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A common ancestor, proto-Sinaitic (or proto-Canaanite) script (16th-17th century BC). One of the 

earliest known relatives of the common ancestor of alphabetic scripts, including amongst many others 

English, Hebrew, and Bengali. Principles of inheritance and its correlation with phenotypic similarity, 

have long been used outside the context of biology in philological research and are likely to have 

inspired early ideas of evolution in biology. 
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Chapter 1. Introduction 

1.1 Background  

Phylodynamics is the term used for the interaction of pathogen evolution with the 

population dynamics of infectious diseases, in which immunological processes play a 

major role (B. T. Grenfell 2004). The study of phylodynamics has been so far most 

profound in the context of RNA viruses such as HIV, dengue, and influenza, but is of 

importance to many other pathogens. Unique to RNA viruses is the growing 

availability of full, short (kilo-bases) and sequentially sampled sequence data on 

timescales ranging from days to decades. The rapid evolution of RNA viruses makes 

the timescales of evolutionary, epidemiological and immunological processes 

comparable. As such, these three processes should be considered together in modeling 

and in decision making. Such phylodynamic considerations may involve a single 

patient as is the case of HIV where viruses evolve within a single chronic infection 

(Price et al. 1997), or whole populations and even global health concerns, as 

demonstrated by recent epidemics such as those of MERS corona virus, in which the 

identity of the zoonotic source of the disease in bats and camels has been of major 

importance (Annan et al. 2013; Reusken et al. 2013).  

 

Besides theory, the study of phylodynamics further involves inference based on 

phylogenetic trees together with epidemiological data. These two data sources are 
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used together to understand transmission processes and infection dynamics. One of 

the classically studied diseases in epidemiology has been measles, which also offers a 

good baseline model in the context of phylodynamics. The Measles virus is a single 

stranded RNA virus. Phylogenetic inference has identified its likely split from the 

cattle rinderpest virus as early as the 5th century (Furuse, Suzuki, and Oshitani 2010) 

with a large degree of uncertainty (Wertheim and Kosakovsky Pond 2011) because of 

the possible effect of complex spatial processes and purifying selection. Today, 

humans are the only known reservoir of the measles virus, which has a single 

serotype, meaning that following infection with any measles virus immunity is equal 

for all strains (Rota et al. 2011). Immunity to measles is strong and lifelong, and the 

virus has a failed to evolve to escape both vaccination and acquired immunity. As a 

consequence of this immunity, the phylogenetic tree of the measles surface 

glycoprotein hemagglutinin is thought to represent neutral processes involving 

changes in the population size of the virus with dispersal and epidemiological 

processes only, in the absence of directional evolution. With a constant population 

size, a neutral phylogenetic tree has a constant rate of coalescence or continuous 

branching through time (Figure 1.1A).  

 

Recently, new conceptual models have contributed to the unification of 

epidemiological and population dynamics. This progress allows for example for the 

calculation of the expected rate of coalescence given a compartmental model 

describing epidemiological processes (Volz 2011; T. Stadler and Bonhoeffer 2013). A 

simple example of a relationship between epidemiological and coalescence processes 

is evident in the phylogenetic tree of HIV, which in contrast to measles shows deep 

coalescence of recent samples reflecting the epidemic growth of the virus (B. T. 
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Grenfell 2004) (Figure 1.1B). With exponential growth, more recent samples of the 

virus in a larger population are less likely to have immediate kin that was sampled. In 

contrast with the population level tree of HIV, within the human host at a certain time 

point of infection the phylogenetic tree of the virus is spindly, the consequence of 

multiple selective sweeps of the virus as it evades immunity (Price et al. 1997). HIV-1, 

the more widely distributed HIV type, is thought to have crossed the species barrier to 

humans from simian hosts on at least three times giving rise to the three groups of the 

virus M, N and O (Thomson, Pérez-Álvarez, and Nájera 2002).  

 

Similar to HIV, the dengue virus was also introduced to the human population on 

multiple occasions, giving rise to at least four distinct serotypes (Messina et al. 2014) 

(Figure 1.1C). Typically protection against one viral serotype provides some level of 

cross-immunity against another. However, interaction between the different dengue 

serotypes (Kliks et al. 1989) has an unusual feature termed antibody dependent 

enhancement, in which exposure to one serotype can lead to more severe disease in a 

subsequent infection by a different serotype. Neutralizing antibodies against the first 

infection are not fully efficient against the second infection. As a consequence, 

macrophages clearing the infection are compromised, and the virus replicates within 

them leading to severe hemorrhagic disease.  

In spite of significant progress made into the phylodynamics of these and several 

other viral pathogens many challenges remain. First in organisms which despite their 

importance have not been a the focus of sufficient research, such as rotavirus, and in 

addition in pathogens such as influenza where the full scope of their complex global 

dynamics and the role of immunity in them has not been fully established. 
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Figure11.1 Phylogenetic trees of RNA viruses  

A Phylogenetic tree of Measles virus hemagglutinin (adapted from (Schierup et al. 2005))  

B Phylogenetic tree of HIV-1B pol protein in Europe (adapted from (Salemi et al. 2008))  

C Phylogenetic tree of Dengue virus (adapted from (Weaver and Vasilakis 2009)  

 

1.2 Phylodynamic patterns in rotavirus and influenza  

Rotavirus A (RVA) and influenza are the main study organisms in this thesis, and 

were chosen for being amongst the ten leading causes of morbidity and mortality 

from infectious diseases worldwide. In addition, the high prevalence of both viruses, 

makes the likelihood of non-trivial interactions with the immune system, involving 

more than fully naïve hosts, much more likely. Influenza A/H3N2 is amongst the best 

sampled RNA viruses, providing one of the study organisms most used for the 

development of phylodynamic methods. In contrast, despite its importance as the 

major cause of diarrheal disease mortality and morbidity in infants and children, 

relatively little phylodynamic work has been conducted in rotavirus, work that is in 
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great need following the current onset of a global vaccination campaign. Both viruses 

share many similarities and some major differences, which are further discussed 

below and in the respective chapters.  

Influenza is single stranded RNA virus encoding 11 proteins (Bouvier and Palese 

2008) and is classified into types A, B and C, with type A being the most pathogenic 

and responsible for an access mortality estimated at 1-5 million people since 1968 

(WHO 2013). The major targets of humoral immunity against influenza A are its 

envelope glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Variations 

among these proteins form the basis of classification of influenza A into subtypes 

H1N1, H2N2 and H3N2 etc. Multiple zoonotic introductions of influenza A subtypes 

to the human population have taken place, with H3N2, H1N1 (pre- and post- 

pandemic) being the most prevalent subtypes whose continuous endemic circulation 

has lasted decades. Influenza A (H3N2) emerged in 1968. Since then, it has continually 

circulated in the human population, exhibiting rapid geographic spread and turnover 

rates. Globally, human influenza A (H3N2) populations diverged only to within 2-8 

years in their past (Figure 1.2) (Andrew Rambaut et al. 2008b; Bedford et al. 2010a; 

Bedford, Cobey, and Pascual 2011b).  

Circulating influenza A lineages represent recent invasions from zoonotic reservoirs, 

while the animal source of influenza B is unknown (Osterhaus et al. 2000). In humans, 

influenza subtypes A/H3N2, A/H1N1, and two lineages of influenza B, display 

different rates of antigenic evolution. Correspondingly, the faster evolving H3N2, has 

the lowest genetic diversity, followed by H1N1 and the most genetically diverse 

influenza B lineages. This higher genetic diversity with a lower antigenic mutation 

rate, corresponds to a transition from dynamics driven by positive selection, to more 
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neutral dynamics of evolution (Figure 1.2) (Ferguson, Galvani, and Bush 2003b; 

Zinder et al. 2013; Bedford et al. 2014).  

Like influenza A, rotavirus circulates extensively in the human population, infecting 

most children below the age of five and causing over 400,000 deaths annually (Tate et 

al. 2012). The rotavirus genome contains eleven double stranded RNA genome 

segments encoding 12 proteins (Estes and Kapikian 2013) compared to 11 in influenza 

A (Bouvier and Palese 2008). The main classification of RVA is based on the two outer 

surface proteins, VP7 which encodes the G protein, and VP4 which encodes the P 

protein (Jelle Matthijnssens et al. 2008). Circulating rotavirus lineages represent recent 

invasions from zoonotic reservoirs (Osterhaus et al. 2000). At a segment level, each 

segment type (i.e. G1, G12 etc...) corresponds to a monophyletic cluster (Figure 1.3), 

and is thought to reflect the cross-species transmission of the serotype into humans 

from an animal source. There is a certain degree of antigenic change within individual 

G types (i.e. within G1) through mutation (Arista et al. 2006; S. M. McDonald et al. 

2011).  

Evolutionary patterns of RVA differ considerably from that of influenza. In contrast to 

influenza, rotavirus genotypes frequently reassort. However, in spite of the high levels 

of confection and of reassortment not all genotypes are as common (Jelle Matthijnssens 

and Van Ranst 2012). Serotypes of rotavirus, exhibit extensive variability in both time 

and space. And in contrast to the within-subtype dynamics of influenza A, rotavirus 

serotypes do not necessarily fully replace their predecessors, but rather may become 

locally dominant for several years, before becoming infrequent (M. H. Afrad et al. 

2013; De Grazia et al. 2014; Hasing and Trueba 2009) and re-emerging years or 

decades later (S. M. McDonald et al. 2012). Thus, at the global level, rotavirus presents 
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a diverse set of coexisting genotypes whose local representation and abundance 

changes locally in a dynamic fashion.  

An additional main distinction between rotavirus and influenza A is found in their 

population dynamics and epidemic nature. Whereas influenza A exhibits epidemics 

when a new cluster emerges and leads other types to extinction, rotavirus can display 

sustained levels of infection (M. H. Afrad et al. 2013) despite dynamic changes in 

serotypes (Figure 1.4).  
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Figure21.2 Time-resolved phylogenetic trees of A/H3N2, A/H1N1, B/Vic and 

B/Yam viruses  

The maximium-clade credibility (MCC) tree is shown for each virus. These 

trees show genealogical relationships, so that branches are measured in terms 

of years rather than substitutions. From: Bedford T, Suchard MA, Lemey P, 

Dudas G, Gregory V, Hay AJ, McCauley JW, Russell CA, Smith DJ, Rambaut 

A: Integrating influenza antigenic dynamics with molecular evolution. Elife 

2014, 3:e01914. 
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Figure31.3 Time-resolved phylogenetic tree 

of rotavirus A, VP7 segment (G protein) in 

humans  

A single representative phylogeny of VP7 

from the posterior distribution of trees, 

generated from a sample of 1911 annotated 

GenBank sequences, and color-coded by 

serotype (see Chapter 3 for further details on 

this figure). 

 

 

Figure41.4 Prevalence and genotype distribution of rotaviruses in Matlab, Bangladesh 

Prevalence and genotype distribution of rotaviruses in Matlab, Bangladesh. A Number of 

diarrhea patients attended and number of cases tested rotavirus positive, June 2001-May 2012 

B Temporal changes in the distribution of major rotavirus genotypes, June 2006-May 2012.  

From: Afrad, Mokibul H., Zahid Hassan, Saiada Farjana, Sayra Moni, Subarna Barua, Sumon 

K. Das, Abu Syed Golam Faruque, Tasnim Azim, and Mustafizur Rahman. Changing profile 

of rotavirus genotypes in Bangladesh, 2006–2012 BMC infectious diseases 13, no. 1 (2013): 320.  
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1.3 Phylodynamic patterns of multiple serotypes  

Strain formation and co-existence has practical implications with respect to 

understanding the importance of host population immunity in limiting the invasion 

potential of pathogens such as avian or swine influenza, and for understanding the 

intensity and mechanisms of interaction between circulating strains, such as influenza 

subtypes. Phylodynamic work has so far mainly concentrated on the emergence of 

serotypes through cross-species barriers and on the replacement of serotypes through 

directional selection. Much less, yet valuable research (Bedford et al. 2014), often with 

a more epidemiological perspective (J. R. Gog and Grenfell 2002; Simonsen, Reichert, 

and Miller 2004) has been conducted on the interaction and co-existence of multiple 

serotypes, while additional research has been done into patterns of immunity to 

different serotypes within the population (Fonville et al. 2014; Gladstone et al. 2011a). 

Several immune mediated patterns of interaction and co-existence between pathogen 

strains have been suggested in the absence of evolution (S. Gupta 1998; J. R. Gog and 

Grenfell 2002). While ecological forces of interaction between species and their 

relationship with evolutionary processes have mainly been suggested in other 

organisms (Nosil, Harmon, and Seehausen 2009; Davis et al. 2014). The first 

suggestion for relationships between phylogenetic trees and species interaction was 

posited by Darwin himself in an important example of such an interaction.  

 

In one of his important hypothesis Darwin suggested (Darwin and Britannica 1872) a 

relation between phylogenetic and ecological similarity. Darwin specifically 

hypothesized that closely related species tend to possess similar niches and hence 
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perform similarly under the same environmental conditions. This first hypothesis, led 

to a subsequent hypothesis termed Darwin's naturalization hypothesis, which suggests 

that introduced species are more successful in communities in which their close 

relatives are absent. This enhanced success will be the case when the close relatives of 

the invading species compete for the same resources. Under the alternative outcome, 

an invading species will occupy the same niches in the environment as existing 

species, and to do so, they will be similar, and hence more closely related to the 

existing species occupying these similar niches. Work on testing these alternative 

hypotheses has led to conclusions favoring both alternatives in a case and scale 

dependent manner (three of many examples can be found in (Bezeng et al. 2015; 

Schaefer et al. 2011; Lebrija-Trejos et al. 2010).  

  

The immune system of the host at the population level can be thought of as a niche, or 

resource axis, which pathogens use and compete for. The depletion of susceptible 

hosts through the generation of immunity following an epidemic, makes the 

generation of immune niches a dynamical and emergent process. The effect of such 

dynamics on the generation of serotypes and strains has been explored in several 

studies stemming from what has been termed ‘strain theory’ (S. Gupta 1998; S. Cobey 

and Lipsitch 2012; Caroline O. Buckee et al. 2011). Recker and Wikramaratna et al. 

(Recker et al. 2007; Wikramaratna, S. P et al. 2012) suggested for example that 

influenza A/H3N2 patterns of antigenic waves of dominance, in which viruses 

circulating at a given time point are replaced by a different antigenic type, could be 

driven by the opening in a frequency-dependent manner of unexploited immune 

niches in the human population, rather than by the generation of new antigenic types. 

In their model, circulating strains are selected from an existing pool of limited 
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variation of the virus whose possibilities are continuously present at low abundance 

(given that the model does not incorporate the possibility of stochastic extinction). 

However, their work did not consider evolution and extinction in an explicit manner. .  

 

Alternative non-immune based evolutionary and ecological processes such as 

geographical isolation and host tropism can also generate discrete pathogen strains 

(Bourhy et al. 2008; Holmes and Zhang 2015; Parrish, Murcia, and Holmes 2015), 

where reduced cross-immunity could be thought of as a by-product of these 

processes. Immune and speciation processes can work in tandem to maintain strain 

structure through epistasis (Heiman et al. 2008). Tree patterns generated by these two 

processes are not guaranteed to be different once strains are formed, and in both cases 

strains correspond to deep independent branches. It is possible that immune neutral 

and immune -mediated strain structuring mechanisms could be differentiated by 

identifying immune and non-immune related signatures of selection and of 

recombination, however further work is necessary in this field.  

 

The interplay between population dynamics with transmission and with the 

generation of immunity is much less understood when processes of recombination 

between strains are included. With recombination, phylogenetic trees become 

reticulated networks, a tree representation in this case is either an approximation 

representing a unit of the genome, such as a single protein, or an aggregate, intended 

for instance to represent non-hybridizing species. Recombination involves the swap of 

genome parts, while viral reassortment involves the swapping of entire viral genome 

segments. Sexual reproduction is a major source of evolution and evolutionary change 

in the context of pathogen antigenic dynamics. A distinction is required between 
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sexual reproduction, which combines existing antigenic variation in new forms, and 

one that involves the creation of antigenic novelty. The important role of 

recombination in generating antigenic novelty and crossing species barriers has been 

the main focus of phylodynamic studies. Examples in the context of influenza can be 

found in the work of (Lindstrom et al. 1999; Simonsen et al. 2007; Ince et al. 2013; 

Martha I. Nelson et al. 2008; Neverov et al. 2014; G. J. D. Smith et al. 2009).  

1.4 Overview of the thesis 

My thesis is divided into two sections, the first relating to theory and the second to 

inference. These two sections relate to two approaches, which have been used to 

answer different questions in the field of phylodynamics. In the first two research 

chapters, I focus on the qualitative features necessary to generate alternative dynamics 

of stable co-existence and of replacement in viral pathogens, considering both 

competitive interactions and different mechanisms of evolution through mutation and 

through recombination. To investigate this extension of existing theory, I use agent- 

based models and examine how simple sets of dominant processes structure pathogen 

diversity and generate alternative phylodynamic patterns. In the inference part of the 

thesis, I investigate the ways in which the rotavirus and influenza populations 

migrate and evolve through mutation. To do so, I use a Bayesian inference approach 

which I developed (SeasMig) and is based on stochastic mapping and ancestral state 

reconstruction of seasonal migration and mutation processes described in detail in the 

appendix.  

 

Chapter 2 specifically considers the minimum set of mechanisms required for 

generating spindly A/H3N2 influenza like trees, and extends the theory by 
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considering competition for hosts in the context of explicit evolution through 

mutation. Explaining the low genetic diversity observed in A/H3N2 influenza has 

proven a difficult problem (Koelle et al. 2006; Wolf et al. 2006; Ferguson, Galvani, and 

Bush 2003), which has generated several alternatives hypotheses and theoretical 

models. With a model which samples phylogenetic trees by tracking transmission 

events, I find the minimum conditions in terms of competition and mutation under 

which trees are spindly and flu like. The chapter also describes the type of trees 

corresponding to immune-mediated strain structure together with the corresponding 

qualitative levels of competition, mutation and selection forces observed. Alternative 

regimes of antigenic neutrality and continuous diversification, corresponding to low 

and high antigenic mutation rates, respectively, are also described.  

 

In Chapter 3, I expand on the work done in the previous chapter to consider key 

phenomena characteristic of many pathogens such as rotavirus: the introduction of 

antigenic novelty from an animal source, reassortment between strains, and an 

additional component of immunity, which is independent of the infecting serotype 

and depends only on the number of previous infections. Consideration of 

reassortment together with antigenic novelty, results in antagonistic phenomena 

driving both the sharing of antigenic novelty and the partitioning of available 

antigenic alleles between serotypes. In such a way, I describe a phylodynamic regime 

that differs from those previously identified with theory focused exclusively on 

mutation rather than reassortment. This work underscores the important interplay of 

immigration and reassortment , which motivates in part the more empirical study of 

Chapter 5. Both chapters that follow give a special place to the subject of migration. 
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Chapter 4, an inference chapter, attempts to explain how A/H3N2 influenza migrates 

in light of seasonal incidence patterns. This works attempts to capture the importance 

of the ‘pull’ of influenza migrants through necessary conditions at the destination, 

compared to the prevalence and ‘availability’ of migrating viruses at the source.  

 

In Chapter 5 tools used for the mapping of stochastic processes along trees, are used 

to distinguish between three different mechanisms for rotavirus adaptation in 

response to routine vaccination. These mechanisms of adaptation include migration, 

mutation and changes in the frequency of circulating serotypes. This method is 

applied to the question of what are the main mechanisms behind genetic changes in 

rotavirus in the US after the introduction of vaccination.  

 

Chapter 6, presents a short conclusion and some future directions.   
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Section I - Theory 

Chapter 2. The role of competition and mutation in shaping antigenic and 

genetic diversity in H3N2 influenza 

2.1 Abstract 

Influenza A (H3N2) offers a well-studied, yet not fully understood, disease in terms of 

the interactions between pathogen population dynamics, epidemiology and genetics. 

A major open question is why the virus population is globally dominated by a single 

and very recently diverged (2-8 years) lineage. Classically, this has been modeled by 

limiting the generation of new successful antigenic variants, such that only a small 

subset of progeny acquire the necessary mutations to evade host immunity. An 

alternative approach was recently suggested by Recker et al. in which a limited 

number of antigenic variants are continuously generated, but most of these are 

suppressed by pre-existing host population immunity. Here we develop a framework 

spanning the regimes described above to explore the impact of rates of mutation and 

levels of competition on phylodynamic patterns. We find that the evolutionary 

dynamics of the subtype H3N2 influenza is most easily generated within this 

framework when it is mutation limited as well as being under strong immune 

selection at a number of epitope regions of limited diversity.  
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2.2 Introduction 

Influenza viruses are classified into types A-C, among which influenza A is the most 

pathogenic. These viruses cause between a quarter to half a million deaths worldwide 

(WHO 2009) and tens of thousands of deaths in the US during annual epidemics 

(C.D.C 2010). The economic burden of seasonal influenza in the US is estimated at 

more than ten billion dollars in healthcare costs alone (Walsh and Maher 2011).  

 

The major targets of humoral immunity against influenza A are its envelope 

glycoproteins, hemagglutinin (HA) and neuraminidase (NA); these form the basis of 

its crude classification into subtypes H1N1, H2N2 and H3N2 etc. Since its emergence 

in 1968, influenza A (H3N2) has continually circulated in the human population. The 

phylogeny of its HA protein (Figure 2.1) shows a distinctive ‘cactus-like’ shape with a 

narrow, usually single-trunked, tree (Fitch et al. 1997; Bush, Bender, et al. 1999). The 

‘narrowness’ of the tree is derived from the fact that contemporaneous H3 proteins 

share a single common ancestor 2-8 years in the past (Andrew Rambaut et al. 2008a; 

Bedford, Cobey, and Pascual 2011a). This short time is unique to H3N2 given its 

global spread and its high prevalence and incidence (Bedford, Cobey, and Pascual 

2011a).  

 

The classical view of influenza evolution is one of antigenic drift (Gerhard and 

Webster 1978; Hay 2001; Nakajima et al. 2005) in which antigenic change continually 

and gradually accumulates in the virus through the influence of selection by way of 

changes to the HA and NA proteins. By itself, the ‘cactus-like’ structure of the 

A/H3N2 phylogenetic tree suggests the presence of adaptive evolution (Bedford, 

Cobey, and Pascual 2011a) and several studies have provided evidence for positive 



 

18 

 

 

selection (Bush, Bender, et al. 1999; Fitch et al. 1991; Suzuki 2008; Wolf et al. 2006; 

Lindstrom et al. 1999). However, it is difficult to explain the limited standing diversity 

of influenza (Tria et al. 2005; Ferguson, Galvani, and Bush 2003b), and the empirical 

evidence for discontinuous antigenic change (Koelle et al. 2006; D. J. Smith 2004), 

under a general antigenic drift framework. Multiple epidemiological hypotheses have 

been advanced to reconcile these observations with a process of continual antigenic 

divergence including short-lived strain-transcending immunity (Tria et al. 2005; 

Ferguson, Galvani, and Bush 2003b; Andreasen and Sasaki 2006), epochal or 

punctuated evolution (Wolf et al. 2006; Koelle et al. 2006), trait-space reduction 

(Kryazhimskiy et al. 2007) and canalized evolution (Bedford, Rambaut, and Pascual 

2012a).  

 

A competing hypothesis advanced by Recker et al. (Recker et al. 2007) eschews the 

paradigm of antigenic drift, instead considering that, owing to functional constraints 

on the defining epitopes, the virus population is limited phenotypically to a restricted 

set of antigenic types. Antigenic types replace each other with waves of dominance 

resulting from frequency-dependent immune mediated selection as “niches” in 

antigenic space are dynamically generated and are exploited by the existing virus 

population. In its original implementation, this model assumes that all antigenic types 

remain present in the population in low frequencies, as an approximation to the idea 

that they can be generated by mutation from preexisting strains at a sufficient rate as 

not to limit the emergence of a type favored by selection. Thus, the model describes in 

practice a case where influenza outbreaks are caused by host immune selection in a 

manner that is not limited by the rate of antigenic mutations. Although patterns of 
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turnover are consistent with those observed for H3N2, it is not clear whether the 

characteristic phylogenetic trees can be generated by this model. 

 

Here, we have attempted to resolve this question using a large-scale individual-based 

simulation of epidemiological and evolutionary dynamics that allows the complete 

phylogenetic tracking of a virus population characterized by defined repertoires of 

polymorphic epitopes. Our model is based on the multi-locus structure employed by 

(Recker et al. 2007) with host immunity operating at an epitope-specific level. When 

contacted by a virus, a host's risk of infection is determined by the number of 

alleles/epitopes recognized by its immune system. We also introduce the possibility of 

a long-lived strain-transcending component to the model. Thus, competition between 

strains is determined both by the number of shared epitopes and a variable level of 

generalized immunity. Our model differs in this regard from that of Recker et al. 

(Recker et al. 2007) which does not permit full cross-protection except in the case of 

having experienced the exact same combination of epitopes, a feature that implicitly 

accounts for the effect of highly variable epitopes unique to each strain. 

 

This model structure allows us to make inferences about the roles of mutation and 

competition in a more general context. Models of antigenic dynamics tend to polarize 

between those in which the availability of antigenic types dictate the dynamics (Wolf 

et al. 2006; Koelle et al. 2006; Russell et al. 2008; Kuiken 2006), and those where host 

immune-mediated selection is the only driver (S. Gupta 1998; C.O. Buckee et al. 2008). 

