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ABSTRACT

Electron and Nuclear Spin Dynamics and Coupling in InGaAs

by

Christopher J. Trowbridge

Chair: Vanessa Sih

The profound economic, societal, and scientific advances that have accompanied the devel-

opment of electronic devices for the processing and transmission of information provide a

compelling interest in advancing the state of the art in these fields. Presently, fundamental

limits on the miniaturization of integrated circuit components are being approached, moti-

vating a search for fundamentally new techniques for continued improvement. Devices which

take advantage of electron spin – commonly known as spintronics devices – may provide a

way forward. This dissertation focuses on the development of an understanding of elec-

tron spin transport, dynamics, and coupling to the nuclear spin system in gallium arsenide

(GaAs), as well as the measurement techniques brought to bear in their investigation.

Current-induced electron spin polarization is shown to produce nuclear hyperpolarization

through dynamic nuclear polarization. Saturated nuclear magnetic fields of several millitesla

are generated upon the application of electric field over a timescale of minutes in indium

gallium arsenide (InGaAs) epilayers and measured using optical Larmor magnetometry. We

show that, in contrast to previous demonstrations of current-induced dynamic nuclear po-

larization, the direction of the current relative to the crystal axes and external magnetic

field allows for control over the magnitude and direction of the saturation nuclear field. An
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asymmetry in saturated nuclear magnetic field for anti-parallel currents is found, and as-

cribed to competing electron spin alignment mechanisms which lead to nuclear polarization

which is current-direction independent. The behavior of the saturated nuclear field with

temperature, electric field strength, and external magnetic field strength is measured. An

unexpected asymmetry in measurements of the change in nuclear field from polarization and

depolarization transitions is found and determined to be the result of an unexpected phase

shift in Larmor magnetometric measurements due to previous pulses. Implications for the

measurements of nuclear magnetic fields resulting from the phase shift are discussed.

Time-resolved Faraday rotation (TRFR) measurements, which have proved transforma-

tive in the investigation of spin dynamics in semiconductors, are used to study nuclear

polarization. We find that, in materials with spin lifetimes which are on the order of, or

greater than, the laser repetition time, the collective effect of spin polarization due to the

whole pump pulse train becomes important. A relative phase shift in TRFR measurements

is identified which results from these spins. A closed-form expression which describes this

phase shift is derived and experimentally validated. Numerical methods are used to charac-

terize this phase shift throughout parameter space. A spin lifetime measurement based on

this phase shift is described, and situations in which the model used must be augmented are

discussed.
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CHAPTER I

Introduction, motivation, and organization

Since the development of the transistor in the 1940’s and ’50s, semiconductor devices

have come to dominate electronics. The development of the integrated circuit in the late

’50s paved the way for the development of computers based on solid state circuits. Since

then, computers have advanced at an astounding rate. This rapid advancement has played a

large part in driving the global economy, sparked a social revolution, and changed the way we

communicate, store, and access information. Relatively inexpensive and fast computers have

also lead to a paradigm shift in how science is done. Computer modeling and simulations

allow us a glimpse at the solutions to problems that are analytically intractable, and have

made possible experiments that require the generation and analysis of vast quantities of

data, such as high energy particle physics experiments and astronomical observations.

In 1965, Intel co-founder Gordon Moore posited in an article written for Electronics Mag-

azine that the number of components on an integrated circuit was on pace to roughly double

every 18 months. ‘Moore’s law’, as it was dubbed, has remained remarkably prescient to this

day, even 50 years later. At the time, integrated circuits could be constructed which con-

sisted of approximately 1000 components. Today, consumer-level chips are mass-produced

that contain over 1 billion transistors. But as we continue to shrink components to squeeze

more transistors into a given area, we are approaching fundamental limits of the CMOS field

effect transistor. This motivates the study of new ways of encoding, moving, and processing

1



information.

A promising candidate for next-generation information technology exists in Spintronics

[1]. These devices will take advantage of electron spin as a means for moving, storing,

and processing information. In principle, spin-based circuits have the potential to operate

faster than charge-based circuits, while simultaneously dissipating significantly less power [2].

Recently, magnetic random access memory (MRAM) has come onto the scene. MRAM is

based on giant magnetoresistance, which results from spin-dependent scattering of electrons

when entering a ferromagnetic material. The 2007 Nobel prize in physics was awarded to Fert

and Grünberg for their discovery of giant magnetoresistance [3, 4]. Spin-based field effect

transistors, first proposed by Datta and Das in 1990 [5], and very recently demonstrated

in InGaAs 2-dimensional electron gases using quantum point contacts to inject and detect

spin polarization [6], would provide an ideal interface between magnetic storage technologies

and computational devices. Beyond conventional spintronics, spins offer an ideal two-level

system with which to implement a truly quantum computer.

Spintronics and quantum computation using electron spins in solid state devices will both

require a profound understanding of spin dynamics in semiconductors. In this dissertation,

various aspects of spin dynamics, transport, and coupling to the nuclear spin system in

GaAs and the ternary alloy InGaAs will be investigated. In Chapter II, the most relevant

physical, electronic, and optical properties of the materials used are presented and discussed.

In Chapter III, details of the experimental apparatus and methodologies are developed. The

coupling between the electron and nuclear spin systems is explored in Chapter IV. Finally,

corrections to commonly used time-resolved Faraday rotation measurements resulting from

previous pulses are presented in Chapter. V.
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CHAPTER II

Electronic and optical properties of GaAs and InGaAs

Though the vast majority of integrated circuits are fabricated on silicon today, the III-

V semiconductor gallium arsenide has many advantages over silicon. GaAs has a higher

electron mobility and saturated electron velocity, meaning that transistors built in GaAs

can operate at a higher frequency than the corresponding transistor in silicon. Its wider

band gap also means that thermal excitation of electrons to the conduction band is less of

a concern at typical operating temperatures. GaAs has a direct band gap, which means

that it is much more efficient at absorbing and emitting light, as transitions from the band

minimum do not require interactions with a phonon to conserve momentum. The optical

selection rules also support straight-forward optical injection and detection of conduction

band electron spin polarization. However, except for in niche applications, GaAs cannot

compete with the low price of silicon-based electronics due to the lack of economies of scale

and relatively high cost of raw materials. Additionally, GaAs does not possess a native oxide,

complicating design considerations for chips built on GaAs.

GaAs has zincblende crystal structure, which means all bonds are tetrahedral, and each

gallium atom bonds with four arsenic atoms and vice versa. This structure can also be

described as two inter-penetrating face-centered cubic (FCC) lattices, one of gallium and

another of arsenic. The unit cell is also face-centered cubic, which means that the reciprocal

lattice is body-centered cubic [7]. The unit cell is shown in Fig. 2.1. In this chapter, the most

3



Figure 2.1: Unit cell of the zincblende crystal structure. Each gallium atom (yellow) is
bonded to four arsenic atoms (blue) and vice versa. The unit cell contains 8 atoms total,
including four of each species. Figure adapted from Ref. [8] with permission.

salient physical, electronic, and optical properties of GaAs to the experiments and results

presented in later chapters will be introduced.

2.1 GaAs band structure

For the purposes of understanding the physical basis upon which our measurements rest,

it is sufficient to use the nearly-free electron and mean field approximations when describing

the effects of the GaAs lattice on the electrons within the material. With the modest

electric fields and low doping densities we will encounter in this work, the bands may be

approximated as parabolic, with band dispersions calculated using first-order perturbation

theory due to the k · p term in the Hamiltonian. In this section, the chief result will be

outlined; primarily, that the effect of the lattice can be included by introducing an effective

mass for the electrons which differs from its vacuum value.

We start with the mean field approximation. The assumption here is that all electrons

experience the same average potential, which is periodic and matches the symmetries of

the crystal. Neglecting electron-electron interactions, all electron states are solutions of the

4



following single-electron Hamiltonian:

H1eΨ(r) =

(

p2

2m
+ V (r)

)

Ψ(r) = EnΨ(r) (2.1)

We now make use of the fact that in a periodic potential, the single electron states Ψ can

be written as Bloch states, of the form:

Ψnk = eik·runk(r) (2.2)

where k is the electron wave vector in the first Brillouin zone1, n is the band index, and unk

is a function which has the same periodicity as the lattice [9]. Plugging this form for the

single-electron states into the Hamiltonian in Eqn. 2.1, we arrive at the following expression,

whose solution generates the periodic functions unk:

(

p2

2m
+

!k · p
m

+
!2k2

2m
+ V

)

unk = Enkunk (2.3)

The strategy employed in the perturbative approach in the k ·p method is to solve Eqn.

2.3 for k = 0, and then treat the case of non-zero k as a perturbation to the solution found

at k = 0. With k = 0, Eqn. 2.3 becomes:

(

p2

2m
+ V

)

unk = En0un0 (2.4)

Since the functions un0 form a complete orthonormal basis, we can calculate the perturbed

Bloch functions in terms of the unperturbed solution:

unk = un0 +
!

m

∑

n′ ̸=n

⟨un0|k · p|un′0⟩
En0 − En′0

un′0 (2.5)

1The first Brillouin zone is understood to be the Wigner-Seitz unit cell of the reciprocal lattice, whose
lattice vectors are defined by bi = 2π (aj×ak)

(a1×a2)·a3
and cyclic permutations of the indices i, j, and k, where the

vectors a are the lattice vectors in real space. The term in the denominator is the volume of the primitive
cell in real space.
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Figure 2.2: GaAs band structure near the Γ point. Three valance band states are present;
the heavy hole (HH) and light hole (LH) bands are degenerate at k = 0, while the split-off
(SO) band lies below the HH and LH bands by ∆SO = 0.341 eV. GaAs has a direct band
gap of 1.519 eV. Splittings and effective masses (m∗ ∝ (d2E/dk2)−1) are plotted to scale.
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These perturbed solutions will have associated with them an energy Enk given by:

Enk = En0 +
!2k2

2m
+

!2

m2

∑

n′ ̸=n

|⟨un0|k · p|un′0⟩|2

En0 −En′0

(2.6)

The key result is that this dispersion relation can be rewritten as a simple parabolic dispersion

with an effective electron mass that differs from its vacuum value. Written in this form, the

energy is given by:

Enk = En0 +
!2k2

2m∗ (2.7)

where m∗ is the effective mass, defined by:

1

m∗ =
1

m
+

2

k2m2

∑

n′ ̸=n

|⟨un0|k · p|un′0⟩|2

En0 − En′0

(2.8)

The process of calculating the effective mass for electrons in the valence band is largely

similar, however degenerate perturbation theory must be used as the heavy and light hole

states are degenerate at the Γ point. The valence band is characterized by p-like Bloch

functions with orbital angular momentum l = 1, which, when combined with the spin, gives

a total angular momentum j = l + s = 3/2. A third valance band exists, known as the

split-off band, which sits below the heavy and light hole bands at the Γ point by an energy

∆SO = 0.341 eV. Due to the large detuning from the heavy and light hole states, we will

neglect the split-off band states. Additionally, it should be noted that the effective mass

for valence band hole states is found to be negative; that is, energy is maximized at k =

0, so that holes tend to accumulate at the top of the valence band near the Γ point. The

approximate band structure near the Γ point arrived at through first-order k · p is shown in

Fig. 2.2.
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Parameter GaAs In0.04Ga0.96As InAs C

EG 1.519 1.457 0.417 0.477
a 5.6533 Å 5.6695 Å 6.0583 Å 0

m∗
cb 0.067 0.065 0.026 0.0091

m∗
LH 0.090 0.087 0.027 0.0202

m∗
HH 0.35 0.35 0.33 -0.145

Table 2.1: Band Gap, lattice constant, effective masses, and bowing parameter C for GaAs,
InAs, and the ternary alloy In0.04Ga0.96As used in measurements of dynamic nuclear polar-
ization presented in Chapter IV [10].

2.2 InGaAs ternary alloy

For many of the experiments presented here, we use a dilute ternary alloy of InxGa1−xAs

with x = 4% which is grown by molecular beam epitaxy atop a semi-insulating substrate.

There are two primary considerations that motivate the use of this material. First, the band

gap of the alloy is smaller than that in GaAs, so that the substrate appears transparent to

the optical beams used to inject and detect spin polarizations. Second, the differing lattice

constants between the GaAs substrate and InGaAs grown on top of it leads to biaxial strain.

This strain leads to a k-dependent effective magnetic field which couples to the electron spin.

The physical properties of ternary alloys can be approximated as linear interpolations

between the two binary materials which make up the alloy with a ‘bowing parameter’ which

can be considered a first-order correction to errors in this linear interpolation [10]. For some

physical parameter P with value PA in material A and PB in material B, the value of P in

material AxB1−x is given by:

PAxB1−x = xPA + (1− x)PB + x(1− x)C (2.9)

where C is the bowing parameter. Table 2.1 includes values of important material parameters

for GaAs, InAs, and InxGa1−xAs with x = 4%.
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2.3 Spin-orbit coupling

When electrons move throughout the crystal, lattice potential gradients in the lab frame

are seen partially as magnetic fields in the electron rest frame due to the Lorentz transfor-

mation of the fields. The magnetic field in the electron frame B′ due to an electric field in

the lab frame E can be calculated from [11]:

B′ = −
γ

mc2
p×E (2.10)

where γ is the Lorentz factor given by:

γ =
1

√

1− (vc )
2

(2.11)

This magnetic field is coupled to the electron spin, giving rise to the following term in the

Hamiltonian:

HSOC =
!2

4m∗2c2
(∇V × k) · σ (2.12)

The presence of a spin-orbit field can be understood as a result of the breaking of a spatial

inversion symmetry. In situations where the system is invariant under spatial inversion, it

is clear that it must also be the case that the energy for electrons with wavevector k is the

same as that for electrons with wavevector −k, or E(k) = E(−k). Kramer’s degeneracy

states that energies should always be invariant under time reversal [12]. Including the spin

of the electrons, which are flipped under time reversal, this means that E(k, ↑) = E(−k, ↓).

Taken together, these two symmetries imply that E(k, ↑) = E(k, ↓). Breaking of inversion

symmetry, however, means that this equality does not hold away from k = 0. In such

a situation, there exists a k-dependent splitting between the spin states. This splitting
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appears in the Hamiltonian as if it were a k-dependent effective magnetic field:

Beff = −
!3

4g∗m∗2c2µB
(∇V × k) (2.13)

HSOC = −µe ·Beff (2.14)

In the following sections, the spin-orbit field resulting from various types of inversion

symmetry breaking are discussed.

2.3.1 Dresselhaus field

In GaAs, and indeed all materials with zincblende crystal structure, there exists a bulk

inversion asymmetry in the material. This asymmetry can be understood as resulting from

a breaking of inversion symmetry at the point along a bond midway between a Ga and As

nucleus. At this point, there is clearly a breaking of inversion symmetry, as an electron

moving along the bond sees a Ga nucleus if it’s traveling in one direction and an As nucleus

if it’s traveling in the opposite direction. This bulk inversion asymmetry, first discussed in

detail in Ref. [13], gives rise to the so-called Dresselhaus field. This field can be estimated

using the perturbative k · p method, and to lowest order, is found to be2:

BD = γ[kx(k
2
y − k2

z)x̂+ ky(k
2
z − k2

x)ŷ + kz(k
2
x − k2

y)ẑ] (2.15)

where γ is the cubic Dresselhaus coefficient, a material-specific parameter.

For our purposes, the electrons are confined within the InGaAs epilayer, so that the

average electron momentum along ẑ, ⟨kz⟩, is zero. Averaging over all electrons, then, for

electron motion in the sample plane, we have:

BD = γ[kxk
2
yx̂− kyk

2
xŷ] (2.16)

2Here, x̂, ŷ, and ẑ are defined to be parallel to [100], [010], and [001], respectively
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Cubic Dresselhaus Field

k||[010]

k||[100]

[110]

[110]

Figure 2.3: Cubic Dresselhaus field resulting from bulk inversion asymmetry in GaAs plotted
in momentum space. Arrows show the direction and relative strength of the spin orbit field
for electrons with momentum corresponding to the location of the arrow.

This field is plotted in Fig. 2.3. Of particular importance in future sections is the field for

electrons moving along [110] and [11̄0]. In both directions, the field is perpendicular to the

electron momentum.

2.3.2 Bychkov-Rashba field

Next, we consider so-called structural inversion asymmetry. This is understood to result

from asymmetry due to heterojunctions in the growth axis. These will result in built-in

electric fields along the growth direction. When these electric fields are transformed into the

electron rest frame, they result in the Bychkov-Rashba field, which is frequently referred to

as the Rashba field [14]. This field can be tuned by applying an out-of-plane voltage across

the sample. This technique was proposed as a potential gating mechanism for use in the

Datta-Das spin modulator [5].

The Rashba field is isotropic for in-plane momenta, following the cylindrical symmetry

of the electric fields from which it originates. It can be written as:

BR = α[kyx̂− kxŷ] (2.17)
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Rashba Field

k||[010]

k||[100]

[110]

[110]

Figure 2.4: Rashba spin orbit field resulting from structural inversion asymmetry plotted in
momentum space.

where α is the Rashba coefficient. The field is plotted in Fig. 2.4. Again, we find that

for electrons with momentum along [110] or [11̄0], the Rashba field is perpendicular to the

direction of electron momentum.

2.3.3 Strain-induced spin-orbit coupling

The presence of strain in the material leads to further spin-orbit coupling [15, 16, 17].

Strain within the material is characterized by the strain tensor
↔
ε , defined by:

εij =
1

2

(

∂ui

∂rj
+
∂uj

∂ri

)

(2.18)

The InGaAs material discussed in this dissertation is strained due to the fact that there is

a small lattice mismatch with the GaAs substrate on which it is grown. Since the lattice

constant for the InGaAs is slightly larger than the lattice constant for GaAs, the InGaAs

will be under compressive strain in the sample plane. This compressive strain results in

an elongating of the lattice in the vertical direction, leading to biaxial strain. This will

contribute a spin-orbit coupling term to the Hamiltonian of the form:

Hbiaxial = D
[

(εyy − εzz)kxσx + (εzz − εxx)kyσy + (εxx − εyy)kzσz
]

(2.19)
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(a) (b)

Uniaxial Field Biaxial Field

k||[010]

k||[100]

[110]

[110]

k||[100]

[110]

[110]

k||[010]

Figure 2.5: Plots showing the k-dependent effective magnetic fields arising from uniaxial
(a) and biaxial (b) strain. The uniaxial strain spin-orbit field is identical in form to the
Rashba field. The biaxial field shares the same symmetry as the cubic Dresselhaus field, but
differs in magnitude and direction. Both spin-orbit fields are perpendicular to the electron
momentum for motion along [110] and [11̄0].

where D is a material parameter. The compressive strain in the sample plane will be the

same along the x̂ and ŷ axes, so that εxx = εyy. Any uniaxial strain in the material adds

another term to the Hamiltonian as well, given by:

Huniaxial =
C3

2

[

(εzxkz − εxyky)σx + (εxykx − εyzkz)σy + (εyzky − εzxkz)σz
]

(2.20)

We again work under the assumption that ⟨kz⟩ = 0, so that these terms lead to the

following spin-orbit fields for in-plane momentum:

Bbiaxial = β(kxx̂− kyŷ) (2.21)

Buniaxial = δ(kyx̂− kxŷ) (2.22)

The uniaxial and biaxial strain spin orbit fields are plotted in Fig. 2.5, panels (a) and

(b), respectively.

We may now combine all the spin-orbit fields discussed. These fields have two principle

directional dependencies, corresponding to Rashba and Dresselhaus forms. The total spin-
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orbit field is given by:

BSOC(k) =
(

(α + δ)ky + (β + k2
y)kx

)

x̂−
(

(α + δ)kx + (β + γk2
x)ky

)

ŷ (2.23)

Because of the modest electric fields and low doping levels, we will assume that k is small,

so that the cubic Dresselhaus field may be neglected and γ is taken to be 0. It should also be

noted that for all the sources of spin-orbit coupling presented here, the spin orbit field will

be perpendicular to the electron momentum when electrons are traveling along the [110] and

[11̄0] axes. For the remainder of this dissertation, we will restrict ourselves to considering

electron motion along those directions.

2.4 Optical properties of GaAs

2.4.1 Selection rules

In the dipole approximation, transition rates from a valence band state |ψvb⟩ to a con-

duction band state |ψcb⟩ are connected by the electric dipole operator, and given by Fermi’s

golden rule [18]:

wvb→cb =
2π

!

∣

∣

∣
⟨ψcb|− er⃗ · E⃗|ψvb⟩

∣

∣

∣

2

δ(Eg − !ω) (2.24)

It is convenient here to use symmetry arguments and invoke the well-developed methods of

atomic physics. In the case of hydrogen, the Coulomb potential with which the electron inter-

acts is spherically symmetric. At first glance, the presence of the crystal in a semiconductor

breaks spherical symmetry. Fortunately, while we can no longer enforce that our solutions

behave as members of the continuous rotational symmetry group, we can still appeal to a

softer form of symmetry where solutions must possess the same symmetries as the crystal.

We again express electron energy eigenstates in the periodic lattice potential as Bloch states

[7]:

Ψn,m,k(r) = eik·run,m,k(r) (2.25)
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where k is the quasimomentum, n the band index, and u will be invariant under all the

crystal symmetry operations. We have now added m, the projection of the spin of the

electron onto the z axis, to the notation for u. While care is required, discrete symmetry

allows many methods developed in the context of atomic physics to be brought to bear in

crystals as well.

