response.

A summary of conclusions for the HCCI-SI mode transition control work is:

• Throttling down the HCCI combustion mode was observed to induce combustion instability,
which prevented the intake manifold pressure from being reduced down to appropriate levels
prior to entering SI in HCCI-SI transitions.
• The high intake manifold pressure when entering SI during an HCCI-SI transition leads to

major conflicts between torque and emissions performance objectives, which in previous work
have been neglected by addressing only the torque objective.
• A model-based feedback HCCI-SI transition controller was developed which attempts to meet

both torque and emissions control objectives simultaneously. The controller was validated
in experimental HCCI-SI transitions at two operating points, where only two major and two

173



moderate calibration parameters were adjusted between the operating points. The torque
tracking performance of the controller could not match that of the SI-HCCI direction, with
peak torque deviations of 0.34 and 0.4 bar NMEP (10% and 18%) for a 1-3 cycle period in
the high and mid load cases considered. However, this performance is encouraging given the
difficulty of simultaneously meeting torque and emissions objectives in HCCI-SI transitions.
• The repeatibility of the torque tracking performance of the HCCI-SI transition controller was

found to be weaker than for the SI-HCCI counterpart, due to the SI mode needing to enter
regions of very late combustion phasing where cyclic variability is high in HCCI-SI transitions
in order to simultaneously address torque and emissions performance objectives.
• When the SI-HCCI and HCCI-SI controller designs are combined, the resulting control

architecture was demonstrated to be capable of acting as a full HCCI enabling controller,
handling both transitions into and out of HCCI, and torque and combustion phasing tracking
within the HCCI mode itself.

7.2 Future Work

The most pressing topic for future work pertains to further development for the HCCI-SI direction

of the mode transition, which did not receive as much attention as the opposite direction due to

time constraints. Firstly, inclusion of conditions passed through in the problematic initial SI cycles

with high intake pressure and fuel quantity, late spark timing, and early EVC timing, into the model

parameterization may improve the controller performance, as these conditions were left out of the

SI model parameterization in this dissertation. Exploring the transient validation of the combined

SI/HCCI model in HCCI-SI transitions is a pertinent topic following this reparameterization. In

addition to changes to the control software, further optimization of the engine hardware dealing

with the two-stage cam mechanism may also improve performance in HCCI-SI transitions. The goal

would be to reduce the offset between the high and low lift exhaust cams, so that the EVC timing

is earlier upon switching to SI which aids in obstructing air flow and reduces the required fuel

quantity necessary to maintain a stoichiometric AFR. This may also be beneficial for the SI-HCCI

direction of the mode transition, in that a smaller shift of the EVC timing would result in a later

low lift EVC timing when switching to HCCI, which can retard combustion phasing and reduce

pressure rise rates. Modification of the intake cam offset to be larger may also give benefits in this

regard, because if the intake cam is switched to high lift upon entering HCCI and the IVO timing

shifts drastically earlier due to a large cam offset, it may cause a large quantity of exhaust gas to be

pushed into the intake manifold, which can further obstruct the air flow.

One topic that can be further explored relating to the parameter adaptation method of Chapter

5 is to implement the directional forgetting recursive least squares algorithm, and carry out a larger

number of successive adaptive SI-HCCI transition trials to examine the parameter convergence

properties. As earlier stated, too few adaptive iterations were carried out in successive SI-HCCI

transition experiments to expect parameter convergence. Carrying out a higher number of adaptive
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iterations can investigate experimentally if the parameter estimates do indeed converge when the

directional forgetting recursive least squares algorithm is used.

Another avenue for extension of the work in this dissertation is extrapolation of the control

methodology to encompass cam phasing type SI/HCCI mode transition strategies and the SACI

combustion mode. The control architecture appears suitable for these purposes, given that the

combustion control structure can instantaneously compensate for disturbances to the combustion,

and the Speed-Gradient method used in HCCI-SI air path control gave good coordination of the

throttle and EVC timing which is essential for cam phasing type transitions and SACI air path

control. The main challenges to extension of the controller architecture to cam phasing mode

transitions and SACI would be in developing a practically implementable control-oriented model

which fits the full range of combustion modes with sufficient accuracy for use in model-based

control, and dealing with the control allocation problem of using both the spark and injection timing

actuators simultaneously while in the SACI mode.