We refer to the latter regime, where antigenic change is constrained by host 

population immunity, as selection limited, whereas the former, in which the 

availability of antigenic mutations pose the rate limiting step, is described as mutation 
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limited. The approach we take in this paper offers a tool for locating influenza on this 

continuum and would easily generalize to other antigenically diverse infectious 

diseases.  

2.3 Results 

We use an individual-based SIR model, explicitly tracking the chains of infection of 

viral lineages as well as the antigenic phenotype of every virus in the population 

(Figure 2.2A). Thus, our model explicitly tracks viral genealogy rather than 

conducting phylogenetic inference, and therefore does not include any genotype to 

phenotype map.  

A host population of constant size N is simulated with an equal birth and death rate 

of μ. Infected hosts randomly contact other hosts in the population at rate β. The risk 

of infection is based on crossimmunity interactions based on their previous unordered 

infection history (May and Nowak 1994; Martin A. Nowak and May 1994). Following 

infection with a virus displaying a specific antigenic phenotype, hosts acquire partial 

protection against reinfection with viruses sharing epitopes, and full protection 

against the exact same strain. There is no super-infection in the model; while infected, 

hosts are protected from co-infection with other strains. Hosts recover from infection 

at a constant rate ν. (see Methods for details of the model). 

 

2.3.1 Antigenic-Phenotype Replacement and Single Phenotype Dominance in an 

Evolution-Free Framework  

To explore the epidemiological dynamics of our model in isolation, we implemented a 

parameterization lacking mutation, in which extinction was preempted by 

maintaining at least one carrier for each antigenic-phenotype. Different colors (Figure 
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2.3) represent the prevalence of different antigenic-phenotypes. Here, the antigenic 

repertoire is derived from combinations of variants at 5 distinct epitopes (see Methods 

for full description of epidemiological parameters).  

 

A mutation-free model can result in different alternative dynamics based on model 

parameters ranging from stable coexistence of completely discordant antigenic-

phenotypes to the successive replacement of strains through chaotic or cyclic behavior 

(S. Gupta 1998). Not surprisingly, our model implementation with no explicit 

evolution also generates these waves of replacement (Figure 2.3), suggestive of H3N2 

influenza as proposed by Recker et al. (Recker et al. 2007).  

 

2.3.2. Phylodynamic Patterns across Different Mutation Rates 

We examined the effects of mutation at different rates on the resulting phylodynamic 

patterns of the virus by seeding the population with a single strain and tracking 

antigenic and evolutionary changes. We measure diversity π as the average time 

separating two randomly selected contemporaneous viruses since their divergence 

from a common ancestor. Because branch lengths in our genealogies are measured in 

years, the resulting diversity is also measured in years.  

 

In the absence of antigenic mutation, only a single strain persists, experiencing 

transient oscillatory dynamics between near extinction, and endemic equilibrium 

conditions (Figure 2.4A). As all viral traits are equal, there are no selective forces and 

the observed phylogeny and coalescence rates can be directly related to prevalence 

and incidence (Volz 2011). This yields random coalescence within contemporaneous 
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viral lineages and a large associated pairwise genetic diversity (π=30±12 years; 

mean±std across 5 simulations).  

 

For low mutation rates (Figure 2.4B) the introduction of new mutations is the critical 

determinant of strain dynamics. Each new variant outcompetes the one that came 

before, resulting in a spindly phylogenetic tree and therefore low diversity (π=5.7±0.8 

years). Temporally adjacent strains are antigenically similar, rather than discordant, 

forcing strong competitive exclusion and single strain dominance (ε=0.93±0.02), where 

ε is the proportion of infections caused by the most common strain. An increase in 

mutation rate (Figure 2.4C) leads to deeper branches with a corresponding increase in 

phylogenetic diversity (π=220±100 years) and more pronounced antigenic divergence. 

Here, the population dynamics are ruled by the endemic or cyclic behavior of 

discordant antigenic sets. The emergence of new intermediate antigenic types is 

suppressed by competition from the two prevalent strains (S. Gupta 1998). 

 

At a relatively high mutation rate (Figure 2.4D), we approach population dynamics 

similar in appearance to those of the mutation-free model (Figure 2.3). Diversity is 

high (π=120±30 years), with deep yet occasionally coalescing branches. In general, a 

threshold exists at which mutation overwhelms selection resulting in a population 

drifting away from the fittest genotype (M.A. Nowak 1992). For sufficiently high rates 

of antigenic mutation, all antigenic types reach near equal frequency in the population 

(Figure 2.4E). On a population scale, the high mutation rate weakens frequency-

dependent selection and results in the breakage of antigenic strain structure; antigenic 

types do not cluster across the genealogy. The loss of selection forces breaks down 
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phylogenetic structure and leads to a reduction in the depth of the branches (π=120±70 

years) compared to the one observed for discordant antigenic types.  

 

2.3.3 Measuring Selection Strength and Direction 

By comparing fixation versus extinction of antigenic mutations, using a quantity 

related to the McDonald-Kreitman (MK) index (J. H. McDonald and Kreitman 1991; 

Bush, Fitch, et al. 1999; Bhatt, Katzourakis, and Pybus 2010) we estimated the strength 

and direction of selection on antigenic mutations in our model (see Methods). Here we 

calculate an MK related (MKR) index as the ratio of the per-year rate of antigenic 

mutation on the trunk to the per-year rate of antigenic mutation on the side branches. 

If antigenic mutations are advantageous for long-term virus persistence, an MKR ratio 

above 1 is expected. In this case, individuals exhibiting these antigenic mutations will 

be more likely to fix in the population and contribute to substitutions on the trunk of 

the phylogeny. Similarly, if antigenic mutations are deleterious to the long-term 

success of the virus, an MKR index of less than 1 is expected. This is because mutant 

individuals will tend to be lost from the population and side branches will show an 

excess rate of substitution.  

 

We find that, when rare, antigenic mutations show highly increased rates of fixation 

(MKR=19±11), and therefore evidence of strong positive selection (Figure 2.4B). Hence, 

we find that strong positive selection results in both a spindly tree and an 

overabundance of antigenic mutations of the trunk of the phylogeny. An increase in 

the mutation rate leads to the emergence of antigenically discordant types, and the 

suppression of other antigenic mutants (Figure 2.4C); here, we find strong negative 
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selection mediated by host immunity with an MKR index of 0.47±0.22. At a still higher 

mutation rate (Figure 2.4D), we observe a balance of positive and negative selection 

resulting in MKR=1.1±0.3. With saturating mutation rates (Figure 2.4E) we further lose 

the signature of selection (MKR=1.0±0.1) on phylodynamic patterns.   

2.3.4 Relationship between Cross-immunity, Mutation and Selection  

Our model contains a cross-immunity parameter σ which allows us to explore a range 

of immune selection regimes: when σ=1, we have full cross-protection (as might arise 

if each epitope elicited a very strong immune response) and when σ=0, cross-

protection between strains is only high if they share their entire variable repertoire.  

In general, stronger cross-immunity results in lower prevalence as hosts fail to be re-

infected (Figure S2.1). We find that, for most of the parameter space, genetic 

(genealogical) diversity π, increases with weaker cross-immunity and with more rapid 

mutation (Figure 2.5A). The (mostly) monotonic relationship between competition 

and diversity is broken at the threshold of limiting similarity (Abrams P 1983) where, 

regardless of epitope differences, two strains suffer full cross-protection. This 

scenario, shown as a band on the right-hand side of Figure 2.5A where σ=1, results in 

the disappearance of selective effects and greater levels of genetic diversity. Here, 

diversity rebounds to its neutral expectation due to random coalescence. Exceptions to 

the monotonic pattern of diversity with competition can also be found for 

intermediate mutation rates.  

 

 The relationship between mutation, cross-immunity, and the MKR index is less 

straight-forward (Figure 2.5B). Here, the highest levels of positive selection are 

present when cross-immunity is strong (σ=0.8-0.9), and mutation is weak (ξ=10-5). 
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When mutation rate is limiting (ξ<510-5) then antigenic mutations are favored by 

natural selection (MKR>1). However, when mutation rates are higher (510-5< ξ <10-3), 

negative selection by-and-large predominates. The strongest negative selection occurs 

in a region of moderate cross-immunity (σ=0.6) corresponding to previously observed 

discordant dynamics (Figure 2.4C).  

 

There is also a clear relationship between diversity and selection as measured by the 

MKR index (Figure 2.5C). We observe a strong negative correlation between MKR and 

levels of diversity (ρ=-0.86; Pearson’s correlation). If we separate results into a regime 

of positive selection (MKR>1) and a regime of negative selection (MKR<1), we observe 

similar results within each regime. Stronger positive selection coincides with a 

decrease in genetic diversity (ρ=-0.85 when MKR>1), and stronger negative selection 

tends further increase diversity through the persistence of discordant strains and 

associated deep branches (ρ=-0.28 when MKR<1). As expected from population 

genetic theory (Volz 2011), increases in viral prevalence also coincide with increases in 

viral diversity, however, the correlation is weaker under positive selection (ρ=0.74 

when MKR>1) than under negative selection (ρ=0.87 when MKR<1) and cannot be 

trivially dissociated from the effects of selection.  

 

Two additional strain diversity measurements based on the ecological dynamics are 

shown in Figure S2.2, the Shannon diversity index and the level of single strain 

dominance (Methods). Similar to genetic diversity, positive selection is correlated with 

an increase in single strain dominance (ρ=0.88 when MKR>1) and a decrease in 

Shannon diversity (ρ =-0.88 when MKR>1). Negative selection decreases Shannon 

diversity (ρ=0.39 when MKR<1) and increases single strain dominance (ρ =-0.23 when 
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MKR<1). While negative selection lowers the number of circulating strains, it increases 

genetic diversity π through the existence of deep non coalescing branches.   

2.3.5 H3N2-like Characteristics  

The patterns described so far suggest that the dynamics of H3N2 influenza within this 

framework correspond to a regime in which host immune mediated selection is strong 

and the antigenic mutation rate is low. We now extend the model in order to examine 

other characteristics relevant to H3N2 in a more detailed epidemiological setting that 

includes seasonality and a basic global population structure.  

In this analysis we include three demes representing the northern hemisphere, the 

southern hemisphere and the tropics. Northern and southern hemisphere demes 

experience an opposing seasonal modulation (with a 14% amplitude and six months 

phase difference) while tropical regions experience two weaker seasons annually 

(Chew et al. 1998) (see Figure S2.3 and Methods). In addition the southern hemisphere 

population is reduced in comparison to northern hemisphere and tropical populations 

(Methods).  

In this model we use an antigenic repertoire with 4 epitopes differing in the number of 

alternative variants per epitope. A typical tree for this configuration together with the 

corresponding diversity skyline is depicted in Figure 2.6A. We observe 13±6 antigenic 

clusters that come to dominate the virus population over the course of the 40 year 

simulation (Figure S2.4-A) with an average duration of 4±2 years. Clusters are defined 

based on cumulative changes in two or more epitopes based on (Huang and Yang 

2011) (Methods). The turnover of virus strains results in a characteristic spindly 

phylogenetic tree and low standing genetic diversity (π=5.7±0.1 years). Over the 

course of the 40-year timespan, genetic diversity experiences a boom and bust pattern 
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(Figure 2.6A) with a 10%-90% range of 3-9.5 years measured by combining diversity 

skylines of five repeated simulations. The repeat of exact antigenic types is uncommon 

in the model (Figure S2.5) while epitopes with more restricted variability (2-3 

variants) frequently reemerge (Figure S2.6).  

Average yearly incidence in the northern and southern hemisphere demes is 

(5.7%±0.1, 5.8%±0.1) respectively (Figure 2.6B), while incidence in the tropics is 

slightly lower 5.5%±0.1. Annual epidemics are generated almost regularly yet display 

a high level of variability in peak size in the northern hemisphere (CoV=1.1±0.1, 

coefficient of variation) and lower variability in the tropics (CoV=0.7±0.1). The 

interquartile range in peak weekly cases ranges (IQR200-800 cases per 100000) in the 

northern hemisphere and (IQR400-1100) in the tropics.  

In this model the tropics or lower and mixed seasonality populations exhibit a greater 

role (68%±9) in establishing the trunk of the influenza tree (Figure 2.6B). The southern 

hemisphere experiences a smaller (12%±3) part in establishing the trunk of the tree in 

comparison to the northern hemisphere (20%±8). In addition we find that antigenic 

variants are more likely to reach significant prevalence in the tropics earlier making 

the tropics “antigenically ahead” (Figure S2.4-B). Antigenic variants reach 5% of their 

total deme prevalence 2±1.5 months earlier in the tropics compared to the northern 

hemisphere and 3±2 months earlier in the tropics compared to the southern 

hemisphere (p<0.001 for the combined results). Similarly antigenic variants decline 

(reach 95% of their total prevalence) earlier (1.7±0.3 month, p<0.0005) in the tropics 

compared to the northern hemisphere, yet not significantly earlier or later than the 

southern hemisphere.  

We find that strong competition and high R0 values generates more regular annual 

epidemic peaks while maintaining low genetic diversity. In addition we find that 
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within antigenic cluster evolution also contributes to maintain low genetic diversity. 

An increase (0.005 compared to 0.001 of contacts) in the strength of the 

metapopulation coupling slightly improves the epidemiology by decreasing the 

likelihood of long periods without annual epidemics.  

To establish whether low genetic diversity can be maintained when the number of 

epitopes or variants per epitope is increased we repeated the same parameterization 

with double the number of epitopes and with twice the number of variants per 

epitope and by keeping either the per-epitope or overall mutation rate. The results are 

summarized in Table S1.1. When doubling the number of epitopes, the model can 

attain similar results with respect to genetic diversity π and overall incidence, when 

the total mutation rate across epitopes is maintained and the cross-immunity decrease 

per–epitope change is halved. In contrast, it is not clear whether a model that includes 

an increase in the number of variants per epitope can maintain low genetic diversity 

levels and maintain similar or higher incidence levels.  

2.4. Discussion 

Herein, we implemented an individual-based model that allowed us to track both the 

ecological and evolutionary dynamics of a pathogen population, in which cross-

immunity is orchestrated by a finite set of antigenic loci of limited variability (Recker 

et al. 2007). We used this model to compare phylodynamic patterns under a regime 

governed primarily by limitation on the introduction of antigenic mutations (mutation 

limited), to a regime determined by the availability of antigenic niches (selection 

limited), and under varying strengths of competition between strains. We use this 

framework to determine the conditions under which a limited antigenic repertoire 

could explain the observed phylodynamic patterns of H3N2 influenza.  
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Explicit modeling of evolution, through the introduction of antigenic mutation at 

different rates, allows us to consider phylogenetic trees in addition to epidemiological 

dynamics. Resulting phylodynamic patterns range from successive strain turnover, to 

discordant antigenic sets, to dynamics resembling those of a model lacking explicit 

evolution and finally to the collapse of antigenic structure. Each of these can be 

explained by the interplay of selection and mutation, as measured here through the 

MKR index, and by considering different strengths of immunity generating 

competition between strains.  

 

The dynamics of our individual-based model are generally in good agreement with 

the epidemic behavior of influenza A (Figure 2.6). Like observed epidemiological 

patterns (Koelle et al. 2006; Russell et al. 2008; Fleming and Ayres 1988; Monto and 

Sullivan 1993; Karpova, Marinich, I. G, and Krainova, T. I 2006; šAltytė Benth and 

Hofoss 2008; Sumi et al. 2011), annual temperate climate epidemics occur almost 

regularly with substantial year-to-year variation in incidence (CoV=1.1±0.1 compared 

to (CoV=1.0±0.2) in literature survey. Observed temperate climate annual attack rates 

of influenza A (H3N2) are slightly higher, approximately 8% from 1976 to 1981 

(Monto and Sullivan 1993) compared to 5.8%±0.1 in simulation, while peak epidemic 

weakly cases are higher in the simulation (IQR200-800 cases per 100000) in 

comparison to (IQR130-380, IQR80-240) in (Fleming and Ayres 1988) and (šAltytė 

Benth and Hofoss 2008) respectively. The tropics exhibit lower and weaker seasonality 

(Figure 2.6, Figure S2.3) with slightly lower yearly attack rates (5.5%±0.1) and 

substantially lower prevalence (Figure 2.6). In agreement with antigenic cartography 

(D. J. Smith 2004; Du et al. 2012) 13±6 clusters dominate the global world population 
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(Figure S2.4-A) with an average duration of 4±2 years, exhibiting mostly the 

dominance of 1-2 clusters globally. With respect to individual epitope changes we find 

the model reproduces the observation of the tropics being “antigenically ahead” 

(Russell et al. 2008), giving rise to antigenic changes 2.5±1.5 month ahead of the 

northern and southern hemisphere (Figure S2.4-B) and showing decline in antigenic 

variants 1.7±0.2 month earlier than the northern hemisphere. In agreement with 

observed phylodynamic patterns (Bedford et al. 2010b) the tropics metapopulation 

has a higher proportion in establishing the trunk (68%±9) of the phylogeny followed 

by the northern (20%±8) and the southern (12%±3) population. The higher 

contribution of East and South-East Asia as the origin of H3N2 globally circulating 

lineages is hypothesized to originate from lower and mixed seasonality in these 

regions and is consistent with our model (Russell et al. 2008). The key difference 

between the hemispheres in the model being, lower population size in the southern 

hemisphere with proportionally lower contact rate between the meta-populations.  

Refinement of the epidemiological model, such as the inclusion of an exposed period, 

can further improve the comparison to empirical data. In particular, the above 

properties were obtained with a basic reproduction number of R03.24, on the upper 

bounds of current estimates for seasonal influenza. This value can possibly be 

decreased by considering such an extension.  

 

We find that a model with 4 epitopes and a low but variable number of variants per 

site, an antigenic mutation rate of 10-5 per day and a reduction of cross-immunity of 

13% per epitope results in phylodynamic patterns broadly consistent with those seen 

in H3N2 influenza (Figure 2.6). When doubling the number of epitopes, the model 

maintained similar results with respect to genetic diversity π and overall incidence, 
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when the total mutation rate across epitopes was maintained and the cross-immunity 

was modified to a 6.5% per epitope change. These parameters are quite comparable to 

parameters used in other models of influenza evolution. For example, Koelle et al. [18] 

use 5 epitopes with mutations of either large or small antigenic effect. Small mutations 

reduce cross-immunity by 7% and occur at a rate of ~510-4 per day, while large 

mutations reduce cross-immunity by 20% and occur at a rate of ~10-5 per day. In the 

model of Bedford et al. (Bedford, Rambaut, and Pascual 2012a) mutations reduce 

cross-immunity by between 1% and 11% (95% bounds), but occur at a faster rate of 10-

4 per day. Ferguson et al. [17] find that a model with 12 codons, each with 20 amino 

acid variants, in which mutations occur at a rate of 310-5 per day and reduce cross-

immunity by ~7% gives restricted diversity without short-term strain-transcending 

immunity, and 1.2x10-4 per day, when transient immunity is included. From this, it 

seems clear that models involving a slow influx of antigenic mutants of around 10-5 

per day are generally capable of producing influenza-like patterns of restricted 

diversity.  

 

Increasing host population size in the model results in an increase in viral genetic 

diversity, as more opportunities for antigenic mutation arise within the larger host 

population. Thus, scaling competitive interactions between strains, and/or antigenic 

mutation rate, is required to maintain limitations on the effective exploration of 

antigenic space. In addition, other epidemiological phenomena, besides low antigenic 

mutation rates, may also contribute to limit the rate at which novel antigenic 

phenotypes emerge in the influenza population. These may be provided by 

population structure and the seasonality of transmission (Russell et al. 2008; Creanza, 

Schwarz, and Cohen 2010), as well as by short-term strain-transcending immunity, 
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which was found capable of limiting genetic and antigenic diversity in a similar 

model with a much larger antigenic space (Ferguson, Galvani, and Bush 2003b) and in 

a limited diversity antigenic model (Minayev and Ferguson 2009). However, a global 

metapopulation structure is not expected to be the dominant cause behind the low 

standing genetic diversity of influenza. Influenza B exhibits similar epidemiological 

dynamics, and lower prevalence, yet it exhibits much higher genetic diversity through 

the co-circulation of multiple lineages (Ferguson, Galvani, and Bush 2003b; Yamashita 

et al. 1988). Also, a more complex metapopulation structure with multiple patches can 

either increase genetic diversity by facilitating the coexistence of viruses at different 

weakly coupled patches, or decrease genetic diversity through the generation of 

population bottlenecks. The role of variation in viral fitness is an important 

consideration in future studies, particularly in light of recent observations linking 

binding properties of HA with antigenic escape (Hensley et al. 2009). The empirical 

finding of a non-trivial relationship between virus fitness in susceptible individuals 

and immune evasion was suggested as a possible alternative mechanism for 

generating positive selection pressure on antigenic sites and for limiting antigenic 

diversity (Hensley et al. 2009).  

 

Future work should investigate quantitative patterns and statistical approaches for 

discriminating among the different models and associated hypotheses that currently 

exist in the literature and for inferring the relative importance of the mechanisms they 

represent, keeping in mind that the models are not necessarily mutually exclusive. At 

the same time, empirical advances on the molecular basis of immune evasion and 

recognition, on the genotype-to-phenotype map, and on epitope identification and 
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population serology, will allow a better evaluation of the models’ assumptions, 

including the representation of serological space.  

 

In common with the Recker et al. (Recker et al. 2007) model and in contrast with other 

phylodynamic models (Ferguson, Galvani, and Bush 2003b; Koelle et al. 2006; 

Bedford, Rambaut, and Pascual 2012a), we find here that antigenic epitopes are 

frequently recycled (Figure S2.6). Importantly, this does not mean that such recycling 

is observed for the antigenic types (epitope repertoires) themselves, since the same 

antigenic type only re-emerges at long intervals (Figure S2.5) and rarely in the course 

of 40 simulated years. It's possible that such reemergence could explain the antigenic 

cross-reactivity between sera from around the 1918 H1N1 pandemic and viruses 

emerging in the 2009 H1N1 pandemic (Hancock et al. 2009; Itoh et al. 2009; 

Bandaranayake et al. 2010; Chi et al. 2010). However, antigenic stasis of the swine 

lineage leading to the 2009 pandemic could also explain these observations. Much 

further work on epitope identification and population-wide serological surveys is 

necessary to establish the validity of this model’s prediction on the re-cycling of 

constituent low diversity epitope variants (Figure S2.6). Nevertheless, several 

empirical observations are becoming available that are consistent with such recycling 

and the subject is discussed in detail in the companion paper (Wikramaratna, S. P et 

al. 2012). For example, an antigenic analyses performed on H2N2 influenza, a number 

of monoclonal antibodies raised against a 1957 strain were shown to cross-react 

strongly with a strain isolated in 1964, yet not with the 1963 strain (Tsuchiya et al. 

2001). In Reichert et al. (Reichert et al. 2010) the hemagglutinin of both novel 

pandemic H1N1 and pre-1940 H1N1 lack specific glycosylation sites on the globular 

head of HA1. These reverse glycosylation patterns were suggested to possibly shield 
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antigenic sites for a timescale of decades and in so doing, to effectively contribute to 

their recycling and to the age distribution of cases. In Bui et al. (Bui et al. 2007), several 

protective antigenic and T cell H3 epitopes show temporal variability across drift 

variants, with two of these specifically exhibiting a decrease and increase in 

conservancy consistent with epitope “recycling”. Post translational and 

conformational changes may hinder the validity of this analysis especially for epitope 

1 which acquired two surrounding glycosylation sites. In Wang et al. (T. T. Wang et al. 

2010), mice Anti-H3 mAbs were shown to neutralize H3 viruses that span 40 years, as 

measured by immunofluorescence against MDCK cells (Table 2, REF). All three mAbs 

(Figure 2.4, REF) displayed variability in their ability to neutralize H3 viruses for 

lower concentrations (<15µg/ml of 7A7 and <25µg/ml for the other two) in plaque 

reduction assays. For example for mAb 7A7 neutralization was better for HK68, than 

diminished for BJ92 and then increases for PAN99 and BRIS07. This pattern could also 

be due to secondary effects of amino acid differences outside the actual epitope as 

well through structural effects, but effectively behaves as epitope recycling over 

substantial durations of many years.  

 

In conclusion, within our framework, the rate of antigenic mutation was found to 

strongly influence whether selection was positive or negative, and hence, the topology 

of the tree and associated diversity of the virus. Strong positive selection is generated 

by effective competition under low mutation rates, and results in spindly trees with 

low genetic diversity. In this regime, antigenic mutations often fix in the virus 

population, lowering genetic diversity, as consistent with H3N2. An increase in 

mutation rate across a broad spectrum in competition strength, leads to negative 

selection and generates antigenic divergence. This can potentially result in the 
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coexistence of discordant antigenic types repressing the emergence of antigenic 

hybrids, through strong negative selection on antigenic change, with each discordant 

antigenic type maintaining a deep phylogenetic branch. Although not strictly 

mirroring the assumptions about development of the Recker et al model, our 

framework strongly implies that limitations on antigenic architecture alone are 

unlikely to reliably reproduce “skinny’ trees and some restrictions on mutation rate 

and/or other considerations such as fitness differences are likely to play a role. It is 

important to note that this exercise does not also privilege other hypotheses 

concerning diversity restriction in influenza as these also are strongly sensitive to 

mutation rate. Overall, it emphasizes that phylogenetic patterns do not serve as a 

discriminatory tool between these by no means mutually exclusive hypotheses. 

