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ABSTRACT 

  

Radiation treatment (RT) is an established method of treating head and neck (HN) cancer, 

3 percent of all cancers in the United States, by delivering conformal radiation dose to tumors 

while sparing surrounding healthy tissue.  However, tumors (and healthy tissue) that change in 

shape and location during the 5-7 weeks of RT may not be sufficiently covered (and spared) by 

the initial radiation treatment plan, which is planned on a regular computed tomography (CT) 

scan (high-resolution and wide-view) taken prior to the start of RT.  To monitor during-RT 

changes, a HN cancer patient may be scanned using a cone-beam CT scanner (CBCT, low-

resolution and narrow-view) at every treatment fraction.  In HN adaptive radiation therapy, the 

during-RT changes that can be detected by using the daily CBCT images may be further utilized 

to adjust the initial radiation treatment plan to prevent insufficient radiation dose to the tumors 

and excessive radiation dose to the healthy tissue.   

B-spline deformable image registration (DIR) is an important tool for RT for computing 

the deformations (represented as a linear combination of B-spline functions) between the regular 

CT and the CBCT images for the HN patient (i.e. the deformation of the tumors and surrounding 

healthy tissue).  However, the B-spline DIR, which is formulated as an optimization problem to 

find a deformation map that simply maximizes a similarity metric between two images, may 

result in physically unreasonable deformations, such as bone warping.  In particular, existing 

approaches, which penalize non-orthonormality of the deformation gradient tensor during 

optimization, cannot fully prevent the warping in multiple rigid bodies in close proximity (e.g., 

cervical vertebrae in the HN region).  In addition, the B-spline DIR may fail to obtain an 

accurate deformation of soft tissue depending on the selection of registration parameters.  Finally, 

the previous studies have evaluated the registration accuracy with a limited number of landmarks, 

with which the accuracy of the volumetric deformation cannot be rigorously evaluated.  

The objective of this dissertation is 1) to improve the registration accuracy of HN CT 

images by introducing penalty terms into the B-spline DIR derived from physical principles, and 
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2) to develop an improved evaluation method for the registration accuracy based on the finite 

element model (FE) model of HN regions.  

First, a penalty for preventing deformations in rigid regions (bones) was developed.  It 

was designed to preserve inter-voxel distances within each of the rigid regions.  It outperformed 

an existing penalty for cases of B-spline DIR of five cervical vertebrae in the HN region, where 

multiple skeletal elements exist in close proximity.  

Second, another penalty for preventing non-physical deformations in soft tissues was 

developed.  It was designed to prevent the resultant deformations from violating the partial 

differential equations for linear elastic material.  The penalty corrected large misalignments, 

which resulted from the B-spline DIR without the penalty and under some of the parametric 

settings associated with the image metric and optimization algorithm used. 

Third, a FE model of the HN region including five cervical vertebrae was developed as a 

tool for the evaluation of registration accuracy.  The surrounding tissue was assumed as 

homogeneous, linear elastic material.  The displacement boundary conditions were obtained for 

the bony elements by aligning the corresponding surface structures.  The FE model generated the 

deformation maps similar to those seen in patients, which may be used as ground-truth for the 

evaluation of registration accuracy. 

The outcome of the dissertation would support research/development in adaptive 

radiation treatment of head and neck cancer by enabling the accurate estimation of deformations 

of healthy tissue surrounding tumor and the rigorous assessment of registration accuracy.
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Chapter 1. Introduction 

 

 

1.1 Background 

Radiation treatment (RT) is an established method of treating head and neck (HN) cancer, 

which account for approximately 3 percent of all cancers in the United States [1].  Advanced RT 

techniques such as intensity-modulated radiation therapy (IMRT) [2] have enhanced treatment 

outcomes by delivering conformal radiation dose to tumors while sparing healthy surrounding 

tissues.   

However, the RT quality of HN cancer may be deteriorated because the tumors and the 

healthy surrounding tissues change in shape and location during 5-7 weeks of RT.  Due to this 

change, the tumors may be radiated by insufficient dose and the healthy tissues by excessive 

dose when the radiation dose is planned on the patient image taken prior to the start of RT—the 

planning image, taken using a regular computed tomography (CT) scanner (high-resolution and 

wide-view)—and is not adjusted.  Barker et al. reported that the volumes of a tumor and a 

parotid gland decreased at median rates of 1.7−1.8 %/day and 0.6 %/day in a study with 14 HN 

cancer patients [3].  Lee et al. reported that the parotid glands of 10 HN patients migrated toward 

the center of patient body (possibly toward a region of high radiation dose) with a median rate of 

0.22 mm/day in addition to the volume decrease (a median rate of 0.7 %/day) [4].  The impact of 

the geometric change of parotid glands on the radiation dose delivered to HN patients was 
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investigated in Lee et al., reporting that 3 of 10 patients received unexpectedly high exposure to 

radiation, which was 13−42 % higher than planned [5]. 

In order to overcome this difficulty, adaptive radiation therapy (ART) has gathered strong 

interest during the past few decades because it has a potential to better treat cancer patients by 

adjusting the radiation dose in response to the deformations in the tumors and healthy 

surrounding tissues.  As an example of ART, a HN patient may be scanned at every treatment 

fraction using a cone-beam CT (CBCT) scanner (low-resolution and narrow-view) to monitor the 

deformations in the tumors and healthy surrounding tissues.  These additional CBCT scans 

(treatment CT images) may be further used via the following procedures: (1) defining contours 

of the tumors and healthy surrounding tissues, (2) calculating the radiation dose delivered to the 

patient and the total accumulated radiation dose, and (3) determining whether/how the radiation 

dose planned on the planning image in response to the deformations seen in the treatment 

images.  However, it is extremely time-consuming for physicians to manually delineate the 

contours at every treatment scans.  In addition, calculating the accumulated radiation dose 

requires a geometric mapping (or a deformation map) from the planning CT image to the 

treatment CT images. 

Therefore, deformable image registration (DIR) is an important tool for RT for 

computing the deformation maps between the planning CT and treatment CT images for a HN 

patient.  Using the voxel-by-voxel deformation maps by DIR, the aforementioned procedures in 

ART can be automated.  First, the contours delineated on the planning CT image can be 

transformed to the treatment CT images by using the resultant deformation maps by DIR [4, 6-
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7].  Second, the radiation doses calculated on each treatment CT image can be transformed to the 

coordinates of the planning CT image, resulting in the accumulated radiation dose. [6, 8-9]  For 

instance, in a retrospective study [5], Lee et al. used a DIR algorithm for the automatic 

contouring of parotid glands and the dose accumulation to calculate the radiation dose delivered 

to the parotid glands.   

 

 

1.2 Motivation 

B-spline DIR, which is one of the most popular DIR methods and in which deformation 

is represented as a linear combination of B-spline basis functions, is formulated as an 

optimization problem to find a deformation that simply maximizes an image similarity metric 

from one image (reference) to another (target).  In a recent study [10], it was found that image 

similarity metrics, such as root mean squares, normalized cross correlation, and normalized 

mutual information, cannot be reliable surrogates for the registration accuracy.  Therefore, B-

spline DIR often results in physically unreasonable deformations such as born warping. 

In addition, it has been reported that many of existing DIR algorithms including B-spline 

DIR resulted in large errors [11].  A multi-institute evaluation study reported that maximum 

errors ranged from 5.1 to 15.4 mm for several DIR techniques in Kashani et al.  For HN images, 

a recent work [12] reported a registration error of 3.3 mm for a B-spline DIR.  Kirby et al. 

developed a two-dimensional deformable phantom to quantitatively verify B-spline DIR 

algorithms.  In this previous study [13], it was found that the B-spline DIR algorithms with four 
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different intensity metrics (cross correlation, mutual information, sum of absolute differences, 

and sum of squared difference) resulted in at least 3 mm registration error for 24-25 of the 32 

points, at which the registration errors were estimated. 

Furthermore, evaluating the accuracy of deformable image registration is also 

challenging.  This is because a true deformation is not given with the images.  Many previous 

works [12, 14-15] used target registration error calculated based on landmark pairs.  However, 

the target registration errors calculated using a limited number of landmark pairs may not exactly 

reflect the accuracy of the volumetric deformations. 

 

 

1.3 Objective 

 The objective of this thesis is (1) to develop penalty terms to improve the accuracy of the 

B-spline DIR of HN CT images, and (2) to develop a finite element (FE) model that can be used 

to evaluate registration accuracy.   

The problems which will be addressed in this thesis are as follows:  

 B-spline DIR may result in physically unreasonable deformation, such was bone 

warping, without further guidance by penalty terms.  How can the accuracy of the 

B-spline DIR of the HN CT images be improved? 

 There has not been a reliable gold standard, with which to evaluate the accuracy 

of the B-spline DIR of the HN CT images.  How can the accuracy of the B-spline 

DIR be rigorously evaluated? 
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In order to improve the accuracy of the B-spline DIR in the HN region, penalty terms 

were designed to preserve physical behaviors anticipated for bony structures and soft tissues.  

The development of a penalty for the B-spline DIR of five cervical vertebrae was based on the 

fundamental fact that a distance between any points within a rigid body should remain the same 

before and after deformation.  For the B-spline DIR of soft tissue, a penalty was designed to 

prevent the resultant deformations in the soft tissue region from violating the static equilibrium 

equations for linear elastic materials.   

Moreover, FE HN models were constructed based on HN CT images.  The FE model is 

capable of generating physically realistic deformation maps, such as no local deformation in 

bony structures, under appropriate boundary conditions.  In a FE-based evaluation framework, a 

set of the deformation computed by using the FE models and synthetically-computed images can 

establish an evaluation tool of registration accuracy—image data sets and corresponding ground-

truth deformation.  

 

 

1.4 Thesis Outline 

 The next chapter discusses the previous studies related to the development of the penalty 

terms for deformable image registration.  Chapter 2 introduces penalty terms that were designed 

to preserve rigidity and linear elasticity.   In addition, some previous studies on the evaluation of 

deformable image registration accuracy will be discussed in Chapter 2. 
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 Chapter 3 discusses a penalty developed in order to improve the accuracy of the B-spline 

DIR of bony elements in the HN region.  In Chapter 3, it will be described how the penalty was 

formulated.  By testing the B-spline DIR on 25 image pairs of HN CT images, the impact of the 

penalty was investigated compared to the DIR without a penalty and with an existing penalty.  

 Chapter 4 describes a penalty developed to preserve linear elasticity in soft tissue when 

B-spline DIR is performed in the HN region.  In Chapter 4, it will be described how the penalty 

was derived from the fundamental theory of solid mechanics.  The accuracy of aligning a muscle 

in neck, sternocleidomastoid, was evaluated by performing the DIR on HN CT images.  It will be 

also discussed how the developed penalty can improve the accuracy of the B-spline DIR across 

the selection of registration parameters.  

 In Chapter 5, a FE-based evaluation method will be discussed.  Chapter 5 discusses the 

ability of the FE models to generate deformation maps similar to the ones seen between HN CT 

images.  The FE model was used to evaluate the accuracy of the B-spline DIR of five cervical 

vertebrae in the HN region.  The registration results, which had a similar trend with those 

presented in Chapter 3, showed that the FE models can be used as a tool for the accuracy 

evaluation of B-spline DIR algorithms.  

 Chapter 6 discusses limitations of this thesis and suggests several future studies.  Finally, 

the contributions of the thesis will be discussed in Chapter 6.  
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Chapter 2. Related Work 

 

 

2.1 Penalty for Deformable Image Registration 

In order to prevent non-physical deformation maps, there have been efforts to use 

mathematical or biomechanical penalties or constraints within deformable image registration 

(DIR), which is formulated as an optimization problem to find a deformation map that 

maximizes a similarity metric between two images.  Sorzano et al. developed a mathematical 

penalty term by using the divergence and curl of the deformation to enhance its smoothness [16].  

Sdika proposed constraints on the Jacobian of deformations and its derivatives in order to 

prevent noninvertible transformation [17].  Rohlfing et al. developed a volume-preserving (or 

incompressibility) penalty defined as the integral of the absolute logarithm of the Jacobian so 

that local deviations of the Jacobian from one can be penalized [18]. 

