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ABSTRACT 

 

 Previous research on spontaneous imitation examines how speaker-listeners’ own 

production changes after hearing a few minutes of model speech, and suggests that speech 

perception and production are closely related. This dissertation investigates how cue primacy 

influences imitation by separately manipulating two co-varying cues differing in their primacy 

for one phonological category. By examining how similarly or differently primary and non-

primary cues operate in spontaneous imitation, this dissertation studies the nature of the 

cognitive representations that are responsible for imitation. 

 In order to examine whether the cognitive representations that are involved in speech 

imitation are abstract phonological categories or individual phonetic properties, this study tests 

spontaneous imitation of aspirated stops by Seoul Korean speakers. In Seoul Korean, at least two 

distinct acoustic properties, stop voice onset time (VOT) and post-stop fundamental frequency 

(f0), differentiate aspirated stops from stops of different phonation types, with post-stop f0 being 

the primary cue for aspirated stops. Seoul Korean participants heard and shadowed (i.e., 

immediately repeated what they heard without being told to imitate) target model speech in 

which initial aspirated /th/ was enhanced with either extended VOT or raised post-stop f0. 

Speakers’ realization of these properties in their own /th/, /t/, and /t*/ productions were compared 

before, during, and after exposure. 
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 The results show that enhancements of both primary and non-primary cues trigger 

imitative changes, and that exposure to an enhanced non-primary cue (long VOT) influences the 

production not only of that cue but also of the primary cue for aspirated stops (post-stop f0). 

However, an enhanced primary cue (high f0) does not have similar effects on the non-primary 

cue. Moreover, the imitative changes are generalized to maximize the relevant phonological 

contrast, as evidenced by lowering of f0 after lax /t/ and sonorants. These findings suggest that 

imitation is not strictly tied to individual phonetic properties but it is rather phonological in that 

abstract categories are involved in the process of imitation. This dissertation provides a new 

insight on the role of phonology in spontaneous imitation.  
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CHAPTER I 

Introduction 

 

 Language users are both producers and perceivers of speech. It is therefore perhaps 

unsurprising that a tight relation between production and perception has been proposed by 

different phonetic theories (e.g., the Motor Theory, Liberman & Mattingly, 1985; Direct 

Realism, Fowler, 1986, 1996; and exemplar models, Johnson, 1997). One experimental paradigm 

that has widely been used for a few decades to investigate this relation is spontaneous speech 

imitation. Researchers now have ample evidence that speakers shift their productions in the 

direction of the model speech that they have just heard (e.g., Goldinger, 1998); that is, what 

listeners perceive influences what listener-turned-speakers produce. An unresolved issue in the 

theoretical discussion of these substantial findings is the nature of the cognitive bridge between 

what listeners perceive and what listener-turned-speakers produce. This dissertation aims to 

contribute to the discussion by investigating the roles of two co-varying cues for one 

phonological category in spontaneous imitation when the two cues differ in their primacy. The 

guiding question of this study is, what is the cognitive representation that is involved in the 

process of spontaneous imitation. To address the question, I examine imitative changes in Seoul 

Korean speakers’ stop production after they heard model speech including aspirated stop /th/ that 

is artificially enhanced using two co-varying cues for aspirated stops in Korean. 
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1.1 Spontaneous speech imitation 

 Spontaneous speech imitation, since Goldinger’s (1998) seminal study, has been widely 

used as an experimental method to test the relation between speech perception and production. 

Speakers’ productions become more similar to what they have recently perceived (i.e., model 

speech), both in conversational interactions and in non-conversational settings, and regardless of 

whether the model speech involves natural utterances or artificially manipulated ones. This 

phenomenon of perceptually induced, unintentional changes in speakers’ subsequent productions 

is referred to as imitation (e.g., Babel, 2012; Goldinger, 1998; Nielsen, 2011), convergence (e.g., 

Pardo, 2006; Pardo, Gibbons, Suppes & Krauss, 2012), accommodation (e.g, Kim, 2012; Kim, 

Horton & Bradlow, 2011), or mimesis (Delvaux & Soquet, 2007). These different terms refer to 

different experimental conditions. Imitation commonly refers to findings from studies conducted 

in one-way settings in which participants hear model speech without interaction with an 

interlocutor (Babel, 2012; Goldinger, 1998; Nielsen, 2011, among others). Convergence, on the 

other hand, best captures what happens in natural conversational interactions in which the 

interlocutors often converge towards each other (Pardo and colleagues’ studies). 

Accommodation is the most comprehensive among these terms, as pointed out by Kim (2012), as 

it includes not only convergence but also divergence and maintenance, which are often socially 

motivated. And finally, mimesis is a special kind of imitation, accompanying changes in relevant 

motor representations (Delvaux & Soquet, 2007). The experimental setting of the current study 

can be best described as one-way imitation, comparable to the designs used by Goldinger (1998), 

Nielsen (2011), and Babel (2012). Therefore, I will use spontaneous (speech) imitation to refer 

to unintentional changes in speakers’ productions as a result of perceiving model speech.  
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1.1.1 Theoretical accounts of spontaneous speech imitation  

 Spontaneous speech imitation provides evidence that speech perception and production 

are closely related and, therefore, findings from spontaneous imitation studies are of great 

importance for phonetic theories that propose a strong link between the two processes. Here, I 

will focus on two theoretical accounts of spontaneous imitation, an episodic account (e.g., 

Goldinger, 1998) and a gestural account (e.g., Fowler, Brown, Sabadini & Weihing, 2003), and 

review their main findings and interpretations regarding speech imitation. There also exists 

another large body of research on social motivations for speech imitation, such as 

Communication Accommodation Theory (Giles, Coupland & Coupland, 1991; Shepard, Giles & 

Le Poire, 2001), but it will not be discussed here since social aspects of imitation (or more 

appropriately, accommodation) are outside the scope of the present study.  

 In episodic or exemplar-based models of speech perception (e.g., Johnson, 1997, 2006; 

Pierrehumbert, 2001), exemplars (i.e., detailed memories of specific linguistic experiences 

including phonetic details as well as non-linguistic information such as speaker- or situation-

related details) are stored in memory and form perceptual categories that are defined as sets of all 

the exemplars belonging to the category. In this approach, when a listener perceives a word, a 

new exemplar is created and existing exemplars that are associated with the incoming exemplar 

are activated. Because activated exemplars contribute to subsequent productions in most 

approaches, detection of a new exemplar has the potential to lead to spontaneous imitation (e.g., 

Goldinger, 1998; Tilsen, 2009).  

 Goldinger (1998) examines spontaneous speech imitation using a single-word shadowing 

task in which participants heard and shadowed (i.e., immediately repeated) the model speech. 

The comparison between participants’ (pre-shadowing) baseline production and shadowed 



! 4 

production revealed that the participants indeed imitated the model speech. Also, the degree of 

imitation is greater in low-frequency than it is in high-frequency words, and in words that the 

participants heard more times. Goldinger demonstrates, using Hintzman’s (1986) MINERVA2, 

that these effects of lexical frequency and repetition can be readily explained in an exemplar-

based system without additional complexities. Low-frequency words show strong imitation 

effects because the weight of each new exemplar is relatively greater when only a small number 

of existing exemplars are associated with a given word. Also, more repetitions mean more 

exemplars associated with the model speech are newly added, increasing the degree of imitation. 

 Gestural theories of speech perception, particularly Direct Realism (Fowler, 1986, 1996), 

provide a rather different explanation for the mechanism underlying spontaneous imitation. The 

central claim of gestural theories is that listeners perceive vocal tract gestures. This intrinsic link 

between perception and production leads to the expectation that perception may have an 

immediate impact on succeeding production (e.g., Fowler et al., 2003; Honorof, Weihing & 

Fowler, 2011; Shockley, Sabadini & Fowler, 2004). For example, Fowler et al. (2003) find that 

response latency in a shadowing task in which participants were asked to repeat the syllable they 

heard is not particularly longer than that in a simple choice task in which participants were asked 

to produce a pre-assigned syllable. According to Fowler et al., the small latency difference 

between the shadowing task and the simple choice task indicates that the shadowing task does 

not involve choice making, but listeners directly perceive gestures and reproduce them. Because 

gestures are the common currency for speech perception and production, listeners can rapidly 

access the articulatory information upon listening, resulting in short response latency in the 

shadowing task.  
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 Perceptually-guided changes in production become especially evident when using 

manipulated model speech because those manipulations are perceived as the acoustic 

consequences of different articulatory gestural configurations. For instance, upon hearing 

artificially lengthened voice onset time (VOT) of voiceless stops (Fowler et al., 2003; Shockley 

et al., 2004), listeners extract information about relative timing between the oral constriction 

gesture and the glottal opening-and-closing gesture, and that information guides what listener-

turned-speakers produce. As another example, Honorof et al. (2011) examine imitation of 

American English velarized /l/ by independently manipulating two constriction gestures involved 

in the lateral independently, and find that participants reproduce aspects of articulatory 

configuration manifested in the model speech even when the specific articulatory pattern does 

not match the participants’ own phonology. These findings are interpreted as support for Direct 

Realism’s claim that the target of speech perception—and thus imitation—is articulatory rather 

than acoustic/auditory.  

 The two theoretical accounts are not in direct opposition to each other, nor do they make 

wholly incompatible predictions. Rather, they focus on different aspects of spontaneous 

imitation. While the exemplar account claims that the nature of the memory system gives rise to 

observed patterns of imitation with regard to the effects of lexical frequency, recency, and 

amount of exposure, the direct realist account limits itself to rapid shadowing and claims that the 

intrinsic link between speech perception and production at the articulatory level explain the rapid 

and direct imitation. In fact, Honorof et al. comment that they are not against the core claim of 

exemplar accounts that phonetic and non-linguistic details are stored in memory, if the phonetic 

details are not auditory but articulatory. And although some versions of exemplar models make it 

clear that the phonetic properties stored in exemplars are auditory that is output from the 
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peripheral auditory system (e.g., Johnson, 1997, 2006), other models are agnostic, allowing 

phonetic detail to be either be holistic gestural or acoustic templates that are associated with 

word meanings, as long as the theory can correctly describe the interaction of word-specific 

phonetic detail with more general principles of phonological structure (e.g., Pierrehumbert, 

2001). The results of the current study will be discussed related to the two theoretical accounts 

(gestural vs. exemplar-based), without attempting to evaluate the two theories. 

 

1.1.2 What is imitated?  

 Spontaneous imitation has been examined both in conversational interactions and in non-

interactional settings. Previous studies that tested spontaneous imitation in conversational 

interactions mostly focus on the impact of social factors on the extent of imitation (e.g. Kim et 

al., 2011; Pardo, 2006; Pardo et al., 2012; Pardo, Jay & Krauss, 2010). Of particular interest here 

are the findings of non-interactional studies, that is, of investigations that more closely match the 

design of the experiments conducted for this project. For example, Babel (2012) uses an 

imitation task in which participants heard and shadowed model speech with a photo of the 

purported speaker visually presented and finds imitation of the properties of the model speaker’s 

vowels. Babel further reports that participants’ attitude (social liking) towards the model speaker 

affects the degree of imitation, suggesting that imitation is socially mediated even in a 

supposedly non-social setting. Kim (2012) also shows spontaneous imitation of English words 

and sentences using multiple acoustic measures after passive auditory exposure to model speech. 

Results of both of these studies provide robust evidence for spontaneous imitation in non-

interactional settings using naturalistic, unmanipulated model speech. Delvaux and Soquet 

(2007) and Mitterer and Müsseler (2013) are similar in this regard; their findings demonstrate 
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that participants’ productions shift towards those of model speakers showing characteristics of 

different regional dialects in a non-interactional setting. 

As speech variation is ubiquitous, it can be desirable to make use of already existing 

variations to test speech imitation. However, testing imitation using natural model speech can 

become difficult if participants’ productions are already similar to the model speech. 

Furthermore, it is not easy to assess the degree of imitation with natural model speech; precisely 

because of the substantial variation, researchers cannot know which property(s) of the model 

speech the listeners would attend to and adjust. As pointed by Pardo (2013), the imitative 

changes in production often occur on multiple phonetic properties, and it is also possible that 

different listeners attend to different properties of the same model speech. 

 Two different strategies have been used in the literature to address this issue. First, many 

studies provide perceptual judgments by a separate set of listeners as a holistic measure of degree 

of imitation (Goldinger, 1998; Goldinger & Azuma, 2004; Kim, 2012; Kim et al., 2011; Pardo, 

2006; Pardo et al., 2010, 2012). Most commonly used is an AXB task, in which a separate set of 

listeners judge whether the participant’s production A or B is a better match to model speech X. 

One of A or B is a production either before exposure to the model speaker (in passive listening 

tasks) or from early in conversational interactions with the interlocutor; the other is a post-

exposure or late-interaction production. Although perceptual judgments obtained from AXB 

tasks provide a global perceptual measure of imitation fidelity, if the question of interest is about 

what is imitated, or which acoustic property is susceptible to imitation, global perceptual 

judgments are not especially informative.  

 A different approach, which focuses on participants’ imitation of targeted properties, is to 

use model speech that is acoustically manipulated. Because listeners are especially likely to 
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imitate salient properties of what they hear (Mitterer & Müsseler, 2013; Zellou, Scarborough & 

Nielsen, 2013, see §1.1.3 for more detailed discussion of this issue), using artificially 

manipulated stimuli can arguably narrow down the potential imitative adjustments of 

listener/speakers, which facilitates (and justifies) the choice of specific production measures. For 

instance, properties known to be susceptible to imitation include artificially lengthened Voice 

Onset Time (VOT) of English voiceless stops (Fowler et al., 2003; Nielsen, 2011; Shockley et 

al., 2004), increased and decreased coarticulatory vowel nasality in English (Zellou et al., 2013), 

and manipulated sub-phonemic details in vowel formants (Tilsen, 2009). In addition, Honorof et 

al. (2011) use articulatory measures and show that allophonic variations of /l/ in American 

English are imitated.  

 Overall, the evidence from previous studies clearly suggests that speakers shift their 

productions in the direction of the model speech that they have just heard and that various 

phonetic properties are susceptible to imitation. However, the question of what is imitated is not 

easy to answer with an inductive approach. That is, knowing that some phonetic properties are 

imitated while others are not does not appear to help answer the question of what is imitated, 

because lack of imitative changes might not mean that the properties are not susceptible to 

imitation, due to many factors that can affect imitation, including individual proclivity for 

imitation, social factors, and phonology. The role of phonology in imitation is discussed in detail 

in §1.1.3. This dissertation addresses the question what is imitated from a different perspective, 

without learning from what is not imitated. Instead, this study examines how two co-varying 

cues for one phonological category are differently imitated when the two cues differ in their 

primacy.  
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1.1.3 Phonology in spontaneous imitation 

 One intriguing often-asked question in the spontaneous speech imitation literature 

concerns the role of phonology in imitation. Previous studies have suggested that imitation is 

mediated by phonology in some ways, although interpretation of the findings is not always 

straightforward.  

 That phonology mediates imitation is suggested by negative evidence that shows that not 

all manipulated properties are imitated. For instance, Nielsen (2011) reports that although 

artificially lengthened VOT for English voiceless /p/ is imitated by English speakers, artificially 

shortened VOT is not, consistent with imitation being attenuated by the presence of a 

phonological boundary. This outcome suggests that the imitation is phonologically selective: 

imitation is avoided if it might threaten a phonemic contrast (here, /b/-/p/).  

 In addition, Mitterer and Ernestus (2008) propose a yet stronger role of phonology in 

spontaneous imitation. Mitterer and Ernestus examine whether different variants of Dutch /r/ 

(alveolar and uvular trills) that are different articulatorily but equivalent phonologically are 

imitated, and find that participants hardly ever deviate from their habitual articulation to imitate 

the variant they heard. Moreover, the response latency does not increase due to a gestural 

mismatch between the modeled speech and participant’s response. Based on these findings, 

Mitterer and Ernestus claim that imitation occurs on an abstract phonological level. This claim is 

not uncontroversial, however. Honorof et al. (2011) suggest that the stimuli Mitterer and 

Ernestus used for the shadowing task may have inhibited the imitation and could have prevented 

the increase in response latencies. Mitterer and Ernestus’s shadowing stimuli are disyllables 

whose two syllables are separated by 500ms, and a longer interval between perception of a 

syllable and its production can induce one to forget perceived details (Honorof et al., 2011).  
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 Mitterer and Ernestus (2008) also report that duration of pre-voicing of Dutch voiced 

stops is not imitated in a shadowing task, attributing the lack of imitation to the phonological 

irrelevance of the properties. According to Mitterer and Ernestus, in Dutch, presence vs. absence 

of prevoicing, but not its temporal extent, is phonologically relevant and, consequently, listeners 

do not imitate longer vs. shorter pre-voicing. This claim is also controversial for several reasons. 

As mentioned in §1.1.2, many phonetic properties have been reported to be susceptible to 

imitation, and the list of imitable properties is not always limited to “phonologically relevant” 

properties. For instance, fundamental frequency (Babel & Bulatov, 2012) and duration (Kim, 

2012; Pardo, Jordan, Mallari, Scanlon & Lewandowski, 2013) of English vowels in single-word 

productions is arguably not phonologically relevant. Moreover, as pointed by Honorof et al. 

(2011), if longer vs. shorter pre-voicing of Dutch voiced stops is not phonologically relevant, 

extended VOTs of English voiceless stops, one of the most robustly imitated properties, are 

arguably not relevant as well, because the lengthened VOTs (e.g., around 130 ms in Fowler et al., 

2003 and 110 ms in Nielsen, 2011) are clearly within the aspirated allophonic category of 

English voiceless stops.  

 Mitterer and Müsseler (2013) provide an alternative interpretation of the non-imitation of 

duration of pre-voicing in Dutch: the difference between longer vs. shorter pre-voiced stimuli 

used in Mitterer and Ernestus (2008) might have not been perceptually salient, precluding 

imitation. And, in fact, some recent findings, including Mitterer and Müsseler’s own, provide 

(unsurprising) evidence that perceptually more salient variation induces more robust imitation. 

Mitterer and Müsseler examine the imitability of two different regional variations in German, 

and show that not only more marked dialectal variations, but also more variation in stimulus 

presentation, lead to more robust imitation during shadowing. Specifically, fricative-stop cluster 
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variants [st~ʃt] induce more imitation than do -ig variants [ɪk~ɪç], because the former is more 

marked, such that it clearly indexes a non-standard regional dialect, than the latter. Also, the 

imitation effect was greater when participants heard both variants than when they heard only one 

variant in an experiment, arguably because hearing both variants in the same experiment makes 

the variation more salient (Mitterer & Müsseler, 2013).  

 Perceptual salience is not independent from phonology. Phonologically less typical or 

natural variants often lead to more robust imitation, presumably because they are perceptually 

more salient (Honorof et al., 2011; Zellou et al., 2013). For instance, Honorof et al. (2011), in a 

series of shadowing experiments using manipulated variants of American English /l/, find that 

more velarized variants of /l/ in a syllable onset induced greater imitation in shadowing. 

Velarized /l/ in syllable onset is less typical in some varieties of American English and, 

therefore, their findings suggest that a less natural variant with regard to allophonic rules of a 

language facilitates greater imitation.  

 Zellou et al. (2013) provide further evidence of the likely role of perceptual salience due 

to phonological unnaturalness in spontaneous imitation. Zellou et al. investigate the imitation of 

coarticulatory vowel nasalization in English words from dense neighborhoods and suggest that 

the phonological unnaturalness—and consequent perceptual salience—of the model speech 

promoted long-term imitation. Zellou et al. find that both an increase and a decrease in 

coarticulatory nasality of English vowels were imitated during single-word shadowing tasks. 

However, only the imitation of decreased nasality persisted into a post-shadowing word-reading 

task. Because English words from dense neighborhoods naturally have a greater degree of 

coarticulatory nasality than those from sparse neighborhoods (Scarborough, 2004), their stimuli 

with decreased nasality were less natural and hence more perceptually salient, which could have 
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contributed to the relatively long-term imitation of decreased nasality. A more salient difference 

in the stimuli arguably leads to longer-lasting imitation.  

 Zellou et al. also report that it was not the actual degree of nasality but the increase or 

decrease in degree of nasality that was imitated. That is, participants produced weaker vowel 

nasalization after hearing the stimuli that had been manipulated to be less nasal than the model 

speaker’s natural productions, even when the stimuli still had more nasality than the participants’ 

own baseline. (This was possible because the model speaker was a heavy nasalizer.) According 

to Zellou et al., the abstract degree of nasality was computed in comparison with oral fillers and 

then the normalized degree, instead of the actual degree, of nasality was imitated. This suggests 

that spontaneous imitation operates arguably at an abstract phonological level rather than at a 

physical level.  

 Another way to investigate potential impacts of phonology on the process of spontaneous 

imitation is through examining how imitation effects are generalized to unheard segments or 

words. In the study by Nielsen (2011), after hearing English target words beginning with /p/ with 

extended VOT, participants produced extended VOT on unheard /p/-initial words and /k/-initial 

words as well as on the exposed target words. These productions indicate both phoneme-level 

generalization (to new stimuli including the same segment of exposure) and feature-level 

generalization (to a new segment that shares a feature), and point toward the influences of these 

phonological units on the effects of imitation. 

 Kim (2012) also examines the generalizability of the imitation effects at the word level 

using various acoustic measurements, and at the sentence level using dynamic time warping 

analyses and perceptual judgments (XAB tests). Her acoustic measures (VOT of voiceless stops; 

duration, fundamental frequency, and formant frequencies of vowels) all reveal the 
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generalization of imitation effects to unheard words. Also, both dynamic time warping analyses 

and perceptual judgments suggest imitation effects are generalized even at the sentence level. 

This, adding to Nielsen’s findings, suggests that imitation is robustly generalized and that the 

effects of imitation might not be tied to certain phonetic properties or even to phonological 

categories.  

 Despite the flourishing literature on spontaneous speech imitation, research on the role of 

phonology in imitation remains in the relatively early stages. The growing body of literature 

alludes to the possibility that spontaneous imitation may not be tied to a certain acoustic property 

or an articulatory gesture. The current study attempts to gain further insights into the role of 

phonology spontaneous speech imitation, with an overarching goal of better understanding the 

cognitive representations that are involved in imitation. This complicated issue is broken down 

into three smaller questions: (1) which acoustic properties trigger imitation, (2) which aspects of 

articulation change as imitative adjustments, and (3) how widely the imitative changes are 

generalized. These questions are investigated by examining the respective role of two co-varying 

cues for aspirated stops of Seoul Korean in spontaneous imitation.  

 

1.2 Seoul Korean voiceless stops 

1.2.1 Post-stop f0 and stop VOT: primary and non-primary cues for aspirated stops 

 Korean has a three-way laryngeal contrast for voiceless stops: tense or fortis /p*, t*, k*/, 

lax or lenis /p, t, k/, and aspirated /ph, th, kh/. All three categories are phonetically voiceless in 

word-initial or phrase-initial positions, having a positive voice onset time (VOT) although the lax 

plosives are often voiced word- or phrase-medially (Jun, 1993). The three laryngeal categories 

differ in multiple acoustic properties, including stop VOT, f0 (fundamental frequency) of the 
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post-stop vowel, and H1-H2 following stop release. The discussion here focuses only on VOT 

and f0 differences, which the current study uses. 

 Earlier analyses of Korean stops describe tense stops as having short VOT and high f0, 

lax stops as having longer VOT and lower f0, and aspirated stops as having the longest VOT and 

higher f0 (e.g., Cho, Jun & Ladefoged, 2002; Kagaya, 1974; C.-W. Kim, 1965; M.-R. C. Kim, 

1994). More recent studies, however, report that VOT values are merged for the lax and the 

aspirated categories, and the lax-aspirated contrast is best differentiated by the f0 difference on 

the following vowel (e.g., Choi, 2002; K.-H. Kang & Guion, 2008; Y. Kang, 2014; M. Kim, 

2004; M.-R. Kim, 2000, 2008; Kong, Beckman & Edwards, 2011; Lee & Jongman, 2012; Oh, 

2011; Silva, 2006). Relative to earlier measures, VOT values of aspirated stops have shortened 

while those of lax stops have lengthened, resulting in substantial VOT overlap with the post-stop 

f0 being low for the lax stops and high for the aspirated stops. Table 1.1 provides comparison of 

VOT and post-stop f0 from three previous studies, Kagaya (1974), M.-R. C. Kim (1994), and Oh 

(2011). Note that the values might not be directly comparable to one another, because of 

different experimental settings. Data of Kagaya (1974) are from isolated words starting with 

stops in various vowel contexts, while those of both Kim (1994) and Oh (2011) are from stops 

before /a/ produced in a carrier sentence. Also, Oh (2011) measured f0 at the temporal midpoint 

of the post-stop vowel, unlike Kim (1994) and Kagaya (1974) who measured f0 at the vowel 

onset. 
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Aspirated Lax Tense 

VOT f0 VOT f0 VOT f0 

Kagaya 
(1974) male speaker 1 

speaker 2 160 162 
150 60 148 

162 15 160 
192 

M.-R. C. 
Kim 
(1994) 

female 
bilabial 
alveolar 

velar 

71 
80 
86 

294 
305 
310 

78 
72 
95 

224 
224 
225 

8 
9 

18 

286 
284 
284 

male 
bilabial 
alveolar 

velar 

77 
87 
88 

163 
159 
163 

46 
40 
67 

119 
117 
114 

9 
9 

21 

143 
144 
145 

Oh (2011) 
female bilabial 

velar 
39 
55 288 33 

50 224 8 
16 270 

male bilabial 
velar 

57 
79 162 38 

56 127 9 
21 151 

Table 1.1. Comparison of stop VOT (ms) and post-stop f0 (Hz) of Seoul Korean stops. When 
there is only one number in a cell, it represents the mean value for conditions or speakers. 

 

 Along with these changes in production, Seoul Korean listeners are found to use the f0 of 

the following vowel as a more reliable cue than VOT in perception to signal the contrast between 

the lax stops and the aspirated stops (M. Kim, 2004; M.-R. Kim, Beddor & Horrocks, 2002; M.-

R. C. Kim, 1994; Kong et al., 2011; Lee, Politzer-Ahles & Jongman, 2013). M.-R. C. Kim 

(1994) reports that in stop identification tasks using synthetic speech, Seoul Korean listeners 

poorly identified different laryngeal stops based on mere VOT manipulation. M.-R. Kim et al. 

(2002) test Seoul Korean listeners’ perception of the stop with cross-spliced and vowel-only 

stimuli and report that the vowel portion alone is a necessary and largely sufficient cue for 

perceiving lax stops whereas perception of the tense and aspirated stops relies on the 

combination of both consonant and vowel properties.  
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 Taken together, these findings demonstrate that post-stop f0 has become the primary cue 

for stop aspiration1 in Seoul Korean both in production and perception. The contrast between 

aspirated and lax stops is maintained by the f0 difference instead of the now-neutralized VOT. 

The loss of the VOT distinction and development of a tonal distinction between aspirated and lax 

stops hold more true for younger than older speakers (K.-H. Kang & Guion, 2008; Y. Kang, 

2014; Silva, 2006), and more for female than male speakers (Kang, 2014; Oh, 2011). In addition, 

Kong et al. (2011) report that listeners were more sensitive to f0 for the aspirated-lax distinction 

when they heard stops produced by female voices than those by male voices.  

 This development of a tonal contrast and loss of the VOT contrast in Seoul Korean 

accords with the typical pattern of tonogenesis (e.g., Hombert, Ohala, & Ewan, 1979), in which 

consonantal contrasts of voicing or aspiration are replaced with tonal contrasts. Due to 

physiological factors, f0 at vowel onset is intrinsically correlated with the voicing of the 

preceding consonants. To explain this physiological relation between stop VOT and post-stop f0, 

two different hypotheses are often entertained, the aerodynamic hypothesis and the vocal fold 

tension hypothesis. As for effects of stop VOT on the following f0, both hypotheses predict that 

long VOT will lead to high f0 and voicing to low f0, although they differ in how they reach the 

predictions (see Hombert et al., 1979). Regarding the effects of post-stop f0 on stop VOT, 

however, the two hypotheses make different predictions. The aerodynamic hypothesis predicts 

that high f0 reduces the amount of airflow across glottis and thus prevents vocal folds from 

vibrating, resulting in long VOT. The vocal fold tension hypothesis predicts that the high f0 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!Because the commonly used phonological label for Korean /ph, th, kh/ is aspirated stops, I will 
reserve the term aspiration or aspirated to refer to the abstract phonological category and use 
long VOT to refer to the acoustic property, although I am fully aware that “aspirated” usually 
means “having a long positive VOT”. 
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stiffens the vocal folds, allowing them to return quickly to the adducted position and start 

vibrating, resulting in short VOT (Narayan & Bowden, 2013; McCrea & Morris, 2005).  

  Narayan and Bowden (2013) investigate this physiological relation between post-stop f0 

and VOT, examining the effects of increase in f0 on stop VOT in Seoul Korean and English. 

Comparing utterances produced in different f0 ranges, Narayan and Bowden find that, with an 

increase in f0, VOT of Seoul Korean aspirated and lax stops and English voiceless stops 

decreases. However, VOT of Seoul Korean tense stop and English voiced stop is not influenced 

by f0 changes. This finding suggests that VOT and post-stop f0 in Seoul Korean aspirated stops 

are indeed physiologically related, but the relation can be better explained by the vocal fold 

tension hypothesis than the aerodynamic hypothesis.  

 In tonogenesis, the high or low f0, which is redundant for the consonantal contrast, first 

develops into a robust pitch distinction coexisting with the original consonantal contrast, and 

then the tonal distinction becomes primarily contrastive (Hombert et al. 1979). Therefore, as the 

sound change progresses, the difference in vowel f0 not only increases in its magnitude but also 

extends beyond the onset of the vowel. Kim (2000) shows that this is indeed the case in Seoul 

Korean, where f0 differences following lax onsets vs. aspirated onsets are greater than those 

following English voiced vs. voiceless stops. On average, f0 following Korean aspirated stops is 

50 Hz higher at vowel onset and is still 30 Hz higher at vowel offset than that after lax stops. On 

the other hand, f0 contours following Korean tense vs. aspirated stops are similar to those 

following English voiced vs. voiceless aspirated stops; in both languages, mean f0 at vowel onset 

is 20 Hz higher following aspirated/voiceless stops and the difference falls to 5 Hz or less by 

vowel midpoint. Kim’s (2000) findings suggest that the f0 difference observed between lax and 

aspirated stops in Seoul Korean is not an automatic consequence of laryngeal articulation. 



! 18 

 Y. Kang (2014) provides further evidence that the f0 distinction between lax and 

aspirated stops is being phonologized into a full-fledged tonal contrast. Her data drawn from a 

read speech corpus show that, for younger female speakers of Seoul Korean, the f0 difference 

between aspirated and lax stops has been generalized as a tonal contrast between H and L tones, 

where the H context includes aspirated stops, tense stops, and /h/-initial conditions and L context 

includes lax stops and sonorant-initial conditions. Along similar lines, K.-H. Kang and Guion 

(2008) report that, in clear speech, younger speakers of Seoul Korean who primarily use the f0 

cue to differentiate aspirated and lax stops rely more on f0 enhancement and produce only small 

VOT enhancement, whereas older Seoul Korean speakers solely use VOT to enhance the 

aspirated-lax contrast. However, contrary to Y. Kang’s (2014) findings, K.-H. Kang and Guion 

do not find that young speakers enhance the f0 contrast between the /h/ and /n/ conditions in 

clear speech as they do for aspirated and lax stops. Y. Kang suggests that the tonal contrast in 

sound change and on-line enhancement in clear speech may have different targets such that the 

sound change is mediated by phonological categories such as natural classes whereas the clear 

speech enhancement targets segmental contrasts.  