For conduction band states, we may approximate u as consisting of the spin and orbital

angular momentum parts separately [15]

u 1
2
(r⃗) = S ↑, u− 1

2
(r⃗) = S ↓ (2.26)

Since the conduction band orbitals have L = 0, S above will have the same symmetry as

the lowest order spherical harmonic, Y00 [19]. The valence band states have L = 1, and

are thus complicated by the nontrivial spin-orbit coupling term, Hso = λL⃗ · S⃗. Therefore,

l and s are no longer good quantum numbers and instead j, the total angular momentum,

must be used. The Clebsch-Gordon coefficients can be used to express the eigenstates as

combinations of l and s states [18]. Since L = 1 and S = 1
2 , J will will take on the values

L+ S, L+ S − 1, . . . , |L− S| while mj = −J,−J + 1, . . . , J − 1, J . The following states are

arrived at from tables of Clebsch-Gordon coefficients [20]:

Heavy and Light Hole Bands: u
mj

3/2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|32 ,
3
2⟩ = |1, 1⟩ ↑

|32 ,
1
2⟩ =

1√
3

[

|1,−1⟩ ↓ +
√
2|1, 0⟩ ↑

]

|32 ,−
1
2⟩ =

1√
3

[

|1,−1⟩ ↑ +
√
2|1, 0⟩ ↓

]

|32 ,−
3
2⟩ = |1,−1⟩ ↓

Split-off Holes u
mj

1/2 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|1/2, 1/2⟩ = 1√
3

[

|1, 0⟩ ↑ −
√
2|1, 1⟩ ↓

]

|1/2,−1/2⟩ = 1√
3

[

|1, 0⟩ ↓ −
√
2|1,−1⟩ ↑

]

These expressions offer a convenient avenue for calculating transition matrix elements. We
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are interested only in the relative transition strengths here, so common constants will be

dropped. Circularly polarized light tuned to the band gap energy (ωg = Eg/!) is incident

upon the sample causing interband transitions to the conduction band. It is assumed that

∆so, as defined above, is large compared to the incident light linewidth so that we may

neglect transitions from the split-off band. Starting with right-circularly polarized light

(σ+), the electric field polarization vector is ê = 1√
2
(x̂ + iŷ) and the position unit vector is

r̂ = sin θ cosφx̂+ sin θ sin φŷ + cos θẑ, so that:

−er⃗ · E⃗ = −erE

[

(sin θ cosφx̂+ sin θ sin φŷ + cos θẑ) · (
1√
2
(x̂± iŷ)

]

=
−erE√

2
(sin θ cosφ± i sin θ sin φ)

∼ ∓reE Y ±1
1

Expressing the spherical harmonics as:

|1,±1⟩ ∼ ∓ sin(θ)exp(±iφ)

|1, 0⟩ ∼ cos(θ)

and restricting ourselves to σ+ light, we may now directly calculate transition matrix ele-

ments. Starting with the |3/2, 3/2⟩vb → |1/2, 1/2 >cb transition, we seek to calculate:

⟨0, 0|⟨↑ |− eEr Y 1
1 |1, 1⟩| ↑⟩ = −erE ⟨0, 0|Y 1

1 |1, 1⟩⟨↑ | ↑⟩

=

2π
∫

0

dφ

π
∫

0

sin θ dθ Y 0
0 Y 1

1 Y 1
1

= 0
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–1/2 +1/2

–1/2 +1/2 +3/2–3/2

σ+ σ+ σ– σ–

Conduction Band l = 0, j = 1/2

Valence Band l = 1, j = 3/2

3 3
l 1

mj

mj

Figure 2.6: Selection rules for σ± light in GaAs, showing dipole-allowed transitions and their
relative transition strengths.

Computing other matrix elements, the following values are found:

⟨S ↑ |Y 1
1 |3/2, 3/2⟩ = 0 ; ⟨S ↑ |Y 1

1 |3/2, 1/2⟩ = 0

⟨S ↑ |Y 1
1 |3/2,−1/2⟩ = α ; ⟨S ↑ |Y 1

1 |3/2,−3/2⟩ = 0

⟨S ↓ |Y 1
1 |3/2, 3/2⟩ = 0 ; ⟨S ↓ |Y 1

1 |3/2, 1/2⟩ = 0

⟨S ↓ |Y 1
1 |3/2,−1/2⟩ = 0 ; ⟨S ↓ |Y 1

1 |3/2,−3/2⟩ =
√
3α

where α is a constant. For left-circularly polarized light σ− the matrix elements are calculated

as:

⟨S ↑ |Y −1
1 |3/2, 3/2⟩ = −

√
3α ; ⟨S ↑ |Y −1

1 |3/2, 1/2⟩ = 0

⟨S ↑ |Y −1
1 |3/2,−1/2⟩ = 0 ; ⟨S ↑ |Y −1

1 |3/2,−3/2⟩ = 0

⟨S ↓ |Y −1
1 |3/2, 3/2⟩ = 0 ; ⟨S ↓ |Y −1

1 |3/2, 1/2⟩ = −α

⟨S ↓ |Y −1
1 |3/2,−1/2⟩ = 0 ; ⟨S ↓ |Y −1

1 |3/2,−3/2⟩ = 0

The possible transitions and their relative strengths (which are proportional to the square

of the matrix element) for σ± light are depicted in Fig. 2.6.
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2.4.2 Optical injection

Consider the case of σ+ illumination in undoped GaAs. At zero temperature, all valence

band states will be filled while all conduction band states will be empty. Because the transi-

tion |3/2,−3/2⟩vb → |1/2,−1/2⟩cb is three times more likely to occur than |3/2,−1/2⟩vb →

|1/2, 1/2⟩vb, the electrons excited to the conduction band will have a degree of spin polar-

ization of -1/2 with the axis of quantization defined by the photon wave vector, as defined

by:

P =
n↑ − n↓

n↑ + n↓
(2.27)

Due to spin orbit interactions, the hole spin lifetime is short (∼ 1 ps)[15]. Once the holes

have depolarized, residual spin polarization will be due to conduction band electrons. With

no doping, the spin lifetime will be limited to the electron-hole recombination time. Mea-

surements of the contribution to the total spin polarization resulting from the optical carriers

in GaAs presented in Chapter V give a recombination time of 78 ps at 10 K, and the re-

combination time is assumed to be on the same order for the materials and experimental

parameters used in this dissertation.

The introduction of n-type dopants into the material allows polarization of conduction

band electrons to exceed the recombination time, but decreases the degree of polarization of

conduction band electrons immediately after absorption. If the conduction band electrons

are assumed to be unpolarized before the arrival of a circularly polarized pump pulse, then

after absorption the number density of electrons in each spin state becomes:

n↑ =
nD

2
+

nO

4
n↓ =

nD

2
+

3nO

4
(2.28)

where nD is the doping density and nO is the density of optically generated carriers. This

leads to a degree of polarization of:

P =
(nD

2 + nO

4 )− (nD

2 + 3nO

4 )

nO + nD
= −

1

2

nO

(nO + nD)
(2.29)
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Since the hole spin lifetime is much shorter than the radiative recombination time, it is

a reasonable assumption that recombination of each spin species occurs at a rate which is

proportional to the number of electrons in each state (that is, the holes recombine randomly).

This means that the degree of polarization remains after recombination, but the total carrier

density returns to the doping density. After this process, we are left with a spin-polarization

in the conduction band.

2.5 Optical spin detection

There exist two commonly used optical methods for detecting spin polarization of con-

duction band electrons. The first of these relies on the detection of the degree of circular

polarization of emitted light, which will be proportional to the spin polarization along the

wave vector of the emitted light. This method was first demonstrated in GaSb by Parsons

in 1969 [21], and shortly thereafter in GaAs by Ekimov and Safarov [22].

After excitation, hole spins rapidly dephase due to spin orbit interactions. Any remaining

polarization after that time therefore resides in electron spins. The selection rules discussed

above may be used again to show that photoluminescence will have a net circular polarization.

Written in terms of the spin state population of the conduction band, the relative transition

strengths for the available transitions result in emitted intensities of:

Iσ+ = n+ + 3n−

Iσ− = 3n+ + n−

By measuring the relative intensities of σ+ and σ− photoluminescence, it is possible to

measure spin polarization in the direction parallel to the propagation of the light. This

technique can be used in concert with streak cameras to yield time-resolved measurements

of spin-polarized recombination.

When a magnetic field transverse to the direction in which photoluminescence is collected
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–1/2 +1/2
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Conduction Band l = 0, j = 1/2

Figure 2.7: Selection rules in the case of spin-polarized conduction band electrons. The
absorption edge for transitions to the conduction band with mj = +1/2 is shifted to higher
energy due to state filling at the bottom of the band.

is applied, spins will precess about the magnetic field, which leads to a diminishing of the

degree of polarization of the emitted light. This is known as the Hanlé effect, which was

first discovered in emission spectra of polarized atoms in 1924 [23]. The change in photolu-

minescence polarization with magnetic field can be used to measure the product of the spin

lifetime and the precession frequency.

2.5.1 Faraday and Kerr rotation

Measurements of photoluminescence polarization are limited by the fact that the spin

is measurable only when carriers recombine. With the introduction of ultra-fast optical

techniques, new measurements based upon Faraday or Kerr rotation have afforded a new

window into rapid dynamical spin processes. The Faraday effect, discovered in 1845 by

Michael Faraday [24], is the rotation of a linearly polarized beam in a material with a

magnetic field parallel to the direction of light propagation. If the rotation takes place upon

reflection from a material instead of transmission through it, it is typically referred to as

Kerr rotation, though the mechanism is the same in each case.

Faraday rotation which occurs near the absorption edge when the conduction band elec-

trons are spin polarized can be understood as a result of differing Fermi energies for each
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Figure 2.8: A difference in absorption for opposite circular polarizations (left) leads to a
difference in their indices of refraction (right). This circular birefringence will rotate the
polarization of a linearly polarized beam as it travels through the material. Figure adapted
from Ref. [17] with permission.

conduction band spin state. State filling in the spin sub-band with higher occupation means

that interband transitions which excite an electron to that state require a higher photon

energy than for the low-occupation sub-band. This is shown diagramatically in Fig. 2.7.

Here, state filling in the spin up state shifts the absorption edge for interband transitions

resulting in a spin-up electron in the conduction band to higher photon energy. Near the

band edge, this results in a circular dichroism; that is, one circular polarization is absorbed

more readily than the other. The left panel in Fig. 2.8 shows such a situation. Here, the

absorption at and above the band gap is assumed to follow the density of states, which is

proportional to
√

E −Eg, while absorption below the band gap results from the Urbach tail

[25], dropping off exponentially away from the band edge.

In systems which obey causality, the Kramers-Kronig relations establish a relationship

between the real part part of the permittivity (which is the square of the index of refraction)

and the imaginary part (which is related to absorption in the material) [11, 26, 27]. The
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relationship between the real and imaginary parts of the permittivity are as follows:

ϵ1(ω) = 1 +
1

π
P

∞
∫

−∞

ϵ2(ω′) dω′

ω′ − ω

ϵ2(ω) =
−1

π
P

∞
∫

−∞

ϵ1(ω′)− 1

ω′ − ω
dω′

Here, P indicates that the principal part of the integrals should be taken. As a result of

these constraints, the circular dichroism will lead to a circular birefringence. The calculated

index of refraction for each circular polarization is plotted in the right panel of Fig. 2.8.

The energy-dependent circular birefringence, which is the difference in indices of refraction,

is plotted in black.

To understand the result of the circular dichroism and birefringence on a linearly polarized

beam, we make use of the following definitions:

σ+ =
x̂+ iŷ√

2

σ− =
x̂− iŷ√

2

⇐⇒
x̂ =

σ+ + σ−
√
2

ŷ =
σ+ − σ−

i
√
2

(2.30)

Light which is polarized along x̂ can be written as an equal admixture of counter-rotating

circularly polarized beams. After passing through a material exhibiting circular dichroism,

there will be an unequal amount of each circularly polarized component remaining. This

leads to a non-zero ellipticity in the transmitted or reflected beam, which can be used directly

as a measure of the conduction band electron spin polarization along ẑ. Similarly, in the

case of circularly birefringence, there will be a phase difference between the two circular

polarization components of a linearly polarized beam:

x̂ =
σ+ + σ−

√
2

=⇒
eiφ/2σ+ + e−iφ/2σ−

√
2

=
cos(φ/2)x̂+ sin(φ/2)ŷ√

2
(2.31)

This relative phase shift between the σ+ and σ− components rotates the linearly polarized
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beam. The angle of rotation is half the total phase shift φ, which in turn depends on the

magnitude of the k̂-parallel spin polarization. It is this rotation of the linear polarization of

an incident beam that will be used to measure spin polarization in the following chapters.

2.6 Spin dynamics in GaAs

2.6.1 Free electrons

When a magnetic dipole is subjected to an external magnetic field, a torque is generated

on the dipole, given by τ = µ × B. Since the electron spin moment is tied to the intrinsic

spin angular momentum, this torque leads to a precession governed by τ = dL/dt where L

is the spin angular momentum. Since work must be done to rotate the dipole around an axis

perpendicular to the external magnetic field, there is a mechanical energy associated with

the relative alignment of the two:

U = −µ ·B (2.32)

In quantum theory, this mechanical energy becomes a term in the Hamiltonian given by:

HZ = gµBs ·B (2.33)

where g is the Landé g-factor and µB is the Bohr magneton. In matrix form, the spin

operator s can be expressed in terms of the Pauli matrices as s = σ/2, with:

σx =

⎛

⎜

⎝

0 1

1 0

⎞

⎟

⎠
σy =

⎛

⎜

⎝

0 −i

i 0

⎞

⎟

⎠
σz =

⎛

⎜

⎝

1 0

0 −1

⎞

⎟

⎠
(2.34)

which act on a vector whose components are the energy eigenstates. These eigenstates
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correspond to spin up and spin down states:

| ↑⟩ =

⎛

⎜

⎝

1

0

⎞

⎟

⎠
| ↓⟩ =

⎛

⎜

⎝

0

1

⎞

⎟

⎠
(2.35)

We now consider the effect of a magnetic field B = Bẑ. sz operates on the spin-up and

down states as follows:

ŝz| ↑⟩ =
1

2
| ↑⟩ (2.36)

ŝz| ↓⟩ = −
1

2
| ↓⟩ (2.37)

Since sz commutes with H , spin eigenstates will also be energy eigenstates [18]. Consider a

spin state which is initially along x̂:

|ψ(t = 0)⟩ =
1√
2

⎛

⎜

⎝

1

1

⎞

⎟

⎠
(2.38)

This corresponds to an eigenstate of the ŝx operator, where ŝx = σ̂x/2 Using the time

evolution operator, the time dependence of the state is calculated as follows:

|ψ(t)⟩ = exp(−iHt/!)|ψ(t = 0)⟩

=
1√
2

⎛

⎜

⎝

exp(−iΩt/2)

exp(iΩt/2)

⎞

⎟

⎠

where Ω = gµBB/!, which is known as the Larmor precession frequency. Expectation values
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for sx and sy may then be calculated as:

⟨sx⟩ = ⟨ψ(t)|sx|ψ(t)⟩

=
1

2
cosΩt

⟨sy⟩ = ⟨ψ(t)|sy|ψ(t)⟩

=
1

2
sinΩt

We see that spins that are aligned perpendicular to the magnetic field will precess around

it at a rate proportional to the field strength and the Landé g factor. In free space, the g

factor is found to be g0 = 2.002319314. In much the same way that the presence of the

lattice can be accounted for in the nearly-free electron model by the introduction of an

effective mass, the presence of the lattice on the Zeeman splitting can be incorporated by

the introduction of an effective g factor. This fact is discussed in detail in Ref. [28].

The above analysis can be repeated for arbitrary initial states and magnetic fields. We

find in this case that the spin vector s(t) can be found by solving:

ds

dt
= Ω× s (2.39)

Of course, this is precisely the classical equation, which is what Ehrenfest’s theorem pre-

scribes [18]. Though this has been derived for a single spin, this will also be the time evolution

of the macroscopic magnetization of an ensemble of identical non-interacting spins.

2.6.2 Bloch equations

When there is relaxation in the system, the time evolution of the magnetization must be

modified to reflect this. Though they are an approximation, the phenomenological equations

proposed by Bloch provide intuition in the absence of a fully rigorous treatment of the

specific nature of relaxation in the system. The Bloch equations add two new terms to the
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time evolution equation for the expectation values of the spin operators found in Eqn. 2.39.

First, the component of the initial magnetization which is parallel to the external magnetic

field will relax towards its thermodynamic equilibrium value with a lifetime T1, known as

the longitudinal relaxation time. Here, it is assumed that the equilibrium value is that

prescribed by the Maxwell-Boltzmann distribution when the spin system is in contact with

a reservoir at temperature T 3. The Bloch equations also include a term which results in a

relaxation of the magnetization perpendicular to the external magnitude with a lifetime T2,

known as the transverse relaxation time. With these two terms, the vectorial form of the

phenomenological Bloch equation becomes:

ds

dt
= Ω× s−

(sz − s0)ẑ

T1
−

sxx̂+ syŷ

T2
(2.40)

In anticipation of upcoming sections, it is useful to express the depolarization terms in

tensor notation, so that the Bloch equation becomes:

ds

dt
= Ω× s−

↔
Γ · s+

s0
T1

ẑ (2.41)

with the depolarization tensor
↔
Γ given by:

↔
Γ =

⎛

⎜

⎜

⎜

⎜

⎝

1
T2

0 0

0 1
T2

0

0 0 1
T1

⎞

⎟

⎟

⎟

⎟

⎠

(2.42)

If the ensemble spins are not identical, but have some distribution of precession frequen-

cies due to the presence of local fields, the transverse magnetization will decay more rapidly.

In this case, the transverse lifetime is referred to as T ∗
2 , the inhomogeneous dephasing time.

This type of dephasing is not irreversible, and can be reversed using a train of pulses which

are resonant with the electron spin splitting [27]. Additionally, as we will see shortly, the

3For more details, see Sec. 4.2.3, and for a properly rigorous discussion, see Chapter 3 of Ref. [26]

26



decay mechanisms need not be isotropic. In the following sections, the two principle sources

of depolarization of electron spins in the experiments contained within this dissertation are

discussed.

2.6.3 D’yakonov-Perel relaxation

Due to the presence of the k-dependent effective magnetic fields, as electrons with non-

zero k travel through the material, they will undergo precession about the internal fields.

As the electrons scatter, their k vectors will be randomized, and so will their axes and

frequencies of precession. This results in depolarization of the electron spins [29]. Figure 2.9

panel (a) shows this process diagramatically for a single electron which moves randomly. This

mechanism, referred to as the D’yakonov-Perel (DP) relaxation, results in the most efficient

depolarization when the momentum scattering time is long, as electrons will undergo more

precession between scattering events. The DP mechanism will therefore be most efficient at

low temperatures, when scattering times are longer.

In general, relaxation resulting from the DP mechanism is anisotropic [15] due to the

anisotropic nature of the internal fields. In its most general form, the relaxation rate, ex-

pressed in the basis defined by [100], [010], and [001] is found to be [15, 17]

↔
Γ = Γ0(vd)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 +
(

α
β

)2
2α
β 0

2α
β 1 +

(

α
β

)2

0

0 0 2

(

1 +
(

α
β

)2
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2.43)

where Γ0 is a constant which depends on the electron drift velocity, and α and β are the

Rashba and linear Dresselhaus spin-orbit field coefficients, respectively. This tensor is di-

agonalized by a rotation into the basis defined by [110], [11̄0], and [001], where it becomes:
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Figure 2.9: Diagramatic representations of the D’yakonov-Perel (left) and Elliott-Yafet re-
laxation mechanisms. Figures based on those found in Ref. [30].

↔
Γ = Γ0(vd)
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(2.44)

While the fact that the decay is anisotropic is easily handled by the tensor notation used

here, it significantly complicates the analysis and typically precludes analytical solutions to

Eqn. 2.41 except in simple situations. Of particular importance is that, even in the absence

of precession, an initial polarization which does not lie along one of the principle axes of

the decay tensor will end up rotating as it decays. It therefore significantly simplifies the

analysis if the spin polarization always lies along these principle axes.

2.6.4 Elliot-Yafet relaxation

Because of the spin-orbit coupling within these samples, the energy eigenstates will no

longer be precisely | ↑⟩ and | ↓⟩, but will instead consist of admixtures of these states which

are coupled to the orbital state of the electron. The spin states therefore must instead be

considered to be pseudo-spin states. Because of the spin state mixing, there is a non-zero

probability that the electron spin will flip at a scattering event. This is the Elliott-Yafet (EY)
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mechanism, named after its discoverer Elliott [31] and Yafet, who calculated its temperature

dependence [32]. This process is shown in Fig. 2.9 panel (b).

The spin flip probability is expected to be independent of the momentum relaxation time

and initial and final electron momenta. As a result, the more frequently scattering events

occur, the faster depolarization occurs. That is, the depolarization time scales directly with

the momentum scattering time. This stands in contradiction to the DP mechanism, whose

depolarization time scales as the inverse of the momentum scattering time. Additionally, the

EY relaxation leads to isotropic depolarization which does not require the tensor formalism.

Since the mobility is related to the momentum scattering time, generally speaking materials

with high mobility will have spin relaxation which is dominated by the DP mechanism, while

low mobility samples will have relaxation dominated by the EY mechanism. Measurements

suggest that the transition from DP to EY mechanisms in GaAs occurs at a doping density

of about 2×1016 cm−3. In the InGaAs samples used here, which are doped at 3×1016 cm−3,

we expect both mechanisms to contribute. Measurements first published in Ref. [8] suggest

that there is a component of electron spin polarization which is anisotropic, indicating that

the DP mechanism is indeed present.

