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Abstract

Traditional studies of algorithms consider the sequential setting, where the whole input
data is fed into a single device that computes the solution. Today, the network, such as
the Internet, contains of a vast amount of information. The overhead of aggregating all
the information into a single device is too expensive, so a distributed approach to solve
the problem is often preferable. In this thesis, we aim to develop efficient algorithms for
the following fundamental graph problems that arise in networks, in both sequential and
distributed settings.

Graph coloring is a basic symmetry breaking problem in distributed computing. Each node
is to be assigned a color such that adjacent nodes are assigned different colors. Both the
efficiency and the quality of coloring are important measures of an algorithm. One of our
main contributions is providing tools for obtaining colorings of good quality whose existence
are non-trivial. We also consider other optimization problems in the distributed setting.
For example, we investigate efficient methods for identifying the connectivity as well as the
bottleneck edges in a distributed network. Our approximation algorithm is almost-tight in
the sense that the running time matches the known lower bound up to a poly-logarithmic
factor. For another example, we model how the task allocation can be done in ant colonies,
when the ants may have different capabilities in doing different tasks.

The matching problems are one of the classic combinatorial optimization problems. We study
the weighted matching problems in the sequential setting. We give a new scaling algorithm
for finding the maximum weight perfect matching in general graphs, which improves the
long-standing Gabow-Tarjan’s algorithm (1991) and matches the running time of the best
weighted bipartite perfect matching algorithm (Gabow and Tarjan, 1989). Furthermore, for
the maximum weight matching problem in bipartite graphs, we give a faster scaling algorithm
whose running time is faster than Gabow and Tarjan’s weighted bipartite perfect matching
algorithm.

x



Chapter 1

Introduction

Large networks arise in various scenarios such as the Internet, the cellular network, the
social network, and the biological system. Traditional studies focus on developing efficient
algorithms for problems arising in networks, when the whole graph data is fed into a sin-
gle computational device. However, due to limited communication, the autonomy of the
nodes, and the massive size of the network, a distributed model of computation is sometimes
more realisitic. Instead of having a centralized coordinator, goals are achieved through co-
ordination between the nodes. Nodes can communicate directly if there are links between
them.

We study several basic graph problems in both sequential and distributed settings. The first
part is dedicated to distributed graph coloring problems. The second part considers other
distributed optimization problems. The third part studies the matching problems in the
seqeuntial setting.

1. Graph Coloring. Consider that in a network, two adjacent nodes cannot broadcast
at the same time. Protocols such as time division multiple access (TDMA) resolve
this problem by assigning adjacent nodes with different time slots. Assigning the time
slots for the nodes is equivalent to the graph coloring problem. Two measurements are
considered. One is the efficiency, that is, to color the nodes using as few communication
rounds as possible; another is the quality of coloring, that is, to use as few colors as
possible. We study a variety of coloring problems in the distributed setting under both
measurements.

1



2. Other Distributed Optimization Problems. When considering the optimization
problems in the distributed setting, a simple algorithm is often needed under limited
computation and communication. We study optimization problems in the distributed
setting, including how to efficiently compute a minimum cut in a distributed setting
and task allocation problems in ant colonies.

3. Matchings. The matching problems are classic problems in combinatorial optimiza-
tion. They have various applications arising in task assignment, radar tracking sys-
tems, scheduling of a communication switch etc. Faster matching algorithms can lead
directly to faster algorithms for solving many combinatorial optimization problems,
such as Christofides’ 3/2-approximate Metric TSP algorithm [22], the Chinese Post-
man problem [115], and undirected single-source shortest paths [58]. We study how
fast we can compute weighted matchings in the sequential setting.

1.1 The Distributed Model

In the distributed setting, the underlying network is a graph G = (V, E), where each node
hosts a processor. The computation proceeds in synchronized rounds. In particular, at the
beginning of each round, each node receives messages from its neighbors sent from the last
round. Then, the nodes start to do computation. When the computation is finished, the
node sends every neighbor a message. The messages sent to different neighbors may be
different. The round ends when every node has finished sending the messages. The messages
will reach their destinations in the beginning next round.

The time complexity is measured by the number of rounds. In the LOCAL model, we assume
the message size is unbounded, whereas in the CONGEST model, each message is bounded
by O(log n) bits [144]. We denote the number of vertices in G by n, the number of edges
by m, the maximum degree by ∆, the diameter by D. With high probability (w.h.p.) means
with probability 1− 1/nc, for a fixed constant c. In most cases, we also assume that there is
an O(log n)-bits unique identifier, ID(u), associated with each vertex u ∈ G. In the problems
we study, the input graph is the underlying network itself.