 In sum, previous findings on Seoul Korean stop productions suggest that post-stop high 

f0 has become the primary cue for aspirated stops in Seoul Korean. The current study makes use 

of this situation, and tests whether primary and non-primary cues operate similarly or differently 

in spontaneous imitation. Seoul Korean participants are exposed to aspirated stops manipulated 

to have either higher post-stop f0 or longer stop VOT, and the possible influences of these 

enhancements on participants’ subsequent productions are assessed. The goal is to investigate 

not only whether primary and non-primary cues behave differently in imitation but also whether 

imitation is strictly tied to the manipulated phonetic property (e.g., high f0 or long VOT) or it is 
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rather phonological in that other typically co-occurring phonetic properties are also enhanced in 

imitated productions. The design also allows for testing whether f0 and VOT are positively 

correlated (as predicted by the aerodynamic hypothesis) or negatively correlated (as predicted by 

the vocal folds tension hypothesis) in Seoul Korean speakers’ imitative enhancements of 

aspirated stops.  

 

1.2.2 Phonological accounts 

 Phonological representations of Korean stops have mainly been described using feature 

systems. Here I summarize two different feature specifications, one from Halle and Stevens 

(1971) and the other from Cho et al. (2002). 

  Halle and Stevens (1971) propose a feature-system of four binary features for laryngeal 

articulation, namely [±spread glottis], [±constricted glottis], [±stiff vocal cords] and [±slack 

vocal cords], to specify different stop types. Their account of Korean stops is summarized in 

Table 1.2. 

 

 Aspirated Lax Tense 

 [spread glottis]  + + – 

 [constricted glottis]  – – – 

 [stiff vocal cords]  + – + 

 [slack vocal cords]  – – – 

Table 1.2. Feature specification of Korean stops in Halle and Stevens (1971) 

 

 Cho et al. (2002), on the other hand, propose a privative feature system with 

underspecification (Table 1.3). This system can better account for their finding that lax stops 
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have intermediate VOT, presumably resulted from intermediate glottal opening. To explain high 

f0 after tense and aspirated stops, Cho et al. propose two redundancy rules, (1) [constricted 

glottis] → [stiff vocal cords], and (2) [spread glottis] → [stiff vocal cords].  

 

 Aspirated Lax Tense 

 Laryngeal features  [spread glottis] unspecified [constricted glottis] 

 Redundancy rules [stiff vocal cords] not applicable [stiff vocal cords] 
Table 1.3. Feature specification of Korean stops in Cho et al. (2002) 

 

 Relevant to the current study, the two feature systems provide different sets of natural 

classes. Under the binary system of Halle and Stevens (1971), aspirated and lax stops form a 

natural class sharing [+spread glottis] whose acoustic correlate is long positive VOT. Under the 

privative system (Cho et al., 2002), aspirated and lax stops do not form a natural class.  

 This study investigates the generalizability of spontaneous imitation, by asking how lax 

and tense stops change as a consequence of hearing model speech with manipulated aspirated 

stops. If imitation is generalized at the feature level, as suggested in Nielsen (2011), different 

natural classes predict different patterns of generalization (see §2.5.3 for specific predictions). 

 

1.3 Current Study 

 This study examines spontaneous speech imitation by separately manipulating two co-

varying cues for one phonological contrast differing in their primacy. Seoul Korean speakers 

hear and shadow model speech in which the phonetic information for stop aspiration is 

manipulated. The aspirated stops in the model speech have either raised post-stop f0 or extended 
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VOT, and the imitative enhancements in participants’ own productions are assessed by 

measuring stop VOT and post-stop f0. 

 By examining how these cues operate in spontaneous imitation, this study aims to reveal 

whether the cognitive representations that are responsible for speech imitation are detailed 

phonetic properties, such as long VOT or high post-stop f0, or phonological categories, such as 

stop aspiration. The complicated question of “what is the cognitive unit that is responsible for 

speech imitation” is addressed by breaking it down into several specific questions. First, which 

phonetic properties trigger imitative enhancement? Is it only the primarily contrastive property 

for a phonological category or does the secondary property also trigger imitation? Second, which 

aspects of articulation are adjusted in imitative enhancements? Is only the property that is 

enhanced in the model speech imitated? Or are other properties associated with the enhanced 

phonological category also adjusted? If other properties change together, do they change in the 

direction predicted by the physiological relation between the properties, if any? Finally, what is 

the nature of the generalizability of spontaneous imitation? How wide is the scope of imitative 

generalization? For detailed predictions regarding these questions, see §2.5. 

 The remainder of this dissertation is organized as follows: In Chapter II, I present the 

methodology of the imitation experiment and state the predicted outcomes. Chapter III presents 

the results of the imitation experiment. Chapter IV discusses the current findings, taking into 

account the principal literature summarized in this chapter, and offers future research directions. 



 22 

 

 

 

CHAPTER II 

Methodology and Predictions 

 

 This study investigates the influence of cue primacy on spontaneous speech imitation by 

speakers of Seoul Korean. As mentioned in §1.2, in Seoul Korean, at least two distinct acoustic 

properties, stop VOT and post-stop f0, differentiate aspirated stops from stops of different 

phonation types, with post-stop f0 being the primary cue for the contrast. Previous studies have 

shown that English speakers imitate extended VOTs of voiceless stops both in immediate 

shadowing (Fowler et al., 2003; Shockley et al., 2004) and delayed imitation (Nielsen, 2011). In 

this study, Seoul Korean speakers heard Korean aspirated /th/ with either extended VOT or raised 

post-stop f0. The realization of these properties in the speakers’ own /th/, /t/, and /t*/ in (pre-

shadowing) baseline, shadowing and (post-shadowing) test productions are compared. The rest 

of this chapter describes the details of the methodology (§2.1-§2.4) and predictions (§2.5).  

 

2.1 Participants 

 Nineteen native speakers of Seoul Korean (12 female and 7 male) participated in the 

study. Figure 2.1 shows participants’ demographic information. The participants are 

undergraduate or graduate students at the University of Michigan, currently living in Ann Arbor, 

Michigan. All participants are self-identified as native speakers of Seoul Korean. In a language 

proficiency and background questionnaire, most of them reported that they were born and raised 
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in Seoul/Gyeonggi in Korea. Three participants were born in the United States but returned to 

Korea before the age of 5, and lived in Seoul for 15-23 years. Ages of the 19 participants range 

from 20 to 31 with the mean age of 25.2 years (s.d. = 3.3). All participants are proficient 

speakers of both Korean and English, but dominant in Korean. In the questionnaire, participants 

also reported their own proficiency of speaking and reading in two languages on a 1-7 scale. The 

self-reported proficiency values are as follows: speaking Korean (m = 6.7, s.d. = 0.6), reading 

Korean (m = 6.6, s.d. = 0.7), speaking English (m = 5.1, s.d. = 1.1), and reading English (m = 

5.4, s.d. = 1.0). The mean length of residence in an English-speaking environment is 5.0 years 

(s.d. = 2.9, range = 2.0 ~ 12.7). No participants reported any history of speech or hearing 

impairments or extensive contact with any additional languages other than Korean and English. 

Each participant was paid $25 for completing the two experimental sessions.  

 

2.2 Stimuli 

 Korean words with initial /th/, /t/, or /t*/ were selected as test words from the NIKL 

corpus of modern Korean (morphologically parsed, corpus size = 15.3 million eojeols1) by the 

National Institute of Korean Language (2005). In addition, words with initial sonorants were 

selected as fillers. All test words were disyllabic, highly familiar (word familiarity scores being 

higher than 6.0 on a 7-point scale), and low in lexical frequency (below 50 in the NIKL corpus). 

The word familiarity score was obtained from ten native speakers of Korean who are different 

individuals from the participants of the main study. They were asked to rate the familiarity of the 

target words presented with fillers on a 7-point scale, and only words that obtained a familiarity 

score of higher than 6.0 on average were selected.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 An eojeol is an orthographic unit for Korean morphological analysis, which is separated by 
spaces. An eojeol can have one or more morphemes, or even words. 
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Figure 2.1. Demographic information of participants: birthplace (top), age (bottom left 
histogram), and length of residence in English-speaking countries (bottom right histogram) 
 
 

 Using the selected words, two wordlists (reading and shadowing lists) were constructed. 

The reading list contained 150 words: 50 /th/-initial words, 25 /t/-initial words, 25 /t*/-initial 

words, and 50 sonorant-initial fillers. The shadowing list was a subset of the reading list (50 

words), comprising half of the /th/-initial words and half of the fillers from the reading list. The 
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remaining words in the reading list occurred only in pre- and post-test and were never presented 

auditorily. For a complete list of stimuli, see Appendix A. 

 A male native speaker of Seoul Korean (age = 25) recorded the words from the 

shadowing list. He produced the words in isolation three times in different randomized orders. 

He was instructed to speak naturally, at a normal speaking rate. His speech was digitally 

recorded onto a Macbook Pro laptop computer, using an AKG C 4000 B microphone and an 

external Edirol UA-25 preamlifier, with a sampling rate of 44.1 kHz via the Praat program 

(Boersma & Weenink, 2014). From the three repetitions, the best token of each item (free of 

unintended noises, or mispronunciations) was selected for inclusion. All selected tokens were 

equalized to have an average intensity of 65 dB using the Scale intensity function in Praat. The 

mean VOT for the initial /th/s was 58.38 ms (s.d. = 8.64) and the mean f0 at the midpoint of post-

stop vowels was 153.6 Hz (s.d. = 4.48). 

 The model speech for the targeted /th/-initial words was manipulated in two ways. The 

high f0 stimuli were created by raising the first pitch period of the post-/th/ vowel by 20% 

(calculated in Hz value); f0 of the rest of the first vowel was also raised proportionately. After 

manipulation, mean f0 at the midpoint of post-stop vowels was 176.16 Hz (s.d. = 7.05). The long 

VOT stimuli were created by extending the VOT of word-initial /th/ by 60ms. The manipulation 

to lengthen the VOTs followed the splicing method of Shockley et al. (2004). For each word, the 

medial portions of the aspiration with low steady amplitude were selected, copied and pasted 

back into the aspiration section of the waveform. The splicing was done in a way that did not 

induce any audible discontinuities. After manipulation, the mean VOT for /th/-initial targets was 

119.82 ms (s.d. = 8.11). Both manipulations were performed in Praat, and f0 manipulation was 

done using the PSOLA method (Boersma & Weenink, 2014).  
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2.3 Procedure 

 Each participant was tested in two experimental sessions that were conducted at least two 

weeks apart from each other. Each experimental session involved target stimuli with one of the 

two manipulations, either raised f0 or extended VOT. The order of the two experimental sessions 

was counterbalanced across participants to prevent any potential confounding effect of the 

testing order. Each session lasted approximately 30 minutes, consisting of an imitation 

experiment followed by an oddity discrimination test. Participants were also tested in two 

additional sessions involving English stimuli on different days. The English data were 

collected for a separate study, and therefore are not analyzed in this dissertation. 

On the last day of participation, after all other procedures, participants completed a questionnaire 

on their language background. The entire experiment was conducted in a sound-attenuated booth 

in the Phonetics Laboratory at the University of Michigan. 

 

2.3.1 Imitation experiment  

 The imitation experiment, using a slightly modified version of the word-naming imitation 

paradigm (Babel, 2012; Goldinger, 2000; Nielsen, 2011), consisted of warm-up, baseline 

production, shadowing, and test production blocks.  

 Participants were seated in front of a MacBook Pro laptop in a sound-attenuated booth. In 

the warm-up block, the words from the reading list were visually presented on the laptop screen, 

and the participants were asked to read them silently without pronouncing them. Each word was 

presented in the middle of the screen in Korean alphabet Hangeul one at a time, every 2 seconds, 

in a randomized order. In the baseline production block, the words were presented in the same 

way, but in a different randomized order. This time, the participants were instructed to read the 



 27 

words they saw on the screen aloud as clearly and promptly as possible. In the shadowing block, 

the words in the shadowing list with either the f0 or VOT manipulation were played via AKG 

K271 MK II headphones with nothing presented visually on the screen. The shadowing list was 

repeated three times, each time in different random orders without any break between repetitions. 

The participants were instructed to say aloud what they heard as clearly and promptly as 

possible. They were not instructed to imitate the stimuli. The inter-stimulus interval was 1.5 

seconds. Finally, after the shadowing block, the test production block was conducted in the same 

fashion as the baseline production. Between blocks, participants were allowed to take a short 

break but no one rested more than a minute. The structure of the imitation experiment is 

summarized in Table 2.1.  

 

Block Warm-up Baseline Shadowing (x3) Test 

Task Read silently  
Read aloud 
clearly and 
promptly  

Say aloud  
the words heard  

Read aloud 
clearly and 
promptly 

Wordlist Reading list Reading list: 
 
Identical to 
Warm-up  
 
In a 
differently 
randomized 
order 
 
 
 
 
 
 

Shadowing list Reading list: 
 
Identical to 
Warm-up and 
Baseline 
  
In a 
differently 
randomized 
order 
 
 
 
 
 

Target 
words 

Shadowed 25 /th/-initial 
words 

25 /th/-initial 
words 

Unheard 

25 /th/-initial 
words  
25 /t/-initial 
words 
25 /t*/-initial 
words 

 

Fillers  
Shadowed 25 sonorant-

initial words 
25 sonorant-
initial words 

Unheard 25 sonorant-
initial words  

Table 2.1. Structure of the imitation experiment. 
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 Stimulus presentation was implemented using SuperLab stimulus presentation software 

(version 4.0.8, Cedrus Corporation). All instructions during the experiment were given in 

Korean. For the written instructions displayed on the screen, see Appendix B. The participants’ 

baseline, shadowing, and test productions were digitally recorded onto a separate MacBook Pro 

laptop, using an AKG C 4000 B microphone and an external Edirol UA-25 preamlifier, with a 

sampling rate of 44.1 kHz via the Praat program (Boersma & Weenink, 2014).  

 

2.3.2 Discrimination test 

 After completing each imitation experiment, the participants performed an oddity 

discrimination task that tested perception of the cue manipulation (stop VOT or post-stop f0) 

used in the imitation experiment of that visit. The purpose was to determine whether the 

difference between the manipulated stimuli and the original recording was reliably perceived. 

For each cue, 100 triplets were created from the same manipulated tokens that were used 

for the shadowing block in the imitation experiment and their original unmanipulated 

counterparts. Each triplet consisted of two identical tokens and an odd one. Half of the odd 

tokens were the manipulated ones, and the other half were the original ones. The task for the 

participants was to identify the odd one. The triplets were concatenated in Praat so every 

participant heard the same set of triplets. The place of the odd one in each triplet was decided 

pseudo-randomly, with the odd one appearing a roughly equal number of times in each of the 

three possible positions of each triplet (VOT condition: first position 33, second position 34, 

third position 33; f0 condition: first position 34, second position 33, and third position 33). The 

interval between tokens within each triplet was 0.5 second.   
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 Participants were seated in front of a Macbook Pro laptop with a response pad (model 

RB-740, Cedrus Corporation) attached. The stimulus presentation was implemented using 

SuperLab stimulus presentation software (version 4.0.8, Cedrus Corporation). One hundred 

triplets were presented over AKG K271 MK II headphones in two experimental blocks with a 

self-paced break between blocks. Within each block, stimuli were differently randomized for 

each participant. Participants were asked to choose the odd one from the triplet using the button 

box. Each new triplet was played one second after the participant hit the button for the previous 

item. No feedback was provided during the test. The button box responses as well as the 

response times were collected and analyzed.  

 

2.3.3 Questionnaire 

 On the last day of participation, after all other procedures, participants completed a 

background questionnaire. The participants reported their language background, language usage 

and proficiency. In addition, they were asked to report if there were any words that they did not 

know during the experiment, and no such case was reported. 

 

2.4 Measurements 

 For each token recorded during the imitation experiment, the following measures were 

taken by the author and a phonetically-trained research assistant.  

 

• Voice onset time (VOT): VOT of word-initial stops was measured from the beginning 

of the release burst (marked as A in Figure 2.2) to the beginning of glottal pulsing in 
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the waveform and/or the appearance of a voicing bar in the spectrogram (marked as B 

in Figure 2.2). 

• F2 onset time (F2OT): F2OT of word-initial stops was measured from the beginning 

of the release burst (as for VOT) to the beginning of true modal voicing of the 

following vowel as identified spectrographically by onset of F2 and higher formants 

(marked as C in Figure 2.2). Thus, unlike VOT, F2OT includes any breathy voiced 

portion of the following vowel.  

• V1 duration: Duration of the first vowel of each word was measured as illustrated 

from B to D in Figure 2.2. V1 duration was not included in the statistical analyses, 

but was used to identify vowel midpoint for the f0 measurement.  

• Word duration: Duration of each word was measured as illustrated from A to E in 

Figure 2.2. 

• Post-stop f0: Post-stop f0 was measured at the temporal midpoint of the first vowel of 

each word using the pitch tracking function in Praat. f0 measurements for all tokens 

were checked for tracking errors, and those with f0 doubling or halving errors were 

hand-corrected.  

 

 Several studies on Seoul Korean stops have used F2 onset time (F2OT) instead of, or in 

addition to, the traditional measure of VOT (Cho et al., 2002; Cho & Keating, 2001; Choi, 2002; 

Silva, 1992). F2OT is measured “from the point of the stop release to the voice onset of the 

second formant in the following vowel” (Cho et al., 2002; Cho & Keating, 2001; Choi, 2002). 

Silva (1992) uses a derivative measure called “vowel lag” which is defined as the greater of VOT 

or F2OT. Other studies use the usual measure of VOT, which is measured from the release burst 
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to the first periodic cycle of the following vowel (e.g., Kang, 2014; Kong et al., 2011; Lee & 

Jongman, 2012; Oh, 2011). In this study, both VOT and F2OT of stops were measured, because, 

unlike traditional VOT, F2OT includes breathy voiced portion of the vowel with only low-

frequency harmonics, which arguably makes it a better measure of the onset of true modal 

voicing.  

Both waveforms and spectrograms were examined in taking the measurements. Prior to 

making the measurements, the file name of each recording was coded so that neither the author 

nor the assistant would know which production block (baseline, shadowing, or test) and 

manipulation type (VOT-extension or f0-raising) the recording belongs to. 

 

Figure 2.2. Waveform and spectrogram of a sample token 탈옥 [thaɾok]. A is the stop burst for 
the initial stop; B is the onset of voicing; C is the onset of F2 of the first vowel; D is the end of 
the first vowel; and E is the end of the word. 
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2.5 Predictions 

 This study aims to investigate the nature of the cognitive representations that are involved 

in spontaneous imitation, by examining the effects of two co-varying cues for one phonological 

contrast that differ in their primacy on imitation. In order to reveal whether the cognitive 

representations that are responsible for speech imitation are detailed phonetic properties (e.g., 

long VOT or high post-stop f0) or phonological categories (e.g., stop aspiration), the following 

specific questions are asked in this study: (1) which phonetic properties trigger imitation, (2) 

which aspects of articulation are adjusted by listener-turned-speakers during imitation, and (3) 

the breadth of the scope of imitative adjustments. I will examine predictions regarding these 

questions in the following sections. 

 

2.5.1 What triggers imitation?  

 Concerning the question of which phonetic properties trigger imitation, two distinct 

hypotheses can be offered. One possibility is that enhanced phonetic properties trigger speech 

imitation regardless of their cue primacy. Under this hypothesis, both manipulations used in this 

study, raised post-stop f0 and extended stop VOT, will induce some type of imitation. Another 

possibility is that only the primary cue for a phonological contrast triggers speech imitation. In 

the latter case, for speakers of Seoul Korean, only the enhanced primary cue, post-stop f0, will 

trigger imitation. That is, aspirated stops with extended VOTs will not facilitate any imitation 

effects because VOT is a non-primary cue for aspirated stops in Seoul Korean. The existing 

literature is more consistent with the first hypothesis. As mentioned in §1.1, phonetic properties 

that do not arguably play a primarily contrastive role, such as English vowel duration (Kim, 2012; 

Pardo et al., 2012, 2013) and vowel f0 (Babel & Bulatov, 2012, Pardo et al., 2013) are reported 
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to be spontaneously imitated. Based on these findings, I predict that enhanced phonetic 

properties, regardless of their cue primacy, will trigger imitation.  

 In addition, phonologically unnatural manipulations often lead to more robust or longer-

lasting imitation (e.g., Honorof et al., 2009; Zellou et al., 2013). Since younger speakers of Seoul 

Korean depend mainly on f0 enhancement to enhance aspirated stops (Kang & Guion, 2008) and 

the model speaker of the current study is a young Seoul Korean speaker (age = 25), participants 

may perceive extended VOT stimuli to be less natural than raised f0 stimuli. In that case, 

extended VOT is predicted to induce more robust imitation than raised f0, especially in the post-

shadowing test productions.  

 One important caveat is that, of course, only those properties perceived by the listeners 

can trigger imitation. Clearly, if listeners do not detect (even sub-consciously) anything special 

or different about the stimuli, they would not adjust their subsequent productions based on what 

they have heard. In this study, regardless of the cue primacy, if the manipulations are not large 

enough to be perceived by the participants as being “different”, no imitation effects are expected. 

This is the raison d’être of the discrimination test. Although good performance in the oddity 

discrimination test may not be a sufficient condition for the participants to detect the target 

manipulation in the imitation experiments, it might arguably be a necessary condition. That is, if 

the difference between manipulated and original stimuli is not reliably discriminated when they 

are juxtaposed with each other (as in the discrimination test in this study), the same manipulation 

is unlikely to be detected as being “different from the typical” when presented alone without any 

basis for comparison (as in the imitation experiment). To recapitulate, the predictions for the 

question of which phonetic property triggers imitation are: 
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1. Both raised post-stop f0 and extended VOT are expected to trigger imitation. 

2. Extended VOT is expected to induce larger and longer-lasting imitation effects than 

raised post-stop f0.  

3. If participants do not perform better than chance in the discrimination test for the 

specific cue manipulation, no imitation is expected. 

 

2.5.2 Imitative enhancements: what is adjusted? 

 Assuming that the listener has detected the enhanced phonetic property, the next question 

is which phonetic property the listener-turned-speaker will adjust, if any, in her subsequent 

productions. For this question again, two contrasting hypotheses can be offered. The first 

possibility is that participants adjust the specific property that has been enhanced in the stimuli. 

That is, when the target model speech has aspirated stops with long VOTs, participants will 

lengthen their VOTs for aspirated stops. Likewise, when the stimuli are aspirated stops with high 

post-stop f0, participants will raise their f0 after aspirated stops. Crucially, under this hypothesis, 

the unmanipulated cue is not expected to change as a consequence of hearing the other cue 

enhancement. For instance, hearing high post-stop f0 would not have an enhancing effect on stop 

VOT in the participants’ productions, and neither would long VOT on post-stop f0. Imitation, in 

this case, is strictly tied to a certain phonetic property, and thus I will refer to it as phonetic 

imitation.  

 The alternative hypothesis is that imitation is instead phonological, in which case, 

irrespective of the enhanced cue in the target stimuli, the listeners will enhance the property or 

properties they would normally use to enhance the relevant phonological category. For example, 

upon hearing aspirated /th/ with high post-stop f0 or long VOT, participants perceive 
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“exaggerated aspirated stop” and accordingly shift their production in that direction. This shift 

might involve both properties or, if a single property, might involve a property other than that 

manipulated in the heard stimuli. This mechanism assumes that imitation is mediated by 

language-specific associations between phonetic properties and phonological categories.!

 If imitation is indeed mediated by phonology and if it is triggered by both primary and 

non-primary cues, which phonetic property is enhanced in the stimuli is not crucial as long as the 

participant detects the manipulation as enhancing, in this case, aspirated stops. In other words, 

the imitative patterns will be the same under two experimental conditions (high post-stop f0 and 

long VOT) of this study. The common imitative patterns are expected to involve enhancement of 

the phonetic property(s) the speakers would normally employ to enhance /th/. According to Kang 

and Guion (2008), younger speakers of Seoul Korean, who primarily use post-stop f0 to 

distinguish aspirated and lax stops, rely mainly on f0 enhancement to exaggerate aspirated stops 

in clear speech. If imitative enhancement were to parallel clear speech, participants in this study, 

young Seoul Koreans, are predicted to adjust mostly post-stop f0 in both experimental conditions 

(see (a) in Figure 2.3). On the other hand, as mentioned in §1.2, tonal development is an ongoing 

sound change in which younger female speakers exhibit the most advanced stage (e.g., Kang, 

2014). If this is the case, although all participants in this study are young, it is possible that at 

least some speakers, especially male speakers, may still rely on stop VOT at least to some extent. 

For these speakers, if they exist, the post-stop f0 is not the exclusive cue for stop aspiration, 

hence they would be expected to adjust both post-stop f0 and stop VOT with regard to imitation 

(as in (b) in Figure 2.3).  
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Condition 
(Manipulations) Phonetic Imitation Phonological Imitation 

Enhanced 
primary cue 
 
(High  
post-stop f0)  

(a) If post-stop f0 is exclusive 

 

Enhanced 
non-primary 
cue 
 
(Long VOT) 

 

 

(b) If stop VOT also plays a role 

 

Figure 2.3. Schematic diagrams for phonetic and phonological imitation hypotheses. 
       denotes baseline /th/ production on the hypothetical plane of VOT * f0 shown on the left side 
of the table. Arrows and dotted circles show the direction of the imitative changes. Note that this 
table assumes that both primary and non-primary cues trigger imitation. In case a non-primary 
cue does not trigger imitation, no change is expected in the long VOT condition.  
 
 

 Taken together, the phonological imitation hypothesis predicts that the two manipulations 

used in this study (high post-stop f0 and long VOT) will induce identical imitative patterns for a 

given speaker, and that the imitative patterns will vary across speakers according to their 

baseline productions. That is, if participants vary in their baseline productions of Korean stops, 

specifically in VOT differences between lax and aspirated stops, their imitative patterns are 

expected to vary together. There are two important assumptions that lie behind this hypothesis. 

First, for a given speaker, perception grammar and production grammar can be different though 

related. Although a speaker may employ f0 primarily to exaggerate aspirated stops in her own 

speech, she can still use extended VOT as a cue for exaggerated aspirated stops when hearing 

other speaker’s speech. Second, speakers in the same speech community can still have different 
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production grammars from each other, in terms of which phonetic property they primarily use for 

a given phonological contrast, especially with an ongoing (or nearly completed) sound change, 

as in the case of Seoul Korean. Specific predictions made by the phonetic and phonological 

hypotheses are illustrated schematically in Figure 2.3. 

 

2.5.3 Generalizability of imitation 

 Another important component of the overarching question of what is the cognitive unit 

that is responsible for speech imitation is the scope of imitative adjustments. Nielsen (2011) 

found English speakers not only imitated /p/ with long VOT but also generalized the imitative 

behavior to new unheard /p/-initial words as well as to new /k/-initial words. This suggests that 

the imitation was generalized to unheard words sharing the initial phoneme (phoneme-level 

generalization) and those beginning with different phonemes that share the feature [+spread 

glottis] (feature-level generalization). This study investigates the generalizability of speech 

imitation more rigorously, by testing how lax and tense stops change as a consequence of hearing 

the target speech with manipulated aspirated stops.  
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f0

 
 

 f0
 

 

 VOT   VOT 

(a) When f0 after aspirated stops increases,  
so does post-tense-stop f0. 

 (b) When VOT of aspirated stops increases, 
so does lax stop VOT. 

     

 

f0
 

 
 

 VOT 

(c) When both f0 and VOT of aspirated stops increase,  
post-tense-stop f0 and lax stop VOT also increase. 

 
Figure 2.4. Schematic representation of feature-level generalization. 

It is assumed that tense and aspirated stops share [+stiff vocal folds] and lax and aspirated stops 
share [+spread glottis] (Halle & Stevens, 1971). 

tense 

lax 

aspirated 
tense 

lax 

aspirated 

tense 

lax 

aspirated 
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 To test the extent to which imitative behavior (whether it is to raise post-stop f0, lengthen 

VOT or both) is generalized, the reading list in this study includes three types of words that are 

not included in the shadowing list: /th/-initial, /t/-initial and /t*/-initial words. First, I predict that 

unheard /th/-initial words will also show the imitative effect, replicating Nielsen’s (2011) 

phoneme-level generalization. Second, as for feature-level generalization, specific predictions 

depend on the feature system that is adopted. Figure 2.4 presents a set of predictions based on the 

feature system of Halle and Stevens (1971) (see §1.2.2). Assuming that lax and aspirated stops 

share [+spread glottis] and that tense and aspirated stops share [+stiff vocal cords], the VOT of 

aspirated and lax stops should shift together whereas the post-stop f0 of aspirated and tense stops 

should shift in tandem. More generally, the important point is that stops that share a feature 

relevant to the acoustic properties (VOT or f0) will change together in the same direction.  

 Still another level of generalization is feasible. To maximize the relevant contrast, stop 

aspiration in this study, it is possible that participants will, in post-shadowing test productions, 

shorten the tense stop VOT or lower the post-lax-stop f0. I will refer to this type of f0 lowering or 

VOT shortening as phonological readjustment. This phonological readjustment, unlike the 

phoneme- or feature-level generalization of imitation, is predicted strictly under phonological 

imitation. If the imitative adjustments are strictly tied to the single acoustic property, without 

phonology meditating imitation, phonological readjustment is improbable as its motivation is to 

maximize phonological contrast.  
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CHAPTER III 

Results 

 

! This chapter presents the results of the two experiments (imitation and oddity 

discrimination). The participants performed the imitation task before the discrimination task out 

of the concern that that the latter task, in which manipulated and original tokens are heard side by 

side, may have unwanted influence on the results of the imitation experiment. Despite the order 

of testing, here I report the results of the discrimination test first (§3.1), and then proceed to the 

imitation experiment (§3.2), because the results of the discrimination test will work as the 

premise for the imitation experiment (see §2.5.1). After reporting the results pooled across 

participants, I examine productions of individual participants in §3.3. 

 All statistical analyses described in this chapter were conducted using R (R Development 

Core Team, 2014) with packages lme4 (Bates, Maechler, Bolker & Walker, 2014), lmerTest 

(Kuznetsova, Brockhoff & Christensen, 2014), and irr (Gamer, Lemon, Fellows & Singh, 2012). 

 

3.1 Discrimination test 

 After completing each imitation experiment for each visit, the participants were tested in 

an oddity discrimination test that used the same cue manipulation (stop VOT or post-stop f0) as 

the imitation experiment for that session. In order to determine whether the participants could 

reliably discriminate the differences between the manipulated stimuli and the original ones and 
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whether discriminability was comparable for the two cue manipulations, both accuracy and 

response time data were examined.  

 

3.1.1 Accuracy analyses 

 Accuracy score is the number of correct responses out of 100 test triplets for each 

participant. Table 3.1 summarizes the pooled accuracy scores for the 19 participants.  

 

Condition 
(Manipulation) 

Accuracy Score 

N Mean Std. Dev. Range 

Post-stop f0  19 64.68 14.39 48~91 

Stop VOT 19 66.68 15.55 41~95 

Table 3.1. Summary of descriptive statistics of accuracy score  

 

 In order to evaluate whether the accuracy score in each condition was significantly above 

chance (33.3%), two separate one-sample t tests were conducted on participants’ accuracy scores 

in each manipulation condition. The accuracy scores in both conditions were found to be 

significantly better than chance [f0 condition: t (18) = 9.60, p < 0.001; VOT condition: t (18) = 

9.44, p < 0.001]. These results suggest that, at least when juxtaposed with unmanipulated stimuli, 

both the f0 and VOT manipulations used in the imitation experiments were large enough to be 

detected by the participants.  

 To determine whether the participants’ performance differed in the two manipulation 

conditions, a generalized linear mixed effects model with a binary accuracy response 

(‘incorrect’, ‘correct’) and a logit link function was performed using the lme4 package (Bates et 
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al., 2014) for R. Manipulation condition (f0 vs. VOT) and order of presentation (1~100) were 

entered into the model as fixed effects. Including interaction between fixed effects did not 

improve the model, so I will present the model without interaction terms. Random intercepts for 

speakers and words as well as by-speaker random slopes for manipulation condition were 

included in the model.  

 The effects of manipulation condition were not significant [z = 0.741, p = 0.459], which 

suggests the participants’ performance was not better in one condition than the other. The effects 

of order of presentation were not significant either [z = -0.272, p = 0.786], suggesting that 

participants’ performance did not improve (or deteriorate) during the test.  

