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ABSTRACT 
 
 

The substitution of a nonresponding unit with one not originally selected in the sample is 

a commonly used method for dealing with unit nonresponse. Although frequently used in prac-

tice, substitution is largely neglected in the survey sampling literature. To date, few studies have 

attempted to develop a formal framework for describing and evaluating substitution methods, 

and little research has been done to improve estimates obtained through the use of substitution as 

a nonresponse adjustment procedure. This dissertation presents the results from three research 

studies conducted to enhance our understanding of substitution methods and develop new proce-

dures to improve them.  

 

The first study investigates substitution methods in stratified two-stage cluster sampling 

with nonresponse at the primary sampling unit (PSU) level. A simulation study is presented to 

evaluate the error properties of substitution procedures compared to other standard nonresponse 

adjustments. The results show that the use of a matching procedure in the selection of substitutes 

produces estimates with similar error properties to standard nonresponse-weighted estimates, but 

the substitution methods have the advantage of producing more accurate standard errors than 

strata collapsing strategies used in the presence of PSU nonresponse in stratified cluster sam-

pling. 

 

The second study extends an existing multiple imputation method proposed by Rubin and 

Zanutto (2002) that adjusts differences between nonrespondents and their substitutes on observa-

ble covariates to a more economically viable alternative. A new calibration approach is also pro-

posed to perform such adjustments. Simulation results show that the multiple imputation exten-

sion performs as well as its predecessor, with the advantage of lower survey costs. Moreover, the 

proposed calibration procedure produces more precise estimates than the imputation methods 

with the same level of bias reduction, yielding estimates with smaller mean squared error.  
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The third study develops a novel procedure to accommodate nonignorable nonresponse in 

the substitution selection itself. The approach uses pattern-mixture models following Little and 

Andridge (2011) and Little (1994), and introduces a parameter that can be used in sensitivity 

analysis to assess assumptions about the nonresponse mechanism. Simulation studies show that 

the proposed approach can provide practitioners with useful information to evaluate the risk of 

nonresponse bias.  
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CHAPTER I 

Introduction 

 

Nonresponse occurs when a sampled unit fails to provide either part (item nonresponse) 

or all (unit nonresponse) of the information requested in a survey. This may be due to noncon-

tact, refusal, inability to understand the request, or other reasons. This source of error has been 

increasingly studied in statistics and survey methodology, both theoretically and empirically, es-

pecially as response rates have fallen dramatically in recent decades (De Leeuw and De Heer, 

2002; Rand, 2006, Bethlehem et al., 2011). On the other hand, the relationship between response 

rates and nonresponse error has been called into question by several studies (Keeter, et al., 2000; 

Merkle and Edelman, 2002; Curtin, Presser and Singer, 2005; Keeter, et al., 2006; Groves and 

Peytcheva, 2008), highlighting the importance of a careful exploration of all existing methods of 

handling nonresponse.  

 

 In the survey statistics literature, most of the methods for dealing with nonresponse have 

focused on post-data collection nonresponse analysis and adjustments, such as weighting, impu-

tation and statistical modeling (Little and Rubin, 2002). Although post-survey adjustments are 

flexible and relatively inexpensive, methods for dealing with missing data, particularly unit non-

response, in the survey design and field stages may present unique opportunities to minimize 

nonresponse error. As Benjamin King once said, “There is only one real cure for nonresponse 

and that is getting the response” (Frankel and King, 1996). In practice, however, with finite re-

sources and time, nonresponse cannot be entirely eliminated. But some actions and interventions 

during the data collection stage could potentially mitigate the impact of nonresponse on final es-

timates.  

 

 To that end, a more formal and explicit framework to evaluate and minimize survey er-

rors during the data collection stage of a survey has been proposed: responsive survey designs 

(Groves and Heeringa, 2006). In this approach, design feature indicators that influence both the 
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survey costs and the errors of estimates are identified and monitored in an initial, pre-data collec-

tion, phase. In later phases of data collection, these design features may be modified based on the 

cost-error trade-offs. Finally, data from the different phases are combined to form a single survey 

estimate.  

 

One of the most traditional examples of responsive design is the use of two-phase sam-

pling for nonresponse (Hansen and Hurwitz, 1946). After an initial phase of data collection, in 

which all sampled cases are attempted to be contacted with the initial survey protocol, the second 

phase (usually called the nonresponse follow-up survey) involves contacting a probability-based 

subsample of nonrespondents, and subjecting this subsample to a more expensive and (theoreti-

cally) more effective data collection protocol. The final estimates are computed by weighting the 

subsampled cases by the product of the inverse of their second phase selection probability and 

their first-phase design-weight. If the second phase is completely successful, that is, if the full 

subsample of nonrespondents selected for the second phase is observed, then these final statistics 

are unbiased estimates for their population parameters. In practice, however, some level of non-

response almost always remains. In such cases, there are some instances in which the inclusion 

of second-phase respondents may actually increase nonresponse bias.  

 

Another approach to dealing with unit nonresponse at the fieldwork stage of a survey is 

substitution. This method consists of replacing nonresponding sampled units with new units 

which were not originally selected in the sample. Terms like “reserve” or “replacement” are also 

used to indicate substituted units. However, these terms are avoided here, especially because the 

latter, in particular, has another specific meaning in sampling (as in sampling with or without 

replacement). Most survey methodology and sampling textbooks either ignore (e.g., Cochran, 

1977; Särndal et al., 1992; Groves et al., 2009) or present only a brief discussion of substitution 

(e.g., Kish, 1965; Lessler and Kalsbeek, 1992; Lohr, 1999; Little and Rubin, 2002). In general, 

the literature tends to criticize substitution and recommends avoiding its use, despite the lack of 

conclusive evidence suggesting it performs worse than competing alternatives, such as weighting 

or imputation. For example, Kish (1965, page 558) states: 
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“Although substitution is often proposed naively as a solution, it generally is of 

little help and may actually make matters worse. (…) Entirely distinct from size 

control is the use of substitutes for reducing the bias of nonresponse. For this 

purpose substitutes are useless when they merely replace nonresponses with 

more elements that resemble the responses already in the sample.” 

 

Although Cochran (1977) does not present any discussion of substitution, in its earlier 

edition (Cochran, 1953, page 302) he presents a similar point-of-view as Kish: 

 

“The ‘substitution’ method does positive harm if the samplers are deluded into 

thinking that the non-response problem has been adequately dealt with.” 

 

Another example can be found on Deming (1953, page 744): 

 

“Substitution does not help: it is only equivalent to building up the size of the 

initial sample, leaving bias of nonresponse undiminished.” 

 

Among other criticisms, there is an argument that substitution disrupts the selection prob-

abilities of the sample design, making it no longer a probability sample. However, substitution 

can be seen as a form of imputation for unit nonresponse and, as Little and Rubin (2002, page 

60) put: 

 

“The tendency to treat the resulting sample as complete should be resisted, since 

the substituted units are respondents and hence may differ systematically from 

nonrespondents. Hence at the analysis stage, substituted values should be regard-

ed as imputed values of a particular type.” 

  

Though the idea of treating substituted values as a type of imputed values is not further 

developed in the book, Rubin and Zanutto (2002) propose a method to do just that. It is true, 

however, that most applications of substitution in surveys do not treat substitutes’ data as imput-

ed values. Related to this notion of substitution as an imputation method, substitution parallels 
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hot-deck imputation (see Andridge and Little, 2010, for a recent review on the topic), with the 

difference that the latter draws the donors for the nonresponding cases from the respondent pool, 

while the former selects the substitutes from the unsampled units in the population.  

 

Despite the criticism, substitution has been extensively used in many important probabil-

ity sample surveys. This is true for survey in academic settings (Sirken, 1985; Vehovar, 1999; 

Bachman et al., 2011), surveys conducted by private companies, such as Westat (Walksberg, 

1985), official statistics in some developing countries, and government surveys in Europe 

(Vehovar, 1999; Silva et al., 2000; Éltető, 2004)1. There are several reasons why substitution is 

used by many of these studies:  

 

(1) Control of the sample size: When successfully implemented, that is, if most or every 

nonrespondent is replaced by a responding substitute, then the number of responding units will 

be the same or nearly the same as the target sample size. This could also be achieved by other 

means, such as inflating the sample size according to an expected response rate or the use of 

supplement sample (Kish, 1965). However, these methods in general will not produce an exact 

sample size for a particular realization of the survey. There is not a strong statistical reason for 

requiring an exact sample size, other than that estimates may be more precise if compared with 

an approach that does not take nonresponse into account. Nonetheless, many practitioners and 

survey clients demand a precise target sample size, sometimes even including this requirement in 

surveys contracts. Further, there is a certain aesthetic motivation behind this reason, in which 

laymen may view the observed sample size as an important measure of survey quality. 

 

(2) Reduction of nonresponse bias: Although a main criticism of substitution is that it does not 

necessarily eliminate nonresponse bias, if compared to the naïve alternative of not using any 

nonresponse adjustments, substitution may provide some bias reductions under certain condi-

tions. The first study of this dissertation seeks to investigate what such conditions are and the 

effectiveness of different methods of substitution. Obviously, such bias reduction could also be 

achieved with alternative nonresponse adjustment methods, such as weighting and imputation, 

                                                           
1 Recently, however, some European governments have discontinued the use of substitution in their 
surveys (Vehovar, 1999; Pickery and Carton, 2008). 
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with less effort and cost. However, an important goal of this study is to assess differences in the 

effectiveness of a variety of nonresponse bias reduction techniques.  

 

(3) Sample design structure: Related to sample size control, the main idea here is that nonre-

sponse disrupts the design structure of complex samples, such as stratification and clustering, 

which might cause problems in the analysis, especially for the estimation of sampling variance. 

This becomes an important problem in designs that select few units per stratum or cluster. For 

example, deep stratification is a very common design, where two clusters per stratum are select-

ed, maximizing the potential gains of stratification while still enabling sampling variance estima-

tion. If some strata end up with one or no responding clusters, one would have to rely on strata 

collapsing procedures or other modeling approaches to estimate sampling variance, potentially 

biasing these estimates. If substitution is successfully implemented, the sample design structure 

is maintained and standard variance estimation procedure could be employed. However, as 

Vehovar (1999) pointed out, these two approaches would need to be compared in terms of mean 

square error of the sampling variance estimate. Thus, this comparison is also one of the objec-

tives of the first study of this dissertation.  

 

(4) Cluster nonresponse: In many applications of substitution, the nonresponding units are clus-

ters, such as schools in a two-stage cluster sample of students, in which schools are selected in 

the first stage, and students are sampled within selected schools in the second stage. A 

nonresponding cluster automatically excludes multiple elements of the sample that belong to that 

cluster (elements that would potentially participate in the survey if requested). Smith (2007) 

states that many surveys rely on substitution in this case because the clusters are not the units of 

substantive analysis of those studies, but function only as a technical element of the sampling 

process, and, therefore, should not be a reason to eliminate the target elements of interest. 

 

(5) Final refusal: Although nonresponse follow-up is considered one of the gold standard ap-

proaches to investigate and minimize nonresponse bias, it is often not completely successful; that 

is, it is not possible to get the full cooperation of all nonrespondents selected for a second phase. 

There are many reasons for that, but one of the most common is that once a unit selected in the 

sample (whether it is a person or institution) gives a definitive, final refusal, many survey organ-
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izations would not continue attempting to get the cooperation of such cases. This is particularly 

true for institutions where strategies such as the use of incentives is either not used or not al-

lowed. In those situations, substitution might be seem as an alternative to get responses from 

cases similar to these nonrespondents that are not in the sample already, although a sub-sample 

of nonrespondents would be still preferable.  

 

Although extensively used, there are only a handful of studies that have examined substi-

tution from a theoretical perspective (Nathan, 1980; Zanutto, 1998; Vehovar, 1999; Rubin and 

Zanutto, 2002; Thompson and Wu, 2008) and a few empirical studies, many of which were con-

ducted before the 1990s (Durbin and Stuart, 1954; Cohen, 1955; Sirken, 1975; William and Fol-

som, 1977; Biemer, Chapman and Roman, 1985; Vives et al., 2009, David et al., 2012; David et 

al., 2014, Baldissera et al., 2014).  

 

 Because of the prevalent use of substitution for handling unit nonresponse in probability 

samples, but ambiguous evidence of its efficacy and skepticism from researchers’ perspective, 

the primary objectives of the studies in this dissertation are to increase our understanding of this 

method, and to improve it by relaxing some of its assumptions and extending it to more general 

cases.  

 

This dissertation continues by reviewing the limited existing literature on substitution in 

Chapter II. Then, in Chapter III, an investigation of the impact of primary sampling unit nonre-

sponse on estimates of a finite population mean is conducted, followed by a comparison between 

different substitution methods and nonresponse weighting adjustments in terms of the perfor-

mance of their point and sampling variance estimates through a large scale simulation study. In 

some instances, nonrespondents and their corresponding substitutes may differ on some observed 

auxiliary variables. If these covariates are related to the survey variables, such differences might 

cause bias in the survey estimates. In Chapter IV, a calibration approach to adjust for these dif-

ferences is proposed, evaluated and compared to other methods previously developed in the liter-

ature through a simulation study. Another important understudied topic in the nonresponse litera-

ture, particularly in terms of substitution, is related to methods for dealing with missing not at 

random (MNAR) mechanisms. In Chapter V, a substitution selection method using pattern-
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mixture model is proposed to accommodate this missing mechanism, also allowing sensitivity 

analysis through the use of multiple substitutes. The performance of this method is evaluated and 

compared to other standard alternatives through a simulation study. Finally, Chapter VI presents 

a general discussion of the results of these three studies. 
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CHAPTER II 

Literature Review 

 

Substitution is commonly known as the replacement of a nonresponding sampled unit by 

a new unit not originally included in the sample during the data collection stage. This strategy for 

dealing with unit nonresponse has been widely criticized over the years (Deming, 1953; Kish, 

1965). However, as stated by Chapman (1983) and Vehovar (1994), no conclusive theoretical or 

empirical evidence had either rejected or justified this practice. A recent search in the statistics 

and survey research literature showed that this remains true, with few additional contributions 

since these earlier accounts. Still, the majority of survey methodology and sampling textbooks 

either do not recommend this option, especially in probability samples, or fail to mention it as a 

possible method of dealing with nonresponse. Nonetheless, substitution continues to be used in 

many studies (Stebe, 1995; Verma, 1992; Vehovar, 1995; Mazzeo et al., 1995; Silva et al., 2000; 

Éltető, 2004, Demarest et al., 2007; Bachman et al., 2011; Van der Hayden et al., 2013; 

Baldissera et al., 2014; David et al., 2014).  

 

Like weighting for nonresponse – one the most common methods in surveys for dealing 

with unit nonresponse – substitution can be seen as a form of imputation. For example, in 

weighting-class nonresponse-adjustments (Oh and Scheuren, 1983) the nonresponse weights ef-

fectively take the average values of the survey variables of respondents in weighting classes to 

impute those variables of the nonrespondents in the same classes. With unit substitution, the 

nonrespondents are directly and fully imputed by their respective substitutes. Therefore, as 

pointed out by Chapman (1983), one of the major criticisms aimed at substitution – namely, that 

it only replaces nonrespondents by elements whose values resemble responses already in the 

sample – should also be applied to weighting and imputation-based nonresponse adjustment 

techniques. Hence, to determine whether substitution is an adequate method of dealing with non-

response, these methods should be compared in terms of statistical properties (bias and precision) 

and operational efficiency under the same survey conditions and assumptions.  
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2.1 Types of Substitution 

 Chapman (2003) mentioned that substitution may be seen as an inferior method for deal-

ing with unit nonresponse because it has been misused in the past. Much of this is likely due to 

differences in implementation. In fact, substitution is a vague term, as it may be implemented in 

various ways. To deal with this issue, Vehovar (2003) suggested a taxonomy for different kinds 

of substitutions, which was further refined by Lynn (2004).  

 

 Formerly, two basic types of substitution procedures had been widely recognized in the 

literature: the selection of a random substitute and the selection of a specially designated (and, 

thus, purposively selected) substitute, also denominated as a non-random or purposive substitute.  

In the former, as the term suggests, a substitute is selected on a probability selection basis to re-

place each nonrespondent. Although it is usually not explicitly stated, it seems reasonable to as-

sume that the selection mechanism of the substitute follows that of the original sample selection. 

That is, if the originally sampled unit was selected with probability proportional to size, for ex-

ample, so is its substitute. This typology on random substitution was further extended by Lynn 

(2004). More specifically, he distinguished two different methods of random substitution: simple 

random and stratified random. While in the former the substitute is randomly selected from the 

entire pool of nonsampled units remaining in the sampling frame, the latter forms or uses pre-

defined strata and randomly replaces a nonrespondent with a unit in the same stratum. 

 

Alternatively, in the non-random substitution method, the case that most closely matches 

the nonrespondent in terms of auxiliary variables available for all units in the population is se-

lected. These auxiliary variables are usually from the sampling frame, or based on subjective in-

formation available from experts on the subject of the study. Selection of substitutes by inter-

viewers in the field is another example of non-random substitution. However, such procedure is 

strongly discouraged even among proponents of substitution, especially if no constraints are put 

on when and how interviewers should substitute. 

 

 The method of selecting a substitute is, however, only one dimension of the types of sub-

stitution procedures considered by Vehovar (2003) and Lynn (2004). Another important aspect is 

whether the interviewer could or should influence the substitution procedure. Lynn (2004) breaks 
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this down into two further dimensions: whether the decision to substitute and whether the actual 

selection is made by the interviewer. When the decision or the selection is not left to the inter-

viewer, it is usually done by the survey management or administrators conducting the survey. In 

some surveys the substitutes are selected with the original sample, but left as “reserves” to be 

used if needed, as in Silva et al. (2000), for example.  

 

 As noted above, the influence of the interviewer, either on the decision or selection, has 

an important impact on survey quality. Furthermore, it is one of the main reasons for the criti-

cisms aimed at the method, as pointed out by Vehovar (1994, 1999, 2003), Chapman (2003) and 

Lynn (2004). Briefly, when interviewers influence substitution, it may reduce the effort made to 

contact, get cooperation and responses from the original sampled cases. This could mean that, 

instead of actually solving the nonresponse problem, it can actually make it worse.  

 

Therefore, it is generally recommended that interviewers should not influence the substi-

tution procedure. It is also important to have a strict control over the field work to maintain a 

high level of effort to obtain the original sample, in order to avoid early respondent/cooperator 

effects (Vehovar, 1994). As observed by Chapman (1983) and Chapman and Roman (1985a,b), 

these recommendations are already embedded in RDD telephone surveys. There, the interviewer 

does not affect the substitution procedure, since there the interviewer typically does not know if 

the case being contacted is an original sampled unit or a substitute.  

 

 Another distinction made by Vehovar (2003) is the use of the substitution procedures in 

either probability or nonprobability sample surveys. The latter has not received much attention in 

the survey methodology literature, but it may be an important factor influencing the perception 

of the method over the years. This is especially true when substitution is confounded with quota 

sampling, a very popular nonprobability sampling method in market research. Although quota 

sampling uses substitutions, substitution is also used in non-quota samples.   

 

 Finally, as pointed out by Smith (2007), a substitution can be made at different levels of 

the sampling selection. That is, the substitute may be a primary or secondary sampling unit – 

such as a school, establishment or area segment – or the unit selected in the last stage of a multi-
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stage sample, which could be a student, employee, household or adult. Although not generally 

recommended, substitution at the first or second stage of sample selection is widely used in prac-

tice. Smith (2007) raises a point that might explain such discrepancy. Since these units are not 

generally target for substantive analysis of these studies, but rather serve only as a component for 

the sample selection, they should not be a reason to eliminate the final target study units.  

 

2.2 Theoretical Research 

 As mentioned before, few theoretical studies have been conducted to investigate the 

properties of the substitution procedure. Chapman (1983) states that a possible reason for this is 

that, to conduct such a study, one would have to resort for a modeling approach and the models 

required for that would either be too complex to formulate or too simple to be of any usefulness.  

 

This might have been true at that time, when the current missing data theory was still be-

ginning to be developed. However, nowadays, many tools and powerful models are available in 

that literature. Nonetheless, theoretical work relating to substitution remains extremely scarce, 

limited and sparse. Actually, only four studies (Nathan, 1980; Vehovar, 1999; Rubin and 

Zanutto, 2002; Thompson and Wu, 2008) were found that tackle the problem in a more theoreti-

cal statistical perspective. Furthermore, two of them (Nathan, 1980; Rubin and Zanutto, 2002) 

deal with a somewhat different substitution approach that is not common in practice. Vehovar 

(1999) is a more comprehensive investigation of the substitution method, in which both bias and 

variance components of an estimator of the mean are studied under some specific settings.  

 

As noted above, substitution, just like weighting for nonresponse, is a particular case of 

imputation. It shares, therefore, both its strengths and weaknesses. Hence, as pointed out by 

Chapman (1983), the investigation of the substitution properties should consist of comparing it 

with these competing alternatives. This has been limitedly done in the theoretical research pre-

sented in this section and in some of the empirical studies covered in the next section.  

 

 The substitution procedure reviewed by Nathan (1980) is somewhat different from what 

is usually used in practice, but quite similar to the strict random substitution: units are selected 

with equal probability until a fixed pre-defined number of respondents is achieved. Therefore, all 
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nonrespondents would be sequentially substituted until the desired sample size is obtained. No 

further details are given, though, on how this would proceed in a real setting. It is worth noting 

that in this case the total number of contacts is a random variable. The alternative procedure that 

is used to make the comparison is more often done in practice: a fixed number of initial contacts 

is selected as a simple random sample, with no use of substitutions and, hence, the number of 

respondents is left as a random variable. Although further details are not given about this proce-

dure in practice, it is expected that one would inflate the initial sample size based on the expected 

response rate in order to ultimately obtain a number of interviews closer to the desired target.  

 

 Nathan (1980) compares both proposed methods, conditional on a given level of desired 

accuracy, in terms of (1) the (expected) number of initial contacts and the (expected) number of 

respondents, (2) the expected costs, and (3) the variability of the costs. Interestingly, he conclud-

ed that both methods lead to approximately the same (expected) number of initial contacts, the 

same (expected) number of respondents and the same expected costs to attain a given level of 

accuracy. However, in terms of cost variability, when the ratio of the unit cost per initial contact 

and the additional cost per respondent is no larger than the response probability, the proposed 

substitution method is preferred. This is because it would give tighter budgetary control, that is, a 

smaller cost variation. Otherwise, the alternative method is recommended.  

 

This study also makes very evident a property of using substitution in practice: it is al-

most guaranteed that the target sample size will be achieved, while only inflating the number of 

initial contacts will most likely always lead to an observed sample size that is different from the 

expected one. Although this might not be an important characteristic for a survey design from a 

statistical point of view, it seems to be a relevant one for practitioners and survey clients.  

 

While most of the applications of substitution simply replace the nonresponding unit by 

its substitute, Rubin and Zanutto (2002) propose a different approach to the problem: multiply 

impute the nonresponding unit using its substitute data with an adjustment to take into account 

possible differences in their auxiliary variables. Assuming that both the nonrespondent’s and the 

substitute’s survey variable follows the same model, 0 1 2Y Z Xβ β β ε= + + + , where X  is a 

matching covariate used for substitution and Z is a modelling covariate used for statistical model-
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ling, Rubin and Zanutto suggest substituting the nonrespondent with another unit with the same 

value on X  (matching substitution) and multiply imputing the survey variable of the 

nonrespondent unit using the fact that ( ) '
1

s s
i i i i iy y z zα β ε= + + − + , where iy  and s

iy  are the 

nonrespondent and its substitute survey variable for the ith case and iz  and s
iz  are the 

nonrespondent and its substitute auxiliary variable (not used for the matching substitution) for 

the ith case. The idea is that the variable X , used for the matching substitution, would be difficult 

to use in a nonresponse adjustment, because it would involve too many parameters, such as ad-

dress. On the other hand, the variable Z  would not be available or used for matching, but it is 

observed for both substitutes and nonrespondents. This allows for systematic differences be-

tween them to be taken into account through modeling. To estimate the coefficients α and 1β  

Rubin and Zanutto propose selecting substitutes for some of the respondents. After the survey 

variables for the nonrespondent are imputed, all substitutes are discarded.  

 

Although Rubin and Zanutto show in a variety of simulation studies that this method, 

named as MMM (Matching, Modeling and Multiple imputation), performs better than all other 

competing alternatives (nonresponse weighting adjustments, multiple imputation using only re-

spondent data and traditional substitution), to date, it is not known to have been used in survey 

practice (Chiu et al., 2005, applied the MMM method in a different context, in which “substi-

tutes” were data aggregates from geographical census units, such as blocks or census tracts). This 

is probably because of the additional cost associated with collecting substitutes for respondents 

and not using their data in computing the final estimates.  

 

 Vehovar (1999) studies the sample mean under a random substitution procedure in two 

parts. First, the bias of the estimator is studied in a very general setting, in terms of both sample 

design and nonresponse mechanism (that is, no particular restriction is given for these two fea-

tures). Then, the sampling variance property is investigated under a rather restricted scenario: in 

a two-stage cluster sample where it is assumed that the nonresponse mechanism is missing com-

pletely at random (MCAR) at the level where the substitution and the alternative adjustment pro-

cedures are performed. Furthermore, the study restricts itself to comparing the substitution pro-
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cedure to a weighting alternative, but the author states that the extension to an imputation method 

would be straightforward and lead to very similar results.  