2



1.1.1 A Sample of Problems in Distributed Computing

An independent set is a set vertices where each pair is non-adjacent. A maximal independent
set (MIS) is an independent set such that each vertex in G is in the set or is adjacent to at
least one vertex in the set. The MIS problem is a natural problem that arises in distributed
networks. For example, it arises when the nodes are to cluster themselves such that the
cluster-heads are non-adjacent. Recent studies also pointed out the similarity between the
MIS problem and the development of the fly’s nervous system, when sensory organ precursor
(SOP) cells are chosen [1]. Finding an MIS is a building block for many distributed algorithms
[144] (e.g., the Moser-Tardos algorithm in Section 2).

A straightforward way to find the MIS is the following. Each active node sends its identifier
to its neighbor. If a node has the smallest identifier among its active neighbors, then it selects
itself to be in the MIS and then informs its neighbors. If a node or its neighbor has been
selected to be in the MIS, then it becomes deactivated. If this step is repeated, all vertices
will become deactivated eventually. The description of the algorithm can be implemented
easily in the CONGEST model. However, such an algorithm may take time proportional to
n, the number of nodes.

With the help of randomization, Luby [120] showed that an MIS can be computed in O(log n)
rounds w.h.p. Such a time complexity has the meaning that the algorithm is local in the
sense that each node does not have to know the information of the whole graph to find
an MIS. One of the variants of Luby’s algorithm is the following: Instead of using a fixed
identifier in the above algorithm, each node generates an identifier randomly in each round.
It selects itself to be in the MIS if it has the smallest identifier among its active neighbors.
Luby’s analysis shows such a modification would reduce the compleixty to O(log n).

Interestingly, at the time this thesis is written, there are no algorithms that have an faster
asymptotic running time (in n) than Luby’s algorithm, although there are faster algorithms
when the degree, ∆, is bounded or when the graph contains some structure [7,8,10,11,156].
On the other hand, Kuhn, Moscibroda, and Wattenhofer [110] gave a Ω(

√
log n) lower bound

for the MIS problem. Their lower bound holds under the LOCAL model and is immune to
randomization.

Two problems are closely related to the MIS problem: the maximal matching (MM) and the
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coloring problems. A matching is a set of vertex-disjoint edges. A maximal matching (MM)
is a matching such that each edge in G is incident to some edge in the matching. An MIS
algorithm can be used to find the MM by simulating it on the line graph of G. The coloring
problems are to color the vertices (or edges) such that adjacent vertices (or edges) are not
assgined the same color. In Part I of the thesis we will discuss more about these problems.

The MIS and the related problems can be computed without learning the whole graph.
However, problems such as the minimum spanning tree (MST) are known to be global.
Consider a ring with n nodes. Whether an edge uv is in the MST depends on whether the
weight of uv is smallest among all the edges. Obviously, this information cannot be learned
at u in less than n/2 rounds, even in the LOCAL model.

For the problems that require global knowledge, it would require Θ(D) rounds for each node
to learn the whole graph. In Θ(D) rounds, problems in the LOCAL model become trivial,
since after learning the whole information of the graph, the solution can be computed at
a single node locally and broadcast back to the entire graph. Therefore, the interesting
questions are how efficient the problems can be solved in the CONGEST model, when there
are limits on the bandwidth. For the MST problem, Kutten and Peleg [114] gave an algorithm
that runs in O(

√
n log∗ n + D) rounds in the CONGEST model. The former term reflects the

congestion bottleneck on the information needed. For the lower bounds, by reductions from
communication complexity results, Das Sarma et al. [31] showed Ω̃(

√
n + D) lower bounds

for a series of global problems, including MST, shortest path, minimum cuts, etc. In Chapter
6, we will give an almost-tight approximation algorithm for the minimum cut that runs in
Õ(
√

n + D) rounds.

1.1.2 Definitions for the Coloring Problems

In this section, we define several notations for the graph coloring problems. In the vertex
coloring problem, we are given a graph G = (V, E), where each vertex is associated with a
palette P (u). A coloring is proper if each vertex u is assigned with a color in P (u) such that
no adjacent vertices are assigned the same color. In the k-coloring problem, every vertex u

can assign itself a color from palette P (u) = {1, 2, . . . k}. The chromatic number χ(G) is
defined to be the minimum k such that a k-coloring exists. An instance of the k-list-coloring
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problem is one where each u has a palette of size k. A proper coloring in such an instance is
called a k-list-coloring. Given G, if every instance of the k-list-coloring problem with respect
to G has a proper coloring, then G is k-list-colorable. The list chromatic number χl(G) is
defined to be minimum k such that G is k-list-colorable.