A last detail which was not addressed in this dissertation is the parameterization of the models

over the speed space of the HCCI regime. Future work can focus on taking a larger model

parameterization dataset over several engine speeds, and potentially making modifications to

the combustion model correlations to capture speed variation. It was shown that the SI-HCCI

transition controller proposed in the dissertation performed adequately over a 500 RPM speed range

without any speed-dependent parameterization, so it appears hopeful that any speed dependent

parameterization introduced into the model need only be very basic to attain controller functionality

over the full HCCI speed range.
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Appendix A

Model Reparameterization for Replica
Experimental Engine

As stated in their respective Sections, the transient SI/HCCI transition experimental results in

Secs. 3.3, 4.4, 5.2, 6.4 were generated with a replica of the experimental engine which was originally

used to parameterize the baseline model in Ch. 2. The geometry of the replica engine is the

same as that of the original (see Table 2.1), except that the replica has a slightly lower geometric

compression ratio of 11.45:1. Before proceeding with SI/HCCI mode transition experiments on the

replica engine, the SI and HCCI combustion models were reparameterized to steady-state sweep

data from this engine to eliminate any potential obscurity caused by differing model prediction

accuracy between the two units. This Appendix gives the details of the reparameterization results

and modifications which were made the baseline SI and HCCI combustion models of Secs. 2.3

and 2.4 in the reparameterization.

A.1 SI Combustion Model Reparameterization

Sec. 4.1.3 explained that the mode transition strategy employs the tactic of operating the SI

combustion mode with a low lift intake profile during the transition. As a consequence, it is

assumed that the SI combustion mode operates exclusively with a low lift intake cam, and so the SI

model is parameterized to steady-state data which has the low lift intake cam in place at all times.

This changes several of the regression forms, in that dependencies on the intake cam phasing are

eliminated as the intake valve timing was observed to have minimal effect on cylinder breathing and

combustion with the low lift cam in place over a large range of intake valve timings. Additionally,

the parameterization data includes lean mixtures to account for the final cycle of the SI-HCCI

transition where the mixture may be leaned following the strategy in Sec. 4.1.3.

The first regression that changes is the cylinder flow rate, where the dependence on θivo is
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eliminated from the expression of (2.36),

Wcyl = α1(θevc)pim + α0(θevc) (A.1)

αi = ai1θ
2
evc + ai2θevc + ai3 (A.2)

The θivo dependence is also eliminated from the residual gas fraction regression

xr = a1θ
2
evc + a2θevc + a3pim + a4m

0
f + a5θ

0
sp + a6 (A.3)

Lastly, the θ50 regression is modified to contain a term for the dilution in the cylinder given the

lean points in the parameterization data, and has its θivo dependence eliminated as well

θ50 = a1θ
2
sp + a2θsp + a3mf + a4θ

2
evc + a5θevc + a6λ

′2 + a7λ
′ + a8 (A.4)

where λ′ = 1/φ′ characterizes the total dilution in the cylinder,

λ′ =
ma +mr

AFRsmf
(A.5)

The remainder of the SI model equations are unchanged from Sec. 2.3.2

The grid of inputs and modeled versus measured outputs in the actuator sweep reparameterization

data for the SI combustion model is shown in Fig. A.1. In this dataset, the throttle position θt is

plotted as opposed to θivo , again because the θivo timing was found to have little effect and so was

held constant. The throttle and fuel were also varied independently at times to change the AFR,

which can be seen through the varying λ values in the bottom subplot. Inspection of the modeled

versus measured outputs shows that again the SI combustion model attains good fitting accuracy.