2.7 Current-induced spin polarization

In 2004, Kato et al. showed that driving a current in InGaAs results in a dynamical

polarization of conduction band electrons [33]. A current along [110] and [11̄0] was shown

to result in the generation of an in-plane spin polarization parallel to the internal fields on a

time-scale of picoseconds. These spins were then rotated out of the plane by the application

of an external magnetic field in the Voigt geometry, and the steady state out-of-plane current-

induced spin polarization(CISP) was detected via Faraday rotation. In the following years,

experiments would demonstrate CISP in other non-magnetic semiconductors, including ZnSe

[34] and GaN [35]. The spin Hall effect and CISP were later mapped in a 2DEG [36]

The fact that the spins align along the internal magnetic fields and not the vector sum of
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Figure 2.10: Faraday rotation angle θf measured as a function of the external magnetic
field strength (blue circles) and a fit to Eqn. 2.45 (red trace). A constant offset has been
subtracted for clarity.

the internal and external magnetic fields indicates that CISP must result from a dynamical

process. The results of theoretical work suggested CISP should be directly related to the

strength of the internal magnetic fields [37, 38]. Surprisingly, recent measurements have

shown this to be incorrect in the case of InGaAs [8, 17]. In fact, in all cases, a negative

differential relationship was observed between the strength of the internal fields and the

CISP efficiency as the current direction is rotated at a single location on the sample.

A typical measurement demonstrating CISP is shown in Fig. 2.10. Here, there is no

optical pumping of spin polarization. As the magnetic field is scanned, the Faraday rotation

generates an odd Lorentzian lineshape. This behavior can be understood as resulting from a

continual alignment of spins in the plane perpendicular to the external magnetic field which

then precess at the Larmor frequency ΩL and decay with a lifetime T ∗
2 . The total steady-

state ẑ component of the spin polarization sz is then given by an integral over all time of
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the resulting signal:

sz =

∞
∫

0

γ exp(−t/T ∗
2 ) sin(ΩLt)dt = θel

ΩLT ∗
2

1 + (ΩLT ∗
2 )

2
(2.45)

where γ is the alignment rate and θel is the steady-state in-plane polarization resulting from

CISP absent an external magnetic field, given by γT ∗
2 . A fit to this equation is included in

Fig. 2.10 (red trace). Data were taken on sample 050331B2-N at 30 K with an in-plane

electric field of 35 V/cm. The spin alignment rate γ for a particular sample and current

orientation is found to scale linearly with the electron drift velocity, and the constant of

proportionality η, defined by γ = ηvD, is used as a measure of the strength of CISP [8, 33].

Further measurements of CISP found in [8] indicate that, while the alignment of electrons

by CISP is always parallel to the internal magnetic fields, the steady state polarization in the

presence of anisotropic decay need not be. If CISP is generated along one of the principle axes

of the decay tensor, however, the steady-state polarization will be parallel to the alignment

vector. As previously discussed, the decay tensor is diagonalized in the basis defined by

[110], [11̄0], and [001]. Rather conveniently, along these axes it is also the case that the sum

of the internal fields for current along [110] will be parallel or antiparallel to [11̄0] and vice

versa. This fortunate fact significantly simplifies the interpretation of measurements of DNP

resulting from CISP found in Chapter IV.

The presence of CISP can be modeled phenomenologically with the Bloch equations by

the addition of a driving term γ, which has units of spins per unit time. With the addition of

this term, we have now completed the Bloch equations which govern electron spin dynamics

observed in the experiments presented here:

ds

dt
= Ω× s−

↔
Γ · s+

s0
T1

ẑ+ γ (2.46)
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2.8 Integrated photonic devices based on CISP and TRFR

As fiber optics and integrated photonic devices proliferate, a perennial challenge has been

the implementation of integrated non-reciprocal elements such as isolators and circulators

[39, 40, 41, 42, 43, 44, 45, 46]. The challenge exists in the fact that these non-reciprocal

devices must break time reversal symmetry of the propagation of light. This typically means

magneto-optic effects are required. In Ref. [47], we propose to use the Faraday rotation

generated by CISP in integrated photonic devices. In a single-mode waveguide, Faraday

rotation results in a non-reciprocal coupling between the TE and TM modes. By controlling

the strength of Faraday rotation, the coupling strength can be controlled. Control over the

propagation mode can be used in conjunction with, for instance, integrated mode-dependent

couplers or various interferometric techniques to form isolators, circulators, and modulators.

Faraday rotation resulting from CISP has the advantage that it can be controlled electrically

and does not require an external magnetic field.

There are two primary challenges to designing devices based on this operating principle.

The first of these challenges is that the Faraday rotation resulting from a spin polarized

conduction band occurs, by necessity, near the absorption edge. Accordingly, material ab-

sorption is of concern. A figure of merit, defined by the ratio of the amount of Faraday

rotation that occurs per unit length divided by the absorption per unit length, is used as a

measure. This figure of merit was measured for Faraday rotation generated by CISP as a

function of wavelength near the band gap using the Faraday rotation techniques discussed

above. First, the Faraday rotation angle resulting from CISP per applied electric field is

measured and fit to extract θel, which is plotted versus laser wavelength in Fig. 2.11. Then,

material absorption is measured by comparing the power transmitted through the InGaAs

epilayer and substrate to the transmission through the substrate alone. The sample design

used is shown in Figs. 4.2 and 4.3, the details of which will be discussed there. Here, samples

of the “L” design are used, with current driven along the [11̄0] direction.

At the highest applied voltages used, the figure of merit was found to have a maximum
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Figure 2.11: Absorption (red) and Faraday rotation per applied electric field (black) versus
wavelength measured in transmission mode at 30 K.

value of 7.73× 10−6. This low value is far below that achieved using other means, but does

have the advantage that it can be electrically controlled. Recent work on Faraday rotation

in microcavities [48] and ring resonators [49] suggest that this problem might be avoided by

tuning the laser further below the absorption edge and relying on high quality factor cavities

to boost the Faraday rotation angle.

The second challenge lies in the fact that for successful mode conversion in a waveguide,

the TE and TM modes must have degenerate phase velocities [50]. Accordingly, the waveg-

uide structure must be carefully engineered so that these phase velocities match. In the

presence of birefringence, the normalized intensity of light I in an undriven mode which is

coupled to a driven mode with initial intensity I0 is given by:

I

I0
=

4

4 + (∆/k)2
sin2

(

1

2
[4 + {∆/k}2]1/2kz

)

(2.47)

where k is the mode coupling constant, ∆ is the mismatch in phase velocities, kTE − kTM ,

and z is the position along the waveguide in the direction of propagation. The maximum
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Figure 2.12: a) Maximum normalized power transfer between modes as a function of ∆/k. A
power transfer of 95% requires ∆/k < 0.459. b) Intensity in an undriven mode coupled to a
driven mode at rate k, with phase velocity splitting ∆, plotted as a function of dimensionless
parameters ∆/k and kz, where z is the position along the waveguide.

achievable fractional power transfer is plotted in Fig. 2.12 a) as a function of ∆/k. Fig. 2.12

b) shows Eq. 2.47 plotted as a function of the dimensionless parameters kz and ∆/k.
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CHAPTER III

Time-resolved Faraday/Kerr rotation measurements

In this chapter, time-resolved Faraday rotation (TRFR) measurement techniques which

are used throughout the following chapters are presented. TRFR is a pump-probe measure-

ment technique that allows spin dynamics to be investigated with a temporal resolution of

a few picoseconds. This level of resolution is achieved by controlling differences in optical

path length, so that the shortest resolvable time step is set by the precision with which a

mechanical delay line can be positioned. In the following sections, the optical apparatus,

laser system, modulation and signal processing scheme, as well as other crucial systems for

performing TRFR measurements will be discussed.

3.1 TRFR measurement apparatus

Figure 3.1 shows an overview of the optical system used in TRFR measurements. In this

section, the beam path will be described and the important components along the way are

discussed. Labels in Fig. 3.1 are referred to throughout the following section when discussing

the beam path.

The sample is placed in a Janis ST-300 (transmission) or ST-500 (reflection) helium flow

cryostat which maintains a constant temperature within the range of 5 K to room temper-

ature. A thermocouple is used to monitor the sample temperature, which is maintained

at a constant value by way of an ohmic heater and PID controller. The cryostat is placed
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Figure 3.1: Overview of the optical beam path used in TRFR measurements.
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between the poles of an electromagnet which, with the addition of a chilled liquid cooling

system, can sustain a field strength of 300 mT at ambient temperature and full duty cycle.

Current is driven by a Kepco voltage-controlled current source capable of driving 8 A at up

to 40 V, and the set voltage is generated by an auxiliary DAC channel on one of the lock-in

amplifiers used in these experiments.

3.1.1 Laser system

We start with the laser system. Optical pulses with a duration of a few picoseconds are

generated by means of mode-locking using a Coherent MIRA 900 titanium sapphire laser.

The exceptionally wide gain bandwidth (spanning approximately 700-1000 nm) provided

by the Ti:sapphire crystal allows for a very large number of simultaneous cavity modes.

Mode-locking is achieved by enforcing a phase relationship between some subset of these

modes which leads to brief intense pulses when all modes constructively interfere followed

by a (relatively) long period during which the modes destructively interfere and no light is

emitted. When this phase relationship between the modes is established, the laser is said

to be mode-locked. The laser uses a combination of passive Kerr lensing in the Ti:Sapphire

crystal and a sophisticated servo loop to initiate and maintain mode locking and control

group velocity dispersion in the cavity. In the best-case scenario, the minimum achievable

pulse duration is limited by the bandwidth of cavity modes which are successfully mode-

locked. In practice, the pulse times are rather longer than the linewidth would suggest,

usually due to dispersion in the optical setup. The repetition rate of the laser is set by the

total cavity length, which in our case leads to a repetition time of 13.158 ns, or a pulse

frequency of 76 Mhz. The MIRA system used here can operate in two modes, somewhat

deceptively labeled picosecond mode and femtosecond mode. In picosecond mode, pulse

times are approximately 5 picoseconds, while in femtosecond mode pulses of approximately

150 femtoseconds are possible if the laser is well calibrated. The Ti:sapphire crystal in the

MIRA 900 is optically pumped by a 10 watt 532 nm beam generated by a Coherent Verdi
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V10 laser system. A diode laser emitting at 1064 nm is frequency-doubled to 532 nm in

a non-linear crystal composed of lithium triborate to generate the pump beam. When the

laser is operating optimally, an average output power of around 2 watts is possible when the

pulse center frequency is tuned within the range of 830–850 nm.

3.1.2 Optical beam path

With our optical pulses successfully formed, the beam first passes through a lens pair,

labeled C1 in Fig. 3.1, which collimates the beam. It then travels to a beam splitter (BS)

which splits the beam into two components. The reflected portion becomes the probe beam

(red) and the transmitted component becomes the probe beam (blue). We start by following

the pump beam, which immediately passes through a polarizing beam splitter (PS) oriented

so that on the first pass the light is fully transmitted. It then enters the delay line, which

consists of a retroreflector mounted to a cart which moves along a high-precision guide rail.

Light travels down the rail and is reflected back, offset by a small amount such that on the

return trip it misses the polarizing beam splitter. It then passes through a quarter wave plate

(λ/4), reflects off a mirror (M1) back along its path, and then passes through the quarter

wave plate again. When the beam is reflected off M1 its helicity is reversed, so that after

the second pass through the quarter wave plate it is traveling back down the delay line with

a polarization orthogonal to its original polarization if the quarter wave plate is properly

oriented with respect to the incident polarization. It hits the retroreflector again, and then

the polarizing beam splitter. Since the beam travels the full length of the delay line twice,

this is referred to as a double-pass delay line. The position of the retroreflector can be moved

by about 70 cm, so that the total optical path length changes by 2.8 m. We can therefore

adjust the time it takes the pump pulse to travel to the sample by about 9 ns. Now, the

beam is fully reflected by the polarizing beam splitter. The fact that we have intentionally

sent the beam back along its original path can sometimes lead to difficulty maintaining mode

locking, as the reflected beam can upset the mode-locking process if it is coupled back into
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the laser cavity. The pump beam then passes through a photo-elastic modulator (PEM).

This component modulates the incoming beam so that the transmitted beam oscillates from

left to right circular polarization at 50 kHz. The PEM serves two purposes in our experiment;

first, it allows for lock-in detection methods to be used. Second, by modulating the helicity

of the probe beam, the time-averaged injected spin polarization is zero. This prevents the

inadvertent introduction of a nuclear polarization due to direct optical pumping. The beam

is then filtered to limit the incident pump power. The beam then reflects off a computer-

controlled steering mirror which is used to systematically adjust the overlap of the pump

and probe beams on the sample. The pump and probe beams are then recombined, pass

through a set of manual steering mirrors, and are focused by an objective lens (OL) onto

the sample.

When compared to the pump beam path, the probe beam path is relatively simple. After

being split off at the first beam splitter (BS), it is reflected off a set of mirrors which are

there to roughly equalize the optical path lengths of the probe beam and the pump beam

when it is near its maximum path length. The length of this compensating path determines

the range of pump-probe delay times ∆t that can be obtained. We typically set this so that

the delay range can be adjusted over the range ∆t = −1 to 8 ns. Here, negative delays

indicate that the probe beam arrives before the pump. The probe beam is then focused onto

an optical chopper used for lock-in detection. It is then filtered, passes through the same set

of steering mirrors as the probe, and is focused by the objective lens onto the sample. In Fig.

3.1, the transmitted component of the probe beam is collected, however in some situations

it is advantageous to collect the reflected portion of the probe beam instead. The latter

case is termed Kerr rotation, while the former is known as Faraday rotation. The collected

probe beam is then focused on a pin hole which is used to filter out as much of the scattered

pump beam as possible. It then is rotated in a half-wave plate and hits a polarizing beam

splitter. The half wave plate is used to adjust the polarization of the probe beam so that it

is evenly split at (PS2). A photodiode bridge is then used to measure the difference between

39



the intensities reflected in each direction. The difference in intensities in each arm can be

related to the Faraday rotation which results from electron spin polarization by:

sin(2θf) =
IA − IB
IA + IB

(3.1)

In most situations, the exact magnitude of the Faraday rotation angle is not required. In this

case, we measure only IA− IB. Also, since the Faraday rotation we typically measure is very

small ( 10-100 µRad), it is sufficient to use the small angle approximation sin(2θf) ≈ 2θf . We

then report the measured signal in arbitrary units. The internal circuitry of the photodiode

bridge results in a gain factor of 2 on the IA − IB output relative to the IA and IB outputs

which must be included if exact rotation angles are desired.

3.1.3 Lock-in measurements

As previously mentioned, we take advantage of lock-in techniques to improve the signal

to noise ratio in these measurements. At its most basic level, a lock-in amplifier is used to

isolate the component of the input signal that is modulated at a known reference frequency.

For instance, the probe beam is chopped at a frequency of 1157 Hz, while the pump beam and

room lights are not. By isolating the component of the measured signal which is modulated

at the chopper frequency, we can effectively reject noise due to pump scatter and room lights.

This allows for the small but notable creature comfort of working with the lights on. In our

setup, we use two cascaded lock-in amplification steps which isolate the component of the

measured signal which is modulated at both the PEM frequency and the chopper frequency.

We typically see a large improvement in the SNR when using this cascaded technique. Care

must be used when selecting the lock-in time constants. This time constant (or rather, its

inverse) is used to set the cutoff frequency for a high-order Butterworth low-pass filter which

is applied to the fast-x output. Accordingly, the time constant on the first lock-in must be

less than the inverse of the reference frequency used in the second lock-in. Further details of
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lock-in measurement techniques are presented in Ref. [28].

3.2 Time-resolved Faraday rotation data

In this section, typical TRFR measurement data will be presented. We start by consider

Eqn. 2.46, reproduced here:

ds

dt
= Ω× s−

↔
Γ · s+

s0
T1

ẑ+ γ (3.2)

We now make the following simplifications:

1. Omit CISP, so that γ = 0.

2. Set the external magnetic field to be parallel to x̂, so that B = B0x̂ and Ω = Ωx̂.

3. Assume the spin depolarization tensor
↔
Γ is isotropic, so that

↔
Γ = 1

T ∗

2

where is the

identity matrix.

4. Assume that the equilibrium electron spin polarization s0 is zero.

5. Take the inital spin polarization to be s(0) = s0ẑ.

Only the third simplification requires justification. In general, we do expect the decay

to be anisotropic. However, if the precession frequency Ω is much faster than the decay

rates and the precession occurs around one of the principle axes of the decay tensor, we can

account for the anisotropic decay by using the average of the decay times along the x̂ and ŷ

axes [51]:
1

Γeff
=

1

2

(

1

Γxx
+

1

Γyy

)

(3.3)

At the lowest field (50 mT) and highest temperature (50 K) used in these experiments, the

precession frequency exceeds the decay rate by an order of magnitude. This is sufficient
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Figure 3.2: Geometry of a typical TRFR measurement.

to justify using this simplification. If the precession frequency is not parallel to any eigen-

vectors of the decay tensor there can exist some spin polarization along x̂, but the TRFR

measurements used cannot detect this polarization.

With the above simplifications, assumptions, and initial conditions, Eqn. 3.2 can be

expressed as two first-order coupled differential equations:

dsz
dt

= syΩ− szΩ−
1

T ∗
2

sz (3.4)

dsy
dt

= szΩ− syΩ−
1

T ∗
2

sy (3.5)

The solutions to these equations are:

sy(t) = s0 sin(Ωt)e
−t/T ∗

2 (3.6)

sz(t) = s0 cos(Ωt)e
−t/T ∗

2 (3.7)
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Figure 3.3: Normalized Faraday rotation (A.U.) versus pump-probe delay time ∆t. Exper-
imental data (blue circles) taken on sample 050331B3-4A at 30 K with external magnetic
field of 200 mT. Data are fit to Eq. 3.8, which gives T ∗

2 = 12 ns and g = 0.5029(3) (red line).

Consider the experimental geometry shown in Fig. 3.2. At time t = 0, a circularly

polarized probe pulse traveling in the −ẑ direction is incident on the sample, which excites

a spin polarization ±s0 along ẑ with the sign set by the helicity of the beam, as discussed

in Sec. 2.4.2. The Faraday rotation signal observed will be proportional to the sz(t), whose

solution is given above. We therefore expect to see a time-resolved Faraday rotation signal

of:

θf = A cos

(

gµBB0

!
∆t

)

exp[−∆t/T ∗
2 ] (3.8)

where A is a constant of proportionality which relates the spin polarization to the Faraday

rotation angle. Data taken on sample 050331B3-4A at 30 K with an external magnetic field

of 200 mT is shown in Fig. 3.3 (blue circles) along with results of a fit to Equation 3.81

The sample used consists of a 500 nm layer of In0.04Ga0.96As which is silicon doped at a

concentration of n = 3 × 1016 cm−3 grown atop a semi-insulating GaAs substrate. Results

of the fit give a g factor of -0.5029(3) and lifetime T ∗
2 = 12 ns. These fits tend to give very

1A constant term has been added to the fitting equation to account for a small offset typically seen in our
measurements, and the fit has been restricted to data at ∆t ≥ 150 ps to avoid contributions from remaining
optical carriers at short delay times.
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good measures of the g factor, but can exhibit large uncertainty in the fit to the lifetime

when it is long compared to the accessible delay range. For spin lifetimes which are long

compared to the laser repetition time, the technique of resonant spin amplification (RSA)

is frequently used [51, 52, 53]. In RSA measurements, ∆t is fixed to a small negative value

and the magnetic field is swept.

When the lifetime is comparable to the repetition rate of the laser (13.158 ns in our

case), the spin polarization from the previous pulse has not completely decayed by the time

the next pulse arrives. This is the case in Fig. 3.3, as evidenced by the Faraday rotation

signal at negative delays. In this situation, we must take into account the contribution to

the Faraday rotation from all previous pulses. The resulting sum over all previous pulses

becomes:

sẑ =
∑

n≥0

S0 cos
(

ΩL(∆t + nTrep)
)

exp

[

−
(∆t + nTrep)

T ∗
2

]

(3.9)

Chapter V is devoted to understanding the effects on the expected TRFR signal when the

lifetime is on the order of, or larger than, the laser repetition rate. This correction has

important implications with regard to measurements of dynamic nuclear polarization, which

are presented in the following chapter.
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CHAPTER IV

Current-induced dynamic nuclear polarization

4.1 Introduction

In addition to the electron spin system, the lattice nuclei in the materials with which we

work possess spin angular momentum and a concomitant magnetic dipole moment. These

nuclear spins, though they carry a dipole moment which is only 5 parts in 10,000 that of the

electrons, and are generally considered to be well isolated from the environment, nevertheless

interact with the electron spin system through the hyperfine mechanism. This interaction

leads to a rich set of static and dynamical effects.

The static effect of the hyperfine coupling was first experimentally demonstrated by

Knight in 1949, where a shift in the nuclear magnetic resonance (NMR) frequency in metals

was observed which resulted from paramagnetic polarization of the conduction electron spins

[54].