 The size of the two manipulations used in this study is not directly comparable since they 

are on different dimensions, spectral and temporal. Nevertheless, the current result confirmed 

that one manipulation did not have a more salient impact than the other on the discriminability of 

the stimuli for Seoul Korean listeners. Furthermore, participants’ accuracy scores in the two 

manipulation conditions were found to be correlated with each other. The scatter plot in Figure 

3.1 represents the accuracy scores of the 19 participants. A Pearson’s product-moment 

correlation coefficient was computed to assess the relationship between the accuracy scores in 

the f0 and VOT manipulation conditions. A moderate, positive correlation was found between 

participants’ performance in the two conditions [r = 0.51, p = 0.027]. These results suggest that 

participants who are more sensitive to one manipulation are, in general, more sensitive to the 

other manipulation.  

 

!!
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Figure 3.1. Performance of individual participants on two discrimination tests.  

Each data point represents one participant, with the shaded dots indicating male speakers.  
Accuracy scores for the VOT manipulation condition are plotted on the x-axis, and those for the 

f0 manipulation condition are plotted on the y-axis. 
 

 

3.1.2 Response time analyses 

 Table 3.2 summarizes the descriptive statistics for the response time data from the 

discrimination tests. Response time is measured as the duration between the end of the last token 

of the triplet and the button press. Excluded from analyses were response times from error trials 

as well as those greater than two standard deviations away from the mean for a particular 

participant and condition. 
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Condition 
(Manipulation) 

Response Time (ms) 

N Mean Median Std. Dev. Std. Error 

Post-stop f0  1159 550.03 444 420.40 12.35 

Stop VOT 1203 484.90 394 378.81 10.92 

Table 3.2. Summary of descriptive statistics for response times in discrimination tests  

 

 In order to reconfirm that one manipulation was not easier or harder to discriminate than 

the other, a linear mixed effects model was fitted to the response time data using the lme4 

package (Bates et al., 2014) for R. Manipulation condition (f0 vs. VOT) and order of 

presentation (1~100) were entered into the model as fixed effects (without interaction terms). 

Including interaction between fixed effects did not improve the model, so the model without 

interaction terms is presented here. Random intercepts for speakers and words as well as by-

speaker random slopes for manipulation condition were included in the model. Parameter 

specific p-values were obtained by using the Satterthwaite approximation, which was 

implemented in the lmerTest package (Kuznetsova et al., 2014) for R. 

 The effects of manipulation condition were not significant [t = -1.268, p = 0.221], 

confirming that it did not take the participants significantly longer to respond to one set of 

manipulated stimuli than to the other. The effects of order of presentation were found to be 

significant [β = -1.462, t = -6.13, p < 0.001], with response times decreasing as the test 

proceeded (albeit with no change in accuracy, as reported in §3.1.1). 
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3.1.3 Summary of discrimination results 

 Taken together, the results of the two discrimination tests provide evidence that the 

acoustic manipulations of f0 and VOT were equally discriminable (relative to original 

productions) for Seoul Korean listeners. The magnitudes of the two manipulations are not 

directly comparable because they are on different acoustic dimensions, namely, spectral and 

temporal. Nonetheless, the accuracy and response latency data suggest that the two sets of 

manipulated stimuli were similarly perceptible for these participants. 

 More importantly, both manipulations resulted in perceptible differences in the stimuli, as 

evidenced by the results of the one-sample t tests on the participants’ accuracy scores: 

participants were performing significantly better than chance in both conditions. Certainly, good 

performance in these oddity discrimination tests in which the manipulated stimuli are juxtaposed 

with the original ones does not guarantee that the participants would notice high post-stop f0 or 

long stop VOT in the imitation experiments. However, if the difference had not been detected in 

discrimination testing, it would have been unlikely to be noticed in the imitation experiments as 

well. Therefore, the results of these discrimination tests serve as a prerequisite for the imitation 

experiments.  

 

3.2 Imitation experiments 

3.2.1 Statistical procedures 

Prior to statistical analyses, tokens with a disfluency were excluded. Disfluency was 

defined as when participants did not utter a word that they read or heard, said a different word, 

repeated a part of a word (including self-correction), or had some extra-verbal interruption such 

as coughing or clearing the throat. 0.8% of the total productions were excluded from further 
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analyses due to disfluency. For f0 analyses, an additional 17.1% of the total productions were 

excluded because the first vowels of the tokens were creaky voiced or completely voiceless and 

the pitch-tracking function in Praat provided no f0 value. Creaky vowels occurred most 

commonly after tense /t*/. Complete devoicing occurred frequently for /i/ following /th/ (e.g., 

�� /thikka/, �� /thikʨin/).  

A subset (10.8%) of the remaining data was randomly chosen and analyzed to determine 

inter-rater consistency. The consistency score was computed using the Intraclass Correlation 

Coefficient (ICC) in the irr package (Gamer et al., 2012) for R. All duration measurements were 

highly consistent between two raters (VOT ICC = 0.997; F2OT ICC = 0.972; V1 duration ICC = 

0.989; and word duration ICC = 0.992; all p values < 0.001). 

 The results were analyzed in linear mixed effects regression models using the lme4 

package (Bates et al., 2014) for R. Changes in aspirated stops in the different production blocks 

(baseline, shadowing 1, 2, 3, and test), and changes in all stop types (aspirated /th/, lax /t/, and 

tense /t*/) in baseline and test productions were separately analyzed (first column in Table 3.3). 

Also separately analyzed were different manipulation types (High post-stop f0 vs. Long stop 

VOT, second column in Table 3.3). For each analysis, separate linear mixed effects models were 

built for each of the three dependent variables (VOT, F2OT, and Post-stop f0, third column in 

Table 3.3). A total of 12 separate linear mixed effects models were used to analyze different 

aspects of the data collected. Parameter specific p-values were obtained by using the 

Satterthwaite approximation, which was implemented in the lmerTest package (Kuznetsova et 

al., 2014) for R. 
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Target data  
under analyses 

Manipulation Type Dependent Variable Relevant Section 

Aspirated /th/s 
in  
Baseline - 
Shadowing 1, 2, 3 -
Test 

High post-stop f0 
Stop VOT 

§3.2.2.1 Stop F2OT 
Post-stop f0 

Long stop VOT 
Stop VOT 

§3.2.3.1 Stop F2OT 
Post-stop f0 

Aspirated /th/s,  
lax /t/s, and  
tense /t*/s 
in  
Baseline - Test 

High post-stop f0 
Stop VOT 

§3.2.2.2 Stop F2OT 
Post-stop f0 

Long stop VOT 
Stop VOT 

§3.2.3.2 Stop F2OT 
Post-stop f0 

Table 3.3. Summary of statistical modeling and relevant sections 

 

3.2.2 High f0 condition: primary cue in imitation 

 This section presents the effects of the enhanced primary cue for stop aspiration—high 

post-stop f0—on phonetic imitation of aspirated stops. Tables 3.4-3.6 summarize the descriptive 

statistics in VOT, F2OT, and f0 measurements, respectively, in the high f0 condition.  

 Consistent with previous findings on Korean stop productions (e.g., Kang, 2014; Oh, 

2011), the VOT/F2OT difference between aspirated stops and lax stops was larger for male 

participants than it was for female participants. Nonetheless, both male and female participants 

produced higher post-stop f0 for aspirated stops than for lax stops. Post-lax-stop f0 was 

comparable to post-sonorant f0, as seen in the filler words in Table 3.6. 
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Word 
Type 

Production 
Block 

Stop VOT (ms) 
Males Females 

Mean Std. Dev. Mean Std. Dev. 

Shadowed 
/th/ 

Baseline 
Shadowing 1 
Shadowing 2 
Shadowing 3 
Test 

67.33 
60.40 
61.34 
64.22 
68.84 

17.70 
17.45 
16.96 
16.91 
20.89 

64.55 
59.39 
59.34 
58.52 
63.79 

19.32 
17.49 
19.63 
19.67 
18.92 

Unheard 
/th/ 

Baseline 
Test 

66.31 
69.02 

18.22 
18.96 

66.53 
64.13 

19.66 
21.00 

Unheard 
/t/ 

Baseline 
Test 

52.94 
55.46 

18.68 
18.80 

58.59 
59.54 

19.91 
19.37 

Unheard 
/t*/ 

Baseline 
Test 

15.28 
14.75 

5.61 
6.00 

12.05 
12.04 

3.85 
4.05 

Table 3.4. Summary of descriptive statistics for VOT (msec) in the high f0 condition 

 

 

Word 
Type 

Production 
Block 

Stop F2OT (ms) 
Males Females 

Mean Std. Dev. Mean Std. Dev. 

Shadowed 
/th/ 

Baseline 
Shadowing 1 
Shadowing 2 
Shadowing 3 
Test 

76.33 
68.56 
70.92 
72.95 
78.27 

17.73 
17.68 
17.10 
16.55 
21.81 

72.32 
67.44 
67.83 
66.95 
72.53 

19.79 
17.95 
19.65 
19.81 
18.92 

Unheard 
/th/ 

Baseline 
Test 

75.81 
78.74 

18.43 
19.64 

73.93 
73.20 

19.70 
20.80 

Unheard 
/t/ 

Baseline 
Test 

61.70 
64.66 

18.78 
19.32 

67.79 
69.66 

19.92 
20.75 

Unheard 
/t*/ 

Baseline 
Test 

20.12 
19.92 

7.07 
7.82 

15.34 
15.60 

5.28 
5.48 

Table 3.5. Summary of descriptive statistics for F2OT (msec) in the high f0 condition 
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Word 
Type 

Production 
Block 

Post-stop f0 (Hz) 
Males Females 

Mean Std. Dev. Mean Std. Dev. 

Shadowed 
/th/ 

Baseline 
Shadowing 1 
Shadowing 2 
Shadowing 3 
Test 

129.43 
132.59 
133.85 
134.17 
132.82 

12.65 
17.07 
19.26 
17.79 
18.05 

271.74 
271.41 
273.09 
274.49 
277.87 

25.50 
21.69 
26.09 
24.74 
25.61 

Unheard 
/th/ 

Baseline 
Test 

129.75 
131.97 

12.65 
17.49 

271.04 
277.69 

23.52 
26.82 

Unheard 
/t/ 

Baseline 
Test 

107.99 
108.36 

11.33 
10.78 

203.12 
205.86 

14.51 
16.32 

Unheard 
/t*/ 

Baseline 
Test 

122.39 
125.53 

11.48 
16.71 

254.37 
258.18 

21.50 
27.27 

Shadowed 
fillers 

Baseline 
Shadowing 1 
Shadowing 2 
Shadowing 3 
Test 

104.82 
106.01 
106.12 
106.81 
105.59 

8.61 
9.22 
9.52 
9.48 
9.46 

199.47 
201.39 
202.46 
202.67 
200.41 

13.27 
16.33 
16.89 
17.41 
15.28 

Unheard 
fillers 

Baseline 
Test 

105.22 
105.97 

8.99 
10.15 

199.58 
200.98 

13.90 
16.40 

Table 3.6. Summary of descriptive statistics for post-stop f0 (Hz) in the high f0 condition 
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Figure 3.2. Changes in aspirated /th/ in the high f0 condition: stop VOT (top left), stop F2OT 
(top right), and post-stop f0 (bottom). Error bars represent 95% confidence intervals.  
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3.2.2.1 Effects of high f0 /th/ stimuli on productions of /th/ in shadowing and test blocks 

 Figure 3.2 presents mean VOT, F2OT and post-stop f0 of aspirated /th/s across speakers 

in the different production blocks (baseline, shadowing 1, 2, 3, and test) in the high f0 condition. 

 To statistically analyze the changes in aspirated /th/ productions in the five production 

blocks, a linear mixed effects model was fitted to each of the dependent variables, stop VOT, 

F2OT, and post-stop f0. For all three models, production block (baseline, shadowing 1, 2, 3, and 

test), presence of exposure (shadowed vs. unheard), and speaker gender were entered into the 

models as fixed effects (without interaction terms). For the VOT/F2OT models, the remaining 

word duration (Remainder = total word duration – VOT/F2OT) was included in the models to 

verify that the changes in VOT/F2OT were not due to global changes in speech rate. Similarly, to 

make sure that the observed changes in post-stop f0 were not due to global pitch shift, filler 

words were also included in the mixed effects model for f0 by including the interaction between 

word type (aspirated /th/-words vs. fillers) and production block.  

 As random effects, intercepts for speakers and words were included in all three models. 

In the VOT and F2OT models, by-speaker random slopes for the effect of production block were 

also included. In the f0 model, by-speaker random slopes for both word type and production 

block with interaction were included. Including by-word random slopes for the effect of 

production block did not improve the models, so it was not included in the models presented 

here. In the f0 model, word random effects were nested in word type. Parameter specific p-values 

were obtained by using the Satterthwaite approximation (Kuznetsova et al., 2014).  
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Dependent variable 
(Outcome) 

Fixed effect (Predictor) Estimate (β) t p 

Stop VOT 

(Intercept) 73.657 17.997 < 0.001 
Production block: 
   Base-Shadowing 1 
   Base-Shadowing 2 
   Base-Shadowing 3 
   Base-Test 

 
-6.446 
-6.079 
-5.608 
-0.360 

 
-5.276 
-4.658 
-3.619 
-0.347 

 
< 0.001 
< 0.001 

0.002 
0.739 

Exposure (unheard-shadowed) -1.639 -0.522 0.610 
Gender (female-male) 2.911 0.769 0.457 
Word duration (Rest) -0.018 -3.630 < 0.001 

Stop F2OT 

(Intercept) 80.399 19.482 < 0.001 
Production block: 
   Base-Shadowing 1 
   Base-Shadowing 2 
   Base-Shadowing 3 
   Base-Test 

 
-6.424 
-5.273 
-5.136 
0.598 

 
-4.949 
-4.142 
-3.249 
0.593 

 
< 0.001 
< 0.001 

0.004 
0.561 

Exposure (unheard-shadowed) -1.626 -0.487 0.628 
Gender (female-male) 3.602 0.982 0.339 
Word duration (Rest) -0.015 -3.110 0.002 

Post-stop f0 

(Intercept) 255.013 39.706 < 0.001 
Word type * Production block: 
   Aspirated-Filler, Base 

 
-54.430 

 
-8.394 

 
< 0.001 

   Aspirated, Base-Shadowing 1 
   Aspirated, Base-Shadowing 2 
   Aspirated, Base-Shadowing 3 
   Aspirated, Base-Test 

0.946 
2.473 
3.460 
5.104 

0.384 
0.981 
1.515 
3.322 

0.705 
0.339 
0.147 

< 0.001 
   Filler, Base-Shadowing 1 
   Filler, Base-Shadowing 2 
   Filler, Base-Shadowing 3 
   Filler, Base-Test 

0.760 
-0.051 
-0.653 
-4.084 

0.326 
-0.024 
-0.320 
-2.662 

0.748 
0.981 
0.753 
0.008 

Exposure (unheard-shadowed) 0.014 0.013 0.989 
Gender (female-male) -97.395 -40.484 < 0.001 

Table 3.7. Summary of linear mixed models for aspirated stops in different production blocks in 
the high f0 condition. Bolded data are significant at p < 0.05.  
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 Table 3.7 reports the results of the three mixed effects models, including the parameter 

estimate β, t value, and p value for the fixed effects included in the models. The pairwise 

comparisons for production block and word type are presented when the baseline production is 

compared against other production blocks or when baseline productions of different word types 

are compared against each other.  

 The results of the two duration models—VOT and F2OT—were almost identical to each 

other. The effects of production block were robust in both VOT and F2OT models, revealing 

significant shortening of VOT/F2OT during each block of shadowing relative to baseline. The 

VOT/F2OT difference between baseline and test productions was not significant. 

 In both duration models, word duration was a significant predictor of VOT/F2OT. 

Although this effect seems to be highly significant statistically [p < 0.005], β values were 

extremely small [β = -0.018 (VOT) and -0.015 (F2OT)], which means this effect is likely to be 

negligible in reality. Furthermore, the direction of the effect indicates that the changes in 

VOT/F2OT and those in the rest of word duration are negatively correlated, if at all. This means 

that lengthening (or shortening) in VOT/F2OT is not due to overall slowing down (or speeding 

up) of speech rate, and that the entire word duration was constant despite changes in VOT/F2OT. 

The relatively small changes in overall word duration can be explained as follows: Because stop 

VOT or F2OT is voiceless or breathy portion of the following vowel, VOT/F2OT is expected to 

be in inverse relation to the duration of the (modal) voiced portion of the vowel.  

 The results of the f0 model showed significant effects of production block but only the 

baseline-test pairwise comparisons were found to be significant. None of the three blocks of 

shadowing productions was different from baseline [| t | < 2, p > 0.1]. Individual speakers’ 

productions were investigated by examining the coefficients of the model by speaker, which 
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revealed that there are three outlier speakers. These outlier speakers were all females, and they 

apparently imitated the pitch of the male model speaker by lowering their pitch during the 

shadowing blocks. (See Appendix C for the individual speakers’ production patterns. The outlier 

speakers are F04, F12, and F20.) Excluding these three speakers, the same linear mixed effects 

model was fitted again, whose results are presented in Table 3.8. 

 

Fixed effect (Predictor) Estimate (β) t p 
(Intercept) 253.614 36.483 < 0.001 
Word type * Production block: 
      Aspirated stop-Filler, Base 

 
-49.172 

 
-7.036 

 
< 0.001 

      Aspirated stop, Base-Shadowing 1 
      Aspirated stop, Base-Shadowing 2 
      Aspirated stop, Base-Shadowing 3 
      Aspirated stop, Base-Test 

3.883 
6.025 
6.455 
6.162 

1.853 
3.381 
3.855 
3.647 

0.083 
0.004 
0.001 
0.002 

      Filler, Base-Shadowing 1 
      Filler, Base-Shadowing 2 
      Filler, Base-Shadowing 3 
      Filler, Base-Test 

-0.853 
-2.380 
-2.545 
-4.543 

-0.385 
-1.423 
-1.476 
-3.047 

0.706 
0.174 
0.159 
0.008 

Exposure (unheard-shadowed) 0.028 0.028 0.977 
Gender (female-male) -102.329 -50.046 < 0.001 

Table 3.8. Summary of the new linear mixed model for f0 analysis (excluding outliers).  
Bolded data are significant at p < 0.05. 
 

 

 Without the three outlier participants, both shadowing 2 and 3 were significantly different 

from the baseline [| t | > 3, p < 0.005] while the post-stop f0 difference between shadowing 1 and 

baseline did not reach significance [t = 1.853, p = 0.083]. A separate linear mixed effects model 

was fitted to the outlier speakers only, and it revealed that their f0 in shadowing production was 

indeed lower than their baseline especially in the earlier blocks of shadowing [Shadowing 1: β = 

-14.677, t = -3.404, p = 0.039; Shadowing 2: β = -16.425, t = -4.053, p = 0.023; Shadowing 3: β 
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= -12.478, t = -2.548, p = 0.080]. These outlier speakers’ post-stop f0 in the test production was 

not different from their baseline [β = -0.469, t = -0.182, p = 0.867].  

 Other significant fixed effects in the f0 model were the effect of speaker gender and word 

type (aspirated stop words vs. sonorant-initial fillers): female speakers had higher f0 than male 

speakers and post-aspirated-stop f0 was higher than post-sonorant f0, as expected. 

 The effects of presence of exposure (shadowed vs. unheard) were not significant in any 

of the three models [| t | < 1, p > 0.1]. Figure 3.3 presents the comparison between shadowed /th/-

initial words and unheard ones in baseline and test productions. Words beginning with initial 

aspirated stops showed the same imitation effects regardless of whether the specific word was 

present or not during the shadowing blocks. This is consistent with previous findings (e.g., 

Nielsen, 2011) that phonetic imitation is not limited to specific words, but generalizes to novel 

words sharing the same phoneme.  

 Taken together, the results from the f0 model and the durational models show a decrease 

in the duration of stop VOT/F2OT with increasing post-stop f0 during shadowing blocks. This 

reverse relation between stop VOT and post-stop f0 supports the vocal cord tension hypothesis 

(McCrea & Morris, 2005; Narayan & Bowden, 2013). Aspirated voiceless stops produced with a 

particularly high f0 have shorter VOTs than productions made in a lower pitch range, 

presumably because high pitch can involve relatively stiff vocal cords, reducing the time for the 

vocal cords to adduct and start voicing. (This point is discussed further in Section §4.1.1.) 
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Figure 3.3. Shadowed and unheard /th/-initial words in the high f0 condition: stop VOT (top 
left), stop F2OT (top right), and post-stop f0 (bottom). To plot speakers of both genders together, 

post-stop f0 is given in z-score. Error bars represent 95% confidence intervals. 
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3.2.2.2 Effects of high f0 /th/ stimuli on productions of /t/ and /t*/ 

 Another question that this study aims to answer is whether phonation types other than 

aspirated stops change as a result of hearing and shadowing the target stimuli with raised post-

stop f0. Figures 3.4-3.6 presents mean VOT, F2OT and post-stop f0, respectively, of the three 

stop types in baseline and test productions of the high f0 condition.  

 

 

 

  

Figure 3.4. VOT changes in the high f0 condition for different stops (aspirated /th/, lax /t/, and 
tense /t*/) produced by female (left) and male (right) speakers. Error bars represent 95% 
confidence intervals. 
 
 
!
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Figure 3.5. F2OT changes in the high f0 condition for different stops (aspirated /th/, lax /t/, and 
tense /t*/) produced by female (left) and male (right) speakers. Error bars represent 95% 
confidence intervals. 
 
!
!

  

Figure 3.6. Post-onset f0 changes in the high f0 condition for different consonants (aspirated /th/, 
lax /t/, tense /t*/, and sonorant) produced by female (left) and male (right) speakers. Error bars 
represent 95% confidence intervals. 
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 To statistically analyze the changes in production of all stop types (aspirated, lax, and 

tense stops) between baseline and test productions, three additional linear mixed effects models 

were fitted to three dependent variables (stop VOT, F2OT, and post-stop f0). For the two 

duration (VOT/F2OT) models, stop type (aspirated, lax, and tense), production block (baseline, 

test), and their interaction were entered into the models as fixed effects. For the f0 model, word 

type (aspirated, lax, tense, and fillers) was entered instead of stop type in order to include filler 

words in the analysis. This was done to make sure that the observed changes in post-stop f0 were 

not due to global pitch shift. For similar reasons, the remaining word duration (Remainder = total 

word duration – VOT/F2OT) was entered in the duration models as a fixed effect. In addition, all 

three models included presence of exposure (shadowed vs. unheard) and speaker gender as fixed 

effects (without interaction terms).  

 As random effects, intercepts for speakers and words as well as by-speaker random 

slopes for both stop/word type and production block with interaction were included in all three 

models. Including by-word random slopes did not provide better fits, so they were not included 

in the final models. In all three models, word random effects were nested in stop/word type. 

Parameter specific p-values were obtained by using the Satterthwaite approximation (Kuznetsova 

et al., 2014).  

 Table 3.9 summarizes the parameter estimate β, t value, and p value for the fixed effects 

included in the three fitted models. The pairwise comparisons for production block and word 

type are presented when baseline production of aspirated stop is compared against other word 

types or when the baseline production is compared against the test production. 
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Dependent variable 
(Outcome) 

Fixed effect (Predictor) Estimate (β) t p 

Stop VOT 

(Intercept) 73.943 21.665 < 0.001 
Word type * Production block: 
Aspirated-Lax, Base 
Aspirated-Tense, Base 

 
-10.035 
-52.629 

 
-3.113 

-15.010 

 
0.002 

< 0.001 
Aspirated, Base-Test 
Lax, Base-Test 
Tense, Base-Test 

-0.348 
1.736 

-0.056 

-0.324 
1.693 

-0.044 

0.750 
0.100 
0.965 

Exposure (unheard-shadowed) -1.566 -0.557 0.579 
Gender (female-male) 0.496 0.471 0.642 
Word duration (Rest) -0.016 -4.490 < 0.001 

Stop F2OT 

(Intercept) 81.938 23.623 < 0.001 
Word type * Production block: 
Aspirated-Lax, Base 
Aspirated-Tense, Base 

 
-9.277 

-56.957 

 
-2.720 

-16.218 

 
0.008 

< 0.001 
Aspirated, Base-Test 
Lax, Base-Test 
Tense, Base-Test 

0.586 
1.540 

-0.708 

0.575 
1.515 

-0.553 

0.573 
0.137 
0.586 

Exposure (unheard-shadowed) -1.693 -0.572 0.568 
Gender (female-male) 0.886 0.617 0.545 
Word duration (Rest) -0.016 -4.268 < 0.001 

Post-stop f0 

(Intercept) 258.488 44.350 < 0.001 
Word type * Production block: 
Aspirated-Lax, Base 
Aspirated-Tense, Base 
Aspirated-Filler, Base 

 
-51.065 
-13.335 
-54.428 

 
-7.617 
-5.953 
-8.152 

 
< 0.001 
< 0.001 
< 0.001 

Aspirated, Base-Test 
Lax, Base-Test 
Tense, Base-Test 
Filler, Base-Test 

5.107 
-3.235 
-1.610 
-4.087 

3.250 
-2.535 
-1.180 
-2.606 

0.004 
0.020 
0.253 
0.018 

Exposure (unheard-shadowed) 0.013 0.011 0.991 
Gender (female-male) -106.830 -44.041 < 0.001 

Table 3.9. Summary of linear mixed models for three stop types in baseline and test productions 
in the high f0 condition. Bolded data are significant at p < 0.05. 
 



! 61 

 First, the comparisons among different stop/word types within baseline production 

confirmed that the primary difference between aspirated stops and lax stops is maintained not by 

stop VOT/F2OT but by post-stop f0: (1) f0 was significantly higher after aspirated stops than 

after lax stops with a mean difference of around 50 Hz [| t | > 7, p < 0.001], and (2) VOT/F2OTs 

of aspirated stops were significantly longer that those of lax stops [| t | > 2.5, p < 0.01], but the 

difference of roughly 10 ms seems quite small considering the large variation in VOT/F2OT 

within each stop category (see the descriptive statistics in Table 3.4-3.6). Although all three 

Korean stop categories under investigation are voiceless word-initially, f0 following a lax stop 

seems comparable to post-sonorant f0. This pattern of results supports the interpretation that the 

post-lax-stop low f0 in Seoul Korean is a phonological tonal contrast (e.g., Kang, 2014).  

 Turning to the comparisons between baseline and test productions, the effects of 

production block (baseline vs. test) were not significant in either the VOT or F2OT models. That 

is, participants did not adjust their stop VOT/F2OTs after hearing and shadowing aspirated stops 

with extra high post-stop f0. On the other hand, production block (baseline vs. test) had 

significant effects on post-stop f0 for aspirated stops, lax stops, and fillers. Post-aspirated-stop f0 

increased in test production [t = 3.250, p = 0.004], while post-lax-stop and post-sonorant f0 

decreased [t = -2.535, p = 0.020; t = -2.606, p = 0.018, respectively]. These results suggest that 

speech imitation may not be limited to a specific phonological category or feature. It seems the 

participants “imitated” the enhanced aspiration by maximizing the difference in post-stop f0 

between aspirated stops and other stops, as post-stop f0 is the primary cue for stop aspiration. 

(This point is discussed further in Section §4.1.2.) 

 Effects of the remaining word duration on the two duration measures and effects of 

speaker gender on pitch in general were found in the current models as well, which were not 
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different from those reported in §3.2.2.1. Also, exposure (shadowed vs. unheard) was again not 

significant in any of the current models [| t | < 1, p > 0.1], indicating that shadowed words were 

not different from unheard words in this imitation task. This result supports the claim that the 

target of speech imitation is not individual words.  

 

3.2.2.3 Interim summary 

 To recapitulate important findings of this section, the effects of /th/ with high post-stop f0 

are as follows. 

 

During shadowing blocks, relative to baseline: 

1. VOT/F2OT of /th/ decreased. 

2. Excluding three female outlier speakers, post-stop f0 of /th/ increased while post-sonorant 

f0 did not increase. 

3. For three outlier speakers who seem to have imitated the male model speaker, post-stop 

f0 decreased; these speakers’ patterns demonstrate cross-individual variation in 

spontaneous imitation.  

 

During test block, relative to baseline: 

1. VOT/F2OT of /th/, /t/, and /t*/ did not change significantly. 

2. Post-stop f0 of /th/ increased while f0 following lax /t/ and sonorant onsets decreased.  

3. Shadowed and unheard /th/-initial words were not different in their imitative changes. 
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 Additionally, for all production blocks, VOT/F2OT were negatively correlated with the 

rest of word duration. Also, with the exception of the outlier speakers, male and female 

participants did not differ in their imitative patterns.  

 

3.2.3 Long VOT condition: non-primary cue in imitation 

 Previous findings for spontaneous speech imitation show that English speakers imitate 

artificially extended VOTs of voiceless stops both in shadowing (Fowler et al., 2003; Shockley et 

al., 2004) and in delayed imitation (Nielsen, 2011). Since VOT is a primary cue for English 

voiceless stops, it remains unclear whether extended VOT facilitates imitation when it is not the 

primary cue for a phonation contrast, as is the case for Seoul Korean. Also, if imitation does 

occur, it is unknown whether the imitation patterns for Seoul Korean speakers will be 

comparable to those of English speakers. To answer these questions, the effects of enhancing a 

non-primary cue for aspirated stops (long stop VOT) on spontaneous imitation are examined. 

Tables 3.10-3.12 give summaries of the descriptive statistics for stop VOT, F2OT, and post-stop 

f0 measurements, respectively, in the extended VOT condition.  
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Word 
Type 

Production 
Block 

Stop VOT (ms) 
Males Females 

Mean Std. Dev. Mean Std. Dev. 

Shadowed 
/th/ 

Baseline 
Shadowing 1 
Shadowing 2 
Shadowing 3 
Test 

65.33 
65.18 
66.11 
66.29 
67.25 

17.54 
16.65 
16.07 
16.41 
19.03 

65.34 
64.19 
65.70 
66.07 
67.03 

18.87 
20.61 
21.35 
20.29 
20.88 

Unheard 
/th/ 

Baseline 
Test 

64.81 
70.12 

16.81 
18.27 

66.42 
69.48 

18.78 
21.62 

Unheard 
/t/ 

Baseline 
Test 

50.68 
53.42 

17.47 
17.59 

60.19 
61.03 

18.44 
18.80 

Unheard 
/t*/ 

Baseline 
Test 

14.28 
14.29 

4.44 
4.82 

13.10 
12.99 

4.86 
6.75 

Table 3.10. Summary of descriptive statistics for VOT (msec) in the long VOT condition 

 

 

Word 
Type 

Production 
Block 

Stop F2OT (ms) 
Males Females 

Mean Std. Dev. Mean Std. Dev. 

Shadowed 
/th/ 

Baseline 
Shadowing 1 
Shadowing 2 
Shadowing 3 
Test 

72.77 
72.68 
74.77 
74.29 
75.58 

17.56 
16.19 
16.77 
16.16 
18.81 

72.69 
72.45 
73.71 
74.13 
74.70 

19.63 
21.76 
21.87 
20.92 
22.22 

Unheard 
/th/ 

Baseline 
Test 

72.09 
79.44 

16.84 
18.25 

74.10 
77.27 

20.01 
22.32 

Unheard 
/t/ 

Baseline 
Test 

57.82 
61.48 

16.43 
17.04 

68.40 
70.12 

18.07 
18.89 

Unheard 
/t*/ 

Baseline 
Test 

18.32 
18.18 

5.93 
6.47 

16.02 
16.45 

6.36 
7.85 

Table 3.11. Summary of descriptive statistics for F2OT (msec) in the long VOT condition 
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Word 
Type 

Production 
Block 

Post-stop F0 (Hz) 
Males Females 

Mean Std. Dev. Mean Std. Dev. 