A.2 HCCI Combustion Model Reparameterization

Effort is made in the HCCI reparameterization to modify the breathing model for a more physics-

based estimate of the residual temperature Tr based on polytropic recompression processes, instead

of the original regression Eq. 2.80,

Tivo = Trc

(
Vevc
Vivo

)nr−1

(A.6)

pivo =
mrRTivo
Vivo

(A.7)

Tr = (a1Tivo + a2)

(
pim
pivo

)1− 1
nr

(A.8)
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Figure A.1: Input grid and modeled vs. measured outputs for steady-state SI model reparameteri-
zation data to replica experimental engine. The λ output is shown as opposed to mass of air to
convey the AFR changes that were made in the sweep data.

where the recompression polytropic exponent nr is fixed at 1.34. The linear scaling on Tivo in

Eq. (A.8) was necessary to attain an adequate fit of trapped air mass data. One other modification

is made regarding the dependency of the Arrhenius threshold Kth on the recompression temperature,

where one parameter is eliminated from the original expression (2.88). This was found to still

produce an adequate fit of combustion phasing data while reducing the size of the fit:

Kth(θsoi, λr, Trc) = (a12λ
2
r + a11λr + a10)θsoi + a02λ

2
r + a01λr + a00 + aTTrc (A.9)

The dataset used to parameterize the HCCI combustion model to the replica engine is similar in

nature to the original original grid of actuator sweeps in Sec. 2.4.2, though is more condensed due to

experimental time constraints. The reparameterization data and fitting resultsl are shown Fig. A.1.

As can be seen, the fitting accuracy of the model remains good for the replica engine dataset.
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terization data to replica experimental engine.
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Appendix B

HCCI Combustion Model Parameterization
Routine

As stated in Sec. 2.1, the HCCI model is parameterized in an iterative routine to account for

compounding of modeling error through cycle to cycle couplings. The parameterization algorithm

also includes the option for simulation of the model with transient mode switch data in the

iterative loop, so that the coefficients that describe the dependency of the transient kr parameter

on operating condition as in Eq. (3.6) can be automatically tuned to match transient data. To

depict the routine graphically, define parameter vectors ar to contain the parameters for residual

mass mr (Eq. (2.69)), aT to contain the parameters for the EVC temperature Tevc (Eq. (2.72)), am

to contain the parameters for inducted air mass min
a (Eqs. (2.79), (2.80)) as well as the RCHR µ

parameter (Eq. (2.74)), a50 to contain the parameters for combustion phasing (Eqs. (2.87), (2.88)),

and aτ to contain the parameters for torque (Eq. (2.93)) as well as the polytropic compression and

expansion exponents. Alternatively for the reparameterization to the replica experimental engine

in Appendix A, am contains parameters in Eqs. (2.79), (A.8), and a50 contains the parameters in

Eqs. (2.87), (A.9). Note that θ50 is linked to θsoc through the linear function (2.91) whose coefficients

are held fixed in the iteration. Also note that the polytropic compression exponent nc in Eq. (2.89)

is held fixed at 1.32 to avoid excessive cross-coupling between the torque and combustion phasing

regressions. Additionally, the matrix ΨT is defined to contain Nrun columns of time histories from

SI-HCCI mode transition transient data which are Ncyc rows in duration. For the SI-HCCI mode

transition dataset used to parameterize kr according to Eq. (3.6), Nrun = 9 and Ncyc = 3.

A flow chart of the regression routine is shown in Fig. B.1, where n is the iteration index. The

routine is initialized with estimates of the model states and individually parameterized regression

coefficients from post-processed steady-state data. From here, the routine steps through the model’s

regressions, fitting each one individually and using the fitted quantities in subsequent regressions

to include the effect of compounding modeling error. The regression for the IVC pressure pivc in

Eqn. (2.78) is held fixed in the algorithm because pivc is regressed solely as a function of the input pim

and so compounding error is not an issue. Note that after the Tevc and ma regressions, intermediate

variables such as the IVC temperature Tivc which are not directly regressed are calculated as

necessary to generate the full set of regressors for the next regression step. When the θ50 regression
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ma Regression: Regressors: 𝑚𝑟
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θ50 Regression:
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Regressors: 𝑇𝑖𝑣𝑐
𝑚𝑜𝑑 𝑛 , 𝑝𝑖𝑣𝑐

𝑚𝑜𝑑 𝑛 , 𝜆𝑟
𝑚𝑜𝑑 𝑛 , 𝑇𝑟𝑐

𝑚𝑜𝑑 𝑛 , 𝜃𝑠𝑜𝑖 , Ψ
𝑇

NMEP Regression:

Initial Parameters: 𝑎𝜏 𝑛 − 1

Regressors: 𝑇𝑖𝑣𝑐
𝑚𝑜𝑑(𝑛), 𝑝𝑖𝑣𝑐

𝑚𝑜𝑑(𝑛), 𝜆𝑐
𝑚𝑜𝑑(𝑛), 𝜃50

𝑚𝑜𝑑(𝑛),𝑚𝑐
𝑚𝑜𝑑(𝑛)

𝑻𝒃𝒅 𝒏 ,𝒎𝒖𝒂 𝒏 ,𝒎𝒖𝒇 𝒏 ,𝒎𝒄(𝒏) state update

max |𝑇𝑏𝑑 𝑛 − 𝑇𝑏𝑑(𝑛 − 1)| < Δ𝑇𝑆𝑆?

𝑎𝑥𝑟 0 , 𝑎𝑇𝑟 0 , 𝑎50 0 , 𝑎𝜏 0

𝑚𝑟
𝑚𝑜𝑑 𝑛 , 𝑎𝑟(𝑛)

𝑇𝑖𝑣𝑐
𝑚𝑜𝑑 𝑛 , 𝑇𝑟𝑐

𝑚𝑜𝑑 𝑛 , 𝑎𝑚(𝑛)

𝜃50
𝑚𝑜𝑑 𝑛 , 𝑎50(𝑛)

𝑁𝑀𝐸𝑃𝑚𝑜𝑑 𝑛 , 𝑎𝜏(𝑛)

𝑇𝑏𝑑 𝑛 ,𝑚𝑢𝑎 𝑛 ,𝑚𝑢𝑓 𝑛 ,𝑚𝑐(𝑛)

Yes: Complete

No: Iterate

𝑇𝑏𝑑 0 ,𝑚𝑢𝑎 0 ,𝑚𝑢𝑓 0 ,𝑚𝑐 0

Tevc Regression: Regressors: 𝑇𝑏𝑑 𝑛 − 1

Initial Parameters: 𝑎𝑇 𝑛 − 1

𝑇𝑒𝑣𝑐
𝑚𝑜𝑑 𝑛 , 𝑎𝑇(𝑛)

𝑁𝑟𝑢𝑛 transient simulations for 𝑁𝑐𝑦𝑐 cycles

[𝑇𝑖𝑣𝑐
𝑚𝑜𝑑 𝑛 , 𝑝𝑖𝑣𝑐

𝑚𝑜𝑑 𝑛 , 𝜆𝑟
𝑚𝑜𝑑 𝑛 ,

𝑇𝑟𝑐
𝑚𝑜𝑑 𝑛 , 𝜃𝑠𝑜𝑖]

𝐽 =   𝜃50 −  𝜃50
𝑚𝑜𝑑 2

𝑎50 𝑛 − 1

Calculate θ50 for steady-state data

[𝑎50 𝑛 − 1 : 𝑘𝑟 (𝑛 − 1)]Ψ𝑇

 𝜃50
𝑚𝑜𝑑 = 𝜃50,𝑠𝑠

𝑚𝑜𝑑 ∶ 𝜃50,𝑇
𝑚𝑜𝑑𝜃50,𝑠𝑠

𝑚𝑜𝑑
𝜃50,𝑇
𝑚𝑜𝑑

𝑇𝑏𝑑(𝑛),𝑚𝑢𝑎 𝑛 ,𝑚𝑢𝑓 𝑛

𝑎𝑟 𝑛 , 𝑎𝑇 𝑛 , 𝑎𝑚 𝑛 , 𝑎50 𝑛 , 𝑎𝜏 𝑛 , 𝑘𝑟 𝑛

z-1

Figure B.1: Flow chart depicting iterative regression method for both steady-state and transient kr
model parameters.

is reached, the a50 coefficients are used to calculate the θ50 for steady-state data θmod50,ss, and then

concatenated with the kr parameter to carry out Nrun transient simulations of SI-HCCI mode

transitions to produce θmod50,T . The θmod50,ss and θmod50,T vectors are then concatenated into a single vector

whose squared error is used to form the cost function for the regression.