 

 Using a deterministic approach, Vehovar (1999) shows that the bias incurred to the sam-

ple mean using the substitution method, called gross substitution bias, is the sum of two compo-

nents. First, the well known nonresponse bias expression of the unadjusted respondent mean ry : 

( ) ( )r r nB y M Y Y= − , where M  is the population nonresponse rate,  rY  and nY  are the population 

means of respondents and nonrespondents, respectively. The second component, named net sub-

stitution bias, is given by ( )sn sr snMM Y Y− , where snM is the proportion of elements among all 

initial respondents that would respond if included in the initial sample, but not if they were se-

lected as substitutes (called secondary nonrespondents), while snY  and srY  denote the population 

means of secondary nonrespondents and secondary respondents (elements that would respond if 

selected either originally in the sample or as a substitute).  

 

It is also argued, but without a formal proof, that both bias components generally have the 

same sign and, therefore, the net substitution bias typically enlarges the initial nonresponse bias. 

However, because of the product snMM  this additional bias is generally small. Nonetheless, 

without a strict control of the field work, not only will this component increase, but so will the 

initial nonresponse bias component, which can result in a dramatic increase of the gross substitu-

tion bias. This reinforces the argument made before on the importance of strict field work super-

vision when adopting such procedure. 

 

 Another very important result given in Vehovar (1999), without proof, is that 

( ) ( )SUBVar y Var y≈ , when assuming that ( )SUBE y Y= . That is, the sampling variance of the 

sample mean under the substitution procedure is approximately the same as the variance of the 

sample mean when there is no nonresponse, as long as the sample mean is an unbiased estimator 

for both cases.  
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 Under the restricted setting mentioned above, Vehovar (1999) shows that the increase in 

the variance of the sample mean due to using the alternative approach of attaching a nonresponse 

weighting adjustment, *
i i riw b b= , over the substitution approach is directly related to 

( )*1i riVIF b E b= . Here, ib  is the actual sample size in the ith cluster – fixed and equal to the final 

size for the substitution method, and *
rib  is the actual number of respondents in the ith cluster, 

which is a random variable for the weighting approach. The overall increase in the sampling var-

iance is also a function of the proportion of the within variance component.  

 

Therefore, the gains in precision associated with using the substitution method depend on 

the number of units taken by cluster, the response rate, and the intracluster correlation. Through 

the investigation of several possible values for each of these factors, Vehovar concludes that the 

gains in precision by using substitution instead of weighting adjustments are usually small, but 

there are rare scenarios in which they can be relatively large, reaching as high as a 20% increase 

in precision. This would happen when all the aforementioned factors are small. Hence, his con-

clusion is that, other than those extreme cases, the gains in using the substitution method are too 

small to justify the possible extension of the field period – and the cost increase associated with 

it – that would be necessary for implementation.   

 

 Despite the distinction between random and non-random substitution, it is not clear how 

substitutes would be selected in the former case. It is reasonable to assume that they would be 

selected with the same methods that the original cases were. However, this can still create prob-

lems in the selection, especially when the substitution is used at the primary sampling unit level, 

which is usually selected with probability proportional to size. This problem has been studied 

only by Thompson and Wu (2008), using a Monte-Carlo simulation approach. Hence, the meth-

od of substitute selection also deserves further investigation to guide practitioners that rely on 

this alternative in their studies.  

 

2.3 Empirical Studies 

 Most of the research of substitution’s impact on survey estimates comes from empirical 

studies. Chapman (1983) gave a comprehensive review of four important investigations: Durbin 
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and Stuart (1954), Cohen (1955), Sirken (1975) and William and Folsom (1977). Each study 

conducted research using a different type of substitution and only one (Durbin and Stuart, 1954) 

compared the procedure with a competing alternative. Furthermore, as Chapman (1983) pointed 

out, none of these studies were carried out under ideal conditions, where efforts to get coopera-

tion of initial nonrespondents would continue even after substitutions have been completed and 

data collection would stop only when all or most originally sampled cases are persuaded to par-

ticipate (or, alternatively, administrative records would be used).  

 

Although they used different approaches and methodologies, all four studies indicated 

that nonresponse bias was not completely eliminated with the substitution procedure. But, as 

Chapman (1983) noted, this does not invalidate the use of the method, since none of the compet-

ing methods are able to completely remove nonresponse bias either. At most, one can say that 

substitution does not underperform alternative procedures dealing with nonresponse error.  

 

Smith (2007) also reported the results of eleven empirical studies on substitution, but 

without giving any specific references. The author stated that their reports were either only short 

summaries or rather limited and that none of them used an ‘optimal substitution’, a term used 

with a similar meaning of what Chapman (1983) referred as ‘ideal conditions’, mentioned above. 

Smith (2007) also noted that the substitution literature is dated: all the eleven empirical studies 

were conducted before the 1990s, and half before the 1980s.  

 

Both Chapman (1983) and Smith (2007) concluded that more empirical research is need-

ed; particularly that which comparing the alternative competitors with substitution under optimal 

circumstances, that is, with a strict field supervision, full-efforts to obtain both original and sub-

stitute cases and using random – preferably stratified random – substitution. Also, both authors 

agree that an important question to be answered is which of the two approaches performs better 

in reducing nonresponse bias: stratified random substitution or imputing nonrespondents by a 

mix of respondents in the same weighting cell.  

 

Another empirical study conducted by Chapman and Roman (1985), under more ideal 

conditions, in a RDD telephone survey, compared the performance of a stratified random substi-
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tution procedure to an equal-cost sample relying solely on nonresponse weighting adjustment. 

They concluded that both methods perform almost equally well in terms of bias and sampling 

variance, with the substitution approach proving slightly more advantageous in terms of the lat-

ter. However, they strongly recommended only using the substitution procedure for nonresponse 

in RDD surveys, where there is a very strict control over the field operations when dealing with 

the substitutes, to avoid potential early cooperator biases.  

 

Three recent studies compared the performance of substitution to weighting adjustments 

methods in health surveys and found mixed results.  Although observing a large difference for 

one of the study’s variables (smoking), Vives et al. (2009) concluded that the substitution proce-

dure produces comparable results to a weighting adjustment based on response propensity. 

Baldissera et al. (2014) reached the same conclusion on a surveillance system survey. On the 

other hand, Van der Hayden et al. (2013) found that using only post-stratification had a larger 

impact on most of the estimates than using only substitution, under the same set of covariates. 

However, they concluded that using both strategies together might be more efficient than using 

only one of them alone (although substitution did not seem to make much of a difference once 

stratification was used). 

 

 David et al. (2012) looked at the cost of using substitution compared to an “usual prac-

tice” alternative that used repeated contacts, reminder letters and financial incentives (five prizes 

of $1,000, in a raffle) to gain the cooperation of nonrespondents and to minimize attrition in a 

longitudinal survey. In their study, they used random substitution on the second wave of the sur-

vey with the goal of achieving a desired sample size. By running cost-effectiveness analysis us-

ing the costs (including postage, telephone, courier and interview costs) and response propensi-

ties as input, and Monte Carlo simulations to evaluate the sensitivity of their results, they con-

cluded that substitution was a more cost-effective strategy, with a smaller average cost per com-

pleted interview. Later, David et al. (2014) analyzed if there were any differences in the out-

comes of the same survey between the substitution and the “usual practice” procedures. Compar-

ing early respondents of both procedures (as a proxy for the substitutes) to early and late re-

spondents of the “usual practice” strategy, they did not find many differences between the two 
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groups, leading to the conclusion that, for their study, substitution would produce comparable 

results to the usual practice, but with a larger sample size and at a lower relative cost.   

 

 Dorsett (2010) also attempted to use substitution in a longitudinal study. However, in-

stead of using random substitution as in David et al. (2012), he tried using propensity score 

matching to find substitutes that match the scores of dropouts to adjust for nonignorable attrition. 

Despite trying several approaches, he was not completely successful in solving the 

nonignorability issue.  

 

 Although there is some limited research examining the issue of substitution of 

nonresponding units in probability samples, the empirical results are mostly inconclusive, 

providing no definite guidelines for survey practitioners on when and how to properly use substi-

tution. Moreover, problems like the use of substitution for cluster nonresponse or how to adapt 

the procedure to a missing not at random mechanism have not been fully addressed in the litera-

ture. The work presented in this dissertation takes a step towards filling some of these gaps.   
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CHAPTER III 

Substitution of Nonresponding Primary Sampling Units in Probability Samples 

 

Summary 

Nonresponse occurs when a sampled unit fails to provide either part (item nonresponse) or all 

(unit nonresponse) of the information requested in a survey. The nonresponse literature has em-

phasized study of nonresponse arising at an element level, that is, the nonrespondent is the ulti-

mate unit in the sampling process. However, in some multi-stage samples nonresponse occurs at 

earlier stages of the sampling process, such as in surveys of institutions like schools or estab-

lishments. In stratified multi-stage samples with few primary sampling units (PSUs) per stratum 

the risk is increased that if PSUs do not respond some strata will have only one or no responding 

PSUs, a problem for sampling variance estimation. A common strategy is to form pseudo strata 

with at least two PSUs each by collapsing strata with one or no PSUs, but sampling variability 

may be over-estimated. An alternative approach is to select substitute PSUs from units not origi-

nally selected in the sample. Vehovar (1999) observes that substitution for PSU-level nonre-

sponse maintains the sample design structure allowing sampling variance estimation using the 

original stratification and cluster sampling design. 

 

There are many different ways PSU-level substitution for nonresponse can be implemented. This 

study evaluates the impact on the survey estimates when various forms of substitution are used to 

compensate for nonresponse at the PSU-level of a two-stage cluster sample. Twelve methods are 

examined and compared in a simulation study to evaluate under which scenarios these substitu-

tion procedures are justified and compares substitution to alternative strategies such as sample 

size inflation, weighting, and strata collapsing. The bias and sampling variances are compared 

across substitution and non-substitution methods for handling PSU-level nonresponse.  
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3.1 Introduction 

Nonresponse occurs when a sampled unit fails to provide either part (item nonresponse) 

or all (unit nonresponse) of the information requested in a survey. Nonresponse may be due to 

noncontact, refusal, an inability to understand a survey request for information, or other reasons. 

This source of potential error in survey estimates has been increasingly studied in statistics and 

survey methodology, both theoretically and empirically, especially as response rates have fallen 

dramatically in recent decades (De Leeuw and De Heer, 2002; Rand, 2006, Bethlehem et al., 

2011). On the other hand, the relationship between response rates and nonresponse error has 

been called into question by several studies (Keeter, et al., 2000; Merkle and Edelman, 2002; 

Curtin, Presser and Singer, 2005; Keeter, et al., 2006; Groves and Peytcheva, 2008), highlighting 

the importance of a careful exploration of all existing methods for dealing with nonresponse.  

 

In the survey statistics literature, most of the methods for dealing with nonresponse have 

focused on post-data collection adjustments such as weighting, imputation, and statistical model-

ing (Little and Rubin, 2002). Although post-survey adjustments are flexible and relatively inex-

pensive methods for dealing with missing data, survey data collection presents unique opportuni-

ties to minimize nonresponse error. As Benjamin King once said, “There is only one real cure for 

nonresponse and that is getting the response” (Frankel and King, 1996). In practice, however, 

with finite resources and time, nonresponse cannot be eliminated entirely. But some actions and 

interventions during the data collection stage could potentially mitigate the impact of nonre-

sponse on final estimates. 

 

An approach to dealing with unit nonresponse during survey data collection is substitu-

tion. This method consists of replacing nonresponding sampled units with new units which were 

not originally selected in the sample. Terms like “reserve” or “replacement” are also used to in-

dicate substituted units. As indicated by Vehovar (1999), most survey methodology and sam-

pling textbooks either ignore (e.g., Cochran, 1977; Särndal et al., 1992; Groves et al., 2009) or 

present only a brief discussion of substitution (e.g., Kish, 1965; Lessler and Kalsbeek, 1992; 

Lohr, 1999; Little and Rubin, 2002).  

 

 



28 
 

As pointed out by Lynn (2004), the literature, in general, tends to criticize substitution on 

two grounds. First, some forms of substitution involve interviewer decision making about when a 

substitute is to be used. Interviewers are given the flexibility to decide that a substitute is needed 

for a nonresponding unit. Second, some forms of substitution also allow the interviewer to 

choose the substituting unit, or a convenient unit is chosen as a substitute. There is compelling 

evidence that interviewer decision making about substitution is faulty and can lead to substantial 

bias in survey estimates (Chapman, 1983; Chapman, 2003; Chapman and Roman, 1985; Lessler 

and Kalsbeek, 1992; Lohr, 1999; Moser and Kalton, 1972; Vehovar, 1993). Much of the critical 

literature recommends avoiding the use of interviewer controlled or implemented substitution. 

These interviewer choice methods are not considered in this study. 

 

Instead, the focus here is on forms of substitution in which the determination of when to 

substitute and which units to use as substitutes is controlled by survey investigators. The survey 

investigators reserve the right to decide or specify when a substitute is needed, and they select 

substitutes carefully, and not conveniently, to have similar characteristics to the nonresponding 

units. The choice of substitute units often involves matching on observable characteristics or a 

stochastic selection.  

 

It is in these latter forms of substitution that there is a lack of conclusive evidence sug-

gesting it performs worse than competing alternatives such as weighting or imputation. There 

have been a handful of theoretical studies on substitution (Nathan, 1980; Zanutto, 1998; 

Vehovar, 1999; Rubin and Zanutto, 2002; Thompson and Wu, 2008) and some empirical investi-

gation of actual implementation (Durbin and Stuart, 1954; Cohen, 1955; Sirken, 1975; William 

and Folsom, 1977; Biemer, Chapman and Roman, 1985; Vives et al., 2009, David et al., 2012; 

David et al., 2014, Baldissera et al., 2014). There is still concern about this kind of more deliber-

ate and controlled substitution as a procedure for dealing with nonresponse, in part because these 

prior studies have not generated the kind of conclusive results that have been sought. 

 

 The limited existing research on substitution focuses mainly on its use at the element lev-

el. For example, Vehovar (1999) examines in a two-stage cluster sample nonresponse and substi-

tution occurring only at the second stage of the sampling process.  
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But many surveys use substitution as a remedy for nonresponse of entire clusters, as pri-

mary sampling units (PSUs) in two-stage sampling. This is particularly true in school-based sur-

veys that sample schools as first stage units and students in the second stage within selected re-

sponding schools.  For instance, the sample design guideline of the Programme for International 

Student Assessment (PISA) suggests substituting non-cooperating schools if the initial school 

response rate falls between 65% to 85% (PISA, 2012). The National Assessment of Educational 

Progress (NAEP) resorts to substitution for nonresponding schools, particularly for private 

schools that are not obliged to comply with study requests for testing students. The University of 

Michigan’s Monitoring the Future survey substitutes for non-cooperating schools (Bachman et 

al, 2011). This usage of substitutes at the PSU–level has not yet been examined in the literature. 

 

Further, nonresponse at the cluster level is another area for which there is a paucity of re-

search. Studies that look at nonresponse in cluster sampling usually assume that there is at least 

one respondent in every cluster in the sample (Vehovar, 1999; Yuan and Little, 2006; Skinner 

and D’Arrigo, 2011). Such an assumption might be reasonable in some household surveys, 

where the clusters are typically cities, counties, census tracts or city blocks. When it occurs, the 

rate of nonresponding clusters is typically not high. However, the fact that the nonresponding 

PSUs are often either in high-income neighborhoods, such as gated communities, or dangerous 

areas, such as in slums or drug trafficking zones, might raise concerns about nonresponse bias. 

Nonresponding PSUs are even more common in surveys that use institutions to get access to the 

target population, such as school-based surveys targeting students. The number of nonresponding 

schools can be moderate to high, compromising the participation of all students in those schools 

and, thus, resulting in many clusters with no respondents. The nonresponse in these cases is usu-

ally the result of a lack of cooperation by school authorities.  

 

This study focus on two-stage cluster sampling. It is assumed that some of the PSUs are 

nonrespondents and none of the corresponding secondary units respond, but in responding PSUs 

all secondary units respond. Although this may seem to be a strong assumption, in school-based 

surveys, for example, student response rates tend to be very high, particularly compared to 

household or individual response rates in household surveys.  
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Two sets of findings are presented.  First, to demonstrate the importance of PSU nonre-

sponse and to evaluate which parameters of the population and sample design have an impact on 

the nonresponse bias, theoretical results for the unadjusted respondent mean are given. Then, the 

results of a simulation study are presented to assess the performance of different substitution 

procedures compared to alternative nonresponse weighting-adjustment methods. 

 

3.2 Bias of Unadjusted Respondent Mean Under PSU Nonresponse 

3.2.1 Equal-sized Clusters 

 For the sake of simplicity, it is first analyzed the case in which the population consists of 

A  clusters of equal size, B , so that the overall population size is 
1

A

N B AB
α=

= =∑ . Let Yαβ  be the 

value of a survey variables Y for the thβ  element in thα  the cluster, for 1,..., ; 1,...,A Bα β= = . 

The objective is to estimate the finite population mean: 

 

1 1

A B

Y
Y

N

αβ
α β= ==
∑∑

. 

 
For that purpose, a two-stage cluster sample is selected. At the first stage, a sample of a  

PSUs of the A  clusters is selected with equal probability, but in only ra  is it possible to obtain a 

subsample of elements, due to nonresponse. At the second stage, b  secondary sampling units 

(SSUs) of the B  elements are selected in the thα  responding cluster. It is assumed that all select-

ed SSUs respond to the survey. Because this design is a fixed size equal probability sample, if 

there were no nonresponse, the usual estimator for the population mean would be the sample 

mean: 

1 1

a b

y
y

ab

αβ
α β= ==
∑∑

 

 
With nonresponse, a naïve approach would discard the nonresponding PSUs and use this 

same estimator using only the respondent data, that is, an unadjusted respondent mean: 
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1 1

ra b
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r

y
y

a b

αβ
α β= ==
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 Denoting rα  and |Iβ α the PSU cluster response indicator and the SSU sample indicator for 

the thβ  sampled element in the thα  selected cluster, respectively: 

 
1, if the cluster is included in the sample and responds
0, otherwise

th

rα
α

= 


 

 
and  
 

|
1, if the  element in the cluster is included in the sample
0, otherwise

th th

Iβ α
β α

= 


 

 
Then the estimator can be re-written as 

 
|
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∑∑
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∑

 

 
Under the given sample design, assuming that the cluster selection and response mecha-

nisms are independent, the expected values of rα  and |Iβ α  are, respectively, ( ) aE r p
Aα α=  and 

( )|
bE I
Bβ α = , where pα is the response propensity for cluster α . In order to derive the bias of 

this respondent mean, first, notice that this is a ratio estimator and hence, the Taylor Series ex-

pansion can be used to find its approximated expected value (Wolter, 2007). Let  

 

( ) |1 1
1 2

1 12

ˆˆ ˆ, ˆ

A

A B

r

rr I yYy g Y Y
ab aY

α
α β α αβ α

α β

=

= =

= = =
∑

∑∑  
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 to approximate  

 

( ) 1 1 1
1 2

2

,

A A

Y p
Y Yg Y Y

A AY p

α α
α α= == = =
∑ ∑

 .  

 
Then, the respondent mean can be approximated by 

 

( ) ( ) ( ) ( ) ( ) ( )1
1 2 1 2 1 1 2 2 1 22 2

2 2

1 1ˆ ˆ ˆ ˆ ˆ ˆ, ,r
Y Y Yy g Y Y g Y Y Y Y Y Y Y Y Y p

Y Y p p p
= + − − − = + − − −  

 

Now, assuming that the first and second stage sample selections and the cluster nonresponse are 

independent,  

 

( ) ( ) ( )| 1
1

1 1 1 1

ˆ

A

A B A B
a b p Yp yE r E I y A BE Y
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α αα αβα β α αβ α
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∑ ∑ ∑

, 

 

the expected value of the respondent mean is approximately 

  

( ) ( )1 1 1
2

1 1 1

A A A

r

p Y p Y p Y
Y Y Y YE y Y p p
p p A p p A p p A p

α α α α α α
α α α= = =

 
 
 + − − − = + − =
 
 
 

∑ ∑ ∑
  

 

Therefore, the bias of the respondent mean in this case is given by 
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 where ( ),aCov Y p  is the covariance of the survey variable, Y , and the response propensity, p , 

with the subscript a  to denote that this covariance is being evaluated at the cluster level.  

 

This is similar to the bias expression for nonresponding elements in Bethlehem (1988). 

The expression for the bias of ry  can be further expanded as 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
2

1 ,

1 ,

1 , 1 1

r a

a a a

a a

Bias y Cov Y p
p

Corr Y p Y p
p

Y
Corr Y p p B

p B

σ σ

σ
σ ρ

=

= =

 = + − 



 

 

where ( ),aCorr Y p  is the correlation of the survey variable, Y , and the response propensity, p ; 

( )a Yσ  and ( )a pσ  are the standard deviations of the survey variable and response propensity, 

respectively; and ρ  is the intra-cluster correlation of the survey variable. Again, the subscript a  

denotes that these statistics are being evaluated at the cluster level. 

  

 The nonresponse bias in this case also depends upon the degree of homogeneity due to 

clustering. This is an intuitive result, since here all elements in a nonresponding cluster are miss-

ing, even though some, if not all, of these elements would respond to the survey, if requested. 

Hence, survey outcomes with high intra-cluster correlation will tend to have a higher bias com-

pared to outcomes with lower within-cluster homogeneity. 
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3.2.2 Unequal-sized Clusters 

 Consider the case in which the population consists of A  unequal-sized clusters, with Bα  

elements in the thα  cluster, so that the population size is 
1

A

N Bα
α=

=∑ . In this case, the finite popu-

lation mean is given by 

 

1 1

1

BA

A

y
Y

B

α

αβ
α β

α
α

= =

=

=
∑∑

∑
. 

 
 Once again it is assumed that a two-stage cluster sample is selected. At the first stage, a 

sample of a  PSUs of the A  clusters is selected with probability proportional to size (PPS), Bα , 

but only ra  of them comply. At the second stage, b  SSUs of the Bα elements are selected in the 

thα  responding cluster. Just as the previous case, it is assumed that all selected SSUs respond to 

the survey. Because this particular design (PPS two-stage cluster sample) is a fixed size equal 

probability sample, if there were no nonresponse, the usual estimator for the population mean 

would also be the sample mean: 

 

1 1

a b

y
y

ab

αβ
α β= ==
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 As previously, under the presence of nonresponse, a naïve approach would be to discard 

the nonresponding PSUs and use an unadjusted respondent mean: 
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where rα  and |Iβ α  are the same as before.   
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Under a PPS selection, and assuming that the cluster selection and response mechanisms 

are independent and that the SSUs are selected with equal probability within the PSUs, the ex-

pected values of rα  and |Iβ α  are, respectively, ( )

1

A
BE r a p

B

α
α α

α
α=

=

∑
 and ( )|

bE I
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 to approximate  
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Assuming that the first and second stage sample selections and the cluster nonresponse are inde-

pendent, 
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using Taylor Series approximation, the expected value of the respondent mean in this case is ap-

proximately  
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Therefore, the bias of the respondent mean in this case is given by 
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 This is of a similar form of the bias expression of the equal-sized clusters case, but with 

the covariance weighted by the cluster sizes, which implies that larger clusters might have a larg-

er impact on the nonresponse bias.  

 

3.3 Simulation Study 

 Despite being extensively used in practice, the statistical properties of the various types 

of substitution methods are still not well understood, particularly the substitution of clusters, 

such as PSUs, in complex survey design settings, involving stratification, clustering, multiple 

stages, and unequal selection probabilities. Furthermore, a comparison of the performance of 

these substitution procedures to other nonresponse adjustment methods is needed to guide practi-

tioners about the implications of using each one of these methods in different populations and 

contexts.  

 

More specifically, it would be helpful to know: (1) which methods lead to unbiased esti-

mates; (2) what methods produce the most precise estimates; and (3) which methods lead to the 

smallest mean squared error for the estimates of the population parameters. It would be im-
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portant to evaluate these properties of the different method for dealing with nonresponse under a 

range of values for important population and survey design features that can impact nonresponse. 

Moreover, the sampling variance estimates of these methods should also be evaluated for a more 

complete portrait of their statistical inference properties.  

  

 For these purposes, a series of simulations were carried out, each selecting 5,000 strati-

fied two-stage cluster samples of size n = 1,500 (a = 100 clusters and b = 15 elements per clus-

ter) from populations of approximately N = 400,000 elements composed of A = 2,000 clusters of 

unequal size. 

 

 The simulation process involved the generation of a population of clusters, the generation 

of a population of elements within each cluster, the selection of a sample of PSUs and elements 

within sample PSUs, the application of a missing data mechanism to the sample to obtain the re-

sponding unit sample, the selection of substitute PSUs for nonresponding PSUs, and the calcula-

tion of various estimates from each sample, including bias and variance. 

 

 In these simulations, the objective was to estimate the finite population mean of a survey 

variable Y. An auxiliary variable, X, at the cluster level was assumed to be observed for all clus-

ters, respondents or nonrespondents. The simulations were conducted with:  

 

• Three levels of correlation between Y and X: low ( ( ), 0.01aCorr Y X = ), medium              

( ( ), 0.30aCorr Y X = ) and high ( ( ), 0.70aCorr Y X = ) (as before, the subscript a denotes 

that the correlations are at the cluster-level);  

• Three levels of intra-cluster correlation for the Y survey variable: low ( 0.01ρ = ), medi-

um ( ρ = 0.20 ) and high ( 0.50ρ = );  

• Three cluster-level response propensity means (cluster response rate): low ( 0.50p = ), 

medium   ( 0.75p = ) and high ( 0.90p = ), and;  

• Two missing mechanisms: missing at random conditional on the variable X (MAR) and 

missing not at random (MNAR).   
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Thus, there were 3 x 3 x 3 x 2 = 54 different simulation settings, derived from the combi-

nations of correlation, intra-cluster correlation, response rate, and missing data mechanisms ex-

amined. First, nine populations were generated corresponding to the combinations of correlation 

and intraclass correlation given above. Then, for each of these nine populations, six nonresponse 

scenarios were considered, the combinations of the three response rate levels with the MAR and 

MNAR nonresponse mechanisms. 