Shadowed 
/th/ 

Baseline 
Shadowing 1 
Shadowing 2 
Shadowing 3 
Test 

129.40 
133.71 
133.66 
135.00 
136.78 

12.53 
14.77 
14.45 
13.55 
14.69 

259.47 
264.86 
261.96 
263.99 
269.74 

28.15 
31.03 
32.45 
31.57 
36.18 

Unheard 
/th/ 

Baseline 
Test 

128.44 
136.29 

12.27 
15.02 

260.40 
270.87 

29.06 
37.53 

Unheard 
/t/ 

Baseline 
Test 

105.75 
107.81 

9.34 
9.19 

198.53 
202.84 

19.16 
20.89 

Unheard 
/t*/ 

Baseline 
Test 

121.82 
127.32 

11.08 
12.10 

244.16 
251.39 

25.95 
33.11 

Shadowed 
fillers 

Baseline 
Shadowing 1 
Shadowing 2 
Shadowing 3 
Test 

103.64 
105.14 
105.98 
107.18 
105.73 

8.82 
8.41 
8.92 
7.85 
7.94 

195.04 
197.91 
197.88 
199.54 
197.01 

17.21 
21.76 
22.48 
21.93 
20.05 

Unheard 
fillers 

Baseline 
Test 

104.39 
105.81 

9.01 
8.94 

194.85 
197.22 

17.26 
20.27 

Table 3.12. Summary of descriptive statistics for post-stop f0 (Hz) in the long VOT condition 
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Figure 3.7. Changes in aspirated /th/ in the long VOT condition: stop VOT (top left), stop F2OT 
(top right), and post-stop f0 (bottom). Error bars represent 95% confidence intervals. 
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3.2.3.1 Effects of long VOT /th/ stimuli on productions of /th/ in shadowing and test blocks  

 Figure 3.7 presents mean VOT, F2OT and post-stop f0 of aspirated /th/s across speakers 

in the different production blocks (baseline, shadowing 1, 2, 3, and test) in the long VOT 

condition.  

 Three separate linear mixed effects models with different dependent variables (stop VOT, 

F2OT, and post-stop f0) were fitted in order to analyze changes in aspirated /th/ productions in 

five production blocks (baseline, shadowing 1, 2, 3, and test) as a result of exposure to the 

enhanced non-primary cue for aspirated stops. The details of the statistical modeling, such as 

fixed effects, random effects, and interaction terms included, were identical to the models used in 

the f0 condition described in 3.2.2.1. 

 Table 3.13 shows the parameter estimate β, t value, and p value for fixed effects included 

in the three fitted models. The pairwise comparisons for production block and word type are 

presented when the baseline production is compared against other production blocks or when 

baseline productions of different word types are compared against each other.  

 In the two duration models, neither VOT nor F2OT was different between baseline and 

shadowing productions. That is, aspirated stops with extended VOT did not induce significant 

imitation effects in VOT [| t | < 0.5, p > 0.1], or F2OT [| t | < 1, p > 0.1] in shadowing 

productions. For the baseline-test comparison, the effects of production block were significant 

only in the F2OT model [t = 2.102, p = 0.035]. Changes in F2OT seem more robust than those in 

VOT; aspirated stop VOT was not significantly longer in test productions than in the baseline 

counterpart [t = 1.922, p = 0.071]. Word duration effects were significant in both VOT/F2OT 

models, in the same fashion as in the high f0 condition.  

  



! 68 

 
 
Dependent variable 
(Outcome) 

Fixed effect (Predictor) Estimate (β) t p 

Stop VOT 

(Intercept) 83.010 21.172 < 0.001 
Production block: 
   Base-Shadowing 1 
   Base-Shadowing 2 
   Base-Shadowing 3 
   Base-Test 

 
-0.965 
0.306 
0.619 
2.401 

 
-0.449 
0.143 
0.348 
1.922 

 
0.659 
0.888 
0.732 
0.071 

Exposure (unheard-shadowed) -3.352 -1.116 0.270 
Gender (female-male) -3.201 -0.914 0.373 
Word duration (Rest) -0.033 -6.501 < 0.001 

Stop F2OT 

(Intercept) 92.299 23.978 < 0.001 
Production block: 
   Base-Shadowing 1 
   Base-Shadowing 2 
   Base-Shadowing 3 
   Base-Test 

 
-0.414 
1.126 
1.231 
2.990 

 
-0.201 
0.538 
0.711 
2.102 

 
0.841 
0.591 
0.477 
0.035 

Exposure (unheard-shadowed) -3.819 -1.221 0.222 
Gender (female-male) -3.994 -1.190 0.234 
Word duration (Rest) -0.037 -7.103 < 0.001 

Post-stop f0 

(Intercept) 244.682 34.676 < 0.001 
Word type * Production block: 
   Aspirated-Filler, Base 

 
-50.211 

 
-8.325 

 
< 0.001 

   Aspirated, Base-Shadowing 1 
   Aspirated, Base-Shadowing 2 
   Aspirated, Base-Shadowing 3 
   Aspirated stop, Base-Test 

4.985 
3.228 
4.930 
9.326 

2.010 
1.315 
2.003 
4.554 

0.044 
0.188 
0.045 

< 0.001 
   Filler, Base-Shadowing 1 
   Filler, Base-Shadowing 2 
   Filler, Base-Shadowing 3 
   Filler, Base-Test 

-2.613 
-0.570 
-0.800 
-7.311 

-1.826 
-0.397 
-0.473 
-3.745 

0.068 
0.691 
0.636 

< 0.001 
Exposure (unheard-shadowed) -0.239 -0.219 0.827 
Gender (female-male) -89.319 -24.165 < 0.001 

Table 3.13. Summary of linear mixed models for aspirated stops in different production blocks 
in the long VOT condition. Bolded data are significant at p < 0.05. 
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 Contrary to the results in both duration models, the f0 model showed significant effects of 

VOT extended stimuli on post-aspirated-stop f0 in different production blocks. Post-stop f0 in the 

first and last blocks of shadowing was significantly higher than that in baseline [t = 2.010, p = 

0.044; t = 2.003, p = 0.045, respectively]. In test production, f0 after aspirated stops was 

significantly higher than the baseline counterpart [t = 4.554, p < 0.001], while post-sonorant f0 in 

filler words significantly decreased [t = -3.745, p < 0.001]. Post-stop f0 in the second shadowing 

block was not significantly different from the baseline counterpart [t = 1.315, p = 0.188].  

 Taken together, the effects of extended VOT stimuli on /th/s in different production 

blocks indicate that participants imitated exaggerated stop aspiration cued by longer VOTs 

primarily by raising post-stop f0 with a small (trending) increase in F2OT (VOT). Recall that the 

stimuli that the participants heard during shadowing blocks in this task never included f0 

manipulation. Even so, strong effects on post-stop f0 emerged as a result of exposure to aspirated 

stops with extended VOTs. This result presumably occurred because post-stop f0 is the primary 

cue for aspirated stops for most of the participants in this study. The current finding is not due to 

overall increase in f0 range. To rule out the possibility of global shift in f0 range, sonorant-initial 

fillers were included in the statistical modeling and the post-sonorant f0 did not change in 

shadowing blocks and decreased in test block compared to the baseline (Table 3.13).  

 Other significant fixed effects in the f0 model were the effect of speaker gender and word 

type (aspirated stop words vs. sonorant-initial fillers): female speakers had higher f0 than male 

speakers and post-aspiration f0 was higher than post-sonorant f0, as expected. 

 The effects of presence of exposure (shadowed vs. unheard) were not significant in any 

of the three models [| t | < 1.3, p > 0.1]. Words beginning with initial aspirated stops showed the 



! 70 

same imitation effects regardless of whether the specific word was present or not during the 

shadowing blocks, as illustrated in Figure 3.8. 

 

  

 

Figure 3.8. Shadowed and unheard /th/-initial words in the long VOT condition:  
stop VOT (top left), stop F2OT (top right), and post-stop f0 (bottom). To plot speakers of both 

genders together, post-stop f0 is given in z-score. Error bars represent 95% confidence intervals. 
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3.2.3.2 Effects of long VOT /th/ stimuli on productions of /t/ and /t*/ 

 Figures 3.9-3.11 present mean VOT, F2OT and post-stop f0, respectively, of different 

stop types in baseline and test productions of the long VOT condition. To analyze productions of 

/th/, /t/, and /t*/ in baseline and test productions in the long VOT condition, three additional 

linear mixed effects models—one for each of the three dependent variables (stop VOT, F2OT, 

and post-stop f0)—were conducted. The details of statistical modeling, such as fixed effects, 

random effects, and interaction terms included, were identical to the models used in the VOT 

condition described in 3.2.2.2. 

 

  

  

Figure 3.9. VOT changes in the long VOT condition for different stops (aspirated /th/, lax /t/, and 
tense /t*/) produced by female (left) and male (right) speakers. Error bars represent 95% 
confidence intervals. 
 
!
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Figure 3.10. F2OT changes in the long VOT condition for different stops (aspirated /th/, lax /t/, 
and tense /t*/) produced by female (left) and male (right) speakers. Error bars represent 95% 
confidence intervals. 
!
!
!
!

  

Figure 3.11. Post-onset f0 changes in the long VOT condition for different consonants (aspirated 
/th/, lax /t/, tense /t*/, and sonorant) produced by female (left) and male (right) speakers. Error 
bars represent 95% confidence intervals. 
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Dependent variable 
(Outcome) 

Fixed effect (Predictor) Estimate (β) t p 

Stop VOT 

(Intercept) 81.105 24.832 < 0.001 
Stop type * Production block: 
    Aspirated-Lax, Base 
    Aspirated-Tense, Base 

 
-10.135 
-52.150 

 
-3.284 

-16.963 

 
0.001 

< 0.001 
    Aspirated stop, Base-Test 
    Lax stop, Base-Test 
    Tense stop, Base-Test 

2.451 
-1.161 
-2.766 

1.961 
-0.899 
-1.800 

0.065 
0.379 
0.087 

Exposure (unheard-shadowed) -3.081 -1.128 0.262 
Gender (female-male) -2.821 -1.678 0.111 
Word duration (Rest) -0.029 -7.464 < 0.001 

Stop F2OT 

(Intercept) 90.710 27.473 < 0.001 
Stop type * Production block: 
    Aspirated-Lax, Base 
    Aspirated-Tense, Base 

 
-9.939 

-56.137 

 
-3.132 

-17.715 

 
0.002 

< 0.001 
    Aspirated stop, Base-Test 
    Lax stop, Base-Test 
    Tense stop, Base-Test 

3.040 
-0.917 
-3.124 

2.144 
-0.655 
-1.835 

0.032 
0.513 
0.066 

Exposure (unheard-shadowed) -3.466 -1.230 0.219 
Gender (female-male) -4.299 -2.180 0.029 
Word duration (Rest) -0.033 -8.210 < 0.001 

Post-stop f0 

(Intercept) 248.739 39.489 < 0.001 
Word type * Production block: 
    Aspirated-Lax, Base 
    Aspirated-Tense, Base 
    Aspirated-Filler, Base 

 
-47.434 
-12.682 
-50.213 

 
-7.901 
-5.787 
-8.340 

 
< 0.001 
< 0.001 
< 0.001 

    Aspirated stop, Base-Test 
    Lax stop, Base-Test 
    Tense stop, Base-Test 
    Filler, Base-Test 

9.321 
-5.864 
-2.824 
-7.306 

4.570 
-3.012 
-3.045 
-3.735 

< 0.001 
0.007 
0.005 
0.002 

Exposure (unheard-shadowed) -0.243 -0.213 0.831 
Gender (female-male) -100.319 -23.761 < 0.001 

Table 3.14. Summary of linear mixed models for three stop types in baseline and test 
productions of the long VOT condition. Bolded data are significant at p < 0.05 
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 Table 3.14 shows the parameter estimate β, t value, and p value for the fixed effects 

included in the three models. The pairwise comparisons for production block and word type are 

presented when the baseline aspirated stop production is compared with other types of stops or 

production blocks. In keeping with the results for the high f0 condition, the comparisons among 

different stop/word types within baseline production confirmed that the aspirated stops and lax 

stops are primarily distinguished by post-stop f0 rather than stop VOT/F2OT. One unexpected 

finding was the significant gender effect in F2OT. To identify the source of the gender effect, 

another linear mixed model that included an interaction term among stop type, production block 

and speaker gender was fitted to the data. The results of this model revealed that male speakers 

have significantly shorter F2OT than female speakers only for lax stops [β = -9.255, t = -3.792, p 

= 0.001] (see Figure 3.10 for visual demonstration of this gender difference). This suggests the 

possibility that male participants in this study still maintain the F2OT contrast between lax and 

aspirated stops at least to some extent. Male and female speakers were not different in terms of 

their baseline-test comparisons.  

 Turning to the comparisons between baseline and test productions, the effects of 

production block (baseline vs. test) were very robust in the f0 models, but not as robust in the 

two durational models. The only baseline-test comparison that reached the significance level (p < 

0.05) in the two duration models was the F2OT difference in aspirated stops: aspirated stops in 

test production showed longer F2OT than those in baseline [t = 2.144, p = 0.032]. The same 

pairwise comparison in the VOT model was marginally significant [t = 1.961, p = 0.065]. On the 

other hand, the f0 model showed highly significant effects for all word types: after hearing and 

shadowing extended VOT stimuli, f0 after aspirated stops increased [t = 4.570, p < 0.001] while 

other word types (lax stops, tense stops, and fillers) all showed a significant decrease in post-
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onset f0 [| t | > 3, p < 0.01]. These changes in post-consonantal f0 for all word types indicate that 

the effects of speech imitation are not limited to a specific segment or word. Participants in this 

study seem to have imitated the enhanced phonological contrast signaled by longer VOTs in the 

aspirated stop stimuli, perhaps using their own way of exaggerating the contrast. This robust 

change in post-stop f0 induced by the long VOT stimuli forms a striking contrast with the (lack 

of) imitative effects of the high f0 stimuli on VOT, as reported in §3.2.2. This presumably 

suggests that primary and secondary cues play different roles in speech imitation. As the primary 

cue for phonological aspiration for most of the participants in this study is post-stop f0, they 

“imitated” the enhanced aspiration by maximizing the f0 difference between aspirated stops and 

other stops/sonorants. (This point is discussed further in Section §4.1.2.) 

 Similar to the high post-stop f0 condition, and as would be expected, the remaining (non-

VOT/F2OT) word duration is negatively correlated with VOT/F2OT. Although the correlation is 

highly significant statistically, the mean differences are negligible in reality [β = -0.029 (VOT) 

and -0.033 (F2OT)]. Effects of speaker gender on f0 in general were found, again as expected. 

Finally, the effects of shadowing (vs. unheard) were not significant in any of the models.  

 

3.2.3.3. Interim summary  

 In sum, the effects of /th/ with long VOT are as follows. 

 

During shadowing blocks, relative to baseline: 

1. VOT/F2OT of /th/ did not change. 

2. Post-stop f0 of /th/ increased in the first and third repetitions of the shadowing blocks. The 

effect was not significant in the second shadowing block.  
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3. Post-sonorant f0 did not change. 

 

During test block, relative to baseline: 

1. F2OT of /th/ increased significantly. The increase in VOT of /th/ was marginally 

significant (p = 0.065). VOT/F2OT of tense /t*/ during the test block showed a marginal 

decrease [p = 0.087 (VOT) and 0.066 (F2OT)]. 

2. Post-stop f0 of /th/ increased while f0 following lax /t/, tense /t*/, and sonorant onsets 

decreased.  

3. Shadowed and unheard /th/-initial words were not different in their imitative changes. 

 

 In addition, for all production blocks, VOT/F2OT were negatively correlated with the rest 

of word duration. Male and female participants were not different in their imitative patterns; 

however, in their stop productions, male speakers had overall shorter F2OT for lax stops than did 

female speakers. 

 

3.2.4 Summary of imitation results 

 The current findings demonstrate a clear asymmetry between primary and non-primary 

cues in spontaneous imitation of Seoul Korean aspirated stops. Although both primary and non-

primary cues facilitated imitative effects, the details of the imitation patterns were distinct. An 

enhanced non-primary cue for stop aspiration (long VOT) induced increases in both primary and 

non-primary cues. That is, the Seoul Korean speakers “imitated” exaggerated stop aspiration 

cued by long VOT not only by lengthening their own VOT for aspirated stops but also by raising 

their f0 after those stops. However, an enhanced primary cue (high post-stop f0) did not have 
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similar effects on the non-primary cue. After hearing aspirated stops with raised post-stop f0, the 

same participants only imitated the manipulated property; they did not lengthen VOT. These 

results indicate that, in speech imitation, exposure to an enhanced phonetic property can 

influence production not only of that property but also of other phonetic properties if they are 

important for the targeted phonological category. The participants in this study appear to have 

adjusted the cue that they would primarily use to enhance stop aspiration (i.e., post-stop f0), in 

addition to imitating the cue that the stimuli they heard employed to enhance aspirated stops. 

 

3.3 Analyses of productions of individual participants 

 As is typical for imitation experiments, not all participants behaved the same. To assess 

the variation across participants, the data for each participant were separately analyzed. Twelve 

separate linear mixed effects models were fitted to the data from each participant (the six 

summarized in Table 3.15 * two manipulation conditions (high f0 and long VOT)). Fixed effects 

were identical to the corresponding models used in the pooled analyses except that speaker 

gender was not included for individual analyses (as summarized in the third column of Table 

3.15). Only a single random effect of word (nested in stop or word type, when appropriate) was 

included. Parameter-specific p-values were obtained by using the Satterthwaite approximation 

(Kuznetsova et al., 2014).  

 For most speakers, the statistical results for the two manipulation conditions conformed 

to the general patterns found in the pooled analyses, although individual speakers’ results were 

far more variable. The remainder of this chapter discusses these individual results, focusing on 

the following aspects: (1) whether or not each speaker’s behavior differs in the two experimental 

conditions, (2) the relation between each speaker’s baseline productions and their imitative 
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patterns, and (3) the relation between each speaker’s imitative patterns in the two manipulation 

conditions and their discrimination accuracy. Because individual shadowing results are too 

variable and complex for patterns to emerge, the discussion in this section is based only on the 

baseline-test comparison (see §4.2 for a possible reason for the high variability in shadowing 

blocks). The full statistical results including the shadowing analyses for each speaker are 

reported in Appendix C. 

 

Target data under 
analyses 

Dependent 
Variable 

Fixed Effects 

Aspirated /th/s 
in  
Baseline -  
Shadowing 1, 2, 3 - 
Test 

Stop VOT 
Stop F2OT 

Production block (base, sh1, sh2, sh3, test) + 
Presence of exposure (shadowed, unheard) +  
Rest of word duration 

Post-stop f0 
Word type (/th/ vs. fillers) *  
Production block (base, sh1, sh2, sh3, test) +  
Presence of exposure (shadowed, unheard) 

Aspirated /th/s,  
lax /t/s,  
and tense /t*/s 
in Baseline - Test 

Stop VOT 
Stop F2OT 

Stop type (/th/, /t/, /t*/) *  
Production block (base, test) +  
Presence of exposure (shadowed, unheard) + 
Rest of word duration 

Post-stop f0 
Word type (/th/, /t/, /t*/, fillers) *  
Production block (base, test) +  
Presence of exposure (shadowed, unheard) 

Table 3.15. Summary of statistical modeling for individual analyses 

 

 Figures 3.12-3.17 provide mean VOT, F2OT, and post-stop f0 of /th/ in baseline and test 

productions in the two manipulation conditions for individual speakers. For each manipulation 

condition, speakers are ordered according to their discrimination accuracy scores for the 

corresponding property from left to right. For instance, in Figure 3.12, the rightmost speaker 
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M16 obtained the highest accuracy score in the discrimination task using high f0 stimuli, 

followed by M14, F07, and so on. Statistical significance (p < 0.05) is indicated by two different 

symbols, � for an increase from baseline to test, and * for a decrease. As participants heard /th/ 

with increased VOT and f0, only the ��indicates significant imitation. Recall that ascending 

changes in the non-manipulated cue (e.g., increase in post-stop f0 after hearing /th/ with long 

VOT) are also referred to as imitation in this study, as it is viewed as evidence of phonological 

imitation (see §2.5 for phonetic and phonological imitation hypotheses). 

 In both manipulation conditions, only a small number of participants lengthened VOT 

and F2OT of /th/ (Figures 3.12-3.15) whereas almost all participants increased their post-stop f0 

(Figures 3.16-3.17). Most of the participants produced /th/s with higher post-stop f0 after hearing 

/th/ with high f0, and even more participants did so after hearing /th/ with long VOT. All 

participants except for speakers F11, F20, and F21 produced significantly higher post-stop f0 in 

test production than in baseline production in the long VOT condition, as presented in Figure 

3.17. Note that the speakers who significantly decreased their f0 in the high f0 condition (F04, 

M16, and M17 in Figure 3.16) are different individuals from the three female outlier speakers 

who appear to have imitated the male model speaker by lowering their own f0s. As mentioned in 

§3.2.2.1, their lowering of f0 is limited to shadowing production and their f0 in the test 

production was not different from their baseline.  
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Figure 3.12. VOT of /th/ in baseline and test productions of the high f0 condition, for each 
speaker. �indicates a significant increase and * indicates a significant decrease (p < 0.05).  

Speakers are presented from left to right in order of increasing discrimination accuracy scores for 
high f0 stimuli. Error bars represent 95% confidence intervals.  

 
 

 

 

 

 

 

 

 

 

  
Figure 3.13. VOT of /th/ in baseline and test productions of the long VOT condition, for each 

speaker. �indicates a significant increase and * indicates a significant decrease (p < 0.05).  
Speakers are presented from left to right in order of increasing discrimination accuracy scores for 

long VOT stimuli. Error bars represent 95% confidence intervals. 
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Figure 3.14. F2OT of /th/ in baseline and test productions of the high f0 condition, for each 
speaker. �indicates a significant increase and * indicates a significant decrease (p < 0.05).  

Speakers are presented from left to right in order of increasing discrimination accuracy scores for 
high f0 stimuli. Error bars represent 95% confidence intervals. 

 
 

 

 

 

 

 

 

 

 

 
Figure 3.15. F2OT of /th/ in baseline and test productions of the long VOT condition, for each 

speaker. �indicates a significant increase and * indicates a significant decrease (p < 0.05).  
Speakers are presented from left to right in order of increasing discrimination accuracy scores for 

long VOT stimuli. Error bars represent 95% confidence intervals. 
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Figure 3.16. Post-stop f0 of /th/ in baseline and test productions of the high f0 condition, for each 

speaker. �indicates a significant increase and * indicates a significant decrease (p < 0.05).  
Speakers are presented from left to right in order of increasing discrimination accuracy scores for 

high f0 stimuli. Error bars represent 95% confidence intervals. 
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Figure 3.17. Post-stop f0 of /th/ in baseline and test productions of the long VOT condition, for 
each speaker. �indicates a significant increase and * indicates a significant decrease (p < 0.05).  
Speakers are presented from left to right in order of increasing discrimination accuracy scores for 

long VOT stimuli. Error bars represent 95% confidence intervals. 
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 Table 3.16 presents comparisons of each participant’s productions in the high f0 and long 

VOT conditions. Two speakers (F11 and F21) seem to be “phonetic imitators” who raised f0 

after hearing high f0 stimuli and lengthened VOT/F2OT after hearing long VOT stimuli. On the 

other hand, for half of participants, their imitative patterns were similar in the two manipulation 

conditions. Speakers F02, M05, F09, F13, F14, and F19 produced /th/ with higher post-stop f0 in 

both conditions, and speakers M10, F15, and M18 produced /th/ with longer VOT and higher f0 

in both conditions. No participant imitated by lengthening VOT without raising f0 in both 

conditions. This outcome is consistent with the phonological imitation hypothesis. The 

phonological imitation hypothesis predicted that the two manipulations (high f0 and long VOT) 

would induce identical imitative patterns for a given speaker, and that the shared imitative 

patterns for the two manipulation conditions would involve enhancement of the phonetic 

property(s) the speakers would normally employ to enhance /th/ (§2.5.2). Participants in the 

current study are all young speakers of Seoul Korean, and many of them enhanced /th/ by 

increasing either “only post-stop f0” or “both stop VOT and post-stop f0”.   

 To further verify whether participants’ imitative patterns are consistent with their 

baseline productions of Korean lax and aspirated stops, VOT, F2OT and post-stop f0 of /th/, /t/, 

and /t*/ in each speaker’s baseline productions were analyzed by performing three separate one-

way ANOVAs (dependent variable: VOT, F2OT, post-stop f0, respectively for each model; 

independent variable: stop type) for each speaker. The results of these ANOVAs confirmed that 

no speaker used only VOT for the aspirated-lax contrast, as should be expected (Table 3.17). (It 

has already been noted that no speaker showed only VOT/F2OT enhancement in the two test 

conditions.) The full results of these ANOVAs are summarized in Appendix C. 
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 High f0 condition Long VOT condition 

 f0 VOT F2OT f0 VOT F2OT 

F02 �    �    

F04 * * * �   

M05 �    �    

F07    � * * 

F08 � * * � � � 

F09 �    �    

M10 �  �  �  �  �  �  

F11 �    �  

F12    �   

F13 � *  � * * 

M14 � * * �   

F15 �  �  �  �  �  �  

M16 * � � �  � 

M17 *   � � � 

M18 �  �  �  �  �  �  

F19 �   � * * 

F20    *   

F21 � * *   � 

M22  � � �   
Table 3.16. Summary of imitative changes in two manipulation conditions, by speakers.�

�indicates a significant increase and * indicates a significant decrease (p < 0.05). Speakers who 
increased or decreased the same set of properties in the two conditions are bolded. Those who 

imitated only by raising f0 (ignoring significant decreases in VOT/F2OT) are shaded. 
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 Aspirated – Lax  

 VOT (ms.) F2OT (ms.) Post-stop f0 (Hz) 

F02 - 0.51 (n/s)  0.42 (n/s) 56.69 (p < 0.0001) 

F04 3.93 (n/s) 4.30 (n/s) 89.49 (p < 0.0001) 

M05 11.25 (p < 0.0001) 10.77 (p < 0.0001) 21.40 (p < 0.0001) 

F07 1.65 (n/s) 0.70 (n/s) 52.48 (p < 0.0001) 

F08 12.14 (p < 0.0001) 11.37 (p < 0.0001) 45.96 (p < 0.0001) 

F09 14.43 (p < 0.0001) 10.86 (p < 0.0001) 45.37 (p < 0.0001) 

M10 18.37 (p < 0.0001) 20.16 (p < 0.0001) 26.19 (p < 0.0001) 

F11 8.61 (p = 0.0098) 8.24 (p = 0.0388) 43.06 (p < 0.0001) 

F12 3.48 (n/s) 2.40 (n/s) 58.63 (p < 0.0001) 

F13 12.71 (p < 0.0001) 12.88 (p < 0.0001) 90.43 (p < 0.0001) 

M14 9.80 (p = 0.0003) 10.35 (p = 0.0001) 23.48 (p < 0.0001) 

F15 6.65 (p = 0.0226) 6.40 (p = 0.0362) 59.50 (p < 0.0001) 

M16 17.47 (p < 0.0001) 17.56 (p < 0.0001) 29.81 (p < 0.0001) 

M17 15.55 (p < 0.0001) 14.98 (p < 0.0001) 19.24 (p < 0.0001) 

M18 11.92 (p = 0.0011) 12.02 (p = 0.0016) 22.04 (p < 0.0001) 

F19 -4.78 (n/s) -7.10 (p = 0.0462) 107.58 (p < 0.0001) 

F20 6.21 (n/s) 4.34 (n/s) 72.66 (p < 0.0001) 

F21 10.97 (p = 0.0003) 6.86 (p = 0.0386) 56.16 (p < 0.0001) 

M22 14.61 (p < 0.0001) 15.58 (p < 0.0001) 14.19 (p < 0.0001) 
Table 3.17. Baseline aspirated-lax contrast, by speakers. Numbers represent mean difference 

between aspirated and lax stops. P-values are from post-hoc Tukey tests. Bolded data are 
significant at p < 0.05, and shaded speakers show merged (or reversed) VOT/F2OT patterns. 
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The speakers whose cells are shaded in Tables 3.16 and 3.17 are those who seem to rely 

exclusively on post-stop f0 in imitation (Table 3.16) and baseline (Table 3.17). Except for one 

speaker (F20), who does not seem to imitate in the test production at all, speakers with shaded 

cells in Table 3.17 are a subset of those shaded in Table 3.16. In other words, speakers with 

VOT/F2OT aspirated-lax merger in baseline apparently do not enhance VOT or F2OT in 

imitation. The converse, though, is not true, as is evident from speakers M05, F09, F13, and F14, 

who maintain the VOT/F2OT contrast for aspirated-lax stops in their baseline but produce only 

f0 enhancement in imitation. A tentative conclusion can be reached that, in spontaneous 

imitation, speakers adjust the property(s) that they use in their own speech, but not all properties 

are necessarily adjusted together. And the property that has a primary contrastive role (here, high 

f0) appears to have precedence over a less important property. 

 Another asymmetry that emerges from the imitative patterns in Table 3.16 is that no 

participant imitated only the high f0 stimuli, although several imitated only the long VOT 

stimuli. For instance, speakers F07 and F12 raised their post-stop f0 only in the long VOT 

condition, without imitative changes in the high f0 condition. Moreover, speakers F04 and M17 

seem to have diverged from the model speech in the high f0 condition but converged in the long 

VOT condition. I suggest that this asymmetry may be due to the difference in perceptual 

“atypicality” or saliency of specific variants (Mitterer & Müsseler, 2013; Zellou et al., 2013). As 

the model speaker was also a young speaker, lengthening VOT of aspirated stops is a less typical 

enhancement than raising post-stop f0. Possibly, then, participants may have perceived /th/ with 

long VOT produced by a young voice as more “atypical” than /th/ with high f0, resulting in more 

imitation for the long VOT stimuli.  
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 While speakers’ baseline productions seem to be related to their imitative patterns at the 

individual level, the relation between each speaker’s discrimination accuracy and their imitative 

patterns is less evident. Table 3.18 presents the discrimination accuracy scores of each 

participant in the two conditions. 

 

 F02 F04 M05 F07 F08 F09 M10 F11 F12 F13 M14 F15 M16 M17 M18 F19 F20 F21 M22 

f0 48 55 74 82 72 50 53 52 51 60 86 51 91 49 55 68 73 79 80 

VOT 48 54 67 56 84 52 87 59 50 41 79 77 95 58 66 74 78 86 56 
Table 3.18. Discrimination accuracy of individual participants for the two manipulation 
conditions. 
 

 In Figures 3.12-3.17, speakers are ordered according to their discrimination accuracy 

scores for the appropriate property (low to high from left to right), and the ��below each 

speaker indicates a significant imitation. If better performance in the discrimination tasks were to 

lead to greater probability of imitation, the �s should be concentrated to the right side of the 

plots. For all three measures of the high f0 condition (Figures 3.12, 3.14, and 3.16), there is no 

sign of a higher proportion of �s on the right side, suggesting that more accurate discrimination 

of the high f0 stimuli does not lead to imitation of that property.  

 For the two duration measures (VOT/F2OT) in the long VOT condition (Figures 3.13 and 

3.15), however, there is a slight rightward tendency in the distribution of the �s. It is also worth 

noting that speakers M16 and F21’s VOT changes in the long VOT condition (Figure 3.13) were 

marginally significant (M16: p = 0.083; F21: p = 0.095). Thus, there is some indication that 

speakers who are more accurate in discriminating /th/s with lengthened VOT from regular /th/s 

are more likely to enhance VOT when they hear /th/s with VOT enhancement.  



! 89 

 Note that discrimination accuracy is not related to the likelihood of imitating VOT 

enhancement itself but to the likelihood of enhancing VOT in response to the VOT enhanced 

stimuli. As evident in Figure 3.17, regardless of their accuracy in discriminating the long VOT 

stimuli, almost all participants raised their f0 after hearing the long VOT stimuli. As mentioned 

in §3.1, all participants in the current study performed at better than chance level in 

discrimination tasks with both types of manipulated /th/ variants, which is arguably the necessary 

condition to trigger imitation. The production comparisons show that speakers who are more 

likely to enhance VOT (along with raising post-stop f0) as they imitate /th/s with VOT 

enhancement are those who are more accurate in discriminating /th/s with lengthened vs. 

unmanipulated VOT. Together with the findings that stop VOT is a non-primary cue for 

aspirated stops in Seoul Korean, this arguably suggests that enhancing a non-primary cue is at 

least weakly related to keen discrimination of the cue.  