In 1953, Overhauser proposed that, through the hyperfine coupling, electron spins which

are held out of thermodynamic equilibrium through some means of pumping should result in

a hyper-polarization1 of nuclei as the electrons attempt to thermalize through their coupling

to the nuclear spin system [55]. Overhauser predicted that in experimental conditions which

support a paramagnetic electron spin polarization due to the Zeeman splitting, depolarizing

1A condition of hyperpolarization is said to occur when the polarization of the nuclei is much larger than
the paramagnetic susceptibility would predict given the experimental conditions
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the electrons by saturating the electron spin resonance would result in a strong nuclear

polarization. This effect was quickly experimentally verified by Carver and Slichter [56]. In

fact, the experimental verification, performed by colleagues of Overhauser at the University

of Illinois in Urbana, was performed so quickly that its publication preceded by two weeks

the publication of the theory upon which it was based.

Rather surprisingly, the first demonstration of optical orientation of electron spins in a

semiconductor was performed in silicon, whose indirect band gap significantly complicates

the use of the optical detection methods which are typically relied upon [57]. Instead, the

presence of an electron spin polarization was determined by its effect on the nuclear spin

system, and in particular by detecting shifts in the nuclear magnetic resonance frequency.

In the late 1960’s and early 1970’s, optical spin pumping in GaAs was pioneered, where

the direct band gap and favorable selection rules allowed spin polarization to be detected

by monitoring the polarization of photoluminescence [21, 22, 58]. In these early measure-

ments the role of the nuclei was ignored. Ekimov and Safarov performed the first optical

measurements which showed behavior originating from nuclear spin polarization [22]. Fur-

ther measurements showed that the polarized nuclei result in a magnetic field about which

the electron spins precess [59, 60, 61]. These experiments were placed on a firm theoreti-

cal footing by Paget in 1977, where the effect of the nuclear magnetic field on the Hanle

depolarization of the electron spin polarization was predicted and measured [62].

Since this pioneering work, dynamic nuclear polarization has been demonstrated by gen-

erating a non-equilibrium electron spin polarization by optical pumping [57, 62, 63, 64],

ferromagnetic imprinting [65], electrical spin injection from a ferromagnet [66, 67], and in a

spin-polarized Landau level [68, 69].

The nuclear spin system in semiconductors has attracted interest for potential applica-

tions in classical and quantum spin-based computation schemes [66, 70, 71]. Its isolation

from the surrounding environment yields exceptionally long coherence times, which can be

as much as nine orders of magnitude longer than electron spin coherence times [63], and
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suggests use as an intermediate timescale data storage mechanism [72].

In this chapter, I will explore the role of the nuclear spin system in the context of

current-induced electron spin polarization (CISP), discussed in the previous chapter. Previ-

ous measurements of DNP resulting from CISP have been performed in GaAs, where nuclear

polarization was detected by means of NMR spectroscopy [73, 74]. These experiments are

complicated by their chosen detection method; in order for NMR measurements to be car-

ried out, a relatively large sample is required. Because of this, the current density which

drives CISP must be severely limited to prevent ohmic heating within the samples. These

measurements were performed with current densities up to 4 A·cm−2. Additionally, these

measurements fail to account for the anisotropic nature of CISP due to the direction of

current flow with respect to the crystal structure.

In contrast, the optical detection methods utilized here allow for current densities which

are 3 orders of magnitude larger with minimal heating. Also, through the use of devices

fabricated with patterned channels and contacts, the directionality of CISP and the resulting

DNP can be studied in detail for current in the plane normal to the [001] crystal axis.

This chapter will start with an overview of the salient features of the nuclear spin sys-

tem in GaAs and its coupling to the electron spin system. Measurements of DNP resulting

from CISP which are carried out by direct detection of the nuclear magnetic field by Lar-

mor magnetometry are then presented. Through these measurements, we find competing

alignment mechanisms which depend on the magnitude of the in-plane electric field but not

its direction. Our results are broadly consistent with previous experimental and theoretical

work. These measurements lead us to the discovery of a previously undescribed phase shift

in TRFR scans, detailed in the next chapter, which complicate matters. The implications

of this complication are discussed, and found to leave the major results unchanged. Finally,

further measurements are suggested which would clarify aspects of the results presented here.

This chapter is broadly based on work first published in Ref. [75].
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4.2 Nuclear spin system in GaAs

Because nuclei are composite particles made up of numerous spin-1/2 nucleons, the to-

tal spin, typically given the symbol I, will vary from species to species. In general, it is

not readily apparent what the total spin of the nucleus should be since the usual process

of determining the spin of composite particles yields many possibilities. Determining the

total spin of a nuclear species is generally a matter left to experiment, but rules have been

empirically discovered which allow for some knowledge of what to expect. Of course, since

all nucleons are spin-1/2, if there are an odd number of nucleons the nuclei must have a

half-integer spin, while an even number of nucleons must yield a nucleus with integer spin.

It has additionally been discovered that if both the total number of protons and neutrons

are individually even, then the nucleus will have spin 0. Beyond these guidelines, nuclear

spins are determined experimentally.

In quantum theory, we treat the angular momentum L, and its dimensionless operator I

defined by L = !I, as vector operators which act on the spin state of the nucleus. In the usual

way, the eigenvalue of I2 for a particular species is I2|ψ⟩ = !2I(I + 1)|ψ⟩. The projection

of the angular momentum onto the chosen axis of quantization, taken to be ẑ, commutes

with the total angular momentum operator I2, so that both may be known simultaneously,

and takes on eigenvalues Iz|ψ⟩ = m!|ψ⟩ where m is any of the 2I + 1 integer or half-integer

values contained within I, I − 1, I − 2, ..., −I.

Associated with the spin angular momentum is a magnetic dipole moment, given by:

µ = γ!I (4.1)

where γ is known as the gyromagnetic ratio. For nuclear spins, the gyromagnetic ratio is
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typically quoted in terms of the nuclear magneton, which is defined by:2

µN =
e!

2mP
≈ 3.152 451 2605(22)× 10−8eV T−1 (4.2)

The large mass of the proton when compared to that of the electron means that the nuclear

dipole moments are smaller than the electron moment by a factor of roughly me/mp ≈

5× 10−4

Neglecting impurities and the low concentration of silicon dopants present in the In0.04Ga0.96As

samples we focus on here, there are 5 principal nuclear species present, corresponding to the

isotopes of indium, gallium, and arsenic which have appreciable natural abundances. The

spins, natural abundances, relative dipole moment, and resonance frequency per Tesla of

these species are shown in Table 4.1.

Nuclear Species Isotopic NA I µ/µN ν/B (MHz·T−1)

69Ga 60.11% 3
2 2.01659 10.248

71Ga 39.89% 3
2 2.56227 13.021

75As 100% 3
2 1.43947 7.315

113In 4.3% 9
2 5.5289 9.365

115In 95.7% 9
2 5.5408 9.386

Table 4.1: Properties of the primary constituent nuclei present in the In0.04Ga0.96As consid-
ered in this chapter [76].

In general, the nuclear spin system is remarkably well isolated from the environment,

which leads to longitudinal relaxation times that can be on the order of seconds to days [26].

This long relaxation time complicates measurements of nuclear spins, but suggests that the

nuclear spin system might be useful as a means of storing classical information, recorded in

the spin orientation of an ensemble of nuclear spins, as mentioned in the introduction to this

2Value obtained in CODATA recommended values of the fundamental physics constants: 2010 published
by NIST
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chapter.

4.2.1 Dipole-dipole coupling

We first consider the contribution to the total nuclear spin Hamiltonian resulting from

the dipole-dipole coupling of nuclear spins. For two spins with magnetic moments µ1 = γ1!I1

and µ2 = γ2!I2, the contribution to the Hamiltonian of spin 2 due to the field resulting from

spin 1 is found to be:

H12 = −µ2 ·H12 (4.3)

where H12 is the field at spin 2 due to the dipole moment of spin 1, and is given by the

familiar equation:

H12 =
1

r312

{

3r12(µ1 · r12)
r212

− µ1

}

(4.4)

Here, r12 is the displacement vector between nuclei 1 and 2 and r12 is its magnitude. The

spin precession time of spin 2 in the field due to spin 1 sets the time-scale for relaxation

within the nuclear spin system. In the InGaAs material on which we focus, this local field

is of the order of a few Gauss, corresponding to a transverse dephasing time T2 on the order

of 10−3 to 10−4 seconds in the absence of an external magnetic field.

In the presence of an external field, the role of the dipole-dipole coupling becomes some-

what more complicated. Consider first the behavior of spin 1 neglecting any dipole-dipole

couplings. Its dipole moment will precess around the external magnetic field, so that the

component of the dipole moment that is longitudinal to the external field will remain con-

stant while the transverse component rotates at the Larmor frequency. This can result in

a component of H12 at the location of spin 2 that is rotating at the Larmor frequency of

spin 1. Both the static and rotating components of H12 result in relaxation. However, if

these spin species are the same, the rotating portion of the field will be resonant with spin

1 and can therefore have a large effect on the magnetization of spin 1 even if the coupling is

weak. This interaction is suppressed when the species are different because of the lack of a
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resonance condition [26].

If the external field is significantly stronger than the dipole-dipole coupling fields, relax-

ation due to the coupling becomes suppressed [62]. This leads to much longer T2 times which

can, in some circumstances, exceed T1.

4.2.2 Spin temperature

The timescale T2 established by the dipole-dipole coupling between nuclei is also the

timescale at which the nuclear spin system comes to thermodynamic equilibrium. Since this

timescale is much faster than the longitudinal relaxation time in the presence of an external

field which is larger than the local field, the nuclear spin system can be characterized by a

single parameter. This parameter is the spin temperature [26]. The spin temperature, as

distinct from the lattice temperature, is arrived at by assuming that the occupation of the

spin states should follow a Boltzmann distribution, and then calculating the temperature

required for the observed occupation levels. This is straight forward in spin 1/2 systems, but

can become more complicated for systems with nuclei of higher spin and when more than a

single species is present [26]. Nevertheless, the concept of a spin temperature is frequently

encountered in the literature. Because of the small splitting between nuclear spin states,

even small nuclear polarizations lead to strong cooling of the nuclear spin system. In our

experiments, nuclear spin temperatures on the order of 10−4 to 10−5 K are observed, despite

an average nuclear spin of only a few parts in 104. Depolarization of the nuclei leads to

a heating of the spin system, so that when the spins are fully depolarized in an external

field (for instance, by saturation of the NMR frequency), the spin temperature is infinite. If

the nuclei are polarized against the external field the spin temperature is understood to be

negative. If these negative temperature spins are brought into contact with a spin bath at

finite temperature, they would transfer energy to the spin bath until equilibrium is reached,

thereby heating the bath. Accordingly, a negative temperature is, in essence, hotter than

any system with a positive finite temperature.
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4.2.3 Zeeman interaction

In the presence of an external magnetic field B = B0ẑ, the nuclear dipole moments give

rise to a Zeeman-like term in the total nuclear spin Hamiltonian, given by:

HZ = −µ ·B = −γ!B0Iz (4.5)

The eigenvalues of HZ , corresponding to the Zeeman energies, are given by Em = −γ!B0m

where m is the projection of the total nuclear spin onto the ẑ axis. Given the small magnetic

moment of the nuclear spins, the energy splitting between adjacent states |m⟩ and |m+ 1⟩

is correspondingly small. For the largest nuclear moment present in our sample, 115In, this

splitting is found to be 5.38× 10−8 eV ·T−1. At the largest magnetic field used in our study

(200 mT), this has a corresponding thermal energy at a temperature of 125 µK.

When the external field is large compared to the field due to dipolar coupling discussed in

the previous section, we can treat the nuclear spins as isolated systems which will collectively

obey Maxwell-Boltzmann statistics. We may therefore calculate the fraction of nuclei in a

particular state |m⟩ from:

nm =
e−Em/β

I
∑

m=−I
e−Em/β

(4.6)

In this expression, β is the thermal energy kBT where kB is the Boltzmann constant and

T is the lattice temperature. The denominator is known as the partition function, usually

given the symbol Z. The net magnetization M of a sample consisting of N nuclei can be

found from:

M = Nγ!

I
∑

m=−I
me−Em/kBT

I
∑

m=−I
e−Em/kBT

(4.7)

If the energy splittings γ!B0 are small compared to the thermal energy kBT , so that the

argument within the exponential functions is small, it is useful to replace the exponentials
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in this expression with their Taylor series expansions3. With γ!B0/kBT ≪ 1, we need only

keep up to the linear term. Doing so yields:

m = Nγ!

I
∑

m=−I
m(1 +mγ!B0/β)

I
∑

m=−I
(1 +mγ!B0/β)

(4.8)

The sum over symmetric limits means any terms that are odd in m sum to zero, leaving us

with:

M =
Nγ2!2B0

β

⎡

⎢

⎢

⎢

⎣

I
∑

m=−I
m2

I
∑

m=−I
1

⎤

⎥

⎥

⎥

⎦

M =
Nγ2!2B0

β

[ 1
3I(I + 1)(2I + 1)

2I + 1

]

M =
Nγ2!2B0I(I + 1)

3kBT
(4.9)

Accordingly, the magnetization in the sample is proportional to the magnetic field B0. This

proportionality constant is called the static susceptibility:

χ0 =
Nγ2!2I(I + 1)

3kBT
(4.10)

That the susceptibility of the material is proportional to 1/T is known as Curie’s law.

When a non-magnetized sample is first placed in a magnetic field each spin will precess

around the field independently. The time-averaged magnetization will therefore remain zero.

It is only through relaxation that a magnetization builds in the sample, and this occurs with

characteristic time T1, the longitudinal relaxation time. This relaxation happens through

3This is always true in our experiments; the small nuclear dipole moment means that in the fields accessible
to our experiment, γ!B0/kB will remain in the µK range, much colder than liquid helium temperatures
accessible to our experiment.

53



coupling to the lattice. Since this coupling is particularly weak in the nuclear spin system,

relaxation is slow and, as mentioned above, T1 times can be as long as days.

4.2.4 Quadrupolar moment

Because the nucleus is a composite particle, it will generally have a non-zero electric

quadrupole moment, which in its most general form is expressed as a rank-two tensor given

by[11]:

Qij =

∫

[3rirj − (r)2δij ]ρ(r)dτ (4.11)

The electric potential due to this qaudrupole moment is given by:

VD(x) =
1

8πϵ0

∑

i,j

Qij
xixj

r5
(4.12)

In an area with an inhomogeneous electric field, that is where ∇E, given by4:

∇Eij =
∂2V

∂xi∂xj
(4.13)

is nonzero, the classical interaction energy due to the dipole moment is given by:

EQ =
1

6

∑

i,j

∇EijQij (4.14)

This interaction term can give rise to a torque on the nucleus, which behaves as if

it were a fictitious magnetic field acting on the nuclear spin. It has been shown that in

situations engineered to maximize ∇E, this quadrupolar interaction can be sufficient to

overwhelm the nuclear dipole-dipole coupling and extend the longitudinal relaxation time

T1 [77]. Additionally, the quadrupolar moment can lead to ∆m = ±2 transitions in systems

which lack cubic symmetry, which are otherwise forbidden[63]. The quadrupolar moment

4Note that this is not the divergence, ∇ ·E, but rather the rank 2 tensor defined by the outer product of
the gradient operator ∇ with E.
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can couple to lattice phonons, which generate oscillating local field gradients, and lead to

relaxation of the nuclear polarization. This effect is expected to dominate relaxation due to

coupling to the electrons at temperatures above 30 K in GaAs [74], and should result in T1

times which scale as T−2. Further details of the role of the nuclear quadrupolar moment can

be found in Chapter 6 of Ref. [26].

4.3 Hyperfine electron-nuclear spin coupling

Hyperfine coupling, which results from interactions between the electron and nuclear spin

magnetic moments, plays a crucial role in the combined electron-nuclear spin system. The

Hamiltonian for this interaction is given by:

H = γeγn!
2

[

8π

3
δ(rI)(I · S) +

3(I · r)(S · r)
r5

−
I · S
r3

]

(4.15)

where γe(n) is the electron (nuclear) gyromagnetic ratio, S is the electron spin vector operator,

and, when integrated, the term δ(rI) is an instruction to evaluate the electron wave function

at the position of the nucleus. The first term within the brackets corresponds to the so-

called “contact” hyperfine interaction due to the dependence on the overlap of the electron

wave function at the location of the nucleus. This dependence means that this interaction

is strongest for electrons in s-like orbitals, or where the orbital angular momentum l is

zero. This means that the conduction band electrons bound to shallow impurities (which

have s-like orbitals) lead to strong hyperfine interactions. The remaining terms result from

the dipolar interaction between electrons and the nucleus. We will focus on the contact

hyperfine interaction, as the dipolar hyperfine interaction is considerably weaker [26]. It

should be mentioned, however, that the dipolar portion of the hyperfine coupling does not

conserve angular momentum, and can lead to depolarization of the nuclei.
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The term I · S in the above Hamiltonian can be expanded as:

I · S = IxSx + IySy + IzSz (4.16)

= IzSz +
1

2
(I+S− + I−S+) (4.17)

where S± and I± are the electron and nuclear spin raising and lowering operators, given by

S± = Sx ± iSy and I± = Ix ± iIy.

4.3.1 Static effects

The first term in Eq. 4.17 gives rise to the so-called static effects of the hyperfine

mechanism. Namely, the nuclear spin gives rise to an effective magnetic field experienced by

the electron, and vice versa. In the case of the magnetic field felt by the ith nucleus due to

the polarization of the electrons, we find:

Bi
e = −

2µ0

3
g0µB

∑

q

S⃗q|ψq(r⃗i)|2 (4.18)

Here, the sum is performed over the occupied electron states. This field is known as the

Knight field and results in the Knight shift in the nuclear magnetic resonance frequency.

Conversely, a net nuclear polarization leads to a magnetic field felt by the electrons. It is

this magnetic field, which contributes to the precession of electrons polarized perpendicular to

the field, that will be used to measure a nuclear spin polarization in upcoming sections. Since

the electrons simultaneously interact with a large number of nuclei, an effective magnetic

field can be found which is proportional to the average nuclear polarization. This magnetic

field is known as the Overhauser field and is given by:

Bq
n =

2µ0

3

g0
g∗
!
∑

i,α

γαi I
α
i |ψq(r

α
i )|2 (4.19)

where the sum is performed over the the i nuclei of species α. If the polarization of the
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nuclei of each species is uniform with average value ⟨Iα⟩, this field can be written as:

Bα = bαN ⟨Iα⟩ (4.20)

where bαN is the field due to species α that would exist if the nuclei were completely polarized,

given by.

bαN =
2µ0

3

g0
g∗

!
∑

i

γα|ψq(r
α
i )|2 (4.21)

The values of bαN for GaAs were calculated in Ref. [62], and are summarized in Table 4.2.

Despite the small moment of the nuclei, the large density of the nuclei leads to large fields

at full polarization.

Nuclear Species bαN

69Ga -910 mT

71Ga -780 mT

75As -1840 mT

Table 4.2: Magnetic field experienced by electrons in GaAs due to complete polarization of
the most common species present in samples used in this study.

4.3.2 Dynamic nuclear polarization

The second part of Eq. 4.17, 1
2(I+S− + I−S+), gives rise to the dynamical effects of the

hyperfine coupling. In particular, this term leads to mutual spin flips between the electron

and nuclear spin systems which conserve angular momentum. It is this term that leads to

so-called dynamic nuclear polarization (DNP).

DNP occurs when the electron spin system is out of thermodynamic equilibrium. That

is, when the Fermi energies of the two conduction band spin sub-bands are unequal. When

this is the case, electrons in the spin state with the higher Fermi energy can minimize their

energy by undergoing a mutual spin flip with a nucleus in the lattice, thereby transitioning to

the lower energy spin sub-band, and then relaxing via scattering to available states near the
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E E

Figure 4.1: Diagrams showing the process of DNP resulting from polarizing electrons which
would otherwise be unpolarized (left) and the depolarization of electrons which would be
polarized at equilibrium due to Zeeman splitting in an external field (right).

Fermi energy. Because the energy gained by the nucleus is much smaller than that lost by

the electron due to the much smaller dipole moment, this spin flip is energetically favorable

overall. The reverse process is suppressed because of the unavailability of open states in the

spin sub-band with a higher Fermi energy.

The process of dynamic nuclear polarization is represented diagrammatically in Fig. 4.1,

which shows two situations which lead to DNP. In this diagram, filled states in the conduction

band are indicated by blue shading. In the first situation, shown in panel a), the electron

spin system is directly pumped, generating a spin polarization that is out of thermodynamic

equilibrium. This is the type of DNP we seek to generate here, where the electron spin

pumping is achieved via CISP.

Rather less intuitively, DNP can also be driven by depolarizing electrons which would

otherwise be polarized at equilibrium due to Zeeman splitting in the presence of an external

magnetic field. This is the type of DNP first demonstrated by Overhauser, where electrons

in a large external field were continuously depolarized via saturation of the electron spin

resonance [55]. This process is shown diagrammatically in Fig. 4.1 b). In this case, the max-

imum degree of nuclear polarization depends on the equilibrium electron spin polarization,

58



and the degree to which the electrons are effectively depolarized from this value.

4.3.3 Equilibrium nuclear spin polarization

Here, we seek an expression for the average nuclear polarization at equilibrium, which is

related to the nuclear magnetic field at saturation through Eqn. 4.20. The analysis here is

adapted primarily from Chapter 2 in Ref. [15] and Chapters 8 and 9 in Ref. [26]. Other

sources arrive at similar expressions using arguments based on equilibration of electron and

nuclear spin temperatures in the high temperature limit [26, 27, 62, 78, 79].