At the completion of an iteration, the model states are updated using the calculated variables

from the current iteration, and a convergence check is performed on the states. The convergence

check adopted here was that the maximum change in the blowdown temperature state from the
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previous iteration across all steady-state points was less than some threshold ∆Tss, chosen to be

1 K. If the convergence check is not met, the states from the current iterate are recycled to the

beginning of the model calculations, and the next iteration proceeds using the optimized values

from the previous iteration as initial parameter guesses.
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Appendix C

Estimation of SI/HCCI Mode Transition Fuel
Economy Penalty

It was observed in [63] that, because stays in the HCCI mode are often times short during an average

drive cycle, the duration of the transition between SI and HCCI to realize can be comparable to the

time in HCCI itself. It thus becomes logical to consider how the mode transitions affect the fuel

economy obtained by multi-mode SI/HCCI combustion, and how long the mode transitions take

on average. To contribute to the database of information on this topic, this Appendix lists figures

for fuel economy and duration deduced from the experimental SI/HCCI mode transitions in this

dissertation.

In general, when transitioning between SI and HCCI, conditions will have to be passed through

which are less fuel efficient than optimized operation in either one of the two modes. To gauge the

effect of the mode transitions on fuel economy, the fuel penalty FP is calculated for multiple mode

transition trials using the relation

FP (%) :=
mf/NMEP

mSS
f /NMEPSS

(C.1)

where mf and NMEP are taken for a given cycle during a mode transition, and mSS
f and NMEPSS

are calculated from a steady-state average of 10 cycles. Rather than specifying the fuel penalty

for each cycle during all of the considered mode transitions, average fuel penalties are calculated

over a given phase of a transition, e.g. average fuel penalty during the SI phase of the SI-HCCI

transition, and are denoted by F̄P . However, some specific cycles which are consistently noticed

to have a large effect on fuel economy are given separate attention, e.g. the first SI cycle in an

HCCI-SI transition, so that their more extreme values do obscure the average value throughout

the transient. Because transient effects of the mode transition on fuel economy tend to decay after

5-6 cycles after switching to a destination mode, all average fuel penalties in destination modes are

listed for up to 6 cycles after entering the destination mode.

The fuel penalty and duration information for the SI-HCCI direction of the mode transition

is listed in Table C.1. Note in this table that cycle HCCI 0 is given separate attention due to

its typically larger fuel penalty, caused by advanced combustion phasing. It can be seen in the
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table that higher load operating conditions tend to have a shorter duration for the SI phase of the

transition, which is primarily due to the EVC timing set point for switching to HCCI being later at

higher loads. The cam phaser thus need not advance θevc as far, whose actuator dynamics are the

main source of delay in transitioning from SI to HCCI. Note that the statistics in Table C.1 are

derived from the post-adaptation mode transitions in Chapter 5, which is taken as indicative of the

controller performance when the controller model better predicts the engine data.

Operating Avg. SI Duration F̄P
SI

FPHCCI0 (%) F̄P
HCCI1−5

Load (cycles) (%/cycle) (%) (%/cycle)

1.8 bar NMEP 7 1.06 1.12 1.06

2.4 bar NMEP 5 1.07 1.15 1.01

3.2 bar NMEP 4 1.01 1.15 1.02

Average 5.333 1.046 1.140 1.030

Table C.1: Summary estimates for SI-HCCI transition duration and fuel economy penalty. All data
are taken at 2000 RPM.

Table C.2 lists the fuel penalty and duration information for the HCCI-SI direction of the mode

transition. In this table, the first two SI cycles of the transition SI 0,1 are given separate attention,

as the fuel penalty on these cycles tends to be very high due to the problem of intake manifold air

storage discussed in Sec. 6.1.2. Note however that the fuel penalty calculation does not distinguish

between the effects of thermodynamic and combustion efficiency on the fuel economy. Recall that

the SI mode is run slightly rich when first switching to SI from HCCI, in order to help deplete the

catalyst oxygen storage. Also, the typically very late spark timings on cycles SI 0,1 may leave much

of the fuel incompletely oxidized, which can also go onto help deplete the catalyst oxygen storage.

Thus, a significant part of the fuel penalty on cycles SI 0,1 may actually be due to de-oxygenation

of the catalyst, and so is not truly a penalty because this would have to be done anyway when

nominal SI operation is reached.