 

2.1.1 Rigidity 

Rigidity penalties imposed on the subregions of the image volume which are 

anatomically rigid have been also developed for deformable image registrations [19-21].  A 

rigidity penalty term proposed by Loeckx et al. was based on the orthonormality of the 

deformation gradient tensor and was defined as the summation of the Frobenius norm of the 

orthonormality condition [19].  Staring et al. applied the orthonormality-preserving rigidity 
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penalty combined with the affinity penalty which requires the second order derivatives of the 

displacement to be zero and the properness penalty which requires the determinant of the 

deformation gradient tensor to be one [21].  For simplicity, this improved penalty will be referred 

to as the orthonormality-based rigidity penalty in this thesis.  They tested the method on the 

images of three dimensional thorax CT and digital subtraction angiography.  However, this 

orthonormality-based rigidity penalty has a potential to fail to properly work with images that 

contain multiple rigid bodies in close proximity such as cervical vertebrae in the neck region as 

considered in this investigation; in fact, the “existing” orthonormality penalties do not work 

properly with these images.  Since the existing penalty lacks the ability to separately preserve 

rigidity of multiple objects in a close proximity, imposing the penalty on regions containing 

interfaces between rigid bodies (which exhibit abrupt change in displacement field) would result 

in displacement fields that are either unrealistically smooth, and thus fail to accurately capture 

the motions between rigid vertebral bodies. 

 

2.1.2 Linear elasticity 

Previous studies have incorporated linear elasticity into DIR in different ways; a 

systematic classification of DIR methods can be found in a recent review [22].  Many of the DIR 

methods, which adopted linear elasticity, were commonly based on the assumption that the 

resultant deformation maps should satisfy the static equilibrium for linear elastic materials 

represented as partial differential equations. 
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First, linear elasticity can be incorporated into DIR by directly solving the partial 

differential equations via an iterative process, such as the finite difference method, as suggested 

by Broit [23].  Once this initial concept was introduced, the method was refined with a multi-

resolution strategy by Bajcsy and Kovacic [24].  In this approach, the gradient of image 

similarity metric was considered to be the body force in the partial differential equations.  

 On the other hand, linear elasticity can be introduced in a form of penalty in the 

optimization process of DIR.  Christensen et al. used a linear elasticity penalty to support a 

consistent image registration [25].  In this previous study, the linear elasticity penalty was 

designed to constrain deformations to obey the laws of continuum mechanics.  The authors 

investigated the impact of the linear elasticity penalty term on the accuracy of a DIR algorithm.  

By using the linear elasticity penalty, the accuracy was improved for the DIR of magnetic 

resonance and CT image data of human brain.  However, this linear elasticity penalty (or any 

other physically-based penalty) has not been introduced to the DIR of soft tissue region in head 

and neck (HN) CT images. 

 

 

2.2 Evaluation of Deformable Image Registration Accuracy 

 One of the qualitative evaluation methods for DIR is to compare the reference and the 

deformed target image by the resultant deformation map.  However, a visual inspection of 

intensity-matching quality between the images does not always assure that the deformations are 

physically meaningful.  
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 In addition, the quantitative measures, which have been frequently used in many previous 

investigations, may misinterpret the registration results.  First, a volume overlap index has been 

frequently used in order to evaluate the registration accuracy [14, 26-27].  Although the volume 

overlap index is a good predictor of auto-contouring accuracy, a high score of the index is not 

necessarily related to accurate voxel-by-voxel deformation which is required for dose 

accumulation.  Second, image similarity metrics such as normalized correlation coefficient, used 

in previous works [12, 15], may not be robust surrogates of the registration accuracy as reported 

in [10].  Finally, target registration error [12, 14-15, 26-32], which is defined as the difference 

between the distance of a landmark pairs and the displacement obtained by DIR, is one of the 

most popular measures.  However, the target registration error was calculated with a limited 

number of landmarks, with which the accuracy of the volumetric deformation cannot be 

rigorously evaluated. 

 

2.2.1 Finite element-based deformable image registration 

Finite element (FE)-based DIR methods have been introduced in order to generate 

physically plausible deformation by utilizing anatomical information and mechanical properties.  

Finite element method is a numerical technique to find an approximate solution of the partial 

differential equations of static equilibrium.  The solution of deformation analysis, for instance, is 

displacement vector fields (DVFs) calculated at the nodes of geometric elements, called finite 

elements, given displacement or force boundary conditions.   
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 Various types of FE-based DIR algorithms have been developed [26-34].  In many of FE-

based DIR algorithms, displacement boundary conditions for a few organs or anatomical regions 

are first obtained from the patient images and then those displacements are propagated to the 

entire region of interest.  In Brock et al. [28], a FE model-based multi organ registration 

framework was developed by using a surface projection method in a commercial software 

package (HyperMorph) to obtain displacements at organ boundaries, and then was followed by a 

FE analysis to obtain deformation in internal structures.  Al-Mayah et al. applied this FE-based 

DIR strategy to the problem of aligning of HN CT and CBCT images [26].  To the best of my 

knowledge, this technique proposed by the authors is the only FE-based method for the DIR of 

HN images.  The boundary conditions were obtained by rigid alignments of bony components 

such as mandible and cervical vertebrae (C1−C7), and surface projection of exterior body.  

However, their method resulted in relatively large target registration errors in terms of average 

center volume error, which were reported as 2.3, 2.5, and 2.0 mm for tumor, left parotid, and 

right parotid, respectively; these large errors are partially due to the errors associated with the 

process of obtaining the boundary conditions, such as rigid registration for bony elements and 

surface projection for soft tissues. 

 

2.2.2 Finite element-based accuracy evaluation 

Development of FE-based accuracy evaluation framework has gathered strong interest in 

recent years because of its ability to generate realistic deformations through numerical simulation 

of patient motions, allowing voxel-by-voxel accuracy evaluation.  In Schnabel et al. [35], a FE 
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method-based evaluation framework for DIR of breast magnetic resonance (MR) images was 

introduced.  The basic idea of the framework is to compare the resultant DVFs obtained by DIR 

with the ground-truth DVFs generated by FE analysis.  It is noteworthy to mention that DIR is 

performed on pairs of (1) synthetic reference image deformed by the corresponding ground-truth 

DVF and (2) original target image.  In this previous study, physically plausible deformations 

were computed by applying boundary conditions assumed to be likely to occur in vivo to the FE 

models.  The FE -based evaluation framework is generic so it can be extended to the accuracy 

evaluation of DIR of various regions. 

 However, for DIR of HN images, any FE-based evaluation framework has not been 

developed.  The accuracy of the DIR of HN images has been evaluated by using a limited 

number of landmarks in the previous work.  Although a recent study by Kirby et al. evaluated 

the accuracy of B-spline DIR by using a two-dimensional neck phantom having 54 surface 

markers, the phantom still needs to be refined with more anatomical details in order to 

thoroughly understand the behavior of DIR algorithms on head and neck images.  

A special care needs to be taken when using finite element method to evaluate the 

accuracy of finite element-based deformable image registration algorithm.  This is particularly 

relevant when the same boundary conditions are used both to generate the ground-truth DVFs 

and find DVFs to align images.  In this experimental setting, the assumption that the deformation 

generated by finite element analysis is close to the deformation in vivo, needs to be carefully 

examined.  If a FE model is too simple to generate realistic DVFs similar to those seen from 

patients, there is a possibility that the error of a FE-based DIR algorithm may be underestimated.  
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For instance, in Zhong et al. [34], the DVFs generated by a FE -based DIR algorithm were 

compared to the benchmark DVFs generated by simulating the same FE model.  The registration 

error of 1.1 mm reported in this study, which is relatively small, need to be cautiously interpreted.  

Since the ground-truth DVFs were generated by using the same FE model, it might not be a 

challenging task for the FE-based DIR algorithm to cover the DVFs of same kind.  
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Chapter 3. Distance-Preserving Rigidity Penalty on Deformable Image 

Registration of Multiple Skeletal Components in the Neck 

 

 

3.1 Overview 

This study aims at developing and testing a novel penalty suitable for the deformable 

registration of tightly located skeletal components in the head and neck (HN) from planning 

computed tomography (CT) and daily cone-beam CT (CBCT) scans of patients undergoing 

radiotherapy.  The proposed rigidity penalty is designed to preserve inter-voxel distances within 

each bony structure.  This penalty was tested in the B-spline deformable image registration (DIR) 

of five cervical vertebral bodies (C1-C5).  The displacement vector fields (DVFs) from the 

registrations were compared to the DVFs generated by using rigid body motions of the cervical 

vertebrae, measured by the surface registration of vertebrae delineated on planning and treatment 

CT images.  Twenty five pairs of planning CT (reference) and treatment CTs (target) from 5 HN 

patients were aligned without and with the penalty.  An existing penalty based on the 

orthonormality of the deformation gradient tensor was also tested and the effects of the penalties 

compared.  The mean magnitude of the maximum registration error with the proposed distance-

preserving penalty was (0.86, 1.12, 1.33) mm compared to (2.11, 2.49, 2.46) without penalty and 

(1.53, 1.64, 1.64) with the existing orthonormality-based penalty.  The improvement in the 

accuracy of the DIR was also verified by comparing the Procrustes distance between the DVFs.  
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With the proposed penalty, the average distance was 0.11 (σ 0.03 mm) which is smaller than 0.53 

(0.1 mm) without penalty and 0.28 (0.04 mm) with the orthonormality-based penalty.  The 

accuracy of aligning multiple bony elements was improved by using the proposed distance-

preserving rigidity penalty.  The voxel-based statistical analysis of the registration error shows 

that the proposed penalty improved the integrity of the DVFs within the vertebral bodies. 

 

3.2 Methods 

A new rigidity penalty was developed in order to improve the accuracy of DIR of the 

cervical vertebrae in the neck, where the deformation occurs mainly due to neck articulation.  

Rigid alignment is clearly insufficient to describe daily variations, as illustrated in Fig. 3-1.  

Setup based on rigid alignment of the reference and target images at the C2 vertebra, while 

minimizing the likelihood of increased dose to the spinal cord for this particular treatment, 

(a)  (b)  (c)  

Fig. 3-1. Sagittal cuts of (a) a planning CT image and (b) a treatment CBCT image, and (c) 

the rigid alignment of the images at the C2 vertebra. 
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results in significant variations of the locations of the remaining vertebra and the neck as a 

whole. 

 

3.2.1 Deformable image registration 

DIR computes a voxel-to-voxel transformation φ(x) of coordinates x of the reference 

image with intensity field IR 
to the ones of the target image with intensity field IT.  Intensity-

based DIR is, in general, formulated as an optimization problem to find the transformation that 

minimizes the intensity difference between the reference and target images.  Mutual information 

(MI) is one of the most commonly used similarity metrics between images with different 

contrasts [36-37].  

Typically, the displacement u of the target image from the reference image is 

approximated as linear combination of B-spline basis functions [38]  

 

  (3.1)  

 

where xk are the coordinates of the k-th voxels in the reference image.  The optimal B-spline 

coefficients c = (c1, c2, …., cn) for each B-spline knot are iteratively determined as in Equation 

(3.2) through numerical optimization: 

 

 
* arg min ( )F

c
c c  (3.2) 

( ; ) ( ; )k k k k k  x c x u x c
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where F(c) is the image dissimilarity metric. 

Alternatively, the objective function can be a weighted sum of the image dissimilarity 

metric F(c) and penalty term Prigidity(c) as  

 

  * arg min ( ) ( )rigidityF w P  
c

c c c  (3.3) 

 

where w represents a weight factor.  

In this study, a DIR with multi-resolution B-spline transformation was implemented 

using Elastix, which is open source software for rigid and DIR of images (www.isi.uu.nl/Elastix) 

[39].  The DIR begins with low resolution image which is down-sampled by a factor of 4 in the 

left-right (LR) and anterior-posterior (AP) directions.  Then, the resolution of the reference and 

target images are doubled after each levels of registration are finished.   

 

3.2.2 Existing orthonormality-based rigidity penalty 

The orthonormality condition of the deformation gradient tensor F = (x)/x is 

equivalent to the condition of zero strain tensor or zero right Cauchy-Green tensor, according to 

the finite strain theory [40].  Typically, the orthonormality-preserving rigidity penalty term can 

be described as the sum of the squared Frobenius norm of F
T
F − I over the rigid regions in 

reference images [19].  Staring et al. improved this orthonormality-based rigidity penalty by 
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supplementing with two other conditions (affinity and properness, as previously mentioned) [21]. 