At equilibrium, the total number of nuclei transitioning between the two adjacent spin

states |m⟩| ↑⟩ and |m+ 1⟩| ↓⟩ 5 in each direction will be equal. That is:

W(m,↑)→(m+1,↓)n
N
mn

e
↑ = W(m+1,↓)→(m,↑)n

N
m+1n

e
↓ (4.22)

where the W ’s are transition probabilities linking the two states, ne
↑(n

e
↓) is the fraction of

electrons in state | ↑⟩(| ↓⟩), and nN
m(n

N
m+1) is the fraction of nuclei in state |m⟩(|m+1⟩). The

transition probabilities are thermodynamically related by:

W(m,↑)→(m+1,↓) = exp

(

gµBB

!

1

kBT

)

W(m+1,↓)→(m,↑) (4.23)

where the first factor within the exponential is the energy difference between the two states

due to the Zeeman splitting of the electrons in an external field B6 and the second term is

the inverse of the thermal energy, where T is taken to be the lattice temperature. Combining

Eqns. 4.22 and 4.23, we arrive at:

nN
m+1

nN
m

= exp

(

gµBB

!kBT

)

ne
↑

ne
↓

(4.24)

5Here, the kets |m⟩ and |m + 1⟩ refer to the nuclear spin state and the kets | ↑⟩ and | ↓⟩ refer to the
state of an electron in the conduction band which undergoes a mutual spin flip via the dynamic part of the
contact hyperfine Hamiltonian with the nucleus in question

6The Zeeman energy of the nuclei is neglected because of its small dipole moment as compared to the
electron
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Since the electron spin system can be described using Maxwell-Boltzmann statistics, the

exponential term can be rewritten in terms of the equilibrium electron spin polarization as:

ne,T
↓

ne,T
↑

= exp

(

gµBB

!kBT

)

(4.25)

where the superscript T indicates that this is the average spin at thermal equilibrium. We

now make use of the expressions:

S =
1

2
(n↑ − n↓) (4.26)

n↑ + n↓ = 1 (4.27)

Equation 4.25 can then be rewritten as:

ne,T
↓

ne,T
↑

=
(1− 2ST )

(1 + 2ST )
(4.28)

with:

ST = −
1

2
tanh

(

gµBB

2!kBT

)

(4.29)

Finally, equations 4.24 and 4.25 can then be rewritten as:

nN
m+1

nN
m

=
(1 + 2S)

(1− 2S)

(1− 2ST )

(1 + 2ST )
(4.30)

With this equation, the average nuclear polarization Iav in the sample can be expressed in

terms of the Brillouin functions [7], so that the average nuclear polarization is given by:

Iav = IBI

[

I ln

(

(1 + 2S)(1− 2ST )

(1− 2S)(1 + 2ST )

)]

(4.31)
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Here, BI(x) is the Brillouin function defined by:

BI(x) =
2I + 1

2I
coth

(

2I + 1

2I
x

)

−
1

2I
coth

(

1

2I
x

)

(4.32)

As expected, when the electron spins are in equilibrium (S = ST ), the average nuclear

polarization goes to zero. The fact that it does not go to its own thermodynamic equilibrium

value is a result of the fact that in the derivation of these equations we neglected the Zeeman

energy of the nuclear spin in Eqn. 4.23. If the electron spin polarization is small, and the

equilibrium thermal electron spin polarization ST is neglected, the Brillouin function can be

expanded, so that Iav can be approximated to first order in vector form as:

Iav =
4

3
I(I + 1)

(S ·B)B

B2
(4.33)

In this approximation, Iav will be proportional to the projection of the electron spin po-

larization onto the direction of the external magnetic field, and will lie along the external

magnetic field, but will not depend on its magnitude.

All of the above analysis assumes that the nuclei relax only through their coupling to

the electron spins through the hyperfine interaction. In reality, nuclei are weakly coupled to

the environment through interactions with paramagnetic impurities, electron orbital angular

moment, the dipolar component of the hyperfine interaction, and in the case of nuclei with a

non-zero quadrupole moment, to phonons. These couplings are weaker than the coupling to

the electron spins at low temperature. Measurements of spin-lattice relaxation times for 69Ga

and 75As in GaAs with an 8 T external magnetic field with similar doping levels to those used

here show that at temperatures below 30 K nuclear relaxation is dominated by coupling to

the electrons, while at higher temperatures the effects of two-phonon quadrupolar relaxation

becomes important [74]. The effect of other relaxation mechanisms on the equilibrium nuclear
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spin polarization can be included by the introduction of a “leakage factor” f , given by:

f =
T1

T1 + T1e
(4.34)

where T1 is the inverse of the nuclear polarization population decay rate due to all channels

except through hyperfine coupling to the electrons.

4.3.4 Polarization timescale

The timescale over which nuclear polarization resulting from DNP builds is, of course,

the same as the decay rate of the nuclear spin polarization due to hyperfine coupling to the

electrons. This rate can be approximated from the following equation [80]:

1

T1e
=

ω̃2τe
1 + Ω2τ 2e

(4.35)

where ω̃ is the Larmor precession frequency of the nuclei in the fluctuating effective field

resulting from the electrons, τe is the correlation time of those fluctuations, and Ω is the

nuclear Larmor frequency in the external magnetic field. When the external field is strong

compared to the fluctuating field, the decay time T1e is extended.

In our samples, there are two types of electrons present which lead to DNP; itinerant

electrons in the conduction band, and electrons which are bound to shallow donor states. In

GaAs, the donor binding energy of Si donors which substitute for Ga lattice sites is 5.84 meV

[9]. The binding energy divided by the Boltzmann constant gives a temperature scale of 68

K. Accordingly, the donor occupation will vary over the 10-50 K temperature range used

here, with higher occupation at lower temperatures. At all times, both types of electrons

can be considered to be characterized by the same spin polarization, as they equilibrate at a

rate that is much faster than they lose polarization due to the coupling to the nuclear spin

system. The effects of these two types of electrons on T1e will be discussed separately.

We start with itinerant electrons. These electrons move around the lattice with a velocity
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near the Fermi momentum, given by vF = !kF/m∗ where m∗ is the electron effective mass.

The correlation time is then assumed to be roughly the time an electron with this momentum

is localized in a particular nuclear volume. This time will scale as the inverse of the electron

velocity, and by extension T−1/2 where T is the lattice temperature. An accurate calculation

of this decay time is found in Ref. [81]. There, it is confirmed that the relaxation rate

should scale as 1/
√
T . Numerical estimates from these calculations are performed in [15],

and suggest that T1e should be on the order of 300 s at 10 K in our samples.

Electrons trapped on shallow donors behave in much the same way as a paramagnetic

impurity within the lattice [15, 57, 81, 82]. Because the electron is localized, the correlation

time for fluctuations in the magnetic field seen by the nucleus is longer, and set either by the

electron polarization lifetime or, if it occurs more quickly, the length of time electrons are

bound to a particular donor before they become ionized or hop to other donors. This long

correlation time means that the relaxation due to bound electrons is much faster for nuclei

within a Bohr radius of the donor. Quantitative calculations of this lifetime give:

1

T1e(r)
=

A2v20nτe
2π2NDa6B!

2
exp

(

−
4r

aB

)

(4.36)

where A is a measure of the strength of the hyperfine interaction, ND is the donor occupation,

and aB is the Bohr radius. Estimates suggest that for electrons within a Bohr radius, T1e

should be on the order of 0.1 s in our sample [15]. However, T1e increases rapidly as the

distance from the donor increases.

The samples used in this study have a doping density of 3 × 1016 cm−3 so that if the

volume per dopant is assumed to be spherical, it would have a radius of 20 nm. The

volumetric average distance from the center of a spherical region is ⟨r⟩ = 3r/4, so that

the average distance to the nearest donor is roughly 15 nm, which is more than 280 times

the Bohr radius. For the vast majority of electrons, then, the relaxation due directly to

bound electrons is negligible due to the exponential term in Eqn. 4.36. However, nuclear
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polarization which occurs within a donor’s region of influence will spread via nuclear spin

diffusion. The time it takes a polarization to diffuse a distance r can be approximated as

TD ≈ r2/D, where D is the diffusion constant. In GaAs, D has been measured to be on the

order of 10−13 cm2s−1 [83]. Accordingly, the polarization time for nuclei with the average

distance from a donor is found to be on the order of 30 s. This diffusion constant is not

expected to vary strongly with lattice temperature, so that the temperature dependence of

T1e from bound electrons will be determined primarily by the change in occupation of the

donors.

The above calculations for the various relaxation times T1e should be considered to be, at

best, estimates of the order of magnitude of relaxation time resulting from each mechanism.

In both cases, parameters which go into the calculations are only known to within an order of

magnitude. Generally, determining T1e is a matter to be settled by experiment. As discussed

below, we find values of T1e of about 3 minutes at 10 K, and that T1e scales as T−0.8. These

results are broadly consistent with the mechanisms presented here, though the precise details

of the contribution of the various mechanisms is, at this point, undetermined.

4.4 Experiment

In this section, I will discuss a series of experiments carried out in which we have at-

tempted to elucidate the process of dynamic nuclear polarization in InGaAs which occurs

due to pumping of the electron spin system via current-induced spin polarization, discussed

in section 2.7, and to arrive at some quantitative measurements of the achievable nuclear po-

larization and the timescale at which these polarizations are built up. Nuclear polarization is

detected by way of the static effects of the hyperfine coupling to conduction band electrons.

The magnetic field seen by electrons due to the polarization of the nuclei is detected by its

effect on the electron Larmor precession frequency. The precession frequency is measured

via time-resolved Faraday rotation, which is discussed in III.
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Semi-insulating [001] GaAs

500 nm nD = 3x1016 cm-3

Si:In0.04Ga0.96AS1µm

Figure 4.2: Cross-section of samples used in all measurements. Mesa etches are performed to
a depth of 1 µm to ensure doped regions are fully removed in regions other than the defined
channels.

4.4.1 Materials and sample design

All samples used in this study consist of a 500 nm thick layer of Si-doped n = 3× 1016

cm−3 In.04Ga.96As grown by molecular beam epitaxy atop semi-insulating [001] GaAs sub-

strate, and capped with 100 nm of GaAs. The sample cross-section is shown in Fig. 4.2. The

samples are then patterned into one of two device designs using standard photo-lithographic

fabrication techniques and an isotropic wet etch process. Ohmic contacts, consisting of al-

ternating layers of nickel, germanium, and gold, are deposited and annealed at 420 C in

forming gas for 60 seconds to drive in-plane current. The first sample design, which will be

referred to as the cross channel design, has four contacts around a square mesa-etched region

designed so that a current can be driven in any in-plane direction [8, 17, 84], as shown in

Fig. 4.3. Numerical calculations find a region of electric field uniformity with a radius of 35

µm in which the amplitude deviates by less than 5% and its direction by less than 5◦ [8].

The pump and probe beam radii were measured to be approximately 15 µm. Errors placing

the beam at the center of the sample could introduce errors in the electric field amplitude

and direction. The second sample design used, known henceforth as the L channel design,
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500 µm

Cross Sample L Sample

Figure 4.3: Device designs used in these measurements. The cross sample allows for an
arbitrary current direction at the center of the sample, while the L sample suppresses errors
due to inhomogeneous electric field and allows for higher current densities at a particular
ohmic power dissipation.

consists of 400 µm long by 100 µm wide channels etched along the [110] and [11̄0] crystal

directions, as shown in Fig. 4.3. This sample design allows for a higher electric field than

the cross channel design for a given power dissipation. Additionally, errors in electric field

direction and magnitude due to beam placement are eliminated. However, measurements for

different crystal directions are performed on different channels, and previous measurements

have shown that the spin-orbit field and CISP magnitudes vary strongly with position, per-

haps as a result of inhomogeneous uniaxial strain [8, 85]. Accordingly, though we expect

stronger CISP with current along [11̄0], comparisons between the DNP observed on the two

channels are hindered by the effects of the local strain field.

In all samples and device designs, we will focus on current which flows along the [110]

and [11̄0] directions only. Doing so allows us to make two simplifying assumptions. First,

for current in these directions, both the Rashba and Dresselhaus spin-orbit fields, and the

associated generation of CISP, are perpendicular to the direction of electron current. Second,

since the electron decay tensor
↔
Γ is expected to be diagonalized in the [110] [11̄0] [001] basis,

66



the steady state electron spin polarization due to CISP will also remain perpendicular to the

direction of electron current. We therefore expect no contribution to DNP from CISP when

the sample is oriented so that current flows parallel to the external magnetic field.

4.4.2 Experimental procedure

The sample is placed in a helium flow cryostat which is held between the poles of an

electromagnet. A magnetic field is applied in the sample plane along the x̂ direction as defined

in Fig. 4.4, both to suppress nuclear spin relaxation by magnetic dipole-dipole interactions

[26] and to facilitate optical Larmor magnetometry [63, 65, 86]. In Larmor magnetometry,

test electron spins are optically injected along ±ẑ using a circularly polarized pump pulse

and their precession about the total magnetic field, which occurs at the Larmor precession

frequency ΩL = gµBBtot/!, is monitored by time resolved Faraday rotation. If the electron

g factor is known, a measurement of the precession frequency can be used to determine the

associated magnetic field. The circularly polarized pump beam is modulated between left

and right circular polarization at 50 kHz by a photo-elastic modulator for lock-in detection.

Additionally, this modulation ensures that the optical injection of polarized carriers does not

directly lead to nuclear polarization. The external magnetic field causes the test electron

spins to precess at a high enough frequency that many rotations can be measured over

the time delays accessible to the mechanical delay line. This allows for measurement of

the total magnetic field about which the electrons precess to be measured to a precision of

approximately 100 µT in the 40 seconds it takes to complete a scan of the pump-probe delay

time over the range ∆t = 3000 → 5000 or ∆t = 5000 → 7000 ps with 50 ps steps.

Figures 4.5 and 4.7 show a measurement performed on device A (sample 050331B2-J,

cross channel design) with current along [11̄0] and at a temperature of 10 K. Figure 4.5

contains a plot of the Faraday rotation signal observed due to the test electron spin packet

as a function of pump-probe time delay (horizontal axis) and lab time (vertical axis). At

lab time 0, a voltage is applied across the sample. A rapid shift in the precession frequency,
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Figure 4.4: Schematic of measurement geometry and definition of the local coordinate system
referred to throughout this chapter.

corresponding to a change in field of a few millitesla, occurs due to the spin-orbit field [84].

A slow shift in the precession rate follows, which we attribute to nuclear polarization. After

10 minutes, the voltage is switched off and the nuclear spin polarization decays.

Each time delay scan is fit to extract the electron Larmor precession frequency and the

total field about which the electrons precessed is calculated. Experimental data and the

corresponding fit for one such delay scan is plotted in Fig. 4.6 This data corresponds to the

first delay scan shown in Fig. 4.5. The data is fit to the following equation:

VLI2 = A cos

(

gµBB

!
∆t

)

exp

[

−
∆t

T ∗
2

]

+ c (4.37)

where the free parameters are the amplitude A, magnetic field B, electron spin lifetime T ∗
2 ,

and a constant offset c. Here, we find A = 0.2036 V, B = 200.3 mT, T ∗
2 = 6473 ps, and c =

-4 mV.

The results of fits to the magnetic field for all delay scans shown in Fig. 4.5 are plotted

in Fig. 4.7, along with a fit to the equation B(tL) = ∆BN(1− exp[−tL/T1e]) +B0 where tL

is lab time and B0 is the sum of the external and spin-orbit fields. The saturation change in
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Figure 4.5: Series of Faraday rotation time delay scans showing a transition from VDC = 0
V to 2 V at lab time 0 and back to 0 V after 10 minutes . Data were taken on sample A
with current flowing along [11̄0] at 10 K with 200 mT external field applied. Solid black line
indicates position of local maximum from fits to Faraday rotation signal.

∆ t (ps)
3000 3500 4000 4500 5000

Lo
ck

-in
 2

 v
ol

ta
ge

 (V
) (

A
.U

.)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 4.6: Raw TRFR Data (blue squares) and a fit to the data (red line) using Eqn. 4.37
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Figure 4.7: Total magnetic field as measured from fits to delay scans shown in 4.5 (red
squares) along with another similar transition to VDC = −2 V (blue circles). Lines show
exponential fits to magnetic field data. Fits allow extraction of saturation nuclear field BN

and saturation time T1e.

nuclear field ∆BN and the polarization time T1e are extracted from the fit. The transition

from VDC = 0 → 2 V shows ∆BN = −2.2 mT and T1e = 148 s, while the transition from

VDC = 0 → −2 V shows ∆BN = 1.0 mT and T1e = 198 s.

By comparing the absolute Faraday rotation angle under optical versus current-induced

spin polarization, measurements published in Ref. [47] have shown that the degree of polar-

ization at the temperature and electric field used here is expected to be on the order of 10−4

to 10−3. Using this degree of polarization in conjunction with Eqn. 4.33 suggests that the

change in nuclear polarization due to CISP in these measurements should be on the order

of 2-20 mT. This is in good qualitative agreement with the experimental data, and suggests

that our assumption that the leakage factor should be small at 10 K is a reasonable one.

Deviation from this value may be caused by other mechanisms which affect the electron spin

polarization, which are discussed in the following section.
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Figure 4.8: Saturation nuclear field versus applied magnetic field for four different types of
voltage transitions (described in figure legend), showing asymmetry of unipolar transition
saturation amplitudes. Measurements were taken on sample A with current along [11̄0] at
10 K. Red and purple data sets show strong dependence on external field and correspond
to a geometry in which the nuclear alignment and external magnetic field are antiparallel.
Blue and green data sets correspond to nuclear alignment parallel to external field.

4.4.3 Voltage reversal asymmetry

There is a readily apparent asymmetry shown in Fig. 4.7; the transition to +2 V shows

a larger shift in nuclear field than the transition to -2 V. Though it is not expected to be the

case, we first confirm that this asymmetry is not due to material properties, sample fabrica-

tion anomalies, or previously unrecognized details of CISP by ensuring that the asymmetry is

reversed when the external magnetic field direction is flipped. Confirmation of this is shown

in Fig. 4.8. With Bext along +x̂, the a larger ∆BN is seen in transitions from VDC = 0 → 2

V (purple trace) than 0 → −2 V (blue trace). When the magnetic field is flipped to −x̂,

∆BN is larger for transitions of VDC = 0 → −2 V (red trace) than 0 → +2(green trace).

This asymmetry remains consistent with a reversal of the external magnetic field direction.

In each case, the transition in which the nuclear field is changing so that it opposes the

external magnetic field results in a larger ∆BN . Reported error bars represent the standard

error of a set of 6 measurements at each point.

The origin of this asymmetry is investigated in Fig. 4.9, in which transitions in two
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different geometries are shown. Measurements are again taken on sample A at 10 K with

a 200 mT external magnetic field and current along [11̄0]. Here, light red and light blue

shading indicates that the applied voltage VDC = 2 or -2 V, respectively, and the inset

text shows the measured values of ∆BN for each labeled transition. Plot a) shows a set

of transitions in which current was flowing along ±ŷ, resulting in CISP oriented parallel to

the external magnetic field Bext. Here, we expect dynamic nuclear polarization to occur,

resulting in a polarization given by Eqn. 4.33. In plot b), we rotate the sample by 90◦

so that the current is aligned along ±x̂, generating a CISP which is perpendicular to Bext.

With CISP perpendicular to Bext, the (B⃗ · S⃗) term in Eqn. 4.33 suggests that there should

be no observable DNP, however a non-zero ∆BN is measured. Here, the direction of the

current does not significantly alter the observed ∆BN , as seen in Fig. 4.9. This rules out

the possibility that there could be an inadvertent polarization due to a component of CISP

that is not perpendicular to the electron drift velocity, as that would be expected to reverse

sign with the voltage. However, CISP could still contribute. Electrons that are aligned by

CISP will be out of thermodynamic equilibrium, and could cause isotropic DNP accordingly.

This would not, however, be sufficient to explain the asymmetry observed with CISP parallel

to Bext. Instead, there must be another source of DNP which is isotropic with respect to

electron drift velocity.

The observed ∆BN with CISP perpendicular to Bext can be explained as resulting from

one of two possible effects: the hot electron effect, [87] and/or an effect linked to the presence

of the pump and probe beams [63]. The hot electron effect results in a heating of the electron

spin system which varies with the magnitude of current in the sample but not its direction.

This heating of the spin system results in electrons which are depolarized compared to their

thermal equilibrium, driving DNP.

Additionally, the pump and probe beams, which are tuned just below the absorption edge,

result in photo-excited carriers which are nominally unpolarized in the axis of quantization

defined by the external magnetic field in the Voigt geometry. These optically injected spins
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Figure 4.9: Total magnetic field measured via Larmor magnetometry following voltage tran-
sitions with CISP parallel (parts a) and c)) or perpendicular (parts b) and d)) to the external
magnetic field. All data taken at 10 K with Bext = 200 mT. Light red and light blue shading
indicate VDC = 2 V and -2 V, respectively. Inset text indicates field geometry and total
change in nuclear field ∆BN in the labelled transition. Plots a) and b) show transitions of
the form VDC = 0 → ±2 V; the observed asymmetry with CISP parallel to Bext in a) results
from current direction-independent DNP mechanisms, which are seen in b) when CISP is
perpendicular to Bext. By considering transitions of the form VDC = ±2 → ∓2 V (plots
c) and d)), contributions to ∆BN from current direction-independent mechanisms are sup-
pressed, isolating DNP due to CISP and highlighting the strong directional dependence of
∆BN due to CISP on current direction.
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result in heating of the electron spin system where they are present. In Ref. [63], changes

in nuclear field due to this optical effect were observed by monitoring changes in electron

spin precession after the pump and probe beams were displaced on the sample, therefore

generating a nuclear polarization where there previously was none. The presence of this effect

was verified at much lower external magnetic field strengths in our experiment by monitoring

electron precession frequency following a displacement of the sample of approximately 100

µm at 10 K. At saturation, the shift in nuclear polarization was found to be on the order

of 10 mT with a combined pump-probe power of approximately 150 µW and with the laser

tuned to an energy just above the absorption edge. There is typically no displacement of

the beam in measurements of DNP resulting from CISP. However, when a voltage is applied,

photo-excited carriers will be driven out of the region of interrogation due to electron drift,

giving rise to a voltage-dependent change in nuclear spin polarization which depends on the

voltage magnitude and absorbed pump and probe power.