However, they can provide a basis to exclude specific hypotheses and offer a means 

by which the contributions of mutation and selection can be assessed. Needless to say, 

the latter has important implications for the updating of vaccines against influenza. 

Under a mutation-limited regime, a hypothetical vaccine should be effective until a 

new antigenic variant is introduced to the population through migration or mutation. 

Alternatively, when a limited number of alternative but conserved epitopes are 

continuously circulating with their abundance determined through competitive 

interactions and immune mediated selection, a vaccine against one of them may lead 

to rapid strain replacement, while a vaccine against all of them may result in effective 

intervention.  
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2.5. Methods 

2.5.1 Cross Immunity 

We assume that a strain’s antigenic attributes are determined by a set of separate 

epitopes and that each epitope contains a discrete number of alternative variants. 

Thus, a strain’s antigenic properties are defined by an n-tuple with ki variants per 

epitope giving a possible number of 



n

i

ik
1

 antigenically distinct strains. Hosts acquire 

immunity to viral epitopes following infection. Fully naïve hosts are always infected 

following contact at rate β. The risk of reinfection with the exact same strain is always 

zero. The chance of reinfection with a different strain is based on the similarity to 

previously encountered strains, measured through the fraction of previously 

encountered epitopes: epitopesnf  )1()1(infection ofrisk   and is at most 

100%. Where f is the fraction of previously encountered epitopes and σ is the strength 

of crossimmunity. Lower σ values correspond to weaker competition between strains. 

A form of generalized immunity is attained for σ > 0.8 in the five epitope case, relating 

to a reduced risk of reinfection following previous exposure to any strain (Figure 

2.2B).  

2.5.2 Mutations 

Phenotype changes are driven by mutation events. Mutations change the antigenic 

properties of a strain but do not influence the shape of the genealogical tree directly; 

the tree shape will be determined by selection, epidemiological dynamics and the 

stochastic processes favoring a specific isolate and its offsprings, implicitly rather than 

explicitly. Mutations involve changes in a single epitope; this makes some phenotypic 

changes more attainable in comparison to others, even for high mutation rates. The 
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antigenic mutation rate ξ gives the per-day probability for a virus to mutate in a single 

epitope site. 

2.5.3 Genealogy Tracking and Related Diversity Quantities 

The genealogy of the virus population was tracked directly throughout the simulation 

(Figure 2.2A). Constant random sampling of viruses was performed periodically. 

Genealogical pairwise diversity (π) was measured by averaging the time unit distance 

on the tree between random contemporaneous sample pairs (Figure 2.2C). This 

quantity relates to pairwise genetic diversity, as measured on an accurately 

reconstructed phylogenetic tree. Diversity measures are limited in our simulation to a 

maximum total of twice the total running time of the simulation which amounts to 240 

years. Although it’s clear that some parameter ranges would show diversity greater 

than 240 years, they will saturate at this threshold (Figure 2.5C).  

The MKR index was calculated by dividing the observed rate of occurrence of 

phenotypic mutations on the trunk of the tree, by the per-year mutation rate on the 

side branches (Figure 2.2D). This allows us to estimate the importance of antigenic 

mutations on the likelihood of fixation of a given viral linage.  

Single strain dominance was calculated based on the quantity ε from (Recker et al. 

2007) and is calculated using the following formula: 

 

 




P

i i

i

sub

i

y

yy

P 1
max

max1


 
(1) 

 

where ymax and ysub are the prevalence of the most and 2nd most prevalent strains. The 

normalized difference between the two is averaged across P epidemic peaks.  
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2.5.4 Increasing Mutation Rate Parameters  

For figures 3, 4 and S7, R0 was set to 2.4. Antigenic diversity was limited to 2 

variants per epitope to attain tractable results for a wide range of mutation and cross-

immunity parameters, and for the same reason no metapopulation structure was 

established.  

  
Parameter Value 

population size N 40,000,000 
 contact rate β 0.6 [1/day] 

recovery rate ν 0.25 [1/day] 
birth/death rate μ  1/25 [1/year] 

Epitopes 5 
variants per epitope  2x2x2x2x2 

cross-immunity σ 0.825 

 

2.5.5 Mutation-Competition Simulation Parameters 

For this set of simulations (Figure 2.5) R0 was set to 3 and no metapopulation 

structure was assumed. Higher R0 and longer duration of infection reduce the effect 

of critical community size over the range of parameters analyzed given the population 

size determined by computer resource use.  

 
Parameter Value 

population size N 50,000,000 
 contact rate β 0.6 [1/day] 

recovery rate ν  0.2 [1/day] 
birth/death rate μ 1/30 [1/year] 

epitopes 5 
variants per epitope  2x2x2x2x2 
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2.5.6 H3N2 Simulation Parameters  

This single simulation parameterization is intended to test whether H3N2-like 

phylogenetic trees can result from a model with a restricted set of antigenic 

phenotypes using an alternative epitope configuration and a basic metapopulation 

structure which includes seasonality. The basic reproduction number was set to 

R03.24. In this case three demes were assumed, representing the northern 

hemisphere, the southern hemisphere and the tropics. Four epitopes with a variable 

number of variants per epitope were used. Contact rate was attenuated sinusoidally 

for southern and northern hemispheres to establish seasonal patterns. Tropical climate 

seasonality was sinusoidally modulated include two seasons (Chew et al. 1998) of 

weaker amplitude (Cécile Viboud, Alonso, and Simonsen 2006).  

  
Parameter Value 

population size N 
North/Tropics/South 

16M/16M/10M 

 contact rate β0 0.6 [1/day]  
Between deme contact 0.005 [1/day] 

recovery rate ν 0.185[1/day] 
birth/death rate μ  1/30 [1/year] 

epitopes 4 
variants per epitope  5x4x3x2 
Temperate Climate 

Seasonality North/South 
14% Jan/July 
Six Month Phase 

Tropics Seasonality 7% Dec/June 
Mutation rate ξ 0.000008 [1/day] 

cross-immunity σ 0.87 

 

2.5.7 Antigenic Cluster Transitions 

It is not clear how changes in individual epitopes relate to the antigenic clusters as 

proposed by Smith et al. (D. J. Smith 2004) or Du et al. (Du et al. 2012). A new 
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antigenic variant differing by 2 or more epitopes from any previous cluster strain was 

grouped in a new cluster in agreement with Huang et al. (Huang and Yang 2011). This 

does not affect model dynamics, and relates only to the coloring of clusters in Figure 

2.6 and Figure S2.4-A. 
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2.7. Summary 

Influenza A (H3N2) has circulated in the human population since 1968 causing 

considerable annual morbidity and mortality worldwide. Despite the rapid evolution 

of the hemagglutinin (HA) protein and strong diversifying selection, the global virus 

population is characterized by a low standing diversity, evident in the serial 

replacement of antigenic types and in the 'cactus-like' structure of its genealogical tree. 

Elucidating the mechanisms behind these puzzling patterns is key to understanding 

the evolution of seasonal (H3N2) influenza. One recent epidemiological model 

proposes a restricted set of antigenic types whose waves of dominance result from 

frequency-dependent immune selection. Here we develop a model of limited 

http://www.jsmf.org/
http://erc.europa.eu/advanced-grants
http://royalsociety.org/grants/schemes/wolfson-research-merit
http://royalsociety.org/grants/schemes/wolfson-research-merit
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antigenic diversity that explicitly incorporates mutational processes, and use it to 

address, first, whether this type of antigenic space is capable of generating the 

characteristic phylogeny of HA sequences, and second, whether the dynamics of 

(H3N2) influenza are primarily limited by the arrival of mutations or by the opening 

of antigenic niches. We conclude that a limited antigenic space can explain the 

observed phylogenetic patterns and that a limited mutation rate is a key property 

underlying the dynamics of (H3N2) influenza. Our study provides a general 

framework for assessing the relative roles of selection and mutation in a variety of 

infectious disease systems. 
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2.8 Figures 

 

 

Figure52.1. Phylogenetic tree reconstruction of H3 depicting major antigenic clusters and 

including the associated pairwise diversity.  

Phylogenetic tree with highest posterior likelihood was reconstructed using 377 

representative sequences sampled between 1968-2009. Colors represent estimated antigenic 

clusters (Hong-Kong 1968 – Perth 2009). Approximately half of the samples include an 

established cluster annotation (D. J. Smith 2004) and three additional clusters relating to: 

California 2004, Brisbane 2007, and Perth 2009. Additional sequences were sampled uniformly 

overtime on a bi-annual scale. Phylogenetic tree was reconstructed using Bayesian MCMC 

analysis (A. J. Drummond et al. 2012; P. Lemey et al. 2009) and includes state reconstruction 

for unannotated sequences and ancestral sequences. Diversity skyline was calculated for the 
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same representative tree. Branches with colors differing from their main neighboring cluster 

represent uncertainty in the reconstruction, rather than actual cluster changes.  

 

 

Figure62.2. Methods 

 (A) Virus genealogy is tracked at the inter-host level. The genealogy is periodically sampled 

and the resulting tree is used for analysis. (B) Hosts acquire immunity to viral epitopes 

following infection. Fully naïve hosts are always infected following contact at rate β. The risk 

of reinfection is based on the similarity to previously encountered strains, as measured 

through the number of previously encountered epitopes: 

epitopesnf  )1()1(infection ofrisk   and is at most 100%. Where f is the fraction of 

previously encountered epitopes and σ is the strength of crossimmunity. Lower   values 

correspond to weaker competition between strains. A form of generalized immunity is 

attained for σ > 0.8 in the five epitope case, relating to a reduced risk of reinfection following 

previous exposure to any strain. (C) Mean pairwise genealogical diversity π is measured by 

averaging the pairwise distance in years between random contemporaneous samples on the 

genealogical tree. (D) The MK related index is calculated as the ratio of the antigenic mutation 

rate on the trunk of the genealogy (red) versus the antigenic mutation rate on the 



 

44 

 

 

sidebranches (black). The trunk of the genealogy was determined by tracing back viral 

lineages that survived until the end of the simulation and excluding the last 5 years. Antigenic 

changes are represented by color changes on tree branches (top-tree). The rate of antigenic 

change on the sidebranches is calculated as the number of antigenic changes on the 

sidebranches divided by the total length of the side branches in years. The rate of antigenic 

change on the trunk is calculated as the number of antigenic changes on the trunk divided by 

the total length of the trunk in years. 

 

 

Figure72.3. Changes in the proportions of hosts that are infectious with different strains 

within a 2 variants per epitope, 5 epitope system in an “evolutionary free” framework  

for all of the possible 32 strains the existence of at least one carrier was assured and no 

antigenic mutations were introduced. The superimposed time series were smoothed and 

ordered back to front by peak prevalence, maintaining the least prevalent strain in the front. 

The 3th highest peaking strain was outlined as an example. Single strain dominance was 

calculated based on the quantity ε from (Recker et al. 2007). Major peaks of incidence are 

generally associated with one or two dominant antigenic-phenotypes with ε=0.36±0.07 (mean 

± standard-deviation across 5 simulations) and a myriad of lower prevalence ones. Antigenic-

phenotypes reemerge with alternating frequency. This simulation includes a single 

homogeneously mixed host population of 40M hosts, contact rate β=0.6 and a 4 day recovery 

rate. Each epitope unencountered by the host contributes to a 17.5% increase in the risk of 

infection with a different strain (see methods for full description of epidemiological 

parameters).  



 

45 

 

 

 

Figure82.4. Changes in the proportions of hosts that are infectious with different strains 

and the related phylogenetic behavior with increasing mutation rate.  

Phylogenetic trees are based on samples of directly measured virus genealogy in the 

simulation, and only the last 40 years are visualized in the figure (for the complete genealogy 

over the whole time period see Figure S2.7). Diversity π is calculated as the mean distance, 

measured in years, for the coalescence of random pairs of contemporaneous samples in a tree. 

The MK related index (MKR) is calculated as the ratio of the antigenic mutation rate on the 

trunk (fixed) versus the antigenic mutation rate on the sidebranches. (A) Model with no 

mutation, a single antigenic type persists under neutral evolution. When there are no 

antigenic mutations a genealogical tree which follows neutral viral evolution exists. Genetic 

diversity for this tree relates to population dynamics only – to incidence and the prevalence. 

(B) Model with low mutation rate of ξ=7.5×10-6 antigenic-mutations per day. Successive strain 

replacement with higher epidemic peaks is observed. Rare antigenic mutations are 

advantageous and are more likely to fix and have viable offsprings, consequently lowering 

genetic diversity. (C) The introduction of a higher mutation rate ξ=7.5×10-5 leads to antigenic 

and genetic divergence. Dynamics are ruled by endemic or cyclic behavior of discordant 

antigenic strains. Mutations are more likely to be deleterious, facing competition from the two 
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prevalent strains. Phylogenetic patterns include two deep branches representing each strain 

and a low rate of coalescence between strains. (D) For a mutation rate ξ=7.5×10-4 

epidemiological behavior resembles the evolution free framework (Figure 2.3). Phylogenetic 

patterns exhibit high genetic diversity and weak negative selection pressure. (E) Loss of strain 

structure due to high mutation rate ξ=7.5×10-3. At this high mutation rate the antigenic traits 

are no longer heritable and each linage displays a constantly varying antigenic phenotype. No 

selection forces are measured and genetic diversity is expected to be determined by random 

coalescence. (F) Summary statistics and typical trees for varying mutation rates and fixed 

crossimmunity (filled area within rectangles indicates 1 confidence interval for 5 repeated 

runs). Simulation parameters are the same as those described in Figure 2.3, but include the 

possible extinction of strains, and mutations to individual epitopes at a specified rate ξ (see 

methods for full description of epidemiological parameters). 

 

 

Figure92.5. Changes in genetic diversity and the McDonald-Kreitman related index (MKR) 

for varying strengths of strain competition and antigenic mutation rates.  



 

47 

 

 

(A) Mean pairwise genetic diversity π is measured as the mean distance, measured in years, 

for the coalescence of random pairs of contemporaneous samples in a tree. Diversity 

measurement is capped by twice the simulation run length which amounts to 240 years (B) 

The MKR is measured as the ratio between the trunk antigenic mutation rate (fixed) and the 

sidebranches antigenic mutation rate. Evidence of positive selection is observed when the 

MKR index is significantly above one, and negative selection when it is significantly below 

one. Areas of strong positive selection are associated with lower genetic diversity as a small 

subset of the population contributes to long term viral evolution. Strong negative selection is 

associated with disruptive selection maintained by existing strains. (C) Diversity for varying 

strengths and directions of selection as measured by the MKR index. Diversity decreases with 

stronger positive selection ρ=-0.85 (Pearson’s correlation right of dotted line), and increases 

for stronger negative selection ρ=-0.28. The harmonic mean of the prevalence is also strongly 

correlated with genetic diversity ρ=0.76 (heat map) (D) Typical trees for varying strengths of 

strain competition and antigenic mutation rate. Effective competition combined with a limited 

availability of antigenic mutations results in narrower trees with lower pairwise diversity. 

This figure was parameterized to use R0=3 and a population size of 50M to limit stochastic 

extinctions for a large parameter range (see methods for full description of epidemiological 

parameters).  
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Figure102.6. H3N2 like characteristics.  

Using a model with an alternative epitope configuration and three global demes representing 

the northern hemisphere N, southern hemisphere S, and the tropics T. (A) Top - typical tree 

colored by antigenic clusters (see Methods). On average 13±6 clusters lasting 4±2 years come 

to dominate the virus population over the course of the 40 year simulation. Bottom - 

Genealogical diversity (π) displaying “boom & bust” patterns (10%-90% range of 3-9.5 years) 

associated with H3 diversity with an average of 5.7±0.1 years (B) Top - typical tree colored by 

deme. The tropics metapopulation has a higher proportion in establishing the trunk (68%±9) 

of the phylogeny followed by the northern (20%±8) and the southern (12%±3) population. 

Bottom – proportion of hosts infected in the northern hemisphere, tropics and southern 

hemisphere. Epitope configuration for this figure was 5×4×3×2 variants per epitope, 4 epitope 

system. Average yearly incidence in the northern and southern hemisphere demes is 

(5.7%±0.1, 5.8%±0.1) respectively, while incidence in the tropics is slightly lower 5.5%±0.1. 

Annual epidemics are generated almost regularly yet display a high level of variability in 

peak size in the northern hemisphere (CoV=1.1±0.1, coefficient of variation) and lower 

variability in the tropics (CoV=0.7±0.1). In this simulation 42M hosts were divided to three 

demes with the tropics and the south having 16M hosts and the southern hemisphere having 
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a lower 10M population. Annual seasonal patterns were established for the temperate demes, 

and biannual weaker seasonality in the tropics (see methods for full description of 

epidemiological parameters).   
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2.9 Supporting Information 

 

Figure11S2.1. Changes in prevalence for carrying strengths of strain competition and 

antigenic mutation rates.  

Prevalence increases as crossimmunity between strains decreases, 

enabling multiple infections. When crossimmunity is 1, all strains are 

antigenically equal, and one lifetime infection is possible. When no 

crossimmunity is present, each antigenic-type can independently infect a 

host once.  
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Figure12S2.2. Changes in antigenic diversity and the McDonald-Kreitman related index 

(MKR) for varying strengths of strain competition and antigenic mutation rates.  

(A) Mean Shannon diversity was measured for 40 years of simulation. Shannon diversity 

ranges from zero when a single circulating antigenic variant is present at each time point, to 

approximately 3.5nats when all the possible antigenic variants are continuously present. For a 

large range of the parameter space, stronger competition and lower mutation rates decrease 

Shanon diversity as fewer circulating antigenic types co-exist. (B) Single strain dominance 

based on the quantity ε from (Recker et al. 2007) (see Methods). With stronger competition 

and lower mutation rates epidemics are contain a larger fraction of a single antigenic type (C) 

Shannon diversity decreases with stronger positive selection (ρ =-0.88 when MKR>1) and with 

stronger negative selection (ρ=0.39 when MKR<1). Positive selection roughly corresponds to 

lower mutation rates (ξ<10-3), while negative selection corresponds to higher mutation rates 

(ξ>10-4) (D) Single strain dominance increases with stronger positive selection (ρ=0.88 when 
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MKR>1) and an increases for stronger negative selection (ρ =-0.23 when MKR<1). (see 

methods for full description of epidemiological parameters).  

 

 

 

Figure13S2.3. Seasonal patterns.  

For simulations including metapopulation sinusoidal seasonal forcing was used (see 

Methods). Contact rate was modulated sinusoidally with 14% amplitude in temperate demes, 

and lower biannual seasonal cycles of weaker (7%) amplitude in the tropics. The observed 

seasonal patterns in the simulation include annual peaks centered around Jan-Feb in the 

northern hemisphere, July in the southern hemisphere and weaker peaks centered around late 

July and mid January in the tropics.   
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Figure14S2.4 Dynamic changes in the percentage of antigenic clusters and the dominance 

of antigenic variants in different metapopulation demes. 

(A) Changes in the percentage of the population infected with a specific antigenic cluster 

variant for the northern hemisphere, the southern hemisphere and the tropics. On average we 

observe 13±6 antigenic clusters that come to dominate the virus population over the course of 

the 40 year simulation with an average duration of 4±2 years. One or two clusters usually 

dominate the deme population. Clusters are defined based on a threshold set when the 

cumulative change of two or more epitopes between any previous cluster antigenic-type is 

reached, based on (Huang and Yang 2011) (see Methods). Clusters are only used for coloring 

of strains and figures and do not affect the model dynamics. A time window of 25 years was 

selected for comparison with (Du et al. 2012) (B) Measurement of the onset time for all 

antigenic types (prior to cluster subdivision). Onset time was measured as the point where 

prevalence was estimated to reach 5% of its overall deme prevalence. Antigenic variants are 

more likely to reach significant prevalence in the tropics: 2±1.5 months earlier in the tropics 

compared to the northern hemisphere and 3±2 months earlier in the tropics compared to the 

southern hemisphere (p<0.001 for the combined results).  
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Figure15S2.5. Antigenic types across 40 years of simulated years.  

A sample of antigenic types that emerge in the simulation are sampled and numbered 

sequentially. Red – Antigenic variants sampled from the trunk of the tree (fixed). Black – 

Antigenic variants sampled from side branches of the phylogenetic tree.  

 

 

 

Figure16S2.6 Crossimmunity patterns for individual epitopes.  

The thirteen most prevalent antigenic types from a span of 40 years of simulation were 

sampled (Figure 2.6) and ordered by year of introduction. Individual epitopes were compared 

between the strains. Epitopes with lower variability (2-3 variants per epitope) show a larger 

degree of reemergence while epitopes with higher variability (4-5 variants per epitope) show 

a lower degree of epitope reemergence.  
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Figure17S2.7 Full phylogenetic trees following the initial introduction of a virus with an 

increasing mutation rate.  

Phylogenetic trees are based on samples of directly measured virus genealogy in the 

simulation (434 years). Figure 2.4 in the main body of the paper shows the last 40 years of a 

simulation with the same parameters (see caption of that figure for details). For these longer 

sampling windows, extinction was prevented by maintaining at least 50 infected individuals. 

 
Table1S1.1. Model results for doubling the number of epitopes or variants per epitope  
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Chapter 3. Antagonism between reassortment and antigenic niche 

partitioning in a model of strain dynamics motivated by rotavirus  

 

3.1 Abstract 

Several theories have been put forward to explain the co-existence of multiple 

pathogen strains. A major body of work postulates that the patterns of immunity in 

the host population can drive pathogens to differentiate into, and maintain groups 

with, reduced immune cross-reactivity. However, these dynamics were not fully 

explored under conditions characteristic of pathogens such as rotavirus, which 

include the repeated introduction of antigenic novelty through zoonosis or 

immigration, high rates of genome segment transfer in the form of reassortment, and 

strong non-specific (heterotypic) immunity. Here we use a model motivated by 

rotavirus to investigate serotype population structure under these conditions. Our 

work extends previous work on strain and serotypes’ community structure to viral 

and bacterial pathogens that share these rotavirus-like characteristics, and has 

implications for understanding responses to interventions such as vaccination or mass 

drug administration. It introduces an additional regime to phylodynamics 

investigations, distinct from those previously described, namely the successive 



 

57 

 

 

replacement of antigenic clusters and the coexistence of fully non-overlapping 

antigenic repertoires.  

3.2 Introduction 

Understanding how pathogen variation is maintained and structured is a major goal 

of disease ecology. Ultimately, such research requires the synthesis of a wide set of 

fields covering evolutionary, epidemiological, immunological, and ecological 

dynamics (Bryan T. Grenfell et al. 2004). A major body of work on strain theory posits 

that the combined immunity of the host population can drive pathogens to 

differentiate into groups with reduced immune cross-reactivity (Sarah Cobey 2014; 

Sunetra Gupta et al. 1996) while intermediate hybrids are suppressed by the immunity 

of the population to the established parental strains. This organization into discrete 

strains is based on much broader phenomena described in theoretical ecology termed 

niche differentiation (Armstrong and McGehee 1980; Hutchinson 1959; Armstrong 

and McGehee 1980; Strong 1983; Leibold 1995) and to limiting similarity (Abrams P 

1983). However in contrast with more recent work (Scheffer and van Nes 2006; Zinder 

et al. 2013) in both strain theory and in these models the role evolution through 

mutation and through invasion was not dynamically considered.  

 

Non-immune based, evolutionary and ecological processes can also generate discrete 

pathogen strains. Reduced cross-immunity in these cases could be thought of as a by-

product of these non-immune processes. For instance, different subtypes of influenza 

A (i.e A/H1N1, A/H3N2, A/H5N7) have reduced cross-immunity, each subtype 

represents a separate spillover of influenza from an avian reservoir, with a possible 

intermediate host (Parrish, Murcia, and Holmes 2015). Similarly, geographical 
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isolation and host tropism play a role in the sub-division of viruses such as dog rabies 

and hantaviruses (Bourhy et al. 2008; Holmes and Zhang 2015) into 'phylogroups', 

although the immune implications of this division are less clear. In addition tissue 

tropism can also be involved in the differentiation of pathogen strains into groups, 

displaying different pathophysiology, as is the case in enteroviruses (Whitton, 

Cornell, and Feuer 2005). In theory, speciation processes can work in tandem with 

immune mediated ones to generate and maintain pathogen strains. Both immune and 

non-immune based mechanisms of co-existance are likely to play a role in shaping 

diversity patterns observed in rotavirus.  

 

Rotavirus A (RVA) is a non-enveloped virus, with 11 double stranded RNA genome 

segments. The outermost capsid proteins VP4 (P types) and VP7 (G types) are often 

used for classification into genotypes (i.e. G1P[8], G3P[8], G9P[11] etc...) and are 

through to play a role in the generation of humoral immunity (J. Matthijnssens et al. 