For simplicity, this improved penalty will be referred to as the orthonormality-based rigidity 

penalty in this manuscript.  

 

3.2.3 Proposed distance-preserving rigidity penalty 

The proposed rigidity penalty term is based on fundamental geometric characteristic of 

rigid bodies: the distance between any two points in a rigid body should remain constant after 

deformation.  Similarly, the distance between any two voxels, which belong to the same rigid 

object, is required to be constant before and after deformation.  By imposing this constraint only 

on voxel pairs within the same rigid object, the proposed rigidity penalty has the advantage that 

rigidities enforced to multiple rigid objects can be uncoupled.  On the other hand, the existing 

rigidity penalties enforced to different rigid regions may become interrelated in a close proximity 

since their values are simply determined by local deformation gradients at a voxel, not depending 

on which rigid region the voxel and neighboring voxels belong to.  

The penalty term is defined as the normalized sum of the squared difference of squared 

inter-voxel distance within each rigid body; for each voxel of a rigid component, the sum of the 

squared difference is normalized to the number of voxels that belong to both the same rigid 

object and its neighborhood, and the overall sum is normalized to the total number of voxels in 

rigid bodies: 
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(3.4) 

 

where NR is the number of rigid bodies in the reference image, Ri  {1, 2,…, N} is a set of 

indices of voxels that belong to the i-th rigid body, Pj  {1, 2,…, N} is a set of indices of voxels 

that belong to the neighborhood of the j-th voxel (26-connected voxels are considered neighbors 

of a voxel), and 

 

 jk j kd  x x  (3.5) 

 ( ) ( ; ) ( ; ) || ( ; ) ( ; ) || .jk j j k k j j j k k kd        c x c x c x u x c x u x c  (3.6) 

 

3.2.4 Case study 

DIRs were performed on 25 pairs of the planning and treatment CT images from 5 

patients and the corresponding ground-truth DVFs were generated by using the rigid 

transformations measured by surface registrations of the surface models of the cervical vertebrae.    

Before performing DIRs, each pair of the planning CT and daily treatment CT images 

were roughly aligned by rigid registration.  For the DIR, a multi-resolution strategy was utilized 

(three resolutions were applied in this study).  After each level of registration, reference and 

target images were up-sampled by a factor of 2 only in the transverse plane so that the final 
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resolution reached the resolution of the original images.  For the three resolutions, the B-spline 

grid spacing was set to 32, 16, and 8 voxels in the transverse plane; at the final level of the 

registration with the highest resolution, the B-spline grid spacing was set to 1 voxel through the 

axial direction.  The voxel sizes of the planning CT images ranged from (0.94, 0.94, 3.0) mm to 

(1.37, 1.37, 3.0) mm. 

For fair comparisons, the existing orthonormality-based penalty developed by Staring et 

al. and the proposed distance-preserving rigidity penalty were both implemented on Elastix, 

which is open source software for DIR.  For both penalties, a gradient descent algorithm was 

utilized with 300, 300, and 500 iterations defined for the three resolutions [41].  The parameter a, 

which controls the gain factor in the optimization algorithm (see Spall et al.), was set to a = 

10000.0 for all experiments except with large weight parameters; with w = 0.2 for the existing 

rigidity penalty and w = 0.02 for the proposed rigidity, the parameter was halved to 5000.0 for 

convergence. 

 

3.2.4.1 Generation of the computed DVFs 

 In order to generate the ground-truth DVFs for each image pair, the planning CT image 

and 5 daily treatment CT images for each of 5 patients were subject to segmentation and surface 

model generation.  Voxels that belong to the five cervical vertebrae were automatically 

segmented by thresholding intensity values on both the reference and target images, and manual 

modifications were applied for separating each vertebral body from neighboring ones.  The 

segmented voxel sets were then converted to the corresponding surface models.    
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 Rigid motions of the cervical vertebrae were measured by registering the surface models 

by minimizing the distances between them.  The registration of each pair of the surface models 

results in a 4 × 4 transformation matrix from which a translation vector and rotation angles are 

calculated.  The initial alignment in reference to the C2 vertebra was subtracted from the 

resultant translation vector.  An example pair of the surface models before and after the 

registrations is shown in Fig. 3-2 (a) and (b), respectively, and an example of the resulting 

translations and rotations are summarized in Fig. 3-2 (c) for the LR, AP, and inferior-superior 

(IS) axes, indicating that each bony element individually moved somewhat relative to the 

neighboring elements; the rotation centers were the average coordinates of voxels within each 

vertebra. 

Surface Registration 

(a)  (b)  

Reference 

Models Target Models 

(c)  

C1: -0.7, -2.8, 1.4 5.1, 0.7, -0.2 
 

C2: -0.4, -0.5, 1.9 7.5, 0.1, -1.6 
 

C3: -0.4,  2.1, 2.0 7.8, 0.8, -1.2 
 

C4: -0.7,  4.4, 2.2 6.1, 1.0, -0.5 
 

C5: -1.2,  6.5, 2.2 4.2, 1.8,  0.1 

Translation
*
 

(mm) 

Rotation 

(°) 

LR − AP − IS LR − AP − IS 

Fig. 3-2. Illustration of surface registration: reference and target models (a) before and (b) 

after registrations, and (c) an example of measured translations and rotations.  
*
The shift from 

rigid registration in reference to the C2 vertebra was subtracted from the translation vectors. 
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 Finally, the ground-truth DVFs were calculated by using the rigid transformations, which 

were measured by the surface registrations.   

 

3.2.4.2 Evaluation of registration accuracy 

DIRs were performed on the 25 pairs of the planning CT images and the treatment CT 

images under three different conditions: (1) without rigidity penalty, (2) with the existing rigidity 

penalty, and (3) with the proposed rigidity penalty.  Plotting the DVFs from registrations with 

the ground-truth DVFs allows qualitative evaluation of the registration accuracy.  The 

registration accuracy was quantitatively evaluated by using three measures: registration error, 

transformation error, and the Procrustes distance.  The registration error is defined as the 

difference between the ground-truth DVF (generated by using surface registration) and the DVF 

obtained by registration.  The registration error was calculated at only the image voxels which 

belong to five cervical vertebral bodies.  The transformation error was defined as the difference 

between the measured transformation of the vertebral body surfaces and the average 

transformation in DVF of points contained therein obtained by registration.  The average 

transformation was obtained by solving the orthogonal Procrustes problem [42]: minimizing the 

distance between the original coordinates of each rigid body and its deformed coordinates.  The 

transformation error was calculated for 6 degrees of freedom: 3 for translation and 3 for rotation.  

Translation was calculated as the distance between the geometric means of the original and 

deformed coordinates of voxels within vertebrae.  The “Procrustes distance” was defined as the 

distance between the deformed coordinates from the DVF and the transformed coordinates by 
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the average transformation.  This analysis evaluates the effect of the penalties on preserving the 

shape of the voxel grid in each bony element, by quantifying the residual local deformation using 

the translation vector and rotation matrix obtained by the orthogonal Procrustes analysis. 

 

3.3 Results 

 The weight parameter w was experimentally determined in order to control the relative 

effect between the image metric and penalty term.  Since the magnitude of the image discrepancy 

measure (negative of mutual information) is less than 1 and both the rigidity penalty terms are 

normalized to the number of voxels that belong to rigid regions, it can be expected that the 

magnitude of the weight parameter would not differ significantly from 1.  The weight parameter 

was optimized by performing deformable image registrations with a few choices of weight 

parameters.  The resulting optimal weights were 0.1 for the existing rigidity penalty and 0.01 for 

the proposed rigidity penalty.  In addition, the relative weights of each terms related to affinity, 

orthonormality, and properness were chosen as 100.0, 1.0, and 2.0, respectively, in the existing 

orthonormality-based penalty, which were already optimally chosen for the alignment of CT 

images in Staring et al. [21].  It was also reported, in their study, that the registration results with 

the existing orthonormality-based rigidity penalty were not sensitive to the selection of the 

relative weights.  All registrations with the proposed distance-preserving rigidity penalty were 

completed within 7 minutes on computers of a cluster which is comprised of AMD Opteron and 

Intel Nehalem processors.  
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3.3.1 Generation of the computed DVFs 

Among the measured translations and rotations obtained by the surface registration, the 

translation in the AP direction and the rotation with respect to the LR axis were largest.  The 

translation was largest for lower cervical vertebra in all directions (farthest from the setup point 

for the patients).  However, there was no clear correlation between the translations and rotations. 

Table 3-1 Translation in the LR, AP, and IS directions of the five cervical vertebrae compared 

to the planning CT image taken prior to the start of radiation treatment.  Values are expressed as 

mean (SD) [Range]. 
 

 Left-Right (mm) Anterior-Posterior (mm) Inferior-Superior (mm) 

C1   0.1 (0.7) [−1.6 to 1.5] −0.6 (1.2) [−2.8 to 1.8] −0.3 (0.8) [−2.2 to 1.4] 

C2   0.0 (0.4) [−0.7 to 0.6]  −0.2 (0.4) [−0.9 to 0.8]   0.0 (0.8) [−1.5 to 1.9] 

C3   0.1 (0.5) [−1.2 to 0.9]   0.4 (1.2) [−2.0 to 2.2]   0.3 (0.8) [−0.9 to 2.0] 

C4   0.2 (1.1) [−2.1 to 2.3]   0.7 (2.2) [−3.5 to 4.4]   0.7 (0.9) [−0.9 to 2.2] 

C5   0.1 (1.6) [−2.9 to 3.3]   0.9 (3.2) [−5.0 to 6.5]   0.8 (0.9) [−0.8 to 2.7] 

 

 

Table 3-2 Rotations about the LR, AP, and IS axes of the five cervical vertebrae compared to 

the planning CT image taken prior to the start of radiation treatment.  Values are expressed as 

mean (SD) [Range]. 
 

 Left-Right (°) Anterior-Posterior (°) Inferior-Superior (°) 

C1   0.4 (2.1) [−3.3 to 5.1]   0.2 (1.0) [−1.9 to 1.9] −0.4 (2.6) [−3.4 to 6.6] 

C2   2.2 (3.2) [−3.0 to 7.5]    0.1 (1.2) [−2.8 to 2.6]   0.2 (2.6) [−4.0 to 5.8] 

C3   2.1 (3.6) [−4.7 to 7.8]   0.2 (1.2) [−1.9 to 2.9]   0.0 (2.5) [−4.4 to 4.7] 

C4   1.5 (3.3) [−5.0 to 6.1]  −0.1 (1.6) [−2.5 to 3.2] −0.1 (2.6) [−5.2 to 4.3] 

C5   0.2 (2.8) [−3.8 to 5.4]   0.7 (1.3) [−1.3 to 3.2]   0.4 (2.2) [−4.1 to 3.9] 
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The statistics of the measured translations and rotations are summarized in Tables 3-1 

and 3-2 where mean, standard deviation and range of the motions were shown for three 

directions: LR, AP, and IS.  The translation along the AP axis was most outstanding, being the 

smallest at the C2 vertebra (patient positioning point for treatment) and larger for lower cervical 

vertebra with a maximum displacement of 6.5 mm.  The largest rotation (7.8 °) was observed at 

the C3 vertebra about the LR axis.  Furthermore, the largest rotation with respect to the IS axis 

was 6.6 °, which was observed at the C1 vertebra.  

The mean of the displacement magnitude was largest at the lowest vertebra (C5) for all 

patients, and ranged from 0.9 mm to 4.0 mm across the patients.  The maximum displacement 

was 8.8 mm at the C5 vertebra for patient. 

 

3.3.2 Evaluation of registration accuracy 

Figure 3-3 shows comparisons of the DVFs from registrations (blue) with the ground-

truth DVF (red).  Figure 3-4 shows the comparison of the planning CT image and the deformed 

treatment CT images generated by applying the DVFs from the registration.  The DVFs without 

and with rigidity penalty (either existing or proposed) transformed bone voxels in the target 

image visibly close to those in the reference image, indicating that all image registrations 

performed reasonably well in terms of intensity matching.  However, the detailed examination of 

the DVFs in Fig. 3-3 reveals that the unpenalized intensity-based deformable image registration 

resulted in the deformation maps that lacked biomechanical consistency in the skeletal elements, 

where considerable local deformation was observed in the vertebral bodies.  The discrepancies of 
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(c)  

(a)  

(b)  

Fig. 3-3. Comparison of DVFs (blue) from registration (a) without penalty, (b) with the 

existing penalty, and (c) with the proposed penalty to the ground-truth DVF (red), which is 

plotted only at the bony regions. 