 In sum, analyses of individual data provide evidence that the phonetic property(s) (VOT, 

f0) a Seoul Korean speaker enhances when imitating aspirated stops enhanced by either of the 

two properties is related to whether the imitator uses the property(s) in her ordinary speech (as 

seen in baseline productions in this study). Participants with merged VOT/F2OT between 

aspirated and lax stops did not lengthen their VOT when they imitated enhanced /th/. A rather 

weak relation is also suggested between discriminating a non-primary property of a phonological 

contrast and enhancing the non-primary property under imitation. The use of the non-primary 

property in baseline production and relatively accurate discrimination of that property are 

arguably related to each other. That is, a speaker who maintains a VOT difference between lax 

and aspirated stops is arguably perceptually more sensitive to VOT cues, and enhances VOT 

(along with the primary property) more readily in imitating enhanced aspirated stops.  
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CHAPTER IV 

Discussion and Conclusion 

 

 The current study investigated Seoul Korean speakers’ spontaneous imitation of aspirated 

stops. Seoul Korean aspirated stops are, as discussed in §1.2, differentiated from stops of other 

phonation types by at least two distinct acoustic properties, stop VOT and f0 of the post-stop 

vowel, with the post-stop high f0 being the primary cue. This study examined how these primary 

and non-primary cues for stop aspiration exhibit different imitation patterns, and an investigation 

of the effects of cue primacy on spontaneous imitation yielded a richer picture than has been 

presented in the literature as to the role of phonology in the process of spontaneous imitation.  

 In the imitation experiment, Seoul Korean speakers heard and shadowed model speech 

that contained aspirated stops manipulated by either raising post-stop f0 or lengthening VOT. 

Their realization of these properties in /th/, /t/, and /t*/ productions were compared before, 

during, and after exposure. Although both high f0 and long VOT induced imitative changes, as 

summarized in Table 4.1, the results pooled across participants revealed a clear asymmetry 

between primary and non-primary cues in imitation of Seoul Korean aspirated stops. In addition, 

separate discrimination tests were conducted to test if participants of the imitation study could 

discriminate the acoustic manipulations of f0 and VOT from original unmanipulated productions. 

The relation among discriminating of a phonetic property, producing that property in ordinary 
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speech production, and using it in imitative enhancement was investigated by analyzing data 

from individual speakers. 

 

Production 
block 

Phonological 
category 

Manipulation Condition 

High f0 Long VOT 

Shadow 
Aspirated /th/ Increase in f0 

Decrease in VOT 
Increase in f0 
No change in VOT 

Sonorant No change in f0 No change in f0 

Test 

Aspirated /th/ Increased in f0 
No change in VOT 

Increased in f0 
(Increase in VOT) 

Lax /t/ Decrease in f0 
No change in VOT 

Decrease in f0 
No change in VOT 

Tense /t*/ No change in f0 or 
VOT 

Decrease in f0 
(Decrease in VOT) 

Sonorant Decrease in f0 Decrease in f0 

Table 4.1. Overall imitation patterns, pooled across participants, relative to baseline.  
Parentheses indicate the effect is marginally significant. 

 
 

 In the following sections, I return to the guiding question of this dissertation—what is the 

nature of the cognitive representations involved in the process of spontaneous imitation?—and 

discuss the current findings in relation to the questions and predictions presented in §2.5. 

 

4.1 Review of predictions  

4.1.1 What triggers imitation? 

 With regard to the question of which phonetic properties trigger imitation, it was 

predicted that both raised post-stop f0 and extended VOT would trigger imitation if participants 
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reliably discriminate the manipulated stimuli from the original recordings. The results are 

consistent with this prediction. All participants in this study performed better than chance in the 

discrimination test for both manipulation types, and both cues induced imitative changes for the 

majority of participants. (Note that increases in post-stop f0 after having heard /th/ with long 

VOT are also referred to as imitative changes in this study.) However, as shown in §3.3, further 

analyses of individual participants revealed that the better performance in the discrimination tests 

did not lead directly to a greater extent of imitation fidelity.  

 Because the long VOT stimuli can be perceived as a less typical pattern for the young 

model speaker, it was also predicted that extended VOT would be especially salient and might 

therefore induce more robust imitation than raised f0, especially in the post-shadowing test 

productions. Table 4.2 provides comparison of imitative changes in /th/ productions in different 

production blocks of the two manipulation conditions. 

 

Table 4.2. Comparison of changes in /th/ relative to baseline in two manipulation conditions, 
pooled across participants. Values presented are effect sizes (β) from linear mixed models for the 
5 production analyses (presented in §3.2.2.1 for the high f0 condition, and §3.2.3.1 for the long 
VOT condition).  
1 The values reported here are results of the analysis excluding three outlier speakers. See 
§3.2.2.1 for more details.  
 

Manipulation 
Condition High f0 Long VOT 

Measurements VOT (ms) Post-stop f0 (Hz) 1 VOT (ms) Post-stop f0 (Hz) 

Pr
od

uc
tio

n 
bl

oc
ks

 Shadow 1 -6.45 (p < 0.001) 3.88 (p = 0.083) N/S 4.99 (p = 0.044) 

Shadow 2 -6.08 (p < 0.001) 6.03 (p = 0.004) N/S N/S 

Shadow 3 -5.61 (p = 0.002) 6.46 (p = 0.001) N/S 4.93 (p = 0.045) 

Test N/S 6.16 (p = 0.002) 2.40 (p = 0.071) 9.33 (p < 0.001) 



! 93 

 The results for the test productions appear to be consistent with this prediction. 

Specifically, although post-stop f0 increased significantly in both manipulation conditions, the 

effect size was larger in the long VOT condition [β = 9.33] than the high f0 condition [β = 6.16]. 

Although post-stop f0 in the high f0 stimuli is much higher than that in the long VOT stimuli, 

participants raised their post-/th/ f0 more after having heard and shadowed the long VOT stimuli 

than after having heard and shadowed the high f0 stimuli. In addition, VOT of /th/ is not 

significantly different from the baseline counterpart in either manipulation condition, but in the 

long VOT condition the increase in VOT trends towards significance with p = 0.071.  

 Turning to the results in the shadowing blocks, comparison of the changes in the two 

manipulation conditions is less straightforward. In the high f0 condition, VOT of shadowed /th/ 

decreased with a significant increase in its post-stop f0, whereas in the long VOT condition, 

VOT did not change significantly and post-stop f0 increased. The increase in post-stop f0 was 

greater in the first shadowing block in the long VOT condition than that in the high f0 condition, 

but not the second and third blocks of shadowing, which makes a direct comparison of the effect 

sizes inconclusive. 

 The decrease in VOT in the high f0 condition makes comparison between the two 

manipulation conditions even more convoluted. Prior to making the comparison, we need to 

understand why speakers decreased their VOT so robustly when shadowing the high f0 model 

speech, which had naturally produced VOT. It probably is not a result of participants’ diverging 

from the model speech because it accompanies an increase in post-stop f0, which is evidence of a 

clear convergence. What, then, caused the decrease in stop VOT? One possibility is that 

participants imitated the model speaker’s relatively short VOT. The unmanipulated VOT of the 

high f0 stimuli was actually shorter than the most of the participants’ baseline productions 
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(model speaker mean = 58.4 ms, participants’ baseline mean = 66.2 ms). However, given that the 

same participants hardly imitated extended VOT (mean = 119.8 ms) in their shadowing 

productions of the long VOT condition by lengthening VOT, it seems unlikely that they imitated 

a small difference in one condition but not a much larger difference in another condition, 

especially when perceptual saliency plays a role in the process of imitation. 

 The decrease in VOT in the high f0 condition is more likely a physiological 

epiphenomenon of the increase in f0, rather than an imitative change. This is in line with 

Narayan and Bowden’s (2013) finding that the VOT of Seoul Korean aspirated stops produced in 

a high f0 range is shorter than that produced in a low f0 range, for a given speaker. As pointed 

out in §1.2.1, this pattern may be due to high f0 causing the vocal folds to be stiff, reducing the 

time for the vocal folds to adduct and start voicing, which in turn results in shorter VOT 

(Narayan & Bowden, 2013; McCrea & Morris, 2005). 

 Returning to the comparison of the imitation in shadowing blocks of the two 

enhancement conditions, there is no evidence that the long VOT stimuli facilitated more robust 

imitation than the high f0 stimuli did. Unlike the post-shadowing test productions, where it was 

quite evident that the long VOT stimuli induced greater degree of imitation than the high f0 

stimuli did, no clear patterns emerge for the imitation effects induced by the two sets of stimuli 

during the shadowing productions. 

 To sum up, the answer this study provides to the question of which phonetic properties 

trigger imitation is as follows. First, the two types of manipulated /th/ variants used in the current 

study, one with the primary cue enhancement and the other with the secondary cue enhancement, 

triggered imitative effects in both shadowing and test productions. Second, the imitation effects 

were larger in the long VOT condition than they were in the high f0 condition, at least in the 
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post-shadowing test productions. These outcomes suggest that spontaneous imitation is triggered 

by a phonetic property regardless of its primacy for a phonological contrast, as long as it is 

sufficiently perceptually salient. In addition, the more “atypical” variant, which is presumably 

more perceptually salient, seems to induce longer-lasting imitation effects.  

 These results corroborate previous findings that phonologically less natural or expected 

variants often lead to more robust or longer-lasting imitation (e.g., Honorof et al., 2011; Mitterer 

& Müsseler, 2013; Zellou et al., 2013). For instance, as discussed in §1.1.3, Zellou et al. (2013) 

demonstrate that a less natural coarticulatory pattern induces longer-lasting imitation effects than 

a more natural pattern: only the imitation of a less natural pattern—a decrease (vs. an increase) in 

coarticulatory vowel nasality in English words from dense neighborhoods—persisted into a post-

shadowing test production. On a related, but slightly different note, less natural hence more 

salient variants are reported to facilitate greater imitation in immediate shadowing (Honorof et 

al., 2011; Mitterer & Müsseler, 2013). Allophonically less natural variants (darker /l/ in syllable 

onset in American English) facilitate greater imitation in shadowing (Honorof et al., 2011); so 

does a more marked feature clearly indexing a non-standard dialect (Mitterer & Müsseler, 2013). 

In addition, Mitterer and Müsseler argue that more variation in stimulus presentation also results 

in more robust imitation in shadowing (see §1.1.3 for a more detailed discussion of these 

findings). 

 Adding to these previous findings, the findings of this dissertation suggest that a 

mismatch with the expectation about the voice may make a variant more salient, and therefore 

more susceptible to imitation. Younger speakers of Seoul Korean depend mainly on f0 

enhancement to enhance aspirated stops (Kang & Guion, 2008) and the participants in the 

current study presumably expect (unconsciously) that the young Seoul Korean model speaker 
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would rely on f0 to enhance his /th/. When participants heard /th/ with extended VOT, that is, 

when the actual signal mismatches with their expectation, the atypicality makes the long VOT 

variant more salient, and thus facilitates longer-lasting, strong imitation effects. Unlike Honorof 

et al. (2011) and Mitterer and Müsseler (2013), this study does not find a clear difference 

between the imitation patterns for the two manipulations during shadowing, probably due to 

considerable variation across participants. The physiological relation between stop VOT and 

post-stop f0 also obscures the comparison between the two manipulation conditions. However, 

the current findings are very much in line with Zellou et al.’s (2013) findings, showing a clear 

difference between /th/ variants with long VOT and those with high f0 in post-shadowing test 

production.  

 

4.1.2 Imitative enhancements: what is adjusted? 

 Another question that this dissertation posed is: when a listener detects the enhanced 

phonetic property, which phonetic property, if any, will the listener-turned-speaker adjust in their 

subsequent productions? With regard to this question, two distinct hypotheses were offered in 

§2.5.2. The phonetic imitation hypothesis predicted that the phonetic property manipulated in the 

model speech will match the property listener/speakers enhance in subsequent productions. The 

phonological imitation hypothesis predicted that, regardless of the cue manipulated in the model 

speech, listener/speakers will enhance the phonetic property(s) that they would normally use to 

enhance the relevant phonological category (in this study, aspirated stops). 

 Overall, imitation patterns pooled across participants (summarized in Table 4.1) are more 

consistent with the phonological hypothesis. Table 4.3 recapitulates the relation between cue 

primacy and the observed imitation patterns. In both the long VOT and high f0 conditions, post-
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stop f0, which is the primary cue for the relevant target phonological category (i.e., aspirated 

stops), increased significantly. The phonetic imitation hypothesis cannot explain why 

participants raised post-stop f0 (the primary property) after having heard /th/ with extended VOT 

(the non-primary property) without as robust an increase in the property that was manipulated in 

the stimuli.  

 

 Production 
Block 

Property enhanced in the model speech  

Primary cue Non-primary cue 

Is the property manipulated 
in the model speech 
enhanced in imitative 
productions?  

Shadow Yes NO 

Test Yes (Yes) 

Is the primary cue for the 
enhanced phonological 
category in the model speech 
enhanced in imitative 
productions? 

Shadow Yes Yes 

Test Yes Yes 

Table 4.3. Cue primacy and imitation. Parentheses indicate the effect is marginally significant. 
 

 

 However, the results raise one complication for the phonological imitation hypothesis. 

Under the phonological imitation hypothesis, irrespective of the enhanced cue in the model 

speech, participants are predicted to enhance the property or properties they would normally use 

to enhance the relevant phonological category, resulting in identical imitation patterns in the two 

conditions. Contrary to this prediction, the results from pooled analyses seem to be different in 

the two conditions. For example, test productions showed a significant F2OT increase (and a 

trending VOT increase) in the long VOT condition (reported in §3.2.3.1) but not in the high f0 

condition (reported in §3.2.2.1).!  
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 High f0 
condition 

Long VOT 
condition Participants 

(1) 
︎  ︎  

F02, M05, F09, F13, 
M14, F19 

(2) ︎! !
M10, F15, M18 

(3) 
︎ !

! F11, F21 

(4) ! ︎ !
F04, F07, F12 

(5) ! ︎ ︎! M17 

(6) 
︎ ! !

F08 

(7) ! !
F16 

(8) !
︎ !

M22 

(9) ! ! F20 

 
Figure 4.1. Schematization of imitative enhancement patterns in the test production, by 
individual speakers.   
      denotes baseline /th/ production on the hypothetical plane of VOT * f0 shown on the left side 
of the table. Arrows and dotted circles show the direction of the imitative changes. 
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 The results from individual analyses (reported in §3.3) provide some insights into this 

asymmetry. Figure 4.1 schematizes the patterns of imitative enhancements shown by individual 

participants in the test productions of the two manipulation conditions. Note that the 

schematization in Figure 4.1 focuses only on imitative enhancements, ignoring any decrease in 

either VOT/F2OT or f0.  

 For the nine speakers in (1) and (2) in Figure 4.1, the patterns of imitative enhancements 

in the two manipulations are identical, suggesting that these speakers are phonological imitators. 

Irrespective of the enhanced cue in the target stimuli, these speakers enhanced the property (only 

f0 for the six speakers in (1)) or properties (both f0 and VOT for the speakers in (2)) they would 

normally use to enhance the aspirated /th/. On the other hand, the two speakers in (3) in Figure 

4.1 are phonetic imitators, in that they enhance only the cue that is manipulated in the stimuli. 

The remaining eight speakers in (4)-(8) show more complicated patterns in relation to the two 

hypotheses. However, except for the one speaker in (9) who is a non-imitator in test productions, 

these speakers’ productions do show strong effects on the primary cue even when that cue is not 

being manipulated. This indicates that the target of speech imitation is not just the detailed 

acoustic parameters but rather abstract units (such as the phoneme /th/ or the natural class of 

aspirated stops, in this study).  

 At least for the six speakers in (1), their production and perception grammars would 

appear to be related, but not identical. Although these speakers increased f0 to enhance /th/ in 

their own speech, perceptually they must also be sensitive to VOT as information for /th/ because 

otherwise they could not have interpreted extended VOT as a cue for enhanced /th/. This 

production-perception difference is not surprising. As speech is highly variable (perhaps even 

more so with a recent sound change as in Seoul Korean), a speaker-listener’s perception 
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grammar is necessarily more comprehensive than one’s own production grammar for effective 

communication. Speakers need to perceive distinctions among speech patterns that they do not 

normally produce themselves but others around them produce. 

 In conclusion, the findings of this dissertation show that speech imitation is neither 

exclusively phonetic nor exclusively phonological. In this study, only a few speakers (2 out of 19) 

showed imitation patterns consistent with pure phonetic imitation, and about half of the speakers 

(9 out of 19) showed those consistent with pure phonological imitation in their post-shadowing 

test productions. We do not yet know what may predispose a speaker to imitate phonetically or 

phonologically. Nevertheless, this study provides a new insight that cross-individual differences 

in speech imitation are limited neither to the proclivity to imitate nor to the degree of imitation, 

but extend to which properties are imitated. Furthermore, different imitative patterns are not 

necessarily a consequence of speakers’ diverging from one another. Instead, different production 

patterns can emerge as speakers converge using different strategies. In this study, different 

individuals imitated the same stimuli by enhancing different phonetic properties, and they did so 

in post-shadowing test productions, suggesting that the effect is perhaps not restricted to short-

term memory.  

 Phonological imitators become more similar to speakers whose speech is being imitated 

by becoming more different from them in a targeted dimension. This means, corroborating 

Pardo’s (2013) suggestion, that measuring a single phonetic property is not sufficient to assess 

spontaneous imitation. When perceptual judgments of listeners who are asked to assess imitated 

speech do not match the acoustic measurements (Pardo, 2013; Pardo et al., 2013), it could be that 

speakers are imitating phonologically. Phonological categories are signaled by multiple, often 



! 101 

co-varying, phonetic properties, and it is possible that a given speaker will prefer to use one cue 

over another in spontaneous imitation. 

 Crucially, the process of phonological imitation is governed by language-specific 

associations between phonological categories and phonetic properties. That is, the same acoustic 

property could have different phonological significance for speakers of different languages (as is 

well-known in cross-language speech perception literature) and, therefore, have different impact 

on the subsequent productions of speakers of different languages. Specifically, the phonological 

imitation observed in this study, a robust increase in post-stop f0 after hearing /th/ with longer 

VOT, is not expected for speakers of a language in which f0 is not a primary cue for the stop 

phonation types. This calls for further study of this issue (see §4.2 for future study suggestions).  

 

4.1.3 Generalizability of imitation 

 Another important component of the overarching question of what is the cognitive unit 

that is responsible for speech imitation is the scope of imitative adjustments. To test the extent to 

which imitative behavior (whether it is to raise post-stop f0, lengthen VOT or both) is 

generalized, the imitative enhancements in /th/-initial, /t/-initial and /t*/-initial words that were 

not included in the shadowing list but were in the reading list were examined. Three levels of 

generalization were predicted: phoneme-level generalization, feature-level generalization, and 

phonological readjustment (§2.5.3). 

 First, the current results support phoneme-level generalization, corroborating Nielsen’s 

(2011) finding that English speakers not only imitated /p/ with long VOT but also generalized 

the imitative behavior to new unheard /p/-initial words. In the current study, the imitative 

changes in shadowed /th/-initial words (raising post-stop f0 and/or lengthening VOT) are 
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generalized to unheard /th/-initial words in test productions, revealing no statistically significant 

difference between the shadowed and unheard words (see Figures 3.3 and 3.8). In other words, 

hearing and shadowing specific words three times did not result in greater imitation of those 

words of exposure, contrary to the effect of token repetition predicted by exemplar models 

(Goldinger, 1998). 

 Second, the predictions for feature-level generalization based on the feature system of 

Halle and Stevens (1971) are not confirmed by the current data. It was predicted that, if lax and 

aspirated stops share [+spread glottis] and tense and aspirated stops share [+stiff vocal cords], the 

VOT of aspirated and lax stops should shift together whereas the post-stop f0 of aspirated and 

tense stops should shift in tandem. The current results show no enhancement effects (increase in 

VOT/F2OT or f0) for stops other than aspirated stops. Figure 4.2 schematically presents the 

changes in three stop categories in the test productions of the two manipulation conditions (see 

also Table 4.1 for a summary of imitative changes).  

 However, f0 following lax /t/ as well as sonorant onsets (filler words) decreased in test 

productions of both manipulation conditions, with a decrease in f0 following tense /t*/ only in 

the long VOT condition. This is consistent with the pattern predicted by the most abstract level 

of generalization, phonological readjustment. Participants readjusted their productions in the 

direction that maximizes the relevant contrast (i.e., stop aspiration) by lowering f0 of other 

phonological categories, which include sonorant-initial filler words. The decrease in f0 following 

sonorant onsets was not significant during the shadowing condition (see Table 4.1), suggesting 

that phonological readjustment is less likely to occur with immediate targets to imitate. Why 

post-tense-stop f0 decreased only in the long VOT condition remains unclear. I speculate, 

however, that because overall imitative effects were more robust in the long VOT condition (as 
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discussed in §4.1.1), the generalization of these imitative effects was more robust as well. This 

account can also explain the marginally significant decreases in tense stop VOT in the long VOT 

condition.  

 

f0
 

 

 f0
 

 

 VOT   VOT 

 (a) High f0 condition   (b) Long VOT condition 

Figure 4.2. Schematization of generalization of imitative changes in test productions. Thicker 
arrows show significant changes relative to baseline, and thinner arrows show marginally 
significant effects. (a) In the high f0 condition, aspirated stop f0 increased and lax stop f0 
decreased. (b) In the long VOT condition, aspirated stop f0 increased and both lax and tense stop 
f0 decreased. VOT of aspirated stops increased marginally, and tense stop VOT decreased 
marginally.  
 
 

 The discrepancy between the current results and Nielsen’s (2011) finding of feature-level 

generalization may be due to the fact that the relation between Seoul Korean /th/ and /t/ is not 

equivalent to that between English /p/ and /k/, despite the small VOT difference between Seoul 

Korean /t/ and /th/. The current finding of non-generalization at the feature level may indicate 

that the feature specification that Seoul Korean lax and aspirated stops share [+spread glottis] 

and tense and aspirated stops share [+stiff vocal cords] (e.g., Halle & Stevens, 1971) needs to be 

tense 

lax 

aspirated 
tense 

lax 

aspirated 
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reconsidered. As suggested by Cho et al. (2002), the VOT of /th/ and /t/, as well as the f0 of /th/ 

and /t*/, may not be featurally related to each other.  

  Can the phonological readjustments found in this study be interpreted as imitation of a 

careful speech mode instead of phonologically mediated generalization of imitation? Given the 

previous finding that imitation effects are generalized even at the sentence level (Kim, 2012), 

this interpretation cannot be ruled out, although it seems unlikely. The stimuli used in this study 

do not have characteristics of careful speech other than the enhancements of the two phonetic 

properties of /th/, making it unlikely that the participants heard the stimuli as careful speech in 

general. The model speech was actually rather fast and casual for laboratory speech, and it was 

shorter in duration than most participants’ baseline productions. As a result, participants imitated 

shorter word duration as well as enhanced /th/, which suggests that participants imitated the 

signal as a whole but, at the same time, the imitation is, in part, governed by their phonological 

grammar.  

 

4.2. Implications and suggestions for future study 

 The results of this dissertation provide evidence that the cognitive representations 

involved in the process of imitation, which bridges speech perception and production, draw on 

complex phonological categories such as stop aspiration rather than isolated acoustic properties, 

such as long VOT or high f0. The observed patterns of imitation are mediated by language-

specific phonological grammar, and the imitative changes are not limited to a single acoustic cue, 

phoneme, or feature, but are generalized to maximize the relevant phonological contrasts. These 

findings have interesting implications, and at the same time pose challenges, for the two 

theoretical accounts of imitation introduced in §1.1.  
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 First, the finding that words beginning with initial aspirated stops showed the same 

imitation effects regardless of whether the specific word was shadowed or not poses a challenge 

to Goldinger’s (1998) (among others) exemplar account. According to Goldinger (1998), 

imitation should increase with more token repetitions, as more exposure to a specific token 

would increase its activation and thereby contribute to the subsequent production. The current 

results, however, provide evidence that hearing and shadowing multiple instances of specific 

words does not result in greater imitation of those words, calling into question the word-

specificity of imitation suggested by Goldinger (1998).  

 The asymmetry between the primary and the non-primary cues in spontaneous imitation 

found in this study is consistent with an exemplar view that allows abstract linguistic levels (e.g., 

Pierrehumbert 2001, among others). In exemplar models, phonological categories are clouds of 

detailed perceptual memory traces. Production patterns governed by phonological associations 

between different phonetic properties can emerge automatically as a result of hearing ambient 

speech with the relevant properties. Specifically, if a speaker of Seoul Korean hears instances of 

/th/ with consistently high f0 and variably long VOT, her category of /th/ will have many high f0 

instances and fewer long VOT instances. When she hears an enhanced /th/, all the exemplars 

associated with the enhanced /th/ will be activated and contribute to the subsequent production. 

In this system, the probability that a speaker would use high f0 /th/ or long VOT /th/ variants is 

determined by the proportion of the two variants stored in memory and the associations among 

those traces. Because linguistic experiences themselves are the phonological categories, 

governing both the perception and production of speech, the role of the language-specific 

association between phonetic properties and phonological categories in imitation can be handled 

easily.  
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 How would phonological imitation be explained in a gestural—in particular, a direct 

realist—account of imitation? The central claim is that listeners directly perceive vocal tract 

gestures, and therefore rapidly access articulatory information that can have an immediate impact 

on subsequent production. The current finding that participants enhance the primary cue for a 

contrast after having heard the contrast enhanced by a non-primary cue does not follow from a 

direct realist account of imitation, unless the two phonetic cues are linked at the articulatory 

level. If the link is purely physiological, then it would follow that we would find it in all 

languages. Stop VOT and post-stop f0 are physiologically related, and the link is at the level of 

laryngeal articulation. However, as discussed in §1.2.1, high post-stop f0 in Seoul Korean does 

not appear to be a physiological epiphenomenon of long VOT. This suggests that Seoul Korean 

speakers’ raising f0 after having heard long VOT /th/ is due to language-specific phonological 

association between the two properties rather than a physiological relation. In other words, 

perceiving a specific timing between the oral constriction gesture and the glottal opening-and-

closing gesture that gives rise to extended VOT leads to a different laryngeal configuration with 

stiff vocal folds and narrower glottal opening only because the Seoul Korean phonology 

specifies the association between the two phonetic properties.  

 This pattern of phonological imitation seems to come across as a challenge to the direct 

realist account of imitation. According to Honorof et al. (2011), if listeners perceive gestures 

directly, they are not expected to imitate one gesture using a different gesture. This prediction of 

direct gestural perception and imitation remains the same regardless of how similar the two 

gestures’ acoustic consequences are or how closely the two gestures are related in terms of 

phonology. The current finding that listeners substitute (or supplement) long VOT with high f0 
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in spontaneous imitation would suggest that abstract linguistic categories mediate what listeners 

perceive and what listener-turned-speakers produce. 

 However, phonological imitation is not a threat to the direct realist account of imitation if 

it is accompanied by longer response latency. The direct perception and imitation of gestures 

(without intervening abstract category) are predicted during rapid shadowing. Therefore, it is still 

possible that speech gestures are directly perceived, but in the succeeding production with longer 

latency, the constellation of co-occurring gestures specified by the phonological grammar 

changes together. Hypothetically, phonological imitation involving gestural substitution or 

supplement might take longer than direct (phonetic) imitation of perceived gestures. If so, the 

difference between phonetic imitators and phonological imitators found in this study can be due 

to the reaction time differences between these speakers. That is, rapid shadowers with shorter 

response latency could be phonetic imitators whereas slow shadowers could be phonological 

imitators, since the short response latency is evidence for the rapid and direct access to the 

articulatory information.  

 The current study was not designed to answer this question. Although the instruction for 

the shadowing block emphasized “quick” responses (see Appendix B.4), participants were not 

especially pressed for time during shadowing; they could take as much time as they needed to 

shadow the word they heard within a 1.5 second inter-stimulus interval (a relatively long time for 

a shadowing task; c.f., the 180-250 ms latency lag for shadowing reported by Fowler et al. 

(2003)). This could have contributed to speakers’ imitative patterns being considerably more 

variable in shadowing productions than in test productions in the current study. And again, 

hypothetically, the difference in shadowing productions could in some way give rise to speakers’ 

imitative patterns in their test productions, resulting in some speakers imitating phonetically and 
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others phonologically. Future testing will be needed to verify whether the difference in reaction 

time actually results in different patterns (phonetic vs. phonological) of imitation.  

 Another possible difference between phonetic imitators and phonological imitators is that 

individuals are different in their processing styles, which might contribute to different imitation 

patterns. For example, according to Yu (2010, 2013), individual listeners with different socio-

cognitive processing styles exhibit different patterns of perceptual compensation for 

coarticulation. Future study can ask if phonetic imitators and phonological imitators also differ in 

their cognitive processing styles.  

 The results of this dissertation also inspire further investigation of the role of phonology 

in spontaneous imitation. As mentioned in §4.1.2, phonological imitation predicts that speakers 

of different languages would imitate the same acoustic manipulation in different ways. That is, 

the robust increase in post-stop f0 after hearing /th/ with longer VOT observed in this study is not 

expected for speakers of English, for example, because the primary cue for English voiceless 

stops is long VOT (e.g., Abramson & Lisker, 1985; but see Whalen, Abramson, Lisker & Mody, 

1993, as well). An interesting question to ask is, what happens in imitation in a bilingual setting, 

if the two languages of a bilingual speaker differ from each other in terms of which phonetic 

properties are associated with corresponding phonological categories. Evidence from imitation 

will provide insights into the nature of the relation between two phonetic systems of a bilingual 

speaker. To that end, the second phase of this project, which builds upon the results of the 

current dissertation, asks if the two cues for aspiration (long VOT and high f0) exhibit different 

imitation patterns in Seoul Korean-English bilingual speakers’ production of English stops. To 

answer this question, bilingual speakers of Seoul Korean and English were tested with English 

voiceless stops with long VOT as well as with high f0. Preliminary results show that VOT-
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extended English stimuli do not induce f0 increase in imitation, which suggests that the bilingual 

speakers do not associate high f0 with phonological aspiration (or voicelessness) in English in 

the same way as they do in Seoul Korean. 

 Practically, the results of this dissertation suggest that future studies on speech imitation 

should consider taking more than one phonetic measurement to assess imitation. This is 

especially so when there exist multiple salient co-varying cues for a phonological category, as in 

this study. However, arguably all phonological categories have multiple phonetic cues associated 

with the category, and researchers cannot always be sure which phonetic cues listeners will 

attend to and listener-turned-speakers will adjust in the process of speech imitation. Therefore, 

future studies on speech imitation should take into consideration that what might appear to be 

divergence from the model speaker might rather be phonological convergence along distinct 

acoustic dimensions.  

 

4.3 Conclusion 

 This dissertation investigated questions concerning the nature of cognitive 

representations involved in the process of spontaneous imitation by examining the patterns of 

imitation facilitated by enhancement of the primary and the secondary cues for aspirated stops in 

Seoul Korean. Both the primary and the secondary cues are shown to trigger spontaneous 

imitation, and exposure to an enhanced non-primary cue influences production not only of that 

property but also of the primary cue for the targeted phonological category. Further, the observed 

imitative changes are not limited to a single acoustic cue, phoneme, or feature, but are 

generalized to maximize the relevant phonological contrast. The results suggest that the 

cognitive bridge between speech perception and production involved in the process of 



! 110 

spontaneous imitation is not simply an individual acoustic property, but rather involves abstract 

phonological categories. This dissertation provides a new insight on spontaneous imitation by 

demonstrating that production patterns different from the model speech can emerge through 

spontaneous imitation. Speakers can differ from one another in their imitation strategies 

(phonetic vs. phonological) and phonological imitation can result in diverging individual 

phonetic properties. 
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APPENDIX A 

Stimulus List 

 

 This section contains a complete list of 150 words (50 /th/-initial words, 25 /t/-initial 

words, 25 /t*/-initial words, and 50 sonorant-initial fillers) used in the experiment, along with 

their Korean spellings (Hangeul), IPA transcriptions, English glosses, lexical frequencies (LF), 

and familiarity scores (FS). Reported frequencies were taken from the NIKL (National Institute 

of Korean Language) corpus of modern Korean. The familiarity scores were obtained from ten 

native speakers of Korean who are different individuals from the participants of the main study. 