 

Finite Populations Generation 

The parameters of the nine finite stratified and clustered populations, derived from the 

combination of the three (X, Y) correlation and the three intra-cluster correlations, are summa-

rized in Table 3.1.  

 

Because of the stratified, clustered nature of these populations, the values of the survey 

variable Y were hierarchically generated in two steps. First, the cluster means Yα  were generated 

from a multivariate normal distribution together with other three cluster variables:  

 

 Xα , which denotes a cluster variables to be used in matching substitutions and nonre-

sponse adjustments;  

 Wα , which was used to stratify the clusters, and; 

 Uα , which assisted in the generation of the cluster sizes, Bα .  

 

Once the clusters characteristics were generated, the survey outcome values of the Bα el-

ements in each of the clusters were drawn from a normal distribution with mean Yα . The two-

step algorithm that implemented this population generation is given below with more details of 

this process: 

 

1. At the cluster level, A = 2,000 vectors of cluster characteristics were generated inde-

pendently under the following multivariate normal distribution: 
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To simulate cluster sizes similar to ones that might be found in school-based surveys, the 

size of each cluster was generated from the variable U  as ( )exp ,B U bα α = +  1,..., 2000α = . 

To avoid undersized clusters that would complicate sample selection, an additional b units were 

added to the cluster sizes. Some cluster sizes were trimmed to prevent oversized units (Kish, 

1965) with sizes so large they would be selected with certainty, or multiple times, in the subse-

quent probability proportionate to size selection of clusters.  

 

Stratification of clusters was based on the variable W .  Clusters were sorted by the value 

of W  and divided into 50H =  strata of approximately equal size. The subscript h  is added in 

the notation hereafter to denote cluster stratum.  

 

The covariances YWσ  and YUσ  were set so that the correlations between Y  and W  and 

between Y  and U were both 0.2 (the correlation between Y  and the cluster sizes, B , was ap-

proximately 0.1) in all populations. The covariance  was set accordingly to the variance 2
BYσ  

so that the correlation between Y and X  at the cluster level assumes the three different levels 

mentioned before: low ( ( ), 0.01aCorr Y X = ), medium ( ( ), 0.30aCorr Y X = ) and high (

( ),aCorr Y X 0.70= ). Below, the way in which the values of 2
BYσ were set is discussed.  

 

2. The survey variable for the hB α elements within the thα  cluster in the hth stratum was 

generated independently following 

 

( )2~ , , 1,...,50; 1,...,1000; 1,...,
Wh h Y hY N Y h Bαβ α ασ α β= = =  

 

YXσ



40 
 

The between- and within-cluster variability of the Y  variable, ( )2 2;
B WY Yσ σ , were set to 

( )4;396 , ( )80;320  and ( )200;200 so that 2 400Yσ ≈  and the intra-cluster correlation, computed 

as ( )2 2 2
W W BY Y Yρ σ σ σ= + , takes approximately the three different levels: low ( 0.01ρ = ), medium 

( 0.20ρ = ) and high ( 0.50ρ = ), respectively.  

 

 Table 3.1: Population parameters used in simulations 
Population  

   

 

1 0.01 0.01 4 396 0.40 
2 0.01 0.30 4 396 12.00 
3 0.01 0.70 4 396 28.00 
4 0.20 0.01 80 320 1.79 
5 0.20 0.30 80 320 53.67 
6 0.20 0.70 80 320 125.22 
7 0.50 0.01 200 200 2.83 
8 0.50 0.30 200 200 84.85 
9 0.50 0.70 200 200 197.99 

 

Sample Design 

Each simulation selected a stratified two-stage cluster sample from each of the cluster 

populations. A first-stage sample of 2ha =  PSUs were selected with a random systematic-PPS 

procedure from each stratum h = 1, …, 50, using the cluster sizes, Bα , as measures of size. A 

second-stage sample of 15b =  SSUs were selected with simple random sampling without re-

placement within each sampled PSU. This is a design that maximizes the benefits of stratifica-

tion to the point where design-based sampling variance estimation is still possible. Because the 

strata were approximately the same size, design weights were used to adjust for some minor dif-

ferences in the selection probabilities across elements in different strata.  

 

Some of the methods evaluated in this study inflated the selected sample size to compen-

sate for nonresponse to obtain the target sample size. Because the missing mechanism operated 

at the cluster level, only the first-stage sample size were inflated in each stratum according to the 

overall cluster response propensity mean. In particular, instead of selecting ha  clusters in the thh  

stratum, '
h ha a p= , where 

1

Ap p Aαα=
=∑  were selected to compensate for PSU level nonre-

ρ ( ),aCorr Y X 2
BYσ

2
WYσ YXσ



41 
 

sponse. For example, for an overall cluster response propensity 0.75p = ,  ' 2 0.75 2.67 3ha = = ≈  

PSUs were selected in each stratum. This approach assumes a prior estimate of the response pro-

pensity. In practice, response rates of previous studies are used as estimates for this quantity.  

 

Nonresponse mechanism 

 The nonresponse mechanism was then applied to the selected clusters. Because the inter-

est here is in nonresponse at the cluster-level, all the elements within respondent clusters were 

considered to be respondents. Two nonresponse mechanisms were used in this study: missing at 

random (MAR), in which the nonresponse depends only on the variable X , and missing not at 

random (MNAR), in which the nonresponse also depends on the survey variable Y . For each 

mechanism, three cluster response propensity levels were used: low ( 0.50p = ), medium ( p =

0.75) and high ( 0.90p = ).  

 

 The response propensities, hp α , were computed for each cluster in the population accord-

ing to the following model: 

 

( ) 0 1 2logit , 1,...,50; 1,..., 2000h h hp X Y hα α αβ β β α= + + = =  

 

The model’s coefficients were set according to the missing mechanism and cluster response pro-

pensity means as summarized in Table 3.2.  

 

Table 3.2: Nonresponse mechanism model coefficients 
  β0 β1 β2 

MAR 
0.50 -1.25 0.0125 0 
0.75 -0.15 0.0125 0 
0.90 0.95 0.0125 0 

MNAR 
0.50 -2.5 0.0125 0.0125 
0.75 -1.4 0.0125 0.0125 
0.90 -0.3 0.0125 0.0125 

 

 

p
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 For each sampled cluster a random variable ( )~ Uniform 0,1hu α  was independently gen-

erated. The cluster was treated as a nonrespondent, that is, none of its elements were observed, if 

h hu pα α< ; otherwise the cluster was considered a responding PSU and a sub-sample of b = 15 

elements was selected. This same missing mechanism was applied to units selected to substitute 

nonresponding PSUs. That is, there was also nonresponse among substitutes and its mechanism 

was assumed to be the same that operates on the original sample. In practice, this latter assump-

tion is only true if the substitutes receive the same survey protocol as the originally selected 

units.  

 

Nonresponse adjustment methods evaluated in this simulation study 

 The methods used to compensate for nonresponding PSUs compared in this simulation 

study, are summarized in Table 3.3. The objective is to estimate the finite population mean 

. Design-weights were used in all estimates. With the sample design used in the 

simulations, the design-weights are given by2  

 

( ) 11
|

1 1

1 1

, 1,...,50; 1,..., ; 1,...,15
h h

h h h h

h h
h hA A

hh h

d

B a bba h a
BB B

αβ αβ α β α

α

αα αα α

π π π

α β

−−

− −

= =

= = × =

   
   = × = = = =
   
   ∑ ∑

  

 

As previously mentioned, most of the proposed methods in the literature to adjust and 

compensate for nonresponse assume that the missingness occurs at the element level. However, 

many of the element level compensation methods can also be applied to clusters. For the purpos-

es of this study, the substitution methods are compared to two very common alternative solu-

tions: the unadjusted respondent mean and the nonresponse-adjusted weighted mean. In order to 

achieve, on average, the target sample size and have comparable sample sizes for methods rely-

ing on substitution, both of these approaches used a number of PSUs inflated by the average 

cluster response propensity. 

 

                                                           
2 For the methods that used an inflated sample size, ha is substituted by '

h ha a p=  

1

N
ii

Y Y N
=

=∑
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Table 3.3: Methods to compensate for missing PSUs investigated in the simulation study 

Abbreviation Method Substitution 
iterations 

Nonresponse 
weighting? 

ISS Inflated Sample Size - No 
ISS.W Inflated Sample Size - Yes 
MSub1 Matching Substitution 1 No 
MSub3 Matching Substitution 3 No 
MSub7 Matching Substitution 7 No 
RSub1 Random Substitution 1 No 
RSub3 Random Substitution 3 No 
RSub7 Random Substitution 7 No 
MSub1.W Matching Substitution 1 Yes 
MSub3.W Matching Substitution 3 Yes 
MSub7.W Matching Substitution 7 Yes 
RSub1.W Random Substitution 1 Yes 
RSub3.W Random Substitution 3 Yes 
RSub7.W Random Substitution 7 Yes 

 

Unadjusted respondent mean with inflated sample size (ISS) 

 The unadjusted respondent mean, or inflated sample size estimate (ISS), is the naïve 

complete-case analysis estimator without any adjustment for nonresponse. Although this method 

is usually not recommended in practice, it is used here as a baseline point to evaluate the magni-

tude of nonresponse bias reduction when the other methods are used. In this case, the estimate 

for the population mean of the survey variable Y  uses only the data of the elements selected 

within the responding PSUs. Weights in the ISS method include only the design weights, with no 

further weighting or imputation-adjustments:  

 

1 1 1

1 1 1

r

r

aH b

h h
h

ISS aH b

h
h

d y
y

d

αβ αβ
α β

αβ
α β

= = =

= = =

=
∑∑∑

∑∑∑
 

 

Nonresponse adjusted weighted mean with inflated sample size (ISS.W) 

 The nonresponse adjusted weighted mean, or the inflated sample size weighted mean 

(ISS.W) is used as a benchmark for the substitution methods, as it is the most commonly used 
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alternative, particularly with regard to element-level nonresponse weighted approach (here 

adapted for cluster-level nonresponse). In this approach, the responding PSUs are weighted by 

the inverse of their predicted response propensity, ˆhp α , which is estimated using the selected 

sample with the following logistic regression model: 

 

( ) 0 1 2
ˆ ˆ ˆˆlogit h h hp X Bα α αβ β β= + +  

 

This is the correct response model under MAR, but it is misspecified under MNAR. Both 

the cluster sizes and stratification indicator were initially included in the model to take into ac-

count all the design variables, as suggested by Little and Vartivarian (2003). The stratification 

indicator was dropped from the model because, in preliminary simulations, it led to extreme 

weights in some situations without any further reduction in bias. However, this may be due to the 

simulation design; if the stratification effect was stronger, the bias reduction could depend on the 

inclusion or exclusion of the stratification indicator in the model. Future studies should investi-

gate this further.  

  

 With these estimated response propensities for the responding PSUs, the population mean 

was then estimated by: 

 

 

 

Substitution methods 

 Substitution can be implemented in a variety of forms. This study investigates two fea-

tures of substitution: the selection method of the substitute and the number of substitution itera-

tions to be used. Each one of them is described next. 

 

First, there are different ways a substitute can be selected to replace a nonresponding unit. 

In this study two of these forms were evaluated: 

1

1 1 1
.

1
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• Matching Substitution (MSub): the substituted unit is the closest match to the 

nonresponding unit in terms of the auxiliary variables observed for all units in the popula-

tion, such as frame variables. There are several matching procedures studied in the litera-

ture (Rosenbaum, 1995). However, a very simple matching rule based on the auxiliary 

variable X  and stratification was used: the substitute was the most similar non-selected 

unit (and not used in the substitution of any other case) to the nonresponding PSU in 

terms of X  within the same stratum. This is equivalent to selecting the unit within the 

same stratum with the smallest Euclidean distance from the nonrespondent in terms of the 

auxiliary variable X . This study does not focus on evaluating other matching methods.  

 

• Random Substitution (RSub): a randomly selected unit among those that were not orig-

inally sampled (nor used in the substitution of any other unit) within the same stratum 

was selected as the substitute the nonresponding PSU. There are different ways of ran-

domly selecting a substitute. Since the original selection of PSUs was done with random 

systematic-PPS, the substitutes were also selected using this selection procedure. As done 

in many school-based surveys that use substitution, the selection of the substitutes was 

conducted during the selection of the original sample. This was implemented by breaking 

the sampling interval of the systematic selection as many times as needed, according to 

the number of substitution iterations (see below). Then the PSU that would be the next 

unit to be selected in the same “zone” (Kish, 1965) of the nonresponding PSU using the 

new sampling interval is chosen as a substitute.  

 

Another feature of substitution investigated in this study is the number of substitution it-

erations to be used. As mentioned before, it is possible that the substitute selected to replace a 

nonresponding unit may be a nonrespondent as well. Then, one can stop with no observation for 

the designated cluster, keep substituting until a responding unit is found, or  keep substituting 

until a predetermined number of substitution iterations is reached. To study this aspect of substi-

tution, up to one, three, and seven substitution iterations were examined for both MSub and 

RSub methods. These levels of substitution iteration were chosen to yield response rates approx-

imately equivalent to inflated sample sizes for 90%, 75% and 50% response rates, respectively.  
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 The combination of the substitution selection method and the number of iterations results 

in a total of six substitution methods (see Table 3.3 above). No further nonresponse adjustments 

were used to compensate for nonresponse in these substitution methods. The estimate of the 

population mean under the six substitution methods is similar to the unadjusted respondent 

mean: 
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where *
ra  is the number of responding PSUs after all substitution iterations. 

 

Because some nonresponse may remain after all iterations are completed, every substitu-

tion method had a corresponding nonresponse weighting-adjusted estimator similar to that used 

in the nonresponse-adjusted weighted mean ISS.W -- MSub1.W, MSub3.W, MSub7.W, 

RSub1.W, RSub3.W, and RSub7.W. The cluster response propensities were estimated according 

to the same logistic regression model for ISS.W, but estimates were computed using data from 

the responding and all nonresponding units including nonresponding substitutes. The estimator 

for the population mean of these methods is  

 

 

 

Properties evaluated 

Three empirical measures were used to compare the different methods. Using  to de-

note the general estimator of the population mean for method m, the empirical measures comput-

ed for each method were 
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3. The empirical root mean square error, ( ) ( )2
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with ISS, ISS.W, MSub1, MSub3, MSub7, RSub1, RSub3, RSub7, MSub1.W, MSub3.W, m =  

MSub7.W, RSub1.W, RSub1.W, RSub3.W, RSub7.W  

 

A potential advantage of substitution over nonresponse weighting adjustment with inflat-

ed sample size is that substitution tends to preserve the original sample structure (Vehovar, 

1999). This is especially important in designs with few units selected per stratum, such as the 

sample design used in this simulation that selected two PSUs per stratum. If substitution is not 

used in cases like this, some strata could potentially end up with no, or only one, observed units 

due to nonresponse, even when an inflated sample size is used. In this situation, strata may be 

collapsed to allow for design-based sampling variance estimation (Hansen et al., 1953; Wolter, 

2007), which leads to overestimates of sampling variability.  

 

To evaluate the potential benefit of substitution over collapsing strata, the following em-

pirical measures of the sampling variance estimator ( )var my  were compared across the methods:  

 

1. The empirical relative bias, ( ) ( )( )
( )

Bias var
RelBias var
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m
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y
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2. The empirical sampling variance, ( )
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with ISS, ISS.W, MSub1, MSub3, MSub7, RSub1, RSub3, RSub7, MSub1.W, MSub3.W, m =  

MSub7.W, RSub1.W, RSub1.W, RSub3.W, RSub7.W  

 

The variances of all methods were estimated using Taylor Series approximation. Strata 

with no or one responding PSUs were collapsed with the closest strata until there are at least two 

PSUs in the collapsed stratum. In some instances of the substitution method, particularly meth-

ods which rely on only one iteration of substitution, some strata may be empty or may contain 

only a single PSU. In these cases, strata were also collapsed to estimate sampling variability.  

 

3.4 Results 

 In this section the results of the estimators evaluated on this simulation study are shown. 

First, the properties of the point estimates for the population mean in terms of their empirical rel-

ative bias, sampling variance and RMSE are presented. Then, the results of the sampling vari-

ance estimates of these estimators are shown with respect of these same measures.  
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3.4.1 Properties of the Population Mean Estimates 

Empirical Relative Bias 

Tables 3.4 and 3.5 present the empirical relative bias for the estimates of the population 

mean under the different methods for each simulation on this study under the MAR and MNAR 

missing mechanisms, respectively.  

 

As would be expected, as the response rate decreases, the nonresponse bias of the ISS in-

creases, and as the correlation between the auxiliary variable X  (which drives the nonresponse 

mechanism) and the survey variable Y  increases, this bias increases. These simulation results 

also confirm what was found in the bias expression of the unadjusted respondent mean under 

PSU nonresponse: as the intra-cluster correlation increases, the nonresponse bias also increases. 

In general, the nonresponse weighting adjustment on ISS.W almost completely eliminates bias 

under the MAR mechanism, since the model is correctly specified.  But there is still substantial 

remaining bias under the MNAR mechanism, especially for moderate to high intra-cluster corre-

lations and low to moderate response rates.  

 

There is an interesting difference between the matching and random selection substitution 

methods relative to the number of iterations. As the number of substitution iterations increases, 

the empirical (absolute) relative bias of the matching substitution methods (MSub) decreases and 

approaches that of the ISS.W. This is evident for the MNAR mechanism, in which this pattern is 

identified in most of the cases and the relative bias of the MSub7 is very close to that of the 

ISS.W. Although this same general pattern is not as clear for MAR, the average empirical abso-

lute relative bias of the MSub across all the simulation settings tends to get closer to that of the 

ISS.W. Also, for MAR, the bias of the MSub7 is, on average, larger than of the ISS.W. 

 
In contrast, for the random substitution methods (RSub), not only does its empirical rela-

tive bias remain almost constant across iterations, but it also is very close to the relative bias of 

the ISS. This difference between MSub and RSub is explained by the fact that while the former 

seeks to select substitutes that resemble as closely as possible the nonresponding PSUs in terms 

of the auxiliary variable X, the latter only draws a random PSU that, despite being in the same 
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 stratum as the nonrespondent, may still be quite different from it. The matching selection of the 

substitution performs a similar role to the nonresponse weighting-adjustments in reducing bias. 

Hence, if X  is associated with Y , it would be expected that the matching substitutes would be, 

on average, more similar to the nonrespondents than the random substitutes. This is confirmed by 

the fact that as this correlation between X  and Y  increases, the absolute relative bias of the 

MSub decreases, whereas the relative bias of the RSub increases. 

 

The results from the nonresponse weighting-adjusted substitution methods reveal another 

difference between the two substitution selection approaches. While for RSub.W the nonre-

sponse weighting adjustment substantially diminishes the relative bias to levels comparable that 

of the ISS.W, this same adjustment procedure tends to increase the absolute relative bias in the 

MSub.W. This latter phenomenon seems to be particularly true for a MAR mechanism, where it 

occurs consistently across the levels of response rate, intra-cluster correlation, and correlation 

between X  and Y . This happens because the matching substitution already is a nonresponse 

adjustment; imposing another adjustment on top of that, through weighting, disrupts the adjust-

ments made in the first place. This finding is corroborated by the fact that the increase in bias 

from an unadjusted to a weighting-adjusted approach tends to be larger for RSub7.W and to in-

crease as the correlation between X  and Y  increases. On the other hand, for MNAR this phe-

nomenon is less evident, and in some cases the nonresponse adjustments seems to actually re-

duce the bias in MSub.W. 

 

Empirical Variance 

 The results for the empirical variance, presented in Tables 3.6 and 3.7 show that for 

stronger correlations between X  and Y , such as ( ), 0.70aCorr Y X = , the sampling variance of 

the ISS.W tends to be smaller than that of  ISS , as predicted from the results of Little and 

Vartivarian (2005). This is particularly true for moderate to higher levels of intra-cluster correla-

tion ( 0.20ρ =  and 0.50ρ = ), under both missing mechanisms across the different response rate 

levels. A similar pattern is observed for the MSub7, RSub7.W and MSub7.W, but not for corre-

sponding methods using a smaller number of iterations. Also, since RSub7 does not use the aux-

iliary variable X  for the selection of substitutes nor for weighting adjustments, it does not have 

the same gains in precision found in the other three methods.  
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For both nonresponse mechanisms, across the levels of the three parameters manipulated 

in this simulation study, the variance of both RSub1 and MSub1 tend to be higher than the ISS 

and ISS.W. This is expected, since their sample size is smaller, due to remaining nonresponse 

after the substitution. That is, if there were nonrespondents among the substitutes, no further at-

tempt was made to continue substituting the nonrespondents on these methods. This difference in 

the sampling variance tends to decrease as the number of iterations (and therefore, the observed 

sample size) increases to the point that the variances of both RSub7 and MSub7 are very close 

that of the ISS and ISS.W.  

 

 In general, the variances of RSub and MSub are very close to the corresponding sampling 

variances for RSub.W and MSub.W. The only exceptions occur for high levels of intra-cluster 

correlation ( 0.50ρ = ) and high correlations between Y  and X  ( ( ), 0.70aCorr Y X = ) when 

RSub.W tends to produce smaller sampling variances compared to the corresponding RSub. This 

occurs since these are cases in which gains in precision with nonresponse weighting-adjustments 

are expected. For these same situations, the opposite effect is observed for MSub.W. The 

MSub.W sampling variances are larger than the corresponding MSub sampling variances, similar 

to what happens for bias. This confirms that making further adjustments on estimates relying on 

matching substitution using the same set of covariates might have a negative effect on the prop-

erties of the final estimates.  

 
Empirical RMSE 

When both bias and variance are taken into account through the RMSE, the patterns iden-

tified for the bias and variance are repeated (see Tables 3.8 and 3.9). The RMSE of ISS.W is, in 

general, smaller than that of ISS. This occurs particularly as the correlation between Y  and X  

and the intra-cluster correlation increase, and as the response rate decreases, under both missing 

mechanisms.  

 

For the MNAR mechanism, it is clear that MSub1 has a larger RMSE than ISS.W, but as 

the number of iterations increase up to seven in MSub7, for example, the RMSE approaches and 

becomes very close that of  ISS.W. On the other hand, the RMSE of RSub tends to be slightly 

larger than that of ISS, approaching it as the number of substitution iterations increases. The only  



56 
 

 



57 
 

  



58 
 

 
exception is for a high response rate ( 0.90p = ), when the RMSE of the RSub is very close to, 

and sometimes slightly smaller than, that of ISS. For the MAR mechanism, the pattern for RSub 

is similar, but for MSub is not as clear. First, for a high response rate ( 0.90p = ) MSub seems to 

have a smaller RMSE than that of ISS.W, especially as the number of substitution iterations in-

creases. However, for low and moderate response rates ( 0.50p = and 0.75p = ), the ISS.W per-

forms better than the MSub, even when the number of substitution iterations is high (MSub7),  

although the gap on the RMSE between these two approaches gets smaller as the number of sub-

stitution iterations increases.  

 

 As a result of the disruption on the adjustment of the matching substitution caused by the 

nonresponse weighting-adjustment on the same variables used to match the substitutes to the 

nonrespondents, as found in the previous sections, the accuracy of the MSub.W tends to be 

worse than that of the MSub, in particular for substitutions up to seven iterations.  On the other 

hand, the RSub.W estimates have a smaller RMSE than their corresponding estimates without 

the nonresponse weighting adjustment and the improvements tend to be the same, regardless of 

the number of substitution iterations.  

 

3.4.2 Properties of the Sampling Variance Estimates 

Empirical Relative Bias 

 Tables 3.10 and 3.11 show the empirical relative bias of the estimates of the sampling 

variance of the different estimators for the population mean under MAR and MNAR mecha-

nisms, respectively.  

 

Most of the estimates tend to overestimate the sampling variability due to the fact that 

strata collapsing was used in every alternative when necessary, that is, when strata had no or one 

responding cluster. Bias in sampling variance increases with the intra-cluster correlation of the 

survey variable at the same degree across all methods and parameters investigated in this study. 

On the other hand, there seems to be no relationship between the bias of the sampling variance 

estimates and the other parameters used in these simulations, such as the correlation between the 

auxiliary covariate and the survey variable, the response rate, or the missing data mechanism.  
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Compared to the sampling variance estimates obtained by the nonresponse weighting ad-

justment method (ISS.W) with collapsing, those obtained by the substitution methods tend to be 

less biased. Curiously, the sampling variance estimates obtained by the unadjusted respondent 

mean (ISS) were slightly less biased than the ones provided by the nonresponse weighted-

adjusted mean. Although increasing the number of substitution iterations would tend to produce 

a sample with a smaller number of strata with none or one responding cluster, this does not seem 

to be a factor on the bias of the sampling variance estimates. Moreover, there was not much dif-

ference in the sampling variance estimates produced by the substitution method with or without a 

further nonresponse weighting adjustment.  