The notations for edge coloring are defined analogously. In the edge coloring problems, each
edge e is associated with a palette P (e). A coloring is proper if each edge e is assigned with
a color in P (e) such that no adjacent edges are assigned the same color. In k-edge-coloring
problem, every edge e can assign itself a color from P (e) = {1, 2, . . . k}. The chromatic index
χ′(G) is defined to be the minimum k such that a proper k-edge-coloring exists. An instance
of the k-edge-list-coloring problem is one where each edge e has a palette of size k. A proper
coloring in such an instance is called a k-list-edge-coloring. Given G, if every instance of
the k-list-coloring problem has a proper coloring, then G is k-list-edge-colorable. The list
chromatic index χ′

l(G) is defined to be minimum k such that G is k-list-edge-colorable.

1.2 Overview of the Results

1.2.1 Graph Coloring

Graph coloring is an important symmetry-breaking primitive in distributed computing. The
studies in distributed graph coloring can be divided into two lines, the deterministic algo-
rithms and the randomized algorithms. The deterministic distributed coloring algorithm can
be traced back to Cole and Vishkin [24], who devised an O(log∗ n) algorithm for 3-coloring
a cycle. Linial [118] showed that O(1)-coloring a cycle requires at least 1

2 log∗ n − O(1)
rounds for any function f(·). Goldberg and Plotkin [69] generalized the algorithm of [24] to
the (∆ + 1)-coloring problem in general graphs with a running time of ∆O(∆) + O(log∗ n).
Since then, a sequence of improvements [70,111,118,140,161] lead to an algorithm [10] that
runs in O(∆ + log∗ n) time for the (∆ + 1)-coloring problem. Panconesi and Srinivasan’s
determinsitic network decomposition approach [141] gives a 2O(

√
log n) rounds algorithm for

(∆ + 1)-coloring.

For randomized algorithms, the seminal work of Luby [120] showed that the (∆+1)-coloring
problem can be reduced to the MIS problem, which can be computed in O(log n) rounds.
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Johansson [90] gives a (∆ + 1)-coloring algorithm that has the same time bound but with
a smaller message compleixity than the MIS reduction. Schneider and Wattenhofer [157]
showed that (∆ + 1)-coloring can be obtained in O(log ∆ +

√
log n) rounds. Barenboim et

al. [11] gave an algorithm for (∆+1)-coloring running in O(log ∆)+2O(
√

log log n) rounds using
a graph-shattering technique.

Notice that for any graph G we know that χ(G) ≤ ∆ + 1, as a (∆ + 1)-coloring can be
obtained greedily. The bound is tight in general, since a (∆ + 1)-clique cannot be colored
with ∆ colors. If we are to trade the quality of coloring for the efficiency, then there are
more efficient algorithms. For deterministic algorithms, Linial [118] and Szegedy and Vish-
wanathan [161] gave algorithms that run in O(log∗ n) rounds for obtaining a O(∆2)-coloring.
Barenboim and Elkin [8] showed that an O(∆1+ϵ)-coloring can be obtained determinsitically
in polylogarithmic rounds, O(log ∆ · log n) rounds. For randomized algorithms, Kothapalli
et al. [108] showed that an O(∆)-coloring can be obtained in O(

√
log n) rounds. Schneider

and Wattenhofer [157] showed that an O(∆ log(k) n + log1+1/k n)-coloring can be obtained in
O(k) rounds. Barenboim et al. [11] showed the rounds needed to obtain such a coloring can
be reduced to 2O(

√
log log n).