They were presented with all disyllabic words beginning with /tʰ/, /t/, /t*/, /m/, /n/, /l/, /w/ and /j/ 

from the NIKL corpus, and asked to rate the familiarity of the words on a 7-point scale.  

 Table A.1 presents 50 words (25 /th/-initial words and 25 sonorant-initial fillers) 

contained in both the shadowing list and the reading list. Table A2 presents additional 100 words 

(25 /th/-initial words, 25 /t/-initial words, 25 /t*/-initial words, and 25 sonorant-initial fillers) that 

are included only in the reading list.  
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Type Hangeul 
Transcriptions 

English Glosses LF FS 
Phonemic Phonetic 

Sh
ad

ow
ed

 /t
h /-i

ni
tia

l w
or

ds
 

/tʰapak/ [tʰabak] ‘faultfinding’ 49 6.4 

/tʰaʨi/ [tʰaʥi] ‘foreign land’ 26 6.4 

/tʰaksaŋ/ [tʰaks*aŋ] ‘table’ 20 6.4 

/tʰanlo/ [tʰalo] ‘disclosure’ 30 6.6 

/tʰansan/ [tʰansan] ‘carbonic (acid), carbonated’ 22 6.2 

/tʰanhɛk/ [tʰanhɛk ~ tʰanɛk] ‘impeachment’ 44 6.4 

/tʰalsɛk/ [tʰals*ɛk] ‘bleaching’ 28 6.5 

/tʰalok/ [tʰaɾok] ‘prison break’ 31 6.2 

/tʰɛkjo/ [tʰɛgjo] ‘prenatal education’ 38 6.9 

/tʰɛpɛk/ [tʰɛbɛk] name of a mountain 37 6.0 

/tʰɛkpɛ/ [tʰɛkp*ɛ] ‘parcel delivery service’ 25 6.9 

/tʰɛsʨul/ [tʰɛʨ*ul] ‘umbilical cord’ 46 6.3 

/tʰʌli/ [tʰʌɾi] ‘tool for dusting off’ 10 6.0 

/tʰʌlos/ [tʰʌɾot] ‘fur coat’ 9 6.3 

/tʰʌsse/ [tʰʌs*ɛ ~ tʰʌts*ɛ] ‘territorial imperative’ 24 6.1 

/tʰoppap/ [tʰop*ap ~ tʰopp*ap] ‘sawdust’ 19 6.3 

/tʰoŋtal/ [tʰoŋdal] ‘mastery’ 22 6.1 

/tʰoŋtalk/ [tʰoŋdak] ‘whole chicken’ 13 7.0 

/tʰoŋhak/ [tʰoŋhak ~ tʰoŋak] ‘commute to school’ 49 6.1 

/tʰusuk/ [tʰusuk] ‘lodge/stay in’ 43 6.3 

/tʰusi/ [tʰuʃi] ‘see through’ 27 6.3 

/tʰuhap/ [tʰuhap ~ tʰuap] ‘mutual understanding’ 5 6.0 

/tʰɨkka/ [tʰɨk*a ~ tʰɨkk*a] ‘special bargain price’ 8 6.6 

/tʰɨnsil/ [tʰɨnʃil] ‘sturdy, solid’ 15 6.4 

/tʰɨlni/ [tʰɨli ~ tʰɨlni] ‘denture’ 24 6.5 

Table A.1. Korean orthography (Hangeul), IPA transcriptions, English glosses, lexical 
frequencies (LF), and familiarity scores (FS) of the 25 /th/-initial words included in both the 
shadowing list and the reading list. 
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Type Hangeul 
Transcriptions 

English Glosses LF FS 
Phonemic Phonetic 

Sh
ad

ow
ed

 so
no

ra
nt

-in
iti

al
 fi

lle
rs

 

/nalɛ/ [naɾɛ] ‘wing’ 20 6.3 

/nalu/ [naɾu] ‘dock, port’ 32 6.4 

/nallim/ [nalim] ‘shoddy’ 19 6.6 

/namnam/ [namnam] ‘total strangers’ 25 6.7 

/nɛlan/ [nɛɾan] ‘rebellion’ 30 6.1 

/nomaŋ/ [nomaŋ] ‘senility’ 43 6.3 

/nokmal/ [noŋmal] ‘starch’ 42 6.3 

/nolɨm/ [noɾɨm] ‘play, gambling’ 47 6.4 

/numjʌŋ/ [numjʌŋ] ‘false accusation’ 46 6.1 

/maŋʌn/ [maŋʌn] ‘reckless remark’ 18 6.4 

/mɛŋmul/ [mɛŋmul] ‘plain water’ 42 6.6 

/mʌlmi/ [mʌlmi] ‘motion sickness’ 30 6.6 

/mʌŋul/ [mʌŋul] ‘lump’ 9 6.2 

/mokljʌn/ [moŋnjʌn ~ moŋljʌn] ‘magnolia’ 40 6.5 

/molmɛ/ [molmɛ] ‘group beating’ 28 6.0 

/mulle/ [mule] ‘spinning wheel’ 24 6.3 

/muljʌs/ [muljʌt] ‘starch syrup’ 22 6.7 

/miwan/ [miwan] ‘incomplete’ 41 6.6 

/jʌlmu/ [jʌlmu] ‘young radish’ 29 6.7 

/jenɨŋ/ [jɛnɨŋ] ‘entertainment’ 50 6.9 

/jemɛ/ [jɛmɛ] ‘purchase in advance’ 30 6.7 

/jolam/ [jolam] ‘cradle’ 46 6.2 

/joŋam/ [joŋam] ‘lava’ 42 6.0 

/wʌnmok/ [wʌnmok ~ wʌmmok] ‘hardwood’ 31 6.3 

/wʌnjaŋ/ [wʌnjaŋ] ‘ocean, pelagic’ 16 6.2 

Table A.2. Korean orthography (Hangeul), IPA transcriptions, English glosses, lexical 
frequencies (LF), and familiarity scores (FS) of the 25 sonorant-initial filler words included in 
both the shadowing list and the reading list. 
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Type Hangeul 
Transcriptions 

English Glosses LF FS 
Phonemic Phonetic 

 U
nh

ea
rd

 /t
h /-i

ni
tia

l w
or

ds
 

/tʰakuk/ [tʰaguk] ‘foreign country’ 38 6.3 

/tʰanwʌn/ [tʰanwʌn] ‘petition’ 13 6.1 

/tʰanhwan/ [tʰanhwan ~ tʰanwan] ‘bullet’ 25 6.0 

/tʰalmo/ [tʰalmo] ‘hair loss’ 9 6.6 

/tʰalsʌn/ [tʰals*ʌn] ‘derailment’ 47 6.5 

/tʰalsu/ [tʰals*u] ‘dehydration’ 30 6.6 

/tʰalʨin/ [tʰalʨ*in] ‘exhaustion’ 43 6.5 

/tʰamla/ [tʰamla ~ tʰamna] old name for Jeju Island 7 6.0 

/tʰaŋʨin/ [tʰaŋʥin] ‘squander’ 48 6.1 

/tʰɛman/ [tʰɛman] ‘negligence’ 25 6.4 

/tʰɛmoŋ/ [tʰɛmoŋ] ‘conception dream’ 10 6.4 

/tʰɛan/ [tʰɛan] name of a place 20 6.0 

/tʰʌkp*jʌ/ [tʰʌkp*jʌ] ‘jawbone’ 7 6.6 

/tʰʌlsil/ [tʰʌlʃil] ‘woolen yarn’ 12 6.3 

/tʰopnal/ [tʰomnal] ‘saw blade’ 15 6.2 

/tʰopni/ [tʰomni] ‘saw tooth’ 38 6.4 

/tʰoŋkɨn/ [tʰoŋgɨn] ‘commutation’ 14 6.4 

/tʰoŋkɨm/ [tʰoŋgɨm] ‘curfew’ 27 6.1 

/tʰoŋp*jʌ/ [tʰoŋp*jʌ] ‘big bone’ 7 6.2 

/tʰupjʌŋ/ [tʰubjʌŋ] ‘struggle against disease’ 30 6.9 

/tʰuok/ [tʰuok] ‘imprisonment’ 41 6.0 

/tʰuha/ [tʰuha ~ tʰua] ‘jettison’ 45 6.0 

/tʰuhon/ [tʰuhon ~ tʰuon] ‘fighting spirit’ 33 6.8 

/tʰɨklje/ [tʰɨŋnje ~ tʰɨŋlje] ‘exceptional case’ 42 6.6 

/tʰɨkʨin/ [tʰɨkʨ*in] ‘special promotion’ 19 6.4 

Table A.3. Korean orthography (Hangeul), IPA transcriptions, English glosses, lexical 
frequencies (LF), and familiarity scores (FS) of the 25 /th/-initial words included only in the 
reading list.  
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Type Hangeul 
Transcriptions 

English Glosses LF FS 
Phonemic Phonetic 

/t/
-in

iti
al

 w
or

ds
 

/takwa/ [tagwa] ‘refreshments’ 10 6.7 

/tano/ [tano] name of a traditional holiday 42 6.3 

/tanʨ*ak/ [tanʨ*ak] ‘best friend’ 32 6.6 

/talin/ [taɾin] ‘expert’ 13 6.7 

/talksal/ [taks*al] ‘goose bumps’ 10 6.6 

/tamso/ [tamso] ‘chat’ 23 6.4 

/tɛkwʌl/ [tɛgwʌl] ‘(royal) palace’ 34 6.3 

/tɛpak/ [tɛbak] ‘jackpot’ 32 6.8 

/tɛpʌm/ [tɛbʌm] ‘generous’ 47 6.4 

/tɛʨol/ [tɛʥol] ‘college graduate’ 47 6.5 

/tʌtʌk/ [tʌdʌk] name of a mountain herb 19 6.5 

/tʌsni/ [tʌnni] ‘snaggletooth’ 6 6.5 

/tʌssem/ [tʌs*ɛm ~ tʌts*ɛm] ‘addition’ 15 6.8 

/tʌpʰpap/ [tʌpp*ap ~ tʌp*ap] ‘rice with topping’ 17 6.8 

/topo/ [tobo] ‘walking’ 32 6.7 

/toje/ [tojɛ] ‘pottery’ 10 6.4 

/toksa/ [toks*a] ‘poisonous snake’ 34 6.3 

/tokjak/ [togjak] ‘poison’ 37 6.2 

/tolsotʰ/ [tolsot ~ tols*ot] ‘stone pot’ 13 6.4 

/toŋkap/ [toŋgap] ‘the same age’ 31 6.6 

/tukʌn/ [tugʌn] ‘hood, headscarf’ 12 6.2 

/tuju/ [tuju] ‘soymilk’ 42 6.2 

/tɨlk*oʨʰ/ [tɨlk*ot] ‘wild flower’ 46 6.5 

/tɨmʨik/ [tɨmʥik] ‘reliable’ 27 6.5 

/tɨŋsim/ [tɨŋʃim] ‘sirloin’ 25 6.6 

Table A.4. Korean orthography (Hangeul), IPA transcriptions, English glosses, lexical 
frequencies (LF), and familiarity scores (FS) of the 25 /t/-initial words included only in the 
reading list.  
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Type Hangeul 
Transcriptions 

English Glosses LF FS 
Phonemic Phonetic 

/t* /-i
ni

tia
l w

or
ds

 

/t*akwi/ [t*agwi] ‘cheek’ 47 6.1 

/t*ak*ɨn/ [t*ak*ɨn] ‘steaming’ 12 6.9 

/t*ak*ɨm/ [t*ak*ɨm] ‘stinging’ 34 6.5 

/t*anim/ [t*anim] ‘daughter (honorific)’ 28 6.2 

/t*amt*i/ [t*amt*i] ‘prickly heat’ 7 6.5 

/t*amsɛm/ [t*amsɛm] ‘sweat gland’ 12 6.5 

/t*aŋkul/ [t*aŋk*ul] ‘underground tunnel’ 21 6.3 

	 /t*ɛlkam/ [t*ɛlk*am] ‘firewood’ 37 6.6 

/t*ɛŋt*ɛŋ/ [t*ɛŋt*ɛŋ] ‘ding-dong’ 10 6.0 

/t*ɛŋpjʌtʰ/ [t*ɛŋp*jʌt] ‘blazing sun’ 44 6.6 

/t*ɛŋʨʌn/ [t*ɛŋʥʌn] ‘single coin, penny’ 44 6.4 

/t*ʌkkuk/ [t*ʌkk*uk ~ t*ʌk*uk] ‘rice-cake soup’ 40 6.8 

/t*ʌkpap/ [t*ʌkp*ap] ‘paste bait’ 5 6.2 

/t*ʌkipʰ/ [t*ʌŋnip ~ t*ʌŋip] ‘seed leaf’ 9 6.5 

/t*ʌlki/ [t*ʌlgi] ‘bunch (of flowers)’ 13 6.1 

/t*esmok/ [t*ɛnmok ~ t*ɛmmok]  ‘raft’ 33 6.3 

/t*olt*ol/ [t*olt*ol] ‘brainy’ 40 6.5 

/t*oŋpɛ/ [t*oŋp*ɛ] ‘potbelly’ 13 6.5 

/t*upʌk/ [t*ubʌk] onomatopoeia for walking noise 7 6.4 

/t*ukt*ak/ [t*ukt*ak] ‘clattering noise’ 31 6.8 

/t*ukpaŋ/ [t*ukp*aŋ] ‘(river) bank’ 30 6.1 

/t*uksim/ [t*ukʃ 
*im] ‘perseverance’ 26 6.5 

/t*ɨk*ɨn/ [t*ɨk*ɨn] ‘steamy, hot’ 12 6.9 

/t*ɨak/ [t*ɨak] onomatopoeia to express shock 25 6.2 

/t*iŋtoŋ/ [t*iŋtoŋ] ‘ding-dong’ 7 6.1 

Table A.5. Korean orthography (Hangeul), IPA transcriptions, English glosses, lexical 
frequencies (LF), and familiarity scores (FS) of the 25 /t*/-initial words included only in the 
reading list.  
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Type Hangeul 
Transcriptions 

English Glosses LF FS 
Phonemic Phonetic 

U
nh

ea
rd

 so
no

ra
nt

-in
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/napaŋ/ [nabaŋ] ‘moth’ 26 6.2 

/namkɨk/ [namgɨk] ‘the Antarctic’ 40 6.5 

/nɛŋpaŋ/ [nɛŋbaŋ] ‘air conditioning’ 20 6.7 

/nok*ɨn/ [nok*ɨn] ‘string, twine’ 29 6.2 

/nunkɨm/ [nunk*ɨm ~ nuŋk*ɨm] ‘markings (on a ruler)’ 20 6.5 

/nunk*oʨʰ/ [nunk*ot ~ nuŋk*ot] ‘snowflake’ 20 6.6 

/nunpjʌŋ/ [nunp*jʌŋ ~ nump*jʌŋ]  ‘eye disease’ 39 6.8 

/nɨʨʨam/ [nɨʨ*am ~ nɨtʨ*am] ‘oversleeping’ 48 6.9 

/malpʌl/ [malbʌl] ‘wasp’ 6 6.1 

/malkɨm/ [malgɨm] ‘lucidity’ 5 6.6 

/mams*i/ [mamʃ 
*i] ‘nature, intention’ 7 6.1 

/mɛnt*aŋ/ [mɛnt*aŋ] ‘bare ground’ 12 6.0 

/motɨm/ [modɨm] ‘assorted’ 10 6.3 

/mokpal/ [mokp*al] ‘crutch’ 34 6.1 

/momkaps/ [momk*ap ~ moŋk*ap]  ‘ransom’ 49 6.0 

/muʨʌk/ [muʥʌk] ‘invincibility’ 29 6.0 

/mulpjʌŋ/ [mulp*jʌŋ] ‘water bottle’ 9 6.7 

/mitʰʨul/ [miʨ*ul ~ mitʨ*ul] ‘underline’ 41 6.6 

/jakjʌŋ/ [jagjʌŋ] ‘night scene’ 29 6.0 

/jasik/ [jaʃik] ‘late-night snack’ 9 6.8 

/jʌul/ [jʌul] ‘rapids (in a river)’ 33 6.0 

/jesɨp/ [jɛsɨp] ‘preparation for class’ 18 6.3 

/waŋkwan/ [waŋgwan] ‘crown’ 31 6.1 

/wɛpak/ [wɛbak] ‘stay out overnight’ 43 6.6 

/jukkjo/ [juk*jo ~ jukk*jo] ‘footbridge’ 19 6.6 

Table A.6. Korean orthography (Hangeul), IPA transcriptions, English glosses, lexical 
frequencies (LF), and familiarity scores (FS) of the sonorant-initial filler words included only in 
the reading list.   
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APPENDIX B 

Imitation Experiment – Screens and Instructions 

 

 This appendix presents screenshots from the imitation experiment including the 

experimental instruction screens and a stimuli presentation screen. Figures B.1-B.5 provide 

Korean instructions that were actually presented to participants during the imitation experiment, 

along with their English translations. Figure B.6 demonstrates an example screen of visual 

presentation of a word for the warm-up, baseline, and test blocks.  

 

 
Figure B.1. Introduction 

 
Translation:  Thank you for your participation. 
 
  This experiment consists of 4 parts. 
  Before each part, you will see instructions on screen. 
  Please read and follow the instructions carefully. 
  If you need a short break during the experiment, you may rest at the instruction  
  screens between parts. Please follow the instructions to resume when you are ready. 
 
  Hit the spacebar to continue. 
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Figure B.2. Instruction for the warm-up block. 

 
Translation:  Part 1. Read silently: 
  Read the words on the screen silently without pronouncing them.  
  Each word will be shown for 2 seconds. 
 
  Hit ‘P’ on the keyboard to continue. 
 
 
  

 
Figure B.3. Instruction for the baseline block. 

 
Translation:  Part 2. Read aloud: 
  Read aloud the words on the screen, as clearly and naturally as possible. 
  Each word will be shown for 2 seconds. 
   
  Hit ‘K’ on the keyboard to continue. 
  



! 120 

 
Figure B.4. Instruction for the shadowing block. 

 
Translation:  Part 3. Listen and say: 
  In this part, you will hear spoken words through the headset.  
  Upon hearing each word, say it aloud quickly and clearly.  
 
  Now please put on the headset.  
  When you are ready, hit ‘L’ on the keyboard to continue. 
  
 

 
Figure B.5. Instruction for the test block. 

 
Translation: Part 4. Read aloud: 
  You can take off the headset now. 
 
  Read aloud the words on the screen as clearly and naturally as possible.  
  Each word will be shown for 2 seconds. 
 
  Hit ‘P’ on the keyboard to continue. 
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Figure B.6. An example screen of visual presentation of stimuli. 
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APPENDIX C 

Statistical Results for Individual Speakers 

 

 This appendix provides the results for individual speakers. Data for each speaker include 

(1) VOT, F2OT and post stop f0 of /th/, /t/, and /t*/ in their baseline productions, (2) imitative 

changes in VOT, F2OT and post stop f0 of /th/, /t/, and /t*/ in baseline and test productions of the 

two experimental conditions (high f0 and long VOT), and (3) imitative changes in VOT, F2OT 

and post stop f0 of /th/ in five production blocks (baseline, shadowing 1, 2, 3, and test) of the two 

experimental conditions (high f0 and long VOT). 

 VOT, F2OT and post-stop f0 of /th/, /t/, and /t*/ in baseline productions were analyzed by 

performing three separate one-way ANOVAs (dependent variable: VOT, F2OT, post-stop f0, 

respectively for each model; independent variable: stop type) for each speaker. All ANOVAs 

showed significant effects of stop types on VOT, F2OT, and post-stop f0, so post-hoc Tukey 

tests were performed for pair-wise comparisons. Imitative changes for each speaker were 

analyzed by linear mixed effects models. For details of statistical modeling of imitative changes, 

see §3.3. 
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F02 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 203.2 
p < 0.0001 

63.29 63.79 
 

 0.9794 
63.29 

 
14.05  < 0.0001 

 
63.79 14.05  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 214.3 
p < 0.0001 

71.02 70.60   0.9867 
71.02  18.19  < 0.0001 

 70.60 18.19  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 435.8 
p < 0.0001 

240.27 183.58   < 0.0001 
240.27  229.12  < 0.0001 
240.27   184.24 < 0.0001 

 183.58 229.12  < 0.0001 
 183.58  184.24 0.9906 
  229.12 184.24 < 0.0001 

Table C.1. Measurements and statistics for baseline production of speaker F02.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

Table C.2. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F02. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 89.58 86.77 -1.42 0.1590 
/t/ 89.92 90.58 0.20 0.8460 

/t*/ 39.32 38.01 -0.38 0.7030 

F2OT 
(ms.) 

/th/ 99.03 96.76 -1.08 0.2830 
/t/ 99.06 101.78 0.76 0.4520 

/t*/ 45.63 43.00 -0.73 0.4690 
Post-
onset 
f0 
(Hz) 

/th/ 245.60 253.12 4.79 < 0.0001 
/t/ 193.52 192.80 -0.27 0.7916 

/t*/ 235.56 228.88 -2.46 0.0152 
filler 193.34 189.86 -1.57 0.1192 

  Base Test t p 

VOT 
(ms.) 

/th/ 88.98 88.61 -0.17 0.8637 
/t/ 83.26 81.95 -0.36 0.7224 

/t*/ 39.32 38.59 -0.20 0.8433 

F2OT 
(ms.) 

/th/ 101.43 100.07 -0.57 0.5714 
/t/ 94.02 97.66 0.89 0.3734 

/t*/ 48.63 48.60 -0.01 0.9947 
Post-
onset 
f0 
(Hz) 

/th/ 235.14 241.72 2.97 0.0035 
/t/ 173.64 175.30 0.43 0.6657 

/t*/ 222.68 222.54 -0.04 0.9709 
filler 175.34 169.10 -1.99 0.0481 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 93.57   
Sh1 85.52 -2.97 0.0035 
Sh2 84.83 -3.13 0.0021 
Sh3 81.24 -4.22 < 0.0001 
Test 90.58 -1.54 0.1252 

/th/ 
F2OT 
(ms.) 

Base 99.55   
Sh1 94.99 -1.69 0.0925 
Sh2 92.23 -2.65 0.0091 
Sh3 87.82 -4.05 0.0001 
Test 97.25 -1.21 0.2301 

Post-stop 
f0 
(Hz) 

Base 245.60   
Sh1 255.45 4.95 < 0.0001 
Sh2 254.73 4.59 < 0.0001 
Sh3 255.61 5.03 < 0.0001 
Test 253.12 4.89 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 193.34   
Sh1 193.59 0.09 0.9283 
Sh2 200.75 2.70 0.0075 
Sh3 199.23 2.14 0.0330 
Test 189.86 -1.60 0.1107 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 101.66   
Sh1 102.54 0.27 0.7910 
Sh2 103.27 0.49 0.6280 
Sh3 101.91 0.08 0.9390 
Test 102.14 0.19 0.8520 

/th/ 
F2OT 
(ms.) 

Base 114.57   
Sh1 117.27 0.72 0.4740 
Sh2 115.85 0.34 0.7330 
Sh3 113.27 -0.35 0.7270 
Test 114.14 -0.15 0.8820 

Post-stop 
f0 
(Hz) 

Base 235.14   
Sh1 251.62 7.48 < 0.0001 
Sh2 243.46 3.78 0.0002 
Sh3 246.50 5.16 < 0.0001 
Test 241.72 3.89 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 175.34   
Sh1 170.31 -1.64 0.1017 
Sh2 185.35 3.27 0.0012 
Sh3 184.15 2.88 0.0043 
Test 169.10 -2.61 0.0096 

 

 
Table C.3. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F02. Bolded data are significant at p < 0.05. 
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F04 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,196) = 270.4 
p < 0.0001 

79.75 75.82 
 

 0.4129 
79.75 

 
11.25  < 0.0001 

 
75.82 11.25  < 0.0001 

F2OT 
(ms.) 

F(2,196) = 297.9 
p < 0.0001 

85.55 81.24   0.3508 
85.55  13.19  < 0.0001 

 81.24 13.19  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,294) = 660.2 
p < 0.0001 

285.37 195.88   < 0.0001 
285.37  261.29  < 0.0001 
285.37   191.44 < 0.0001 

 195.88 261.29  < 0.0001 
 195.88  191.44 0.4245 
  261.29 191.44 < 0.0001 

Table C.4. Measurements and statistics for baseline production of speaker F04.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

Table C.5. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F04. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 105.65 100.01 -2.57 0.0116 
/t/ 95.57 99.78 1.18 0.2408 

/t*/ 34.46 39.22 1.35 0.1800 

F2OT 
(ms.) 

/th/ 110.77 105.59 -2.21 0.0295 
/t/ 101.72 106.86 1.34 0.1822 

/t*/ 37.25 41.62 1.16 0.2507 
Post-
onset 
f0 
(Hz) 

/th/ 290.42 285.34 -2.27 0.0247 
/t/ 199.62 203.48 1.00 0.3214 

/t*/ 266.28 276.12 2.54 0.0123 
filler 191.70 203.20 3.66 0.0004 

  Base Test t p 

VOT 
(ms.) 

/th/ 107.04 109.45 1.17 0.2455 
/t/ 100.81 100.45 -0.11 0.9138 

/t*/ 38.49 33.18 -1.58 0.1171 

F2OT 
(ms.) 

/th/ 115.60 117.49 0.96 0.3394 
/t/ 107.56 108.56 0.31 0.7561 

/t*/ 42.43 39.08 -1.04 0.2996 
Post-
onset 
f0 
(Hz) 

/th/ 279.96 307.46 13.09 < 0.0001 
/t/ 192.12 166.54 -7.03 < 0.0001 
/t*/ 256.72 251.62 -1.40 0.1630 

filler 190.82 161.26 -9.95 < 0.0001 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 111.68   
Sh1 97.69 -3.85 0.0002 
Sh2 97.84 -3.84 0.0002 
Sh3 91.82 -5.05 < 0.0001 
Test 105.37 -2.50 0.0136 

/th/ 
F2OT 
(ms.) 

Base 114.66   
Sh1 102.26 -3.33 0.0011 
Sh2 102.29 -3.34 0.0011 
Sh3 97.33 -4.27 < 0.0001 
Test 109.04 -2.18 0.0313 

Post-stop 
f0 
(Hz) 

Base 290.44   
Sh1 265.22 -8.24 < 0.0001 
Sh2 265.87 -8.15 < 0.0001 
Sh3 269.99 -6.78 < 0.0001 
Test 285.34 -2.17 0.0308 

Post-
sonorant  
f0 
(Hz) 

Base 191.72   
Sh1 217.54 6.12 < 0.0001 
Sh2 215.69 5.72 < 0.0001 
Sh3 215.37 5.65 < 0.0001 
Test 203.23 3.49 0.0006 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 114.47   
Sh1 89.56 -6.29 < 0.0001 
Sh2 96.20 -4.80 < 0.0001 
Sh3 109.68 -1.35 0.1796 
Test 116.28 0.74 0.4610 

/th/ 
F2OT 
(ms.) 

Base 120.30   
Sh1 97.63 -6.08 < 0.0001 
Sh2 104.46 -4.42 < 0.0001 
Sh3 114.40 -1.79 0.0760 
Test 121.82 0.67 0.5051 

Post-stop 
f0 
(Hz) 

Base 279.96   
Sh1 274.92 -1.80 0.0734 
Sh2 274.24 -2.04 0.0424 
Sh3 274.80 -1.84 0.0669 
Test 307.46 12.81 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 190.82   
Sh1 196.04 1.33 0.1834 
Sh2 196.36 1.42 0.1581 
Sh3 196.88 1.55 0.1227 
Test 161.26 -9.74 < 0.0001 

 

 
Table C.6. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F04. Bolded data are significant at p < 0.05. 
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M05 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 222.8 
p < 0.0001 

59.83 48.58 
 

 < 0.0001 
59.83 

 
14.32  < 0.0001 

 
48.58 14.32  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 220.6 
p < 0.0001 

67.49 56.72   < 0.0001 
67.49  19.26  < 0.0001 

 56.72 19.26  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,294) = 267.4 
p < 0.0001 

145.89 124.49   < 0.0001 
145.89  137.04  < 0.0001 
145.89   118.41 < 0.0001 

 124.49 137.04  < 0.0001 
 124.49  118.41 < 0.0001 
  137.04 118.41 < 0.0001 

Table C.7. Measurements and statistics for baseline production of speaker M05.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

Table C.8. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker M05. Bolded data are significant at p < 0.05. 

 

 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 78.12 80.99 1.57 0.1188 
/t/ 68.41 70.40 0.64 0.5271 

/t*/ 35.40 31.12 -1.37 0.1741 

F2OT 
(ms.) 

/th/ 88.75 91.44 1.36 0.1781 
/t/ 81.23 80.66 -0.17 0.8690 

/t*/ 44.08 39.88 -1.23 0.2223 
Post-
onset 
f0 
(Hz) 

/th/ 147.86 160.36 11.15 < 0.0001 
/t/ 127.88 114.66 -6.74 < 0.0001 
/t*/ 137.91 138.10 0.10 0.9250 

filler 118.20 107.30 -6.88 < 0.0001 

  Base Test t p 

VOT 
(ms.) 

/th/ 98.37 99.53 0.54 0.5910 
/t/ 83.42 81.61 -0.57 0.5720 

/t*/ 52.36 47.84 -1.41 0.1620 

F2OT 
(ms.) 

/th/ 109.78 110.81 0.47 0.6430 
/t/ 92.85 91.57 -0.39 0.6994 

/t*/ 60.50 56.24 -1.28 0.2046 
Post-
onset 
f0 
(Hz) 

/th/ 143.94 152.24 6.17 < 0.0001 
/t/ 121.28 114.06 -3.10 0.0023 

/t*/ 136.24 131.46 -2.05 0.0421 
filler 118.64 108.64 -5.26 < 0.0001 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 79.40   
Sh1 68.05 -4.31 < 0.0001 
Sh2 73.78 -2.14 0.0343 
Sh3 78.19 -0.46 0.6450 
Test 82.33 1.46 0.1470 

/th/ 
F2OT 
(ms.) 

Base 89.19   
Sh1 77.17 -4.38 < 0.0001 
Sh2 83.21 -2.18 0.0311 
Sh3 87.79 -0.51 0.6116 
Test 91.92 1.30 0.1958 

Post-stop 
f0 
(Hz) 

Base 147.86   
Sh1 157.70 7.80 < 0.0001 
Sh2 164.34 13.06 < 0.0001 
Sh3 160.82 10.27 < 0.0001 
Test 160.36 12.92 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 118.20   
Sh1 109.08 -5.18 < 0.0001 
Sh2 102.16 -9.12 < 0.0001 
Sh3 106.00 -6.93 < 0.0001 
Test 107.30 -7.96 < 0.0001 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 89.94   
Sh1 84.33 -1.55 0.1236 
Sh2 83.09 -1.90 0.0593 
Sh3 89.69 -0.07 0.9426 
Test 92.20 0.92 0.3588 

/th/ 
F2OT 
(ms.) 

Base 96.79   
Sh1 91.01 -1.54 0.1258 
Sh2 91.09 -1.52 0.1307 
Sh3 97.93 0.32 0.7464 
Test 99.57 1.09 0.2784 

Post-stop 
f0 
(Hz) 

Base 143.94   
Sh1 150.65 4.20 < 0.0001 
Sh2 150.38 3.97 0.0001 
Sh3 149.53 3.50 0.0006 
Test 152.24 6.75 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 118.64   
Sh1 108.24 -4.68 < 0.0001 
Sh2 110.83 -3.49 0.0006 
Sh3 110.80 -3.53 0.0005 
Test 108.64 -5.75 < 0.0001 

 

 
Table C.9. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker M05. Bolded data are significant at p < 0.05. 
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F07 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 261.2 
p < 0.0001 

61.99 60.34 
 

 0.7186 
61.99 

 
15.74  < 0.0001 

 
60.34 15.74  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 283.6 
p < 0.0001 

67.47 66.77   0.9452 
67.47  18.30  < 0.0001 

 66.77 18.30  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 363.5 
p < 0.0001 

256.28 203.80   < 0.0001 
256.28  242.02  < 0.0001 
256.28   200.12 < 0.0001 

 203.80 242.02  < 0.0001 
 203.80  200.12 0.3891 
  242.02 200.12 < 0.0001 

Table C.10. Measurements and statistics for baseline production of speaker F07.  
Bolded data are significant at p < 0.05. 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

Table C.11. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F07. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 70.28 68.33 -1.17 0.2433 
/t/ 68.21 68.22 0.01 0.9963 

/t*/ 28.54 30.07 0.54 0.5927 

F2OT 
(ms.) 