 



27 

 

the DVFs compared to the ground-truth DVF, which can be seen from Fig. 3-3 (a) and (b), are 

due to relatively large rotation of C1 vertebra about the IS axis (6.6° in Fig. 3-3).  This type of 

misalignment was well corrected by the proposed rigidity penalty while it can be still observed in 

the DVF with the existing rigidity penalty. 

The mean magnitudes and standard deviations of the registration errors are summarized 

in Table 3-3.  Compared to the mean magnitude of (0.42, 0.32, 0.57) mm obtained by the 

intensity-based deformable image registration without rigidity penalty, the mean magnitude of 

registration error was reduced to (0.13, 0.16, 0.38) mm with the proposed distance-preserving 

penalty.  Furthermore, the values were also smaller than (0.21, 0.20, 0.43) mm obtained with the 

existing orthonormality-based penalty.  The mean magnitude of the maximum registration error 

was also reduced by the proposed distance-preserving rigidity penalty to (0.86, 1.12, 1.33) mm 

(a)  (b)  (c)  (d)  

Fig. 3-4. Sagittal cuts of (a) a planning CT image and treatment CBCT images deformed by 

DVFs from registration (b) without penalty, (c) with the existing penalty, and (d) with the 

proposed penalty, corresponding to the DVFs shown in Fig. 3-3. 
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as compared to (2.11, 2.49, 2.46) mm without penalty and (1.53, 1.64, 1.64) mm with the 

existing orthonormality-based rigidity penalty. 

The mean magnitudes and standard deviations of the transformation errors are 

summarized in Table 3-4.  For both the translations and rotations of all vertebrae, the errors were 

reduced by the rigidity penalties.  The transformation errors resulting from the deformable image 

Table 3-3 Registration errors between the DVFs in the LR, AP, and IS directions of the five 

cervical vertebrae without and with the rigidity penalties. 
 

 
Intensity-based Orthonormality-based Distance-preserving 

Registration 

Error (mm) 

 

 

 

 

    

Mean magnitude (0.42, 0.32, 0.57) (0.21, 0.20, 0.43) (0.13, 0.16, 0.38) 

Standard deviation (0.38, 0.42, 0.61) (0.23, 0.25, 0.34) (0.11, 0.17, 0.26) 

 
Mean magnitude of 

maximum error 

(2.11, 2.49, 2.46) (1.53, 1.64, 1.64) (0.86, 1.12, 1.33) 

 

Table 3-4 Comparison of the transformation errors and Procrustes distance between the DVFs 

without penalty and with the rigidity penalties. 
 

 
Intensity-based Orthonormality-based Distance-preserving 

Translation (mm) 

 

 

 

 

    

Mean magnitude (0.34, 0.13, 0.38) (0.14, 0.11, 0.37) (0.11, 0.11, 0.36) 

Standard deviation (0.41, 0.16, 0.32) (0.16, 0.13, 0.25) (0.13, 0.13, 0.25) 

Rotation (°) 

 

 

 

 

    

Mean magnitude (1.22, 0.50, 0.61) (0.65, 0.32, 0.33) (0.58, 0.34, 0.28) 

Standard deviation (1.32, 0.62, 0.84) (0.69, 0.40, 0.42) (0.70, 0.45, 0.35) 

Procrustes distance (mm) 0.53 (0.11) 0.28 (0.04) 0.11 (0.03) 
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Fig. 3-5. Histograms of the registration errors which resulted from the B-spline DIRs between 

the planning CT scan and treatment CT scan at the 7
th

 fraction of Patient 1 in the LR direction 

(a) without penalty, (b) with the existing orthonormality-based rigidity penalty, and (c) with 

the proposed distance-preserving rigidity penalty. 

 

Orthonormality-based 

rigidity 

Without penalty 

Distance-preserving 

rigidity 

(b) 

(a) 
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Fig. 3-6. Histograms of the registration errors which resulted from the B-spline DIRs between 

the planning CT scan and treatment CT scan at the 7
th

 fraction of Patient 1 in the AP direction 

(a) without penalty, (b) with the existing orthonormality-based rigidity penalty, and (c) with 

the proposed distance-preserving rigidity penalty. 

 

Orthonormality-based 

rigidity 

Without penalty 

Distance-preserving 

rigidity 

(c) 

(b) 

(a) 
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‒24.5z = 

‒24.5 

Fig. 3-7. Histograms of the registration errors which resulted from the B-spline DIRs between 

the planning CT scan and treatment CT scan at the 7
th

 fraction of Patient 1 in the IS direction 

(a) without penalty, (b) with the existing orthonormality-based rigidity penalty, and (c) with 

the proposed distance-preserving rigidity penalty. 

 

Orthonormality-based 

rigidity 

Without penalty 

Distance-preserving 

rigidity 

(c) 

(b) 

(a) 
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registration with the rigidity penalty terms were similar to each other.  The Procrustes distances 

are also summarized in Table 3-4.  The Procrustes distances for the proposed distance-preserving 

penalty were less than those for no rigidity penalty and the existing orthonormality-based 

penalty: 0.11 mm (0.03 mm) versus 0.53 (0.11 mm) and 0.28 mm (0.04 mm). 

The difference of the effects of the penalty terms was further explored by plotting 

histograms of registration errors (Figures 3-5, 3-6, and 3-7).  For the B-spline DIR without 

penalty, the registration errors were distributed over a wide range in all directions while many of 

the errors were still close to zero.  With the distance-preserving rigidity penalty, the distribution 

of registration errors was better concentrated around zero than those without penalty or with the 

(a)(c) (b) 

z = 

Fig. 3-8. Plots of (a) the LR displacement component through an IS axis whose location is 

indicated in (b) an axial cut of the planning CT (Patient 1); the axial plane in (b), which is 

indicated as a dashed line in (a), coincides with the axial plane in Fig. 3-3. 
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existing orthonormality-based rigidity penalty, indicating that some large deviations were 

corrected by the proposed penalty. 

The displacement components in the LR directions plotted in Fig. 3-8 (a) show how the 

resultant DVFs with the existing and proposed penalties recovered the ground-truth DVF 

exhibiting abrupt changes across the vertebrae.  Compared to the DVF obtained with the existing 

orthonormality-based penalty, the DVF obtained with the proposed distance-preserving penalty 

more accurately recovered the acute changes in the displacement, especially at regions within the 

C1 vertebra. 

 In order to investigate the impact of the weight parameter on the registration accuracy 

with the rigidity penalties, DIRs were additionally performed by varying the weight parameters.  

The weight parameter was increased or decreased by a factor of 2 from the optimal weight 

parameter, which is 0.1 for the existing orthonormality-based rigidity penalty and 0.01 for the 

proposed distance-preserving rigidity penalty.  The resultant registration errors were summarized 

in Tables 3-5 and 3-6.  As the weight parameter was decreased from 0.01 to 0.0025 for the 

proposed distance-preserving rigidity penalty (from 0.1 to 0.025 for the existing orthonormality-

based rigidity penalty), the registration errors were increased in all directions.  Comparing the 

variations in the registration errors between the two rigidity penalties shows that the performance 

of the proposed distance-preserving rigidity penalty is less sensitive to the variation of the weight 

parameter than that of the existing orthonormality-based rigidity penalty.  



34 

 

For the large weight parameters (w = 0.2 for the existing orthonormality-based rigidity 

penalty and w = 0.02 for the proposed distance-preserving rigidity penalty), the registration 

results shown in Tables 3-5 and 3-6 were obtained with a = 5000.  This is because the 

registrations converged to unreasonable solutions when the gain factor a was set to 10000, 

possibly indicating a numerical instability of the optimization algorithm.  

 

 

Table 3-5 Effect of the weight parameter on the registration errors with the existing 

orthonormality-based rigidity penalty. 

 

 
w = 0.025 w = 0.05 w = 0.1 w = 0.2 

Registration 

Error (mm) 

 

 

 

 

     

Mean magnitude (0.26, 0.25, 0.47) (0.23, 0.22, 0.44) (0.21, 0.20, 0.43) (0.31, 0.22, 0.42) 

Standard deviation (0.30, 0.32, 0.41) (0.26, 0.28, 0.37) (0.23, 0.25, 0.34) (0.25, 0.28, 0.34) 

 
Mean magnitude of 

maximum error 

(1.77, 2.15, 1.94) (1.66, 1.91, 1.79) (1.53, 1.64, 1.64) (1.63, 1.56, 1.58) 

 

Table 3-6 Effect of the weight parameter on the registration errors with the proposed distance-

preserving rigidity penalty. 

 

 
w = 0.0025 w = 0.005 w = 0.01 w = 0.02 

Registration 

Error (mm) 

 

 

 

 

     

Mean magnitude (0.14, 0.16, 0.40) (0.13, 0.16, 0.39) (0.13, 0.16, 0.38) (0.31, 0.19, 0.38) 

Standard deviation (0.13, 0.18, 0.29) (0.12, 0.17, 0.28) (0.11, 0.17, 0.26) (0.16, 0.22, 0.27) 

 
Mean magnitude of 

maximum error 

(1.02, 1.38, 1.55) (0.94, 1.26, 1.44) (0.86, 1.12, 1.33) (1.17, 1.04, 1.16) 
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3.4 Discussion 

The proposed distance-preserving rigidity penalty improved the accuracy of deformable 

image registration of the five cervical vertebral bodies in the neck compared to B-spline 

intensity-based deformable image registration without the rigidity penalty.  All quantification 

measures utilized in this study showed the proposed distance-preserving rigidity penalty better 

aligned the five cervical vertebrae in CT-CBCT registrations than the existing orthonormality-

based rigidity penalty.  It is noteworthy to mention that, with the proposed penalty, the B-spline 

DIR of the cervical vertebrae achieved accuracies smaller than the sizes of image voxels in all 

directions.  The mean magnitudes and standard deviations of the registration errors were (0.13, 

0.16, 0.38) mm and (0.11, 0.17, 0.26) mm.  Furthermore, the mean magnitudes of the maximum 

registration errors were comparable to the voxel dimensions: (0.86, 1.12, 1.33) mm with the 

proposed distance-preserving penalty.  It is noted that the registration accuracy was largest in the 

IS direction, in which the voxel dimension is larger than that in the LR and AP directions.  

However, the achieved registration accuracy was much smaller than the voxel dimension. 

Since the registration errors were averaged over a large number of voxels (12,986–

22,653) that belong to the cervical vertebrae, some improvements may not appear in the 

comparisons of the mean magnitudes of the registration errors.  In other words, the statistics of 

the registration errors calculated at a large number of the voxels may not be considered as an 

equivalent concept to the target registration error calculated with a few number of landmark pairs 

as shown in other studies [10, 12].  As shown in the histograms of the registration errors (Figures 

3-5, 3-6, and 3-7), purely intensity-based DIR failed to recover all rigid body motions of the five 
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cervical vertebrae.  Moreover, the discrepancies observed in the C1 vertebra were not corrected 

by the existing orthonormality-based rigidity penalty while these registration errors were 

prevented by applying the proposed distance-preserving rigidity penalty to deformable image 

registration.  

The comparisons of the transformation errors and Procrustes distances between the DVFs 

showed the details of how the proposed penalty improved the DVFs compared to no penalty and 

the existing penalty.  The difference in the Procrustes distance between the DVFs was relatively 

large while the transformation errors were comparable to each other.  The relatively small 

difference in transformation error indicated that the DVFs with the existing penalty were, on 

average, shaped closely to the ground-truth rigid motions.  However, the large values in the 

Procrustes distance for the DVFs with the existing penalty indicated that there exist some 

discrepancies in the resulting DVFs compared to the ground-truth DVFs, which cannot be 

captured by the transformation errors.  These results suggest the proposed distance-preserving 

penalty is capable of reducing registration errors, which cannot be completely corrected by the 

existing orthonormality-based penalty in the DIR of multiple rigid bodies in close proximity.  

The comparison of the DVFs indicated that the intensity-based similarity metric may 

potentially mislead deformable image registration in articulated skeletal regions.  As shown in 

Fig. 3-3, the B-spline DIR of the HN images resulted in physically unreasonable DVFs without 

rigidity penalties.  However, these substantial deviations in the DVF were not visible in the 

comparison of images in Fig. 3-4.  This observation supports that comparing images is not a 

rigorous way of verifying registration results as well as that intensity-driven DIR should be 
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provided with additional guidance such as biomechanical penalties when the transformations are 

to be used for dose accumulation or functional mapping. 