Operating Avg. HCCI Duration F̄P
HCCI

FPSI0−1 F̄P
SI2−5

Load (cycles) (%/cycle) (%/cycle) (%/cycle)

2.4 bar NMEP 4 1.08 1.69 1.07

3.2 bar NMEP 4 1.11 1.67 1.03

Average 4 1.095 1.680 1.050

Table C.2: Summary estimates for HCCI-SI transition duration and fuel economy penalty. All data
are taken at 2000 RPM.
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Appendix D

Modified Recursive Least Squares Parameter
Update Law to Avoid Estimator Wind-Up

In Sec. 5.2.1, it was observed that after a large number of adaptive iterations, the model-inverse

based SI-HCCI combustion control structure with adaptive model parameters could exhibit diverging

parameter estimates, which could result in outrageous controller performance. The source of this

phenomenon was traced to an issue known as estimator wind-up, wherein the controller tracks the

reference very well so that little new information is obtained in successive observations, which can

be shown to cause the standard recursive least squares algorithm with exponential forgetting to

become unstable. The are several methods to deal with this problem, the simplest one being to

conditionally prevent the recursive least squares algorithm from updating under certain criteria

which gauge the information in the measurements. For the implementation in this dissertation,

a method known as directional forgetting is used, which has the advantage that it automatically

rules out redundant information through its mathematical formulation, without having to tune any

threshold-based criteria. The applied directional forgetting algorithm can be found in [64], though

several variants of the algorithm exist.

To demonstrate the efficacy of the directional forgetting recursive least squares algorithm, the

SI-HCCI transition simulation stability study of Sec. 5.2.1 is repeated using the directional forgetting

algorithm without changing any other simulation parameters. Example trajectories of the parameter

estimates in succesive SI-HCCI mode transition iterations are plotted in Fig. D.1, in the same

style as for Fig. 5.5 for comparison. As can be seen, the parameter estimates remain flat as the

number of adaptive iterations increases, and no explosion of the parameter values occurs as was

observed with the baseline recursive least squares algorithm. Also plotted are the condition numbers

of the P matrix in successive adaptations in Fig. D.2, where it can be seen that the update law

remains much more well conditioned than in the baseline case. Note that condition numbers for

the combustion phasing correlations P matrix does not settle to a constant, however its number

itself is very small and so should not be a concern. Also, the condition number of the P matrix for

the kr adaptation is still fairly high compared to the other correlations, but this is hard to avoid

for the kr correlation due to the much larger size of one parameter than the other. Finally, the

input and output trajectories at the same iteration instances as for the baseline recursive least
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Figure D.1: Parameter trajectories for each adaptive model correlation in simulation of successive
closed-loop SI-HCCI adaptive trials for the modified recurisve least squares algorithm with directional
forgetting. Forgetting factor kept at value of 0.94 from successive adaptation experiments.

squares update in Fig. 5.6 are plotted in Fig. D.3. As can be seen, on the 82nd adaptive iteration

where the baseline controller exhibited a very poor performance, the modified control scheme with

the directional forgetting update law retains the same strong performance as in the 15th adaptive

iteration, since very little new information is obtained between the 15th and 82nd iteration.
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Figure D.2: P matrix condition number of directional forgetting recursive least squares algorithm
in simulation of successive closed-loop SI-HCCI adaptive trials. Forgetting factor kept at value of
0.94 from successive adaptation experiments.
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[63] S. Nüesch, A. Stefanopoulou, L. Jiang, and J. Sterniak. Fuel Economy of a Multimode Com-
bustion Engine With Three-Way Catalytic Converter. ASME J. Dyn. Systems, Measurement,
and Control, 137, 2015.

[64] K. Astrom and B. Wittenmark. Adaptive Control. Addison-Wesley, 1995.

[65] P. Gorzelic and A. Stefanopoulou. Model-based Feedback Control for Cam Switching SI-
HCCI Mode Transitions without Open-Loop Sequence Scheduling Part 1: Baseline Control
Architecture and Experimental Validation. IEEE Trans. Control Sys. Tech., 2015, Submitted.

[66] D. Schwarzmann. Nonlinear Internal Model Control with Automotive Applications. PhD thesis,
Ruhr-Universität Bochum, 2007.