/th/ 78.30 76.29 -1.21 0.2290 
/t/ 77.02 76.77 -0.09 0.9320 

/t*/ 32.98 34.64 0.58 0.5630 
Post-
onset 
f0 
(Hz) 

/th/ 266.58 267.80 0.96 0.3412 
/t/ 206.40 205.26 -0.52 0.6072 

/t*/ 249.04 251.94 1.31 0.1921 
filler 201.82 197.98 -2.13 0.0353 

  Base Test t p 

VOT 
(ms.) 

/th/ 89.50 83.49 -4.03 0.0001 
/t/ 88.44 91.44 1.17 0.2465 

/t*/ 41.03 46.96 2.31 0.0232 

F2OT 
(ms.) 

/th/ 94.70 88.27 -4.19 0.0001 
/t/ 94.50 97.89 1.28 0.2051 

/t*/ 44.08 50.27 2.33 0.0217 
Post-
onset 
f0 
(Hz) 

/th/ 247.18 252.38 2.17 0.0317 
/t/ 201.20 196.68 -1.09 0.2782 

/t*/ 235.00 226.28 -2.10 0.0375 
filler 199.62 193.28 -1.87 0.0635 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 68.32   
Sh1 66.46 -0.84 0.4015 
Sh2 64.30 -1.83 0.0699 
Sh3 62.13 -2.81 0.0058 
Test 66.43 -1.13 0.2624 

/th/ 
F2OT 
(ms.) 

Base 73.46   
Sh1 70.05 -1.59 0.1153 
Sh2 68.91 -2.12 0.0359 
Sh3 68.63 -2.25 0.0267 
Test 71.60 -1.13 0.2607 

Post-stop 
f0 
(Hz) 

Base 266.58   
Sh1 277.26 7.03 < 0.0001 
Sh2 272.74 4.05 0.0001 
Sh3 270.26 2.42 0.0162 
Test 267.80 1.05 0.2937 

Post-
sonorant  
f0 
(Hz) 

Base 201.82   
Sh1 197.63 -1.97 0.0498 
Sh2 198.35 -1.63 0.1039 
Sh3 198.11 -1.75 0.0822 
Test 197.98 -2.34 0.0200 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 87.16   
Sh1 83.48 -1.61 0.1108 
Sh2 80.02 -3.10 0.0024 
Sh3 79.49 -3.35 0.0011 
Test 81.19 -3.45 0.0008 

/th/ 
F2OT 
(ms.) 

Base 95.32   
Sh1 90.47 -2.05 0.0425 
Sh2 87.16 -3.43 0.0008 
Sh3 86.36 -3.79 0.0002 
Test 88.88 -3.62 0.0004 

Post-stop 
f0 
(Hz) 

Base 247.18   
Sh1 257.09 5.78 < 0.0001 
Sh2 255.09 4.61 < 0.0001 
Sh3 257.57 6.06 < 0.0001 
Test 252.38 3.94 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 199.62   
Sh1 191.66 -3.34 0.0010 
Sh2 193.30 -2.65 0.0085 
Sh3 191.46 -3.43 0.0007 
Test 193.28 -3.40 0.0008 

 

 
Table C.12. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F07. Bolded data are significant at p < 0.05. 
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F08 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 187.2 
p < 0.0001 

61.98 49.84 
 

 < 0.0001 
61.98 

 
13.75  < 0.0001 

 
49.84 13.75  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 194.7 
p < 0.0001 

70.26 58.90   0.0001 
70.26  18.40  < 0.0001 

 58.90 18.40  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 459.4 
p < 0.0001 

252.92 206.96   < 0.0001 
252.92  235.56  < 0.0001 
252.92   199.40 < 0.0001 

 206.96 235.56  < 0.0001 
 206.96  199.40 0.0005 
  235.56 199.40 < 0.0001 

Table C.13. Measurements and statistics for baseline production of speaker F08.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table C.14. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F08. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 91.71 86.57 -2.66 0.0091 
/t/ 78.09 82.66 1.37 0.1738 

/t*/ 42.82 46.87 1.21 0.2283 

F2OT 
(ms.) 

/th/ 102.32 97.59 -2.31 0.0232 
/t/ 88.28 92.45 1.18 0.2415 

/t*/ 48.96 54.48 1.56 0.1222 
Post-
onset 
f0 
(Hz) 

/th/ 258.81 266.11 5.73 < 0.0001 
/t/ 210.76 204.82 -2.69 0.0079 
/t*/ 240.60 238.18 -1.10 0.2745 

filler 199.93 192.55 -4.10 0.0001 

  Base Test t p 

VOT 
(ms.) 

/th/ 94.18 101.75 3.44 0.0008 
/t/ 83.71 82.12 -0.42 0.6750 

/t*/ 49.92 39.00 -2.89 0.0048 

F2OT 
(ms.) 

/th/ 105.08 114.89 4.74 < 0.0001 
/t/ 95.83 92.50 -0.94 0.3490 

/t*/ 58.12 43.63 -4.08 0.0001 
Post-
onset 
f0 
(Hz) 

/th/ 246.81 257.35 6.53 < 0.0001 
/t/ 203.16 196.22 -2.48 0.0142 

/t*/ 230.52 224.58 -2.12 0.0354 
filler 198.65 188.69 -4.36 < 0.0001 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 106.81   
Sh1 100.84 -1.95 0.0536 
Sh2 99.87 -2.26 0.0258 
Sh3 94.97 -3.83 0.0002 
Test 101.26 -2.39 0.0183 

/th/ 
F2OT 
(ms.) 

Base 118.90   
Sh1 110.03 -2.81 0.0058 
Sh2 109.41 -3.00 0.0033 
Sh3 105.78 -4.12 0.0001 
Test 113.70 -2.17 0.0319 

Post-stop 
f0 
(Hz) 

Base 258.81   
Sh1 268.37 4.35 < 0.0001 
Sh2 263.53 2.15 0.0325 
Sh3 258.97 0.08 0.9402 
Test 266.11 4.33 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 199.93   
Sh1 192.93 -2.29 0.0229 
Sh2 194.77 -1.69 0.0929 
Sh3 201.93 0.65 0.5139 
Test 192.55 -3.09 0.0022 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 88.00   
Sh1 75.69 -3.72 0.0003 
Sh2 84.10 -1.19 0.2365 
Sh3 85.13 -0.87 0.3877 
Test 95.80 3.18 0.0019 

/th/ 
F2OT 
(ms.) 

Base 98.76   
Sh1 88.03 -3.25 0.0015 
Sh2 97.95 -0.25 0.8042 
Sh3 96.88 -0.57 0.5678 
Test 108.83 4.14 0.0001 

Post-stop 
f0 
(Hz) 

Base 246.81   
Sh1 267.59 10.41 < 0.0001 
Sh2 266.63 9.93 < 0.0001 
Sh3 266.91 10.07 < 0.0001 
Test 257.35 6.87 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 198.65   
Sh1 191.95 -2.42 0.0163 
Sh2 192.83 -2.10 0.0366 
Sh3 188.63 -3.62 0.0004 
Test 188.69 -4.59 < 0.0001 

 

 
Table C.15. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F08. Bolded data are significant at p < 0.05. 
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F09 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 215.2 
p < 0.0001 

63.98 49.54 
 

 < 0.0001 
63.98 

 
13.86  < 0.0001 

 
49.54 13.86  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 257.7 
p < 0.0001 

70.62 59.77   < 0.0001 
70.62  16.14  < 0.0001 

 59.77 16.14  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 519.8 
p < 0.0001 

249.45 204.08   < 0.0001 
249.45  239.58  < 0.0001 
249.45   198.27 < 0.0001 

 204.08 239.58  < 0.0001 
 204.08  198.27 0.0063 
  239.58 198.27 < 0.0001 

Table C.16. Measurements and statistics for baseline production of speaker F09.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table C.17. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F09. Bolded data are significant at p < 0.05. 

 

 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 72.05 69.13 -1.92 0.0578 
/t/ 51.88 57.02 1.98 0.0510 

/t*/ 22.31 24.82 0.97 0.3349 

F2OT 
(ms.) 

/th/ 78.12 78.94 0.54 0.5920 
/t/ 62.09 62.39 0.11 0.9110 

/t*/ 23.75 22.30 -0.56 0.5800 
Post-
onset 
f0 
(Hz) 

/th/ 257.42 268.08 8.18 < 0.0001 
/t/ 204.00 200.98 -1.34 0.1831 

/t*/ 243.80 236.18 -3.38 0.0009 
filler 200.66 194.72 -3.22 0.0016 

  Base Test t p 

VOT 
(ms.) 

/th/ 87.33 88.83 0.77 0.4408 
/t/ 72.93 70.43 -0.75 0.4573 

/t*/ 33.44 30.79 -0.79 0.4299 

F2OT 
(ms.) 

/th/ 95.77 96.52 0.38 0.7045 
/t/ 84.11 79.85 -1.24 0.2186 

/t*/ 37.95 33.85 -1.19 0.2363 
Post-
onset 
f0 
(Hz) 

/th/ 242.81 255.53 7.92 < 0.0001 
/t/ 204.16 190.04 -5.08 < 0.0001 
/t*/ 235.36 234.33 -0.37 0.7151 

filler 197.21 185.77 -5.04 < 0.0001 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 86.03   
Sh1 79.63 -2.57 0.0112 
Sh2 73.30 -5.10 < 0.0001 
Sh3 70.70 -6.12 < 0.0001 
Test 82.48 -1.99 0.0490 

/th/ 
F2OT 
(ms.) 

Base 91.86   
Sh1 83.70 -3.15 0.0020 
Sh2 80.95 -4.17 0.0001 
Sh3 78.01 -5.27 < 0.0001 
Test 91.96 0.05 0.9575 

Post-stop 
f0 
(Hz) 

Base 257.42   
Sh1 266.45 4.13 < 0.0001 
Sh2 267.77 4.73 < 0.0001 
Sh3 276.05 8.52 < 0.0001 
Test 268.08 6.35 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 200.66   
Sh1 196.82 -1.26 0.2090 
Sh2 196.78 -1.27 0.2040 
Sh3 187.54 -4.31 < 0.0001 
Test 194.72 -2.50 0.0130 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 96.57   
Sh1 91.14 -2.00 0.0479 
Sh2 89.63 -2.56 0.0116 
Sh3 86.51 -3.67 0.0004 
Test 97.84 0.62 0.5341 

/th/ 
F2OT 
(ms.) 

Base 105.84   
Sh1 100.73 -1.81 0.0731 
Sh2 98.65 -2.56 0.0118 
Sh3 94.81 -3.88 0.0002 
Test 106.35 0.25 0.8072 

Post-stop 
f0 
(Hz) 

Base 242.81   
Sh1 266.42 9.96 < 0.0001 
Sh2 262.38 8.25 < 0.0001 
Sh3 267.30 10.33 < 0.0001 
Test 255.53 6.96 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 197.21   
Sh1 183.77 -4.09 0.0001 
Sh2 184.85 -3.76 0.0002 
Sh3 182.73 -4.40 < 0.0001 
Test 185.77 -4.43 < 0.0001 

 

 
Table C.18. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F09. Bolded data are significant at p < 0.05. 
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M10 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 155 
p < 0.0001 

59.82 41.45 
 

 < 0.0001 
59.82 

 
17.03  < 0.0001 

 
41.45 17.03  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 173.1 
p < 0.0001 

74.71 54.55   < 0.0001 
74.71  25.65  < 0.0001 

 54.55 25.65  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,293) = 475.4 
p < 0.0001 

135.17 108.98   < 0.0001 
135.17  129.63  < 0.0001 
135.17   105.63 < 0.0001 

 108.98 129.63  < 0.0001 
 108.98  105.63 0.0098 
  129.63 105.63 < 0.0001 

Table C.19. Measurements and statistics for baseline production of speaker M10.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

Table C.20. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker M10. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 82.58 89.12 3.14 0.0023 
/t/ 62.69 60.70 -0.56 0.5797 

/t*/ 44.22 37.83 -1.79 0.0763 

F2OT 
(ms.) 

/th/ 99.98 107.56 3.21 0.0018 
/t/ 77.68 74.61 -0.76 0.4522 

/t*/ 54.33 47.39 -1.71 0.0897 
Post-
onset 
f0 
(Hz) 

/th/ 134.71 144.15 9.42 < 0.0001 
/t/ 111.00 102.20 -5.07 < 0.0001 
/t*/ 129.80 128.46 -0.77 0.4447 

filler 107.67 99.73 -5.60 < 0.0001 

  Base Test t p 

VOT 
(ms.) 

/th/ 81.40 86.12 2.40 0.0185 
/t/ 63.59 57.65 -1.76 0.0815 

/t*/ 36.49 32.52 -1.18 0.2424 

F2OT 
(ms.) 

/th/ 99.16 103.77 2.07 0.0410 
/t/ 80.83 74.11 -1.76 0.0817 

/t*/ 50.75 46.71 -1.06 0.2921 
Post-
onset 
f0 
(Hz) 

/th/ 135.23 140.43 5.15 < 0.0001 
/t/ 106.96 104.83 -1.23 0.2211 

/t*/ 129.48 124.27 -2.98 0.0034 
filler 103.15 99.98 -2.23 0.0270 



! 136 

 

 

 

 

 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 90.30   
Sh1 86.21 -1.42 0.1596 
Sh2 87.54 -0.96 0.3396 
Sh3 88.08 -0.77 0.4410 
Test 97.24 3.14 0.0021 

/th/ 
F2OT 
(ms.) 

Base 110.49   
Sh1 104.24 -1.94 0.0551 
Sh2 104.65 -1.82 0.0718 
Sh3 108.03 -0.77 0.4458 
Test 118.61 3.30 0.0013 

Post-stop 
f0 
(Hz) 

Base 134.71   
Sh1 138.26 2.78 0.0058 
Sh2 143.01 6.58 < 0.0001 
Sh3 144.93 8.11 < 0.0001 
Test 144.15 9.73 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 107.67   
Sh1 104.77 -1.64 0.1022 
Sh2 100.63 -4.02 0.0001 
Sh3 99.87 -4.45 < 0.0001 
Test 99.73 -5.78 < 0.0001 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 97.74   
Sh1 100.36 0.77 0.4440 
Sh2 101.89 1.20 0.2310 
Sh3 101.97 1.23 0.2200 
Test 103.32 2.17 0.0320 

/th/ 
F2OT 
(ms.) 

Base 114.79   
Sh1 116.65 0.51 0.6082 
Sh2 119.26 1.23 0.2215 
Sh3 118.97 1.15 0.2514 
Test 120.27 2.01 0.0461 

Post-stop 
f0 
(Hz) 

Base 135.22   
Sh1 140.87 4.51 < 0.0001 
Sh2 139.08 3.12 0.0020 
Sh3 142.40 5.81 < 0.0001 
Test 140.43 5.44 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 103.15   
Sh1 100.26 -1.68 0.0942 
Sh2 100.41 -1.61 0.1094 
Sh3 99.33 -2.24 0.0259 
Test 99.98 -2.36 0.0190 

 

 
Table C.21. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker M10. Bolded data are significant at p < 0.05. 
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F11 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,196) = 125.5 
p < 0.0001 

61.36 52.75 
 

 0.0098 
61.36 

 
15.41  < 0.0001 

 
52.75 15.41  < 0.0001 

F2OT 
(ms.) 

F(2,196) = 129.3 
p < 0.0001 

74.45 66.21   0.0388 
74.45  21.15  < 0.0001 

 66.21 21.15  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,294) = 387.3 
p < 0.0001 

253.70 210.64   < 0.0001 
253.70  249.86  0.2339 
253.70   204.82 < 0.0001 

 210.64 249.86  < 0.0001 
 210.64  204.82 0.0214 
  249.86 204.82 < 0.0001 

Table C.22. Measurements and statistics for baseline production of speaker F11.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table C.23. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F11. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 91.88 90.06 -0.83 0.4103 
/t/ 78.11 76.43 -0.46 0.6450 

/t*/ 46.79 46.22 -0.16 0.8752 

F2OT 
(ms.) 

/th/ 110.56 108.89 -0.71 0.4783 
/t/ 97.43 98.51 0.28 0.7795 

/t*/ 58.69 58.40 -0.07 0.9415 
Post-
onset 
f0 
(Hz) 

/th/ 255.35 264.37 4.88 < 0.0001 
/t/ 211.16 205.18 -1.87 0.0640 

/t*/ 250.60 242.70 -2.44 0.0158 
filler 205.55 193.81 -4.49 < 0.0001 

  Base Test t p 

VOT 
(ms.) 

/th/ 84.44 90.41 2.48 0.0146 
/t/ 78.23 74.33 -0.97 0.3357 

/t*/ 40.41 36.41 -0.98 0.3288 

F2OT 
(ms.) 

/th/ 105.57 106.73 0.42 0.6750 
/t/ 98.07 97.15 -0.20 0.8450 

/t*/ 54.73 54.60 -0.03 0.9780 
Post-
onset 
f0 
(Hz) 

/th/ 252.20 251.06 -0.59 0.5540 
/t/ 210.12 211.54 0.43 0.6650 

/t*/ 248.42 244.71 -1.10 0.2730 
filler 204.41 204.99 0.22 0.8290 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 106.90   
Sh1 102.29 -1.53 0.1284 
Sh2 101.94 -1.66 0.0986 
Sh3 106.91 0.00 0.9983 
Test 103.69 -1.43 0.1539 

/th/ 
F2OT 
(ms.) 

Base 119.56   
Sh1 113.02 -2.16 0.0329 
Sh2 114.49 -1.68 0.0949 
Sh3 119.48 -0.03 0.9775 
Test 117.03 -1.12 0.2656 

Post-stop 
f0 
(Hz) 

Base 255.35   
Sh1 262.73 4.00 0.0001 
Sh2 260.67 2.92 0.0038 
Sh3 260.39 2.77 0.0061 
Test 264.37 6.45 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 205.55   
Sh1 197.77 -3.05 0.0026 
Sh2 199.56 -2.37 0.0187 
Sh3 200.88 -1.84 0.0663 
Test 193.81 -5.93 < 0.0001 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 102.61   
Sh1 109.31 1.87 0.0639 
Sh2 106.91 1.11 0.2688 
Sh3 108.26 1.49 0.1383 
Test 106.96 1.59 0.1136 

/th/ 
F2OT 
(ms.) 

Base 123.29   
Sh1 129.29 1.51 0.1330 
Sh2 125.66 0.56 0.5790 
Sh3 128.18 1.17 0.2440 
Test 122.97 -0.10 0.9180 

Post-stop 
f0 
(Hz) 

Base 252.32   
Sh1 259.67 3.88 0.0001 
Sh2 251.84 -0.25 0.7998 
Sh3 253.03 0.37 0.7150 
Test 251.01 -0.89 0.3732 

Post-
sonorant  
f0 
(Hz) 

Base 204.36   
Sh1 199.30 -1.95 0.0527 
Sh2 201.69 -1.03 0.3057 
Sh3 203.46 -0.34 0.7330 
Test 205.11 0.36 0.7162 

 

 
Table C.24. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F11. Bolded data are significant at p < 0.05. 
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F12 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 191 
p < 0.0001 

65.97 62.49 
 

 0.4389 
65.97 

 
12.65  < 0.0001 

 
62.49 12.65  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 234.4 
p < 0.0001 

72.22 69.82   0.6673 
72.22  14.34  < 0.0001 

 69.82 14.34  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 594.4 
p < 0.0001 

260.45 201.82   < 0.0001 
260.45  240.82  < 0.0001 
260.45   199.17 < 0.0001 

 201.82 240.82  < 0.0001 
 201.82  199.17 0.5348 
  240.82 199.17 < 0.0001 

Table C.25. Measurements and statistics for baseline production of speaker F12.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

Table C.26. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F12. Bolded data are significant at p < 0.05. 

 

 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 97.81 97.18 -0.35 0.7300 
/t/ 97.82 96.59 -0.40 0.6940 

/t*/ 45.01 44.74 -0.09 0.9320 

F2OT 
(ms.) 

/th/ 101.41 102.26 0.43 0.6650 
/t/ 103.42 100.47 -0.87 0.3860 

/t*/ 45.80 44.27 -0.45 0.6510 
Post-
onset 
f0 
(Hz) 

/th/ 266.63 265.67 -0.50 0.6193 
/t/ 203.40 198.92 -1.34 0.1819 

/t*/ 248.52 247.00 -0.46 0.6497 
filler 202.03 197.29 -1.74 0.0843 

  Base Test t p 

VOT 
(ms.) 

/th/ 97.37 98.82 0.60 0.5480 
/t/ 90.35 91.32 0.23 0.8160 

/t*/ 47.06 48.13 0.26 0.7980 

F2OT 
(ms.) 

/th/ 102.11 104.73 1.06 0.2930 
/t/ 95.94 97.75 0.42 0.6740 

/t*/ 46.82 50.09 0.76 0.4480 
Post-
onset 
f0 
(Hz) 

/th/ 253.66 259.42 3.12 0.0022 
/t/ 200.24 194.40 -1.83 0.0697 

/t*/ 233.12 236.52 1.06 0.2892 
filler 195.70 188.34 -2.82 0.0055 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 107.16   
Sh1 109.43 0.73 0.4680 
Sh2 107.64 0.15 0.8780 
Sh3 108.76 0.52 0.6010 
Test 106.21 -0.41 0.6820 

/th/ 
F2OT 
(ms.) 

Base 112.08   
Sh1 114.60 0.80 0.4230 
Sh2 113.21 0.36 0.7190 
Sh3 111.95 -0.05 0.9650 
Test 112.53 0.19 0.8490 

Post-stop 
f0 
(Hz) 

Base 266.63   
Sh1 259.51 -2.81 0.0052 
Sh2 259.03 -3.00 0.0029 
Sh3 265.63 -0.39 0.6944 
Test 265.67 -0.49 0.6258 

Post-
sonorant  
f0 
(Hz) 

Base 202.03   
Sh1 203.42 0.40 0.6871 
Sh2 212.26 2.95 0.0034 
Sh3 207.66 1.63 0.1051 
Test 197.29 -1.71 0.0895 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 109.26   
Sh1 106.49 -0.88 0.3800 
Sh2 113.16 1.23 0.2200 
Sh3 110.85 0.50 0.6200 
Test 110.46 0.50 0.6150 

/th/ 
F2OT 
(ms.) 

Base 112.80   
Sh1 110.86 -0.62 0.5360 
Sh2 116.71 1.24 0.2170 
Sh3 115.27 0.78 0.4370 
Test 115.16 1.00 0.3210 

Post-stop 
f0 
(Hz) 

Base 253.66   
Sh1 247.31 -2.71 0.0071 
Sh2 241.15 -5.35 < 0.0001 
Sh3 251.23 -1.04 0.2995 
Test 259.42 3.16 0.0018 

Post-
sonorant  
f0 
(Hz) 

Base 195.70   
Sh1 195.69 0.00 0.9965 
Sh2 202.09 1.99 0.0474 
Sh3 194.29 -0.44 0.6596 
Test 188.34 -2.86 0.0047 

 

 
Table C.27. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F12. Bolded data are significant at p < 0.05. 
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F13 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 219.7 
p < 0.0001 

60.10 47.39 
 

 < 0.0001 
60.10 

 
11.32  < 0.0001 

 
47.39 11.32  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 247.6 
p < 0.0001 

66.38 53.50   < 0.0001 
66.38  13.23  < 0.0001 

 53.50 13.23  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 826 
p < 0.0001 

306.95 216.52   < 0.0001 
306.95  285.64  < 0.0001 
306.95   214.72 < 0.0001 

 216.52 285.64  < 0.0001 
 216.52  214.72 0.8982 
  285.64 214.72 < 0.0001 

Table C.28. Measurements and statistics for baseline production of speaker F13.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table C.29. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F13. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 71.38 66.23 -2.62 0.0101 
/t/ 61.60 66.01 1.30 0.1970 

/t*/ 31.82 35.67 1.13 0.2598 

F2OT 
(ms.) 

/th/ 83.87 80.95 -1.44 0.1521 
/t/ 72.20 75.92 1.07 0.2882 

/t*/ 39.53 41.07 0.44 0.6592 
Post-
onset 
f0 
(Hz) 

/th/ 306.48 317.40 3.74 0.0003 
/t/ 216.64 213.16 -0.69 0.4927 

/t*/ 286.08 288.40 0.46 0.6472 
filler 216.52 213.92 -0.63 0.5301 

  Base Test t p 

VOT 
(ms.) 

/th/ 90.50 83.55 -3.39 0.0010 
/t/ 72.78 76.78 1.16 0.2493 

/t*/ 34.26 39.73 1.59 0.1156 

F2OT 
(ms.) 

/th/ 98.25 91.21 -3.41 0.0009 
/t/ 81.30 87.74 1.86 0.0657 

/t*/ 38.47 44.63 1.78 0.0777 
Post-
onset 
f0 
(Hz) 

/th/ 309.33 335.57 11.01 < 0.0001 
/t/ 216.40 204.28 -2.94 0.0039 
/t*/ 285.20 280.96 -1.03 0.3061 

filler 214.83 201.65 -3.91 0.0001 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 85.10   
Sh1 80.61 -1.50 0.1358 
Sh2 78.94 -2.06 0.0416 
Sh3 83.19 -0.64 0.5243 
Test 79.62 -2.42 0.0171 

/th/ 
F2OT 
(ms.) 

Base 97.21   
Sh1 93.84 -1.14 0.2560 
Sh2 94.20 -1.02 0.3110 
Sh3 98.83 0.55 0.5820 
Test 93.90 -1.48 0.1420 

Post-stop 
f0 
(Hz) 

Base 306.48   
Sh1 296.68 -2.58 0.0103 
Sh2 317.84 3.00 0.0030 
Sh3 313.52 1.86 0.0645 
Test 317.40 3.71 0.0003 

Post-
sonorant  
f0 
(Hz) 

Base 216.52   
Sh1 233.91 3.33 0.0010 
Sh2 216.31 -0.04 0.9686 
Sh3 223.79 1.39 0.1647 
Test 213.92 -0.63 0.5326 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 99.15   
Sh1 91.24 -2.88 0.0047 
Sh2 93.91 -1.89 0.0615 
Sh3 94.40 -1.72 0.0888 
Test 91.34 -3.64 0.0004 

/th/ 
F2OT 
(ms.) 

Base 107.38   
Sh1 101.05 -2.29 0.0238 
Sh2 101.85 -1.98 0.0500 
Sh3 103.70 -1.32 0.1898 
Test 99.41 -3.69 0.0003 

Post-stop 
f0 
(Hz) 

Base 309.33   
Sh1 319.23 3.12 0.0020 
Sh2 315.51 1.95 0.0523 
Sh3 317.19 2.48 0.0138 
Test 335.57 10.77 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 214.83   
Sh1 214.69 -0.03 0.9760 
Sh2 219.05 0.96 0.3383 
Sh3 222.25 1.69 0.0931 
Test 201.65 -3.82 0.0002 

 

 
Table C.30. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F13. Bolded data are significant at p < 0.05. 
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M14 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 286 
p < 0.0001 

71.44 61.64 
 

 0.0003 
71.44 

 
12.87  < 0.0001 

 
61.64 12.87  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 330.7 
p < 0.0001 

76.38 66.03   0.0001 
76.38  13.71  < 0.0001 

 66.03 13.71  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,287) = 323.1 
p < 0.0001 

126.87 103.44   < 0.0001 
126.87  121.51  < 0.0001 
126.87   102.23 < 0.0001 

 103.44 121.51  < 0.0001 
 103.44  102.23 0.6771 
  121.51 102.23 < 0.0001 

Table C.31. Measurements and statistics for baseline production of speaker M14.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

Table C. 32. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker M14. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 96.11 90.18 -3.77 0.0003 
/t/ 90.39 88.88 -0.56 0.5761 

/t*/ 40.39 45.88 2.03 0.0451 

F2OT 
(ms.) 

/th/ 103.13 97.68 -3.52 0.0007 
/t/ 95.94 95.83 -0.04 0.9671 

/t*/ 43.38 47.96 1.72 0.0890 
Post-
onset 
f0 
(Hz) 

/th/ 123.67 126.84 2.97 0.0035 
/t/ 103.36 100.12 -1.80 0.0748 

/t*/ 121.74 118.12 -1.97 0.0510 
filler 101.91 96.03 -3.97 0.0001 

  Base Test t p 

VOT 
(ms.) 

/th/ 103.22 102.85 -0.23 0.8162 
/t/ 90.43 95.08 1.72 0.0882 

/t*/ 45.90 45.01 -0.33 0.7423 

F2OT 
(ms.) 

/th/ 107.44 108.94 0.96 0.3400 
/t/ 94.03 99.24 1.93 0.0572 

/t*/ 45.52 42.94 -0.96 0.3411 
Post-
onset 
f0 
(Hz) 

/th/ 128.86 141.89 13.12 < 0.0001 
/t/ 103.52 94.97 -5.07 < 0.0001 
/t*/ 121.24 119.57 -0.99 0.3230 

filler 101.45 93.07 -6.03 < 0.0001 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 101.94   
Sh1 93.16 -4.03 0.0001 
Sh2 91.26 -4.91 < 0.0001 
Sh3 94.83 -3.29 0.0013 
Test 95.84 -3.71 0.0003 

/th/ 
F2OT 
(ms.) 

Base 107.70   
Sh1 99.45 -3.61 0.0004 
Sh2 97.64 -4.41 < 0.0001 
Sh3 100.87 -3.01 0.0032 
Test 102.10 -3.24 0.0015 

Post-stop 
f0 
(Hz) 

Base 123.84   
Sh1 122.57 -1.04 0.2982 
Sh2 126.15 1.92 0.0557 
Sh3 128.27 3.64 0.0003 
Test 126.88 3.27 0.0012 

Post-
sonorant  
f0 
(Hz) 

Base 101.81   
Sh1 100.47 -0.81 0.4194 
Sh2 99.32 -1.51 0.1327 
Sh3 97.33 -2.70 0.0073 
Test 96.05 -4.44 < 0.0001 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 110.95   
Sh1 112.92 0.86 0.3940 
Sh2 114.90 1.77 0.0791 
Sh3 111.82 0.38 0.7036 
Test 110.56 -0.23 0.8172 

/th/ 
F2OT 
(ms.) 

Base 113.08   
Sh1 113.40 0.14 0.8857 
Sh2 116.21 1.47 0.1452 
Sh3 112.35 -0.34 0.7346 
Test 114.53 0.90 0.3702 

Post-stop 
f0 
(Hz) 

Base 128.86   
Sh1 123.74 -4.04 0.0001 
Sh2 130.50 1.34 0.1809 
Sh3 130.18 1.06 0.2888 
Test 141.89 13.51 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 101.45   
Sh1 106.24 2.75 0.0064 
Sh2 102.08 0.37 0.7154 
Sh3 104.08 1.52 0.1290 
Test 93.07 -6.21 < 0.0001 

 

 
Table C.33. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker M14. Bolded data are significant at p < 0.05. 
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F15 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,196) = 280.9 
p < 0.0001 

71.96 65.31 
 

 0.0226 
71.96 

 
13.88  < 0.0001 

 
65.31 13.88  < 0.0001 

F2OT 
(ms.) 

F(2,196) = 331.7 
p < 0.0001 

80.48 74.09   0.0362 
80.48  15.76  < 0.0001 

 74.09 15.76  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 709.5 
p < 0.0001 

276.78 217.28   < 0.0001 
276.78  251.52  < 0.0001 
276.78   210.86 < 0.0001 

 217.28 251.52  < 0.0001 
 217.28  210.86 0.0042 
  251.52 210.86 < 0.0001 

Table C.34. Measurements and statistics for baseline production of speaker F15.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Table C.35. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 

condition (bottom), by speaker F15. Bolded data are significant at p < 0.05. 
 