 

Empirical Variance 

 The empirical variances of the sampling variance estimates for the MAR and MNAR 

mechanisms are shown in Tables 3.12 and 3.13, respectively. In general, as the intra-cluster cor-

relation of the survey variable increases the sampling variance of these estimates is smaller, but 

the variances do not seem to be related with the correlation between the auxiliary and survey var-

iables, the response rate, nor the missing data mechanism.  

 

 There was also not much difference between the different methods evaluated in this study 

in terms of the variances of their sampling variance estimates across the different simulation pa-

rameters. However, as the number of substitution iterations increases, the variability of these 

sampling variance estimates decreases. This is to be expected, since the sample size increases as 

a function of the number of substitution iterations. Further, nonresponse weighting adjustment on 

these substitution methods slightly increases the variability of their sampling variance estimates, 

which is also an expected result, since weighting can increase sampling variability, and presum-

ably the variance of the sampling variance.  

 

Empirical RMSE 

 Since there are not many differences between the methods in terms of the empirical vari-

ances of the sampling variance estimates, the difference in the results of the empirical RMSE of 

these sampling variance estimates are mostly due to what was found in their empirical bias. 

Therefore, as can be seen in Tables 3.14 and 3.15 for MAR and MNAR nonresponse mecha-  
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-nisms, respectively, the RMSE of the sampling variance estimates is an increasing function of 

the intra-cluster correlation of the survey variable, but there is no relationship with the correla-

tion between the survey and auxiliary variables, response rate or the missing mechanism. The use 

of nonresponse weighting tends to create sampling variance estimates that are less accurate than 

the corresponding estimates of the unadjusted respondent mean. Overall, substituting 

nonrespondents lead to more accurate sampling variance estimates than using a strata collapsing 

technique. Additionally, increasing the number of substitution iterations also improves the accu-

racy of the sampling variance estimates, as expected. Finally, there are no differences between 

random and matching substitution in terms of the RMSE of their sampling variance estimates. 

However, the use of nonresponse weighting on top of the substitution tends to create slightly less 

accurate sampling variance estimates.   

 

3.5 Discussion 

  The results of the simulations presented here show some interesting patterns that can 

provide some useful guidelines to survey practitioners about the use of substitution procedures 

for nonresponding PSUs. It is important to emphasize, however, that the results of this limited set 

of simulations should not be readily generalized to broader settings that were not covered here. 

Such limitations are further discussed below. The conclusions presented here are limited to the 

conditions stipulated by the simulation design.  

 

No substitution procedure outperforms the nonresponse weighting- adjustment method 

with an inflated sample size, both in terms of bias reduction or gains in precision. On the other 

hand, matching substitution seems to perform just as well as a nonresponse-weighting adjust-

ment, when both are compared under the same conditions, which includes having the same set of 

variables available before and after the data collection. Therefore, while there is no evidence to 

discredit the use of the kind of substitution examined here when a matching procedure is imple-

mented, there is no reason to prefer this method over a post-data collection adjustment, in terms 

of nonresponse bias reductions, if the same set of covariates is used for matching or nonresponse 

adjustment. Moreover, using an inflated sample size approach instead of substitution heavily de-

pends on having a good estimate of the response rate  – in this case, the PSU response rate. If this 

estimate is severely under or over-estimated, the desired number of units will not be obtained.  
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 The same conclusion does not apply to random substitution. In fact, the unadjusted esti-

mates produced by this procedure have properties that resemble the unadjusted respondent mean 

with no substitution, which, as shown before, can be subject to substantial bias. However, ran-

dom substitution can be greatly improved with a nonresponse weighting adjustment. Even if ran-

dom substitution is fully successful, that is, a substitute is found for every nonrespondent, it is 

important to employ additional nonresponse adjustments to reduce the bias of the survey esti-

mates.  

 

The standard nonresponse weighting adjustment had the opposite effect on the matching 

substitution estimates, at least when the variables used for the nonresponse weighting adjustment 

are the same as those used to match the nonrespondents to their substitutes. Both bias and sam-

pling variance tend to increase when a weighting-adjustment is added to matching substitution. 

When relying on matched substitutions, even when some nonresponse remains in the sample, 

applying a post-data collection nonresponse adjustment using the same variables used for the 

matching procedure is not recommended. If a nonresponse adjustment is applied, different auxil-

iary variables or different methods, such as calibration, should be used to compensate for nonre-

sponse.  

 

If a nonresponse weighting adjustment with the same set of covariates used in the match-

ing procedure is employed, it is important to consider which units to include in the nonresponse 

model estimation procedures and how to treat them. In this instance, simulation results (not 

shown here) suggest that including only the originally selected units (respondents and 

nonrespondents) and the final respondent substitutes, leaving aside substitute units that turned 

out to be nonrespondents, can bring bias reductions and gains in precision. An alternative ap-

proach is to use only the originally selected units on the nonresponse adjustment model estima-

tion treating the response status of the nonresponding units that were substituted as of their cor-

responding substitutes and then apply the weights of the nonrespondents to the responding sub-

stitutes. Although such procedure was not tested in the simulations presented on this study, it is 

expected to perform similarly to the method described above.  
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 Another important component in the comparison of the methods evaluated in this study is 

sampling variance estimation. In designs with deep stratification, in which there are as many 

strata as possible and with the minimum number of units per stratum to still allow for design-

based sampling variance estimation, some of the strata might end up with zero or one responding 

unit(s) after nonresponse. There different techniques to deal with this problem. Among those, 

collapsing strata is most commonly used in practice, where strata with one or no responding units 

are collapsed with other strata so to form new strata with a minimum number of units for stand-

ard design-based variance estimation. A disadvantage of such technique is that it tends to overes-

timate the sampling variance.  

 

Vehovar (1999) pointed out that one of the strengths of using substitution of 

nonrespondents is its potential to preserve the original sample design after nonresponse occurs. 

Substitution can fill in the gaps due to nonresponse making it no longer necessary to collapse 

strata or use other model-based techniques for sampling variance estimation. Moreover, Vehovar 

(1999) emphasized the need for a comparison between strata collapsing and substitution for 

sampling variance estimation. The simulation results showed that substitution leads to less biased 

and more accurate estimates for the sampling variance than strata collapsing.  

 

 The general results presented in this study show that substitution can be a valid alterna-

tive for the nonresponse problem. Its performance is similar to other standard nonresponse ap-

proaches, especially when a matching procedure is used or when further adjustments are made. 

Substitution can be a particularly valuable tool in samples with few units per stratum or cluster, 

in which nonresponse might disrupt the design to a point that standard design-based sampling 

variance estimation is not possible. In such situations substitution actually proved to be slightly 

more superior to strata collapsing in samples that do not use substitution, for instance.  

 

As mentioned before, these conclusions are limited to the assumptions and conditions set 

in this simulation study. Some of these limitations are unlikely to change the conclusions in more 

general cases, while others may differ if the conditions are different. Next, these limitations are 

described in details.  
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First, the sample design used in these simulations was very specific, focusing on few 

clusters per stratum selected with probability proportional to size. In fact, the minimum number 

of units per stratum were selected while still enabling design-based sampling variance estima-

tion. While this deep stratification is commonly used in many surveys, many others select more 

than a few units per stratum. This condition was set in this simulation to test the performance of 

the substitution method compared to strata collapsing when some strata have one or no respond-

ing units. When a larger number of units are selected per stratum, the likelihood of this situation 

and, therefore, the differences between these two methods are expected to diminish, although this 

must be confirmed in future studies. Moreover, with a large sampling fraction it may be more 

difficult to find good matched substitutes, since there could be fewer units with similar character-

istics from the nonrespondents to be selected from the unasampled population.   

 

Also, the simulations used nearly equal probability sample design and, despite base 

weighting, it was an approximately self-weighting design. In practice, most surveys used an une-

qual probability sample design, to oversample certain sub-populations and, thus, has a larger de-

parture from a self-weighting design, relying more on the design-weights. The conclusions of 

this study are unlikely to change in these types of designs, but more investigations are needed to 

confirm this hypothesis. Finally, the stratification effects and correlation between the survey var-

iable and the cluster sizes were not varied in this study. Some of the results in this study could 

differ under other size stratification effects or associations of the cluster sizes with the survey 

variables, particularly given some of the limitations associated with the nonresponse mechanism 

described below.  

 

Second, the nonresponse mechanism used in this simulation was limited in terms of the 

variables and the degree of association with the survey and auxiliary variable. For simplicity, the 

two variables used in the design, the stratification indicators and the cluster sizes, were not in-

cluded in the model that generated the missing mechanism. If these variables were included, 

some of the results could potentially change, particularly the estimation of the response propensi-

ty in which the stratification indicators were not included. Moreover, the matching substitution 

method may have different results based on whether the cluster sizes are included or not among 

the matching covariates.  
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Third, and also related to the nonresponse mechanism, the results of these simulations are 

based on an assumption that the mechanism for the original selected units is the same as for sub-

stitute units. This assumption might be reasonable when substitution is conducted in a more rig-

orous environment, with substitution selections carefully made by the office rather than the in-

terviewers.  It probably also would require a strict survey protocol that emphasizes obtaining as 

high a level as possible of cooperation of the originally selected units. When such conditions do 

not apply, the nonresponse mechanism of the substitutes may differ from the original sample 

and, depending on how different these mechanisms are from those that apply to originally select-

ed units, nonresponse bias could actually increase rather than decrease. Therefore, the results ob-

tained here should not be readily extended to all situations in which substitution is used, and 

more research is needed to address situations in which the nonresponse mechanism may differ 

between original sampled units and substitutes.   

 

 Lastly, this simulation only examined the situation in which there is only one covariate 

available for matching the substitutes to the nonrespondents. In most applications, multiple co-

variates are usually available. An evaluation of different methods for the matching procedure 

should be explored, such as using a multidimensional distance measure or propensity score 

matching. The results may differ depending on the method used and on the association of the 

matching covariates with the survey variables. Moreover, only a normally distributed variable 

was considered in these simulations. Future studies should investigate how these methods per-

form with both continuous variables with other stochastic distributions and categorical variables. 

 

 Despite extensive use in practice, substitution of nonrespondents has been a neglected 

and understudied problem in survey sampling. Further research on this topic may yield bias and 

sampling variance reductions that merit wider use of substitution to compensate for survey non-

response. For example, a matching procedure might leave differences between nonrespondents 

and their substitutes on observed variables that could not be used in the matching. Rubin and 

Zanutto (2002) proposed an imputation method that adjusts for such differences, although their 

technique might produce increased survey cost and sampling variability in settings like simulated 

in this study. Alternative methods to calibrate respondent and substitute differences suitable for 
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the two-stage sampling examined here may keep survey costs or sampling variability at levels 

equivalent to other nonresponse adjustment methods.  

 

Survey cost was largely ignored in this study, for the sake of simplicity. But it is an im-

portant factor to be considered in future research. While substitution attempts to fill in the gaps 

left in the sample due to nonresponse, this procedure increases costs as additional units are se-

lected and targeted to substitute the nonrespondents. Original sample size must be smaller to 

have resources to select and recruit substitute units. Inflating the sample size, on the other hand, 

might suffer from an incorrect estimate of the response rate, particularly if it is under-estimated, 

in which case more units may be selected than necessary leading to larger costs or lower re-

sponse rates. A more complete portrait of the nonresponse problem should consider trade-offs 

between survey errors and survey costs in the use of substitution and inflated sample size meth-

ods.  

 

 Nonresponse also occurs at other stages of sample selection in multistage sampling. The 

use of substitution for other sampling units needs research attention. This study looked specifi-

cally at the problem of nonresponding PSUs, a fairly common problem establishment and school 

surveys, in particular. The approach of this study could be extended to nonresponse among se-

cond stage units and other similar situations readily.  

 

Finally, the approaches examined here ignored the contributions that might be made us-

ing imputation methods as an alternative or a complement to substitution. While weighting might 

be a preferred procedure for many survey practitioners for adjusting unit nonresponse, imputa-

tion has proven valuable at an element-level, and could be extended to dealing with PSU level 

nonresponse as well. 
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CHAPTER IV 

Imputation and Calibration Adjustment Methods to Improve Substitution 

 

Summary 

Substitution, in which a nonresponding unit in a survey is replaced by another unit not originally 

selected in the sample, is a widely used strategy to deal with nonresponse in many surveys in 

practice. However, little research has been conducted about this often criticized or neglected pro-

cedure in the survey statistics literature. Rubin and Zanutto (2002) proposed the only method to 

date that attempts to improve this methodology by reducing nonresponse bias caused by differ-

ences between nonrespondents and their corresponding substitutes. However, their method re-

quires the selection of substitutes for a sub-sample of the respondents for estimation purposes, 

which leads to additional costs to the survey operation. This paper presents two new methods to 

enhance substitution for nonrespondents. First, a modification is suggested that eliminates the 

selection of the additional sample of substitutes from non-sampled units by selecting substitutes 

from among responding units, therefore making the method more cost-effective. Second, differ-

ences between nonrespondents and substitutes are adjusted using a calibration procedure. This 

latter methodology eliminates the need to collect additional substitutes from non-sampled units 

for some of the respondents, and increases the precision of the estimates through calibration. 

These methods are evaluated and compared through two simulation studies under a variety of 

settings.  

 

4.1 Introduction 

Substitution is a survey procedure for compensating for nonresponse among sample units 

by selecting a replacement unit from the population for each nonresponding unit.  Nonresponse 

bias reduction is a main driver for using substitution to replace nonresponding units. Such reduc-

tions will only be achieved if nonrespondents and substitutes are similar on survey variables.  
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However, substitutes are respondents and may differ systematically from the 

nonresponding units they replace. Such differences might be related to one or more of three dif-

ferent types of variables.  

 

First, there are variables that are observed for both nonrespondents and their substitutes. 

These variables could be used in survey estimation in statistical models to adjust estimates to ac-

count for nonrespondent-substitute differences. For example, in household surveys there may be 

demographic variables available for households or persons that could be used to adjust the values 

of other variables to account for nonrespondent-substitute differences. In an establishment sur-

vey, the size of an organization might be used to increase or decrease the contribution of a substi-

tute if the substitute size is smaller or larger than the unit it replaces. The differences between 

nonrespondents and their substitutes with respect to this type of variables may be adjusted 

through a variety of statistical methods (Little and Rubin, 2002) that assume nonresponse is 

missing at random (MAR).  

 

A second type of variable is the set of variables that are directly or indirectly observed for 

all units in the population, but their inclusion in a statistical model would be difficult or imprac-

tical. These are what might be called higher dimensional attributes, such as geographic location 

(an address or a zip code) which is difficult to use in models because of its high dimensionality. 

Alternatively, there may be a large number of categorical variables for which all or most of their 

interactions are needed to explain the outcome variables. Typically, this higher dimensional rela-

tionship between nonrespondent and substitute could be taken into account through matching 

(Rubin, 1973). That is, the selection of a substitute for a nonrespondent could be based on a 

measure of distance between that nonrespondent and the unsampled units on these variables. 

 

Finally, differences between nonrespondents and their substitutes might be explained by 

unobserved variables or even, in the worst-case scenario, by the survey variables themselves. In 

this case the nonresponse is nonignorable and statistical adjustments must rely on untestable as-

sumptions. Although it is an important problem in survey statistics, this non-ignorable missing 

data situation is outside the scope of this paper and will not be further considered here. 
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Rubin and Zanutto (2002) propose a method they call “matching, modeling, and multiple 

imputation” (MMM) to adjust for differences between nonrespondents and their substitutes. 

MMM assumes MAR, and thus uses the first two types of variables described above. Rubin and 

Zanutto show their proposed method reduces nonresponse bias, even though it requires substitu-

tion for all nonrespondents and for a sub-sample of the respondents. This additional sample se-

lection imposes additional costs that many practitioners are not willing or able to incur. Further, 

the substitutes for respondents are discarded from the dataset after having been used in the ad-

justment process (a multiple imputation procedure). Another potential disadvantage of the MMM 

method is that it introduces added variability to the estimates through the imputation process. 

Rubin and Zanutto (2002) demonstrate that under a variety of circumstances, the estimates ob-

tained from the MMM have much larger variability than existing alternatives, such as weighting 

or other standard forms of substitution. Survey designers have been reluctant to use such a meth-

od without clear evidence that the added costs leads to substantial reduction in bias or increases 

in precision3. 

 

In this paper, modifications to the MMM method that eliminate the need for selecting and 

collecting data for a sample of substitutes for respondents but still successfully reduces nonre-

sponse bias are proposed. One selects substitutes from among existing sample respondents, and 

uses those in a method similar to the MMM method. Another uses calibration to adjust for dif-

ferences between substitutes and nonrespondents on auxiliary variables not used in the matching 

substitution. This latter method could lead to estimates with a smaller sampling variances com-

pared to those obtained under the MMM method. The performance of these methods is evaluated 

through the use of simulations.  

 

In the next section, the MMM method is presented before the alternative methods (substi-

tution by sample respondents and calibration) are examined. The paper concludes with a descrip-

tion of the design and the results from two simulation studies and summary remarks.  

 

 

                                                           
3 Chiu et al. (2005) illustrates an application of the MMM method in a different context, in which the 
“substitutes” were data aggregates from geographical census units, such as blocks or census tracts. 
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4.2 Matching, Modeling, and Multiple Imputation 

 Rubin and Zanutto (2002) distinguish between two types of variables that can potentially 

explain differences between nonrespondents and corresponding substitutes, matching and model-

ing covariates.  

 

Matching covariates, denoted by X , are available for every unit in the population, typi-

cally variables available from the sampling frame materials.   These covariates are used to match 

nonrespondents to unsampled units to serve as their substitutes. Such variables would typically 

not be used in models for nonresponse adjustments, because their use would require too many 

parameters or an arbitrary categorization to a smaller number of classes. Address or geographic 

location might be considered as the basis for matching nonresponding and substitute cases 

where, for example, a substitute is selected for a nonresponding unit from the same block, or 

school, or other unit from the same geographic location. Geographic location though is difficult 

to be used in a statistical model, such as including a sequential identification as a predictor. Be-

cause nonrespondents and substitutes are matched on these variables, they will potentially share 

the same values of other variables that cannot be directly observed, and therefore, are not availa-

ble for analysis. Chiu et al. (2005) call these variables “contextual variables”. 

 

Modeling covariates, denoted by Z , are variables typically available only for 

nonrespondents and their substitutes collected during data collection, such as paradata (Couper, 

1998) in a cross-sectional survey or, in longitudinal surveys, data from previous waves for cur-

rent-wave nonrespondents. Because nonrespondents and their corresponding substitutes usually 

cannot be matched by these variables, there might be some differences between them with re-

spect to these covariates. For this reason, Rubin and Zanutto suggest modeling these differences 

and using the results of these models for multiple imputation of the nonrespondents using the 

substitutes’ data.  

 

The interest is in estimating a population parameter associated with a survey variable Y , 

such as a mean, median, or an association with other variables. For this purpose, a probability 

sample s of size n from a finite population { }1,..., ,...U i N=  is selected. The set of respondents 

and nonrespondents are denoted by r  and m , respectively (see Figure 4.1). In a matching substi-
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tution procedure, substitutes for each nonrespondent in m  are selected according to a matching 

variable X by finding the non-sampled case with the closest proximity to the nonrespondent. 

Denote the set of matched substitutes by q , where each one of its units has a one-to-one corre-

spondence to a unit in the nonrespondent set m . For simplicity, it is assumed throughout this 

study that the matching substitution procedure is fully successful, that is, a responding substitute 

is successfully obtained for every nonrespondent. This assumption can be relaxed for some of the 

methods presented below.  

 

Figure 4.1: Matching substitution procedure (shaded area indicates available data) 
 

 

 

   

 

 

 

 

 

 

 

 

 

 

To adjust for potential differences between nonrespondents and their corresponding sub-

stitutes Rubin and Zanutto proposed the following model for the survey variable Y :   

 

1 2i i i iy z xα β β ε= + + +     (1) 

 

with ( )2~ 0, ,i N i sε σ ∈ . Further, they argue that since substitutes are also part of the same pop-

ulation of the originally selected units, their survey variable should also follow the same distribu-

tion: 

r 

m 

Y 

s 

U 

q 

X Z 

Matching substitution 
based on  X 
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1 2
s s s s
i i i iy z xα β β ε= + + +     (2) 

 

where s
iy , s

iz , and s
ix  denote, respectively, the iy , iz , and ix values for the substitute of the ith 

nonrespondent and ( )2~ 0, ,s
i N i mε σ ∈ . Since substitutes are matched to the nonrespondents on 

the matching variables, that is, s
i ix x= , the difference between them in terms of the survey vari-

able is  

 

( ) '
1 ,s s

i i i i iy y z z i mβ ε− = − + ∈     (3) 

 

However, this model cannot be fit because the survey variable is unobserved for 

nonrespondents. Rubin and Zanutto suggested selecting substitutes from the non-sampled units 

for a sub-sample of the respondents, say , to then fit the following model: 

 

( ) '
0 1 ,s s s

i i i i iy y z z i rβ β ε− = + − + ∈     (4) 

 

where the intercept 0β  is included to minimize possible misspecification bias. An important as-

sumption is that the same relationship of the difference in the survey variables between 

nonrespondents and their substitutes in m also holds for respondents and their substitutes in . 

To weaken this assumption, the respondents selected for this sub-sample should be similar to the 

nonrespondents in terms of the modeling covariates, Z , and, if possible the matching covariates, 

X . 

 

 Rubin and Zanutto then propose multiply imputing the nonrespondent’s survey variable 

values based on draws from  

 

( )( )2
0 1~ , ,s s

i i i iy N y z z i mβ β σ+ + − ∈    (5) 
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using flat prior distributions on the model parameters ( )2
0 1, ,β β σ . After imputation, the substi-

tute’s data from nonrespondents in m  and the sub-sample of respondents in   are discarded. An 

estimate for the population mean of the survey variable and its standard error are computed using 

Rubin’s combining rule (Rubin, 1987) across the multiply imputed data sets. For the detailed al-

gorithm on how to implement this method, see Zanutto (1998, pages 131-132).  

 

4.3 A Modification to the MMM Method 

 A clear disadvantage of MMM is that it requires the selection of substitutes for a sub-

sample of the respondents which is then discarded after model estimation and multiple imputa-

tion. Zanutto (1998) tests the performance of the MMM method using different sub-sample sizes 

of respondents *
mn kn= , where mn is the number of nonrespondents in the sample. She evaluates 

the performance of MMM in a simulation study using 0.1, 0.3, 0.5, 0.8k =  and *
rn n= , where 

the rn  is number of respondents. She finds that for every sub-sample size *n , the amount of bias 

reduction on the estimates of the population mean of the survey variable, Y , is roughly the same. 

But as *n  increases, the sampling variance of the estimate decreases.  Zanutto concludes that fu-

ture research should investigate the trade-offs between bias and precision of the survey estimates 

and the cost associated with selecting substitutes for respondents, with possible guidelines for the 

choice of sub-sample size. 

 

A modification to the MMM method would eliminate additional costs associated with se-

lecting substitutes for a sub-sample of the respondents. Because substitutes of the sub-sample of 

the respondents are also respondents, instead of drawing these substitutes from the non-sampled 

population, the modified procedure proposes to select them from the pool of the remaining re-

spondents on the sample, a procedure similar to hot-deck imputation or flexible matching proce-

dures (Kalton and Kasprzyk, 1986). The difference between a hot-deck imputation and such a 

substitution procedure is that the former uses the donor values to replace the missing data of the 

nonrespondents, where the latter only uses the substitutes for the sub-set of respondents to allow 

for the estimation of model (4).  
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This modified method first selects substitutes matched on X  for the nonrespondents 

from the non-sampled population. A sub-sample of respondents who are similar to the 

nonrespondents in terms of the modeling covariates Z  are selected, and matched substitutes for 

these cases found among the remaining respondents. Then the following model would be esti-

mated: 

 

( ) '
0 1 ,s s s

i i i i iy y z z i rβ β ε− = + − + ∈     (6) 

 

The subsequent imputation of missing values for nonrespondents follows Rubin and Zanutto 

(2002).  

 

 This modification would produce estimates of the population of the survey variable with 

a larger sampling variance compared to Rubin and Zanutto’s MMM, since the substitutes for the 

sub-sample of respondents in this modified approach are drawn from existing pool of respond-

ents. Thus, no additional information is being added to the sample. Also, depending on the sam-

ple size, the nature of the matching covariates, and the response rate, it may not be possible to 

find different substitutes for every unit in the sub-sample of respondents. For example, if the 

matching covariate is a cluster indicator, the cluster sample size is small and the response rate is 

low, the size of the sub-sample of respondents to be substituted might be larger than the number 

of remaining respondents in the cluster. In such situations, selecting these substitutes with re-

placement from the pool of remaining respondents can be used without consequences to the non-

response bias reduction. The sampling variance, however, might be higher than it would be if the 

selection was made without replacement.  

 

An important advantage of this modification over Rubin and Zanutto’s original method is 

that under MAR the same bias reduction can be achieved at a lower cost, since it eliminates the 

need to collect extra data from substitutes for the respondent sub-sample out of the pool of non-

sampled units. 
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4.4 A New Approach Using Calibration 

 Rubin and Zanutto (2002) propose modeling to adjust for differences between the 

nonrespondents and their substitutes on the modeling variables and then multiply imputing the 

nonrespondent’s survey variables. As mentioned before, this method has two disadvantages: (1) 

it requires the selection of substitutes for a sub-sample of respondents (which the modification 

proposed above is designed to overcome), and (2) it increases the sampling variability through 

the imputation procedure. Further, after the imputation of the nonrespondents’ data, the substi-

tutes’ data are discarded and not used in the estimation of the population mean of the survey var-

iable. On one hand, this might be justifiable on the basis that, if included in the inference, such 

substitutes would modify the probability sample design by adding extra cases in the unobserved 

data “blocks” (Rubin and Zanutto, 2002). On the other, it seems like a waste of data to discard 

these substitutes. A new approach to adjust for differences between nonrespondents and their 

matched substitutes with a modeling variable that attempts to overcome these problems and im-

prove the use of substitution in probability samples is proposed here.  