The use of the rigidity penalty term may have an impact on the accuracy of dose 

accumulation of surrounding tissues such as spinal cord.  As can be seen in Fig. 3-3, both the 

orthonormality-based and distance-preserving rigidity penalties affected the deformation in the 

surrounding regions.  A further investigation needs to be carried out to estimate the dosimetric 

impact of such residual uncertainty.  

Mutual information was used as an intensity similarity measure between planning CT and 

treatment CBCT images whose intensity distributions are different to each other although these 

images look similar.  In a recent study by Nithiananthan et al. [12], mutual information was also 

used for B-spline DIR of CT and CBCT images.  Since CT and CBCT images have different 

intensity distributions, an intensity matching approach was proposed for their implementation of 

a demons algorithm in the previous study.  It is worthwhile to note that other intensity similarity 

measure such as normalized cross-correlation can be utilized for the CT to CBCT DIR.  The 

impact of using various image similarity measures should be investigated in a future study.  

The rigid motions measured by the surface registration of individual vertebrae ranged 

from −5.0 to 6.5 mm for translation and from −4.7 to 7.8 ° for rotation as shown in Tables 3-1 

and 3-2.  The results were comparable to those reported in Ahn et al. [43].  For the magnitude of 

relative vertebral motions clinically observed from the five patients, the proposed penalty could 

successfully preserve rigidity of five cervical vertebral bodies during deformable alignment.  
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3.5 Conclusions 

 We proposed a new rigidity penalty designed to preserve inter-voxel distance within each 

bony element and verified that it improved the integrity of the B-spline DIR of multiple skeletal 

components in the neck anatomy using 25 CT-CBCT image pairs from 5 patients.  This distance-

preserving penalty achieved sub-voxel registration accuracy in all directions and outperformed 

the existing penalty designed to preserve the orthonormality of deformable gradient tensor, in 

terms of aligning multiple rigid elements in close proximity.
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Chapter 4. Elasticity Penalty for Deformable Image Registration of Muscle in 

the Neck 

 

 

4.1 Overview 

The objective of this study is to incorporate a penalty into the B-spline deformable image 

registration (DIR) of a neck muscle in head and neck (HN) patient images.  The penalty was 

designed to prevent the resultant deformations from violating the static equilibrium equations for 

linear elastic materials.  Homogeneous material properties were assumed on the sternomastoid 

muscle and the active behavior of the muscle was not taken into consideration.  To investigate 

the impact of the penalty, B-spline DIRs were performed without and with the penalty between 

HN computed tomography (CT) and cone-beam CT (CBCT) images.  In addition, the B-spline 

DIR was tested under various selections of the registration parameters associated with the image 

metric (mutual information) and the optimization algorithm (a gradient descent algorithm).  The 

penalty helped the B-spline DIR to avoid large misalignments obtained without the penalty.  This 

finding indicates that time-consuming fine-tuning process for the B-spline DIR to find a 

reasonable deformation map can be avoided by using the penalty.  
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4.2 Methods 

 

4.2.1 Deformable image registration 

The mathematical formulation of the B-spline DIR is shown in Chapter 3.  For the B-

spline DIR of a muscle in the neck, a penalty which preserves linear elasticity (called elasticity 

penalty Pelasticity) is used instead of the rigidity penalty Prigidity (see Equation (3.3)).  Therefore, 

the formulation of the B-spline DIR can be written as follows:  

 

  * arg min ( ) ( ) .elasticityF w P  
c

c c c  (4.1) 

 

An optimal set of B-spline coefficients is obtained through an optimization problem that 

minimizes the cost function, which consists of an image dissimilarity measure and the elasticity 

penalty. 

In this study, mutual information [36-37] was utilized as an image similarity measure.  A 

multi-resolution strategy was adopted for the B-spline DIR between HN CT and CBCT images.  

In a multi-resolution B-spline DIR, the B-spline transformation is up-sampled by a factor of two 

after each level of resolution as the reference and target images are also up-sampled by a factor 

of two in all directions.  The B-spline DIR was implemented using Insight Segmentation and 

Registration Toolkit (ITK) [44], which is an open-source software package for registration 
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algorithms.  A gradient descent optimization algorithm, which is available in ITK, was chosen to 

update the B-spline coefficients through a series of iterations.   

 

4.2.2 Elasticity penalty 

A penalty term was designed to preserve linear elastic behaviors in the deformation by 

deformable image registration.  In other words, the penalty term encourages the registration 

algorithm to satisfy the static equilibrium equations [45] as described in Equation (4.2):  

 

 0
ij

i

j

σ
f

x


 


 (4.2) 

 

where σ, x, and f represents stress tensor, coordinates, and body force, respectively.  It is noted 

that Equations (4.2) – (4.7) are described in tensor notation.  These differential equations can be 

written in terms of displacement vector u by substituting for the stress tensor with the stress-

strain relationship (Equation (4.3)) and strain-displacement relationship (Equation (4.4)): 
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where E is Young’s modulus and ν is Poisson’s ratio.  Finally, the static equilibrium equations 

become  

 

 , , 0.
2(1 ) (1 )(1 2 )

i jj j ij i

E E
u u f

  
  

  
 (4.5) 

 

 The body force in Eq. (4.5) was assumed to be zero at the convergence of optimization 

algorithm in the B-spline DIR.  It is contrasted with the case of numerically solving the equations 

where the gradient derived from an image similarity metric was considered as the body force 

[23].  The elasticity penalty Pelasticity can be defined as in Equation (4.6) in order to prevent the 

displacement vector field from violating the static equilibrium equations.  
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 c c

c  (4.6) 

 

where the displacement vector field is represented by the B-spline coefficients c.  The penalty is 

calculated by summing up the deviations from the equations at each mth point in a set of voxels 

belonging to the region of interest S and by normalizing the sum to the number of the voxels.  

 The equation above can be further simplified by dividing the whole equation by E/2(1+ν) 

as follows:  

 



43 

 

 

2

, ,

2
( ) ( )

1 2
( ) .

i jj j ij

i S i
elasticity

u u

P
S








 c c

c  (4.7) 

 

Young’s modulus shown in Equation (4.6) is eliminated because it has the same impact on the B-

spline DIR with the weight parameter w when the deformation in only a single muscle is 

penalized.  When considering multiple regions with different material properties, different 

weight parameters may need to be set according to each region.  For the implementation of the 

elasticity penalty, the second-order derivatives of the displacement vector field were calculated 

by using a finite difference method. 

 

 

4.2.3 Case study 

 The B-spline DIRs (without and with the elasticity penalty) were performed on 7 data 

sets, in total, from 2 patients.  The deformation maps were obtained by the B-spline DIRs from 

the HN planning CT images (reference images) to the treatment CBCT images of the same 

patient (target images).  A data set of the reference and target images was shown in Fig. 4-1. (a) 

and (b).  Each of the reference images was cropped to contain the sternocleidomastoid muscle on 

the side, on which no tumor exists.  The image voxel dimensions ranged from 1.26 to 1.37 mm in 

axial planes and the slice thickness was 3.0 mm through the inferior-superior (IS) direction.  The 

image voxels, which belong to the sternocleidomastoid muscle, were segmented by using the 
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intensity values of the voxels.  Segmentation was performed both on the planning CT and 

treatment CBCT images. An axial cut of the segmentation performed on the reference CT image 

was shown in Fig. 4-1. (d). 

 

4.2.3.1 Registration parameters 

The parameters selected for the B-spline DIR were summarized in Table 4-1.  Both the 

reference/target images and the B-spline transformation were up-sampled by a factor of 2 after 

each resolution level.  While the full-resolution images were used at the final level, the B-spline 

(a)  (b)  (c)  (d)  

Fig. 4-1. Axial cuts of (a) the planning CT, (b) the treatment CBCT of a head and neck cancer 

patient, (c) an overlaid volume of the images in (a) and (b), and (d) the planning CT with 

segmentation of sternocleidomastoid muscle. 
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grid spacing was set to be (8, 8, 4) times the image voxel dimensions of the reference image in 

the left-right (LR), the anterior-posterior  (AP), and IS directions, respectively.  The B-spline 

DIR was performed with various parameters associated with the image similarity metric and 

optimization algorithm.  To calculate the mutual information between the two images matched 

Table 4-1 Summary of the registration parameters selected for the B-spline deformable image 

registration of head and neck CT/CBCT image pairs.  LR, AP, and IS stands for the left-right, 

anterior-posterior, and inferior-superior directions, respectively. 
 

Registration parameters Values used 

Image resolutions  

 Number of resolution levels 4 

 Up-sampling factor 2 

Cubic B-spline transformation  

 Grid spacing at final level (times voxel dimensions)  8 (LR, AP), 4 (IS) 

 Up-sampling factor  2 

Mutual information (image metric)  

 Percentage of image voxels used for the calculation (%) 10, 20, 30 

 Number of histogram bins 50 

Regular step gradient descent optimization  

 Gradient magnitude tolerance – at the coarsest level 0.002, 0.004 

 Gradient magnitude tolerance – factor 0.75 ,1 

 Step size – at the coarsest level 4, 16, 64 

 Step size – factor 0.25, 0.5, 1 
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by the B-spline DIR, different fractions of the voxels within the entire region of reference image 

were utilized: 10, 20, and 30 %.  For the gradient descent optimization algorithm, different 

values were used for the convergence criterion, which is defined by the gradient magnitude of 

the cost function, and the step size, with which the B-spline coefficients (design variables) are 

updated along the direction of the gradients.  For both the gradient magnitude tolerance and the 

step size, two parameters are chosen, that is, its value at the coarsest level and the factor by 

which it is multiplied as summarized in Table 4-1.  

 

4.2.3.2 Evaluation of registration accuracy 

 Dice similarity coefficient (DSC) [46] was used in order to assess the accuracy of the B-

spline DIR.  DSC, defined as in Equation (4.8), is considered as a well-established measure for 

the registration accuracy at boundaries, i.e. auto-contouring accuracy. 

 

 
2 A B

s
A B




 (4.8) 

 

where A and B describe two different sets of voxels. If the two different sets coincide perfectly, 

the measure should be 1.  On the other hand, the DSC value is zero at no overlap between the 

two sets of voxels. 

For the accuracy evaluation of the B-spline DIR of the muscle, Equation (4.8) becomes  
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where LR represents a set of voxels labeled for the muscle region in reference image. The 

corresponding set of muscle voxels in target image is warped by the resultant B-spline 

transformation into the coordinates of the reference image, resulting in deformed target label LT, 

which naturally becomes a function of the B-spline coefficients c. 

 

 

4.3 Results 

The maximum DSCs were found as 88.9 % and 88.5 % for the B-spline DIRs without 

and with the penalty at the same image data sets, but with different registration parameters (see 

Table 4-2).  The percentage of image voxels used for the calculation of the mutual information 

was 20 % for both methods.  The tolerance for the gradient magnitude at the coarsest resolution 

level was 0.002 (with a factor of 0.75) vs. 0.004 (with a factor of 1).  The step size at the coarsest 

level was 64 vs. 16 with this step size unchanged through the four resolution levels for both the 

B-spline DIRs.  Figure 4-2 ((a) and (b)) shows the target labels of the muscle deformed by the 

deformation maps which are corresponding to the maximum DSCs.  As can be seen in Fig. 4-2 (a) 

and (b), the deformed target labels fairly well aligned the sternocleidomastoid muscle seen in the 

planning CT image.  
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Table 4-2 Summary of the parametric settings with the maximum DSCs found for B-spline DIR 

of one of the image data sets. 

 

Registration parameters Without penalty With penalty 

Mutual information (image metric)   

 Percentage of image voxels (%) 20 20 

Regular step gradient descent optimization   

 Gradient magnitude tolerance – at the coarsest level 0.002 0.004 

 Gradient magnitude tolerance – factor 0.75 1 

 Step size – at the coarsest level 64 16 

 Step size –factor 1 1 

Maximum DSC value (%) 88.9 88.5 

 
Table 4-3 Summary of the parametric settings under which the B-spline DIR resulted in highest 

DSCs values on average across the image data sets.  