2008). There is evidence of increased protection against infections by the same 

genotype (Ward, Clark, and Offit 2010; Offit 1996; Guerra et al. 2015) yet a large 

component of immunity is heterotypic (Crawford et al. 2011; Velazquez et al. 1993; 

Leshem et al. 2014a). At a segment level, each segment type (i.e. G1, G12 etc...) 

corresponds to a monophyletic cluster, and is thought to reflect the cross-species 

transmission into humans from an animal source (Figure 3.1). There is a certain degree 

of antigenic change within individual G types (e.g. within G1) through mutation 

(Arista et al. 2006; S. M. McDonald et al. 2011). Multiple G and P types have been 

described, and in contrast with influenza, serotypes coexist and undergo frequent 

reassortment (S. M. McDonald et al. 2009). Several of the discovered G types are much 

more abundant than others, and in addition a small fraction of possible genotypes of 
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RVA are much more frequent (S. M. McDonald et al. 2009; J. Matthijnssens et al. 2008; 

Crawford et al. 2011). This has been attributed to a balance between preferred genome 

constellations and reassortment (S. M. McDonald et al. 2009), and there is evidence 

that these constellations have an improved fitness unrelated to immunity (Heiman et 

al. 2008).  

 

The frequency of circulating rotavirus serotypes varies over time and across global 

geographic regions (Santos and Hoshino 2005a). On a local level circulating serotypes 

are often partially or fully replaced after being common in a region for several years 

(S. M. McDonald et al. 2012; M. Afrad et al. 2013; De Grazia et al. 2014), yet those can 

re-emerge at later periods. These replacement dynamics, taken together with changes 

in serotype prevalence following vaccination (Guerra et al. 2015; Zinder, Woods, and 

Pascual 2014) (see also Chapter 5) suggest selective pressures generated by host 

immunity can drive changes in circulating serotypes. In the US, there is little evidence 

that changes in RVA arise through mutation. It is rather immigration of existing and 

newly introduced serotypes that appears to dominate the population dynamics when 

seen through the sequence diversity of a single antigenic segment (Chapter 5) (Zinder, 

Woods, and Pascual 2014).  

 

Here we use a model motivated by rotavirus to investigate how serotype structure is 

maintained, under different levels of specific (homotypic) and generalized (or 

heterotypic) immunity and varying rates of reassortment between strains. In contrast 

with previous work we consider antigenic novelty that can arise through the 

introduction or invasion of new segments, and reassortment rates that vary over a 

wider parameter range. Our work extends the dynamic regimes previously identified 
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by strain theory and phylodynamic models, to include invasion by new segments that 

sweep through the population under sufficient reassortment. An improved 

understanding of how strain communities are generated and maintained provides a 

basis to also understand their expected response to various interventions.     

3.3 Methods 

Model description We use an individual-based SIR model based on (Bedford, 

Rambaut, and Pascual 2012b; Zinder et al. 2013) that explicitly tracks the chains of 

infection by viral lineages as well as the antigenic phenotype of every virus in the 

population. This model explicitly tracks the genealogy of each viral segment and 

therefore does not require the specification of a genotype to phenotype map. A virus 

in our model is composed of three antigenic segments (e.g. A, B, C), each segment 

allele (e.g. A3) representing a unique serotype, with a combination such serotypes 

representing a viral strain or constellation of antigenic types (e.g. A1B2C2). The model 

was modified to include reassortment and the genealogical tracking of each viral 

segment independently. Immunity and infectivity are different from the cited models 

and are further described next.  

Immunity A host’s risk of infection follows an exponential decline based on the 

number of infections and the number of unique antigenic segments to which that the 

host has previously been exposed: 

 

 
               

  
   (1) 

 

where      is the level of heterotypic immunity,       is the level of homeotypic 

immunity,    is the number of infections a host has already experienced,    is the 
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number of segments the host has been exposed to previously, and    is the number of 

antigenic segments of the virus has (  =3 for all the simulations reported here). 

Immunity is gained upon recovery from an infection.  

Infectivity Only symptomatic infections transmit in our model. The first infection is 

symptomatic with probability   . The chances of a host transmitting an infection 

declines exponentially with each infection at a rate   according to  

 

    
      (2) 

 

New introductions: Antigenically novel segments are introduced at a rate    in the 

context of an existing background present in the population. That is, an introduction 

brings into the population one new segment in the background of an existing 

constellation. These new segments are derived from an initial parent segment at the 

same loci sampled at the beginning of the simulation, to reflect their distant 

coalescence, possibly in a source animal or region.  

  

Model Parameters Model parameters are listed in Table 3.1 

 

Co-infections  Infected hosts are exposed to additional new infections. A co-infection 

may involve multiple circulating serotypes, and repeated infection with the same 

serotype.  

 

Reassortment  When a host infected with multiple serotypes transmits an infection, a 

single infecting serotype is generated and selected from the existing infecting 

serotypes. For the infecting serotype, a random parent serotype is selected, and with 
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probability   each segment in this serotype is replaced by a random segment allele at 

the same loci, from all the infecting serotypes (including the parent strain).  

 

Host Sampling A fraction (      ) of infected hosts is sampled daily in the 

simulation, starting at the end of an initialization period lasting 50 years. When a host 

is sampled all infecting strains and segments are recorded. In addition the immune 

history of a fraction (      ) of all hosts (infected and non-infected) is sampled.   

3.4 Results 

Epidemiological dynamics with varying degrees of specific immunity. To calculate 

how variable, or stable, are the infection levels with varying parameters, we plot the 

coefficient of variation for incidence. The coefficient of variation (CV) was calculated 

for incidence as the standard deviation divided by the mean, when sampled during 

two year long time intervals. The CV is plotted as a function of the strength of specific 

immunity and the rate of reassortment (Figure 3.2A). For the specified level of 

generalized immunity and contact rate, higher specific immunity leads to more 

epidemic dynamics (Figure 3.3A, B). Also, more stable infection levels are established 

with a higher contact rate (Figure 3.2B).  

Phylodynamic patterns in the absence of reassortment 

Previously a dynamical regime in which strains co-exist with minimal cross-

immunity, was described in the context of a limited pool of variant antigenic types. 

Here, we find the presence of such a regime, in the context of an open antigenic pool, 

with novelty introduced through zoonosis from a source of unlimited antigenic 

novelty (Figure 3.3A, C). The lack of (or lower) segment overlap (Figure 3.3C) is 

representative of immune-mediated niche partitioning as established by previous 
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studies. In this model, we assume that antigenic novelty is generated by introductions 

from a single source, and newly introduced segments coalesce at this source before 

host sampling is initiated. Segments are introduced to the system on the background 

of existing strains. A lack of overlap between common strains on short time scales 

(Figure 3.3C) indicates the extinction of background strains carrying these new 

segments. A strain with a newly introduced segment has a clear competitive 

advantage over the background strain, and will compete more strongly with the 

parental strain, than with antigenically distinct strains due to immunologic similarity 

(Figure 3.4).  

 

Epidemic replacement dynamics, similar to those of influenza, occur with higher 

specific immunity. Epidemiologically, this replacement regime is similar the one for e 

spindly A/H3N2 influenza like trees (Figure S3.1). Because new segments are 

simulated to be generated through zoonosis or through immigration, segments have a 

deep coalescence in the source animal or region (Figure 3.3B, Figure S3.1). In contrast 

with the regime in which strains coexist, segments are shared between subsequent 

strains (Figure 3.3D).  

  

Phylodynamic patterns of coexistence with reassortment in the context of antigenic 

novelty. With the introduction of reassortment (Figure 3.5) strain diversity increases 

(Figure S3.2 A,B). Before, the lack of reassortment prevented the sweeping of a new 

advantageous segments across multiple existing backgrounds. With reassortment new 

segments which confer competitive advantage can travel across multiple backgrounds 

(Figure 3.6). With an intermediate reassortment rate (Figure 3.4A), the signature of 

niche partitioning is reduced (Figure 3.5C), and with a higher reassortment rate 
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(Figure 3.5B, D) it is lost. These different levels of strain structure with reassortment 

are also evident when linkage disequilibrium (D') between pairs of segments is 

calculated (Figure 3.7A). Finally, reassortment rates have a limited impact on the 

diversity of segments when specific immunity is low, and reduce segment diversity 

on shorter durations of time when specific immunity is high (Figure S3.2, C).  

 

The effect of reassortment on serotype community stability 

We measured the time it takes for serotype communities sampled in different years to 

diverge (Figure 3.7B). With increasing specific immunity, the population is less stable. 

This is in contrast with the dynamics observed for limited antigenic diversity, where 

stronger specific immunity stabilized niche partitioning (Zinder et al. 2013). Increased 

reassortment rates also reduce the stability of the serotype population.  

3.5 Limitations 

Our work does not consider other, non-immune interactions between segment types, 

such as epistasis (Sanjuan, Moya, and Elena 2004; Heiman et al. 2008) which can lead 

to conserved genome constellations in rotavirus. Epistasis can also reinforce, or be the 

consequence of, immune-mediated mechanisms that have created or maintain 

serotype structure.  

The model used, assumes a simple population structure which includes a 

homogenously mixing homogenous population of hosts. Work on immune mediated 

strain structure has shown some robustness to a certain level of population spatial 

structure (Caroline O. Buckee et al. 2011). Further work, on the role of population 

structure on the maintenance and formation of serotypes is necessary but goes beyond 

the scope of this manuscript.  
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In addition, a small population size of 5M hosts was used. With a growing effective 

population size genetic and antigenic diversity is expected to increase (Zinder et al. 

2013). However, we do not expect changes in the trends observed with changes in 

specific immunity and reassortment rates.    

We used a simple SIR model, which is symmetric with respect to immunity generated 

against each segment, and against all strains. We used this simplifying assumption for 

model comprehension and simplicity. Also, some models have considered different a 

fitness for different rotavirus serotypes (Pitzer et al. 2009). Similarly we assumed all 

strains carry the same fitness for model comprehension and simplicity. Work on the 

implication of different fitness levels for different alleles has resulted in interesting 

observations in models of malaria (Artzy-Randrup et al. 2012b).  

3.6 Discussion 

The strain structure and temporal stability of pathogen communities in face of 

invasion is strongly influenced by the level of reassortment they exhibit. When a novel 

antigenic allele at a given segment is introduced into a population, it can disturb the 

existing serotype structure. In our model, when reassortment rates are low, strain 

communities maintain a signature of niche partitioning as the novel allele largely 

replaces the same genetic background upon which it arose (Figure 3.3A, C, Figure 3.4). 

In previous work (Caroline O. Buckee et al. 2011; Sunetra Gupta et al. 1996; Recker et 

al. 2007; Zinder et al. 2013) strong specific immunity was necessary to maintain 

immune mediated strain structure. In addition in (Caroline O. Buckee et al. 2011; 

Recker et al. 2007) in previous work, immunity which is heterotypic was not 

considered, and the immunity structure favored the gain of protection based on a 

single shared segment between a challenging strain and previous infections. In this 
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work, we use an immunity structure that lends itself more readily to observations of 

cross-protection in rotavirus (Figure S3.3) (Velázquez et al. 1996; Pitzer et al. 2009; 

Gladstone et al. 2011a). In our results, in the absence of reassortment, the selective 

advantage of a newly introduced antigenic allele, in competition with the parent 

background on which it was introduced, maintains the signature of niche partitioning 

at low levels of specific immunity.  

 

With increasing reassortment rates, a newly introduced allele provides strains with a 

competitive advantage, and can sweep across multiple genetic backgrounds before 

significant levels of host immunity build against it, thus disrupting the viral strain 

structure to different degrees (Figure 3.5, Figure 3.6). Previous work had 

demonstrated a certain resilience of immune-mediated strain structure to 

reassortment and recombination (Caroline O. Buckee et al. 2011). However, this work 

did not consider the introduction of antigenic novelty from outside the local 

transmission system and considers only a limited pool of antigenic alleles. 

 

In the population genetics literature, sexual reproduction, including reassortment, is 

hypothesized to increase the rate of adaptation (Fisher 1930; Muller 1932) and reduces 

what has been termed clonal interference. For example, in viral pathogens 

reassortment has been shown to facilitate the dissemination of antiviral drug 

resistance in seasonal A/H3N2 influenza (Simonsen et al. 2007). Despite newly 

introduced alleles having a fitness advantage that allows them to travel across 

multiple backgrounds, both incidence (Figure S3.4) and incidence variability (Figure 

3.1) largely remain the same for this regime in our model. This is in keeping with 

observational data of rotavirus, where yearly incidence is quire predictable, but 
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serotype turnover can be substantial (M. Afrad et al. 2013). This behavior contrasts 

with the epidemiological dynamics seen in the replacement regime of successive 

antigenic clusters characteristic of H3N2 influenza, where each replacement underlies 

an increase in attack rates (Koelle et al. 2006). The rate of stochastic extinction does 

increase however for higher specific immunity in our simulations, as evident in the 

failed runs represented by missing dots. It is possible that this is the result of the 

impact of generalized immunity in reducing secondary infections. 

 

Although incidence remains relativly stable with reassortment, with increasing 

reassortment rates, the strain population structure becomes less stable (Figure 3.7B). 

This effect is amplified with stronger specific immunity, the consequence of an 

increased selective coefficient for newly introduced segments.  

Our results are relevant to other pathogens and dynamical systems in the context of 

other recombining pathogens which generate antigenic novelty and experience 

reassortment or recombination, including malaria, influenza, and pneumococcus 

among others, and should be considered in the interpretation of data. The degree to 

which strains are maintained by immune-mediated niche partitioning in highly 

recombining and diverse pathogens such as malaria remains unclear (Artzy-Randrup 

et al. 2012a). The statistical detection of partial niche partitioning will be more difficult 

in the context of a sweeping regime, and this needs to be considered in analyses of 

strain structure. In a broader context, the generation of antigenic novelty is equivalent 

to the generation of new resource axes, in ecological models of species coexistence 

(Scheffer and van Nes 2006).  
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Targeted interventions, identifying shared commonly recognized antigens, may 

identify transient sweeping alleles as being most common. These alleles have no 

inherent fitness differences compared to other alleles, with the exception of a 

transiently higher host susceptibility. As such, targeted vaccination against these 

alleles may not offer higher efficacy, and it will be necessary to survey antigenic 

diversity for continued periods of time to identify the true extent of antigenic 

variation. In contrast general non-immune targeted interventions may provide a 

mechanism to reduce pathogen diversity by reducing co-infection and reassortment, 

which in turn may benefit the acquisition of immunity.  
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3.7 Tables 

Table23.1. Model Parameters 

Description  Value reference 

contact rate of symptomatic infection*   1.0 day-1 or 

3.514 day-1  

(Pitzer et al. 2009) 

duration of infection  

 
 

7.0 days (Pitzer et al. 2009) 

homotypic immunity      0.2-1.6 (Velázquez et al. 1996; Pitzer 

et al. 2009; Gladstone et al. 

2011a) * 

heterotypic immunity       0-1.6  

mutation rate   0  

introduction rate    0-32 year-1  

probability of first infection to be 

symptomatic* 

   0.47  

reduction in infectivity with 

subsequent infections 

  0.62  

population size   5,000,000  

number of viral segment types    3  

* also see Figure S3.3 
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3.8 Figures 

 

year 

Figure183.1. Phylogeny of rotavirus A VP7 segment (G type) color coded by the main 

segment serotypes (Woods RJ et. al 2015, unpublished).  

1911 Annotated VP7 sequences were collected from GenBank and a phylogenetic tree was 

reconstructed using BEAST. Each G type (in order of top to bottom): G2 (yellow), G9 (blue), 

G3 (purple), G1 (red), G4 (green) , G2 (orange) and other (black), is thought to represent an 

introduction from an animal source.  
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A  

 

B 

 

 

Figure193.2. Incidence variability with varying specific immunity, reassortment, and 

contact rates  

A. The biannual incidence coefficient of variation was calculated and is plotted as a function 

of the strength of specific immunity and of the reassortment rate. The reassortment rate is the 

probability at which a segment is chosen at random rather than from the parent strain in cases 

where the infecting host is co-infected. Dots represent parameters or which simulations were 

run. For this figure the contact rate is       , generalized immunity         , introduction 

of new antigenic segments at a rate of   =8.0 
 

    
 , while lower and higher introduction rates 

were considered in a sensitivity 
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A                         

 

B                           

 

  

  

year year 

C  

 

D 

 

Figure203.3. Serotype co-existance and replacement dynamics, with antigenic novelty 

driven by the introduction of new segments, in the absence of reassortment  

A-B Prevalence, color coded by serotype, together with the phylogenetic tree of a single 

segment for a longer time period. C-D Serotypes were sampled from a short time window 

(approx. year 22-28) ordered by their prevalence, until 80% of prevalence was covered for the 

purpose of capturing the main circulating serotypes. A matrix was constructed plotting the 
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number of shared segments between these common serotypes. The matrix is ordered with 

minimum bandwidth.  
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 Figure213.4. The introduction of a novel antigenic segment in the absence of reassortment 

(left) With the absence of antigenic novelty immune mediated strain structure is maintained 

and strains do not share segment alleles. (center) A new introduction of the antigenic segment 

B5, leads to competition between the parent strain which shared two alleles with the new 

strain, but suffers from a competitive disadvantage as the population is susceptible to the new 

allele. The remaining serotypes are disturbed to a lesser extent because they only share 

heterosubtypic immunity with the newly introduced serotype. (right) A replacement of the 

background strain by a strain with the new allele segment follows, generating an immune 

mediated non-overlapping strain structure.   
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A                        .1 

 

B                         

 

Year Year 

   

year year 

C  

 

D 

 

Figure223.5.  Serotype co-existance and replacement dynamics, with antigenic novelty 

driven by the introduction of new segments, in the presence of reassortment  

A-B Prevalence, color coded by serotype, together with the phylogenetic tree of a single 

segment for a longer time period. C-D Serotypes were sampled from a short time window 

(approx. year 22-28) ordered by their prevalence, until 80% of prevalence was covered. A 
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matrix was constructed plotting the number of shared segments between these common 

serotypes. The matrix is ordered as to minimze its bandwidth. 

 

 

 

Figure233.6.  An introduction of a novel antigenic segment in the presence of reassortment  

 (left) With the introduction of a new allele on a background strain, reassortment of the new 

allele on alternative backgrounds is possible. (right) A reassortant strain (A3,B5,C3) has a 

temporary advantage and circulate, until sufficient immunity against the new segment allele 

is generated.   
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A  

 

B 

 

Figure243.7. Segment serotype linkage, and community stability with varying specific 

immunity and reassortment rates  

A Average linkage disequilibrium <D'> between randomly sampled pairs of segments present 

together in the same serotype. Allele frequencies used were based on the frequencies of 

segments during short windows of time (6.25 years) B The duation of time it takes for 

serotype communities sampled in different years to diverge. The divergence metric used was 

Jensen-Shannon-Divergence (JSD) and the time to JSD=0.5 was estimated. JSD reflects the 

disimilarity between two distributions of serotypes, taking into account that differences in the 

presence and absence of more common serotypes is more informative (Lin 1991).    
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3.9 Supplement 

A 

                               

   )−1 

 

 

B 

                                 

 

 

year year 

Figure25S3.1. Phylodynamic patterns of replacement  

A Antigenic novelty is driven by mutation B Antigenic novelty is driven by zoonosis   
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A 

 

B 

 

C 

 

D 

  

Figure26S3.2. Segment and serotype diversity with varying specific immunity and 

reassortment rates 

A Shannon diversity of strains sampled during short (1.5 year) windows and averaged  

B Shannon diversity of strains from a long (50 year) time period C The average Shannon 

diversity of a single segment sampled during short (1.5 year) windows and averaged D The 

average Shannon diversity of a single segment sampled during from a long (50 year) time 

period. 

A. B. 
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Figure27S3.3. Estimated bounds of generalized immunity  

Exponential model fit based on data from Gladstone et al. (Gladstone et al. 2011b). The decline 

in relative risk can be used as an upper bound on the expected amount of generalized 

immunity in the model.  A. Relative risk based on the recurrence of symptomatic and 

asymptomatic infections B. Relative risk based on the recurrence of symptomatic infections 

(with Diarrhea). 
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Figure28S3.4. Yearly attack rate with varying specific immunity and reassortment rates  
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Section II - Inference 

Chapter 4. Seasonality in the migration and establishment of H3N2 

Influenza with epidemic growth and decline  

 

4.1 Abstract  

Background Influenza A/H3N2 has been circulating in humans since 1968, causing 

considerable morbidity and mortality. Although H3N2 incidence is highly seasonal, 

how such seasonality contributes to global phylogeographic migration dynamics has 

not yet been established. In this study, we incorporate time-varying migration rates in 

a Bayesian MCMC framework. We focus on migration within China and between 

China and North-America as case studies, then expand the analysis to global 

communities. 

Results Incorporating seasonally varying migration rates improves the modeling of 

migration in our regional case studies, and also in a global context. In our global 

model, windows of increased immigration map to the seasonal timing of epidemic 

spread, while windows of increased emigration map to epidemic decline. Seasonal 

patterns also correlate with the probability that local lineages go extinct and fail to 

contribute to long term viral evolution, as measured through the trunk of the 
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phylogeny. However, the fraction of the trunk in each community was found to be 

better determined by its overall human population size.  

Conclusions Seasonal migration and rapid turnover within regions is sustained by the 

invasion of 'fertile epidemic grounds' at the end of older epidemics. Thus, the current 

emphasis on connectivity, including air-travel, should be complemented with a better 

understanding of the conditions and timing required for successful establishment. 

Models which account for migration seasonality will improve our understanding of 

the seasonal drivers of influenza, enhance epidemiological predictions, and ameliorate 

vaccine updating by identifying strains that not only escape immunity but also have 

the seasonal opportunity to establish and spread. Further work is also needed on 

additional conditions that contribute to the persistence and long term evolution of 

influenza within the human population, such as spatial heterogeneity with respect to 

climate and seasonality.  

4.2 Background  

Seasonal influenza causes considerable morbidity and mortality, and presents a 

complex problem due to the intimate relationship between its evolution and 

epidemiology. The WHO estimates influenza A causes between a quarter to half a 

million deaths worldwide annually (WHO 2009) with yearly epidemics in the US 

resulting in tens of thousands of deaths (CDC, n.d.). The economic burden of seasonal 

influenza in the US is estimated in billions of dollars in health care costs (Walsh and 

Maher 2011; Simonsen 1999). Influenza A is classified into subtypes (e.g. H1N1, H2N2, 

H3N2) based on its envelope glycoproteins hemagglutinin and neuraminidase, the 

two major targets of humoral immunity. Multiple zoonotic introductions of influenza 

A subtypes to the human population have taken place, with H3N2 and H1N1 being 
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the most prevalent subtypes whose continuous endemic circulation has lasted 

decades. 

 

Sequences sampled since the introduction of H3N2 into the human population in 1968 

serve as primary data for phylodynamic inference that seeks to understand joint 

epidemiological and evolutionary dynamics. H3N2 exhibits rapid geographic spread 

and turnover rates. On a time scale of several years, all previously circulating lineages 

are globally replaced by new ones, sharing a single and more recent common 

progenitor (2-8 years) in the past (Fitch et al. 1997; Bush, Bender, et al. 1999; Zinder et 

al. 2013). The nature of this swift global turnover remains an open question in terms of 

both its geographical path and its underlying mechanisms.  

 

It has been proposed that the evolution of the virus is predominantly maintained by a 

reservoir in the tropics, where annual epidemics experience less severe bottlenecks, 

which increases the likelihood of local persistence (Andrew Rambaut et al. 2008a). 

Further research (Bedford et al. 2010b; Bahl et al. 2011) has suggested that the ancestry 

of global influenza lineages are found mainly in East and Southeast Asia (SEA) rather 

than the tropics in general, where a network of temporally overlapping epidemics 

with limited local persistence (Russell et al. 2008) maintains continuous circulation. 

An alternative hypothesis suggests that a global metapopulation exists in which 

temperate lineages frequently revisit the tropics at the end of a seasonal epidemic 

(Bedford et al. 2010b; Bahl et al. 2011). The much lower contribution of South America 

(SA) and other subtropical and tropical communities to the long-term evolution of the 

virus has been attributed to demographics and air travel connectivity (Bedford et al. 

2010a; Philippe Lemey et al. 2014).  
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Epidemiological and molecular (phylogenetic) studies of influenza use different 

sources of primary data and their findings are not yet in complete concordance. Both 

methodologies show support for the common occurrence of strong seasonal 

epidemics followed by deep troughs limiting viral diversity, for the existence of 

multiple viral introductions during a season, and for the lack of sustained viral 

persistence between epidemics (Andrew Rambaut et al. 2008a; Martha I. Nelson et al. 

2007; M. I. Nelson et al. 2006; C Viboud et al. 2004; Cécile Viboud et al. 2013; Martha I. 

Nelson and Holmes 2007). In contrast, several epidemiological observations, such as 

spatially structured diffusion patterns (J. Gog et al. 2011; Alonso et al. 2007) and 

hierarchical spread driven by population size and distance, in gravity models (Balcan 

et al. 2009), have not been evident from phylogenetic methods (Cécile Viboud et al. 

2013; Cécile Viboud et al. 2006; Eggo, Cauchemez, and Ferguson 2011).  

 

Recently, migration seasonality has been incorporated into phylogenetic analysis, in 

Bahl et al. (Bahl et al. 2011) where alternative seasonal migration patterns from and to 

the tropics were considered, and in Bielejec et al. (Bielejec et al. 2014) where support 

for seasonal, rather than constant, H3N2 global migration patterns was established. In 

Lemey et al. (Philippe Lemey et al. 2014), migration rates were assumed to be constant 

throughout the year, but alternative variables, used as surrogates for measuring the 

effect of incidence seasonality were tested as predictors of these invariable rates. 