 

 As before, let s  be a probability sample from a finite population { }1,..., ,...U i N= , in 

which units are selected with known inclusion probabilities ( )i P i sπ = ∈ , so that design weights 

can be computed as 1
i id π −= , with ( )1 2, ,..., nD d d d ′= . The set of respondents and 

nonrespondents are denoted by r  and m , respectively. The nonrespondents in m  are substituted 

according to a matching variable X . The set of matched substitutes is denoted by q  and each 

one of its units has a one-to-one correspondence to a unit in the nonrespondents set m .  

 

In imputation, the design-weights id  of the subject are attributed to the imputed data. 

Since substitution can be considered as a form of imputation, where missing data for the 

nonresponding unit is replaced by data from the substitute, the design-weights of the 

nonrespondents can also be assigned to their corresponding substitutes. Alternatively, these de-

sign-weights can be computed as if the substitutes were the originally selected units. Simulation 

results (not shown here) suggest that in terms of bias both approaches lead to similar perfor-

mances. Throughout this study, the former alternative for computing design-weights of the sub-

stitutes is used.  
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To adjust the matched substitutes according to a variable Z , observed for both 

nonrespondents and their substitutes, a calibration approach (Deville and Särndal, 1992) is pro-

posed. The objective is to find for the substitutes a new set of weights ( )1 2, ,..., nW w w w ′=  that 

minimizes a distance measure ( ),iG W D under the following restriction: 

 

i i i i
i q i m

w z d z
∈ ∈

=∑ ∑ ,     (7) 

 

such that the calibrated-weighted total for the variable Z  over the substitutes will be the same as 

the design-weighted total over the nonresponding units. While Rubin and Zanutto call Z  a mod-

eling covariate, it is denoted here as a calibration covariate. 

 

 Once the calibrated weights for the substitutes are found, the combined set of responding 

and matched substitute units ( )* ,s r q=  is used to estimate the finite population mean for a vari-

able Y  as 

 

*

*

*

. *

i i
i s

Cal MSub
i

i s

w y
y

w
∈

∈

=
∑
∑

     (8) 

 

where *
i iw d=  for i r∈  and *

i iw w=  for i q∈ .  

 

 The calibration restriction given above can be further extended to: 

 

i i i i
i r i s
i q

w z d z
∈ ∈
∈

=∑ ∑ ,     (9) 

 

that is, the total for the calibration covariate Z  over the set of all respondents, including both the 

originally selected units and the nonrespondents’ substitutes, is calibrated to the design-weighted 
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total over all units (respondents and nonrespondents) selected in the original sample s . This re-

striction is more general in the sense that it can also be used when the substitution is not fully 

successful (when it is not possible to find a responding matching substitute for every 

nonrespondent). In this case, only the responding substitutes in q  would be used in the left-hand 

side of the calibration restriction above.   

 

 Unlike Rubin and Zanutto’s MMM method, this calibration approach does not require the 

selection of substitutes for respondents, either from the unsampled population or from the pool of 

respondents in the sample, thus avoiding any additional operational costs. Further, it does not 

discard the substitute data prior to the estimation of the population parameters. Instead, it uses 

them, along with a calibration-weighting adjustment, to account for possible differences in the 

calibration variable Z  between nonrespondents and their substitutes. 

 

4.5 Simulation Studies 

4.5.1 Simulation Design 

 A series of simulations were conducted to evaluate and compare the performance of the 

methods discussed previously to other commonly used nonresponse adjustment procedures. The-

se simulations were performed under two different contexts:  

 

• Simulation Study 1: Populations containing variables with hidden clustering effects in-

duced by a matching covariate, and  

• Simulation Study 2: Explicitly clustered populations.  

 

In both studies, the objective was to estimate the finite population mean Y  in a set of 

5,000K =  repeated samples. All simulations and analysis were conducted in R (R Core Team, 

2014) and the calibration adjustments were performed using the survey package (Lumley, 

2012; Lumley, 2004). 

 

 Simulation Study 1 followed a setting similar to the one designed by Rubin and Zanutto 

(2002). Simple random samples of size 500n =  were drawn from three different artificial finite 

populations of size 10,000N = , with each sample generated according to the survey variable 
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and nonresponse mechanism models in Table 4.1. The matching covariate X  was a dichotomous 

variable that induced a hidden clustering effect in the following way: 0ix = , for 1 100 ,...,i c= +

75 100c+ , and then  1ix = , for 76 100 ,...,100 100i c c= + + , with 0,...,99c = . That is, the popu-

lation consisted of 100 sequences of 75 units with 0X = , followed by 25 units with 1X = . This 

covariate was indirectly used in the substitution process by matching nonrespondents to substi-

tutes on their index number, as units with close index numbers likely had the same value on X .  

 

Variable Z  was the modeling/calibration covariate, while U  was an unobserved covari-

ate that cannot be used for matching or modeling/calibration (i.e., U  generated a missing not at 

random nonresponse mechanism). In this study, both Z  and U were independent ( )0,1N  ran-

dom variables. The probability of response is denoted by p  and for the all populations the non-

response mechanism model gives a response rate of approximately 70%.  

 

  Table 4.1: Populations for Simulation Study 1.  
Population Survey variable model Nonresponse mechanism model 

1 5i i i iy z x ε= + +  ( )
0.95 0.05

1 exp 1.25i
i i

p
z x

= +
+ − + +

 

2 i i iy z ε= +  ( )
0.95 0.05

1 exp 0.95i
i

p
z

= +
+ − +

 

3 5i i i i iy z x u ε= + + +  ( )
0.95 0.05

1 exp 1.35i
i i i

p
z x u

= +
+ − + + +

 

 

 Each population corresponds to situations of different performance for the methods stud-

ied here. Population 1 is a situation in which the survey variable and the response propensity 

both depend on matching variable X and modeling/calibration covariate Z . Methods that com-

pensate for both variables are expected to have less bias than methods that do not. For instance, 

the MMM method is expected to have smaller bias because it accounts for both matching and 

modeling/calibration values in estimation. On the other hand, a standard nonresponse propensity 

weighting adjustment that only uses Z  as a predictor is expected to have larger bias. 
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 Population 2 represents the scenario where both the survey variable and the response 

propensity depend solely on the modeling/calibration covariate Z . For this reason, methods that 

use only this variable in adjustments, such a nonresponse propensity weighted-mean, are ex-

pected to perform just as well as methods that also adjust for the matching covariate, like the 

MMM. However, a matching substitution without any further adjustment to account for Z  is 

expected to produce biased estimates.  

 

 Population 3 corresponds to a non-ignorable nonresponse situation, in which the survey 

outcomes and the response propensity depend on an unobserved variable U . In this case, none 

of the methods studied here are well suited to adjustment and estimates are expected to have 

some degree of bias. However, because the matching covariate X  and modeling/calibration co-

variate Z  also explain the survey variable and the response propensity, methods that adjust for 

both of them will tend to lead to smaller biased estimates than methods that do not.  

 

Simulation Study 2 was motivated by studies conducted by Yuan and Little (2006) and 

Skinner and D’Arrigo (2011), and involves a more complex structure where the clustering was 

explicit. Four artificial finite population of size 40,000N = , each consisting of 400A =  equal 

size clusters of 100B = elements each, were generated using the models for the survey variable 

Y  (at the cluster- and element-level) and the nonresponse mechanism given in Table 4.2. 

 

Table 4.2: Populations for Simulation Study 2.  

Population 
Survey variable model 

(cluster level) 

Survey variable model 

(element level) 

Nonresponse mechanism 

model 

4 i iν α=  5ij ij i ijy z ν ε= + +  ( )
( )

exp 1
1 exp 1

i
ij

i

u
p

u
+

=
+ +

 

5 i iν α=  5ij ij i ijy z ν ε= + +  ( )
( )

exp 0.5

1 exp 0.5
ij i

ij
ij i

z u
p

z u

+
=

+ +
 

6 5i i iuν α= +  5ij ij i ijy z ν ε= + +  
( )
( )

exp 1
1 exp 1

i
ij

i

u
p

u
+

=
+ +

 

7 5i i iuν α= +  5ij ij i ijy z ν ε= + +  ( )
( )

exp 0.5

1 exp 0.5
ij i

ij
ij i

z u
p

z u

+
=

+ +
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  The modeling/calibration covariate is ( )~ 2,1
iid

ijz N , for clusters 1,..,i A=  and elements 

within clusters 1,..,j B= .  Z was generated using the R package truncnorm (Trautmann et al, 

2014), and truncated below by 0 and above by 4. The random variables iα , iu  and ijε  are inde-

pendent ( )0,1N , for 1,..,i A=  and  1,..,j B= .  

 

Therefore, each population represents a different clustering structure. While Populations 

4 and 5 have a lower intra-cluster correlation (as defined by Kish, 1965) of about 4%, Popula-

tions 6 and 7 present a stronger clustering effect, with a intra-cluster correlation of approximately 

48%. Since the cluster indicator is used as the matching covariate X  in this second simulation 

study, it is expected that methods that solely rely on matching substitution will not to perform as 

well in population 4 and 5 than they would perform in populations 6 and 7.  Moreover, methods 

that do not use matching substitution should present some substantial bias in these latter two 

populations.  

 

Each population in this simulation study also corresponded to a different missing mecha-

nism. Population 4 is missing completely at random (MCAR). Since the response propensities in 

Population 5 depend only on the fully-observed covariate Z , the data are missing at random 

(MAR). Populations 6 and 7 correspond to different types of cluster-specific non-ignorable non-

response (CSNI), another form of missing mechanism proposed by Yuan and Little (2006) for 

cluster sampling settings. As described by these authors, CSNI occurs when the response pro-

pensities of the elements in a cluster sample depend on the cluster means. Although the cluster 

membership is fully observed for nonrespondents, the missingness is not MAR, because the clus-

ter means are in fact unobserved random effects in this type of setting.  

 

The sample design of Simulation Study 2 was a two-stage cluster sample of size 

1, 200n =  with simple random sampling at both stages of 60a =  clusters and 20b =  elements 

within sampled clusters. In this case, the nonresponse occurs at the element-level, and, as in the 

first simulation study, the overall response rate was approximately 70%. The matching covariate 

in this set of simulations is the cluster indicator. Therefore, in most cases there were multiple 
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candidates of substitutes for the nonrespondents, so that within a cluster the substitutes were ran-

domly selected. 

 

In both simulation studies, seven nonresponse adjustment methods were compared. All 

the methods used a target sample size of 1, 200n =  and ultimately, on average, this same sample 

size is used for the estimation of the population mean Y . However, the MMM methods use data 

from an additional of 30% of the number of nonrespondents (an average of ( )* 0.3 1n p n= − =

( )0.3 1 0.7 1200 108= − =  in these simulations) to allow estimation of their multiple imputation 

models. The initial sample size could be adjusted to account for these additional units, but, be-

cause they are not ultimately used for the estimation of the population mean, the target sample 

size was kept the same to be comparable with the other adjustment methods. Although the first 

method described below is very rarely used in practice -- as it will be most likely biased under 

the presence of nonresponse -- it is included here as a baseline measure of the amount of nonre-

sponse bias the other adjustment methods are able to reduce. Further, a sample mean assuming 

complete response is used to estimate the sampling variance under ideal conditions. Each of the 

seven methods is described below.  

 

1. Inflated sample size (ISS): This is the unadjusted respondent mean where the sample 

size is inflated by the expected response rate, p . That is, a sample of size 'n n p=  in 

Simulation Study 1 and 'b b p=  in Simulation Study 2 is selected and the mean of the 

respondents is used as an estimate of the population mean. The known value of the re-

sponse rate p  is used in these simulations.  

 

2. ISS adjusted by nonresponse propensity Weight (ISS.W): Similar to the previous 

method, the sample size is inflated by the expected response rate, p . The respondents are 

then weighted by the inverse of their predicted response propensities , ˆ ip , estimated using 

the modeling/calibration covariate, Z , as predictor of the response indicator in the fol-

lowing logistic regression model:  
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( ) 0 1
ˆ ˆˆlogit ,i ip z i sβ β= + ∈  

 

3. Matching Substitution (MSub): An initial sample of size n  is selected. Each 

nonrespondent is substituted by a unit from the pool of unsampled units that is the closest 

to the nonrespondents in terms of the matching covariate (index number in the Simulation 

Study 1 and cluster indicator in Simulation Study 2). If the substituted unit turns out to be 

a nonrespondent as well, the next closest unsampled unit is selected as the substitute, re-

peating this process until a responding substitute is chosen. If there is more than one unit 

that can be used as a substitute for a given nonrespondent, the substitute is randomly se-

lected from among these units. No further adjustments are done to take into account pos-

sible differences in the modeling/calibration covariates. 

 

4. Matching Substitution adjusted by nonresponse propensity Weight (MSub.W): Fol-

lowing MSub, with respondents (original selected and substitutes units) weighted by the 

inverse of their predicted response propensities, ˆ ip , estimated using the model-

ing/calibration covariate, Z , as predictor of the response indicator in the following lo-

gistic regression model. 

  

( ) 0 1
ˆ ˆˆlogit ,i ip z i s qβ β= + ∈   

 

Notice that such model is estimated using the data from all the respondents and 

nonrespondents in the original sample s  and substitute set q . Therefore, these predicted 

response propensities account for both the original and substitute nonresponse. 

 

5. Matching, Modeling and Multiple Imputation (MMM): The method proposed by Ru-

bin and Zanutto (2002). Similar to MSub and MSub.W, an initial sample of size n  is se-

lected and a substitute for every nonrespondent is chosen by matching on the matching 

covariate (index number in the first simulation study and cluster indicator in the second 

study). Following Rubin and Zanutto’s simulation study, substitutes are also selected 

from the pool of unsampled units for a sub-sample of * 0.3 mn n=  respondents, where mn  
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is the number of nonrespondents. Then, 10M =  multiple imputations sets for the missing 

data are created using the method described in section 2.   

 

6. Modified Matching, Modeling and Multiple Imputation (MMM.M): The modifica-

tion of Rubin and Zanutto’s MMM method proposed in section 4.3. It follows the same 

steps of MMM, but instead of selecting substitutes for the sub-sample of * 0.3 mn n=  re-

spondents from the pool of unsampled units, these substitutes are selected from the pool 

of the remaining respondents (without replacement). Again, 10M =  multiple imputa-

tions were used.   

 

7. Calibrated Matching Substitution (MSub.C): The approach proposed in section 4.4 us-

ing for the calibration a chi-square distance measure ( ) ( )2, 2i i i iG W D w d d= − , one of 

the most often used distance measure in calibration applications (Deville and Särndal, 

1992; Särndal, 2007).  

 

For each of the seven methods, an estimate of the population mean is computed from 

each of 5,000 repeated samples. The seven methods were compared using the following 

measures: 

 

1. Relative change of the empirical bias of the estimate of  Y  compared to the unadjusted 

respondent mean using an inflated sample size (method ISS):  

 

( ) ( )
( )

5000 5000
, ,

1 1
5000

,

1

Bias Bias 5000 5000
100 100

Bias
5000

ISS k m k

k kISS m
m

ISS kISS

k

y y
Y Y

y y
RB

yy Y

= =

=

   
− − −   −    = × = ×

 
− 

 

∑ ∑

∑
 (10) 

 

where my  denotes the estimate of Y  for method ISS.W, MSub, MSub.W, MMM,m =  

MMM.M, & MSub.C . 
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2.  Relative change in the empirical sampling variance of the estimate of Y  compared to the 

empirical variance of the complete response (CR) estimate 
1

n
CR ii

y y n
=

=∑ : 

 

( ) ( )
( )

( ) ( )

( )

2 2
5000 5000

, ,

1 1
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=
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∑ ∑

∑
     (11) 

 

where ( )
5000

,

1
E

5000
m k

m
k

y
y

=

= ∑  and my  denotes the estimate of Y  for method ISS, ISS.W,m =  

MSub, MSub.W, MMM, MMM.M, & MSub.C . 

 

3. Empirical root mean square error:  

 

( )2
5000

,

1 5000
m k

m
k

y Y
RMSE

=

−
= ∑     (12) 

 

where my  denotes the estimate of Y  for the method ISS, ISS.W, MSub, MSub.W, m =  

MMM, MMM.M, & MSub.C . 

 

 It is worth noticing that each of these measures has different reference points. mRB  uses 

the unadjusted respondent mean of the ISS method as a baseline, since this approach is most 

likely to produce the largest bias across all the studied methods when the missing mechanism is 

not MCAR. mRV  sets the sampling variance of the complete response mean as a benchmark, be-

cause, under the presence of nonresponse, it will be the smallest value that could be obtained 

among the evaluated approaches on this study. Finally, to measure the total error each one of the 

methods can incur, the mRMSE  measure the deviation of their estimates to the true population 

parameter Y  they are attempting to estimate.  
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4.5.2 Simulation Results 

Simulation Study 1 

 Table 4.3 summarizes the results for Population 1. The missing data mechanism in Table 

4.1 for Population 1 leads to respondents with smaller values on the survey variable Y , because 

respondents are more likely to have units with the matching covariate  and smaller values 

on the modeling/calibration covariate Z . Therefore, the unadjusted respondent mean of the ISS 

method is severely biased, underestimating the population mean by about 37%, with the nonre-

sponse bias dominating the RMSE of this estimation method. The bias in ISS.W is much smaller 

than that in ISS, but still substantial, underestimating the population mean by 21%. This is be-

cause the response propensities used to make the nonresponse adjustment in this method are es-

timated using only the modeling/calibration covariate Z , while the matching covariate X , 

which explains both the nonresponse mechanism and the survey variable Y , is not used.  

 

The matching substitution method MSub takes into account X  and ignores variable Z . 

Since substitutes are respondents, they tend to have smaller values on Z , and consequently on 

Y , which is not adjusted by using only a matching substitution based on X . Also because both 

matching and modeling/calibration variables have the same association level with the survey var-

iable and the nonresponse mechanism, the bias on this method is similar to ISS.W. Furthermore, 

both methods have virtually the same sampling variance and RMSE. Obviously, if the matching 

or the modeling/calibration covariate had a larger predictive power to explain either the survey 

outcome or the nonresponse mechanism, one method would lead to estimates with smaller bias 

and sampling variance than the other.  

 

MSub.W takes into account both X  and Z  in the nonresponse adjustment. Although the 

bias is largely reduced, it is still not completely eliminated. MMM produces an essentially unbi-

ased estimate for the population mean in this population (the empirical absolute relative bias in 

this simulation was under 2%). However, MMM is more costly because data on an additional 

108 units, on average, are needed for the matches to the sub-sample of respondents.  Despite the 

larger cost, the MMM sampling variance is about 58% larger than the complete response sam-

pling variance. This variance can be reduced by increasing the size of the sub-sample of re-
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spondents to have substitutes selected, as discussed by Zanutto (1999) and Rubin and Zanutto 

(2002), increasing survey costs by additional data collection. Such a trade-off between bias and 

variance can be better compared through the RMSE. Despite producing an unbiased estimate, the 

sampling variance of MMM is much larger than the sampling variance of MSub.W; their RMSE 

are almost equivalent.  

 

The MMM.M method also leads to essentially an unbiased estimate of the population 

mean without the additional cost of data collection for substitutes for a sub-sample of the re-

spondents. Unsurprisingly, the MMM.M sampling variance is even larger than MMM’s since the 

substitutes for the sub-sample needed in MMM.M is obtained from the pool of remaining re-

spondents and, therefore, no new information is added to the sample. 

 

Not only the calibrated matching substitution MSub.C decreases the bias as much as the 

two MMM methods, but it produces estimates with much smaller sampling variance. As a result, 

MSub.C has sampling variance and RMSE smaller than any of the other methods considered for 

population. Moreover, MSub.C does not require the collection of additional data for its estima-

tion. 

 
          Table 4.3: Simulation 1, Population 1: RB, RV, and RMSE by Method 

Method (m) RBm (%)1 RVm  (%)2 RMSEm 
(x 100) 

ISS 0* -17.2 47.4 
ISS.W 43.8 -13.9 28.0 
MSub 45.1 -7.0 27.6 
MSub.W 81.7 -3.5 14.0 
MMM 95.8 57.8 14.3 
MMM.M 92.4 135.0 17.7 
MSub.C 88.5 18.4 13.4 
CR 99.9 0* 11.3 

           1 Compared to bias in ISS. 
           2 Compared to the CR sampling variance. 
            * Zero by definition 
 

 Respondents in Population 2 tend to have smaller values of Z  and, therefore, smaller 

values of Y (see Table 4.1).Therefore, again, ISS underestimates the population mean by about 

44%. Since the matching covariate X  is not associated with either the survey outcome or the 
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nonresponse mechanism, the nonresponse adjustment in ISS.W completely eliminates the nonre-

sponse bias by adjusting respondent data according to estimated response propensities using Z  

(see Table 4.4). The matching substitution MSub, on the other hand, does not reduce the nonre-

sponse bias at all since the responding substitutes have smaller values of Z , which are not ad-

justed in MSub. MSub.W substantially improves the method, although not quite as effectively as 

the weights in ISS.W. Both MMM and MMM.M lead to unbiased estimates and similar sampling 

variances. The calibrated matching substitution MSub.C completely removes the nonresponse 

bias, but it does not lead to the smallest RMSE among the methods studied here, which is ob-

tained by the ISS.W method. The difference between these two methods is due their sampling 

variance, with ISS.W giving slightly more precise estimates than the MSub.C. 

 

          Table 4.4: Simulation 1, Population 2: RB, RV, and RMSE by Method 

Method (m) RBm (%)1 RVm  (%)2 RMSEm 
(x 100) 

ISS 0* -3.5 24.5 
ISS.W 98.6 -1.3 6.0 
MSub 1.0 -2.3 24.3 
MSub.W 85.2 -2.0 6.9 
MMM 98.9 46.7 9.9 
MMM.M 98.7 37.3 9.3 
MSub.C                                                                             99.2 3.4 6.5 
CR 99.4 0* 6.2 

          1 Compared to bias in ISS. 
          2 Compared to the CR sampling variance. 
          * Zero by definition 
 

 None of the methods studied here are suitable to handle the nonresponse mechanism in 

Population 3. The difference between respondents and nonrespondents is not only explained by 

the matching and modeling/calibration covariates, but also by an unobserved variable U . Table 

4.5 confirms that none of these methods completely eliminate the nonresponse bias. Aside from 

that, however, the patterns of the results in Population 3 are very similar to the results in Popula-

tion 1. First, the methods that adjust for both Z  and X  covariates – MSub.W, MMM, MMM.M 

and MSub.C – tend to be more successful in decreasing the nonresponse bias. Only adjusting for 

one of these covariates, as in ISS.W and MSub, leads to a smaller (though still substantial) bias, 

compared to the ISS baseline, with both approaches having an empirical absolute relative bias of 
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about 20% in this simulation. The sampling variance of MMM.M method is again much larger 

than the original Rubin and Zanutto method. However, unlike the results in Population 1, 

MSub.C produced an estimate for the population mean with a bias equivalent to either of the 

MMM methods. Moreover, the MSub.C was again the method with the smallest RMSE among 

the procedures evaluated on these simulations, with the MMM also performing very well. 

 

          Table 4.5: Simulation 1, Population 3: RB, RV, and RMSE by Method 

Method (m) RBm (%)1 RVm  (%)2 RMSEm 
(x 100) 

ISS 0* -21.6 62.5 
ISS.W 26.3 -19.1 46.7 
MSub 29.0 -14.1 45.2 
MSub.W 51.1 -12.5 32.2 
MMM 58.9 82.2 29.9 
MMM.M 58.0 152.8 31.8 
MSub.C 56.2 6.6 29.7 
CR 99.9 0* 12.2 

           1 Compared to bias in ISS. 
           2 Compared to the CR sampling variance. 
           * Zero by definition 
 

Simulation Study 2 

 Tables 4.6, 4.7, 4.8 and 4.9 show the results for four populations studied in Simulation 2. 

These are explicitly clustered populations with a two-stage cluster sample design, in which the 

matching substitution is performed using cluster indicators seeking to adjust the clustering effect 

on the nonresponse. 

 

The nonresponse mechanism in Population 4 is MCAR. Thus, the unadjusted respondent 

mean in ISS is an unbiased estimator of the population mean. All the other methods also produce 

unbiased estimates for the population mean in this population. For this reason, the relative bias 

reduction result is not shown on Table 4.6. The effect of the modeling/calibration covariate Z  

over the survey outcome is much larger than the clustering effect (since the intra-cluster correla-

tion of the survey variable in this population is approximately zero), which might explain why 

the sampling variance of ISS.W and MSub.W is smaller than the other methods, especially com-

pared to the MMM methods that intrinsically have larger sampling variance due to the imputa-
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tion variability. Hence, overall, ISS.W is the method with the best performance under this popu-

lation, but the difference relative to the other methods is quite small.  