 

Registration parameters Without penalty With Penalty 

Mutual information (image metric)   

 Percentage of image voxels (%) 30 20 

Regular step gradient descent optimization   

 Gradient magnitude tolerance – at the coarsest level 0.002 0.002 

 Gradient magnitude tolerance – factor 0.75 0.75 

 Step size – at the coarsest level 64 16 

 Step size – factor 1 0.5 

Maximum DSC value (%) 84.2 ± 3.2 84.2 ± 2.4 

 
 

 The parameters with which the B-spline DIR showed highest DSCs across the image data 

sets are shown in Table 4-3.  The maximum DSC was 84.2 ± 3.2 (%) vs. 84.2 ± 2.4 (%), showing 

that the elasticity penalty has almost no impact on the maximum DSC by the B-spline DIR. 
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(a)  (b)  

(c)  (d)  

Fig. 4-2. Axial cuts of a planning CT image on which the deformed target labels of the muscle 

are overlaid.  The muscle labels were deformed by the B-spline DIR (a), (c) without the 

penalty, and (b), (d) with the penalty.  The corresponding DSC values are (a) 88.9 %, (b) 

88.5 %, (c) 16.7 %, and (d) 77.8 %. 
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Comparing the DSC values obtained under various combinations of the parameters shows 

that the elasticity penalty improves the accuracy of the B-spline DIR.  The DSC values, each 

averaged across the data sets were graphed in box plots (Fig. 4-3).  The comparisons of the box 

plots show slight improvements in the DSC values by using the penalty: almost no increase in 

median (horizontal line in box plot), slight improvement in 1
st
 and 3

rd
 quartiles (bottom and top 

edges of box plot).  With 8 parametric settings out of 108 tested, which are all associated with 

the step size of 64 at the coarsest level, increases in DSC larger than 10 % were achieved by 

using the elasticity penalty while the maximum decrease was 2.2 %.    

 
                                            (a)                 (b) 

Fig. 4-3. Box plots of the DSC values obtained with various parametric settings (each averaged 

across the data sets), showing a comparison between the cases without and with the penalty; a 

part of the box plots in (a) was enlarged in (b) for the detailed comparison of the box plots.   
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In order to see the improvements by using the elasticity penalty in detail, the DSC values 

obtained for one of the image data sets were graphed in box plots (Fig. 4-4).  It is noted that the 

image data sets were chosen because the corresponding results showed the similar trends with 

those averaged across all image data sets, shown in Fig. 4-3.  As an example of a relatively large 

improvement that can be achieved by using the elasticity penalty, the DSC value was increased 

from 16.7 % to 77.8 %.  This improvement is also shown in Fig. 4-2 (c) and (d) by overlaying 

the deformed target labels on the planning CT image.  This finding indicated that the elasticity 

penalty enabled the B-spline DIR to avoid large misalignments. 

 

 
      (a)                              (b) 

Fig. 4-4. Box plots of the DSC values obtained with various parametric settings (for one image 

data set); a part of the box plots in (a) was enlarged in (b) for the detailed comparison. 
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Table 4-4 Comparisons of mDSC and sDSC calculated from the resultant deformation maps by 

the B-spline DIR without vs. with the elasticity penalty (mean ± standard deviation, p-value 

obtained with a paired t-test). 

 
 

 Without Penalty With Penalty p-value 

mDSC (%) 78.4 ± 4.8 80.0 ± 3.5 0.04 

sDSC (%) 8.3 ± 8.1 6.1 ± 5.5 0.14 

 

 

 

For each data set, mean (mDSC) and standard deviations (sDSC) were calculated from 

the DSC values obtained under the different parametric settings.  The mean and standard 

deviation from the data of mDSC, sDSC, maxDSC, and minDSC calculated for the 7 image data 

sets were presented in Table 4-4.  By using the penalty, on average, mDSC was increased by 1.6 % 

and sDSC was reduced by 1.8 %.  To test the statistical significance of the difference between 

the results obtained without and with the elasticity penalty, a paired t-test was performed.  As 

results of the statistical test, it was found that the accuracy (mDSC) was improved across the 

registration parameters with a statistical significance (p < 0.05).  To see the normality of the data, 

which is required for the t-test, Q-Q plots were generated for mDSC, sDSC, maxDSC, and 

minDSC as shown in Fig. 4-4.   
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Fig. 4-5. Q-Q plots of the differences of (a) mDSC, (b) sDSC, (c) maxDSC, and (d) minDSC 

obtained without and with the elasticity penalty. 
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4.4 Discussions 

It was proven that the elasticity penalty helped the B-spline DIR to avoid large 

misalignments that can be obtained without penalty under some of the parametric settings.  

Specifically, while almost no improvement was found on the highest accuracy by using the 

elasticity penalty, the B-spline DIR without penalty failed to align the muscle tissue depending 

on the parameter selection.  This correction of large misalignments resulted in improvement of 

1.6 % (p < 0.05) in the overall accuracy across the registration parameters associated with the 

image metric and optimization algorithm used.  It should be noted that 1.6 % improvement 

achieved in the overall accuracy cannot be interpreted as substantial change in terms of DSC.  

Rather, relatively large improvement in DSC (> 10 %) was obtained under 8 parametric settings 

out of 108, showing the major impact of using the elasticity penalty.  

 In this study, DSC was used as a quantification measure of the registration accuracy since 

no ground-truth DVF is given with CT and CBCT images for HN soft tissue region.  However, it 

should be noted that DSC only represent the quality of aligning contours of region of interest. In 

other words, high value of DSC achieved by B-spline DIR does not guarantee high registration 

accuracy of the volumetric deformation inside the muscle region.  To evaluate the accuracy of 

the volumetric deformation, which is required for the dose accumulation in adaptive radiation 

therapy, a rigorous evaluation may be necessary, for instance, using a finite element-based 

evaluation method [35]. 

There may be some other circumstances under which the elasticity penalty has more 

impact on the registration accuracy than the impact shown in this study, suggesting several future 
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studies.  First, in the B-spline DIR of registering the muscle in this investigation, the final B-

spline grid spacing was (8, 8, 4) times image voxel dimensions (approximately 10 mm in each 

direction), beginning from a coarser grid.  This multi-resolution scheme might restrict the level 

of flexibility of the B-spline transformation.  When a finer B-spline transformation is used and 

the multi-resolution DIR begins with relatively high-resolution images, the elasticity penalty may 

have a large impact on the resultant deformations.  Second, possible problems may include the 

deformable image registration of lung images, in which usually large deformation occurs.  

Furthermore, the elasticity penalty may have a relatively large impact when incorporated into 

other DIR algorithms such as demons algorithm. 

 The variations of the DSC values (sDSC) depending on the parameter selection were 

calculated as 8.3 % vs. 6.1 % for the B-spline DIR without and with the elasticity penalty (Table 

4-4).  By fine-tuning the parameters, a DSC close to 90 % was achieved for aligning the muscle 

while the average DSC was around 80 %.  These findings suggest that the registration accuracy 

is affected by the selection of registration parameters and thus the registration parameters are 

carefully chosen to a specific problem.  While some of the parameters associated with the image 

similarity metric and optimization algorithm were considered in this study, other parameters may 

have influence on the registration accuracy.   

A finite difference method was used to calculate the second-order derivatives of the 

displacement vector, which is represented using B-spline functions.  The rationale behind this 

calculation is based on understanding of the characteristics of the B-spline transformation.  

Additional constraints imposed on the second-order derivatives (in general, any order derivatives) 
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may not be satisfied by the B-spline transformation. It may be better to impose constraints on the 

displacement vector field than on the derivatives.  By using the finite different calculation, the 

elasticity penalty was calculated by using the displacement vector field only. 

 

 

4.5 Conclusions 

By using the elasticity penalty, the accuracy of the B-spline DIR of the 

sternocleidomastoid muscle was improved on average across the registration parameters 

associated with the image metric and optimization algorithm.  The overall accuracy (DSC) was 

improved because the elasticity penalty corrected the deformations with relatively low DSCs 

obtained by the B-spline DIR without penalty. 
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Chapter 5. Finite Element Head and Neck Model as a Supportive Tool for 

Deformable Image Registration 

 

 

5.1 Overview 

A finite element (FE)-based evaluation method was developed for the accuracy 

evaluation of the B-spline deformable image registration (DIR) of head and neck (HN) patient 

images.  Useful aspects of the FE HN model include the ability to produce realistic deformations 

(similar to those seen in patients over the course of radiation treatment), and a rational means of 

generating new configurations, e.g., via the application of displacement and/or force boundary 

conditions.  FE HN models were constructed based on cone-beam computed tomography 

(CBCT) images of HN cancer patients.  For the FE analysis using the models, the skeletal 

elements were modeled as homogeneous rigid material and the surrounding tissue was modeled 

as homogeneous, linear elastic material.  The developed FE model was capable of generating 

realistic deformations that are strain-free for the skeletal elements and of creating new 

configurations of the skeletal system with the surrounding tissues reasonably deformed.  The FE 

models were also used to evaluate the accuracy of the B-spline DIR of five cervical vertebrae 

(C1 to C5).  The results suggest that the FE models have a potential to provide a way of 

evaluating the accuracy of DIR by producing ground-truth displacement vector field (DVF) and 

correspondingly simulated images. 
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5.2 Methods 

 

5.2.1 Preliminary test of a FE model under displacement/force boundary conditions 

 A FE head and neck model was constructed based on a head and neck cone-beam CT 

scan with an image dimension of 384 × 384 × 72 (0.651 × 0.651 × 2.5 mm
3
 pixel dimension).  

First, voxels were automatically classified into 15 subsets according to the intensity values: 7 

bony structures, 5 discs, 2 mandibular joints, and 1 class for the surrounding tissue.  The discs 

were manually segmented based on a published study [47].  These discs and the joints connect 

the skull, mandible, and cervical vertebrae together.  Manual modifications were applied on these 

voxel groups in order to make sure that there is no hole inside a structure or no isolated voxel 

outside the structure.  These classified and refined voxel groups were converted to surface 

models (3-node triangular meshes).  For the segmentation and surface model creation, a 

commercial software package (Mimics 14, Materialise Inc., Ann Arbor, MI), was used. 

These triangular surface meshes were then converted to 4-node tetrahedral meshes.  

During this volumetric mesh generation, all the surface models were connected so that any two 

surfaces share all the nodes at the interface (HyperMesh 10.0, Altair Engineering Inc., Troy, MI).  

In other words, this can be interpreted that continuity conditions were imposed on the DVF at the 

interfaces between any two difference regions.  The final FE model, shown in Fig. 5-1, was 

composed of 49731 nodes and 270382 elements.   

As an example of the possible applications of the FE head and neck model, a deformation 

analysis was performed on the model under a set of displacement boundary conditions.  For this 
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analysis, individual displacement boundary conditions were extracted from each of the surface 

pairs of the skull, mandible, and cervical vertebrae on two cone-beam CT scans which were 

taken at different treatment sessions.  Specifically, 4 × 4 transformation matrices were obtained 

by using a surface registration algorithm (STL Registration, Mimics 14, Materialise Inc., Ann 

Arbor, MI).  These transformation matrices were then used to calculate DVFs.  Given these 

displacements as boundary conditions, a DVF was calculated by FE analysis using a commercial 

software package (ABAQUS 6.10, Simulia Corp, Northville, MI).  Values of Young’s modulus 

and Poisson’s ratio (Table 5-1) were taken from previous studies [48-49]. 

 

Fig. 5-1. Illustration of a FE head and neck model, in which bony elements, such as cervical 

vertebrae, mandible, and skull, are mechanically connected by intervertebral discs. 
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Table 5-1 Mechanical properties used for bone, disc, and soft tissue in the FE head and neck 

models.  

 
 

 

 

 

As the skeletal elements in the FE model were interconnected, a simple means of 

phantom reconfiguration can be achieved via application of a small number of force vectors.  As 

an example, forces applied to the mandible and C5 as shown in Fig. 5-2.  To reflect the condition 

of patient positioning at treatment (i.e. to restrict the transformation to the deformation about the 

Material 
Young’s 

modulus (MPa) 

Poisson’s 

ratio 

Bone 12000.0 0.29 

Disc 3.4 0.40 

Soft tissue 1.8 0.49 
   

Fig. 5-2. Illustration of a set of force boundary conditions applied to the mandible and fifth 

cervical vertebra. 
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treated configuration of the patient), zero displacement on 4 points on the C2 vertebral body 

were imposed as displacement boundary conditions for this method.  By the combination of 

force and displacement boundary conditions, a new phantom configuration was obtained by the 

FE analysis using ABAQUS 6.10.  