Specifically, the following features were considered: the overlap in incidence between 

the source and destination community, the source incidence product with the 

destination growth rate, and the relative timings of peak incidence. However, these 

were not informative in predicting these migration rates.  
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It follows that we still lack an understanding of the relationship between changing 

incidence throughout the year and the level and timing of immigration and 

emigration. Specifically, we are interested in whether the timing of migration events 

with phylogeographic consequence is mainly the outcome of an increased 

introduction effort from the source (propagule pressure), or is determined by the 

receptiveness (or the effective R0) of the destination community to introductions. 

Additionally, we seek quantitative support for the fundamental hypothesis that viral 

persistence relates to reduced seasonal bottlenecks in incidence.  

 

By using a model that can infer migration rates that differ from season to season, we 

find clear seasonal migration patterns between and within different global 

communities. We identify epidemic incidence and growth as predictors of these 

patterns. Our approach has similarities and differences with (Bielejec et al. 2014) on 

which we expand upon in the Method’s section. Notably, we are able to integrate over 

alternative partitions of the year when measuring the seasonality of migration, and to 

explicitly incorporate the timing of migration events in addition to migration rates 

through stochastic mapping.  

4.3 Results and Discussion 

Seasonal Migration to and from, and Local Persistence within, North America  

For this analysis, we are interested in measuring the local persistence of temperate 

climate North American (NA) H3N2 lineages, and in inferring the seasonal timing of 

introductions to and from the global community to NA. For this purpose, we partition 

globally sampled sequences based on their country of collection. Sequences from the 
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US and Canada are designated as NA. A representative sample of “other” global 

sequences (OT) is randomly sampled in equal proportion from every month in 

multiple geographic regions. The frequency of sequence sampling (Table 4.1, Figure 

4.S1) in NA exhibits a winter seasonal pattern, while representative global sequences 

reflect our equal proportion sampling (Figure 4.1A). Phylogenetic trees from both the 

neuraminidase and hemagglutinin proteins are reconstructed based on nucleotide 

data and sampling time alone. The likelihood of a specific realization of a migration 

model is marginalized across this posterior distribution of phylogenetic trees in an 

additional step (Pagel, Meade, and Barker 2004), in which tree likelihood is calculated 

based on the tree topology, sequence collection locations, and the specified model 

parameters.  

 

Bayesian variable selection is used to decide whether there is sufficient support for 

migration between communities, and whether seasonal migration rates, measured in 

terms of migrations per lineage per unit time, are supported. A seasonal migration 

model has a higher marginal likelihood than a non-seasonal one (Table 4.2), and 

supports migration that is seasonal both to (BF=70) and from NA (BF>150). We used 

this best supported model in further inference.   

 

For each migration model parameterization (Figure 4.S2) and each tree (see Methods), 

stochastic mapping is used to sample the internal state of branches and the timing of 

migration events. Each of these stochastic mappings results in a fully geographically 

annotated tree sample, including the timing of migration events within branches. 

Using these data, we can explicitly sample alternative phylogenetic histories from the 

posterior distribution of trees and model parameters. 
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Figure 4.1C shows the mean number of migration events to and from NA in different 

months. The number of migration events is summed across all lineages, and reported 

as a yearly rate, during an average month of the year, together with its Bayesian 

credible interval (referred to as 90% CI). Immigration to NA (Figure 4.1C) grows 

during late summer and declines before the end of winter. In contrast, emigration 

from NA is highest during winter months and during spring. Such emigration from 

NA during spring could be suggestive of the seeding of epidemics in tropical or 

southern hemisphere SA (Bedford et al. 2010b). 

  

For this and following figures we report the average number of stochastically mapped 

migration events per unit time in different months, instead of the directly inferred 

migration rates on a per lineage basis. The number of events per unit time differs from 

phylogenetic migration rates which take the perspective of a single lineage. The 

difference is apparent if one considers that a constant migration rate from a specific 

location measured in terms of a single lineage will necessarily mean many more 

migration events during an epidemic. We nevertheless report the support (BFs) for 

seasonal migration, which is used in model selection, with respect to per-lineage 

phylogenetic migration rates, the unit for which they were originally inferred.  

 

When inferring migration rates we divide the year in two, with constant migration 

rates inferred individually in each partition. Alternative partitions of the year are 

weighted according to their likelihood using the MCMC. Each of these partitions and 

migration model parameterizations is followed by ancestral state reconstruction and 

subsequent stochastic mapping. The number of migration events per month is 
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counted, and is an estimate of the actual number of migration events expected in the 

different months, that were captured in our dataset. This can lead to observed positive 

migration rates during periods with low or zero incidence, such as is the case in NA 

during its summer incidence trough. 

 

The duration for which tips have been in NA, as traced across the multiple trees is 

presented in Figure 4.1B. Sampled NA sequences are inferred to have arrived to NA, 

3.8 months (median) before their sampling, with 8% (2-16%) of tips (median and 90% 

CI) persisting locally for more than one year. Local persistence times for tips are not 

equivalent to the distance from the trunk (e.g. (Bedford et al. 2010b; Russell et al. 

2008)). Phylogenetic reconstruction of locations includes stochastic mapping in 

addition to ancestral state reconstruction (such as in e.g.(Philippe Lemey et al. 2014)) 

to resolve branches and uses time variable migration rates which were better 

supported compared to constant ones.  

 

Seasonal Migration to and from, and Local Persistence within North China and 

South China  

China is a key source location for H3N2 influenza [79, 97]. Here we measure how 

differing seasonality in northern and southern China relates to H3N2 migration 

within China and to and from the global community. For this purpose, we use the 

number of sequences collected in different months to establish broad seasonal 

patterns in Chinese provinces and several individual cities. For each province, an 

approximate seasonal pattern is established based on the number of samples in two-

months bins, and a clustering algorithm is used to partition the provinces by their 

incidence seasonality (Figure 4.S3). This process results in the partitioning of Chinese 
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provinces and associated sequences into a northern (NC) and southern (SC) cluster 

(Figure 4.2B). H3 and N2 sequence sampling (Table 4.3, Figure 4.S4) in the northern 

cluster peaks in winter, while the southern cluster sustains two annual peaks (Figure 

4.2A). A representative sample of global sequences was included and designated as 

(OT). A geographically based partition of China into two was suggested in Du et al. 

(Du et al. 2012) and an alternative partition into three seasonality based clusters was 

reported in Yu et al. (Yu, et al. 2013). Although, we find a similar partition to Yu et al. 

when a division into three clusters is explicitly specified to the algorithm, this 

partition was not supported over a division into two clusters by our clustering 

algorithm.   

 

Models that allow for seasonal migration rates between SC and NC and the global 

community (Table 4.2) and include seasonality based on the destination community 

(Appendix A 2.7) have the highest marginal likelihood (-561.0 to -561.8) compared to 

non-seasonal models (marginal likelihood=-587.0, -588.4 without and with variable 

selection, respectively). Migration seasonality based on the source community has an 

intermediate marginal likelihood (-568.6). This suggests that both conditions at the 

source and at the destination community contribute in determining migration rates 

between the global community, SC and NC. We used a model that includes variable 

selection for migration and for seasonality between each pair of communities in 

further analysis (Methods, Appendix A 2.17). 

 

We identify strong support (BF>250 both directions) for migration between SC and 

NC, and between SC and the global community (BF>250 both directions). There is 

support for a model without migration between the global community and NC 
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(BF=14), and no indication whether migration between NC and the global community 

(BF=1.9) is present during the sampled years (Figure 4.S5). Figure 4.2D shows the 

mean number of migration events for different months (black) and their 90% CI across 

the posterior distribution of model parameters.  

 

Migration events (Figure 4.2D) from NC to SC peak in January following a peak in 

incidence in NC and when SC experiences on average a rise in incidence. Migration of 

SC lineages to NC peaks in October, during epidemic decline in SC and prior to the 

full onset of the winter epidemic in NC. These patterns are somewhat similar to 

emigration patterns from NA which remains high during April and May following a 

decline in incidence. They suggest a potential role for both the propagule pressure 

(push from the source) and favorable conditions at the destination (fertile ground) in 

determining effective migration rates.  

 

Local persistence is expected to change with variation in yearly seasonal patterns. We 

measure the time for which tip ancestry persist locally in SC and NC. Sequences 

sampled in SC are expected to have emigrated to SC 4.3 months (median) prior to 

their sampling, where we infer 10% (4-20%) of tips (median and 90% CI) to be locally 

persistent for more than a year (Figure 4.2C). NC sequences are inferred to have been 

in that location for 2 months (median) with 0% (0-2%) of tips (median and 90% CI) 

locally persistent for more than a year. Since NC lineages are most often inferred to be 

derived from recent immigration events, and migration to NC is mainly from SC, we 

conclude that SC serves as the primary source for NC H3N2 influenza consistent with 

(Du et al. 2012).  
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Our ability to correctly reconstruct the seasonal timing of migration events depends 

on the unbiased inference of phylogenetic trees, and the reconstruction of the state of 

nodes along these branches. Sparse trees reduce our inference power, as branches 

become uninformative with respect to the underlying migration processes. In 

addition, the inference of the seasonal timing of migration events is sensitive to the 

sequence sampling scheme.  

 

Incidence Seasonality and Global Persistence  

To increase the spatial scope of our analyses, we partition both the neuraminidase and 

hemagglutinin sequences into seven global communities (demes) and an additional 

representative sample of unclassified sequences (OT) from multiple geographic 

locations. Sequences were down-sampled for computational efficiency, maintaining 

broad seasonal signals (Figure 4.3A, Table 4.4, Figure 4.S6). A limited 

(disproportionally higher) number of samples from trough periods were kept to 

maintain a representation of sequence diversity during troughs. Comparison of 

alternative, non-seasonal and seasonal models of migration, supported seasonal ones 

(BF>33) (Table 4.2). The best supported model incorporates seasonal migration rates 

with two partitions of the year, as well as variable selection for the inclusion of 

migration, and seasonality of this migration, between every pair of demes.  

 

Stochastic mapping is used to infer the state of trunk lineages (2001-2009.5) of both the 

neuraminidase and hemagglutinin proteins (Figure 4.S7) taken from the posterior 

distribution of trees and model parameters. A single stochastically mapped 

hemagglutinin and neuraminidase tree sample is included in (Figure 4.S8, S9). We 

define the trunk of the phylogeny as all the ancestral lineages of the most recent tip 
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samples, discarding lineages which are too young (at most 2.5 years prior to the last 

tip time).  

 

To show the relation between global persistence and seasonal incidence patterns in 

different locations, we first generated seasonal incidence profiles from weekly 

surveillance data (FluNet/WHO who.in/flunet) in each of the seven populations. The 

yearly incidence of H3N2 changes with age (Waalen et al. 2012), and is expected to 

have some variation across the populations (e.g. such was the case in A/H1N1pdm09 

(Kerkhove et al. 2013)). However, the mean estimates of the reproduction number are 

not expected to vary widely (Chowell et al. 2010), and in the absence of available data, 

we use a simplifying assumption considering yearly attack rates to be similar in each 

of the seven focal communities. As such, we normalize the incidence seasonality 

profile based on each community’s population size (Figure 4.3B). We use these 

profiles to calculate the harmonic mean (HM) of the estimated percent of the total 

global incidence in each community, in different months, across twelve months. The 

HM has been used extensively in population genetics when calculating the effects of 

fluctuations in population size on the effective population size (Caballero 1994) 

because it captures the increased risk of allelic extinction at low population sizes, i.e. 

the role of population bottlenecks.  

 

We find correlation (N=14, adj. r2=0.41) between the percent of the global trunk 

inferred to be in a community, and the HM of incidence seasonality. However, when 

using surveillance data, population size (human population of the countries in a 

community) was found to be a better predictor (adj. r2=0.46, p=0.01) of the percent of 

the global trunk in the different demes and was selected for as the only predictor in 

http://www.who.in/flunet)
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multiple linear regression model ranking (Figure 4.4, Table 4.5) when considered 

together with the HM and with population density (human population divided by 

land area).  

 

Although in agreement with the general trend (Figure 4.4), SA contributes less than 

expected to the global H3N2 trunk, while NA contributes more. Also, a substantial 

proportion of the neuraminidase (25%) and hemagglutinin (21%) trunks are inferred 

to be outside of the seven global communities we sampled (OT).  

 

In other studies, global migration rates were found to be highly correlated with global 

air travel connectivity (Philippe Lemey et al. 2014). In the case of constant migration 

rates, in the absence of viral phenotypic evolution, long-term persistence theoretically 

corresponds to the stationary distribution of the migration rate matrix. However, with 

the exception of successfully predicting the reduced contribution of SA lineages 

(Figure 4.4) (Bedford et al. 2010b), this connectivity failed to explain the relative role of 

different populations to long term viral evolution and therefore, persistence. Seasonal 

migration rates offer no such single stationary distribution, but may result instead in a 

periodic cycle between alternative attractor configurations throughout the year (in the 

absence of phenotypic evolution). As such they have the potential to better describe a 

global metapopulatoin structure in which the trunk of the phylogenetic tree travels 

throughout the year.  

 

Since the same predictor values are used to infer both the neuraminidase and the 

hemagglutinin trunk proportions, and we are limited to seven predictor values, our 
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results are sensitive to variation in these predictors such as the underlying seasonal 

patterns or the estimates of population sizes.  

 

Estimates, of the percent of the global trunk in each community, are dependent on the 

sampling and inclusion of near trunk lineages in the inference, the discovery of which 

is dependent on the sampling effort and on incidence itself, both of which vary from 

location to location, and with time. Our results largely correspond to the Bayesian 

credible intervals reported in (Philippe Lemey et al. 2014), in which sampling 

considerations were taken into account.  

 

An important factor which was not considered in our analysis is the role of spatial 

patterns of incidence on viral persistence and long term evolution. Increased or 

reduced spatial correlation with respect to seasonality across large geographic regions, 

may account for additional unexplained variability between the regions with respect 

to the amount of long term viral evolution that they sustain. This is the case as 

fadeouts in incidence were observed in individual countries in, e.g. SEA (Russell et al. 

2008), while our analysis of seasonal incidence patterns aggregates these countries 

together. In the future, better availability of data from extensive year-round sequence 

sampling may allow more detailed partitioning of the world population and could 

help mitigate some of these limitations, as well as improve our estimation of the 

contribution of different mechanisms in maintaining long-term viral evolution.  

 

Incidence Seasonality and Global Migration  

Multiple mechanisms contribute to the number of effective migrations, that is, to 

migration events that are not lost to rapid extinction and are able to achieve a 
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sufficient population size to be picked up in a sequencing study that is deposited in 

the database. Contact between the source and destination community may depend on 

the pathogen abundance at the source, and is also modulated by factors such as air 

travel. Furthermore, once at its destination, an invading pathogen experiences 

different seasonal transmission rates and host susceptibility levels. This is further 

complicated by the dependence of the invasion on antigenic or other traits of the 

invading pathogen (Philippe Lemey et al. 2014; Catford, Jansson, and Nilsson 2009).  

 

Here we wish to establish how two basic features of seasonal epidemics, namely 

incidence and growth, correlate with the number of emigration and immigration 

events observed along the H3N2 phylogeny. An understanding of these associations 

provides a basis for identifying the processes contributing to the seasonality of global 

H3N2 migration.  

 

As before, we use surveillance data from FluNet/WHO to obtain a broad 

representation of the seasonal patterns in each community (Figure 4.3B). Whereas in 

the above analyses the more likely partitions of the year were selected by the MCMC, 

here, each partition of the year is centered along a different month in order to prevent 

the confounding of the identification of a likely partition with our measurements of 

incidence and growth during the same six month period. For each partition, we use 

our MCMC framework to infer migration rates between each pair of communities. 

This is done jointly for tree pairs from the sampled distribution of hemagglutinin and 

neuraminidase trees. We use stochastic mapping to map emigration and immigration 

events along branches of the phylogeny (Figure 4.S10). 
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For each of seven global communities and six alternative partitions of the year into 

two equal parts, we measure the fraction of immigration events to, or emigration 

events from, the community (N=42) during the corresponding six months. This is 

repeated across multiple samples from the posterior distribution of rate parameters. 

We then apply multiple linear regression models to identify possible correlations 

between incidence and growth to median immigration and emigration. The fraction of 

positive growth in a six month window is calculated as the fraction of months in that 

period that show an increase in incidence compared to the previous month based on 

yearly incidence profiles from surveillance data.  

 

Immigration is significantly correlated (adj. r2=0.69) with both absolute incidence (adj. 

r2=0.22, p=2∙10-6) and positive growth (adj. r2=0.52, p=6∙10-9) (Figure 4.5C, D). There is 

also correlation (adj. r2=0.13, p=0.01) between epidemic decline and increased 

emigration (Figure 4.5B). We find however no support for correlation between the 

fraction of the yearly incidence within a single community during a six month long 

period, and the fraction of emigration during that same period (Figure 4.5A). The 

global migration patterns largely correspond to the two case studies, where the 

absolute incidence as well as growth in incidence, are indicative of higher 

immigration, while epidemic decline is associated with increased emigration (Figure 

4.5). 

 

These results correspond to a case where sufficient propagule pressure is achieved at 

varying levels of incidence at the source. Thus, the amount of effective emigration 

does not correlate directly with incidence. This may be the case when sufficient 

contact between the global communities is reached before and after peak incidence 
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levels. In contrast, the results suggest a much greater role for conditions suitable for 

growth (fertile grounds) at the destination, in determining the probability that an 

immigration event will lead to successful establishment and be counted as an effective 

immigration event.  

 

4.4 Limitations 

Bayesian inference and the estimation of marginal likelihoods are dependent on the 

choice of priors. These serve as baseline assumptions for the model parameters, and 

sufficient data to the contrary will pull the estimated parameters away from these 

assumptions. We used constant-population coalescent process priors because they are 

well established in the context of Influenza A phylogentic inference (Bedford et al. 

2010b; Bahl et al. 2011; P. Lemey et al. 2009; Lu, Lycett, and Brown 2014; G. J. Smith et 

al. 2009). These priors are simpler to implement, and had little influence on 

phylogeographic inference in previous reports (P. Lemey et al. 2009). Therefore 

alternative tree priors, such as ones involving birth death processes (Tanja Stadler 

2009), were not used. 

 

In addition, the inference of trees based on combined sequence data and geography, 

rather than sequential consideration of these two aspects as implemented here, should 

be more accurate by allowing the more thorough exploration of tree space. Although 

in general this scheme will sample tree space more exhaustively, it will incur a 

computational effort which will at the least amount to multiplying the computational 

effort by the number of models evaluated. As most of the information in our analysis 

(magnitude of 10,000s vs. 1,000s log likelihood units) relating to tree topology is 
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contained in nucleotide data compared to geography, we expect the tree samples to be 

sufficiently representative, and the combined inference of trees and migration 

processes to be equivalent to a sequential one. Some of these considerations are listed 

in (Pagel, Meade, and Barker 2004).  

 

The availability of sequence samples is limited, and we assume that a sufficiently 

representative sample of sequences is available from each community and across time. 

Sufficient sampling is required in order to generate dense trees which will contain 

information about the correct seasonal timing of migration events. Differences in 

sampling and sequence availability may bias the amount of migration inferred to take 

place between two communities. When analyzing the results, we refer only to the 

seasonality of migration and not to the total amount of migration throughout the year. 

Although we expect this quantity to be less sensitive to sampling, it may be that an 

increase in the sampling of one community vs. the others will bias the timing of 

immigration to weigh more towards the timing relevant to this community. We 

acknowledge that this is a limitation of our analysis which cannot be completely 

avoided at the moment as the number of available samples globally is highly skewed 

towards specific countries, and homogenous sampling reduces the power of our 

analysis considerably. In the future with the increase in worldwide sampling cover, 

alternative sampling scenarios could be considered. In agent based simulations 

(Zinder et al. 2013) we evaluated similar sampling scenarios as the ones used here, 

and found the results of the inference largely consistent with the underlying 

migration processes (Appendix A 3.3).  
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4.5 Conclusions 

Our results show clear support for seasonal variation in migration rates. We used 

models incorporating this variation to estimate patterns of global seasonal migration 

and of persistence.  

 

H3N2 persistence is short, on the scale of several months, with only a small fraction of 

the lineages persisting for over a year (Figure 4.1B, Fig 2C, Figure 4.S11). Seasonal 

patterns also correlate with the probability that local lineages go extinct and fail to 

contribute to long term viral evolution. However, the probability that a region will 

contribute to long term viral evolution as a part of the trunk of the phylogenic tree 

was found to be better determined by its overall human population size. In general, 

this short local persistence indicates a massive replacement of circulating lineages on 

both annual and sub-annual timescales, much shorter than those characteristic of 

global turnover, typically around several years.  

 

This rapid replacement is mediated by migration which is by itself highly seasonal in 

nature (Table 4.2). In particular, the likelihood of successful immigration increases 

during periods of the year that coincide with epidemic growth and higher incidence, a 

pattern suggestive of a 'fertile ground’ hypothesis, where incoming viruses survive 

and spread more effectively during this upward season (Figure 4.5C,D). Emigration, 

on the other hand, coincides with periods of epidemic decline (Figure 4.5B), which 

suggests a ‘tail-to-beginning’ migration pattern between overlapping epidemics. 

These overlapping seasons would correspond to the major epidemics of the two 

hemispheres which are known to exhibit opposing seasonality. This pattern could also 
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indicate the reintroduction of lineages to the tropics at the end of temperate climate 

epidemics as was suggested by Bedford et al. in (Bedford et al. 2010b). 

 

Surprisingly, the dominant factors behind influenza’s incidence seasonality remain a 

subject of debate, with emphasis on either environmental factors influencing 

transmission or host susceptibility (Shaman et al. 2010; Tamerius et al. 2013; Harper 

1961; Cecile Viboud et al. 2004; Cannell et al. 2006). With respect to migration, focus 

has been largely given to factors such as connectivity through air travel, and not to 

other aspects of effective migration related to conditions at the source and destination. 

The phylogenetic tree of the virus, if correctly reconstructed, can provide multiple 

natural experiments involving the state of the environment and the phylogenetic 

outcome. Incorporating seasonality into the reconstruction of environmental 

conditions appears essential. 

4.6 Methods 

SeasMig We implemented in Java a tool (http://bitbucket.org/pascualgroup/seasmig). 

A detailed description of SeasMig in the context of this manuscript is available in 

Appendix A. Using SeasMig alternative migration models parameters could be 

inferred and compared by their marginal likelihood including seasonal, epochal, and 

non-seasonal phylogeographic migration models. An empirical distribution of trees in 

nexus format (e.g. generated using BEAST (A. Drummond and Rambaut 2007)) is 

given as input. Our tool uses an MCMC to sample from the posterior distribution of 

model parameters and stochastically mapped migration events along branches and 

trunk lineages (Figure 4.6). Multiple MCMC chains run in parallel and perform chain 

swaps in a lockstep manner.  

http://bitbucket.org/pascualgroup/seasmig
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Stochastic mapping Stochastic mapping is an additional step following the 

calculation of tree likelihood and ancestral state reconstruction at the nodes of a tree. 

This mapping allows us to generate a stochastic realization of the state of branches 

along the tree, in addition to the state of internal nodes, and in so doing, provides 

samples of migration and mutation events, and their timing along the tree that lead to 

the observed tip states. Stochastic mapping of both sequence (nucleotide) and 

character (e.g. geographic) annotations is available in SeasMig, together with the 

option of incorporating seasonal migration models. Stochastic mapping is 

implemented directly in our code based on (J. P. Bollback 2006). Improved 

performance could be achieved using (Minin and Suchard 2008). Briefly, a given type 

of event, migration or mutation, is assumed to behave as a Poisson process along a 

branch. As such, the timing of the next event follows an exponential distribution with 

a mean equal to one over the total rate of emigration (mutation from) a location (a 

base). Once the timing of the next event is determined, the event is chosen based on its 

relative probability compared to other emigration events. Branch reconstructions that 

span different seasons were performed by sampling the state (here the location) 

within the first season’s boundaries using the initial migration matrix, and by 

continuing the stochastic mapping forward using the second matrix.  

 

Tree sampling For each of the inferences, we use a sample of trees taken from the 

empirical posterior distribution of trees generated by BEAST based on sequence data 

and sampling times alone. Sampled sequences are aligned using MUSCLE (Edgar 

2004), sequences with low alignment quality were manually removed. We perform 

phylogenetic tree reconstruction of coding region sequences with high coverage using 
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BEAST 1.7.4. A differential codon location evolutionary model is used (HKY1+2) 

(Shapiro, Rambaut, and Drummond 2006). Models with a biological meaning, which 

account for variation in the evolutionary rate in different codon positions, such as the 

HKY1+2, were found to be better supported than standard nucleotide substitution 

models such as general time reversible with gamma distributed rate heterogeneity 

and a proportion of invariant sites (GTR+Γ+I) in most RNA viruses in (Shapiro, 

Rambaut, and Drummond 2006) while requiring less parameters. In each analysis 

2000 trees from the stationary distribution of four independent chains sampled every 

10000 steps, are combined. BEAST XML, tree and log files are available through Dryad 

(doi:10.5061/dryad.t120k). BEAST tree inference was carried out on computational 

resources and services provided by Advanced Research Computing at the University 

of Michigan. 

 

Sequence sampling We sampled sequences from the NCBI flu database. All, but at 

most n samples chosen randomly per k consecutive months per community are used. 