 

            Table 4.6: Simulation 2, Population 4: RV and RMSE by Method 

Method (m) RVm  (%)1 
RMSEm      
(x 100) 

ISS 1.9 17.9 
ISS.W -12.0 16.6 
MSub 8.4 18.4 
MSub.W -6.6 17.1 
MMM 8.2 18.4 
MMM.M 6.2 18.2 
MSub.C 0.8 17.7 
CR 0* 17.7 

         1 Compared to the CR sampling variance. 
            * Zero by definition 
 

 In Population 5, methods that adjust the respondents by the modeling/calibration covari-

ate Z , like ISS.W, MMM, MMM.M, and MSub.C, completely remove the nonresponse bias 

present in the unadjusted respondent mean in ISS. However, the nonresponse adjustment in 

MSub.W is not as effective in reducing bias as the others. Similar to previous results in the 

Simulation Study 1, the calibration matching substitution led to smaller sampling variances, and 

thus also smaller RMSE,  than the MMM methods. Interestingly, just as in Simulation 1 Popula-

tion 2, MMM.M produced a slightly smaller sampling variance than the MMM, because in these 

two populations both the survey variable and the nonresponse mechanism are explained only by 

the modeling/calibration covariate and not by the matching variable. This suggests not collecting 

additional information for substitutes of the sub-sample of respondents might not decrease the 

efficiency of the MMM.M, both in terms of bias reduction and sampling variance, when the 

matching covariate is not an important explanatory factor for Y  and nonresponse. As in Simula-

tion 2 Population 4, the nonresponse weighted-adjusted mean ISS.W led to the smallest RMSE 

due to the smaller sampling variance produced by this method.  
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              Table 4.7: Simulation 2, Population 5: RV and RMSE by Method 

Method (m) RBm (%)1 RVm (%)2 RMSEm      
(x 100) 

ISS 0* 5.7 53.4 
ISS.W 98.8 -11.5 16.6 
MSub -16.4 12.1 61.3 
MSub.W 63.0 -5.8 25.3 
MMM 99.2 8.8 18.4 
MMM.M 99.3 7.0 18.3 
MSub.C 99.1 1.5 17.8 
CR 99.3 0* 17.7 

              1 Compared to bias in ISS. 
              2 Compared to the CR sampling variance. 
              * Zero by definition 
 

 With the CSNI missing mechanism in Population 6, in which the nonresponse was caused 

solely by the clustering effect, it is not surprising that the nonresponse adjustment using the 

modeling/calibration variable Z  in ISS.W is totally ineffective in reducing the nonresponse bias 

(see Table 4.8).  On the other hand, the matching substitution methods are essentially equally 

effective in bias reduction. The sampling variances of these methods are all very similar, such 

that no method clearly outperforms the others in terms of RMSE.  

 

              Table 4.8: Simulation 2, Population 3: RB, RV and RMSE by Method 

Method (m) RBm (%)1 RVm  (%)2 RMSEm      
(x 100) 

ISS 0* -19.4 143.0 
ISS.W -0.2 -20.4 143.1 
MSub 99.6 0.6 60.3 
MSub.W 99.7 -0.7 59.9 
MMM 99.6 0.8 60.4 
MMM.M 99.5 0.5 60.3 
MSub.C 99.7 -0.2 60.1 
CR 99.6 0* 60.2 

              1 Compared to bias in ISS. 
              2 Compared to the CR sampling variance. 
              * Zero by definition 
 

 Population 7 presents the most complex structure in the simulation. Both the CSNI non-

response mechanism and the survey outcome are explained by the clustering effect and the mod-
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eling/calibration covariate Z . For this reason, procedures that adjust only by one of these varia-

bles, such as ISS.W or MSub, fail to completely eliminate the nonresponse bias, although they 

do reduce it to some extent (see Table 4.9). The matching substitution MSub followed by nonre-

sponse adjusted MSub.W are more successful, but also don’t completely remove the nonresponse 

bias. The two MMM procedures and the calibrated matching substitution MSub.C are the only 

methods to produce essentially unbiased estimates for the population mean in this population. 

Overall, in terms of sampling variance and RMSE, the three of them also perform very similarly, 

with a slight advantage of the MSub.C method due its smaller sampling variance.  

 

              Table 4.9: Simulation 2, Population 7: RB, RV, and RMSE by Method 

Method (m) RBm (%)1 RVm (%)2 RMSEm      
(x 100) 

ISS 0* -27.3 187.5 
ISS.W 25.6 -20.7 144.5 
MSub 67.7 -11.1 81.3 
MSub.W 87.8 -7.2 62.0 
MMM 99.7 1.1 60.5 
MMM.M 99.7 0.6 60.4 
MSub.C 97.4 -0.8 60.1 
CR 99.7 0* 60.2 

              1 Compared to bias in ISS. 
              2 Compared to the CR sampling variance. 
              * Zero by definition 
 

4.6 Discussion 

 In general, the results of Simulation Study 1 show that the calibrated matching substitu-

tion is a strong candidate to adjust for potential differences between nonrespondents and their 

substitutes on variables that cannot be used in the matching procedure when the nonresponse is 

caused by hidden clustering. Although the calibrated matching substitution method led to a 

slightly smaller reduction of bias compared to the MMM methods in two of the three populations 

evaluated, it also produced a more precise estimate of the population mean, such that, overall, its 

RMSE was substantially smaller than most of the other alternatives across the three populations.  

 

Further, the MMM.M method proved to be a viable alternative to Rubin and Zanutto’s 

original method, achieving similar levels of bias reduction. Despite producing estimates with a 
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larger sampling variance, this modified MMM does not require additional units to be collected 

for estimation purposes, which would incur in extra data collection costs for the survey opera-

tion. The trade-off of sample size between these two methods is the key motivation for the de-

velopment of MMM.M. The cost savings could purchase additional sample selection and data 

collection, reducing the MMM.M sampling variances further. Of course, such cost savings de-

pend on how large a sub-sample of the respondents would be selected to be substituted in the 

MMM method. Zanutto (1998) gives a brief discussion about this choice, concluding that it is 

another trade-off problem between sampling variance and survey costs. That is, the larger this 

sub-sample is, the smaller the sampling variance will be, at a cost of larger survey costs. This can 

indicate that the losses in precision in MMM.M may actually be compensated for when com-

pared to certain sizes for the sub-sample of respondents to be substituted in MMM. Moreover, 

for a fixed total survey cost, MMM.M may actually yield estimates with smaller sampling vari-

ances than MMM. More research on these cost trade-offs should be addressed in future studies of 

these MMM methods.  

 

In Simulation Study 2 the calibrated matching substitution MSub.C did not provide as fa-

vorable results as in Simulation Study 1, though it performed just as well as the alternatives. In 

particular, it continued to achieve the same levels of bias reduction as the MMM methods and 

still led to smaller sampling variances, but to a lesser degree among these populations. Interest-

ingly, the MMM.M not only kept the same levels of bias reduction, but it also presented a slight-

ly smaller sampling variance than the original method proposed by Rubin and Zanutto. This dif-

ference, however, is so small that it may be due to simulation error. Nonetheless, the MMM.M 

method remains the more affordable alternative to MMM for bias reduction.  

 

Although unit nonresponse has received a lot of attention in recent decades in the survey 

community, through numerous studies and research on weighting, imputation and field method 

to increase rates, substitution has been mostly neglected by the field and often considered an ille-

gitimate method for dealing with this problem. While substitution may not necessarily reduce 

nonresponse bias, under certain conditions, it can perform just as well as any other statistical ad-

justment that uses the same information.  
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 This paper presented two alternatives for the MMM method that avoid collecting addi-

tional substitutes beyond those for the nonrespondents. First, a minor modification of Rubin and 

Zanutto’s method was suggested, in which substitutes for the sub-sample of respondents are se-

lected from the pool of existing respondents. Because substitutes are also respondents, this modi-

fication was hypothesized to have the same bias reductions properties than the original proce-

dure. However, because these substitutes for the sub-sample of respondents are already part of 

the sample, losses in precision were expected compared to Rubin and Zanutto’s method.  

 

The simulation studies confirmed both expectations. The bias reductions were virtually 

the same for these two methods across all simulations and in most scenarios the sampling vari-

ance of MMM.M was larger than MMM’s. In the second simulation study, however, the two 

methods led to estimates with very similar levels of variability, indicating that there are situa-

tions in which the losses in precision on the modified version of the method are not substantial. 

Therefore, if the extra cost associated with the selection of additional substitutes for the sub-

sample of respondents is prohibitive, the proposed modified version of the MMM method can be 

considered for the same levels of nonresponse bias reduction, but with some loss in precision.  

 

The calibrated matching substitution was proposed as an attempt to overcome the two 

major disadvantages of the MMM methods: (i) the cost of the additional substitutes for the sub-

sample of respondents and (ii) the inflation of the sampling variance due to the multiple imputa-

tion variability. While the MMM.M method solved the first problem, it may lead to inflation of 

the sampling variance, as discussed above. As the simulation results showed, using calibration to 

adjust for differences between nonrespondents and their substitutes not only reduces the nonre-

sponse bias to levels comparable to the MMM methods, but manage to keep the sampling vari-

ance to similar levels of a complete response estimate (or at least did not lead to substantial in-

creases).  

 

This new proposed method also has some disadvantages compared to the MMM meth-

ods. First, it may not always reduce nonresponse bias to the same extent as the MMM method, as 

can be observed by the results of the simulation on Population 1 in Table 4.3. This is due to the 

fact that the adjustment between the nonrespondents and their substitutes in terms of the model-
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ing or calibration covariates happens at the aggregate level, that is, for the totals in the sample, 

whereas in the MMM method this adjustment is much finer since it occurs at the element level. 

Nonetheless, the simulations showed that in general, these small differences in bias reduction 

between these two methods are countered by the gains in precision given by the calibration pro-

cedure, making the calibrated matching substitution overall a more accurate method than the 

MMM methods.  

 

An important advantage of MMM methods over calibrated matching substitution is mod-

el flexibility. In general, the calibration procedure generates a set of weights based in a single 

model that is used for the estimation of every survey statistic. Although, in theory, different sets 

of weights could be computed assuming different models for each survey variable, this would be 

impractical for most surveys, which require the estimation not only of descriptive single-variable 

statistics, but also multiple variable estimates, such as regression or correlation coefficients. In 

that sense, the MMM methods are much more flexible, because they allow different models for 

the imputation of each variable in the survey. In this paper, this feature was not very evident be-

cause the simulation studies were evaluating only a single-variable population mean, but this is 

an important practical component, as most of surveys are multi-purpose and multi-variable. On 

the other hand, having a single set of weights that can be applied to every survey statistic is more 

convenient than having to model every single variable in a survey.  

 

Although variance estimation was not discussed in this paper, it is another important 

problem that should be addressed in future research. Under a MAR mechanism, the standard er-

ror of an estimate that uses substitutes for nonrespondents is approximately the same as a com-

plete response sampling variance estimate (Vehovar, 1999). Therefore, standard techniques for 

sampling variance estimation can be applied for the substitution methods reviewed in this study. 

For the MMM method, since it relies on imputation, proper variance estimates can be obtained 

by multiple imputation using Rubin’s combining rule, as suggested by Rubin and Zanutto 

(2002). The variance of the calibrated matching substitution should adequately take into account 

the calibration procedure, which might not be as straightforward as the multiple imputation ap-

proach. One alternative is to use the GREG sampling variance estimate approximation (Deville 

and Särndal, 1992) usually used for sampling variance estimation of calibrated estimates. Anoth-
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er alternative is to use repeated replication methods such as jackknife or bootstrap. The proper-

ties of these methods for sampling variance estimation of the proposed calibrated matching sub-

stitution should also be studied in future research, particularly when the data is MNAR.   

 

Throughout the simulations conducted in this paper, it was assumed that the substitution 

procedure of the nonrespondents for all the methods evaluated was fully successful. That is, for 

every nonrespondent, it was possible to find a responding unit to substitute it. In practice, how-

ever, it is very likely that no responding units are found to substitute for some of the 

nonrespondents, even after multiple attempts with different substitute candidates. The calibration 

matching substitution can still be applied in this case using restriction (9) without making any 

modifications. The MMM methods, on the other hand, would need to be altered to take into ac-

count the nonrespondents for which there were no responding substitutes available, which could 

potentially make the procedure more complicated. The properties of these methods under these 

conditions should also be topic of future research.  

 

Finally, this paper considered the case in which there is only one matching covariate and 

one (quantitative) modeling/calibration covariate. The methods proposed here can be readily ex-

tended to situations with multiple variables for matching and modeling (or calibration), either 

quantitative or qualitative (categorical). The general results observed on the simulations conduct-

ed in this study are not likely to change significantly, but it would be important to conduct fur-

ther research on these methods under these more general circumstances. Furthermore, future 

evaluations of these methods should also analyze other, more complex, estimators, such as the 

median and regression coefficients.   
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CHAPTER V 

A Substitution Procedure for Missing Not at Random Mechanism 

 

Summary 

Although commonly used in many surveys as a strategy to deal with unit nonresponse, substitu-

tion is frequently criticized and has received very little attention by survey researchers. In fact, 

there is evidence to suggest that the performance of substitution as a strategy to mitigate nonre-

sponse is comparable to other adjustment methods, such as weighting or imputation (Vehovar, 

1999; Rubin and Zanutto, 2002). However, as with many other nonresponse adjustment methods, 

research on and applications of this method has been limited to ignorable nonresponse mecha-

nisms. This paper presents a new substitution procedure that incorporates a nonignorable nonre-

sponse mechanism in the selection of the substitutes of the nonresponding units through the use 

of pattern-mixture models. This method can be employed to perform sensitivity analysis of a 

range of missingness models using additional real data of the substitutes, as opposed to other 

methods that use predicted values under a model or data from hot-deck donors already present in 

the responding sample. This new methodology is evaluated and compared to other nonresponse 

adjustment methods through a simulation study.   

 

5.1 Introduction 

Nonresponse occurs when a sampled unit fails to provide either part (item nonresponse) 

or all (unit nonresponse) of the information requested in a survey. This may be due to noncon-

tact, refusal, or other reasons, such as an inability to understand the request. Nonresponse can 

lead to bias in survey estimates, and as a result, this source of error, with regards to unit nonre-

sponse in particular, has been increasingly studied in statistics and survey methodology. The 

study has become more intense as response rates have declined in recent decades (de Leeuw and 

de Heer, 2002; Rand, 2006, Bethlehem et al., 2011). While the size of the error is related to the 

level of nonresponse, the relationship between response rates and nonresponse error has been 

called into question by several studies (Keeter, et al., 2000; Merkle and Edelman, 2002; Curtin, 
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Presser and Singer, 2005; Keeter, et al., 2006; Groves and Peytcheva, 2008), highlighting the 

importance of a careful exploration of all existing methods for dealing with nonresponse.   

 

Research has also examined alternative methods for compensating for nonresponse and 

the capacity of those methods to reduce error associated with it. Substitution is a widely used ap-

proach to dealing with unit nonresponse at the fieldwork stage of a survey. This method consists 

of replacing nonresponding sampled units with replacement units not originally selected in the 

sample. Despite its popularity among practitioners, most survey methodology and sampling text-

books either ignore (e.g., Cochran, 1977; Särndal et al., 1992; Groves et al., 2009) or present on-

ly a brief discussion of substitution (e.g., Kish, 1965; Lessler and Kalsbeek, 1992; Lohr, 1999; 

Little and Rubin, 2002). The literature, in general, tends to criticize substitution and recommends 

avoiding its use, although no conclusive evidence suggesting it performs worse than competing 

alternatives, such as weighting or imputation, has been found. In fact, some studies have demon-

strated that, under certain conditions, substitution performs just as well as other nonresponse ad-

justment procedures (Vehovar, 1999; Rubin and Zanutto, 2002). 

 

One limitation of substitution methods used in practice is that they assume that nonre-

sponse is ignorable (Rubin, 1987), operating by a missing data mechanism that is either missing 

completely at random (MCAR) or missing at random (MAR). Under these mechanisms, the dis-

tribution of missingness depends only on a set of variables observed for respondents, 

nonrespondents, and their substitutes. These variables are usually used either to find a substitute 

– as in a matching substitution – or in post-data collection nonresponse adjustments, such as 

weighting or imputation. 

 

Rubin and Zanutto (2002) proposed a method that attempts to adjust for nonignorable 

nonresponse through the use of matched substitutes with multiple imputation. However, their 

method is only successful in addressing the nonignorability problem if the variables used for se-

lecting the substitutes incorporate unobserved characteristics – through hidden clustering or con-

textual effects – that are related to both the survey variables and the nonresponse mechanism. If 

there are other unobserved variables that explain the differences between nonrespondents and 

their substitutes, their method is unable to completely eliminate nonresponse bias. This is the 
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case when nonresponse is missing not at random (MNAR). An extreme example occurs when 

missingness depends on the survey variables themselves. 

 

Nonignorable nonresponse poses a challenging problem for survey statisticians because it 

assumes that missingness depends on unobserved variables and, therefore, requires strong and 

untestable assumptions. Nonetheless, there have been methods proposed to assess the impact of 

nonresponse in this kind of situation through sensitivity analysis with pattern-mixture models 

(Little, 1993; Little and Rubin, 2002; Andridge and Little, 2011). This paper proposes adapting 

the pattern mixture hot-deck imputation procedure developed by Sullivan and Andridge (2015) 

to substitution by using pattern-mixture models (PMM) to assist in the selection of substitutes. 

Obtaining the most accurate estimates for population parameters is an important objective for 

every nonresponse adjustment method. However, due to the nonignorable nature of the missing 

mechanism assumed here, a primary concern of this method is the detection of the risk of nonre-

sponse bias through sensitivity analysis. This method can also be used in nonresponse follow-up, 

particularly when there are persistent nonrespondents or nonresponse in longitudinal surveys. 

The performance of the proposed method is evaluated through a simulation study. 

 

5.2 Pattern-Mixture Model 

 Let X  be a fully observed auxiliary variable and Y  be a survey variable not observed for 

nonrespondents, in which the missingness distribution is given by the indicator variable M          

( 1M = , if Y  is missing and 0M = if Y  is observed). Little (1994) proposes the following biva-

riate normal pattern-mixture model for the joint distribution of Y , X  and M :  

 

a) ( )
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( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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b) ( ) ( )~ , Pr 1M Bernoulli Mπ π = =  

 

Little (1994) notes that from the eleven parameters ( ) ( ) ( ) ( ) ( ) ( )( ), , , , ,m m m m m m
y x yy xx yxφ µ µ σ σ ρ=  

0,1m = , and π  of this model, only eight are identified from the data: 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 0 0 0 1 1, , , , , , ,id y x yy xx yx x xxφ µ µ σ σ ρ µ σ π=  

 

This is because the data do not provide any information about some of the parameters of 

the conditional distribution of Y  given X  for nonrespondents ( 1M = ).  Only the parameters of 

the respondent distribution ( 0M = ) and those of the marginal distribution of X  of the 

nonrespondents are identified and readily estimable.  

 

While this model is under-identified, under certain restrictions on these parameters, and 

under assumptions about the missing data mechanism, this model can become identified. For ex-

ample, the assumption that the nonresponse mechanism is MAR implies that the distribution of 

Y  given X  is the same for respondents and nonrespondents, identifying the remaining three pa-

rameters in the model.  

 

Little (1994) proposes a more general restriction, in which the missingness of Y  given 

( ),X Y  depends only on a linear combination of Y  and X . More specifically, he proposes as-

suming that, for some function f , 

 

( ) ( )1| ,P M Y X f X Yλ= = + . 

 

Under the assumption that ( ),X Y  is independent of |M X Yλ+ , the parameters of the pattern-

mixture model are identified.  

 

Since the data do not provide any information about the parameter λ , Little (1994) sug-

gests evaluating the estimates of the substantive parameters of interest over a range of different 

plausible values for λ  to assess the sensitivity of inferences to the missing mechanism assump-

tions. For example, if 0λ = , the missing mechanism is MAR. On the other hand, if λ = ∞ , all 

the missingness will depend on the Y  variable, an “extreme” case of MNAR.  
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Andridge and Little (2011) use { }0,1,λ = ∞  to perform a sensitivity analysis of model 

performance. They suggest using the intermediate case of 1λ = , in which the auxiliary variable 

X  and the survey outcome Y  have the same weight in explaining the nonresponse mechanism, 

because in this case the standardized bias of the respondent mean of Y  is equal to the standard-

ized bias of the respondent mean of X , that is, ( ) ( )R y yy R x xxE y E xµ σ µ σ− = − , regard-

less of the estimated correlation between X  and Y . 

 

If more than one fully observed auxiliary variable is available, say a set of variables 

( )1 2, ,..., pZ Z Z Z ′= , is available, Andridge and Little (2011) suggest using a proxy pattern-

mixture model to account for the nonresponse mechanism. This method consists of creating a 

“proxy” variable X  by first regressing Y  on Z  using the respondent data and then taking X  to 

be the predicted values of Y  under this model based on Z , available for both respondents and 

nonrespondents. The bivariate normal pattern-mixture model proposed by Little (1994) can then 

be employed using the proxy variable X . Moreover, to improve interpretability, Andridge and 

Little (2011) suggest rescaling the proxy variable X  on the distribution of the missingness of Y  

given ( ),X Y  to have the same variance of Y , that is, ( ) ( ) ( )( )0 01| , yy xxP M Y X f X Yσ σ λ= = +  . 

 

Sullivan and Andridge (2015) proposed adapting the proxy pattern-mixture model to hot-

deck imputation, which they called proxy pattern-mixture (PPM) hot-deck, to accommodate 

nonignorable missing data to this imputation procedure, extending the work by Siddique and 

Belin (2008) of hot-deck imputation to nonignorable nonresponse. The premise of this method 

rests on the computation of predictions for nonrespondents’ outcome variable and a bootstrap 

sample of respondents based on a pattern-mixture model conditional to a value of λ . The pre-

dicted values for Y  are used to calculate distances between donors on the bootstrap sample of 

respondents to nonrespondents and select donors for the nonrespondents based on probabilities 

inversely proportional to the thk  power of those distances (they use 3k =  in their simulations 

and application). This process is repeated D  times as in a multiple imputation procedure.  The 

method also employs different values of λ  in the model, allowing the subsequent multiply im-

puted values to incorporate sensitivity to nonignorable nonresponse.    
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5.3 Pattern-Mixture Model Substitution 

 Substitution is somewhat similar to hot-deck imputation. While hot-deck imputation se-

lects donors for nonrespondents from among respondents already in the sample, substitution 

seeks donors from among the unsampled units in the population. This suggests that Sullivan and 

Andridge’s method can be used to accommodate a nonignorable nonresponse mechanism in sub-

stitution for nonresponse.  

 

Hence, the objective of this study is to adapt the PPM hot-deck method proposed by Sul-

livan and Andridge (2015) to a substitution procedure that can accommodate a variety of as-

sumptions about the nonresponse mechanism, encompassing MAR and different degrees of 

MNAR. This procedure will be called pattern-mixture model (PMM) substitution hereafter. As in 

the matched substitution method proposed by Rubin and Zanutto (2002), it is assumed there is at 

least one auxiliary variable X  observed for all the units in the population. In the survey sam-

pling literature, such an auxiliary variable is sometimes referred to as a frame variable. If there is 

a vector of auxiliary variables, Z , they can be  reduced to a single “proxy” variable using the 

method proposed by Andridge and Little (2011). These types of variables are not usually availa-

ble for units like households or individuals in multistage surveys, but they are fairly common for 

primary and secondary sampling units such as enumeration areas, counties, census tracts, estab-

lishments.   

  

While in most applications substitutes are selected for nonrespondents during the field-

work stage of the survey, a different approach is proposed here. It is assumed that at some point 

during data collection, before the selection of the substitutes, the data on the survey variable Y  

for the respondents are available to fit a pattern-mixture model, conditional on a value for the 

parameter λ . Under this model, predicted values for the nonrespondents and the unsampled 

units in the population are computed and substitutes are selected based on some measure of dis-

tance of these predictions. Compared to the standard use of substitution, this approach has the 

advantage of incorporating a nonignorable nonresponse adjustment through a matching substitu-

tion on the predictive values under the PMM. Such adjustment is based on the association of the 

auxiliary variable X  and the survey outcome Y  among the respondents, and the differences be-
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tween respondents and nonrespondents on X . Below, the implementation of this procedure is 

described in detail.  

 

For simplicity, assume that a simple random sample of size n  is drawn from a finite pop-

ulation of size N , and r  units are respondents.  The survey variable Y  is observed only for the-

se r units.  

 

For a given value of the parameter λ : 

 

1. Compute the predicted values for the n r−  nonresponding units in the sample and the 

N n−  unsampled units in the population based on the pattern-mixture model and parame-

ter restriction given above. Sullivan and Andridge (2015) use the conditional expected 

value [ ]| ,E Y X M m=  for these predicted values. Under this approach, the predictive 

value for the ith nonrespondent on the sample is 

 

( )
( )

( )

( )

( ) ( )

( ) ( ) ( )

( )
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where Ry  is the respondent sample mean of  Y , Rx  and NRx  are the respondent and 

nonrespondent sample means of X ,  ( )0
yys  and ( )0

xxs  are the respondent sample variances of 

Y  and X , ( )1
xxs  is the nonrespondent sample variance of X , and ( )0ρ̂  is the sample corre-

lation between Y  and X  among the respondents. These are all maximum likelihood es-

timates of the pattern-mixture model parameter under the identifying restriction proposed 

by Little (1994) that ( ) ( )1| ,P M Y X f X Yλ= = + , for some function f .  
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Since the units to be used as substitutes of the nonrespondents will ultimately be respond-

ents, the predicted values under the pattern-mixture model for the unsampled units are 

computed assuming they are respondents as 

 

 ( ) ( ) ( ) ( ) ( )0 0 0 0ˆˆi R yy xx i Ry y s s x xρ= + −  

 

2. Compute the distance between predicted values for Y for a given nonrespondent j and all 

the non- sampled units. Any distance measure could be used, but here the absolute differ-

ence ( ) ( ) ( )0ˆ ˆ , 1,...,jk j kD y y k N n Nλ λ= − = − + , is used. If there is more than one survey vari-

able, say ( )1 2, ,..., qY Y Y Y ′= , a multidimensional distance measure such as the 

Mahalanobis distance can be used.   