  Base Test t p 

VOT 
(ms.) 

/th/ 96.61 103.97 2.68 0.0086 
/t/ 86.97 88.98 0.42 0.6722 

/t*/ 39.85 32.56 -1.52 0.1321 

F2OT 
(ms.) 

/th/ 103.69 111.82 2.93 0.0043 
/t/ 95.54 95.49 -0.01 0.9918 

/t*/ 39.36 30.94 -1.73 0.0864 
Post-
onset 
f0 
(Hz) 

/th/ 278.05 285.83 5.12 < 0.0001 
/t/ 213.04 210.02 -1.15 0.2530 

/t*/ 251.20 249.34 -0.71 0.4810 
filler 207.53 206.37 -0.54 0.5900 

  Base Test t p 

VOT 
(ms.) 

/th/ 96.98 110.51 6.38 < 0.0001 
/t/ 91.92 79.97 -3.25 0.0016 

/t*/ 42.51 25.23 -4.70 < 0.0001 

F2OT 
(ms.) 

/th/ 106.17 122.52 7.23 < 0.0001 
/t/ 99.11 85.89 -3.37 0.0011 

/t*/ 45.71 25.40 -5.19 < 0.0001 
Post-
onset 
f0 
(Hz) 

/th/ 275.48 294.93 11.09 < 0.0001 
/t/ 221.52 206.62 -4.92 < 0.0001 
/t*/ 251.84 246.74 -1.69 0.0941 

filler 214.16 197.74 -6.64 < 0.0001 



! 146 

 

 

 

 

 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 117.97   
Sh1 106.33 -3.16 0.0020 
Sh2 114.31 -1.00 0.3206 
Sh3 112.73 -1.42 0.1571 
Test 125.35 2.66 0.0089 

/th/ 
F2OT 
(ms.) 

Base 120.39   
Sh1 109.42 -2.97 0.0036 
Sh2 117.62 -0.75 0.4539 
Sh3 117.38 -0.82 0.4163 
Test 128.50 2.92 0.0042 

Post-stop 
f0 
(Hz) 

Base 278.05   
Sh1 288.64 5.46 < 0.0001 
Sh2 289.16 5.73 < 0.0001 
Sh3 289.80 6.06 < 0.0001 
Test 285.83 5.24 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 207.53   
Sh1 202.73 -1.77 0.0773 
Sh2 204.81 -1.01 0.3160 
Sh3 201.37 -2.28 0.0237 
Test 206.37 -0.55 0.5809 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 112.77   
Sh1 123.77 3.49 0.0007 
Sh2 121.71 2.83 0.0054 
Sh3 119.67 2.19 0.0306 
Test 126.56 5.78 < 0.0001 

/th/ 
F2OT 
(ms.) 

Base 122.08   
Sh1 134.44 3.76 0.0003 
Sh2 131.03 2.72 0.0074 
Sh3 129.94 2.40 0.0182 
Test 138.57 6.65 < 0.0001 

Post-stop 
f0 
(Hz) 

Base 275.46   
Sh1 279.59 1.91 0.0577 
Sh2 278.63 1.46 0.1447 
Sh3 284.23 4.05 0.0001 
Test 294.97 11.68 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 214.14   
Sh1 206.86 -2.42 0.0162 
Sh2 212.06 -0.69 0.4898 
Sh3 208.74 -1.80 0.0738 
Test 197.68 -6.99 < 0.0001 

 

 
Table C.36. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F15. Bolded data are significant at p < 0.05. 
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M16 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 186.5 
p < 0.0001 

57.71 40.24 
 

 < 0.0001 
57.71 

 
11.19  < 0.0001 

 
40.24 11.19  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 210.5 
p < 0.0001 

66.28 48.72   < 0.0001 
66.28  15.11  < 0.0001 

 48.72 15.11  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,295) = 401.4 
p < 0.0001 

130.10 100.29   < 0.0001 
130.10  118.16  < 0.0001 
130.10   98.62 < 0.0001 

 100.29 118.16  < 0.0001 
 100.29  98.62 0.5236 
  118.16 98.62 < 0.0001 

Table C.37. Measurements and statistics for baseline production of speaker M16.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

Table C.38. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker M16. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 72.41 78.72 3.30 0.0013 
/t/ 54.63 55.78 0.35 0.7255 

/t*/ 26.00 22.36 -1.12 0.2648 

F2OT 
(ms.) 

/th/ 83.82 90.30 3.17 0.0020 
/t/ 64.76 64.44 -0.09 0.9272 

/t*/ 33.40 27.33 -1.75 0.0835 
Post-
onset 
f0 
(Hz) 

/th/ 132.58 126.58 -5.65 < 0.0001 
/t/ 102.75 106.48 2.01 0.0466 
/t*/ 120.08 118.92 -0.63 0.5293 

filler 100.26 106.36 4.06 0.0001 

  Base Test t p 

VOT 
(ms.) 

/th/ 82.74 85.53 1.75 0.0830 
/t/ 62.26 57.38 -1.75 0.0829 

/t*/ 35.12 32.56 -0.93 0.3563 

F2OT 
(ms.) 

/th/ 95.85 101.53 3.50 0.0007 
/t/ 74.68 67.80 -2.42 0.0173 

/t*/ 42.06 34.85 -2.56 0.0120 
Post-
onset 
f0 
(Hz) 

/th/ 127.47 133.19 5.36 < 0.0001 
/t/ 97.68 93.00 -2.53 0.0125 
/t*/ 116.24 116.44 0.11 0.9141 

filler 96.83 92.65 -2.77 0.0064 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 71.63   
Sh1 65.52 -2.26 0.0256 
Sh2 65.69 -2.20 0.0302 
Sh3 70.75 -0.32 0.7466 
Test 77.89 2.99 0.0033 

/th/ 
F2OT 
(ms.) 

Base 83.65   
Sh1 77.31 -2.21 0.0290 
Sh2 77.91 -2.00 0.0482 
Sh3 83.60 -0.02 0.9868 
Test 90.12 2.92 0.0042 

Post-stop 
f0 
(Hz) 

Base 132.58   
Sh1 127.09 -3.72 0.0002 
Sh2 121.49 -7.51 < 0.0001 
Sh3 124.46 -5.51 < 0.0001 
Test 126.58 -5.28 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 100.26   
Sh1 104.41 2.03 0.0433 
Sh2 109.53 4.54 < 0.0001 
Sh3 108.21 3.89 0.0001 
Test 106.36 3.80 0.0002 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 86.21   
Sh1 91.14 1.87 0.0639 
Sh2 90.73 1.72 0.0886 
Sh3 88.51 0.88 0.3822 
Test 89.04 1.43 0.1566 

/th/ 
F2OT 
(ms.) 

Base 97.35   
Sh1 103.77 2.50 0.0140 
Sh2 103.66 2.46 0.0155 
Sh3 101.39 1.58 0.1179 
Test 103.04 2.94 0.0040 

Post-stop 
f0 
(Hz) 

Base 127.47   
Sh1 127.09 -0.25 0.8019 
Sh2 127.65 0.13 0.8982 
Sh3 127.65 0.13 0.8982 
Test 133.19 5.05 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 96.83   
Sh1 96.66 -0.08 0.9350 
Sh2 96.78 -0.02 0.9814 
Sh3 96.62 -0.10 0.9196 
Test 92.65 -2.61 0.0096 

 

 
Table C.39. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker M16. Bolded data are significant at p < 0.05. 
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M17 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 436.7 
p < 0.0001 

75.23 59.68 
 

 < 0.0001 
75.23 

 
16.29  < 0.0001 

 
59.68 16.29  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 439.7 
p < 0.0001 

83.01 68.03   < 0.0001 
83.01  20.54  < 0.0001 

 68.03 20.54  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 180.1 
p < 0.0001 

125.18 105.94   < 0.0001 
125.18  115.86  < 0.0001 
125.18   103.67 < 0.0001 

 105.94 115.86  < 0.0001 
 105.94  103.67 0.2415 
  115.86 103.67 < 0.0001 

Table C.40. Measurements and statistics for baseline production of speaker M17.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table C.41. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker M17. Bolded data are significant at p < 0.05. 

 
 
 
 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 80.13 76.69 -1.92 0.0581 
/t/ 64.48 63.91 -0.19 0.8521 

/t*/ 16.70 18.54 0.60 0.5507 

F2OT 
(ms.) 

/th/ 89.55 86.42 -1.62 0.1090 
/t/ 74.53 74.05 -0.15 0.8850 

/t*/ 21.31 25.32 1.21 0.2290 
Post-
onset 
f0 
(Hz) 

/th/ 120.81 115.45 -5.18 < 0.0001 
/t/ 101.44 110.04 4.80 < 0.0001 

/t*/ 111.44 116.88 2.98 0.0034 
filler 100.09 107.07 4.77 < 0.0001 

  Base Test t p 

VOT 
(ms.) 

/th/ 73.86 77.43 2.04 0.0441 
/t/ 55.66 56.92 0.41 0.6812 

/t*/ 16.79 12.89 -1.28 0.2029 

F2OT 
(ms.) 

/th/ 83.26 86.90 2.03 0.0457 
/t/ 65.64 66.75 0.35 0.7238 

/t*/ 24.43 19.46 -1.59 0.1149 
Post-
onset 
f0 
(Hz) 

/th/ 129.93 139.41 8.36 < 0.0001 
/t/ 110.44 97.88 -6.39 < 0.0001 

/t*/ 120.28 117.04 -1.65 0.1010 
filler 107.63 96.85 -6.72 < 0.0001 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 76.18   
Sh1 74.96 -0.47 0.6400 
Sh2 75.71 -0.18 0.8600 
Sh3 75.21 -0.37 0.7140 
Test 72.40 -1.91 0.0580 

/th/ 
F2OT 
(ms.) 

Base 84.32   
Sh1 83.20 -0.42 0.6751 
Sh2 83.54 -0.29 0.7756 
Sh3 83.09 -0.45 0.6503 
Test 80.73 -1.78 0.0773 

Post-stop 
f0 
(Hz) 

Base 120.81   
Sh1 119.00 -1.43 0.1546 
Sh2 116.12 -3.71 0.0003 
Sh3 119.96 -0.67 0.5045 
Test 115.45 -5.47 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 100.09   
Sh1 103.55 1.99 0.0481 
Sh2 104.11 2.31 0.0218 
Sh3 102.83 1.57 0.1171 
Test 107.07 5.04 < 0.0001 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 73.39   
Sh1 74.37 0.39 0.6995 
Sh2 76.42 1.16 0.2468 
Sh3 72.70 -0.27 0.7869 
Test 76.96 1.88 0.0632 

/th/ 
F2OT 
(ms.) 

Base 82.25   
Sh1 84.01 0.69 0.4910 
Sh2 86.62 1.67 0.0967 
Sh3 82.35 0.04 0.9695 
Test 85.89 1.90 0.0597 

Post-stop 
f0 
(Hz) 

Base 129.93   
Sh1 137.59 5.00 < 0.0001 
Sh2 137.39 4.87 < 0.0001 
Sh3 137.55 4.97 < 0.0001 
Test 139.41 8.02 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 107.63   
Sh1 102.01 -2.64 0.0087 
Sh2 101.69 -2.80 0.0056 
Sh3 101.29 -2.98 0.0031 
Test 96.85 -6.45 < 0.0001 

 

 
Table C.42. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker M17. Bolded data are significant at p < 0.05. 
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M18 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 136.1 
 
p < 0.0001 

66.75 54.83 
 

 0.0011 
66.75 

 
12.70  < 0.0001 

 
54.83 12.70  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 135.7 
p < 0.0001 

74.81 62.79   0.0016 
74.81  18.95  < 0.0001 

 62.79 18.95  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 204.4 
p < 0.0001 

131.14 109.10   < 0.0001 
131.14  125.10  < 0.0001 
131.14   109.14 < 0.0001 

 109.10 125.10  < 0.0001 
 109.10  109.14 1.0000 
  125.10 109.14 < 0.0001 

Table C.43. Measurements and statistics for baseline production of speaker M18.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table C.44. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker M18. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 112.33 119.16 2.13 0.0360 
/t/ 92.84 103.14 1.85 0.0672 

/t*/ 53.97 47.32 -1.19 0.2357 

F2OT 
(ms.) 

/th/ 126.69 133.56 2.04 0.0438 
/t/ 106.61 118.61 2.06 0.0419 
/t*/ 66.27 60.04 -1.07 0.2881 

Post-
onset 
f0 
(Hz) 

/th/ 134.96 141.90 6.01 < 0.0001 
/t/ 112.88 107.06 -2.91 0.0042 
/t*/ 128.04 128.66 0.31 0.7571 

filler 112.32 109.32 -1.84 0.0684 

  Base Test t p 

VOT 
(ms.) 

/th/ 87.23 98.23 5.12 < 0.0001 
/t/ 79.89 74.75 -1.40 0.1656 

/t*/ 40.92 31.44 -2.58 0.0115 

F2OT 
(ms.) 

/th/ 90.81 103.52 5.84 < 0.0001 
/t/ 83.87 77.67 -1.66 0.1007 

/t*/ 43.49 32.66 -2.89 0.0047 
Post-
onset 
f0 
(Hz) 

/th/ 128.48 138.74 9.18 < 0.0001 
/t/ 105.32 99.86 -2.82 0.0055 
/t*/ 122.16 122.10 -0.03 0.9753 

filler 107.12 101.82 -3.35 0.0010 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 116.44   
Sh1 101.31 -3.30 0.0012 
Sh2 107.13 -2.10 0.0379 
Sh3 105.45 -2.41 0.0172 
Test 123.26 2.08 0.0398 

/th/ 
F2OT 
(ms.) 

Base 128.58   
Sh1 106.56 -4.78 < 0.0001 
Sh2 117.90 -2.37 0.0193 
Sh3 111.78 -3.66 0.0004 
Test 135.45 2.06 0.0419 

Post-stop 
f0 
(Hz) 

Base 134.96   
Sh1 150.65 11.09 < 0.0001 
Sh2 151.29 11.54 < 0.0001 
Sh3 148.17 9.34 < 0.0001 
Test 141.90 6.35 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 112.32   
Sh1 102.66 -4.94 < 0.0001 
Sh2 102.66 -4.94 < 0.0001 
Sh3 106.02 -3.22 0.0014 
Test 109.32 -1.94 0.0533 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 92.88   
Sh1 98.32 1.79 0.0757 
Sh2 106.47 4.27 < 0.0001 
Sh3 108.86 5.15 < 0.0001 
Test 104.14 4.92 < 0.0001 

/th/ 
F2OT 
(ms.) 

Base 95.28   
Sh1 100.62 1.76 0.0810 
Sh2 112.84 5.59 < 0.0001 
Sh3 109.68 4.63 < 0.0001 
Test 108.18 5.66 < 0.0001 

Post-stop 
f0 
(Hz) 

Base 128.48   
Sh1 144.13 11.90 < 0.0001 
Sh2 142.73 10.83 < 0.0001 
Sh3 142.53 10.68 < 0.0001 
Test 138.74 10.15 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 107.12   
Sh1 99.08 -4.39 < 0.0001 
Sh2 102.44 -2.55 0.0112 
Sh3 103.08 -2.20 0.0283 
Test 101.82 -3.71 0.0003 

 

 
Table C.45. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker M18. Bolded data are significant at p < 0.05. 
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F19 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 149 
p < 0.0001 

53.48 58.26 
 

 0.2156 
53.48 

 
8.95  < 0.0001 

 
58.26 8.95  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 183 
p < 0.0001 

61.49 68.59   0.0462 
61.49  10.77  < 0.0001 

 68.59 10.77  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 1190 
p < 0.0001 

307.12 199.54   < 0.0001 
307.12  285.90  < 0.0001 
307.12   195.50 < 0.0001 

 199.54 285.90  < 0.0001 
 199.54  195.50 0.4123 
  285.90 195.50 < 0.0001 

Table C.46. Measurements and statistics for baseline production of speaker F19.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table C.47. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F19. Bolded data are significant at p < 0.05. 

 

 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 98.62 99.48 0.41 0.6860 
/t/ 91.08 94.76 1.03 0.3080 

/t*/ 39.87 36.31 -1.00 0.3220 

F2OT 
(ms.) 

/th/ 83.73 81.98 -0.83 0.4083 
/t/ 88.64 97.67 2.47 0.0152 
/t*/ 32.11 33.21 0.30 0.7654 

Post-
onset 
f0 
(Hz) 

/th/ 310.37 330.91 7.98 < 0.0001 
/t/ 199.08 188.42 -2.39 0.0181 
/t*/ 289.52 285.46 -0.91 0.3642 

filler 194.27 178.49 -4.33 < 0.0001 

  Base Test t p 

VOT 
(ms.) 

/th/ 66.66 58.37 -4.47 < 0.0001 
/t/ 71.29 81.32 3.13 0.0023 

/t*/ 24.38 33.38 2.80 0.0062 

F2OT 
(ms.) 

/th/ 75.40 66.73 -4.49 < 0.0001 
/t/ 81.41 91.18 2.93 0.0043 

/t*/ 26.40 36.04 2.88 0.0049 
Post-
onset 
f0 
(Hz) 

/th/ 302.51 320.65 6.71 < 0.0001 
/t/ 200.00 191.42 -1.83 0.0691 

/t*/ 282.28 272.86 -2.01 0.0462 
filler 195.37 182.27 -3.42 0.0008 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 83.80   
Sh1 67.97 -5.22 < 0.0001 
Sh2 63.39 -6.73 < 0.0001 
Sh3 63.85 -6.58 < 0.0001 
Test 78.25 -2.42 0.0170 

/th/ 
F2OT 
(ms.) 

Base 90.51   
Sh1 77.34 -4.35 < 0.0001 
Sh2 73.59 -5.57 < 0.0001 
Sh3 72.34 -6.00 < 0.0001 
Test 88.79 -0.75 0.4544 

Post-stop 
f0 
(Hz) 

Base 310.37   
Sh1 296.79 -4.09 0.0001 
Sh2 316.39 1.81 0.0708 
Sh3 319.19 2.66 0.0084 
Test 330.91 7.96 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base    
Sh1 211.68 3.82 0.0002 
Sh2 191.68 -0.57 0.5720 
Sh3 190.76 -0.77 0.4435 
Test 178.49 -4.32 < 0.0001 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 69.84   
Sh1 54.15 -6.13 < 0.0001 
Sh2 53.37 -6.43 < 0.0001 
Sh3 57.47 -4.82 < 0.0001 
Test 61.62 -4.24 < 0.0001 

/th/ 
F2OT 
(ms.) 

Base 85.11   
Sh1 70.99 -4.82 < 0.0001 
Sh2 71.60 -4.61 < 0.0001 
Sh3 77.80 -2.49 0.0141 
Test 76.66 -3.80 0.0002 

Post-stop 
f0 
(Hz) 

Base 302.51   
Sh1 304.25 0.51 0.6127 
Sh2 310.85 2.42 0.0161 
Sh3 305.05 0.74 0.4606 
Test 320.65 6.81 < 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 195.37   
Sh1 200.70 1.12 0.2637 
Sh2 193.30 -0.43 0.6652 
Sh3 201.54 1.30 0.1959 
Test 182.27 -3.48 0.0006 

 

 
Table C.48. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F19. Bolded data are significant at p < 0.05. 
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F20 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 182 
p < 0.0001 

70.57 64.36 
 

 0.1460 
70.57 

 
9.50  < 0.0001 

 
64.36 9.50  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 209 
p < 0.0001 

80.08 75.74   0.4040 
80.08  13.77  < 0.0001 

 75.74 13.77  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,295) = 312.8 
p < 0.0001 

243.02 170.36   < 0.0001 
243.02  225.38  < 0.0001 
243.02   167.68 < 0.0001 

 170.36 225.38  < 0.0001 
 170.36  167.68 0.8598 
  225.38 167.68 < 0.0001 

Table C.49. Measurements and statistics for baseline production of speaker F20.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Table C.50. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 

condition (bottom), by speaker F20. Bolded data are significant at p < 0.05. 
 

  Base Test t p 

VOT 
(ms.) 

/th/ 98.62 99.48 0.41 0.6860 
/t/ 91.08 94.76 1.03 0.3080 

/t*/ 39.87 36.31 -1.00 0.3220 

F2OT 
(ms.) 

/th/ 105.15 106.74 0.74 0.4640 
/t/ 100.73 105.97 1.42 0.1580 

/t*/ 44.10 39.49 -1.25 0.2130 
Post-
onset 
f0 
(Hz) 

/th/ 261.89 266.35 1.91 0.0585 
/t/ 177.76 170.98 -1.67 0.0963 

/t*/ 240.64 223.70 -4.18 < 0.0001 
filler 177.79 166.09 -3.54 0.0005 

  Base Test t p 

VOT 
(ms.) 

/th/ 112.82 114.66 0.82 0.4164 
/t/ 98.61 88.60 -2.69 0.0084 
/t*/ 50.79 47.15 -0.98 0.3282 

F2OT 
(ms.) 

/th/ 125.38 128.76 1.41 0.1602 
/t/ 112.51 102.93 -2.43 0.0170 
/t*/ 57.41 55.27 -0.54 0.5878 

Post-
onset 
f0 
(Hz) 

/th/ 224.47 216.87 -3.76 0.0002 
/t/ 162.96 169.95 2.02 0.0454 
/t*/ 210.12 206.95 -0.91 0.3625 

filler 157.98 165.16 2.53 0.0125 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 105.30   
Sh1 92.53 -3.85 0.0002 
Sh2 103.18 -0.64 0.5237 
Sh3 97.20 -2.45 0.0157 
Test 105.62 0.13 0.8962 

/th/ 
F2OT 
(ms.) 

Base 108.53   
Sh1 99.82 -2.69 0.0080 
Sh2 106.91 -0.50 0.6158 
Sh3 100.54 -2.50 0.0139 
Test 109.85 0.55 0.5849 

Post-stop 
f0 
(Hz) 

Base 261.89   
Sh1 250.33 -3.98 0.0001 
Sh2 244.81 -5.88 < 0.0001 
Sh3 245.93 -5.49 < 0.0001 
Test 266.35 2.01 0.0457 

Post-
sonorant  
f0 
(Hz) 

Base 177.79   
Sh1 178.17 0.09 0.9253 
Sh2 180.29 0.62 0.5386 
Sh3 176.45 -0.33 0.7419 
Test 166.09 -3.73 0.0002 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 123.61   
Sh1 140.30 4.44 < 0.0001 
Sh2 143.23 5.22 < 0.0001 
Sh3 138.65 4.03 0.0001 
Test 124.13 0.18 0.8615 

/th/ 
F2OT 
(ms.) 

Base 132.81   
Sh1 147.91 4.00 0.0001 
Sh2 151.17 4.86 < 0.0001 
Sh3 148.59 4.20 0.0001 
Test 135.23 0.80 0.4235 

Post-stop 
f0 
(Hz) 

Base 224.46   
Sh1 198.75 -10.24 < 0.0001 
Sh2 195.55 -11.51 < 0.0001 
Sh3 195.47 -11.54 < 0.0001 
Test 216.87 -3.89 0.0001 

Post-
sonorant  
f0 
(Hz) 

Base 157.98   
Sh1 166.59 2.46 0.0144 
Sh2 165.99 2.29 0.0227 
Sh3 169.55 3.31 0.0011 
Test 165.14 2.62 0.0094 

 

 
Table C.51. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F20. Bolded data are significant at p < 0.05. 
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F21 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 268.5 
p < 0.0001 

74.09 63.12 
 

 0.0003 
74.09 

 
10.59  < 0.0001 

 
63.12 10.59  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 279.8 
p < 0.0001 

79.08 72.22   0.0386 
79.08  15.03  < 0.0001 

 72.22 15.03  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,296) = 487.1 
p < 0.0001 

255.42 199.26   < 0.0001 
255.42  244.74  < 0.0001 
255.42   200.62 < 0.0001 

 199.26 244.74  < 0.0001 
 199.26  200.62 0.9105 
  244.74 200.62 < 0.0001 

Table C.52. Measurements and statistics for baseline production of speaker F21.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table C.53. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker F21. Bolded data are significant at p < 0.05. 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 103.00 96.15 -3.87 0.0002 
/t/ 87.40 88.91 0.49 0.6233 

/t*/ 32.92 39.45 2.11 0.0370 

F2OT 
(ms.) 

/th/ 108.48 101.39 -3.98 0.0001 
/t/ 97.82 97.53 -0.09 0.9264 

/t*/ 38.32 45.26 2.23 0.0279 
Post-
onset 
f0 
(Hz) 

/th/ 258.72 262.48 2.24 0.0267 
/t/ 201.72 199.12 -0.89 0.3729 

/t*/ 251.32 252.76 0.50 0.6213 
filler 202.82 196.60 -2.62 0.0098 

  Base Test t p 

VOT 
(ms.) 

/th/ 87.02 90.23 1.68 0.0954 
/t/ 79.19 80.15 0.30 0.7674 

/t*/ 33.06 29.09 -1.23 0.2237 

F2OT 
(ms.) 

/th/ 92.99 97.07 2.09 0.0387 
/t/ 87.69 88.38 0.21 0.8369 

/t*/ 37.83 33.96 -1.17 0.2460 
Post-
onset 
f0 
(Hz) 

/th/ 251.56 251.82 0.17 0.8694 
/t/ 196.80 207.38 3.87 0.0002 

/t*/ 238.16 244.22 2.22 0.0282 
filler 197.86 206.20 3.74 0.0003 
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 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 107.56   
Sh1 91.50 -6.07 < 0.0001 
Sh2 91.96 -5.94 < 0.0001 
Sh3 95.33 -4.63 < 0.0001 
Test 100.66 -3.55 0.0005 

/th/ 
F2OT 
(ms.) 

Base 112.84   
Sh1 97.24 -5.70 < 0.0001 
Sh2 98.04 -5.44 < 0.0001 
Sh3 100.64 -4.47 < 0.0001 
Test 105.71 -3.54 0.0006 

Post-stop 
f0 
(Hz) 

Base 258.72   
Sh1 267.31 4.27 < 0.0001 
Sh2 262.63 1.95 0.0529 
Sh3 266.59 3.91 0.0001 
Test 262.48 2.44 0.0154 

Post-
sonorant  
f0 
(Hz) 

Base 202.82   
Sh1 192.44 -3.70 0.0003 
Sh2 199.80 -1.07 0.2838 
Sh3 193.72 -3.24 0.0014 
Test 196.60 -2.85 0.0047 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 94.24   
Sh1 97.50 1.17 0.2442 
Sh2 92.18 -0.73 0.4683 
Sh3 92.68 -0.55 0.5820 
Test 97.07 1.33 0.1876 

/th/ 
F2OT 
(ms.) 

Base 101.21   
Sh1 104.38 1.12 0.2639 
Sh2 100.19 -0.36 0.7213 
Sh3 100.69 -0.19 0.8537 
Test 104.84 1.67 0.0965 

Post-stop 
f0 
(Hz) 

Base 251.56   
Sh1 258.02 3.21 0.0015 
Sh2 254.14 1.28 0.2008 
Sh3 253.66 1.04 0.2973 
Test 251.82 0.17 0.8662 

Post-
sonorant  
f0 
(Hz) 

Base 197.86   
Sh1 197.94 0.03 0.9766 
Sh2 203.22 1.91 0.0577 
Sh3 202.86 1.78 0.0765 
Test 206.20 3.83 0.0002 

 

 
Table C.54. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker F21. Bolded data are significant at p < 0.05. 
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M22 

Measure ANOVA /th/ /t/ /t*/ Filler Tukey p 

VOT 
(ms.) 

F(2,197) = 222.1 
p < 0.0001 

70.86 56.25 
 

 < 0.0001 
70.86 

 
19.06  < 0.0001 

 
56.25 19.06  < 0.0001 

F2OT 
(ms.) 

F(2,197) = 276.3 
p < 0.0001 

77.09 61.52   < 0.0001 
77.09  21.33  < 0.0001 

 61.52 21.33  < 0.0001 

Post-
onset f0 
(Hz) 

F(3,295) = 332.7 
p < 0.0001 

110.23 96.04   < 0.0001 
110.23  107.87  0.0056 
110.23   93.89 < 0.0001 

 96.04 107.87  < 0.0001 
 96.04  93.89 0.0142 
  107.87 93.89 < 0.0001 

Table C.55. Measurements and statistics for baseline production of speaker M22.  
Bolded data are significant at p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table C.56. VOT, F2OT, and f0 estimates of different stop types in the high f0 condition (top) and the long VOT 
condition (bottom), by speaker M22. Bolded data are significant at p < 0.05. 

 

 

 

  Base Test t p 

VOT 
(ms.) 

/th/ 90.43 93.78 1.78 0.0781 
/t/ 78.50 74.21 -1.31 0.1919 

/t*/ 42.62 39.86 -0.85 0.3972 

F2OT 
(ms.) 

/th/ 97.73 101.84 2.39 0.0186 
/t/ 83.77 81.94 -0.61 0.5409 

/t*/ 44.33 43.03 -0.44 0.6622 
Post-
onset 
f0 
(Hz) 

/th/ 112.49 111.71 -1.43 0.1550 
/t/ 97.04 98.06 1.08 0.2830 

/t*/ 108.32 109.14 0.87 0.3870 
filler 94.99 95.05 0.08 0.9380 

  Base Test t p 

VOT 
(ms.) 

/th/ 97.91 97.42 -0.24 0.8145 
/t/ 82.01 86.71 1.29 0.2006 

/t*/ 44.77 46.61 0.51 0.6144 

F2OT 
(ms.) 

/th/ 104.87 106.99 0.95 0.3444 
/t/ 88.73 93.09 1.14 0.2568 

/t*/ 49.48 49.83 0.09 0.9268 
Post-
onset 
f0 
(Hz) 

/th/ 107.98 109.59 2.76 0.0066 
/t/ 95.04 95.97 0.91 0.3625 

/t*/ 107.42 105.91 -1.47 0.1431 
filler 92.83 93.30 0.56 0.5789 



! 160 

 

 

 

 

 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 98.77   
Sh1 94.20 -1.52 0.1320 
Sh2 90.07 -2.92 0.0042 
Sh3 98.62 -0.05 0.9622 
Test 101.97 1.42 0.1597 

/th/ 
F2OT 
(ms.) 

Base 103.50   
Sh1 101.87 -0.59 0.5590 
Sh2 102.34 -0.42 0.6750 
Sh3 106.69 1.16 0.2485 
Test 107.50 1.92 0.0572 

Post-stop 
f0 
(Hz) 

Base 112.49   
Sh1 112.39 -0.13 0.8994 
Sh2 114.27 2.50 0.0131 
Sh3 112.07 -0.57 0.5669 
Test 111.71 -1.42 0.1577 

Post-
sonorant  
f0 
(Hz) 

Base 94.99   
Sh1 97.68 2.70 0.0073 
Sh2 95.96 0.98 0.3302 
Sh3 96.92 1.94 0.0535 
Test 95.05 0.08 0.9386 

 

 Block Estimate t p 

/th/ 
VOT 
(ms.) 

Base 100.13   
Sh1 94.99 -1.58 0.1173 
Sh2 90.46 -3.01 0.0032 
Sh3 89.64 -3.26 0.0014 
Test 99.57 -0.23 0.8195 

/th/ 
F2OT 
(ms.) 

Base 104.47   
Sh1 102.08 -0.73 0.4691 
Sh2 97.19 -2.24 0.0269 
Sh3 99.35 -1.58 0.1174 
Test 106.60 0.86 0.3931 

Post-stop 
f0 
(Hz) 

Base 107.97   
Sh1 107.70 -0.38 0.7073 
Sh2 106.94 -1.45 0.1484 
Sh3 113.14 7.24 < 0.0001 
Test 109.60 2.95 0.0035 

Post-
sonorant  
f0 
(Hz) 

Base 92.84   
Sh1 93.72 0.88 0.3780 
Sh2 94.92 2.11 0.0355 
Sh3 93.73 0.90 0.3674 
Test 93.29 0.59 0.5550 

 

 
Table C.57. Aspirated /th/ in baseline, shadowing, and test productions in the high f0 condition (left) and the long 

VOT condition (right), by speaker M22. Bolded data are significant at p < 0.05. 
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