This sampling scheme is intended to reduce the number of overall samples for 

computational reasons, by decreasing the number of samples taken in more recent 

years as more sequences were generated, while maintaining available data during the 

seasonal troughs. For the sampling of “other” global sequences (OT), equal proportion 

sampling in every month for every geographic location was used with the objective of 

capturing a sufficient representation of the underlying global genetic diversity. The 

number of sequences used in each analysis is included in Table 4.1, 4.3 and 4.4 and in 

Figures 4.S1, 4.S4 and 4.S6. Sequences were sampled between 1999 and 2013; their 

accession numbers, dates, and geographic classification, for the different figures are 

included in Additional File 3. In simulation studies, the seasonal pattern of effective 
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migration events was better reconstructed when tip (sequence) sampling was 

proportional to incidence (Appendix A 3.3.2.2), as opposed to when sampling was 

uniform across time and in different populations (Appendix A 3.3.2.1).  

 

Seasonal migration model We generate a seasonal migration model (Figure 4.6) by 

using two different constant migration rate matrices (QA and QB) for two parts of the 

year labeled as “season A” and “season B” respectively. To estimate the transition 

probabilities between two geographic locations at different times, we calculate the 

respective transition probability matrices P for the individual constant rate periods 

through matrix exponentiation (Bielejec et al. 2014). For the complete time interval, the 

individual transition probability matrices are multiplied accordingly. Given a tree 

topology, we integrate unknown internal node states over the tree efficiently by 

caching conditional probabilities of individual node states as described in (Joseph 

Felsenstein 1985). Our method has similarities with [157] but is parameterized 

differently as detailed in the next paragraph. This parameterization allows a smooth 

transition from a seasonal to a non-seasonal model which is well suited for variable 

selection. Our approach is also different because it considers alternative partitions of 

the year which are either sampled using the MCMC in proportion to their likelihood 

(in Figure 4.1, 4.2,4. 4) or are integrated upon with equal probability (in Figure 4.5). 

The latter approach allows us to consider correlates of migration seasonality realted to 

incidence independent of the choice of the likely partitions of the year.   

 

Seasonal migration model parameterization and priors We parameterize migration 

rates for the two partitions of the year as rfrom, to ·(1+from, to) and rfrom, to ·(1-from, to). This is 

done with the purpose of measuring the inferred rates, and their seasonality 
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separately and allowing for separate indicators, used in variable selection, for the 

inclusion or exclusion of seasonality, and for the inclusion and exclusion of any 

migration from one community to another. Migration rates rfrom, to are drawn from an 

exponential prior, giving a non-diminishing probability to high migration rates. The 

'seasonal scaling' from, to parameter gives the relative increase (and decrease) in 

contribution of migration in one season compared to the average migration rate. This 

parameter is sampled from a uniform U(-1,1) prior. 

 

Metropolis-Coupled MCMC (MC3) We use an MC3 algorithm to sample model 

parameters and to from the sample of trees. Metropolis-coupled Markov-chain Monte 

Carlo, or MC3, is an MCMC algorithm that allows sampling from analytically 

intractable distributions, and builds on standard MCMC by improving mixing 

(Baskerville et al. 2013). Such distributions include the distribution of tree likelihoods 

given a mutational or a migration model. In particular, MC3 includes multiple MCMC 

chains: a cold chain samples from the target distribution, while hot chains sample 

from a flattened likelihood surface exploring more of the parameter space. MC3 

algorithms explore and swap proposals with heated chains that continue to sample 

parameters from the prior distribution and from flattened likelihood surfaces. MC3 

offers a relatively robust method for integrating marginal likelihoods (Friel and Pettitt 

2008).  

  

Variable selection To assess whether the inclusion of migration between different 

communities is informative, and to establish if rates are seasonal, we implemented 

Bayesian variable selection (Kuo and Mallick 1998) in an MC3 framework. Indicator 

variables IRfrom, to and ISfrom, to are added, giving the full parameterization of a single 
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seasonal migration matrix cell as IRfrom, to·rfrom, to ·(1+IS from, to·from, to) and IRfrom, to·rfrom, to ·(1-IS from, 

to·from, to) for the other part of the year. In this case symmetric non-informative priors 

are used for the indicators. Reported Bayesian support for migration between two 

communities (BF) is the ratio of cases for samples for which an indicator variable IRfrom, 

to is 1 vs. 0. Similarly this ratio is used to show support for seasonal migration between 

two communities.  

 

Combined likelihood based on the hemagglutinin and neuraminidase proteins We 

use a conservative approach to combine the information present in both protein trees 

with respect to model likelihood. The combined protein tree log-likelihood is weighed 

down by half, to account for the possible lack of independence in the information 

contained in the two trees with respect to migration rates and seasonality. This choice 

does not affect the maximum likelihood model but has the effect of widening 

confidence intervals when the two trees provide independent data, while providing 

the correct confidence interval when the two proteins are in complete linkage. 

4.7 Availability of supporting data 

The datasets supporting the results of this article are available online. The GenBank 

accession numbers of sequences used in this study and their geographic classification 

are available in Additional file 3. BEAST XML, tree and log files are available through 

the Dryad data repository under doi:10.5061/dryad.t120k. 
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4.10 Tables 
 

Table34.1. Number of Sampled Sequences in Partition into NA and OT  

Partition Hemagglutinin 

(H3) 

Neuraminidase 

(N2) 

Total 

NA 909 438 1346 

OT 975 556 1531 

Total 1884 994 2878 

NA – North America (USA, Canada), OT – Representative of global community 
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Table44.2. Marginal Likelihood of Alternative Migration Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dof - degrees of freedom, NA/OT – North-America and the Global Community, NC/SC/OT – 

North-China, South China and the Global Community Global – 7+1 global communities  
 

Table54.3. Number of Sampled Sequences in Partition into NC, SC and OT  

Partition Hemagglutinin 

(H3) 

Neuraminidase 

(N2) 

Total 

SC 528 56 584 

NC 150 1 151 

OT 1302 270 1572 

Total 1980 327 2307 

SC – South China, NC – North China, OT – Representative of global community 
 

  

Migration Seasonality +dof NA/OT NC/SC/OT Global 

none 0 -747.7 -587.0 -2246.3 

none, variable selection for the 

presence of any migration between 

two communities 

  -588.4 -2241.2 

origin based n+1  -568.6 -2193.5 

destination based n+1  -561.2 -2207.7 

origin and destination based 2n+1  -561.1 -2207.6 

specific origin and destination based n2-n+1  -561.0 -2200.6 

specific origin and destination based 

migration seasonality, variable 

selection for any migration and for 

seasonality between each pair of 

communities 

 -726.6 -561.8 -2192.6 
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Table64.4. The number of sequences used in seven global communities  

Partition Hemagglutinin 

(H3) 

Neuraminidase 

(N2) 

Total 

CH 320 151 471 

EU 134 69 203 

JA 180 83 263 

AUS 172 314 486 

SA 86 5 91 

SEA 309 429 738 

NA 288 413 701 

OT 236 188 424 

Total 1725 1652 3377 

CH – China, EU – Europe, JA – Japan, AUS – Oceania, SA – South-America, SEA – South 

East Asia, NA – North America, OT – Representative of unclassified sequences from 

multiple geographic locations 
 

Table74.5. Ranking of alternative linear regression predictors for the percent of the global 

H3N2 trunk in different communities  

Model Adjusted 

R2 

R2 AIC BIC 

{Pop} 0.464411 0.506 226.15 228.06 

{HM, Pop} 0.421031 0.510 228.02 230.57 

{Pop, Density} 0.419179 0.508 228.06 230.62 

{HM} 0.414195 0.459 227.40 229.32 

{HM, Pop , Density} 0.367029 0.513 229.93 233.13 

{HM, Density} 0.365295 0.463 229.30 231.86 

{} 0. 0. 234.00 235.29 

{Density} -0.0538263 0.027 235.62 237.53 

HM – Harmonic mean of the estimated percent of the total global incidence in each 

community, in different months, across twelve months Pop – Population size of a community, 

as total of the countries included in a community, Density – Population density of a 

community, as the total area divided by the total population size of countries within the 

community.  
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4.11 Figures 
 

 
Figure294.1. Seasonal Migration to and from North-America.  

(A) The monthly sampling distribution of included publically available human H3N2 hemagglutinin 

and neuraminidase sequences in North-America (NA) and a representative sample of other (OT) global 

communities. (B) The inferred distribution of time for which sampled NA sequences have remained in 

NA following a migration event. (C) The inferred mean (90% CI) number of migration events to and 

from NA in different months.  
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Figure304.2. Seasonal Migration between North-China and South-China.  

(A) Provinces in China were partitioned based on broad incidence seasonality patterns, inferred using 

the bi-monthly distribution of sequence samples (Figure 4.S2). The partitioning of the provinces 

divided China into a northern (NC) and a southern (SC) seasonality clusters. SC maintains two seasonal 

peaks while NC displays a single season during winter months. (B) The location of cities in the 

provinces included in the analysis colored by their seasonal partitioning. (C) In yellow (purple), the 

inferred distribution of time for which sampled SC (NC) sequences have remained in SC (NC) 

following a migration event. (D) The inferred mean (90% CI) number of migration events between NC, 

SC and the other (OT) global communities.  
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Figure314.3 Sequence Sampling and Incidence Profiles for Seven Global Communities  

(A) The monthly sampling distribution of global (CH – China, EU – Europe, JA – Japan, AUS – Oceania, 

SA – South-America, SEA – South East Asia, NA – North-America) publically available human H3N2 

hemagglutinin and neuraminidase sequence samples used for the inference of phylogenetic trees and 

migration seasonality (Table 4, Figure 4.S4). A representative collection of sequences sampled from 

other parts of the world is designated as other (OT). (B) Surveillance data (WHO FluNet, 2000 week 1 to 

2012 week 52) was aggregated on a weekly basis and smoothed (8 weeks moving average) to obtain 

broad seasonal incidence profiles in seven global communities. Within each global community, country 

level surveillance counts were normalized (divided by the total number of counts in the country), and 

added up in proportion to the country’s population size. Each community was weighted based on its 

population size to approximate its relative contribution to worldwide incidence.    
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Figure324.4. Global Seasonality Patterns and Trunk Proportions  

The percent of the global hemagglutinin (·) and neuraminidase () trunks inferred to be in the different 

global demes vs. the population size of the deme (CH – China, EU – Europe, JA – Japan, AUS – 

Oceania, SA – South-America, SEA – South East Asia, NA – North-America). For each protein the 

median proportion of the phylogenetic tree trunk in each deme (Figure 4.S2) was taken from the 

distribution of stochastically mapped trunk states given the sampled empirical posterior distribution of 

seasonal migration model parameters.  
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Figure334.5. Correlation between Growth, Incidence, Immigration and Emigration  

Seasonal incidence profiles (Figure 4.3B) in each community, are used to identify gross periods of 

growth, decline, and to estimate the monthly % of the yearly incidence during six month periods, 

averaged across multiple years. Alternative seasonal migration models, partitioning the year into two, 

and centered on consecutive months (Jan-May) were parameterized using the MCMC. The number of 

stochastically mapped migration events between each pair of locations was counted in each of the six 

month long partitions. (A) Medians (black) and samples (gray) of the fraction of the total emigration 

events from a location during a six month long period, vs. the fraction of the yearly incidence in the 

corresponding six month period in the source location. (B) The fraction of the total emigration events 

from a location during a six month long period, vs. the fraction of the yearly positive growth in the 

corresponding six month period in the source location. (C) The fraction of the total immigration events 

to a location during a six month long period, vs. the fraction of the yearly incidence in the 

corresponding six month period in the destination location. (D) The fraction of the total immigration 

events to a location during a six month long period, vs. the fraction of the yearly positive growth in the 

corresponding six month period in the destination location. 
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Figure344.6. Methods  

(A) Phylogenetic tree of H3 reconstructed based on nucleotide data, for this tree sequences were 

partitioned into two communities for illustration purpose (red, green). Our method allows for different 

migration rate matrices (Q1, Q2) to be calculated for different month of the year e.g. Jan-Jun (gray 

background), and Jul-Dec (white background). (B) Inference pipeline: 1. Date annotated sequences are 

sampled from a global pool, and are partitioned based on their collection location. 2. Multiple possible 

phylogenetic trees are reconstructed based on nucleotide data. This can be done for several protein 

segments. 3. Likelihood is calculated for: a given migration model, known tip location, and a single tree 

topology. 4. An MCMC is used to sample from migration model parameters and trees based on their 

likelihood. 5. Counts and the timing of stochastically mapped migration events along the tree branches 

and its trunk are sampled. (C) In order to calculate a single tree and model parameters likelihood, 

transition probabilities are generated based on the matrix exponent of the rate matrices. Transition 

probabilities are multiplied across the phylogenetic tree, and integrated over internal unknown nodes. 

For transitions spanning across seasonal borders the transition matrices are accordingly multiplied. An 

additional step, called stochastic mapping, is used to sample from the timing of migration events along 

the branches of tree, in addition to the nodes.  
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Chapter 5. Global metapopulation dynamics of rotavirus allow response 

to vaccination  

5.1 Abstract 

Genetically diverse and rapidly evolving pathogens present a challenge to vaccination 

efforts. A global vaccination campaign is underway for rotavirus, the leading cause of 

diarrheal deaths in children. The implications of the genetic diversity in the rotavirus 

population for this campaign are currently unknown. Here we use publicly available 

sequences of the antigenic surface protein VP7 to fit a Bayesian phylogenetic model of 

global migration and sequence evolution. We show that the rotavirus population in 

the USA has already evolved to become genetically less like the vaccine following 

vaccine introduction in 2006. Ancestral state reconstruction was used to identify 

migration of strains into the USA rather than mutation as the major cause for the 

genetic shift away from the vaccine. This analysis yields a model of global rotavirus 

population dynamics in which the response to intense local selection to escape host 

immunity is achieved through migration from a diverse global metapopulation. The 

migration-driven dynamics we describe for rotavirus present an alternative to the 

established model of seasonal influenza, in which mutation plays a central role. This 

result indicates that a polyvalent vaccine strategy or an adaptive strategy, where the 

vaccine is updated in response to pathogen evolution, will likely be superior to a 

monovalent one. Further survey of existing genetic variation is critically needed to 
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improve predictions of future responses to vaccination, and to guide development of 

the next generations of vaccines to be more robust to evolutionary change.  

5.2 Introduction 

Rotavirus is a globally prevalent virus that infects virtually every child before the age 

of five, resulting in over 400,000 deaths annually (Tate et al. 2012). It is a double 

stranded RNA virus with eleven genome segments encoding 12 proteins (Estes and 

Kapikian 2013). Standard typing is based on the two outer surface proteins, VP7 

which encodes the G protein, and VP4 which encodes the P protein (Jelle 

Matthijnssens et al. 2008). Although six genotypes result in over 90% of the cases, 

serotypes exhibit extensive variability in both time and space. Infection with rotavirus 

leads to partial immunity and children frequently may have two or more infections, 

but seldom have more than three (Crawford et al. 2011). While immunity is complex, 

involving innate immunity, cell-mediated immunity and humoral immunity, 

protection is thought to be greater against infections by the same serotype than those 

by different serotypes (Ward, Clark, and Offit 2010; Offit 1996). Specifically, 

neutralizing antibodies to the outer surface protein VP7 have been shown to correlate 

with protection. These neutralizing antibodies to VP7 have been mapped to three 

regions of this protein, or epitopes, in a serotype specific manner (Aoki et al. 2009a) .  

Although rotavirus shares certain biological and epidemiological features with the 

more thoroughly studied influenza A virus, it also exhibits important differences. 

Both are acute viral infections that circulate extensively in the human population, 

leading to hundreds of thousands of deaths a year (Tate et al. 2012; Nair et al. 2011; 

Dawood et al. 2012). Infection with either virus leads to partial immunity allowing 

reinfection. Extensive evolutionary and epidemiological investigation has shown that 
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positive selection in the defined epitopes leads to ‘antigenitc drift’ in influenza. This 

process results in the rapid replacement of the global human influenza A population 

every 2-8 years and phylogenetic trees with a ‘spindly’ appearance, consistent with 

positive selection (Andrew Rambaut et al. 2008b; Bedford et al. 2010a; Bedford, Cobey, 

and Pascual 2011b). Rotavirus serotypes may become dominant in a region for 1 to 3 

years, then become infrequent (M. H. Afrad et al. 2013; De Grazia et al. 2014; Hasing 

and Trueba 2009) and re-emerge years or decades later (S. M. McDonald et al. 2012). 

This rapid local turnover in serotypes, and emergence and spread of new serotypes, is 

suggestive of strong selective pressure imposed by host immunity. However standard 

analysis fail to reveal evidence for positive selection on the RNA sequence and the 

phylogenetic trees of rotavirus are distinctly different from those of influenza, with a 

large amount of global genetic diversity maintained through time. This contrasting 

evolutionary pattern raises the question of whether global population dynamics differ 

in an important way from those of influenza.  

Current rotavirus vaccines, RV5 and RV1, became available in the United States (USA) 

in 2006 and 2008 respectively, and the World Health Organization (WHO) 

recommended vaccination for all countries in 2009 (Zinser 2009). RV5 is a live 

pentavalent human-bovine reassortant vaccine, which contains a bovine rotavirus 

backbone into which a human rotavirus VP7 gene (G1, G2, G3, or G4) or VP4 gene 

(P[8]) has been reassorted. RV1 is a human origin monovalent attenuated G1P[8] 

virus. Although both vaccines are highly effective against severe disease or 

hospitalization in developed countries, including the USA (Rha et al. 2014), they are 

less protective against mild infection, and less effective in developing countries in 

Africa and Asia (E. A. S. Nelson and Glass 2010; Benjamin A. Lopman et al. 2012). 



 

119 

 

 

Both vaccines have been used broadly in the USA, and by August 2014, 69 countries 

had introduced rotavirus vaccination through their national programs. 

The large and diverse population of the virus, combined with an imperfect vaccine, 

has raised concern about vaccine escape (Ben A Lopman et al. 2012; Zeller et al. 2012). 

Studies that have sought to measure the effect of widespread vaccination on strain 

makeup have been difficult to interpret in light of the natural fluctuations that occur 

even in the absence of vaccination. This study takes advantage of the introduction of 

vaccination in the USA to measure the population-wide response of the virus to this 

broad perturbation of the system, in order to address the relative importance of the 

major processes behind rotavirus global population dynamics.  

5.3 Results 

From all rotavirus sequences available in GenBank up to October 2013, a total of 1911 

VP7 sequences of human origin were identified with an annotated country of origin, 

year of collection, and host species. These VP7 sequences represent 48 countries and 

have collection dates between 1971 and 2012, with the greatest number of sequences 

from the six years prior to the introduction of the vaccine in 2006, and the six years 

after (Figure 5.2). The most common serotype was G1 but all common serotypes were 

represented.  

The introduction of vaccines, RV5 and RV1, into the USA created a well-defined, 

population wide, antigenic challenge. Twenty-nine amino acid positions in VP7 

whose mutation allows escape from neutralizing antibodies have been identified and 

mapped to three epitopes, 7-1a, 7-1b and 7-2 (Aoki et al. 2009b; Green et al. 1988). The 

change in the makeup of the USA rotavirus population with respect to this vaccine 

challenge, was measured as the average number of mismatches between sequences 



 

120 

 

 

and their closest match among the vaccine strains at these 29 amino acid positions. 

Thus a perfect match to the vaccine corresponds to a value of 0, and a mismatch at 

every position, to a value of 29. The sequences collected in the USA after 2007 differed 

by an average of 5.4 amino acids from their closest match in the vaccine. This differs 

significantly from the average of all USA samples after 1971, which were 2.8 amino 

acids (p<0.00001 based on bootstrap resampling with replacement).  

To gain a clearer picture of the change in VP7 sequences over time and geographic 

space, a total of 1270 phylogenetic trees were constructed that represent a sample from 

the range of possible evolutionary histories supported by the data, along with 

corresponding individual stochastic realizations of the possible mutation and 

migration events (Methods) (Figure 5.1). In the 2 years prior to vaccine introduction, 

2004 to 2006, the average distance to the vaccine of strains predicted to be in the USA, 

was 4.2 amino acids. After vaccine introduction into the USA in 2006, the average 

distance to the vaccine increased to a peak of 11.0 in 2009. 

The use of genetic distance allows us to partition the total genetic shift in the 

population among different evolutionary mechanisms. The average genetic distance 

of strains predicted to be in the USA in the time period prior to vaccine introduction 

(2004-2006) was compared to the time period following vaccine introduction (2007-

2012). This difference is 2.6 amino acids (95% Bayesian credibility interval (CI) 1.62 - 

3.62). Three different evolutionary mechanisms can account for this shift in the 

average distance to the vaccine in USA strains: (1) mutations that occurred in the USA 

after the introduction of the vaccine in 2006 (2) migration of strains into the USA after 

2006, or (3) a shift in the relative frequency of strains already in the USA by 2006. The 

effect of migration was measured by comparing the observed changes to the change 

that is measured when all migration events to the USA after 2006 are removed from 
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the trees (Methods). Similarly, the effect of mutation was identified by ignoring all 

mutations that occurred in the USA after 2006. The remaining change in the mean was 

due to changes in the frequencies of sequences predicted to have entered the USA 

prior to 2006. The contribution of each of these three processes was calculated for each 

of the sampled states from the Bayesian posterior. 

Mutations occurring in the USA after 2006 contributed a negligible amount to the total 

change in the distance from the vaccine from before (2004-2006) to after (2007-2012) 

vaccination. The increase in the average distance to the vaccine was the result of both 

migration of new sequences into the USA and the shifting frequencies of those already 

in the USA (Figure 5.2a). The model could not identify which of these two 

mechanisms was most important. This uncertainty reflects the variation from one 

stochastic run to another in whether a sequence had entered the USA precisely before 

or after 2006. Figure 4.2b shows the distribution of the time between the predicted 

entrance to the USA and its sampling. On average, 50% of the strains entered the USA 

within 2.5 years of their collection and 90% within 5 years. There is no evidence that 

the sequences from 2007 to 2012 were on average more recent migrants than those 

collected from 2004 to 2006 (Figure 5.2b). Thus, all USA strains were relatively recent 

migrants.  

Further partitioning the change in the distance from the vaccine in the USA following 

vaccination according to serotype, reveals that the majority of the change was due to 

an increase in G9 in the USA, with G9 accounting for 2.0 of the total 2.6 amino acid 

shift (95% CI 1.2 - 2.9). Of the sixteen G9 sequences in our dataset from the USA after 

2006, there were at least four separate introductions from other regions (Figure 5.4b). 

Importantly, there was also a significant change in the makeup of G1, with the 

average G1 sequence predicted to be in the US becoming less like the vaccine by 0.7 
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amino acids (95% CI 0.3-1.1). Thus, the response to the vaccine includes both serotype 

replacement and changes within serotypes. 

5.5 Discussion 

This approach provides new insight into the global population dynamics of rotavirus. 

In accord with numerous studies, we see that there can be a rapid shift in local 

serotype prevalence(Hasing and Trueba 2009; M. H. Afrad et al. 2013; De Grazia et al. 

2014). However, this analysis also shows that the shift is directional, insofar as it 

increases the genetic distance from the vaccine. Additionally, the change is seen in 

multiple independent G9 migrants to the USA. Finally, the two best-represented 

serotypes in the USA in the dataset (G9 and G1) both show this movement away from 

the vaccine. Taken together, these lines of evidence suggest that the shift in the USA is 

driven by the vaccine.  

Despite the indication of strong selection imposed by local host immunity, there is no 

signal of positive selection on the VP7 gene (Figure 5.7). The analysis offers a solution 

to this apparent contradiction. The genetic variation that allows a local response to the 

selective force of local immunity arrives through migration. Thus, on a time scale of 5 

years, much of the global diversity is locally available to respond to local selective 

pressure. 

Based on these results, we propose that the global dynamics of rotavirus are 

characterized by three major elements: (1) strong local selective pressure that drives 

replacement of dominant serotypes, (2) genetic variation that allows for local 

replacement of existing serotypes and is introduced predominantly through migration 

from regional and global pools and (3) the geographic asynchrony in serotype 

replacement that maintains large standing global diversity levels. These migration-
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driven global metapopulation dynamics differ significantly from those of influenza A, 

in which mutation plays a central role(Koel et al. 2013). This model should be 

considered for other pathogens that have high levels of diversity but lack the 

characteristic signatures of positive selection. This model can reconcile the appearance 

of strong immune mediated selection, based on rapid local serotype replacement, with 

the lack of a signature of positive selection in the gene sequence, or the structure of the 

phylogeny. 

The conclusions are limited to the data available, which have been unevenly sampled 

in time and space. In an effort to minimize the sampling bias, we included as much 

data as possible (Methods). The phylogenetic approach itself limits the bias 

introduced by oversampling local sequences, as very similar sequences will rapidly 

coalesce reducing the contribution that each adds to the estimate of the mean distance 

to the vaccine. Additional sampling is, in general, expected to increase the number of 

migration events observed. Thus, the migration rates are likely underestimated. 

Vaccine driven evolution suggests the vaccine will become less effective over time, as 

strains that are less affected by the vaccine increase in frequency relative to the more 

susceptible strains. The degree to which vaccine effectiveness will wane depends on 

the amount of cross immunity between current vaccines and non-included strains. 