The asymmetry between transitions to +2 V versus -2 V seen in Fig. 4.9 (a) can then be

explained as the result of an interplay between DNP due to CISP and DNP due to isotropic

mechanisms outlined above. If contributions to DNP due to the various sources discussed

here are assumed to behave linearly7, we may subtract the values of ∆BN observed in

transitions with CISP perpendicular to Bext (panel a) from those with CISP parallel to Bext

(panel b), the contribution to ∆BN from CISP is isolated, and the asymmetry disappears.

We now consider transitions of the type VDC = ±V → ∓V after saturation at V. In

these measurements, contributions to changes in nuclear field caused by mechanisms that

do not depend on the direction of current are suppressed. This allows current direction-

dependent alignment mechanisms to be studied in isolation. Figure 4.9 parts c) and d) show

measurements where these transitions are performed with CISP parallel and perpendicular

to Bext, respectively, at lab times of about 20, 30, and 40 minutes. These measurements

highlight the strong dependence of ∆BN on the orientation of the current in the sample;

7This is a reasonable assumption so long as the nuclear polarization remains small and far from saturation
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Figure 4.10: ∆BN for transitions of the form VDC = ±2 → ∓2 V taken in Sample A with
current along [11̄0] (black) and sample B with current along [110] (green). Lines represent
linear fits to the data

∆BN with CISP parallel to Bext is an order of magnitude larger than ∆BN with CISP

perpendicular to Bext.

4.4.4 DNP scaling with electric field

Figure 4.10 shows the saturated nuclear field strength at 30 K with Bext = 200 mT for

sample A with current along [11̄0] (black) and sample B with current along [110] (green) as a

function of the applied electric field. The design of Sample B allows for higher applied electric

fields at a given thermal power dissipation. The linear scaling of the saturated nuclear field

with applied electric field is consistent with previous measurements of the degree of electron

spin polarization due to CISP in these samples [8, 33, 47]. This result was found to be

consistent on all samples and with current in both orientations used in this study. These

measurements were repeated on samples A, B, and C with current in both the [110] and [11̄0]

directions. The slope of the saturation change in nuclear field ∆BN versus applied electric

field was obtained from a fit to the data, and the resulting values are found in Table 4.3. In

addition, the slopes were generally found to be consistent with independent measurements
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Sample Orientation8 BN,sat/Eext
9 T1e (s) η10

A (cross) [110] 9.2± 2.5 70± 8 –
A (cross) [11̄0] 33.0± 2.5 61± 1 0.515
B (L) [110] 42.7± 1.8 72± 1 0.548
B (L) [11̄0] 40.7± 2.5 71± 2 0.616

C (cross) [110] 6.8± 1.4 97± 7 –
C (cross) [11̄0] 36.1± 4.7 85± 3 –

Table 4.3: Results from measurements at 30K for all samples and orientations used in this
study. BN,s/Eext is found by fitting data shown in Fig. 3 a) to a straight line with y intercept
set at 0. CISP efficiencies η, as defined in Sec. 2.7, are reported where available.

of CISP efficiency η, as defined in Sec. 2.7. That is, samples and orientations which showed

strong CISP also show strong DNP. Values of η where available are included in Table 4.3. The

available data does not span the range of measured DNP efficiencies, but does indicate that

samples with similar values of η exhibit similar DNP efficiencies, hinting at a possible trend.

Further systematic data showing the relationship between CISP polarization efficiency and

DNP is unavailable due to the degradation of samples on which nuclear polarization data has

been collected. Despite efforts to ensure the samples remain clean throughout the process of

mounting and removing samples from the cryostat cold finger using either solvent-based silver

paint or vacuum grease, after a few (typically 3 to 5) cycles, the observed Faraday rotation

signal to noise ratio increases dramatically and precludes further measurement. Degraded

samples appear clean under visual inspection, and channel resistances remain unchanged.

The exact mechanism of sample degradation is currently unknown. Future work should

include measurements designed to verify the relationship between CISP efficiency and DNP

efficiency.

8Crystal axis along which current flows. CISP will be perpendicular to this direction, but parallel to the
external magnetic field in all cases

9Reported in units of mT · µm · V −1, (×10−2)
10Reported in units of µrad/µm.
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Figure 4.11: (Left) ∆BN vs. sample temperature for transitions of VDC = ±1 ↔ ∓1 V (blue)
and VDC = ±2 ↔ ∓2 V (red). (Right) T1e (right) vs. sample temperature for transitions
VDC = 0 → +2 V (blue), VDC = ±2 ↔ ∓2 V (red), and VDC = +2 → 0 V (green). The
polarization times agree across all transition types.

4.4.5 Behavior of DNP with sample temperature

Measurements of ∆BN and T1e as a function of sample temperature are shown in Figure

4.11. Data here were taken on Sample A with an external magnetic field of 200 mT. The left

plot shows the saturated change in magnetic field ∆BN for transitions of VDC = ±1 ↔ ∓1 V

(blue) and VDC = ±2 ↔ ∓2 V (red). Error bars indicated the standard error found in a set

of 12 measurements at each temperature setting. At temperatures 30 K and above, doubling

the change in voltage roughly doubles ∆BN . At 10 K and 20 K, however, this is no longer

the case. We attribute this to the onset of sample heating due to the current in the channel.

For a given change in temperature ∆T , at lower temperatures the fractional change ∆T/T

becomes larger, leading to a larger impact on ∆BN . Also, at low temperatures, the thermal

conductivity of the GaAs substrate decreases substantially, further exacerbating the effects

of ohmic heating [88]. Measurements were attempted at 60 K; while the precession of the

test electron spins was clearly observable, no nuclear polarization was found. This is broadly

consistent with previous measurements [63].

The right-hand plot in Fig. 4.11 shows the behavior of T1e as the sample temperature
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is changed. In this figure, the blue line corresponds to transitions of VDC = 0 → +2 V,

the red line to transitions of VDC = ±2 ↔ ∓2 V, and green to the depolarizing transi-

tions of VDC = +2 → 0 V. The physical basis for this temperature-dependent behavior

is complicated by the possibility of contributions from two mechanism by which electrons

and nuclei undergo dynamic nuclear polarization. As discussed in Sec. 4.3.4, the Si donor

binding energy of 5.84 meV is on the same order as the thermal energy kBT , so that as the

temperature is changed the donor occupation changes as well. Electrons which are bound to

donors will efficiently polarize the nuclei within a small radius, and the nuclear polarization

is then spread by diffusion, so that the timescale is set primarily by the diffusion constant.

At higher temperatures, donor states become ionized, so that DNP occurs through coupling

to itinerant electrons in the conduction band. Through this mechanism, T1e is expected to

be proportional to T− 1
2 . Which mechanism dominates will depend on the occupation of the

donor states. Fits to the data in Fig. 4.11 b) find that T1e scales as T−0.8 in these mea-

surements. This may be complicated by the presence of ohmic heating within the samples,

which has not been accounted for.

4.5 Polarization/depolarization asymmetry

Further inspection of Fig. 4.7 reveals another unexpected asymmetry; the saturation

change in nuclear polarization ∆BN for the polarizing transition VDC = 0 → 2 V does not

match the value for the reverse transition, VDC = 2 → 0 V. However, as shown in Fig. 4.11,

the relaxation time T1e for both processes are identical to within the typical error of the

measurement. Since the time scales match, our first suspicion was that there was a rapid

process which occurred when the voltage is shut off that causes a loss of some fraction of the

nuclear polarization, and the remaining polarization decays at T1e. In order to address this

possibility, we set out to develop a measurement which would be substantially faster than the

Larmor magnetometry technique used here. The result of this effort was the development of

the servo loop measurement technique which follows a zero crossing of the Faraday rotation
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discussed in depth in Chapter 5.4.2.

The development of the Faraday rotation zero-crossing measurement technique led us to

the discovery of the previously unrecognized phase shift which occurs in TRFRmeasurements

due to the presence of previous pulses, which is the primary focus of the next chapter.

Through a somewhat subtle mechanism, the polarization/depolarization asymmetry can be

explained as resulting from this phase shift.

In order to improve the speed of measurements of the local magnetic field, we have used

TRFR scans over a limited delay range, as shown in Fig. 4.6. By design, this measurement

does not include more than a few precessions of the electron spin polarization. Fits to the

precession frequency alone therefore contain a potentially large error. With only a narrow

range of delay times, changes in magnetic field are difficult to distinguish from shifts in

the phase of the TRFR signal. Having not recognized that a phase shift would be present,

the fits of all TRFR scans were performed under the assumption that the signal should be

purely cosinusoidal; that is, we assume zero phase shift. To ensure that this was the case, we

carefully measure the delay line zero delay position. Fits to the limited range of delay times

therefore contain a systematic error as a result of the phase shift introduced by previous

pulses. Numerical calculations showing this are presented in Figure 4.12. Here, we plot the

magnetic field measured by our experimental technique in Cross channel samples versus the

set magnetic field using data for the spin lifetimes at 10 K at a range of voltages.

Fortunately, this invalid assumption introduces only a small error when the in-plane

electric field is large. As will be shown in the next chapter, this is a result of the fact that

spins from previous pulses are dragged out of the region of interrogation by the electron drift

velocity. Errors in the magnetic field measurements at high voltage are only a few percent.

At zero electric field, however, the correction will be larger. The errors are largest at low

temperatures when the electron spin lifetime is long. At temperatures of 30 K and higher,

the error due to phase shift is again only a few percent. Despite this effect, we expect the

lifetime measured to be accurate, as the measured fields will differ from the real field by a
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Figure 4.12: Results of fits to synthetically generated data using a limited delay range of 3–5
ns with 50 ps steps with no phase shift. Introduced error is minimal at high voltages due to
the in-plane motion of optically injected spins and the decreased electron spin lifetime. The
lifetimes used are 10, 8, and 6 ns for Voltages of 0, 1, and 2 V respectively. These values
reflect typical measured values. The mobility is set to 5500 cm2V−1s−1, and pump and probe
spot sizes are assumed to have a diameter of 30 µm.

slowly varying factor over the small changes in nuclear polarization. This is reflected in the

close agreement of the measured T1e polarization times.

Our understanding of this asymmetry was stymied by a peculiar fact about the mea-

surements performed to attempt to characterize the asymmetry. Measurements of ∆BN for

transitions of VDC = 2 → 0 V were taken as a function of the applied magnetic field, with

data collected at 50, 100, 150, and 200 mT. The results showed a roughly linear scaling of

∆BN which was consistent for data at 50, 100, and 200 mT, but appeared anomalously large

at 150 mT, as shown in Fig. 4.13. We now recognize this to be a result of the fact that the

precession frequency of the electrons differs by precisely an octave as the field is increased

from 50 to 100 mT and 100 to 200 mT. Accordingly, the error introduced by the phase shift

is the same at these magnetic fields. At 150 mT the precession frequency does not differ

by an integer number of octaves from the other measurements, so the introduced error is

different than at the other magnetic field values used, which lead to the anomalously large
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Figure 4.13: ∆BN measured in transitions of VDC = 2 → 0 V vs. applied magnetic field
at two different total beam powers. Optical densities (OD) in the legend refer to the pump
and probe neutral density filters, respectively. The total beam power at OD 2.2/2.5 is
approximately 600 µW and increases to approximately 1.35 mW at OD 1.8/2.5.

measured ∆BN at that field value. Measurements were repeated with an increased pump

and probe power by adjusting the pump neutral density filters to an optical density of 1.8

instead of 2.2, which increases its intensity by a factor of 2.5. As discussed in the following

chapter, at higher optical intensity, the phase shift should be diminished due to the loss of

spin polarization due to previous pulses from recombination following the arrival of the next

pulse. The data taken at 150 mt is consistent with that process if the phase shift is indeed

responsible for the anomalously high value of ∆BN obtained.

Due to the error introduced by the phase shift, future measurements should use a more

advantageous selection of delay time set points. Monte Carlo calculations have been per-

formed which show that it is possible to remove this source of error without significantly

increasing the time it takes to perform a TRFR scan by choosing more widely spaced delay

set points over a broader range. This will suppress errors due to the phase shift. Results of

these calculations are shown in Fig. 4.14. Here, we plot a histogram of fit magnetic fields

from a sample of 125,000 simulated delay scans which include Gaussian noise similar to that
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Figure 4.14: Monte Carlo simulations showing the results of fits to magnetic field using ∆T
= 3000:50:5000 ps (top) and 150:150:6000 ps (bottom) with a set magnetic field of 200 mT.
The extended range in delay set points used in the bottom delay scans removes the error
introduced by the phase shift in TRFR measurements.

observed in the experimental setup. The upper panel shows data generated and fit using

the delay set points used in the experimental data presented here; the delay is scanned in

50 ps steps from 3 ns to 5 ns. The lower panel uses delay steps of 150 ps scanning from 150

ps to 6 ns. These contain 41 and 40 measurements, respectively. Accordingly, they should

not differ significantly in the length of time it takes to complete a delay scan. With the new

delay set points, errors due to the phase shift are eliminated, and the standard deviation is

comparable to the originally selected delay set points. Further optimization methods may

be considered which improve the sensitivity and speed of these measurements.

4.6 Conclusion and future work

With the data presented here, we have demonstrated dynamic nuclear polarization re-

sulting from current-induced electron spin polarization. We find that the observed saturation

change in nuclear field ∆BN is consistent with prior theoretical results, and that the nuclei

relax primarily through the contact hyperfine interaction with the electron spin system. Fur-
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thermore, the strength of the saturation magnetic field supports earlier measurements of the

achievable polarization via CISP in this material. We also find that the nuclear polarization

depends on the direction and magnitude of the current, mirroring prior measurements of

CISP, and clarifying previous measurements of CISP-induced DNP in GaAs. The nuclear

polarization time T1e is found to be broadly consistent with theoretical estimates, though

details of its temperature dependence are complicated by the various mechanisms which lead

to relaxation.

We have additionally observed nuclear polarization mechanisms which depend on the

magnitude of the applied electric field, but not its direction, through an asymmetry in ∆BN

when reversing the applied electric field. Two mechanisms are identified which would account

for this asymmetry; depolarization due to the hot electron effect, and depolarization resulting

from the generation of optical carriers by the pump and probe beams used to perform Larmor

magnetometry.

Finally, we have discovered a previously unnoticed phase shift in TRFR measurements

resulting from spins polarized by previous pump pulses. This discovery will be described in

detail in the following chapter. While the phase shift complicates the interpretation of some

results, a clear path towards removing this complication in future measurements is identified.

From the results presented here, three avenues for future measurements are suggested.

Importantly, these measurements should be performed using techniques that account for

the phase shift in TRFR. Using these techniques, measurements of transitions of the form

VDC = 0 → ±V and VDC = ±V → 0 V should be performed to confirm that the observed

asymmetry in ∆BN for these transitions does in fact result from the TRFR phase shift, and

that this is not a real effect.

Second, measurements of ∆BN for transitions with CISP perpendicular to the applied

magnetic field should be performed as a function of the total pump and probe beam powers

and electric field strength . These measurements should allow for the contribution to DNP

in this geometry from the hot electron effect and optically injected carriers to be isolated.
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Finally, an attempt could be made to perform all-electrical NMR using the cross chan-

nels. This could be done by using current along ŷ to generate a nuclear polarization, and

an alternating current along x̂ to excite an alternating current-induced spin polarization

perpendicular to the nuclear polarization. When the AC current frequency is in resonance

with a nuclear spin transition, the Knight field resulting from the electrons may be able to

resonantly depolarize a single nuclear species. This measurement would share features with

the all-optical nuclear magnetic resonance measurements performed in Refs. [63] and [65].
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CHAPTER V

Phase effects due to previous pulses

5.1 Introduction

In Chapter III, it was shown that when the electron spin lifetime is on the order of, or

longer than, the repetition rate of the laser, the contribution to the Faraday rotation angle

of the probe pulse due to previous pump pulses must be included. This fact has lead to

the development of measurements based on resonant spin amplification (RSA)[51, 52, 53].

In RSA measurements, the pump-probe delay time ∆t is held constant, typically at a small

negative1 value, and the Faraday rotation is monitored as the external magnetic field is

swept.

In addition to modifying the field-dependent Faraday rotation angle, previous pulses can

also modify time-resolved Faraday rotation (TRFR) measurements. In TRFR scans, the

previous pulses modify the amplitude of the observed Faraday rotation, as well as introduce

an effective phase shift of the signal. In this chapter, I will discuss this phase shift, which is

present when the electron spin polarization lifetime T ∗
2 is comparable to or larger than the

repetition time of the laser. First, analytic expressions for the phase shift are derived from

previous expressions used in resonant spin amplification (RSA). The implications of this

phase shift are explored numerically and in experimental data. Measurements designed to

make use of this effect are then introduced and discussed in numerical simulations. Finally,

1Negative here indicates that the probe pulse arrives before the pump pulse
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situations in which assumptions made in the derivation of the analytical expressions fail will

be explored, and steps required to make sense of TRFR data in those cases are outlined.

The contents of this chapter are largely based upon work first published in Ref. [89].

5.2 Derivation

We start with the result of chapter III, where it was shown that once initialized, a

spin polarization initially along ẑ will precess around the total magnetic field at the Larmor

precession frequency ΩL = gµBB/! where g is the electron g-factor, µB is the Bohr magneton,

and ! is the reduced Planck constant, and decay with a lifetime given by the inhomogeneous

dephasing time T ∗
2 . This results in an out-of-plane spin polarization of the form:

sẑ(∆t) = S0 cos

(

gµBB

!
∆t

)

e−∆t/T ∗

2 (5.1)

where S0 is the degree of the initial spin polarization along ẑ. In this expression, we take

∆t to be positive, which ensures causality. For long spin lifetimes, one must include the

contribution of all previous pulses, each of which precesses at ΩL and decays with lifetime T ∗
2 .

This gives rise to the following expression for the total ẑ component of the spin polarization:

sẑ =
∑

n≥0

S0 cos
(

ΩL(∆t + nTrep)
)

exp

[

−
(∆t + nTrep)

T ∗
2

]

(5.2)

where Trep is the laser repetition time.

For the following analysis, it is helpful to introduce a complex spin phasor s in place of

the vector quantity s⃗ or the ẑ component sẑ used previously. Here, we take sẑ to be the real

part of s, Re(s), and sŷ to be the imaginary part Im(s). Within this framework, the signal

due to a single pump pulse as a function of delay time is given by:

s(∆t) = S0 exp
[

(iΩL − 1/T ∗
2 )∆t

]

(5.3)
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When the sum found in Eq. 5.2 is rewritten in phasor notation, it becomes:

s(∆t) =
∑

n≥0

S0 exp
[

(iΩL − 1/T ∗
2 )(∆t+ nTrep)

]

(5.4)

While this expression is sufficient to fully describe the spin polarization, it can be sim-

plified to a closed form which offers greater insight into the behavior of the system. First,

we factor out of the sum all the terms which do not depend on n, giving:

s(∆t) = S0 exp
[

(iΩL − 1/T ∗
2 )∆t

]

∑

n≥0

exp
[

(iΩL − 1/T ∗
2 )nTrep

]

(5.5)

We can immediately identify some important results within this expression. All of the

dependence on ∆t has been factored out of the sum, which means that the value of the sum

is constant in ∆t. We define this constant, which is in general complex, to be:

∑

n≥0

exp
[

(iΩL − 1/T ∗
2 )nTrep

]

= reiφ (5.6)

where the modulus r and argument φ are functions of T ∗
2 , ΩL, and Trep. We also see that

the total spin polarization behaves in the same way as that of an individual pulse; that is,

it decays with lifetime T ∗
2 and precesses at ΩL.

The contribution from previous pulses results in a constant multiplicative factor, reiφ, in

the expression. Inserting Eq. 5.6 into Eq. 5.4, we arrive at the following simple form for the

total spin phasor:

s(∆t) = rS0 exp
[

(iΩL − 1/T ∗
2 )∆t + iφ

]

(5.7)

Taking the real part of this to find sẑ, we get:

sẑ(∆t) = rS0 cos(Ωl∆t + φ)e−∆t/T ∗

2 (5.8)

From this it can be seen that previous pulses have two effects – they modify the apparent

87



amplitude of the spin polarization and contribute a phase shift to the precessing term.