 

3. Select the unsampled unit k with the smallest distance jkD as a substitute for 

nonrespondent j. In most applications, substitutes will be selected without replacement. 

That is, the selected unit for the jth nonrespondent would be removed from the pool of 

unsampled units, but this is not a necessary step if units are allowed to substitute for more 

than one nonrespondent. Repeat steps 2 and 3 for all nonrespondents.  

 

This process is implemented for a given value of λ , which allows sensitivity to different 

degrees of nonignorability. For most applications, only one substitute for each nonrespondent 

would be selected. The performance of the method would be conditional on the validity of the 

nonresponse assumption represented in λ .  

 

Alternatively, this process could be repeated for different values of λ , say { }0,1,λ = ∞ , 

as suggested by Andridge and Little (2011) and Sullivan and Andridge (2015) – and determining 

whether there are large differences in terms of which units would be selected as substitutes for 

the nonrespondents in each case. If the exact same units are designated as substitutes for each 

nonrespondent for any of the values of λ , a single substitute per nonrespondent would be select-

ed. If, however, for each value of λ there is a different substitute for each nonrespondent, multi-
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ple substitutes could be selected, and a sensitivity analysis conducted across different missing 

mechanism assumptions. Obviously, from a practical point of view, there is a trade-off between 

the ability to perform a sensitivity analysis and survey costs associated with the selection of mul-

tiple substitutes per nonrespondent. This trade-off is briefly discussed in the conclusions to this 

paper below. 

 

5.4 Simulation Design 

 A simulation study was conducted to evaluate the performance of the proposed PMM 

substitution under different population structures and missing mechanisms. The bias, variance, 

and mean square error properties of the proposed method are examined and compared to other 

standard approaches to nonresponse adjustments in survey sampling.  

 

Artificial finite populations of size 10,000N =  were generated according to the follow-

ing bivariate normal distribution: 

 

2

11
~ , , 1,...,

11
yxi

yxi

y
N i N

x
ρ

ρ
     

=           
. 

 

Five levels of correlation between Y  and X , { }0,0.2,0.4,0.6,0.8yxρ = , were used to generate 

five populations. These correlation levels were chosen to evaluate the performance of the pro-

posed method under different situations. With a null correlation the auxiliary variable will not 

provide any assistance to the adjustment, whereas as the correlation increases the adjustment 

through substitution will be more influential. In practice, correlations as high as 0.8 are not very 

common between survey outcomes and auxiliary variables in surveys, especially with unit non-

response.  The expected highest correlations would be of the order of 0.20 to 0.40, but these 

stronger correlations were included to allow investigation of the potential larger impact of PMM 

substitution.   

 

 For each population, 5,000K =  simple random samples of size 500n = were selected. 

For each replication, every unit in the population was assigned as a respondent ( 0im = ) or a 
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nonrespondent ( 1im = ) according to the missing data mechanism generated using the following 

logistic regression model: 

 

( )( ) 0 1 2logit Pr 0 | , , 1,...,i i i i im x y x y i nβ β β= = + + =  

 

where the value of the coefficients { }0 1 2, ,β β β  are shown in Table 5.1. Three different nonre-

sponse mechanisms were investigated based on the choice of the coefficients.  The missing at 

random or MAR mechanism sets 2 0β = .  The two not missing at random or MNAR mecha-

nisms set 2 0β ≠ . Each missing data mechanism was examined at two response rates, 50% and 

75%, determined by the choice of the intercept 0β . The values of the slope coefficients, 1β  and 

2β , were selected so that the odds of the unit be a respondent are approximately 22% higher by a 

one unit increase in the predictors.  

 

For the two MNAR mechanisms, different values ofλ  were used. For a MNAR mecha-

nism in which the nonresponse is explained by both the outcome and auxiliary variables, 1λ = , 

and when the nonignorable nonresponse is explained only by the survey variable Y , λ = ∞ .  

 

For simplicity, the same missing mechanism was employed for both the units originally 

drawn in the sample and for units selected to be substitutes. This implies that that the same sur-

vey protocol is applied throughout the fieldwork. While this might not hold true in some instanc-

es, it is not feasible to simulate a more general condition without making further assumptions. 

        
Table 5.1. Coefficients of the nonresponse mechanism models 

Missing 
mechanism Model 

Corre-
sponding 

λ  

Response 
rate β0 β1 β2 

MAR [X] 0 50% -0.2 0.2 0 
75%  0.9 0.2 0 

MNAR [X+Y] 1 50% -0.4 0.2 0.2 
75%  0.7 0.2 0.2 

MNAR [Y] ∞  
50% -0.2 0 0.2 
75%  0.9 0 0.2 
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This simulation setting also tested how sensitive the proposed PMM substitution method 

is to violations of the distributional assumptions of the pattern-mixture model. The selection 

model used here implies that the marginal joint distribution Y  and X is normal, whereas the pat-

tern-mixture model assumes conditional normality, given the missing indicator M . Therefore, 

the correlation between Y  and X  for the entire sample, yxρ , might not have been the same from 

the corresponding correlations for respondents ( ( )0
yxρ ) and nonrespondents ( ( )1

yxρ ) under the pat-

tern-mixture model. However, because in these simulations the missing mechanism is a linear 

function of Y  and X , these correlations will be the same, as in Andridge and Little (2011). 

 

 For each of the 30 combinations of yxρ  and the nonresponse mechanism, K = 5,000 sim-

ple random samples of size n = 500 were selected. The inferential objective was to estimate the 

finite population mean of a survey variable, 
1

N

i
i

Y y N
=

=∑ , using an auxiliary variable X  ob-

served for all the units in the populations.  As previously suggested, the proposed PMM substitu-

tion method was applied with { }0,1,λ = ∞ . The PPM substitution method was evaluated in terms 

of the following empirical measures: 

 

1. The empirical bias, ( ) ( )
5000
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3. The empirical root mean square error, ( ) ( )2
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−
= ∑   

 

The PPM substitution was employed to obtain an estimated mean for each sample. The 

properties of the PMM substitution mean were compared on the empirical criteria to the follow-

ing alternative methods:  
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1. The Inflated Sample Size mean (ISS) is the unadjusted respondent mean where the 

sample size is inflated by the expected response rate ( )1 π− . That is, a sample of size 

( )' 1n n π= −  is selected and the mean of the respondents is used as an estimate of the 

population mean. Here the known value of the response rate ( )1 π−  is used in the simu-

lations even though in practice this average response rate is estimated beforehand, usually 

based on previous surveys of a similar target population. 

 

2. The Inflated Sample Size mean adjusted by nonresponse propensity Weight (ISS.W) 

is similar to the ISS where the sample size is inflated by the expected response rate, 

( )1 π− , but the respondents are then weighted by the inverse of their predicted response 

propensities using the auxiliary variable covariate, X , as a predictor of the missing indi-

cator M  in a logistic regression model.  

 

3. The Matching Substitution (MSub) mean is based on an initial sample of size n  where 

each nonrespondent is substituted with a unit selected from the pool of non-sampled 

units, chosen by matching each nonrespondent with the unsampled unit to which it is 

closest in terms of the auxiliary variable X . If the substitute unit turns out to be a 

nonrespondent, the next closest unsampled unit is selected as the substitute, and this pro-

cess is repeated until a responding substitute is chosen. If there is more than one unit that 

can be used as a substitute for a given nonrespondent, the substitute is randomly selected 

among these units. No further adjustments are done to take into account for possible re-

maining differences in the auxiliary variable X . 

 

4. The Matching Substitution with nonresponse propensity Weighted (MSub.W) mean 

is similar to MSub, but the values of Y for originally selected and substituted units that 

respond are weighted by the inverse of their predicted response propensities using the 

auxiliary variable X  as predictor of the missing indicator M  in a logistic regression 
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model. This model is estimated using the data from all respondents and all 

nonrespondents (originally selected and substitutes units). 

 

The ISS method assumes that the missing mechanism is MCAR, while the ISS.W, MSub, 

and MSub.W methods assume a MAR mechanism. Therefore, none of them are expected to per-

form well under a MNAR mechanism, but they serve as a basis of comparison for the MAR case 

and as a baseline for the level of improvement that can be expected from the proposed method 

under a nonignorable nonresponse mechanism. With only a single auxiliary variable, MSub is 

exactly the same as using the PMM substitution with 0λ = . For the sake of completeness, the 

results of these two methods are shown separately.  

 

As mentioned previously, if there is more than one auxiliary variable available, the proxy 

pattern-mixture model approach suggested by Andridge and Little (2011) can be employed for 

the PMM matching substitution and a distance measure, such as the Mahalanobis distance, can 

be used for the traditional matching substitution. In this case, the PMM matching substitution 

and MSub will not necessarily lead to exactly the same results when 0λ = , but they will likely 

be very close.  

 

5.5 Results 

 Figures 5.1 and 5.2 present the empirical expected values of the population mean esti-

mates across the 5,000 simulation replications for ISS,  ISS.W, MSub, MSub.W, and the PMM 

substitution method for a 50% and 75% response rate, respectively. The horizontal red line cor-

responds to the true population mean and can be used as a basis for evaluation of the estimates’ 

bias. Empirical sampling variances for the estimates of these methods are shown in Figures 5.3 

and 5.4, and the empirical root mean square errors are displayed in Figures 5.5 and 5.6.  In these 

these figures the horizontal red line corresponds to the sampling variance or root mean square 

error of a population mean estimated under complete response. While not actually observed in 

practice, it serves as a benchmark for the methods evaluated in this study.  

 

The patterns of the results under a 50% response rate are essentially the same as those 

under a 75% response rate; the only difference between these two response rates is in terms of 
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magnitude. For example, when a method led to biased estimates, the bias was larger under a 50% 

response rate, as would be expected. In addition, due to larger sample sizes, in general, the sam-

pling variances of the estimates under 75% response rate were smaller. This indicates that the 

response rate does not change the properties of the methods investigated here other than their 

magnitude. Therefore, the subsequent discussion of these results will not differentiate between 

the response rates.  

 

Missingness model [X] 

Under a MAR mechanism, in which the missingness mechanism depends solely on the 

auxiliary variable X , respondents are different from nonrespondents in terms of this covariate. 

In these simulations, respondents tend to have larger values of X  and, because of the positive 

association with the survey outcome, they also tend to have larger values of Y . Therefore, the 

respondent mean of the inflated sample size method (ISS) produces estimates with a positive bias 

for all correlation levels except 0yxρ = , when the bias is null as can be seen in Figures 5.1 and 

5.2. Also, as would be expected, this bias increases as the correlation strengthens.  

 

Regardless of the strength of the correlation between the outcome and the predictor, this 

bias is essentially eliminated for methods that adjust the respondents using the auxiliary variable 

X  -- ISS.W and MSub. Curiously, further nonresponse adjustments on the sample that already 

used a matching substitution on the same variable in MSub.W produces estimates which are no 

longer unbiased.  

 

As mentioned previously, the PPM substitution with 0λ =  is equivalent to MSub and, 

therefore, also produces unbiased estimates under the MAR mechanism. As the pattern-mixture 

model is misspecified for other values of λ , it is not surprising that the PMM substitution pro-

duces biased estimates of the population mean. The exception is when 0yxρ = , where the esti-

mate that uses 1λ =  leads to an essentially unbiased estimate. Similarly, when 0yxρ =  and 

λ = ∞  is used in the model, the PMM substitution method generates slight overestimates of the 

population mean.  
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Figures 5.3 and 5.4 show that under the MAR nonresponse mechanism ISS, ISS.W, 

MSub, and MSub.W methods produced empirical sampling variances very close to the complete 

response sampling variance. The exception is for high correlations between X  and Y  ( 0.6yxρ =  

and 0.8yxρ = ), when the nonresponse weighted-adjusted mean actually showed a slight gain in 

precision.  

 

The PMM matching substitution with 0λ =  also led to an empirical sampling variance 

very similar to the complete response sampling variance. The sampling variances of this method 

using 1λ =  were also in general similar to the complete response case, except for 0.2yxρ =  and

0.4yxρ = , when they were slightly larger. On the other hand, the PMM substitution using λ = ∞ , 

produced estimates with much more variability than all the other methods for intermediate corre-

lations ( 0.2,0.4,0.6yxρ = ). This result demonstrates that the instability of the pattern-mixture 

model estimates when λ  is set to infinity observed by Andridge and Little (2011) carries over to 

the PMM substitution method.  

 

As a consequence of the bias and variance properties described above, under MAR, the 

methods that led to the smallest RMSE across all the correlations were the ISS.W, MSub, and the 

PMM substitution with 0λ =  (see Figures 5.5 and 5.6). The first two methods are expected to 

work well under a MAR mechanism. Since the PMM substitution with 0λ =  employs the cor-

rect model for the missing mechanism, it also provides good results, with unbiased estimates and 

sampling variances similar to a complete response case.  

 

On the other hand, as a result of model misspecification in this missing mechanism, using 

the PMM with 1λ =  and λ = ∞ leads to a larger RMSE, especially for non-zero correlations. As-

suming a stronger nonignorable missing mechanism, with λ = ∞ when the missingness is actual-

ly ignorable, clearly leads to larger bias and sampling variance. Therefore, PMM substitution 

with λ = ∞ should only be used when there are compelling reasons to believe that nonresponse is 

driven entirely by the missing variable itself.  
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Figure 5.1: Empirical expected values of population mean estimates over 5000 simulation replications with a 
50% response rate. Red horizontal line denotes the true population mean.  

 
 

Figure 5.2: Empirical expected values of population mean estimates over 5000 simulation replications with a 
75% response rate. Red horizontal line denotes the true population mean.   
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Figure 5.3: Empirical sampling variances of population mean estimates over 5000 simulation replications with 
a 50% response rate. Red horizontal line denotes sampling variance under complete response. 

 
 

Figure 5.4: Empirical sampling variances of population mean estimates over 5000 simulation replications with 
a 75% response rate. Red horizontal line denotes sampling variance under complete response. 
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Figure 5.5: Empirical root mean square errors of population mean estimates over 5000 simulation replications 
with a 50% response rate. Red horizontal line denotes root mean square error under complete response. 

 
 

Figure 5.6: Empirical root mean square errors of population mean estimates over 5000 simulation replications 
with a 75% response rate. Red horizontal line denotes root mean square error under complete response. 
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Missingness model [X+Y] 

When nonresponse depends on both the auxiliary variable X  and the survey variable Y , 

it is expected that a pattern-mixture model with 1λ =  would produce unbiased estimates for the 

population mean, whereas other approaches that do not take into account the nonignorability fea-

ture of this mechanism would perform poorly. As Figures 5.1 and 5.2 show, this is true across all 

correlations, except 0yxρ = , where all methods led to equally biased estimates, illustrating again 

the importance of having good predictors of the survey outcome for nonresponse adjustments. 

For all the other correlations, the PMM substitution with 1λ =  produces essentially unbiased 

estimates, while the estimates of the other approaches have substantial bias. Although the PMM 

substitution method with λ = ∞  does account for a nonignorable nonresponse, it employs a 

misspecified model in which the nonignorability is much stronger than actually it is. Thus the 

mean under this PMM substitution substantially underestimates the true population mean when 

the correlation between X  and Y  is not zero.   

 

Figures 5.3 and 5.4 show that the sampling variances of estimates under the [ ]X Y+  

missingness model were quite similar to those observed under the MAR mechanism. That is, the 

ISS, ISS.W, MSub, and MSub.W methods lead to estimates with variability similar to the com-

plete response case. The PMM substitution methods for 1λ =  and λ = ∞  provide estimates with 

slightly larger sampling variance for intermediate levels of correlation. This is evidence that the 

missing mechanism does not have much impact on the overall behavior of sampling variability, 

other than their magnitudes essentially dictated by the response rate.  

 

Overall, for the [ ]X Y+  missingness model, the PMM substitution assuming 1λ =  was 

the method that led to the smallest RMSE (Figures 5.5 and 5.6). This is particularly true for the 

intermediate correlations ( 0.2,0.4,0.6yxρ = ). For the zero and highest level of correlation, all 

tested methods led to estimates with similar levels of error, with the PMM substitution assuming 

λ = ∞  giving slightly worse results. In fact, for the [ ]X Y+  missingness model, assuming such a 

strong nonignorable nonresponse produced estimates with higher RMSE than when it was as-

sumed that the missing mechanism was ignorable ( 0λ = ).  
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Missingness model [Y] 

The nonresponse mechanism induced by this model corresponds to the extreme case in 

which missingness depends solely on the survey outcome itself. It can generally pose a difficult 

challenge for standard nonresponse adjustments, since the auxiliary variables usually used in the-

se types of methods are not directly related to nonresponse.  

 

As can be noted in Figures 5.1 and 5.2, standard approaches such as ISS.W, MSub, and 

MSub.W produce estimates with substantial bias across all levels of correlation. The PMM sub-

stitution assuming 0λ =  and 1λ =  also leads to biased estimates for the [ ]Y  missingness mod-

el. The correctly specified model in this case would assume λ = ∞ , yet, only for moderate to 

high correlations ( 0.4,yxρ =  0.6,0.8) the PMM substitution under λ = ∞ provides unbiased es-

timates for the population mean. For small correlations, this method performs just as well as the 

others in terms of bias, with a slight advantage when 0.2yxρ = . However, with the exception of 

ISS, all tested methods reduce bias as the correlation between X  and Y  increases, reinforcing 

the importance of using good predictors for nonresponse adjustments, regardless of the missing 

mechanism.  

 

Despite being the most appropriate model for this missing mechanism and leading to un-

biased estimates, setting λ  to infinity in the PMM substitution method in this case produces the 

least stable estimates, just as in the other missingness models (Figures 5.3 and 5.4). Although the 

general pattern in the variability of the estimates across the methods is essentially the same as the 

other two cases previously analyzed, the difference in the variability of the estimates of the PMM 

substitution method with λ = ∞  and the estimates of the other approaches is much larger, espe-

cially for the moderate levels of correlation ( 0.2,0.4,0.6yxρ = ).  

 

The variance inflation of PMM substitution with λ = ∞  is so large that it cancels the bias 

reductions obtained by this method. The RMSE of its estimates are not the smallest for any of the 

correlations analyzed in this study. In fact, for two of the correlations ( 0.2yxρ =  and 0.4yxρ = ),  

PMM substitution setting λ = ∞  presented the largest RMSE (Figures 5.5 and 5.6). Overall, 

PMM substitution with 1λ =  performs slightly better across most levels of correlation under this 



127 
 

MNAR nonresponse mechanism. However, this is mostly due to the sampling variability of the 

estimates, since this approach also produces substantially biased estimates.  

 

5.6 Discussion 

PMM substitution performed well when λ  corresponds to the underlying missing mech-

anism. Not only was it the only method that led to unbiased estimates across most missing mech-

anisms and correlations, but it also gave the most accurate estimates for almost all scenarios. The 

only exceptions, as described above, occurred when (1) there was no association between the 

survey variable Y  and the auxiliary covariate X , and (2) for the missingness model [ ]Y .  

 

Exception (1) , in general, is challenging for any nonresponse adjustment given that hav-

ing good predictors of the outcome variable is a key factor for reducing nonresponse bias and 

sampling variance (Little and Vartivarian, 2005). Exception (2), on the other hand, presents an 

interesting bias/variance trade-off, in which adopting the appropriate model (i.e., using λ = ∞ ) 

leads to unbiased estimates with large variability, whereas using a model that does not reflect 

exactly the true missing mechanism (setting λ  to one when missingness model is [ ]Y ) generates 

biased estimates, but with smaller variances. When taking both bias and variance into account, 

the latter approach does give more accurate estimates. However, since ultimately the interest 

here is to identify and minimize nonresponse bias, using the appropriate model at the cost of less 

stable estimates would usually be preferred over the alternative. Moreover, as will be discussed, 

the PMM substitution approach can be implemented for a sensitivity analysis using different val-

ues of λ , each of which produces estimates that together portray the impact of nonresponse in a 

more complete manner.  

 

Although substitution of nonrespondents is a commonly used approach to mitigate unit 

nonresponse in many surveys, it has been largely neglected by the survey statistics and method-

ology literature, with few investigations to understand and improve the method. All substitution 

methods available until now assume a MCAR or MAR mechanism. Nonignorable nonresponse is 

problem that has never been directly tackled by any of these substitution methods. Although Ru-

bin and Zanutto (2002) did provide an imputation method that uses substitutes for one type of 

nonignorable nonresponse, their approach only applies when the variables that cause the nonre-
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sponse mechanism to be ignorable are indirectly observed, making it closer in reality to an ignor-

able nonresponse problem. Moreover, when selecting substitutes for nonrespondents, substitution 

methods do not take into account the survey variables observed for the respondents, a valuable 

approach for minimizing nonresponse bias when missingness is not ignorable 

  

Pattern-mixture models have been suggested and used to analyze MNAR data when fully 

observed auxiliary data are available. The applications of such models so far, however, have 

been restricted to the data analysis, mostly for sensitivity analysis. This paper presented a new 

application of pattern-mixture modeling, applying it to assist the selection of substitutes for re-

placing nonrespondents. By doing so, this method incorporates a wider variety of missingness 

assumptions, ranging from a MAR to different degrees of MNAR mechanisms, into the sample 

selection process. This enables the possibility of performing sensitivity analysis using real addi-

tional data, as opposed to predicted values under a model or values already observed in the sam-

ple (such as from hot-deck donors), by selecting substitutes under different assumptions about 

the missing mechanism.  

 

Another feature of the proposed PMM substitution method not present in some standard 

nonresponse adjustments, such as weighting or the standard substitution methods, is that it also 

takes into account the information of both the auxiliary variables -- assumed to be available for 

every unit in the population, such as frame variables -- and the survey outcomes, available from 

the respondents. This is particularly important since nonresponse error is variable and statistic 

dependent, and therefore its adjustments should consider the information on the outcome varia-

bles and their relationship with the auxiliary covariates.  

 

The simulation results showed that the proposed method tends to eliminate nonresponse 

bias when the missing mechanism matches the value that the λ  parameter is set to on the pat-

tern-mixture model and the correlation between the survey and auxiliary variables is at least 

moderate. Moreover, when these conditions hold, PMM substitution presented the smallest 

RMSE, with the exception of the [ ]Y  missing model, in which assuming 1λ =  led to more accu-

rate estimates than using λ = ∞ , the correct value for λ  under the nonresponse model. This puz-

zling finding is explained by the high instability of the estimates when using a pattern-mixture 
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model with λ = ∞ . Since a primary objective of this method is to detect bias through sensitivity 

analysis, such variance inflation is not a primary concern, although it should be considered when 

choosing an approach for nonresponse adjustments.  

 

In practice, the value of λ  that matches the nonresponse mechanism is rarely known and 

the respondent data do not provide any information about this parameter. Therefore, it is not pos-

sible to choose one single value for λ  to eliminate nonresponse bias. However, expert 

knowledge on the substantive variables and their interaction with nonresponse may provide 

guidance on the nature of the missing mechanism, allowing researchers to make educated guess-

es about the values of λ  more suitable to nonresponse adjustment. Moreover, as suggested 

above, PMM substitution method can be used as a tool to detect potential nonresponse problems 

through a sensitivity analysis. To do so, previous studies have suggested using different values 

for λ  to compute the population estimates and evaluate how much they change according to 

each value. Andridge and Little (2011) and Sullivan and Andridge (2015), for example, recom-

mended using { }0,1,λ = ∞ . 

 

However, implementing this sensitivity analysis in PMM substitution may pose an opera-

tional challenge, since different values of λ  can lead to different substitutes for a given 

nonrespondent. One could select multiple substitutes for each nonrespondent, one for each value 

of λ , but this would impact survey costs. This would not be a problem if the substitutes selected 

for the nonrespondents are all the same for different values of λ . But in this case the sensitivity 

analysis should not provide any additional insights, given that estimates would be roughly equal 

if the same cases are selected as substitutes over different missingness assumptions. The ability 

to perform such sensitivity analysis in the PMM substitution and the costs associated with it rais-

es a trade-off between nonresponse bias and survey costs. There might be a point that the PMM 

substitution could lead to reductions in the RMSE large enough to justify the added costs of se-

lecting multiple substitutes per nonrespondent. While this type of investigation is beyond the 

scope of this study, it merits further investigations, which is left for future research.  

 

One approach to using PMM substitution for sensitivity investigation is to select sub-

samples of nonrespondents using different values for λ  parameter for each sub-sample. For ex-
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ample, for { }0,1,λ = ∞  nonrespondents would be randomly allocated, controlling for the auxilia-

ry variables, to three sub-samples corresponding to each value of λ . Once substitutes for each 

sub-sample are collected, estimates of the population parameters would be computed separately 

for each sub-sample, but also using data from the original respondents. If the correlation between 

the survey variable and the auxiliary covariate is at least moderate, large differences across the 

estimates of the sub-samples might be an indication of nonresponse bias. In this case, a more 

substantive understanding of the relationship between the survey variable and the missing mech-

anism would be necessary to decide which estimate is more plausible. On the other hand, small 

differences between the estimates would indicate that there may not be problems of nonresponse 

bias with that survey variable, unless the correlations between the survey outcomes and the aux-

iliary variables are low. When that is the case, there is not much that sensitivity analysis, or in 

fact any nonresponse adjustment, can do to assess nonresponse bias. This reinforces the im-

portant role of strong predictors of the survey variables in such adjustments.  