Recent analyses suggest that current vaccines have significant protection against 

partially or fully heterotypic strains(Dóró et al. 2014; Leshem et al. 2014b). Thus, we 

would expect the vaccines to retain a significant amount of efficacy despite the 

evolution in the rotavirus population. However, the differential spread of strains 

following widespread vaccination is strong evidence that the protection is not equal 

across all genotypes. Well-designed, quantitative studies of vaccine effectiveness over 
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time are needed. In this setting, a polyvalent strategy is expected to be superior to a 

monovalent strategy.  

Over the time frame that we have examined, the genetic change in the USA was made 

possible by the introduction of alleles from other geographic regions, and not from 

novel mutations. Although our findings do not rule out the possibility of sequence 

evolution over longer time periods, they indicate that extensive surveys of the 

available global diversity will contain critical information on the genetic material 

available to respond to vaccination pressures, which can also guide development of 

vaccines more robust to evolutionary change. Thus, there is a pressing need for 

increased sampling from around the world, and specifically in Africa, where extensive 

diversity is thought to exist and vaccination appears to be less effective (Santos and 

Hoshino 2005b; E. A. S. Nelson and Glass 2010).  

5.6 Materials and Methods 

Download of data from Genbank. On October 9, 2013 a GenBank search was 

conducted using the search term “rotavirus” and limiting the results to sequences 

with a length between 500 and 4000 base pairs (bp). This resulted in 25,369 total 

sequences. The sequences were then assigned to a segment as follows. A subset of 

about 500 sequences from each segment that were clearly annotated to a specific 

segment were used to create a consensus sequence for each segment. The 11 

consensus sequences were used to create a local reference file. Using local blastn, all 

25,369 sequences were compared to the reference file, with an adjusted word size of 9 

(Camacho et al. 2009). Sequences assigned to a segment with low e-score were 

effectively removed in subsequent steps, as was confirmed by visual inspection of 

alignments. The data were further screened for the following criteria: (1) able to assign 
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the year at which they were collected, (2) able to assign a country of origin, (3) able to 

assign a host species from which the sequence was isolated. Sequences were removed 

if they were clearly marked as being from tissue culture with “tc”, “TC”, “Vaccine” 

was in the strain name, or the id contained the name of a known vaccine or common 

used laboratory strain. Only VP7 sequences of greater than 962bp were used. This 

search resulted in 1911 VP7 sequences isolated from human hosts that were included 

in the phylogenetic analysis (Figure 5.5 and Figure 5.6). Each sequence was assigned a 

G-type using rotaC (Maes et al. 2009). 

Phylogenetic analysis. The resulting 1911 human origin VP7 sequences were aligned 

with MUSCLE (Edgar 2004) and visually inspected to ensure appropriate alignment. 

A Bayesian phylogenetic model was estimated using BEAST2 (Bouckaert et al. 2014). 

RNA sequence evolution was modeled with a constant clock and an HKY base-

substitution model (Hasegawa, Kishino, and Yano 1985) for which codon substitution 

rates and kappa values were estimated separately for each codon position. 

Additionally, the defined 29 amino acids, which make up the defined epitopes, were 

partitioned to allow them to evolve at a different rate. The population was modeled as 

a coalescent with exponential population growth. A discrete migration model was fit 

using the six WHO geographic regions, with the exception of the USA, which was 

assigned its own geographic region. In addition to the migration rate, a rate indicator 

was estimated for each pair of regions to determine if any migration between these 

regions was supported. Four independent runs in BEAST2, for a total of over 100 

million MCMC steps, were performed. The first half of each chain was removed as 

“burn in”. The remaining chains were sampled at even intervals, resulting in 1270 

trees and parameter samples from the posterior. Results were visualized in Tracer for 

convergence.  
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Ancestral state reconstruction and stochastic mapping. In order to test specific 

hypotheses regarding the geographic location of mutational changes, a stochastic 

realization of ancestral states was performed for each tree and associated set of 

parameters. Ancestral state reconstruction was performed for each tree from the 

posterior output from BEAST2, using the parameters (i.e. mutation and migration 

parameters) associated with that MCMC sample. Ancestral state reconstruction was 

performed using the standard approach, of using Felsenstein's tree-pruning algorithm 

to calculate probability distribution of ancestral states at each internal node (J 

Felsenstein 1981). Stochastic mapping is an additional step, following ancestral state 

reconstruction, which produces possible realizations of the individual mutation and 

migration events as they may have occurred across a phylogeny. Stochastic mapping 

was performed using established methods whereby events are mapped onto branches 

of the tree as a stochastic realization of a Poisson process (for both migration and 

mutations), fulfilling the condition that the state of the nodes at the beginning and end 

of the branch correspond to those chosen at the previous step (Nielsen 2002; J. P. 

Bollback 2006). The analysis was implemented in a Java code package SeasMig 

(http://bitbucket.com/pascualgroup/seasmig) 

 

Partitioning genetic change following vaccination among evolutionary 

mechanisms. In order to identify the evolutionary mechanisms that accounted for the 

changing in genetic distance to the vaccine over time, each of the 1270 phylogenetic 

trees having migration events and mutation events mapped were analyzed. The post-

vaccine introduction time period was taken to be 2007 to 2012, and was compared to a 

pre-vaccine reference time period from 2004 to 2006. This reference time period was 

http://bitbucket.com/pascualgroup/seasmig
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chosen because it corresponds to the period just prior to vaccine introduction, and a 

period with increased sampling, both in the US and the rest of the world (Figure 5.1B).  

To quantify the role of migration in the shift in the genetic distance to the vaccine 

following vaccine introduction, we compared the average distance to the vaccine 

(measured in number of amino acids, out of the 29 amino acids that make up the 

epitopes) of all branches in the tree that were predicted to be in the USA from the pre-

vaccine period, 4.19 aa, to the post-vaccine period, 6.79 aa, which is a difference of 2.60 

aa. We then repeated this process, but ignored all sequences that were predicted to 

have entered the USA after 2006, yielding a difference of 1.22. Thus migration 

accounted for 1.38 aa of the change. Similarly, to quantify the role of mutation in 

contributing to the shift in the genetic distance to the vaccine following vaccine 

introduction we compared the observed difference form the pre-vaccine to post 

vaccine periods in the USA (2.60 aa), to the difference if every mutation that was 

predicted to have occurred in the USA after 2006 was reverted to its pre-vaccine state 

(2.59aa), revealing virtually no change due to mutations occurring in the USA.  

Finally, by removing the effects of migration and mutation, the remaining genetic 

change in the USA was due to the shifting frequency of strains that were already in 

the USA in 2006, or 1.21 aa. 

Positive Selection Analysis. A maximum likelihood tree was constructed using an 

HKY with gamma+invariant sites model, in MEGA 5.2.2(Tamura et al. 2011), and 

HyPhy (implemented in MEGA) was used to estimate dn and ds for each codon 

position. Not a single codon position had a significantly positive dn-ds. 266 of 324 had 

a significantly negative dn-ds value (Figure 5.7). 
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5.7 Author contribution 

Author list: Robert J Woods, Daniel Zinder, Mercedes Pascual 

Author contribution: RJW, DZ, and MMP were involved in experimental design, 

analysis and writing. 

 

My main contribution to this work, was a joint contribution in establishing the 

questions, and designing and running the methods which relate to partitioning the 

mechanisms which contribute to a change in the distance from the vaccine. I was 

involved in drafting the paper from conception, specifically parts of the methods 

section.   
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5.8 Figures 

 

Figure355.1. Change in amino-acid match with vaccine with time  

A. Mean number of amino acid mismatches (out of 29) between the epitope sequences of the 

vaccine strains and those of sequences predicted to be in the USA (blue) and in the rest of the 

world (green), from individual MCMC samples (circles) and from the mode of the samples 

from the posterior distribution (lines). Pink shading indicates the time of vaccination in the 

USA. B. Number of sequences included in the analysis, from the USA (blue) and the rest of 

the world (green). 
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A 

 

B 

 

Figure365.2. Partitioning the epitope change following vaccination in the USA among 

evolutionary mechanisms  

A. Shift in the mean number of amino acid mismatches in the USA from before (2004-2006) to 

after (2007-2012) vaccination, partitioned into the fractions due respectively to mutation, 

migration, and shifting prevalence of strains already present in the USA in 2006. B. The 

predicted distribution of time since arrival to the USA of strains sampled before vaccination 

(2004-2006) and after vaccination (2007-2012). Shading indicates the 95% credibility intervals. 
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Figure375.3. The contribution of common serotypes to the increased distance to the vaccine 

in the USA following vaccine introduction  

A. A single representative phylogeny from the posterior distribution of trees, color-coded by 

serotype as indicated in panel B. B. The amount, in amino acids, that each serotype 

contributed to the total shift in the vaccine from the time prior to vaccination (2004-2006) to 

the period just after vaccination (2007-2012).  
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A 

 

B 

 

Figure385.4. Global migration of rotavirus  

A. Global migration rates, indicated with arrow thickness proportional rate. The area of the 

circles is proportional to the number of samples from each geographic region. B. The G9 

portion of a single tree from the Bayesian phylogenetic analysis, with stochastic mapping of 

location, color coded by the geographical regions of panel A. Tips representing samples from 

the USA after 2006 are indicated with arrows, and represent four distinct introductions into 

the USA. 
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Figure395.5. Distribution of collection dates of the 1911 sequence used in the Bayesian 

phylogenetic analysis. 
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Figure405.6. Distribution of country of origin of the 1911 sequences used in the Bayesian 

phylogenetic analysis. 
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Figure415.7. Selection analysis by codon position in the VP7 gene  

(see supplemental methods for details). Codon position, in order from 1 to 324 is indicated on 

the x-axis; the dn – ds for each codon position in VP7 is indicted on the y-axis. Negative 

selection was identified in 266 of 324 sites (p<0.05). Positive selection was identified in no 

sites. The 29 codons corresponding to amino acids mapped to epitopes of neutralizing 

antibodies are highlighted in red. 
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5.9 Tables 

Table85.1. Migration rates, per year, estimated from the Bayesian phylogenetic model 

between each pair of the WHO geographic regions. The upper and lower bounds of the 95% 

credibility intervals are indicated. 

 

Location 1 Location 2 median lower upper 

USA Africa 0.0000 0.0000 0.0029 

USA Americas 0.0500 0.0193 0.1093 

USA SE Asia 0.0234 0.0086 0.0545 

USA Europe 0.0169 0.0000 0.0704 

USA Eastern Mediterranean 0.0000 0.0000 0.0000 

USA Western Pacific 0.0538 0.0223 0.1168 

Africa Americas 0.0000 0.0000 0.0206 

Africa SE Asia 0.0049 0.0000 0.0343 

Africa Europe 0.0530 0.0192 0.1240 

Africa Eastern Mediterranean 0.0000 0.0000 0.0073 

Africa Western Pacific 0.0000 0.0000 0.0000 

Americas SE Asia 0.0279 0.0088 0.0646 

Americas Europe 0.0744 0.0306 0.1581 

Americas Eastern Mediterranean 0.0000 0.0000 0.0000 

Americas Western Pacific 0.0581 0.0245 0.1202 

SE Asia Europe 0.0633 0.0259 0.1228 

SE Asia Eastern Mediterranean 0.0000 0.0000 0.0000 

SE Asia Western Pacific 0.0715 0.0333 0.1369 

Europe Eastern Mediterranean 0.0109 0.0022 0.0335 

Europe Western Pacific 0.1457 0.0666 0.2688 

Eastern Mediterranean Western Pacific 0.0000 0.0000 0.0000 
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Chapter 6. Conclusions  

The rate and mechanisms of viral evolution should be considered when attempting to 

understand patterns of antigenic and genetic diversity. Ecological models of 

competition, replacement and coexistence of viral strains should be developed to 

include and consider evolutionary processes generating diversity, including mutation 

migration, zoonosis and reassortment. Although models of species co-existence and 

competition are at the core of theoretical ecology (e.g. Hubbell 2001; Armstrong and 

McGehee 1980; MacArthur and Levins 1967; Scheffer and van Nes 2006; Chesson 

2000) only some have considered explicit modeling of evolution and, more 

importantly, have not done so in a dynamical and stochastic context. An example of a 

model in theoretical disease ecology which did not explicitly model evolution is 

‘strain theory’ (S. Gupta 1998; Recker et al. 2007). My thesis is a contribution to the 

further development of this interface between ecology and evolution, from the 

perspective of two major viral pathogens.  

 

In the first research chapter, I explore the phylogenetic consequence of different 

regimes described by ‘strain theory’ and show additional dynamic regimes, such as 

ones involving continuous antigenic diversification, which are generated when the 
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rate of evolutionary change through mutation is explicitly considered. I place 

influenza in this context as ‘mutation limited’ meaning that limits on the exploration 

of antigenic space drives phylodynamics, rather than the opening of a given ‘niche’ in 

the resource space constituted by the immune status of individuals in the population, 

or availability of resources in the form of susceptible hosts. This finding has 

implications in the context of intervention and vaccines. Under a mutation limited 

regime, a hypothetical vaccine based on the antigens for which natural immunity is 

commonly generated against, will only be effective until a new antigenic variant is 

introduced to the population through migration or mutation. The alternative 

hypothesis suggested by Recker et al. (Recker et al. 2007) would imply that seasonal 

influenza is selection limited, with a response to vaccination from an existing 

antigenic pool. As a result, a sufficient representation of this pool in a vaccine may 

provide long term protection. Although in the first research chapter I suggest and find 

support for the possibility of a limited antigenic pool in influenza, the exploration of 

the amount of antigenic variability that A/H3N2 can generate, should be explored 

from a more molecular and biological approach.   

 

The study of theoretical models for strain or species co-existence should also consider 

evolution through recombination. Previous work in the context of strain theory has 

shown strain structure to be mostly robust to the presence of recombination (Caroline 

O. Buckee et al. 2011). However, this previous model considered immunity which is 

strong and specific, increasing the ratio of inter vs. intra specific competition and 

promoting co-existence (Armstrong and McGehee 1980). As was demonstrated before 

in the context of influenza (Ferguson, Galvani, and Bush 2003a), in which generalized 

immunity was shown to reduce antigenic and genetic diversity, both specific and 
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generalized cross-immunity between strains influences phylodynamic patterns. In the 

second research chapter, I show how generalized immunity and reassortment can 

influence strain structure in a model of rotavirus. In contrast with previous work 

(Caroline O. Buckee et al. 2011; Zinder et al. 2013), with a sufficient level of 

generalized immunity, immune mediated strain structure was maintained even with 

low levels of cross-immunity between strains. With the addition of an unlimited 

antigenic pool, this structure was perturbed and strongly disrupted when 

reassortment was present, generating a new dynamic regime which involves both the 

signature of immune-mediated niche differentiation and of the sweeping of 

immunologically advantageous alleles across multiple backgrounds through 

reassortment and frequency- dependent selection.  

 

As was the case in the modeling of rotavirus and influenza, phylodynamic methods in 

general could benefit from the inclusion of improved models of population immunity, 

a difficult task given the inherent memory-less nature of many phenotypic evolution 

models used in phylogenetic inference such as CTMC models. In this chapter, I also 

refer to the possibility that targeting a commonly shared alleles as a hypothetical 

vaccine antigen candidate may prove less effective, if such an allele is the result of a 

population sweep. This will be the case as the shared allele has a temporary fitness 

advantage because of reduced population immunity, rather than being the 

consequence of stable fitness differences between alleles.  

 

To elucidate the different roles of different evolutionary mechanisms involved in viral 

strain evolution, including mutation, migration and changes in the abundance of 

locally circulating strains, I developed a tool (SeasMig) which offers stochastic 
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mapping of seasonal migration and mutation processes (Appendix A) in a Bayesian 

manner. I use this tool in the two inference chapters and gain additional insights into 

the phylodynamics of both influenza and rotavirus.  

 

Specifically, in the third research chapter, I use SeasMig to explore patterns of 

seasonality in H3N2 migration. Although influenza A/H3N2 is highly seasonal, the 

drivers of this seasonality are largely unknown with some pertaining to the direct role 

of weather on transmission dynamics e.g. (Shaman et al. 2010) and others to the effect 

of seasonal changes (e.g. sunlight) on host susceptibility (Cannell et al. 2006). 

Regardless of the specific mechanism of incidence seasonality in influenza, with the 

exception of three studies (Bahl et al. 2011; Bielejec et al. 2014; Philippe Lemey et al. 

2014), the implications of such seasonality on phylogenetic patterns has largely been 

ignored or has remained unknown. In this work, I identify the phylogenetic 

consequence of the seasonality of influenza incidence. I identify the roles of ‘fertile 

epidemic grounds’ and ‘end to beginning’ transmission in global phylogeographic 

migration patterns. This work has implications in the context of intervention, and it 

suggests that the correct timing in the season should be considered when evaluating 

vaccine strain candidates. This work could benefit from improved sampling and 

surveillance, which can promote better prediction of influenza viruses migration 

dynamics.  

 

In the fourth research chapter, I use SeasMig to explore the mechanisms behind 

changes in the US rotavirus population following vaccination. Doing so, I identify 

migration rather than mutation or changes in the prevalence of existing serotypes as 

the main driver of the population dynamics in the US. Although several studies have 
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surveyed the rotavirus population following vaccination, and suggested selection 

pressures imposed by vaccination (Guerra et al. 2015; Dóró et al. 2014), this has not 

been done in the US, and the different mechanisms by which such a change would 

occur have not been fully explored. Implications from this study suggest that a 

polyvalent vaccine strategy against rotavirus may be superior for longer time periods, 

and that continuous surveillance of vaccine efficacy and circulating strains of 

rotavirus are necessary in the US and across the world to identify sources of antigenic 

novelty.  

 

Despite the growing availability of viral sequence data, global sequence sampling is at 

the best adequate and very often poor. Sampling of rotavirus and influenza sequences 

is missing from critical areas of human habitation, which may harbor great diversity, 

including India and Africa. For reassortment studies sequences including the full 

genome are less common, and available sampling is often interspersed through space 

and time. Certain schemes have been devised to consider the influence of biased 

sampling on the analysis of phylogeographic migration patterns and of diversity. 

These include the use of structured coalescence models of migration, which are 

somewhat more robust to sampling (P. Beerli and Felsenstein 1999; Stack et al. 2010) 

and the inclusion of an observation model in birth-death processes (Tanja Stadler 

2009). However, further work remains in the field, and ultimately the quality of 

inference will depend on the availability of data.  

 

Finally, I would like to suggest future research directions in the context of 

phylogenetic inference. As the number of possible phylogenetic trees grows super 

exponentially with the number of taxa., traversal of tree space through MCMC 
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methods is extremely slow and limited to very few thousand taxa when Bayesian 

methods are employed. Several developments have been made through the use of 

parallel and distributed processing units such as GPUs (Ayres et al. 2012; Suchard and 

Rambaut 2009). Algorithmic improvements to phylogenetic inference methods have 

been made through the use of alternative likelihood methods such as approximate 

Bayesian likelihood (Ratmann et al. 2012). In general, to improve performance, both 

inference and MCMC mixing could benefit from the inclusion of pseudo- 

approximate- and synthetic- likelihoods (J. Wang 2001; Ratmann et al. 2012; Wood 

2010). Using such approaches to promote mixing of chains will have the benefit of 

maintaining the use of an ‘exact likelihood’, while somewhat improving convergence 

speeds (unpublished bitbucket.org/dzinder/strangeheat). Furthermore, the traversal of 

tree and parameter space, which may have many valleys and terraces (Sanderson, 

McMahon, and Steel 2011) could benefit from the inclusion of recombination between 

trees during MCMC inference (unpublished bitbucket.org/dzinder/tremcomb). 

 

 

 

I would like to thank Mercedes and my committee again for  

the patience and time dedicated to help me accomplishing this work 

 

DZ May 2015 
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Appendix A - Bayesian inference and stochastic mapping of seasonal 

migration and mutation processes from phylogenetic tree distributions 

(SeasMig) 

Supplement for: Seasonality in the migration and establishment of H3N2 Influenza 

with epidemic growth and decline (Zinder et al.) 

In this supplement we describe in further detail the general Bayesian modeling 

approach, the mathematical details of the model, and the computational techniques 

used to perform inference and model selection. We demonstrate the method for 

several simulated scenarios in the context of seasonal migration. 

 

Note: Sections 2.10-2.13 of this text partially overlap with (Baskerville, et al. 2011; 

Baskerville et al. 2013) supplementary-text and (Baskerville et al. 2013), with author’s (co-

author Ed Baskerville) permission.  

A.1 Inference of migration processes from tree distributions 

 

A variety of tools has been developed to generate phylogenetic trees from sequence 

data. Some are Bayesian in nature and provide a distribution of possible trees (A. J. 

Drummond et al. 2012; Huelsenbeck and Ronquist 2001; Pagel, Meade, and Barker 

2004). These trees are sampled according to their likelihood and according to the 

given prior probability for the parameters used when estimating this likelihood. A 
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sample from this distribution is referred to as a sample from the empirical posterior 

distribution of trees. Other phylogenetic tree reconstruction tools capable of handling 

larger datasets e.g. (J. Felsenstein 1981; Swofford 2003) often provide a single tree 

output or distributions which are based on randomizations of the data. It is very 

common for tree reconstruction to be the most computationally expensive part of 

phylogenetic analysis. This is the case since the number of possible trees grows super-

exponentially in relation to the number of tips (or taxa).  

 

In some cases it is possible to separate the inference of tree topology based on 

nucleotide data, from additional steps relating to the inference of phylogeography and 

phenotypic traits. This is the case when the contribution of these traits to the 

combined sequence and trait based tree likelihood is sufficiently small. In this case, 

the tree distribution is mostly defined based on sequence data and it can be further 

refined and used for trait based analysis (Pagel, Meade, and Barker 2004). If all the 

trees based on nucleotide data were enumerated, a step which is computationally 

infeasible for more than a few taxa, than an additional step involving inference based 

on traits will be mathematically equivalent to joint inference based on nucleotide and 

trait data, as long as the evolutionary models for traits and for individual nucleotide 

substitutions are independent. It is not easy to know exactly how many tree samples 

based on nucleotide data are required for trait based inference, but it is necessary that 

the sample should be large enough to capture the major different tree topologies.  

 

In addition, given a distribution of trees, it is often useful to generate stochastic 

realizations of possible mutation and migration events as they occurred along the 

branches of the tree (J. Bollback 2006; Huelsenbeck, Nielsen, and Bollback 2003; Minin 
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and Suchard 2008). This can be done in a Bayesian manner, where for each tree 

topology coupled with a corresponding mutational and trait evolutionary model 

sampled form the empirical posterior distribution, a stochastic realization is 

generated. Finally, the different genes, or proteins of an organism, may have 

alternative evolutionary histories. If the underlying migration processes is assumed to 

be the same, we can use information from multiple proteins together when inferring 

migration processes.  

A.2 Implementation 

 

2.1 SeasMig 

 

We implemented in Java a tool (http://bitbucket.org/pascualgroup/seasmig) for migration 

model inference. This tool can also perform stochastic mapping, based on an initial 

distribution of trees and geographic annotations. Alternative migration model 

parameters can be inferred and compared by their marginal likelihoods including 

seasonal and epochal phylogeographic migration models. An empirical distribution of 

trees in nexus format is given as input. Our tool uses an MCMC to sample from a 

posterior distribution of model parameters and stochastically mapped migration 

events along branches and trunk lineages.  

 

2.2 Bayesian Inference 

 

In a Bayesian framework, both the data and the model parameters are assumed to be 

stochastic. Rather than finding the set of parameters that maximizes the likelihood of a 

particular observation, we estimate the distribution of the model parameters that can 

http://bitbucket.org/pascualgroup/seasmig
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lead to the observed data. The probability of observing a specific set of model 

parameters   conditioned on observing the data   is known as the posterior 

probability and can be written according to Bayes' rule: 

 

        
            

     
 (1) 

 

      denotes he prior probability of observing a specific set of parameters, while 

        denotes the likelihood of observing the data   given the model parameters  . 

The probability of observing the data       without the context of a model (or 

models) is most often unknown. As such samples from the posterior distribution are 

known in probability often only with relation to other samples.   

 

The probability of observing the data         in a context of a specific model  , used 

to fit the data, can be calculated by summing up the probability of observing the 

specific model parameters (prior) multiplied by the probability of observing the data 

conditioned on the model parameters (likelihood), across all the parameter values     

 

            

 

          (2) 

 

or in a more general continuous notation: 

 

                     
 

 (3) 

 

Where         is referred to as the marginal likelihood,      is the prior distribution and 

       is the likelihood function.  
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2.3 Non-Seasonal Migration Model 

 

We assume that discrete geographic location diffuses along branches of the tree 

following a continuous time Markov chain (CTMC) process. In this case, non-seasonal 

migration processes are characterized by a single rate matrix Q: 

 

  

 

 
 
 
 
     

 

   
       

        
 

   
    

    

            
 

    

 
 
 
 

 (4) 

 

where     represents the migration rate between location   to location  .  

 

2.4 Non-Seasonal Migration Model Parameterization and Priors 

 

Rates are assumed to have an exponential prior             with a rate hyperprior 

parameter   which is shared across all the rates and is itself exponentially distributed 

with unit mean            

 

Note: the rate hyper prior was added at a later stage and is not included in non-seasonal 

analysis in the main body of the text .  