We now seek to find closed-form expressions for r and φ, as defined in Eq. 5.6. Fortu-

nately, the sum is in the form of a geometric series, the value of which is given by:

∑

n≥0

ρn =
1

1− ρ
↔ |ρ| < 1 (5.9)

Here, ρ is referred to as the common ratio. Rewriting the sum in this form, we arrive at:

∑

n≥0

(

exp
[

(iΩL − 1/T ∗
2 )Trep

]

)n

(5.10)

where the common ratio is easily identifiable as:

ρ = exp[(iΩL − 1/T ∗
2 )Trep] (5.11)

At this point, for the sake of readability, we introduce two substitutions:

Θ = ΩLTrep (5.12)

x = Trep/T
∗
2 (5.13)

so that ρ = eiΘ−x. The geometric sum converges only if |ρ| < 1,which is satisfied so long as

T ∗
2 is positive and finite, which is the case in experimental systems. Using Eq. 5.9, we have:

∑

n≥0

exp(iΘ− x)n =
1

1− eiΘ−x
≡ C (5.14)

We now look for r and φ which satisfy:

reiφ =
1

1− eiΘ−x
= C (5.15)

The complex number C can be expressed in the polar coordinates r and φ using the following
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equations:

r =
√

Re(C)2 + Im(C)2 (5.16)

φ = tan−1

(

Im(C)

Re(C

)

(5.17)

We therefore begin by calculating the real and imaginary parts of the right-hand side of Eq.

5.15. These can be found from:

Re(C) =
C + C∗

2
(5.18)

Im(C) =
C− C∗

2i
(5.19)

Starting with the real part:

Re(C) =
1

2

(

1

1− eiΘ−x
+

1

1− e−iΘ−x

)

(5.20)

=
1

2

[

(1− e−iΘ−x) + (1− eiΘ−x)

1− e−x(eiΘ + e−iΘ) + e−2x

]

(5.21)

=
1

2

[

2− e−x(eiΘ + e−iΘ)

1− e−x(eiΘ + e−iΘ) + e−2x

]

(5.22)

From the Euler equation, we have:

eiθ + e−iθ

2
= cos θ (5.23)

eiθ − e−iθ

2i
= sin θ (5.24)

Substituting in these definitions for sine and cosine, we find:

Re(C) =
1− e−x cosΘ

1− 2e−x cosΘ+ e−2x
(5.25)
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Repeating the above steps to find the imaginary part, we arrive at:

Im(C) =
e−x sinΘ

1− 2e−x cosΘ+ e−2x
(5.26)

Using Eqns. 5.26 and 5.25, in conjunction with Eq. 5.16, the analytic closed-form expression

for r is found to be:

r =

√

[

1− e−x cosΘ

1− 2e−x cosΘ+ e−2x

]2

+

[

e−x sinΘ

1− 2e−x cosΘ+ e−2x

]2

(5.27)

r =
1

1− 2e−x cosΘ+ e−2x

√

1− 2e−x cosΘ+ e−2x(cos2Θ+ sin2Θ) (5.28)

r = (1− 2e−x cosΘ+ e−2x)−
1
2 (5.29)

We see that r is maximized for a given lifetime (corresponding to a particular value of

x) when cosΘ is maximized, i.e. when ΩLTrep = 2nπ where n is an integer. This condition

corresponds to the case when an integer number of full precessions of the spin polarization

occur within the laser repetition time. Conversely, r is minimized when ΩLTrep = (2n+1)π/2,

corresponding to half-integer precession within the laser repetition time. As expected from

the canonical geometric series results, in the limit of infinite spin lifetime (x → 0), we find

r|Θ=2nπ = ∞ and r|Θ=(2n+1)π/2 = 1/2.

Figure 5.1 panels (a) and (b) summarize the behavior of r throughout parameter space.

The traces in panel (b) correspond to line cuts of the surface plot in panel (a) at particular

values of x. Note that x is inversely proportional to T ∗
2 so that as T ∗

2 goes to infinity x

approaches zero.

We now move on to consider the closed-form expression for φ. Combining Eqns 5.25,5.26,

and 5.17, we immediately arrive at:

φ = tan−1

[

e−x sinΘ

1− e−x cosΘ

]

(5.30)
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Figure 5.1: (a) Surface plot of amplitude r as a function of x and Θ. As the ratio of the
spin lifetime to the laser repetition time grows (corresponding to a decrease in x), resonance
peaks grow larger and sharper. (b) Line cuts of the surface plot in (a) taken at a logarithmic
range of values of x. The maximum value of r diverges as x goes to zero, and its minimum
value converges to 1/2.

The first thing that this expression tells us is that the phase shift φ is limited to be within the

range [−π/2, π/2], and that these extremal values are only obtained at infinite lifetime. Also,

this function exhibits odd symmetry, so that φ(−Θ) = −φ(Θ). This will become important

later when experimental data is considered, since the materials considered within this study

exhibit a negative electron g factor. Further intuition into this expression can be gained by

considering plots of φ throughout parameter space. These plots are found in Fig. 5.2 panels

(a) and (b). Again, the traces in panel (b) correspond to line cuts across the surface plotted

in panel (a) at particular values of x. As expected, the maximum and minimum values of φ

increase with T ∗
2 , and reach their limiting values of ±π/2 at x = 0. Rather less intuitively,

we find that at large T ∗
2 , φ shifts slowly as Θ is swept between peaks of r, and then flips

rapidly as the peak is passed. Correspondingly, the values of Θ at which φ is extremized

move closer to resonance peaks.

Combining Eqn.5.8 with the analytic expressions for r and φ in Eqns. 5.29 and 5.30, we

have now arrived at a closed-form expression for sz(∆t). We note that this is not the first

derivation of a closed form expression for Eqn. 5.2. For instance, the following equation is
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Figure 5.2: (a) Surface plot showing φ as a function of x and Θ, showing the transition from
sinusoidal to sawtooth behavior as the value of x decreases. (b) Line cuts of the surface plot
in (a) taken over a logarithmic range of values of x. As x decreases, the phase shift across
RSA peaks (corresponding to Θ = 2nπ) occurs increasingly rapidly and the maximum phase
shift approaches ±π/2.

adapted into the notation used in this dissertation from Ref. [90]:

sz(∆t) =
s0
2
exp

[

−
∆t + Trep

T ∗
2

]

cos(ΩL∆t)− eTrep/T ∗

2 cos [ΩL(∆t+ Trep)]

cos(ΩLTrep)− cosh(Trep/T ∗
2 )

(5.31)

However, this expression, which is derived in the context of RSA measurements which are

usually done at small negative time delays, is only valid over the interval ∆t ∈ [−Trep; 0).

Under a suitable variable substitution, Equations 5.31 and 5.8 are functionally identical.

Eqn. 5.8, however, has a simpler form that provides greater intuition, makes the presence

of the phase shift explicit, and allows for the immediate calculation of the in-plane spin

polarization for free by taking the imaginary part of Eqn. 5.7 instead of the real part.

Next, we seek to find an expression for the maximum magnitude of the phase angle φ

versus x, as well as the values of Θ at which the extrema occur. We start by finding critical

points in φ(Θ, x). However, since tan−1(α) increases monotonically with α, we can search

for extrema of the argument of the tan−1 function instead of the full expression for φ. The

equation for the critical points becomes:

d

dΘ

e−x sinΘ

1− e−x cosΘ
=

e−x cosΘ

1− e−x cosΘ
−

e−2x sin2Θ

(1− e−x cosΘ)2
= 0 (5.32)
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Simplifying the equality on the right hand side of the above expression, we get:

cosΘ =
e−x sin2Θ

1− e−x cosΘ

cosΘ = e−x(sin2Θ+ cos2Θ)

cosΘ = e−x (5.33)

Since cosΘ is 2π-periodic in Θ and exhibits even symmetry, we find the equation for the

locations of the critical points to be:

Θextr = 2nπ ± cos−1(e−x) (5.34)

This confirms the observations from Fig. 5.2, which is that as T ∗
2 increases, the value of Θ

at which φ is extremized moves closer to the resonance peaks at Θ = 2nπ.

Now we seek an expression for the maximum phase angle as a function of x, which requires

that we plug the result in Eq. 5.34 into Eq. 5.30. For simplicity, we pick n = 0 and the

positive solution but the result we find will be general to all values of n up to the sign of the

phase shift. We have:

φextr = tan−1

[

e−x sin(cos−1 e−x)

1− e−x cos(cos−1 e−x)

]

(5.35)

We now apply the trigonometric identity:

sin(cos−1 α) =
√
1− α2 (5.36)

Plugging this in and simplifying Eq. 5.35, we find:

φextr = tan−1

[

e−x

√
1− e−2x

]

(5.37)

The result in Eq. 5.37 is plotted as a function of 1/x in Fig. 5.3. φextr is plotted versus 1/x

so that the independent variable is proportional to T ∗
2 instead of its inverse.

93



T2
*/Trep (1/x)

0 1 2 3 4

φ
ex

tr

0

π/8

π/4

3π/8

Figure 5.3: Extremal value of the apparent phase shift φextr as a function of 1/x. By inverting
this relationship, a measurement of the maximum phase angle can be used to determine the
spin lifetime.

5.3 Experimental data

In order to verify the analysis up to this point, an experimental data set was collected.

Data were taken on a commercially purchased sample consisting of a 2 µm layer of n-GaAs

doped at 1×1017 cm−3 atop a semi-insulating GaAs substrate. Measurements were performed

at 10 K as a function of external magnetic field Bext and pump-probe delay time ∆t. The

laser was tuned to λ = 818.2 nm, and has a repetition time of 13158 ps. For this data, the

pump and probe beam powers were measured to be 500 µW and 75 µW, respectively, and

the beam diameters were found to be approximately 35 µm each. These data were generated

by collecting the reflected probe beam, and are therefore considered to be Kerr rotation

measurements.

Results are plotted in Fig. 5.4. In this figure the magnitude of the signal shown is

in millivolts as measured on a lock-in amplifier, which is taken to be an arbitrary unit

proportional to the Kerr rotation angle. The data set was then fit to extract the electron g

factor and spin lifetime. The fit used simultaneously fits to the entire data set; that is, the

entire 2-dimensional data set is fit at once to the real part of 5.4 with a term added which
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takes into account the contribution from optically excited carriers before recombination,

which decays rapidly. In total, the fit equation used is:

θf = Re

{

∑

n≥0

S0 exp[(iΩL − 1/T ∗
2 )(∆t + nTrep)]

}

+AO cos(ΩL∆t) exp[∆t/TO]×Θ(∆t)

(5.38)

The fit finds g = −0.3788 2, T ∗
2 = 10.2 ns, and optical spin lifetime TO = 87 ps. The ratio of

Faraday rotation from long-lived spins to spins from optical carriers, A/AO, is found to be

2.0. Figure 5.4 (b) shows computed data using the results of the fit. Both plates in Fig. 5.4

have been normalized using the same normalization factor. The close agreement between the

experimental and model data is clearly shown in this figure; aside from the presence of some

small noise in the experiment, the model is virtually indistinguishable from the experimental

data.

The primary challenge faced when attempting to use a simultaneous fit is maintaining

the stability of the experimental setup over the roughly 2 hours it takes to collect this data.

Temperature and humidity fluctuations in the lab must be minimized, and the cryostat and

optics must be allowed to equilibrate for a considerable amount of time, typically about

2 hours, after turning on the laser and electronics. Changes in pump-probe overlap, laser

power, and motion of the sample relative to the optical beams must be constant throughout

the experiment to avoid a time-dependent amplitude factor, which complicates and corrupts

the result of fits to the data. The ability to maintain stability over this long a time is thanks

to the diligent work of everyone in the lab in building a stable and robust experiment.

In order to test the validity of the above analysis, the data is fit again as a series of

delay scans. At each value of the external magnetic field, a delay scan is performed and the

resulting data is fit to the functional form found in Eq. 5.8, and the values of r, φ, ΩL, and T ∗
2

are extracted. The results of these fits are plotted in Fig. 5.5, along with the expected values

2The sign is assumed to be negative in accordance with literature values, as this measurement cannot fix
the sign of the g factor
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Figure 5.4: Normalized lock-in signal (proportional to Faraday rotation angle θf) as a func-
tion of delay time ∆t (horizontal axis) and external magnetic field Bext (vertical axis) for
experimental data (a) and data generated using Eq. 5.38 with fit parameters from experi-
mental data (b).
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Figure 5.5: Phase shift φ (top) and amplitude r (bottom) versus magnetic field for exper-
imental data (blue squares) and model (red traces). The experimental data shows close
agreement with the model, which has only two free parameters, T ∗

2 and g.

for r and φ given the values of g and T ∗
2 determined from the simultaneous fit above. The

experimental data agrees closely with the theoretical values within this range of magnetic

fields. At lower magnetic fields, the slow Larmor precession frequency adversely affects the

accuracy of the fits. Within the plotted range (corresponding to external magnetic fields of

100 to 150 mT) the maximum observed phase angle is 16.4◦.

5.4 Measurements using resonant phase shift

5.4.1 Measuring spin lifetime

Thanks to its monotonic behavior, equation 5.37 can be inverted, so that knowledge

of the maximum phase shift can be used to calculate a corresponding value of x, and by

extension, T ∗
2 . Inverting Eq. 5.37, we find the following:

x = ln

[

√

1 + tan2 φextr

tanφextr

]

(5.39)
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The maximum observed phase angle in the preceding section of 16.4◦, used in conjunction

with Eq. 5.39, can be used to calculate T ∗
2 , which gives a value of 10.4 ns. This is in good

agreement with the value found in the simultaneous fit discussed above, which was 10.2 ns.

In this calculation, we have simply taken the largest observed phase angle measured within

the data set collected. Because of the duration of data collection for such a large data set,

this is not an efficient way to measure T ∗
2 , especially when compared to the other available

techniques including TRFR and RSA measurements.

Fortunately, it is possible to systematically find a value of the magnetic field which

produces a condition of maximum phase without resorting to performing numerous delay

scans. This can be done because, as we will show, at a condition of maximum phase, the

sum of all previous pulses lies in the sample plane when the next pulse arrives. That is,

sz(∆t = 0−) = 0. Since Eq. 5.8 is valid over the interval ∆t ∈ (0, Trep), we must use the

fact that, since each pulse contributes a spin polarization S0, sz(0+)− sz(0−) = S0.

Equation 5.37 gives the condition at which a maximum phase angle is reached for a given

value of x;

Θextr = 2nπ ± cos−1(e−x)

Since the sine and cosine functions in which Θ appears are 2π periodic, we can again pick

Θextr = ± cos−1(e−x) without loss of generality.

Evaluating Eq. 5.8 at ∆t = 0+ yields:

sz(∆t = 0+) = rS0 cos(φ) (5.40)

Substituting Θextr = ± cos−1(e−x) into Equations 5.29 and 5.30 above, we find:

r =
1√

1− e−2x
(5.41)

cos(φ) =
√
1− e−2x (5.42)
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Inserting these into Eq. 5.40 gives:

sz(∆t = 0+)|φextr = S0 (5.43)

Since, as is discussed above, sz(0+)− sz(0−) = S0, we arrive at:

sz(∆t = 0−)|φextr = 0 (5.44)

Accordingly, the sum of the previous pulses must lay in the sample plane, as it has no

component along ẑ. This situation is shown schematically in Fig. 5.6, which shows spin

polarization immediately following the arrival of a pump pulse (∆t = 0+) at a condition

of extremized phase. Here, the contribution to the total spin polarization from the 7 most

recent pump pulses is shown in blue, while the total spin polarization is shown in red. All

vectors are normalized to the initial spin polarization S0. Accordingly, the most recent pulse

is shown by the vector of length 1 pointing along ẑ. The green arrow shows the sum of

previous pulses but excluding the most recent pulse. This is equal to the spin polarization

immediately preceding the arrival of the pump pulse, s⃗(∆t = 0−), and confirms that this

polarization lies in the sample plane and that sẑ = 0. This data has been generated using

x = 1/2, or T ∗
2 = 2Trep.

With the fact that sẑ(∆t = 0−)|φextr = 0 in mind, we can systematically find the maxi-

mum phase angle using the following steps:

1. Set the pump-probe delay time to a small negative value.

2. Tune the magnetic field so that the Faraday or Kerr rotation signal is midway between

its maximum and minimum values. Doing this instead of finding the zero point removes

any DC offset in the Faraday rotation signal.

3. Perform a delay scan and fit it to extract the phase angle φ
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Figure 5.6: Diagram representing the orientation of the total spin polarization (red), the
contribution from the first 7 terms in the sum found in Eq. [needed] (blue), and the sum
excluding the most recent pulse (green).

4. Use this maximum phase angle in conjunction with Eq. 5.39 to calculate the lifetime

T ∗
2 .

The sensitivity of such a measurement to the lifetime will depend on the ratio of T ∗
2

to Trep. This is readily apparent when considering Fig. 5.6. For low values of this ratio

below 1/3, the phase remains near zero, making a measurement of φextr useless as a means

to determine T ∗
2 . Fortunately, this is the range in which fits to TRFR data are most useful.

As T ∗
2 /Trep increases past about 1/3, φextr begins to increase rapidly, yielding the highest

sensitivity measurement, before eventually leveling off as it approaches its maximum value.

It is within the region where the derivative of φextr with respect to T ∗
2 is large that this

measurement is most useful. If Trep can be chosen (for instance, by using a pulse picker)

then the repetition rate should be chosen accordingly. Within this range, the chief difficulty

lies in effectively choosing a magnetic field which maximizes φ. Once this magnetic field is

settled upon, so long as a sufficient number of precessions of the electron spin polarization

can be measured within the range of the delay line, fitting φ is straightforward.
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5.4.2 Phase effects in Larmor magnetometry

Time-resolved Faraday/Kerr rotation can be used to measure the local magnetic field in

which a spin polarization is found through a process dubbed Larmor Magnetometry [63]. In a

typical Larmor magnetometric measurement, a time-resolved Faraday rotation measurement

is performed and the electron precession frequency is extracted from a fit to the data. Since

the Larmor precession frequency ΩL is proportional to the magnetic field about which the

electrons precess, if the g-factor is known the magnetic field can be calculated. This technique

is used extensively in the study of dynamic nuclear polarization found in Chapter IV

While this technique allows for precise localized measurements of one component of a

magnetic field, it has some limitations in practice. First, each time the magnetic field is

measured a delay scan must be completed. This generally requires on the order of 10-

100 seconds, which limits the temporal resolution for measuring fields which change more

quickly. Second, since at least a few full precessions of the electron spin polarization must

occur within the delay scan for a successful fit to the precession frequency, this technique is

of limited use when the field is too small.

If all that is required of the measurement is to determine that a magnetic field has changed

instead of determining a precise value (such as in the detection of a resonance condition),

the first of these drawbacks can be avoided. Such a measurement is performed in Ref. [65]

by simply monitoring the Faraday rotation signal continuously. A shift in magnetic field

will result in a shift in precession frequency, changing the observed Faraday rotation. This

technique is not ideal for uniquely determining the magnetic field for two reasons. First, when

θF is at a local maximum with respect to B, the derivative goes to zero, which means small

changes in the magnetic field around that point cannot be detected. Related to this fact,

ΘF does not exhibit a one-to-one relationship with the magnetic field, so that a particular

measurement of θF cannot be related back to the local magnetic field by itself. The second

major drawback is that this measurement cannot differentiate drift in laser power or pump-

probe overlap from a change in magnetic field. For these reasons, this measurement is used
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in Ref. [65] only to detect the presence of a resonance condition, and not the magnitude of

the concomitant change in magnetic field.

The first problem discussed in the preceding paragraph can be avoided if only small

changes in magnetic field around a zero crossing of known order of the Faraday rotation

signal are considered. Near a zero crossing, dθF/dB is maximized and changes slowly, and

drifts in overlap or power result in a proportionally smaller error in the magnetic field

measurement. In fact, if the Faraday rotation signal is at a zero crossing of known order,

the field is uniquely determined and variations in laser power and pump-probe overlap are

eliminated entirely. This fact suggests a new approach: instead of continuously monitoring

θF at a fixed delay time, continuously adjust the time delay such that the Faraday rotation

is held as close to zero as possible. Then, if the g-factor and crossing order are known, the

magnetic field can be calculated from the delay time at which the zero crossing occurs, and

measurements can be taken as quickly as the delay line can be moved and a few lock-in time

constants elapse.

A Faraday rotation zero-crossing will occur when sẑ = 0. That is,

sẑ = rS0 cos(ΩL∆t + φ) exp[−∆t/T ∗
2 ] = 0 (5.45)

This will occur when the cosine term goes to zero, which occurs when the following is satisfied:

ΩL∆t + φ =
(2n+ 1)π

2
(5.46)

The presence of φ in this equation complicates matters, and more so at longer lifetimes. This

is most easily seen in Fig. 5.7, which plots the delay time of the 15th (left) and 6th (right)

zero-crossings versus magnetic field for a number of lifetimes. As the lifetime increases, the

behavior of the zero crossing delay time becomes dominated by the rapid shift in phase when

an RSA peak is crossed. In fact, as is visible in the n = 6 plot, at long lifetimes the zero

crossing delay time ceases to have a one-to-one correspondence to the associated magnetic
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Figure 5.7: Delay times corresponding to the 15th (left) and 6th (right) zero crossing of the
Faraday rotation signal versus external magnetic field for a range of values of x. Even at
infinite lifetime (corresponding to x = 0), zero crossing time exhibits a monotonic dependence
on external magnetic field for n = 15 and other crossings where ∆t Trep/2. As the lifetime
grows, monotonic dependence is lost for zero crossings which occur at delay times less than
half the laser repetition time, such as the n = 6 crossing.

field. This behavior is not, however, present in the n = 15 plot. This is due to the fact that

the 15th zero crossing occurs at a much larger pump-probe delay time than the 6th crossing

at the experimental parameters used in generating this data.