 

Another operational challenge of the PMM substitution method is associated with the re-

quirement of having to have respondent data before the selection of the substitutes. This may 

prove operationally inconvenient, as it would make prompt action for nonresponse through sub-

stitution at early stages of the fieldwork impossible, potentially extending the data collection pe-

riod. On the other hand, using respondent data with pattern-mixture models enables substitute 

selection to be performed in a more informed fashion, taking all of the available information up 

to that moment into account in this process, as mentioned before. Also, waiting a period of time 

during data collection before selecting substitutes would allow more time for extra efforts to get 

the cooperation of late respondents, that otherwise might be prematurely substituted, a concern 

raised by Vehovar (1994) and Chapman and Roman (1985a, 1985b). Moreover, other than a 

standard application of substitution, this could be implemented as an alternative to deal with per-

sistent nonrespondents or refusals after a nonresponse follow-up, for example, or to handle attri-

tion in longitudinal surveys, in which there are data for the survey outcomes from previous 

waves. 

 

This paper illustrated the use of the proposed method using one single auxiliary variable. 

As described previously, if more than one covariate is available, this same procedure can be em-
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ployed, but using a “proxy” auxiliary variable which can combine the auxiliary covariates 

through a principal component analysis or linear predictors, as suggested by Andridge and Little 

(2011). Also, the PMM substitution method proposed here initially assumed only one normally 

distributed survey outcome. Surveys contain multiple outcome variables of different types, each 

of which may have a different relationship with the auxiliary variables and the missing mecha-

nism. An advantage of PMM substitution is that unlike other substitution and some nonresponse 

adjustments, it takes this variable-statistic dependent nature of nonresponse bias into account. It 

also means that, if implemented variable-by-variable, some of the nonrespondents might be as-

signed for different substitutes because for each survey outcome, even under the same value of 

the λ  parameter. Clearly applying PMM substitution for each variable separately would not be 

feasible in practice. To accommodate multiple survey variables, practitioners may compute the 

predicted values under the pattern-mixture model for each variable separately and then use a 

multidimensional distance measure, such as a Euclidean or Mahalanobis distance, to select the 

substitutes. While this will probably not be the optimum for any combination of the individual 

survey outcomes, it might be an acceptable compromise to detect patterns of nonresponse bias 

across all or most of the survey variables. Moreover, extensions for other types of survey out-

comes, such as binary variables, for example, could be developed, as has been done for the 

proxy-pattern mixture models (Andridge and Little, 2009) and the PPM hot-deck (Sullivan, 

2014). 

 

For simplicity, in this study, the PMM substitution was proposed and evaluated through 

simulation studies under a simple random sample design. This method, however, can be extend-

ed to more complex sample designs, involving stratification, clustering and unequal selection 

probabilities. Also, it was assumed that the same missing mechanism operates over original se-

lections and substitutes. This may not hold true in many applications. For instance, it is often the 

case that there is less time to spend to obtain the responses of the substitutes than of the original-

ly selected units. Even if all the other survey protocols are the same, the substitutes will likely 

have a smaller response propensity than the original units and, therefore, a different nonresponse 

mechanism. Therefore, more investigations extending the results of the simulations of this study 

to more general nonresponse mechanisms are needed. Such extensions on the sample design and 

missing mechanism assumptions should be developed in future studies.  
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A challenging problem for PMM substitution, and for substitution procedures in general, 

is variance estimation. While under an MAR mechanism this can be accomplished using stand-

ard variance estimation techniques, as it would under complete response, there has not been al-

most no research on how to estimate sampling variance using substitute data when the missing 

mechanism is nonignorable. The approach of Rubin and Zanutto (2002) uses substitutes to mul-

tiply impute the nonrespondent missing data and then, using Rubin’s combining rule, estimate 

sampling variance using multiple imputation. Since substitutes can be selected under a 

nonignorable missing mechanism using PPM substitution, multiple imputation would account for 

adjustments in terms of differences between respondents and nonrespondents due to the MNAR 

nonresponse mechanism. The properties of sampling variances using these or any other approach 

should be addressed in future research.  

 

Finally, it could be argued that the same results obtained by the PMM substitution can be 

achieved using the PPM hot-deck imputation method proposed by Sullivan and Andridge (2014) 

with no additional costs attributed to the substitutes. Although this statement may generally be 

true, the proposed substitution procedure might be preferred over PPM hot-deck when there are 

not enough potential donors on the covariate space related to missingness, which is particularly 

important in the case of nonignorable missing data.  With substitution, the pool of “donors”, or 

substitutes in this case, is much larger, given that the sampling fraction is small in most applica-

tions, even within strata, and therefore the number of unsampled units, N n− , is very large. 
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CHAPTER VI 

Discussion 

 

 Despite its widespread use in survey practice, substitution remains an understudied topic 

in the survey statistics and methodology literatures, and is frequently viewed with skepticism in 

these fields. This dissertation sought to investigate the characteristics of this method and develop 

new approaches to improve the estimates obtained with its use. The results presented in Chapters 

III to V have important practical implications for surveys that use substitution as a solution to 

unit nonresponse. In this concluding chapter, these results are synthesized along with their prac-

tical implications and directions for future research. 

 

6.1 Summary of Study Results 

 Substitution is frequently used in establishment surveys as a remedy for unit nonre-

sponse, particularly in school-based surveys where students are the target population. In many of 

these cases, nonresponse occurs at the cluster-level, such as schools in the example given above. 

The few existing studies on the use of substitution examine only element-level nonresponse. 

Moreover, there has not been much research done about nonresponse at the cluster-level in mul-

ti-stage cluster samples. The study conducted in Chapter III investigated both of these problems. 

More specifically, it studied the problem of nonresponding Primary Sampling Units (PSU) in 

probability-based two-stage cluster samples.  

 

 The derivation of the nonresponse bias due to PSU nonresponse of an unadjusted re-

spondent mean in a two-stage equal-sized cluster sample provided a new and interesting result: 

such bias is an increasing monotonic function of the intra-cluster correlation coefficient, as 

shown by the expression below: 

 

( ) ( ) ( ) ( ) ( ) ( )
21 1, , 1 1r a a a

Y
Bias y Cov Y p Corr Y p p B

p p B
σ

σ ρ = + − 

, 
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where ( ),aCorr Y p  is the correlation between the survey variable, Y , and the response propensi-

ty, p ; ( )a Yσ  and ( )a pσ  are the standard deviations of the survey variable and response pro-

pensity, respectively; ρ  is the intra-cluster correlation of the survey variable (the subscript a  

denotes that these statistics are being evaluated at the cluster level), and B  is the cluster size. 

This means that survey variables with larger intra-cluster homogeneity are more susceptible to 

cluster nonresponse bias. A similar result was found for unequal-sized cluster populations.  

 

These results illustrate the importance of examining cluster nonresponse and its differ-

ence comparatively to element nonresponse. Therefore, further investigations on methods deal-

ing with this problem are needed. The simulation studies conducted in Chapter III evaluated a 

few of such methods. Particularly, these studies investigated the properties of substitution and 

nonresponse weighting methods for the estimation of a finite population mean.  

 

 An important general result was that the performance of the substitution methods depends 

on how it is implemented; the results demonstrated that the selection of the substitutes is one of 

the most important factors. If substitutes are randomly selected, its properties are similar to the 

naïve unadjusted respondent mean. This is true even if the substitutes are randomly selected 

within the same stratum of their corresponding nonrespondents – a procedure known as stratified 

random substitution (Lynn, 2004). On the other hand, if substitutes are selected by a matching 

procedure – that is, the unit with the smallest distance for a given set of measures to the 

nonrespondent is selected as its substitute – the performance of the substitution methods is al-

most equivalent to a standard nonresponse propensity weighting adjustment (Cassel, Särndal and 

Wretman, 1983; Groves et al, 2002), as long as the variables used in the matching procedure are 

the same as the ones used in the estimation of the nonresponse propensity.  

 

The intuition behind these results is that by randomly selecting a unit to substitute a 

nonrespondent, on average, the substitutes will be more similar to the responding units in the 

sample than the nonrespondents. This will not necessarily decrease the level of bias, just as an 

unadjusted respondent mean with an inflated (by an unexpected response rate) sample size will 
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not lead to a bias reduction. On the other hand, if substitutes are matched to nonrespondents, then 

they are expected to be more like them and, to the extent that the matching covariates are related 

to the survey variables, there will be some bias reduction, as is seen when nonresponse weighting 

adjustments are used. Also, as expected from results by Little and Vartivarian (2005), the strong-

er the association between the matching and survey variables, the larger the bias reductions are in 

both matching substitution and nonresponse weighting adjustment methods. This is also an im-

portant result because it shows that any criticism about such substitution methods in terms of the 

statistical properties should also be directed toward other commonly used techniques, such as 

nonresponse weighting.   

 

 A second factor that impacts the performance of the substitution methods is the number 

of substitution iterations used. This number represents the number of times a substitution is at-

tempted to be made (before a responding unit is finally selected or the substitution procedure is 

terminated) if a selected substitute for an original nonresponding unit turns out to be a 

nonrespondent as well. This is an overlooked featured in previous studies of substitution, but it is 

directly related to the degree of this method’s success. As would be expected, as the number of 

substitution iterations increases, the more likely all nonrespondents will be successfully substi-

tuted, which consequently results in a reduction of nonresponse bias. Obviously, as the number 

of substitution iterations increases, the number of responding units also increases and, therefore, 

the sampling variance decreases. Hence, increasing the number of substitution iterations has pos-

itive impacts on survey estimates both in terms of bias and sampling variability.  

 

 Another important contribution from the study in Chapter III is related to sampling vari-

ance estimation. Many surveys use as many strata as possible while still enabling design-based 

sampling variance estimation, which is known as deep stratification (Kish, 1965). In stratified 

multi-stage samples, this technique tends to create to designs with two PSUs per stratum. In such 

cases, it is very common that, after nonresponse, some strata end up with only one or no respond-

ing PSUs, thus prohibiting design-based sampling variance estimation. Vehovar (1999) pointed 

out that one of the potential advantages of using substitution is its avoidance of such situations. 

However, he also mentioned that a comparison with strata collapsing, a commonly used tech-

nique to deal with this problem, would be needed to evaluate the real efficiency of the substitu-
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tion method for that purpose. This comparison was conducted in the simulation studies of Chap-

ter III. In general, the sampling variance estimates of the substitution methods were less biased 

and more accurate than those of the strata collapsing technique.  

 

 Therefore, the general results of Chapter III show that substitution is a valid alternative 

for dealing with PSU nonresponse, as long as a matching procedure is implemented and the sub-

stitution is carried out a sufficient number of iterations to ensure the substitution of as many 

nonrespondents as possible. Another necessary condition for the successful use of substitution is 

that the variables used in the matching procedure are correlated with the survey variables. When 

these conditions are met, substitution provides the same levels of bias reduction as other standard 

methods, such as nonresponse weighting adjustments. Further, it can produce less biased and 

more accurate sampling variance estimates, using a standard Taylor Series approximation meth-

od, compared to strata collapsing, when the sample (without substitution) turns out to have strata 

with no or one PSU after nonresponse.   

 

 In some instances, however, it is not possible to match nonrespondents and substitutes on 

some important variables that can explain the survey outcomes, either because they are not readi-

ly available for every unit in the population or because they can only be measured during data 

collection, such as paradata. Therefore, there might be some systematic differences between 

nonrespondents and their corresponding substitutes that are not taken into account in the match-

ing procedure. These differences, consequently, might diminish the potential bias reductions 

generally provided by the substitution procedure. With that in mind, Rubin and Zanutto (2002) 

proposed a method to take these differences into account by modeling them and multiply imput-

ing the nonrespondents using a procedure they named Matching, Modeling and Multiple Imputa-

tion (MMM).  

 

 Rubin and Zanutto’s method succeeded in taking into account differences between 

nonrespondents and their substitutes on auxiliary covariates (modeling or calibration covariates) 

observed only for these two subsets and, consequently decreasing nonresponse bias. However, it 

also translated into larger survey costs, due to the need to also select substitutes for a sub-sample 

of the respondents to estimate the imputation model, and an increase in the sampling variances of 
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the survey estimates, due to the imputation procedure. To overcome these two problems, Chapter 

IV presented a modification to Rubin and Zanutto’s method, as well as a new method to adjust 

for differences between nonrespondents and substitutes using a calibration procedure.  

 

 In the modified version of Rubin and Zanutto’s MMM method proposed in Chapter IV, 

instead of selecting substitutes for a sub-sample of respondents from the unsampled population 

to estimate the imputation model, they were selected from among the remaining set of respond-

ents, in a manner similar to a hot-deck imputation procedure. By doing so, it is no longer neces-

sary to select additional units into the sample, thus avoiding an increase in the survey costs, and 

at the same time still producing estimates with the same bias reduction levels observed in the 

original method. A disadvantage, however, of this variant of the MMM method is that it can fur-

ther increase the sampling variance, as, contrary to Rubin and Zanutto’s procedure, there is no 

new information coming into the sample. A set of simulation studies confirmed these results: 

while the levels of bias reduction of the alternative version of MMM were equivalent to its origi-

nal version, it also produced slightly less precise estimates. However, in some situations, such 

losses in precision were not observed, particularly when the modeling covariates are more 

strongly correlated to the survey variables than the covariates used in the matching procedure.  

 

 The new method introduced in Chapter IV proposed using a calibration weighting proce-

dure (Deville and Särndal, 1992) to take into account differences between nonrespondents and 

their substitutes. This method rests on the calibration of the substitutes to the nonrespondents in 

terms of the modeling (or calibration) covariates. That is, to create a new set of weights that 

make the sample total of the substitutes on these covariates to match the corresponding sample 

totals of the nonrespondents. Similar to the modified version of Rubin and Zanutto’s MMM 

method, this calibrated matching substitution procedure does not require the selection of addi-

tional substitutes for a sub-sample of the respondents, and therefore, does not produce an in-

crease in the survey costs aside from the selection of the substitutes for the nonrespondents. 

Moreover, because this adjustment relies on a calibration procedure, instead of data imputation, 

it is expected that the estimates produced by this methods would be more precise than Rubin and 

Zanutto’s MMM (either the original or modified version).  
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The results of the simulation studies conducted in Chapter IV consistently confirm this 

hypothesis. In some cases, the bias reductions of the calibrated matching substitution method are 

not as high as the ones found in the MMM methods. This is due to the fact that the adjustments 

conducted in the calibration procedure are performed at the aggregate-level (i.e., sample totals), 

whereas in the imputation procedure they are done at the element-level, making a finer adjust-

ment. Such differences, however, were not substantial in most of the cases in the simulation stud-

ies.  

 

These results show that there are multiple methods to improve the quality of survey esti-

mates using substitution procedures to deal with unit nonresponse, provided certain conditions 

are met. First, the covariates used both in the matching and modeling/calibration procedures 

must be associated with the survey outcomes. Second, and possibly most important, the data 

should be Missing At Random (MAR), as in many of other nonresponse adjustment methods 

(Little and Rubin, 2002). This means that the missing mechanism should depend only on fully 

observed variables, such as the matching and modeling/calibration covariates.  However, in 

many applications, it is important to evaluate what the consequences would be in case the miss-

ing data is non-ignorable.  

 

While there have been a few methods proposed in the literature to analyze Missing Not 

At Random (MNAR) data, there has not been so far much research done using substitution 

methods in this area. Although Rubin and Zanutto (2002) developed a method that can address 

some forms of non-ignorable nonresponse, a substitution procedure that can handle a more gen-

eral form of non-ignorability still lacks in the survey sampling literature. For this reason, Chapter 

V proposed the use of Pattern-Mixture Models (PMM) to assist in the selection of substitutes. 

The idea was motivated by the Proxy Pattern-Mixture Hot Deck imputation method, developed 

by Sullivan and Andridge (2015), in which they use a normal PMM (Little, 1994) to predict the 

outcomes of respondents and nonrespondents, and then, based on a distance measure of these 

predicted values and under an assumed missing mechanism, they find responding donors to im-

pute the missing data of the nonrespondents. 
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 The PMM substitution method proposed in Chapter V follows a similar structure. First, a 

PMM is fitted and used to predict the survey outcome for nonrespondents and unsampled units in 

the population, using auxiliary information available for every unit, such as frame data, under an 

assumed missing mechanism (designated by the λ  parameter in the PMM). Then, for each 

nonrespondent, substitutes are selected from the unsampled population based on a distance 

measure on the predicted survey outcomes. This method has the advantage of offering a more 

flexible way to select substitutes, without having to rely on a MAR assumption. On the other 

hand, such selections are made under some assumptions about the missing mechanism. Results 

from a simulation study conducted in Chapter V showed that if the missing mechanism is cor-

rectly specified, the PMM substitution lead to the less biased estimates compared to a nonre-

sponse weighting approach or a standard matching substitution method. However, if the 

missingness model is incorrectly specified, this method does not perform very well. Moreover, 

under a strong non-ignorable missing mechanism (i.e., when λ = ∞ ), the estimates produced by 

this proposed methods are quite unstable, as previous research of other estimation techniques that 

also use PMM have shown.  

 

 Since the true missing mechanism in most, if not all, practical cases is unknown and the 

observed data do not provide any information about the λ  parameter in the PMM, the use of the 

PMM substitution using a single value for this parameter may prove difficult. However, as sug-

gested in other applications (Little, 1994; Andridge and Little, 2011,Sullivan and Andridge, 

2015), the PMM can be used for sensitivity analysis, to evaluate how the estimates change ac-

cording to different missing mechanism assumptions. For instance, Andridge and Little (2011) 

suggested using { }0,1,λ = ∞  for that purpose, since these values can portray a wide range of 

possible missing mechanisms. The data are assumed to be MAR if 0λ = . When 1λ = , the mod-

el suggests the (unobserved) survey variable and the (observed) auxiliary variables have the 

same weight in explaining the missing mechanism. Assuming λ = ∞  is the most extreme case of 

non-ignorable nonresponse, in which the missingness depends solely on the (unobserved) survey 

variable.  

 

 For the PMM substitution, this sensitivity analysis may be performed by selecting multi-

ple substitutes for the nonrespondents, in which each of them would be selected under a given 
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value of the λ  parameter in the PMM. Different survey estimates would be then obtained using 

each set of substitutes. Unfortunately, this approach would lead to a substantial increase in sur-

vey costs if all nonrespondent were substituted multiple times. A more affordable alternative 

would be to select a sub-sample of the nonrespondents for each value assigned for the λ  pa-

rameter. For instance, if { }0,1,λ = ∞ , the nonrespondents would be randomly partitioned into 

three balanced sub-samples in terms of the auxiliary variables and for each sub-sample a value 

for the λ  parameter would be used. With this approach it would be possible to perform sensitivi-

ty analysis computing different estimates using each set of substitutes separately, while keeping 

the survey costs similar to a standard substitution method.  

 

 Like other survey sampling techniques, the PMM substitution method was developed us-

ing only one single survey variable. However, this methodology can be readily adapted to a mul-

tivariate setting by predicting each of the survey variables separately using the PMM and then 

selecting the substitutes using a multidimensional distance measure, such as a Mahalanobis dis-

tance. Also, if more than one auxiliary covariate is available for every unit in the population, 

they can be summarized in a single “proxy” auxiliary variable through principal component 

analysis or linear predictors, as suggested by Andridge and Little (2011), for example.  

 

 In summary, the studies performed in this dissertation show that substitution can be a 

useful method to address unit nonresponse, particularly for cluster nonresponse and when there 

are auxiliary information available for all units in the population that may not be viable to use in 

statistical modeling, due to high-dimensionality issues, for instance. The methods proposed here 

still deserve more theoretical and empirical investigation and they can be further developed. The 

next section describes some problems in substitution that should be addressed in future research.  

 

6.2 Future Research 

 Substitution is a much neglected topic in the survey sampling and methodology literature, 

but hopefully the studies performed in this dissertation will motivate further research in this area. 

There are still many areas in need for further research and development. Some of them are de-

scribed here. 
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 Previous studies on substitution investigated its use when nonresponse occurs at the ele-

ment-level. However, as pointed out in Chapter III, many of the applications of substitution are 

done when there is cluster nonresponse. In fact, nonresponse at these higher-level stages of the 

sampling process is another understudied topic in the survey sampling and missing data literature 

and, therefore, deserves further investigation into other possible methods to deal with it.  The 

study in Chapter III examined the use of different substitution methods at the Primary Sampling 

Unit (PSU) level in a two-stage cluster sampling, compared to other standard approaches, such as 

an unadjusted respondent mean and a nonresponse weighting adjustment procedure. While this is 

a very common setting for this problem and can possibly be extended to other situations, nonre-

sponse at other sampling stages in more general multi-stage designs should be addressed in fu-

ture studies. Moreover, Chapter III assumed nonresponse only at the PSU-level and complete 

response at the element-level. In most surveys, nonresponse will occur at multiple stages of the 

sampling process. The impact on survey estimates of nonresponse on multiple stages of the sam-

pling process and the performance of different adjustment methods remains a problem that needs 

further attention in future research.  

 

  Although the simulation studies in Chapter III showed consistent patterns across differ-

ent parameters and clearly depicted what should be expected from the performance of the meth-

ods evaluated in those studies, further analytical developments are needed. Particularly, it would 

be important to derive the nonresponse bias of statistics computed under the substitution proce-

dure over a more general missing mechanism assumption. In this study, the nonresponse mecha-

nism that operates over the substitutes is assumed to be the same as the originally selected units. 

In many applications, this might not be true. For instance, it is often the case that there is less 

time to spend to obtain the responses of the substitute units than of the originally selected units. 

Even if all the other survey protocols are the same, the substitutes will likely have a smaller re-

sponse propensity than the original units and, therefore, a different nonresponse mechanism. 

Vehovar (1999) provided a nonresponse bias expression for a respondent mean under a substitu-

tion procedure using a deterministic nonresponse approach. While that expression can provide 

important insights on how different nonresponse mechanisms over the original and substitute 

units might impact bias, an expression derived under a stochastic nonresponse approach may 
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prove more useful for practical purposes, such as further nonresponse adjustments and respon-

sive designs.  

 

 Also related to missing mechanism assumptions, the simulation studies in Chapter IV and 

V assumed the substitution procedure to be fully successful, that is, after enough iterations of the 

substitution process, every nonrespondent is substituted by a responding unit. In practice, how-

ever, there are always some units that cannot be substituted, mostly due to cost and/or time re-

strictions of data collection. An extension of the calibrated substitution presented in Chapter IV, 

where all the respondents (original and substitute units) are calibrated to the entire original sam-

ple (respondents and nonrespondents), can be used to address this problem. For the PPM substi-

tution method proposed in Chapter V, other adjustment methods, such as imputation or model-

ing, may be employed to make further adjustments in the sample if the substitution procedure is 

not successful in some of the cases. The performance of such extensions should be evaluated in 

future studies.  

 

 Another prominent area that could be very useful for practitioners is how to fit the substi-

tution procedure into a more general responsive design framework. As stated in the introduction 

of this dissertation, substitution may be seem as a form of responsive design, since it is a pro-

active reaction to nonresponse during the data collection process. It was only more recently that a 

responsive design framework was formally developed by Groves and Heeringa (2006). There-

fore, being able to fit substitution into that framework can provide some further guidance to prac-

titioners on how to apply this method more properly to their surveys. Moreover, other aspects of 

responsive design may be applied to the substitution method, such as identifying cases that may 

pose a nonresponse bias risk if they are substituted or not. In another type of application, a simi-

lar procedure was suggested by Peytchev et al. (2010).  

 

 Although in Chapter III the properties of the sampling variance estimates of the mean un-

der the substitution procedure were investigated and compared to strata collapsing technique, 

sampling variance estimation was not the focus of the studies in this dissertation. Moreover, 

there have not been any studies that looked at this problem in the substitution literature. Since 

under a MAR assumption the standard error of the sample mean that uses substitution is approx-



146 
 

imately the same as a complete response standard error estimate, standard techniques, such as 

Taylor Series approximation, can be used. However, variance estimation of substitute estimates 

under non-ignorable nonresponse is still an open problem that deserves further investigations.  

 

 The adjustment methods investigated in Chapter IV assumed a linear relationship be-

tween the survey outcome and the auxiliary covariates used for matching and modeling or cali-

bration. While it has been shown that this assumption is not necessary for the matching proce-

dure in substitution to be successful (Zanutto, 1998), the model and/or calibration adjustments 

for the differences between nonrespondents and their substitutes in covariates not used in match-

ing need developments for non-linear relationships.  

 

All the simulation studies in this dissertation used a normally distributed survey outcome. 

While the general pattern of the results obtained here should follow for other types of variables, 

it is important to confirm this expectation with further simulations or analytical derivation of the 

properties investigated here. Empirical studies using the methods proposed in Chapter IV and V 

should be also conducted to investigate their properties in real settings. Also related to distribu-

tional assumptions, the PPM substitution method developed in Chapter V assumes a Gaussian 

model. Although this method is robust for other forms of continuous variables (Sullivan and 

Adridge, 2015), extensions of this method for binary and categorical data are needed.  

 

 Finally, the studies in this dissertation and previous research on substitution have empha-

sized the properties of linear statistics, such as estimates for population means or proportions. 

This is an important first step for the understanding of the performance of the substitution meth-

ods, but other types of statistics (e.g., quantiles and regression coefficients) need to be addressed 

in future studies of these methods. Moreover, the methods proposed in this dissertation assumed 

a single survey variable and one auxiliary covariate. While these methods can be extended to 

multivariate settings, further investigations of their properties in such applications should be 

conducted.  
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