[67] P. Gorzelic and A. Stefanopoulou. Model-based Feedback Control for Cam Switching SI-
HCCI Mode Transitions without Open-Loop Sequence Scheduling Part 2: Online Parameter
Adaptation. IEEE Trans. Control Sys. Tech., 2015, Submitted.

[68] I. Kolmanovsky and D. Yanakiev. Speed Gradient Control of Nonlinear Systems and its
Applications to Automotive Engine Control. Japanese Journal of Automatic Control, 47(3):160–
168, 2008.

[69] D. Swaroop, J. Gerdes, P. Yin, and J. Hedrick. Dynamic Surface Control of Nonlinear Systems.
IEEE American Control Conferencel, 1997.

194


	Title
	Dedication
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Appendices
	Abstract
	Nomenclature
	Chapter Introduction
	Problem Background and Motivation
	Overview of Gasoline Multi-mode Combustion
	The Necessity of Mode Transitions
	The Challenges of Mode Transitions

	Previous Research in SI/HCCI Mode Transitions
	Open-loop Experimental Studies
	Modeling and Model-Based Control Approaches

	Contribution of the Research
	Outline of the Dissertation

	Chapter Mean Value Engine Model for Multi-Mode SI/HCCI Combustion
	Engine Modeling Overview
	Air Path Model
	Manifold Dynamics and Flow Restrictions
	Turbocharger
	Actuator Dynamics
	Integrating Continuous Cam Phaser Dynamics with Instantaneous Cam Switching

	SI Combustion Model
	Overview
	Model Calculations
	Steady-State Parameterization Results

	HCCI Combustion Model
	Model Calculations
	Steady-State Fitting Results


	Chapter Capturing Transient Data in SI-HCCI Mode Transitions
	Augmented Parameter for SI-HCCI Mode Transitions
	Overview of Open-Loop Mode Transtion Experiments
	Mode Transition Predictions Using Crank Angle-Based Model
	Residual Gas Temperature Correction for Initial HCCI Cycle

	Adaptive Tuning of Augmented Parameter
	Motivation and Description of Adaptive Tuning Method
	Adaptive Tuning Simulations

	Model Evaluation in Multiple SI-HCCI Transition Conditions

	Chapter SI-HCCI Mode Transition Control
	High-Level Mode Transition Strategy
	Cam Phasing Versus Cam Switching Strategies
	Considerations for the Cam Switching Strategy
	Walkthrough of SI-HCCI Transitions with Chosen Strategy

	SI Phase Controller
	Control Problem Overview
	Air path control
	Combustion Control
	Cam Switching Logic and the Final SI Cycle
	Controller Tuning Variables

	HCCI Phase Controller
	Control Problem Overview
	Combustion Control
	Combustion State Estimator
	Controller Tuning Variables

	Experimental Results
	Calibration Effort


	Chapter Online Parameter Adaptation for Improved Model-Based Combustion Control in SI/HCCI Transitions
	Parameter Adaptation Method
	Overview
	SI Model Adaptation
	HCCI Model Adaptation

	Experimental Results
	Successive Adaptations at One Operating Condition
	Differing Operating Conditions


	Chapter HCCI-SI Mode Transition Control
	High-Level Mode Transition Strategy
	Considerations for the Cam Switching Strategy
	Walkthrough of HCCI-SI Transitions with Chosen Strategy

	HCCI Phase Controller
	Control Problem Overview
	Air Path Control
	Cam Switch Logic and the Final HCCI Cycle
	Controller Tuning Variables

	SI Phase Controller
	Control Problem Overview
	Air Path Control
	Combustion Control
	Controller Tuning Variables

	Experimental Results
	Calibration Effort
	The SI/HCCI Transition Control Architecture as a Full HCCI Controller


	Chapter Conclusions and Future Work
	Research Summary and Conclusions
	Control-Oriented Modeling
	Control Development

	Future Work

	 Model Reparameterization for Replica Experimental Engine
	SI Combustion Model Reparameterization
	HCCI Combustion Model Reparameterization

	 HCCI Combustion Model Parameterization Routine
	 Estimation of SI/HCCI Mode Transition Fuel Economy Penalty
	 Modified Recursive Least Squares Parameter Update Law to Avoid Estimator Wind-Up
	Bibliography