 

5.2.2 Application to the evaluation of B-spline deformable image registration accuracy 

Five FE HN models were constructed and used for the B-spline DIR of five cervical 

vertebrae, similar to the problem addressed in Chapter 3.  The overall flow for the FE-based 

accuracy evaluation is illustrated in Fig. 5-3.  First, the translation and rotation of the cervical 

 

CBCT Reference Image 
Synthetic Reference Image 

CBCT Target Image 

Finite Element Analysis 

Computed DVF 

Surface 

Geometry 

Surface 

Geometry 

Measured 

motions by 

surface 

registration 

Fig. 5-3. Schematic description of FE-based generation of synthetic reference image and DVF 

(considered as the ground-truth DVF). 
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vertebrae were measured by registering the surface models constructed from the CBCT image 

pairs.  The measured motions were then applied to the finite element model as displacement 

boundary conditions for the five cervical vertebrae.  Finally, the synthetic reference images were 

generated by deforming the target CBCT images with the DVFs generated by the finite element 

analysis, which is considered as the ground-truth DVFs in the following tests.  Then, the B-spline 

DIR was performed on the 25 sets of the synthetic reference and target CBCT images with the 

ground-truth DVFs generated by FE models.  The B-spline DIR was performed without any 

penalty, and with the orthonormality-based rigidity penalty and the distance-preserving rigidity 

penalty (see Chapter 3 for both penalties). 

In this study, the DIR with multi-resolution B-spline was implemented using the Insight 

Segmentation and Registration Toolkit (ITK) [44].  The B-spline DIR was set to begin with low-

resolution image which was down-sampled by a factor of 4 in the left-right (LR) and anterior-

posterior (AP) directions, not sampled in the inferior-superior (IS) direction.  Then, the 

resolution of the reference and target images were doubled after each levels of registration was 

finished.  The sum of the squared difference of image intensity [50], one of the most popular 

metrics was used to represent dissimilarity between the reference and target CBCT images.  

 

5.2.2.1 Measurement of rigid motions: segmentation, surface model construction, and 

surface registration 

In order to generate the synthetic reference images though FEM, one reference image and 

5 target images for each of 5 patients were subject to segmentation and surface model generation.  
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Voxels that belong to the five cervical vertebrae were automatically segmented by thresholding 

intensity values on both the reference and target images, and manual modifications were applied 

for separating each vertebral body from neighboring ones.  Final segmentation results are 

illustrated in Fig. 5-4 (a), (b), (d), and (e).  The segmented voxel sets were then converted to the 

corresponding surface models as shown in Fig. 5-4. (c) and (f).  Rigid motions of the cervical 

vertebrae were measured by the aforementioned surface registration algorithm (see also Chapter 

3.2.4.1).  

Reference 

Image 

Target 

Image  

(a)  (b)  (c)  

(d)  (e)  (f)  

Fig. 5-4. Results of segmenting and constructing surface models for the five cervical 

vertebrae represented in a pair of reference and target CBCT images of a patient: (a), (d) 

labeled voxels for the cervical vertebrae overlaid on the sagittal cut, (b), (e) labeled voxels for 

the C2 vertebra overlaid on the axial cut, and (c), (f) surface models constructed for the 

vertebrae. 
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5.2.2.2 Generation of the computed DVFs and synthetic reference images via finite element 

analysis 

The surface models from the reference image were converted to volumetric meshes for 

finite element modeling.  The rigid motions measured by the surface registration were used as 

displacement boundary conditions.  Finite element analysis calculated the DVFs in the neck 

region (shown in Fig. 5-3), which were considered as the ground-truth DVFs in the following 

tests.  Synthetic reference images were generated by applying the computed DVFs to each of 25 

target CBCT images from 5 patients.      

 

5.2.2.3 Evaluation of registration accuracy 

For the evaluation of the accuracy of the B-spline DIR, three quantitative measures were 

calculated: registration error, transformation, and the Procrustes distance (see Chapter 3.2.4.2).  

 

 

5.3 Results 

 

5.3.1 FE analysis under displacement boundary conditions 

Figure 5-5 (a) shows the resultant DVF overlaid on an axial cut of CBCT image volume 

on which the construction of the FE model was based.  It demonstrates the transformation 

resultant from a translation as well as rotation of the proximal vertebral body.  In addition, the 

original configuration was transformed into a new configuration as can be seen in Fig. 5-5 (b) 
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that shows the original and transformed surfaces of the cervical vertebrae.  The maximum 

displacement magnitude of all nodal points was 7.0 mm.  

The accuracy for the FE analysis was verified by manually locating 8 landmark pairs on 

both images; these landmark points are located at the midpoint of the bilateral foramina of the 

cervical vertebrae.  Differences between the displacements measured using the landmarks and 

those generated by the FE analysis were (0.2 ± 0.3, −0.2 ± 0.4, −0.1 ± 1.0) [mm].  This result 

shows that the FE analysis correctly transformed the original configuration into the target 

configuration.  The strain components calculated on the bony elements were close to zero, 

indicating a realistic skeletal deformation was resulted.  

(a)  (b)  

Fig. 5-5. Results of the FE analysis under displacement boundary conditions: (a) the 

displacement vector field overlaid on an axial plane of the cone-beam CT image volume on 

which the model was constructed (scaled), (b) the original and deformed geometries of the 

cervical vertebrae (C1-C5) with the level of the CT slice shown in (a) annotated (A = anterior, 

P = posterior, L = left, R = right) 
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(a)  (b)  

Fig. 5-6. Results of the FE analysis under a combined set of force and displacement boundary 

conditions: (a) the displacement vector field overlaid on an axial plane of the cone-beam CT 

image volume on which the model was constructed (scaled), (b) the original and transformed 

geometries of the cervical vertebrae (C1-C5) with the level of the CT slice shown in (a) 

annotated, (c) the maximum principal strain field shown on the deformed geometry (A = 

anterior, P = posterior, L = left, R = right) 

 

(c)  
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5.3.2 FE analysis under force and displacement boundary Conditions 

Figure 5-6 shows an example of force-based model reconfiguration with displacement 

boundary conditions for C2.  Although, in this analysis, forces were applied only to the mandible 

and C5, the other bony elements accordingly moved and deformation also occurred in the 

surrounding tissue.  The DVF is overlaid on an axial plane of the CBCT image in Fig. 5-6 (a).  

The original and deformed surfaces of the cervical vertebrae are compared in Fig. 5-6 (b).  The 

values of the maximum principal strain are plotted on the deformed geometry in Fig. 5-6 (c).  

Nearly zero strains calculated in the regions of the mandible and C4 clearly show that the FE 

model is able to produce skeletal deformations via FE analysis under force and displacement 

boundary conditions. 

 

5.3.3 Accuracy evaluation of deformable image registration of five cervical vertebrae 

Figure 5-7 shows comparisons of the DVFs from registrations (blue) with the ground-

truth DVF (red).  Figure 5-8 shows the comparison of the synthetic reference image and the 

deformed target images generated by applying the DVFs from the registration.  The DVFs 

without and with rigidity penalty (either orthonormality-based or distance-preserving) 

transformed bone voxels in the target image visibly close to those in the reference image, 

indicating that all image registrations performed reasonably well in terms of intensity matching.  

However, the detailed examination of the DVFs in Fig. 5-7 reveals that the B-spline DIR without 

penalty resulted in the deformation maps that lacked biomechanical consistency in the skeletal 

elements, where considerable local deformation was observed in the vertebral bodies.   
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The displacement components in the AP and IS directions plotted in Fig. 5-9 (a) and (b) 

show how the resultant DVFs with the orthonormality-based and distance-preserving rigidity 

(a)  (b)  (c)  

Fig. 5-7. Comparison of the DVFs (blue) by the B-spline DIR (a) without penalty, (b) with the 

orthonormality-based rigidity penalty, and (c) with the distance-preserving rigidity penalty to 

the ground-truth DVF (red). 

 

(a)  (b)  (c)  (d)  

Fig. 5-8. Sagittal cuts of (a) a synthetic reference image and the target images deformed by 

the DVFs (shown in Fig. 5-7) by the B-spline DIR (b) without penalty, (c) with the 

orthonormality-based rigidity penalty, and (d) with the distance-preserving rigidity penalty. 
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penalties recovered the ground-truth DVF exhibiting abrupt changes across the vertebrae.  While 

the DVF obtained with the conventional orthonormality-preserving penalty was over-smoothing 

(a)  

(b)  

Fig. 5-9. Plots of the displacement vector components in the (a) AP and (b) IS directions across 

the vertebral bodies. 
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or oscillatory, the DVF obtained with the proposed distance-preserving penalty faithfully 

recovered the acute changes in the displacement.  

The mean magnitudes and standard deviations of the registration errors are summarized 

in Table 5-2.  Compared to the mean magnitude of (1.91, 2.13, 1.68) mm and (0.13, 0.17, 0.26) 

mm obtained by the B-spline DIR without rigidity penalty and with the orthonormality-based 

Table 5-2 Registration errors between the DVFs in the LR, AP, and IS directions of the five 

cervical vertebrae without and with the rigidity penalties. 

 

 
Intensity-based Orthonormality-

preserving 

Distance-preserving 

Registration 

Error (mm) 
    

Mean magnitude (1.91, 2.13, 1.68) (0.13, 0.17, 0.26) (0.08, 0.10, 0.12) 

Standard deviation (2.54, 2.77, 2.26) (0.18, 0.24, 0.34) (0.12, 0.14, 0.16) 

 

 

Table 5-3 Comparison of the transformation errors and Procrustes distance between the DVFs 

without penalty and with the rigidity penalties. 

 

 
Intensity-based Orthonormality-

preserving 

Distance-preserving 

Translation (mm) 

 

 

 

 

    

Mean magnitude (0.55, 0.87, 0.57) (0.07, 0.09, 0.12) (0.04, 0.05, 0.08) 

Standard deviation (0.61, 1.07, 0.73) (0.08, 0.12, 0.15) (0.05, 0.06, 0.10) 

Rotation (°) 

 

 

 

 

    

Mean magnitude (2.12, 1.03, 1.31) (0.59, 0.31, 0.32) (0.46, 0.22, 0.19) 

Standard deviation (2.33, 1.33, 1.65) (0.74, 0.39, 0.42) (0.67, 0.29, 0.25) 

Procrustes distance (mm) 3.52 (0.36) 0.30 (0.11) 0.12 (0.07) 
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rigidity penalty, the mean magnitude of registration error was reduced to (0.08, 0.10, 0.12) mm 

with the distance-preserving rigidity penalty. 

The mean magnitudes and standard deviations of the transformation errors are 

summarized in Table 5-3.  The proposed distance-preserving rigidity penalty outperformed the 

existing orthonormality-based rigidity penalty: (0.04, 0.05, 0.08) mm vs. (0.07, 0.09, 0.12) mm 

for translation and (0.67, 0.29, 0.25) ° vs. (0.74, 0.39, 0.42) ° for rotation.  The Procrustes 

distances for the proposed distance-preserving rigidity penalty were less than those for no 

rigidity penalty and the existing orthonormality-based rigidity penalty: 0.12 mm (0.07 mm) vs. 

3.52 (0.36 mm) and 0.30 mm. 

 

 

5.4 Discussion 

      The objective of this work was to develop a FE head and neck model as a supportive tool 

for DIR research in Radiation Therapy.  The FE model can provide realistic deformations in the 

neck region.  As a computational head and neck phantom, the model provides a tool for the 

evaluation of DIR accuracy.  The deformations obtained by the FE model can be used to 

simulate images with the effects of realistic variations in neck translocation and articulation.  

These ground truth deformations and corresponding image volumes provide a set of tools to 

examine the accuracy of DIR algorithms.  

 The registration results obtained with the 25 sets of the synthetic reference and target 

CBCT images showed similar trends with those obtained with the 25 sets of the CT and CBCT 
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images shown in Chapter 3.  This finding indicated that the finite element-based evaluation 

method was successfully implemented for the B-spline DIR of the cervical vertebrae.  