Here, we will show that for all values of x, so long as the zero crossing being followed

occurs at a delay time greater than half the laser repetition time, a one-to-one correspondence

between zero crossing delay time and external magnetic field is maintained. To show this,

we consider how the two terms in the argument of the cosine in Eq. 5.45, given by ΩL∆t+φ,

change with magnetic field. In the worst-case scenario of x = 0, we see from Fig. 5.2 panel

(b) that between RSA peaks (at Θ = 2nπ), the derivative of φ with respect to Θ is constant:

dφ

dΘ
=

∆φ

∆Θ
= −

1

2
(5.47)

We can relate this to a derivative with respect to B via:

dφ

dB
=

dφ

dΘ

dΘ

dB
= −

1

2

gµB

!
Trep (5.48)

Between RSA peaks as B is increased, φ decreases. Now we look at the derivative of the
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Figure 5.8: Delay time at which the 9th zero crossing occurs with infinite lifetime (x = 0).
This figure shows the transition frommonotonic behavior when∆t > Trep/2 to non-invertable
dependence below ∆t = Trep/2.

first term:
d

dB
ΩL∆t = ∆t

dΩL

dB
=

gµB

!
∆t (5.49)

Regardless of the delay time, this term increases with increasing external magnetic field.

Adding these two terms together, in the case of infinite T ∗
2 and looking only between RSA

peaks, we arrive at:
d

dB
[ΩL∆t + φ] =

gµB

!

(

∆t−
Trep

2

)

(5.50)

The delay time at which a zero crossing occurs will decrease with increasing magnetic

field as long as this derivative is positive. When an RSA peak is crossed, φ increases rapidly

with an increase in magnetic field. The limiting factor becomes ensuring that this derivative

remains positive when φ is decreasing between resonance peaks. This condition is always

satisfied in the case of infinite T ∗
2 as long as ∆t > Trep/2. As the lifetime is decreased, the

corresponding minimum delay time for monotonic behavior decreases, and can be determined

by finding the derivative of φ at its maximum negative value, which occurs atΘ = (2n+1)π/2.

However, the sensitivity of the measurement is always best when the zero crossing being

followed is found at long time delays. This behavior is visible in Fig. 5.8, where the 9th zero
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crossing delay time divided by the laser repetition time is plotted for a wide range of field

values. Monotonic behavior disappears when the delay time drops below Trep/2.

5.5 Pump-pump interactions

When the pump pulse arrives at the sample, optically generated majority carriers are

created with a net spin polarization [15]. Minority carriers, in this case holes, are generated

as well, but these holes dephase rapidly, as discussed in Chapter III. The dephasing of the

holes leads to randomized recombination and photoemission, leaving only dopant electrons

in the conduction band, which will have the same degree of polarization as the sum of

the optically injected and dopant electrons before recombination. If the pump power is

sufficient that the number of dopant and optically injected electrons in the conduction band

after absorption of the pump pulse are comparable, then we must account for the loss of

polarization of electrons from previous pump pulses when recombination occurs [91]. Here,

we investigate this effect and discuss its implications on the above analysis.

When a pump pulse is incident on the sample, light is absorbed and optically generated

carriers are created with densities nO for both electrons and holes. In the materials used here,

there are also dopant electrons present with density nD, making the total majority carrier

density nT = nO + nD. Upon recombination, nO carriers will recombine at random with

optically generated holes and fall back to the valence band, emitting a photon. Accordingly,

after recombination any spin polarization present before absorption is decreased by a factor

ζ , given by:

ζ =
nD

nO + nD
(5.51)

With this new factor added, the total spin phasor, originally found in 5.4, becomes:

s(∆t) =
∑

n≥0

S0ζ
n exp

[

(iΩL − 1/T ∗
2 )(∆t + nTrep)

]

(5.52)

105



Repeating the above analysis, we find the following expressions for r and φ:

r = (1− 2ζe−x cosΘ+ ζ2e−2x)−
1

2 (5.53)

φ = tan−1

[

ζe−x sinΘ

1− ζe−x cosΘ

]

(5.54)

Crucially, with these updated expressions for r and φ, the ẑ component of the spin polariza-

tion will still precess at ΩL and decay with lifetime T ∗
2 ; that is, Eq. 5.8 still holds, and a fit to

TRFR data will still report the correct values. However, measurements of the lifetime based

on RSA or φextr will report an artificially low lifetime. The upshot of this is that by com-

paring the measured values of the lifetime found by TRFR and either resonance technique,

it is possible to calculate the value of the factor ζ , and by extension the ratio of optically

generated to dopant carriers in the system. The value of ζ increases to approach 1 as the

number of optically injected carriers decreases. Accordingly, this effect can be suppressed by

sufficiently lowering the total beam powers, as well as by tuning the laser to the maximum

Faraday rotation wavelength on the low-energy side of the absorption edge.

In practice, this analysis is complicated by the fact that nO is not uniform across the beam

area, but instead will vary with the pump intensity distribution. Accordingly, the degree

of spin polarization becomes positionally dependent, and the true signal must be calculated

from integrals over this distribution. Additionally, accurate knowledge of the pump and

probe beam profiles is required.

5.6 Effects of in-plane electron motion

In the preceding analysis, it was tacitly assumed that the motion of the electrons is

negligible within the spin lifetime; that is, dephasing occurs more quickly than electrons

leave the region of interrogation. Here, we investigate the implications to the above model

in situations where this is not the case.

Motion of the electrons in our samples results from two primary mechanisms. When an
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in-plane electric field is present, electrons will have a non-zero net drift velocity determined

by:

v⃗drift = µE⃗ (5.55)

where µ is the electron mobility in the sample. Even in the absence of an electric field,

electrons will diffuse throughout the sample. Both of these mechanisms are described math-

ematically within the drift-diffusion equation, given by:

∂c

∂t
= ∇ · (D∇c)−∇ · (v⃗driftc) +R (5.56)

where c is the quantity of interest, D is the diffusion constant, and R a source term. We may

assume here that D is spatially homogeneous and that the velocity field has zero divergence

(corresponding to an incompressible flow), and that between pulses R = 0. Applying these

simplifications, we arrive at:
∂c

∂t
= D∇2c− v⃗drift ·∇c (5.57)

Here, we take c to represent the density of optically aligned spins in the conduction band.

To proceed, I will make the simplifying assumption that the effective magnetic field seen by

the electrons due to their diffusive velocity is small compared to the effective field due to

their drift velocity and the externally applied magnetic field, and neglect it. The practical

effect of this is that we can assume that the spin vector for the optically aligned electrons

is uniform in space. Situations where this contribution cannot be neglected require use of

the full spinor form of the semiclassical Boltzmann transport equation, and are discussed in

detail in for example, references [92] and [93].

First, we consider diffusion in the absence of a net drift velocity. In this case, the partial

differential equation governing the system dynamics is given by:

∂c

∂t
= D∇2c (5.58)
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This can be solve using a Green’s function method. The Green’s function, whose derivation

is shown in detail in Ref. [94], is found to be:

g(x|ξ, t) =
1√
4πDt

exp

[

−(x− ξ)2

4Dt

]

(5.59)

Convolving this Green’s function with a Gaussian distribution of width σ at the origin,

corresponding to the initial condition:

c(r⃗, t = 0) =
1

√

2πσ2
0

exp

[

−r2

2σ2
0

]

(5.60)

the solution is found to be:

c(r⃗, t) =
1

√

2π(σ2
0 + 2Dt)

exp

[

r2

2σ2
0 + 4Dt

]

(5.61)

This corresponds to a Gaussian in r⃗ whose width is given by:

σ(t) =
√

σ2
0 + 2Dt (5.62)

The electron diffusion constant D here can be estimated using the Einstein-Smolouchowski

relation[95, 96], D = µkBT/q. Spin-drag measurements suggest a mobility of approximately

5500 cm2V −1s−1[17] in our samples, which results in D = 3.45 × 10−2 µm2ns−1K−1. Fig-

ure 5.9 contains a plot of the beam FWHM as a function of elapsed time for a range of

temperatures and assuming an initial FWHM of 30 µm. As the temperature increases, so

too does the rate of expansion of the spot due to diffusion. At the same time, however, T ∗
2

decreases. At 10 K in the sample used in the collection of experimental data here, over the

spin lifetime of 10 ns, the FWHM of the spin envelope function has increased by only a few

percent. Despite the faster expansion due to diffusion, at higher temperatures the decreasing

spin lifetime means that diffusion continues to be a small effect.
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Figure 5.9: Electron spin packet FWHM size as a function of elapsed time for a range of
temperatures assuming a constant mobility of 5500 cm2V −1s−1 and FHWM of 30 µm at
t = 0.

With diffusion having been accounted for, we now turn to the effect of a non-zero drift

velocity, which gives rise to the second term on the right-hand side of Eq. 5.57. The simplest

way to deal with this is to use the solution in the rest frame above and perform a Galilean

transform, under which Eq. 5.57 is invariant, into the lab frame. Accordingly, the full

solution may be written as:

c(r⃗, t) =
1

√

2π(σ2
0 + 2Dt)

exp

[

|r⃗ − v⃗driftt|2

2σ2
0 + 4Dt

]

(5.63)

In the context of our experiments, this solution can be interpreted as a spatial envelope

function for the spin polarization due to a particular pump pulse occurring at t = 0. As

we have seen, the Faraday rotation of the probe beam is proportional to the out-of-plane

component of the spin polarization within the sample. When the spin polarization is spatially

dependent, the constant of proportionality (denoted here as F ) will be determined by an

integral over space of the product of the spin polarization and probe beam intensity profile:

F ∝
∫

dA Iprobe(r⃗)sẑ(r⃗, t) (5.64)
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When the spins are moving in the plane, sẑ becomes a function of both position and time.

Accordingly, F will vary from pulse to pulse and be a function of ∆t as well, denoted by

F → Fn(∆t). With this factor, the equation for the total spin phasor (Eq. 5.4) becomes:

s(∆t) =
∑

n≥0

S0Fn(∆t) exp
[

(iΩL − 1/T ∗
2 )(∆t+ nTrep)

]

= S0 exp
[

(iΩL − 1/T ∗
2 )∆t

]

∑

n≥0

Fn(∆t) exp
[

(iΩL − 1/T ∗
2 )nTrep

]

(5.65)

The presence of Fn(∆t) within the sum means that we can no longer treat the sum

as a constant as we did above. Accordingly, s no longer precesses at ΩL nor decays with

characteristic time T ∗
2 . Its behavior now depends on many more variables, including the

pump and probe beam profiles and relative positioning, the presence of an in-plane electric

field, electron mobility, and so on. Care must be taken in these situations to account for all

of these effects.
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CHAPTER VI

Conclusion

This dissertation has focused on elucidating aspects of electron spin transport in GaAs

and InGaAs. In particular, we have shown current-direction dependent dynamic nuclear

polarization which results from current-induced electron spin polarization for the first time.

The polarization timescale and saturated nuclear magnetic field were investigated throughout

parameter space. An asymmetry in the saturation nuclear magnetic field between currents

flowing in opposite directions was found and explained as resulting from DNP generated by

other current-dependent mechanisms which do not depend on the direction of current but

only its magnitude. An unexpected difference between the change in nuclear magnetic field

for polarizing and depolarizing transitions was found, and ultimately determined to result

from a previously uncharacterized phase effect in time-resolved Faraday rotation measure-

ments that results from spins polarized by previous pulses. New closed-form expressions for

the total Faraday rotation when the spin lifetime is on the order of, or greater than the laser

repetition time are derived which include an analytic expression for the phase shift. These

expressions are used to explore the phase shift throughout parameter space. A new measure-

ment of spin lifetime which takes advantage of the phase shift was proposed. Finally, future

measurements of DNP which will help to confirm some of the conclusions drawn within this

dissertation and further explore the process of DNP resulting from CISP are suggested.
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APPENDIX A

Thorlabs 3-axis Stage Hardware and Software

Due to the inhomogeneous nature of the electric field and/or strain parameters in some of

our samples, accurately positioning the pump and probe beams on the sample is necessary.

This can be done manually in cases where the sample geometry and orientation allow, but

this becomes difficult to do by eye for complicated samples and awkward orientations. In

these situations, a systematic way to position both the pump and probe beams on the

sample is required. Automated positioning also opens up the possibility of doing accurate

spatially-dependent scans across a sample.

Two pieces of equipment allow us to steer the pump and probe beam positions on the

sample independently. The pump beam position can be moved relative to the probe beam

position by way of a motorized steering mirror. Because we intend to collect the reflected

or transmitted light from the probe beam, steering it with a single mirror is not an option,

as displacing the probe beam on the sample would corrupt the collection-path alignment.

Instead, we leave the probe beam fixed in space and move the sample relative to it. The

small size of the cold finger in the Janis ST-300 cryostat means we cannot fit a translation

stage within the cryostat. Accordingly, we move the whole cryostat by way of heavy duty

motorized stages which are capable of driving the approximately 8 kg load consisting of the

cryostat and transfer line.

The 3-axis positioning system used here is based on Thorlabs TravelMax 2 inch linear
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translation stages (part number LNR50S). These stages have a maximum load of 30 kg for

horizontal motion and 10 kg for vertical motion, and a bidirectional positional repeatibility

of 0.05 µm. The translation stage motion is generated via stepper motors which are driven by

the Thorlabs BSC-203 3-axis stepper motor driver. While LabVIEW virtual instruments are

included for interfacing with the stepper motor controller (hereafter referred to as BSC-203),

communication with Matlab must occur through the Microsoft ActiveX software framework.

In this appendix, details of the Matlab control software written to ease interfacing with

the BSC-203 Stepper Motor Controller are included. The augmenting circuits which imple-

ment external contact limit switches which protect the cryostat against inadvertently crash-

ing into the electromagnet poles are described, along with the implementation of an external

jog controller using a legacy Nintendo R⃝ gaming controller and PICAXE R⃝ microcontroller.

A.1 Matlab interfacing software

The Matlab code written to interface with the BSC-203 is based on object-oriented

programming principles. System parameters, such as acceleration and maximum velocity,

board serial numbers, etc., as well as methods which correspond to particular commands, are

defined within the axis3eng classdef file. When this class is instantiated, a communications

channel to the BSC-203 is opened through ActiveX, default parameters are set, and a GUI

is generated with real-time readouts of the stage position and access to manually input

commands and change system settings. This can all be done programatically as well, allowing

for the scripting of experiments which make full use of the translation stage’s capabilities.

A.2 External hardware limiting switch

In any motion control system, it is good practice to put safeguards into place which ensure

inadvertent commands cannot cause damage to the system. To that end, the TravelMax

stages contain two internal limit switches which prevent damage to the drive mechanism.
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In an open-loop system such as this, a limit switch can also be used to generate a position

calibrating data point; when the switch is activated, the stage position is known. While

the internal limit switches work well for two axes in our setup, lateral motion between

the electromagnet poles is constricted in a way that isn’t accounted for. In this section,

an augmenting circuit is described which acts as external limiting switches operating in

conjunction with the internal limit switches, preventing damage to the cryostat and allowing

calibration of the cryostat position in that direction.

As is generally the case, the limit switch input pins on the BSC-203 are active-low with 10

kΩ pull-up resistors. Accordingly, the internal limit switches are normally-closed, and when

closed connect the limit switch pin to ground. This arrangement is chosen because faults

present most frequently as an open circuit, which in this case prevents motion commands

from being issued until the limit switches are functioning correctly. Unfortunately, the BSC-

203 has no inputs for external limit switches. To overcome this, any external limit switches

must make use of the pre-existing inputs. Since the signal is active-low, external limit

switches must also be normally closed and in series with the internal limit switch.

To implement the external limit switch, electrically isolated contacts are first placed on

the ends of the electromagnet poles. It is critical that these contacts do not interfere with the

magnetic field. A metal with a small susceptibility must therefore be used. Copper, which is

weakly diamagnetic with a volume magnetic susceptibility χV = −1.0×10−6, was chosen for

this purpose. The copper contact is electrically isolated from the electromagnet and is held

high with a 10 kΩ pull-up resistor. When the cryostat, which is electrically grounded, makes

contact with the copper, the voltage on it is pulled to ground. This active-low signal on

the copper contact is then used as the input to the base of a 2N3904 NPN bipolar junction

transistor. The collector of this transistor is connected to the limit switch input and the

emitter is connected to the internal limit switch. When the voltage on the copper contact

drops to zero, the conduction pathway between the collector and emitter in the transistor

is broken, the limit switch input goes high, and the BSC-203 interprets this as an activated
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Figure A.1: Circuit diagram for one side of the external limit switch system designed to
protect the cryostat against inadvertent collision with the electromagnet poles.

limit switch.

Two of these circuits are implemented, which limit the stage motion in both directions.

Additionally, the circuit includes LEDs which light when a limit switch has been hit, alerting

the user when the stage is being positioned manually. The circuit diagram for one side of

this circuit is shown in Figure A.1.

A.3 External jog controller

In addition to accepting positional commands from the computer interface, the BSC-203

controller can also receive jog commands via a proprietary serial joystick, or low-level TTL

inputs. In this section, I describe an implementation which allows a Nintendo Entertainment

System controller (hereafter referred to as a Nintendo controller) to be interfaced to the TTL

inputs for issuing jog commands directly from the optics bench.

Each of the 3 channels on the motion controller includes a 15-pin control port which

allows low-level access to important I/O signals. Among these are inputs for clockwise and
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Latch

Data

+VCC

Special

Special

Figure A.2: Pinout for Nintendo Entertainment System controller used to implement the
manual jog controller.

counter-clockwise jog commands. As with all signaling on the BSC-203, these inputs are

based on 5-volt TTL signals and are active-low with 10 kΩ internal pull-up resistors. When

these pins are driven low the controller drives the channel’s stepper motor in the correct

direction. Software settings allow for customization of how the jog signals are interpreted.

Separate settings for jog motion acceleration and maximum velocity, and whether the jog

occurs continuously while the signal is driven low or in discrete steps.

The Nintendo controller used in this circuit uses a serial transmission protocol to transmit

the button state. This allows the button state to be transmitted over 3 wires, including in

situations where more than one button is pressed at once. The controller pinout is shown

in A.2. The serial protocol used by the Nintendo controller works as follows. At time t = 0,

the console drives the latch pin on the controller high. This logs the current state of all the

buttons, and the controller sets the data pin according to the state of the “A” button. This

signal is active-low, so if the button is pressed the data pin is driven low. After 20 µs, the

clock pin is driven with 8 square wave pulses with a pulse time of 10µs and 50% duty cycle.

Each clock pulse instructs the controller to assert the data pin according to the state of the

corresponding button when the latch pulse arrives. This sequence is repeated at a frequency

of 100 Hz. Figure A.3 shows a timing diagram which describes this process.

The job of the PICAXE microcontroller in this circuit is to implement this serial trans-
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Latch

Pulse

Data A B Select Start Up Down Left Right

20 µs

Figure A.3: Nintendo controller serial transmission protocol timing diagram.

mission protocol, and drive the jog inputs on the motion controller according to the button

state of the nintendo controller. The D-pad (arrowed) buttons drive the axes corresponding

to motion in the sample plane, and the A and B buttons jog the stage along the direction of

laser propagation, adjusting the focus. The circuit diagram is shown in Fig. A.4. In addition

to the components appearing on this circuit diagram, LEDs were added indicating power

and the button state for the 6 buttons used in this implementation. They have been omitted

for clarity.

The PICAXE 18M2+ microcontroller used here is based on the PIC microcontroller

architecture with a serial bootloader preprogrammed into the program memory. This boot-

loader allows the microcontroller to be programmed from any device with a serial interface.

A simple IDE is available from www.picaxe.com, which includes simulation capabilities and

a compiler which allows programs written in BASIC to be uploaded on to the PICAXE chip.

The BASIC program used to perform the task of implementing the Nintendo controller

serial protocol and driving the jog inputs accordingly is reproduced below. When the pro-
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Figure A.4: Circuit diagram showing connections between the BSC-203 motion controller,
PICAXE microprocessor, and Nintendo controller.

gram is first executed, the code contained in the init section is executed, and then the

microcontroller enters the main infinite loop. Controller button state data is outputted to

the output B pins, as described in the PICAXE data sheet. The pinout on the picaxe is

contained in Table A.1.
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symbol latch = C.1 ;pin 18
symbol pulse = C.0 ;pin 17
symbol datap = pinC.7 ;pin 16
symbol buttonstate = b0

init:
setfreq m4 ;core freq = 4MHz, actual pause = 10*arg(pauseus)
dirsb = %11111111

main:
let buttonstate = %00000000
high latch
pauseus 2 ;Actually 20us
low latch
bit0 = datap
buttonstate = buttonstate * 2
for b1 = 0 to 5

high pulse
pauseus 1 ;Acutally 10us
low pulse
pauseus 1
bit0 = datap
buttonstate = buttonstate * 2
next

high pulse
pauseus 1 ;
low pulse
pauseus 1
bit0 = datap
let pinsB = buttonstate
pauseus 84 ;Actually 840, so loops each ~1ms
goto main

Signal Pin Pin Signal
– Pin 1 Pin 18 Controller latch
– Pin 2 Pin 17 Controller pulse

Serial Rx Pin 3 Pin 16 Controller data
– Pin 4 Pin 15 –

Ground Pin 5 Pin 14 +5V
Right out Pin 6 Pin 13 A out
Left out Pin 7 Pin 12 B out
Down out Pin 8 Pin 11 Select out
Up out Pin 9 Pin 10 Start out

Table A.1: PICAXE 18M2+ pinout for Nintendo controller jog circuit.
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