 

2.5 Matrix Exponentiation 

 

Matrix exponentiation is used to convert migration rates, to probability distributions, 

which concern the state of nodes along the tree. We first focus on processes along 

individual branches of the phylogenetic tree.  
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Given a branch connecting parent node x to child node y,    , of length  . We assign 

node   a vector     which defines its probability of being at state  :  

 

               
      
  

      

   (5) 

 

We assume, in the simplest case, that states along branches behave as homogeneous 

Poisson processes with a rate matrix Q, as such the state distribution of node   can be 

written as:  

 

             (6) 

Where   is the transition probability matrix and can be calculated as follows: 

 

             (7) 

 

The matrix exponent can be defined by the Taylor expansion of the exponent function: 

 

     
    

  
  

     

  
  

     

  
    (8) 

 

Multiple alternative algorithms are implemented for matrix exponentiation. Several 

algorithms were either imported (JBLAS) or directly implemented in the code 

including the Taylor Series, the Padé approximate (Higham 2009), and Eigen-

Decomposition. For matrices of rank 3 or less, and for specific cases of matrices of 

rank 4 (HKY (P. Beerli and Felsenstein 1999), JC69 (Jukes and Cantor 1969)), analytic 

solutions exist and were implemented. All matrix exponentiation algorithms were 

cross-validated within the package.  
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2.6 Two Seasonal Migration Model 

A seasonal migration model which is a variation of (Bielejec et al. 2014), was 

established by using two different migration rate matrices    and    for two parts 

(seasons) of the year:  

 

   

 

 
 
 
 
      

 

   
         

          
 

   
     

    

              
 

    

 
 
 
 

      (9) 

 

The exact partitioning of the year is defined by the start   and end   of season A 

(without loss of generality). Where:         and        .  

 

For example, for     and        the rate matrix    applies to all branch parts 

within January-March, while rate matrix    applies to all branch parts within April-

December. To estimate the transition probabilities between two states at different 

times, the respective transition probability matrices       are calculated for the 

individual year parts through matrix exponentiation. For instance, for the same 

partitioning of the year, given a branch     spanning from year      to year 

       , the state distribution of node   can be calculated as: 

 

            (10) 

 

Where P is the transition probability matrix: 
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                             (11) 

  

                is the fraction of the branch within season A, and          

         is the fraction of the branch within season B.  

 

2.7 Two Seasonal Migration Model Parameterization and Priors 

 

2.7.1 Migration Seasonality Based on a Specific Source and Destination 

 

Migration rates for the two partitions of the year were parameterized as follows: 

 

                                   (12) 

 

Where     is referred to as the mean migration rate, and     are referred to as the 

seasonal scaling parameters.  

As is the case in the non-seasonal model, mean rates are assumed to have an 

exponential prior             with a rate hyper prior parameter   which is shared 

across all the rates and is itself exponentially distributed with unit mean           

The seasonal scaling parameters (             are assumed to have a uniform prior 

           . The scaling parameter was used instead of two separate rates, to 

separate the inference of mean migration rates, from the inference of the seasonality of 

migration.  

 

2.7.2 Migration Seasonality Based on Source  
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For source based migration seasonality rates (Equation 9) are parameterized in the 

following way: 

 

                                   (13) 

 

where     are the source based seasonal scaling parameters. Mean rates are assumed to 

have an exponential prior             with a rate hyper prior parameter   which is 

shared across all the rates and is itself exponentially distributed with unit mean 

          The seasonal scaling parameters (          are assumed to have a uniform 

prior             

 

2.7.3 Migration Seasonality Based on Destination 

 

For destination based migration seasonality rates (Equation 9) are parameterized in 

the following way: 

 

                                   (14) 

 

where     are the destination based seasonal scaling parameters. Mean rates are 

assumed to have an exponential prior             with a rate hyper prior parameter   

which is shared across all the rates and is itself exponentially distributed with unit 

mean           The seasonal scaling parameters (          are assumed to have a 

uniform prior            . 

 

2.7.4 Migration Seasonality Based on Source and on Destination 

 

For destination based migration seasonality rates (Equation 9) are parameterized in 

the following way: 

 

                                                    (15) 

 



 

152 

 

 

where     and     are the source and destination based seasonal scaling parameters 

respectively. Mean rates are assumed to have an exponential prior             with a 

rate hyper prior parameter   which is shared across all the rates and is itself 

exponentially distributed with unit mean           The seasonal scaling parameters 

(                    are assumed to have a uniform prior or             and 

            

 

2.8 Tree Likelihood Calculation 

Given a tree, a specific and parameterized trait evolutionary (substitution) model, and 

the state of traits on the tips of the tree, a tree likelihood can be calculated (J. 

Felsenstein 1981).  

 

In general, this likelihood can be calculated by integrating (enumerating and 

summing up) the likelihood of all possible internal node states. This is done efficiently 

by calculating and storing the likelihood of sub-trees, recursively progressing from the 

tips towards the trunk of the tree (J. Felsenstein 1981).  

 

The transition probability matrix is defined according to Equation 7 for a non-seasonal 

model and according to Equation 11 for a two seasonal model. The transition 

probability matrix is used to calculate the likelihood of node states along individual 

branches of the tree. 

    

The prior assumption    about the state of the root of the tree usually follows either an 

equal probability of being at each state, an empirical estimate of being at a given state, 

or the stationary distribution of the substitution model: 

 

          
   

         (16) 

 

where     is the initial state of the system and assumed to be an equal probability of 

being in each state The value of     is only relevant if isolated populations exist, and 

stationary conditions depend on their populace.  
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Since there is no such stationary distribution for a seasonal model, we used the 

stationary distribution of the corresponding seasonal migration matrix at the root 

node time, this assumes some convergence to the stationary distribution within each 

season. Alternative estimates can be derived. The inference is not sensitive to the 

specific root prior assumptions in this case.   

 

2.9 Stochastic Mapping 

 

Stochastic mapping is an additional step following the calculation of tree likelihood 

and ancestral state reconstruction at the nodes of a tree. This mapping allows us to 

generate a stochastic realization of the state of branches along the tree, in addition to 

the state of internal nodes, and in so doing, provides samples of migration and 

mutation events, and their timing along the tree that lead to the observed tip states. 

Stochastic mapping of both sequence (nucleotide) and character (e.g. geographic) 

annotations is available in SeasMig, together with the option of incorporating seasonal 

migration models. Stochastic mapping is implemented directly in our code based on 

(J. Bollback 2006). Improved performance could be achieved using (Minin and 

Suchard 2008).  

 

A given type of event, migration or mutation, is assumed to behave as a Poisson 

process along a branch with a rate matrix Q: 

 

Q= 

     
 
          
        

 
       

    
            

 
   

  (17) 

 

As such, the timing of the next event given the present state follows an exponential 

distribution with the rate parameter        
 
   , where x is the present character 

state.  
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Once the timing of the next event is determined, it is chosen based on its relative 

probability compared to other transition (emigration) events:  

    

        

 
 
 

 
 
   
  

   

  
   
  

   

  (18) 

 

Given a branch connecting parent node   to child node  , defined to span from time    

to time   , and with ancestrally reconstructed states    and    respectively. Stochastic 

events are generated starting from   , repeatedly until the state of node y is correctly 

reconstructed. That is, until an event prior to the timing of node y results in the state 

  , and an additional event time generated is timed to be beyond   .  

 

Branch reconstructions that span across seasons were performed by stochastically 

reconstructing the state between the seasons’ boundaries using the initial migration 

matrix, and by continuing the stochastic mapping forward using the second seasonal 

matrix and so forth. This is process is reinitialized from node x, until the state of the 

node y is correctly mapped. The validity of these processes relies on the memory less 

nature of the Poisson process.  

 

2.10 Markov-Chain Monte Carlo (MCMC) 

Markov-chain Monte Carlo, or MCMC, is an algorithm that allows sampling from 

analytically intractable distributions. Such distributions include the distribution of 

tree likelihoods given a mutational or a migration model.  

 

The general idea of an MCMC method is to set up a sequence of dependent samples 

        that is guaranteed to converge to a target distribution, in this case the 

posterior distribution of our model. In the Metropolis-Hastings algorithm, a change is 

proposed to the current state, drawn from a proposal distribution over possible changes 

       . This change is either rejected, in which case the current sample is repeated, 
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or the proposed change is accepted as the new sample. The Metropolis-Hastings 

acceptance probability (Metropolis et al. 1953; Hastings 1970): 

 

 

              
            

           
  

 

(19) 

 

guarantees that the sequence of samples will converge to the posterior distribution.  

 

2.11 Metropolis-coupled MCMC (MC3) 

We use (http://github.com/edbaskerville/mc3kit) for MCMC functionality (Baskerville, 

et al. 2011; Baskerville et al. 2013). Additional functions for sampling and evaluating 

tree likelihoods were implemented.  

 

Although the Metropolis-Hastings algorithm is guaranteed to converge to the target 

distribution at some point, local maxima in the likelihood surface can cause a chain to 

become stuck for long periods of time. One approach to avoiding this problem, known 

as “Metropolis coupling”, involves running multiple chains in parallel. One chain, the 

“cold chain”, explores the target distribution, while the other chains, “hot chains”, 

explore low-likelihood configurations more freely. Periodically, swaps are proposed 

between chains, allowing good configurations discovered on hot chains to propagate 

toward to the cold chain.  

 

Rather than exploring the target distribution                      , heated chains 

explore 

  

                     
          (20) 

 

http://bitbucket.org/pascualgroup/seasmig
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Where   is a heating parameter. We use uneven spaced values of   (Friel and Pettitt 

2008), with the hottest chain exploring the prior (     and the coldest chain 

exploring the posterior (    . 

 

Swap moves are standard Metropolis-Hastings proposals, but rather than considering 

a change to a single chain, they consider a change to the joint distribution of two 

chains. The acceptance proability is thus the ratio of the joint distribution after and 

before the move:  

 

                   
              

  
              

  

                              
  

  
       

       
 

     

 

(21) 

  

Where       are the configurations that begin in chains i and j, and       are the heat 

parameters of the two chains.  

 

The use of multiple heated chains has the side effect of drastically improving 

estimates of marginal likelihoods for model selection, as described in the next section.  

 

2.12 Marginal Likelihood Estimation  

Enumeration across all possible model parameters is computationally costly and 

grows exponentially with the number of model parameters. We would like to use 

MCMC to estimate the marginal likelihood for the sake of comparison among 

different models. Marginal likelihood estimates derived from a single chain, such as 

the harmonic mean estimator of Raftery (Kass and Raftery 1995), converge very 

slowly, because MCMC fails to sample sufficiently from low-likelihood areas. 

However, it is possible to use the information gathered about low-likelihood areas in 

heated chains using a technique called thermodynamic integration (Lartillot and 

Philippe 2006; Peter Beerli and Palczewski 2010), or path sampling (Calderhead and 

Girolami 2009).  
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Assuming a continuum of heated chains, the thermodynamic estimator of the log-

marginal likelihood is:  

 

          
 

 
           

 

   

 

 

          (22) 

 

where m is the number of samples in the MCMC output, and      is a single sample 

from the output in a chain with heat parameter   (Peter Beerli and Palczewski 2010). 

With a finite number of chains, we use the trapezoid rule to numerically integrate this 

integral (Figure 1), using uneven spacing of heats to improve the estimate (Friel and 

Pettitt 2008). 
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Figure42A.1 Thermodynamic integration of the marginal likelihood  

The mean likelihoods of each chain (black dots) are interpolated and used to estimate the 

marginal likelihood (gray area) (Friel and Pettitt 2008). The maximum likelihood (dotted line) 

is asymptotically approaches the mean likelihood as    .  
 

2.13 Model Selection via Marginal Likelihood  

The Bayesian framework provides a natural way to make probabilistic inferences 

based on a particular model. However, we also want to be able to choose between 

different models by quantifying their relative goodness of fit. One approach to 

Bayesian model selection can be framed directly in terms of Bayes’ rule, mirroring the 

process for estimating the posterior distribution over parameters for a single model.  

 

Consider two models,    and   , to which we assign prior weight        and 

      . After the data has been observed, we can calculate the posterior probability of 

the models using Bayes’ rule: 

 

          
                

      
 

(23) 
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Where the denominator is equal to the probability of observing the data unconditional 

of the particular model at play,                                   . The 

probabilities                            
 and                            

 are 

the marginal likelihoods of the two models, corresponding to Equation 3. If we give 

the two models equal prior weight, then the relative posterior weight of the two 

models is simply given by the marginal likelihoods. This reasoning extends naturally 

to any number of models.  

 

The ratio of the marginal likelihoods is often called the Bayes factor (Jeffreys 1935; 

Jeffreys 1961; Kass and Raftery 1995), and is equal to the posterior odds ratio of the 

two models, assuming equal prior weight:  

 

    
         

         
 

(24) 

 

The Bayes factor provides a convenient way to compare models: if B12=10, then we 

consider support for model M1 to be ten times stronger than model M2. In AIC-based 

selection, the Bayes factor is analogous to a ratio of Akaike weights (Burnham and 

Anderson 2002). 

 

The marginal likelihood of a a model is the likelihood averaged over the prior 

distribution. That is, it is the likelihood one would expect by randomly sampling 

parameters from the prior distribution:  

 

                    
 

 (25) 

 

This value serves as a useful measure of model fit because it directly incorporates the 

dependence of the likelihood on uncertainty in parameter values, implicitly 

penalizing extra degrees of freedom (Bolker 2008). If an additional parameter 
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improves the maximum likelihood but decreases the average likelihood, the model 

suffers from over fitting relative to the simpler model.  

 

2.14 Convergence 

Methods for estimating model convergence were not directly implemented within our 

package. Such tools include (A. Rambaut and Drummond 2003) which can be used to 

estimate the number of effective number of samples from an MCMC chain. This is 

necessary since MCMC chains include auto correlated samples.  

 

2.15 Variable Selection 

To assess whether the inclusion of migration between different communities is 

informative, and to establish if rates are seasonal, Bayesian variable selection (O’Hara 

and Sillanpää 2009) was implemented.  

 

Our implementation is based on (Kuo and Mallick 1998) but differs in that it is 

implemented within an MC3 framework. Indicator variables which can take a value of 

either 0 or 1 prefix parameters of interest. Bayes factors for the inclusion of a specific 

parameter are calculated as: 

   
            

            
 

(26) 

  

and represent the ratio of the marginal likelihoods of the two models, with and 

without the variable of interest parameterized. Symmetric non-informative priors 

were used for the indicators. Bayes factors are estimated as the ratio of the number of 

posterior samples of the cold chain in which the indicator was 1 compared to 0. The 

use of an MC3 framework reduces the probability of variables getting stuck in a 

specific configuration (on or off) as heated chains continue to sample from the prior 

and flattened likelihood distributions. In theory, it may be possible to use 

thermodynamic integration to obtain better estimates of Bayes factors.   

 

2.16 Non-Seasonal Migration Model Parameterization with Variable Selection 
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Rates (Equation 4) are parameterized in the following way              where 

             have an exponential prior with a rate hyper prior parameter   which is 

shared across all the rates and is itself exponentially distributed with unit mean 

          The indicators     are drawn from an equal probability prior distribution. 

 

Note: a rate hyper prior was added at a later stage and is not included in non-seasonal analysis 

in the main body of the text. 

2.17 Two-Seasonal Migration Model Parameterization with Variable Selection 

 

Rates (Equation 9) are parameterized in the following way: 

 

                                                       (27) 

 

where     is referred to as the mean migration rate, and     are referred to as the 

seasonal scaling parameters. As is the case in the non-seasonal model, mean rates are 

assumed to have an exponential prior             with a rate hyper prior parameter   

which is shared across all the rates and is itself exponentially distributed with unit 

mean           The seasonal scaling parameters (             are assumed to have a 

uniform prior            . The seasonal scaling indicators     , and the rate indicators 

     are drawn from an equal probability prior distribution. 

 

2.18 Combining the likelihood of multiple protein trees 

A conservative approach was used to combine the information present in multiple 

protein trees with respect to the model likelihood. The combined protein tree log-

likelihood is averaged across the multiple protein trees, to account for the possible 

lack of independence in the information contained in the two trees with respect to 

migration rates and seasonality. This choice does not affect the maximum likelihood 

model parameter choice but has the effect of widening confidence intervals when the 

multiple protein trees provide independent data, while providing the correct 
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confidence interval when the proteins are in complete linkage and have the exact 

same evolutionary history. Tree weights can be specified as configuration parameters.  
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A.3 Results 

3.1 Inference of non-seasonal and seasonal migration rates 

In this analysis we infer seasonal and non-seasonal migration rates from a single tree 

topology and stochastically generated tip locations based on a known input migration 

model. A single hemagglutinin tree topology with 2859 tips was used for this analysis. 

Tip collection dates span from 1981-2009. Non-seasonal and two-seasonal migration 

models without variable-selection are used in this section.  
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migrations per lineage per year 

 

 

Figure43A.2 Inferred migration rates given a non-seasonal tip location generating model 

Inferred median (dashed) and 90% Bayesian credible intervals (gray) (CI) for migration rates 

between five locations. Tip locations were generated stochastically using an input non-

seasonal migration model (green line). A non-seasonal migration rate model was used for 

inference.  
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migrations per lineage per year 

 

Figure A.3 Inferred migration rates given a non-seasonal tip location generating model 

Inferred median (dashed) and 90% CI (gray) migration rates between five locations. Tip 

locations were generated stochastically using an input non-seasonal migration model (green 

line). A two-seasonal migration rate model was used for inference. 
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 migrations per lineage per year 

 

Figure44A.4 Inferred migration rates given a two-seasonal tip location generating model 

Inferred median (dashed) and 90% CI (gray) migration rates between five locations. Tip 

locations were generated stochastically using an input two-seasonal migration model (green 

line). A non-seasonal migration rate model was used for inference. 
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migrations per lineage per year 

 

Figure45A.5 Inferred migration rates given a two-seasonal tip location generating model 

Inferred median (dashed) and 90% CI (gray) migration rates between five locations. Tip 

locations were generated stochastically using an input two-seasonal migration model (green 

line). A two-seasonal migration rate model was used for inference. 
 

When using the input migration model type (seasonal vs. two-seasonal), migration 

rates are mostly, but not always within the 90% Bayesian credible intervals. 
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3.2 Marginal likelihood of non-seasonal and seasonal migration models 

We compare the marginal likelihood of alternative non-seasonal and two-seasonal 

migration models. For this tree and the specified input models (Table 1). The correct 

migration model (seasonal vs. non-seasonal) is supported for 3, 5 and 8 demes based 

on the marginal likelihood.  

 

Table9A.1. Marginal likelihood of seasonal and non-seasonal migration rate models  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Inference of seasonal migration from simulated trees 

 

3.3.1 Five populations, single protein tree 

 

We used an agent based simulation (Zinder et al. 2013) to simulate migration between 

different populations with random population size, associations and seasonal 

# 

demes 

tip generating 

model 

inference 

model 

marginal 

likelihood 

3 non-seasonal non-seasonal -2370.4 

3 non-seasonal two-seasonal -2374.2 

3 two-seasonal non-seasonal -2491.3 

3 two-seasonal two-seasonal -2478.9 

5 non-seasonal non-seasonal -3899.3 

5 non-seasonal two-seasonal -3914.7 

5 two-seasonal non-seasonal -4016.4 

5 two-seasonal two-seasonal -3979.7 

8 non-seasonal non-seasonal -5055.2 

8 non-seasonal two-seasonal -5069.6 

8 two-seasonal non-seasonal -5494.4 

8 two-seasonal two-seasonal -5430.4 
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incidence patterns (Table 2, Table 3, Figure 6). In this model the number of infected 

contacts between deme i and deme j was drawn from a Poisson distribution with mean:  

 

                     
     

  
            (28) 

 

where    is the contact rate,       the number of infected at the source deme,       the 

number of susceptible at the destination deme,    the population size of the 

destination deme,      is the fraction of contacts between the demes (Table 3) as part 

of within deme contact, and       is the seasonality in the contact rate at the source 

deme (an alternative could be at the destination deme contact seasonality).  

Infection is further determined by the immune history of the host and the cross-

immunity with the infecting strain. As such none of these parameters can be directly 

associated with migration rates on a per lineage basis. A single tree with ~3000 tips 

tracking the genealogy of the simulated virus was sampled proportional to the 

prevalence. 

 

Table10A.2. Agent based five deme population parameterization 

Parameter Value 

 contact rate β0 0.6 [1/day]  

recovery rate ν 0.2[1/day] 

birth/death rate μ  1/30 [1/year] 

epitopes 4 

variants per epitope  5x4x3x2 

epitope mutation rate ξ 0.000008 [1/day] 

cross-immunity σ 0.87 
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Table11A.3. Random associations        between five simulated populations as a fraction of 

within deme contact  

 

 

 

 

 

 

 

 

 

 

 

 

Figure46A.6 Prevalence seasonality in simulated population  

Simulation of 5 populations with seasonal incidence patterns and random associations.  

  

from/to deme1 deme2 deme3 deme4 deme5 

deme1  0.007 0.039 0.039 0.041 

deme2 0.045  0.005 0.005 0.031 

deme3 0.014 0.032   0.013 

deme4 0.007 0.029 0.033 0.033 0.014 

deme5 0.042 0.040 0.011 0.011  
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migrations per year 

 
Figure47A.7 Inferred migration events seasonality using a constant migration model  

Inferred median (dashed) and 90% CI (gray) stochastically mapped migrations between five 

locations. Samples of the migration events on the simulation tree (green line). A model with 

constant migration rates is used (marginal likelihood = -4593.7).  
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migrations per year 

 
Figure48A.8 Inferred migration events seasonality using a two-seasonal migration model 

Inferred median (dashed) and 90% CI (gray) stochastically mapped migrations between five 

locations. Samples of the migration events on the simulation tree (green line). A two seasonal 

migration model is used (marginal likelihood = -4510.2)  
 

3.3.2 Three populations, two protein trees 

 

We simulated (Zinder et al. 2013) migration between three different seasonal 

populations with a specified population size. Contact seasonality (Figure 9, observed 

seasonality) and a associations (Table 4) were randomly parameterized. A limited 

number of tip samples were used to sample the transmission tree as specified by Table 

5 intended to approximate the sampling profile of the main text, and Table 6 

representing uniform sampling over time. Each simulation was repeated twice to 

attain to alternative evolutionary histories (proteins) driven by the same migration 
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process. Future simulations will include the direct simulation of segmented genome 

viral evolution.  

 

 

Figure49A.9 Prevalence seasonality in simulated population  

Simulation of three populations with seasonal incidence patterns and random associations.  
 

Table12A.4. Random associations 

       between three simulated 

populations as a fraction of within 

deme contact  
 

from/to deme1 deme2 deme3 

deme1  0.007 0.039 

deme2 0.045  0.005 

deme3 0.014 0.032  

 

 

3.3.2.1 Uniform sampling over time 

In this simulation, we sampled approximately the same number of tips over time 

irrespective of population size and of seasonal incidence patterns.   
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Table13A.5. Number of tips samples from two simulated protein 

trees with alternative evolutionary histories and the same 

underlying migration processes. Tips were sampled 

stochastically, with approximately the same number of tips 

sampled over time and in each population.  

 

 protein A  protein B Total 

deme1 287 278 565 

deme2 252 273 525 

deme3 290 297 587 

Total 829 848 1677 
  

migrations per year 

 
Figure50A.10 Inferred migration events seasonality using a two-seasonal 

migration rate model and uniform tip sampling  

Inferred median (dashed) and 90% CI (gray) stochastically mapped 

migrations between five locations. Samples of the migration events on the 

simulation tree (green line). A two seasonal migration model is used 

(marginal likelihood = -906.9) 
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migrations per year 

 
Figure A.11 Inferred migration events seasonality using a two-seasonal migration rate 

model and uniform tip sampling  

Inferred median (dashed) and 90% CI (gray) stochastically mapped migrations between five 

locations. Samples of the migration events on the simulation tree (green line). A two seasonal 

migration model is used (marginal likelihood = -906.9) 
 

3.3.2.2 Proportional sampling 

In this simulation tips were sampled proportional to incidence. The number of tips 

(Table 5) sampled is intended to approximate the available hemagglutinin and 

neuraminidase sequences which were used in the main text for a similar inference.  
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Table14A.6. Number of tips samples from two 

simulated protein trees 

with alternative evolutionary histories and the same 

underlying migration processes. Tips were sampled 

stochastically, proportional to prevalence, with an 

approximate number of tips specified in each 

population. 

 protein 

A  

protein 

B 

Total 

deme1 514 47 561 

deme2 138 2 140 

deme3 1369 323 1692 

Total 2021 372 2393 
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Figure A.12 Inferred migration events seasonality using a constant migration rate model 

Inferred median (dashed) and 90% CI (gray) stochastically mapped migrations between five 

locations. Samples of the migration events on the simulation tree (green line). A model with 

constant migration rates is used (marginal likelihood = -899.3). 

 

migrations per year 

 

Figure A.13 Inferred migration events seasonality using a two-seasonal migration rate 

model Inferred median (dashed) and 90% CI (gray) stochastically mapped migrations 

between five locations. Samples of the migration events on the simulation tree (green line). A 

two seasonal migration model is used (marginal likelihood = -862.7) 
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migrations per year 

 
Figure A.14 Inferred migration events seasonality using a two-seasonal migration rate 

model with variable selection for the inclusion of migration between deme pairs and for 

the inclusion of seasonal migration between deme pairs Inferred median (dashed) and 90% 

CI (gray) stochastically mapped migrations between five locations. Samples of the migration 

events on the simulation tree (green line). A two seasonal migration model is used (marginal 

likelihood = -866.5) 
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