 It is noteworthy to mention differences in the B-spline DIR accuracy of the five cervical 

vertebrae shown in Tables 3-3 and 5-2.  The registration error in the IS direction was larger for 

the deformations obtained with the real image pairs (Table 3-3) than for those with the 

synthetic/real image pairs (Table 5-2): 0.38 mm vs. 0.12 mm with the proposed distance-

preserving rigidity penalty.  The reasons for this discrepancy can be found from differences 

between the two different studies.  The ground-truth DVFs for the study in Chapter 3 include 

errors of measuring the rigid motions of the five cervical vertebrae via the surface registration.  

On the other hand, in the FE-based evaluation of the registration accuracy in this chapter, the 

ground-truth DVFs do not have any error since the synthetic reference images were simulated via 

the FE analysis.  Another difference, which may have an impact on the accuracy, is in the type of 

the DIR problems.  While the CT and CBCT images, used in the study in Chapter 3, have 

different intensity histograms (so a mutual information works properly), the B-spline DIR 

problem in the study in this chapter is a problem of aligning two images of same kind. 

 The current FE model can be improved by considering other soft tissues such as muscles 

in the neck region.  With the use of nonlinear elastic material properties, the deformation in the 

surrounding tissues may be more reasonably produced.  The use of the FE-based evaluation 

method presented in this study is limited to the evaluation of the registration accuracy between 

the images acquired with the same imaging modality.  In order to use the FE models for the 
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accuracy evaluation of multimodal image registration problems, a special technique should be 

used to deform the target images to generate synthetic reference images.  

      One of the challenging tasks for the construction of the FE model was to segment the 

discs which are, in general, not visually distinguishable in CT images.  The geometries of the 

discs in the model may have an influence on the value of the elastic stiffness of the discs.  

However, this may not remarkably degrade the ability of the model to generate realistic 

deformations; assigning large values of Young’s modulus to the skull, mandible, and cervical 

vertebrae (Table 5-1) guarantees the rigid body motions of those components.  

      Another limitation of the current model is that the geometry of the skull is simplified for 

the sake of convenience in volumetric meshing.  While increasing the potential for non-physical 

deformations, the overall rigidity of the skull as a unit suggests that simplifying its shape 

somewhat may have minimal influence on the propagation of forces and displacements to 

surrounding anatomy. 

      Furthermore, physiological changes such as weight loss, tumor growth, and tumor 

response to radiation have not been taken into consideration.  Incorporating a mathematical 

model of tumor growth and response may further aid the utility of this model for enhancing and 

investigating image registration accuracy. 

 

 

 

 

A 
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5.5 Conclusions 

The FE HN models developed successfully generated realistic deformations similar to 

those seen from the patients (e.g. no local deformation in skeletal elements).  The FE-based 

evaluation framework was successfully used to evaluate the accuracy of the B-spline DIR of five 

cervical vertebrae. 
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Chapter 6. Summary 

 

 

6.1 Summary  

The objective of the thesis is 1) to improve the accuracy of the B-spline deformable 

image registration (DIR) of head and neck (HN) CT/CBCT images by developing penalties, and 

2) to develop a finite element (FE)-based evaluation method of the registration accuracy.  

 The distance-preserving rigidity penalty improved the accuracy of the B-spline DIR of 

five cervical vertebrae in the neck region and outperformed the existing orthonormality-based 

rigidity penalty for this particular problem, in which multiple rigid bodies are tightly located, as 

discussed in Chapter 3.  By using the elasticity penalty, large misalignments, which resulted 

from the B-spline DIR without the aid of the penalty and under some of the parametric settings, 

were corrected (Chapter 4).  The deformations with low DSC values (< 20 %) were corrected by 

using the elasticity penalty.  A finite element (FE)-based evaluation method was developed by 

constructing the FE models, which are capable of generating realistic deformations similar to 

those seen from HN patients.  The FE-based method was utilized to rigorously evaluate the 

accuracy of the B-spline DIR of five cervical vertebrae. 
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6.2 Future Work 

Testing on a sufficient sample size of, for instance, 30 patients will need to be performed 

as a future study in order to strongly support the findings in this thesis.  A limitation of the 

dissertation is that B-spline DIR was performed on the image data sets of a few HN patients (5 

patients in Chapters 3 and 5, and 2 patients in Chapter 4).  For the study in Chapter 3, these small 

sample numbers may be justified with the finding that the rigid motions measured by a surface 

registration (seen from 5 HN patients) were comparable to those measured with the image data 

sets of 23 HN patients in Ahn et al. [43].  In addition, immobilizing a HN patient by using 

thermoplastic mask is a current clinical routine that prevents large setup error.  In addition, 

relatively large displacements of lower cervical spine and rotation of C1 vertebra, typical 

motions seen from the HN patients who are adequately immobilized and positioned in reference 

to C2 position, were taken into consideration in this dissertation.  However, testing with 

additional patients samples will help sufficiently cover the range of variability that will be 

encountered in clinical practice.  For instance, a HN patient with osteoporosis may undergo bone 

deformation when positioned, possibly affecting the efficacy of the proposed rigidity penalty.  

The impact of registration parameters was considered in the study with the elasticity 

penalty (Chapter 4) while not in the study with the rigidity penalty (Chapter 3).  This can be 

explained by the difference in the impact of the penalty terms on the performance of the B-spline 

DIR.  The proposed distance-preserving rigidity penalty could prevent the bone warping of five 

cervical vertebrae, in other words, correct physically unreasonable deformation.  On the other 

hand, the ability of the elasticity penalty to prevent nonphysical deformation could not be proven 
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because there was no method to evaluate the accuracy of volumetric deformation.  Instead, by 

performing B-spline DIR with various parameter selections, it was proven that the elasticity 

penalty could help the B-spline DIR to avoid large misalignments obtained under some of the 

parametric settings.  Although the main contributions of the penalty terms to the B-spline DIR 

are different, the impact of registration parameters should be investigated in a future study with 

the rigidity penalty terms.  

The impact of the elasticity penalty should be further investigated in future work.  First, 

the elasticity penalty needs to be tested for the B-spline DIR of other muscles in the HN region.  

However, in this registration problem, it will be challenging to evaluate the registration accuracy 

since it is hard both to segment other muscles and to find ground-truth displacement vector fields 

(DVFs).  Therefore, this future study should be supported by an improved evaluation method, for 

instance, FE-based evaluation method.  Second, the impact of the elasticity penalty needs to be 

verified with an additional test either on images of another region or with another DIR algorithm 

such as a demons algorithm.  The deformations covered by the multi-resolution B-spline DIR for 

the sternomastoid muscle in the HN region were smooth, so that the elasticity penalty may not be 

used to correct physically unreasonable deformations.  A potential impact of the elasticity 

penalty to regularize physically unreasonable deformations should be investigated in a future 

study.  

The distance-preserving rigidity penalty (Chapter 3) and the elasticity penalty (Chapter 4) 

were separately used in the B-spline DIR of HN CT/CBCT image pairs.  Although the impact of 

each of the penalty terms was investigated, it is still uncertain how those terms will work when 
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combined with each other.  It should be investigated as a future study whether the two penalty 

terms have the same impact compared to when each was individually tested.  In addition, the 

planning CT images were cropped so that the images include the regions, where the registration 

accuracy was evaluated, i.e. five cervical vertebrae in Chapter 3 and sternomastoid muscle in 

Chapter 4.  In order for the findings from the dissertation to have clinical relevance, the B-spline 

DIR should be tested with a sufficiently wide image portion that contains all important structures 

such as tumor volumes and normal organs-at-risk. 

In addition, this thesis mainly focused on B-spline DIR of planning CT and treatment 

CBCT images.  However, this is only a special case of HN RT, in which a patient is examined 

with a CBCT scanner on a daily basis.  In contrast to the CBCT-guided RT, a patient is scanned 

with a conventional CT scanner a few times, e.g. weekly or daily, during the course of RT in 

another type of adaptive radiation therapy [7, 51].  In this case, CT-CT DIR needs to be 

performed instead of CT-CBCT DIR.  As a future study, it is of interest to evaluate the impact of 

the penalty terms on the accuracy of the CT-CT B-spline DIR. 

The FE HN models were used only for the evaluation of the B-spline DIR of rigid regions 

such as cervical vertebrae.  In order for the current FE models to be used to evaluate the 

deformations in soft tissue in the HN region, the models should be further improved.  For 

instance, a simple way to improve the model will be applying different mechanical properties for 

HN soft tissue regions in a relation to the image intensity values of each region.  Two main types 

of soft tissue in the HN region are muscle and fat, each of which has an own range of the image 

intensity value and corresponding mechanical properties.  This approach does not require to 
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construct surface meshes for each of the soft tissue regions and to consider sliding motions 

between muscles.  Simply assigning different mechanical properties to the FE elements of each 

soft tissue region will provide more realistic deformations than the case of treating the entire HN 

soft tissue region as a homogeneous, elastic material.  Although it is hard to segment all of HN 

muscles and other soft tissues from CT scans, with the aid of atlas, it could be possible to 

construct a realistic FE model, in which some of sliding motions are taken into account.  With 

physically realistic deformations generated with the aforementioned improvements, the accuracy 

of DIR algorithms can be rigorously evaluated in the HN soft tissue region as well as in the 

skeletal regions.   

 

 

6.3 Thesis Contributions 

 

6.3.1 Scholarly Contributions 

This dissertation aims at improving the accuracy of the B-spline DIR of HN CT images 

by introducing penalty terms from biomechanical principles and developing a FE-based 

evaluation method for DIR accuracy in HN region.  The scholarly contributions of this 

dissertation can be summarized as follows: 

 Distance-preserving rigidity penalty:  Development of a rigidity penalty which is 

designed to preserve inter-voxel distances within each rigid region.  This penalty term 

outperformed an existing rigidity penalty that preserves the orthonormality of the 
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deformation gradient tensor for the B-spline DIR of tightly-located multiple skeletal 

elements such as five cervical vertebrae in HN region.  The orthonormality-based 

rigidity penalty cannot fully prevent the bone warping problem when multiple rigid 

regions exist in close proximity.  The development of the proposed penalty was based 

on a fundamental understanding of the B-spline DVF, which is represented as a linear 

combination of B-spline basis functions.  Imposing constraints on the derivatives of 

the DVF (e.g. the orthonormality condition), not on the DVF directly, cause the B-

spline DIR to be over-constrained, thus resulting in over-smoothness or oscillation in 

the DVF. 

 Elasticity penalty:  Use of a penalty that preserves linear elasticity within 

sternomastoid muscle during B-spline DIR of HN CT images.  This study is a first 

effort to use a penalty within DIR of HN images.  The penalty term is designed to 

prevent the resultant DVFs from violating the static equilibrium equations for linear 

elastic materials.  By using this elasticity penalty, the overall workflow of the B-

spline DIR can be improved by eliminating time-consuming parameter tuning 

processes.  Using a finite difference method for the computation of the second-order 

derivatives of DVF, which is required to compute the penalty term, enabled to impose 

constraints on the DVF, avoiding possible issues with constraints on the derivatives. 

 FE-based evaluation of registration accuracy:  Development of a FE HN model 

that can be used to evaluate registration accuracy.  An effort was made to generate 

ground-truth DVFs similar to those which can be seen from HN patients.  Simulating 
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the FE model under the displacement boundary conditions, i.e. the rigid motions of 

skeletal elements measured by a surface registration, can generate physically 

reasonable DVFs.  For instance, no local deformation occurs within the skeletal 

elements.  Therefore, the B-spline DIR accuracy of five cervical vertebrae was 

successfully evaluated with the current FE model.  This study provides a good 

starting point for the development of an advanced FE model which is capable of 

providing ground-truth DVFs that have a sufficient coverage of the HN region. 

 

6.3.2 Societal Contributions 

The outcome of the dissertation may contribute to successful treatment of HN cancer 

with radiation.  The accurate deformation maps obtained by the B-spline DIR with the aid of the 

penalties can bring enhancement in detecting anatomical changes in healthy tissue regions 

surrounding tumor in a patient.  Then, this enhancement will help accurately estimate the 

radiation dose delivered to the patient and determine whether the initial radiation treatment plan 

needs to be adjusted in response to the anatomical changes provided by the B-spline DIR.  The 

FE HN models can support the development and research of DIR algorithms by providing 

realistic ground-truth DVFs, with which the registration accuracy of B-spline DIR algorithm can 

be rigorously evaluated before its use in the clinic setting.
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