On the other hand, less was known from the distributed algorithm aspect when coloring
graphs with χ(G) < ∆ + 1. Traditional studies on symmetry-breaking consider those prob-
lems whose solutions can be obtained via greedy methods, such as the Maximal Matching
(MM) problem, the Maximal Independent Set (MIS) problem, and the (∆ + 1)-coloring
problem. In these problems, given any partial solution to the problem, we can extend it to
a complete solution without making regrets. Coloring a graph with girth at least 5 is an
example which does not fall into this case. It was shown by Kim [104] that such graphs have
χ(G) = (1+o(1))∆/ log ∆. It is clear that such a coloring is not greedily obtainable. Grable
and Panconesi [73] gave a randomized algorithm for obtaining an O(∆/ log ∆)-coloring in
O(log n) rounds, provided ∆ = (log n)1+Ω(1). Another example is the (∆ + 1)-edge-coloring
problem. It was shown by Vizing [170] that for any simple graph G, either χ′(G) = ∆ or
χ′(G) = ∆ + 1. However, a (∆ + 1)-edge-coloring is not greedily obtainable. In fact, cur-
rently there are no known efficient distributed algorithms for obtaining such a coloring. A
good appoximation of (1 + ϵ)∆-edge-coloring can be obtained in O(log n) rounds by using
Dubhashi, Grable, and Panconesi’s algorithm [39], provided that ∆ = (log n)1+Ω(1).
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One of our contributions is to find general techniques for solving coloring problems without
greedy algorithms, including the frugal coloring problem, the defective coloring problem, the
list coloring problem, and the two problems mentioned above. The probabilistic method is
often used to show the existence of the solution. However, the probabilistic arguments often
rely on the Lovász Local Lemma (LLL), which is non-constructive. In Chapter 2, we propose
tools for converting non-constructive proofs that use the LLL, to distributed algorithms for
constructing the solutions efficiently.

The Lovász Local Lemma is often used to prove the existence of certain objects. Suppose
there are bad events A1, . . . , An that depend on some random variables. The goal is to show
there exists an assignment to the variables that avoids all the bad events. The symmetric
version of LLL tells us that if the probability of each event is bounded by 1/(e(d+1)), where d

is the maximum degree of the dependency graph of the events, then with positive probability
all bad events can be avoided. We study a variety of coloring problems whose solutions are
obtained by LLL. In these problems, it is often that each node is associated with a bad
event, where each bad event is determined by the random variables in the neighborhood of
its associated node. The probability of the bad events often have the form exp(−∆Θ(1)) as a
result of Chernoff-type concentration inequalities. One example is when tossing coins at each
node v, we define the bad event Av to be that the difference between the number of neighbors
with a head and the number of neighbors with a tail exceeds ∆/4. Therefore, Pr(Av) =
exp(−O(∆)). The union bound cannot be used to show all bad events can be avoided when
∆ is sub-logarithmic in n. Since each bad event depends on the random variables in its
neighborhood, d = poly(∆), one can resort to the LLL. We develop tools for converting non-
constructive proofs that use LLL, to distributed algorithms for constructing the solutions
efficiently. Our distributed algorithm for the LLL circumvent the MIS computations in Moser
and Tardos’ algorithm [129]. This leads to a simpler and faster construction.

Chapter 3 and Chapter 4 are dedicated to efficient procedures for triangle-free graph coloring
and edge coloring. The main technique used is the Rödl Nibble method, which is an iterative
random process that partially colors the graph over the iterations. We show that χ(G) ≤
(4 + o(1))∆/ log ∆ and χl(G) ≤ (4 + o(1))∆/ log ∆ in triangle-free graphs. Previously, the
best known bound is (160 + o(1))∆/ log ∆ [125]. For the edge coloring problems, we study
the (1 + o(1))∆-edge-coloring problem and (1 + o(1))∆-edge-list-coloring problem.
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For triangle-free graphs, our iterative process takes O(k + log∗ n) rounds to obtain a (∆/k)-
(list-)coloring for k ≤ log ∆/(4+ ϵ). For edge coloring problems, it takes O(log∗ n) iterations
to obtain an (1 + ϵ)∆-(list-)edge-coloring. For ∆ ≫ log n, we show each iteration succeeds
with high probability and therefore the number of rounds equal to the number of iterations.
For small values of ∆, we will have to resort to the Lovász Local Lemma. By applying our
distributed algorithm for the LLL, we show the colorings can be obtained in O(log n) rounds.

In Chapter 5, we tackle one of the most basic problems in graph coloring, the (∆+1)-coloring
problem. We show that in (1 − ϵ)-locally-sparse graphs and graphs whose arboricities are
bounded by (1 − ϵ)∆/2, a (∆ + 1)-coloring can be obtained in O(log(1/ϵ)) + eO(

√
log log n)

rounds. This result also shows a separation between the (2∆−1)-edge-coloring problem and
the MM problem. The former can be solved in eO(

√
log log n) rounds because its line graph is

roughly 1
2 -locally-sparse, while the latter is known to have a lower bound of Ω(

√
log n) [110].

1.2.2 Other Distributed Optimization Problems

The Minimum Cut Problem The minimum cut problem is a fundamental problem in
graph algorithms and network design. It determines, e.g., the network vulnerability and the
limits to the speed at which information can be transmitted. Given a weighted undirected
graph G = (V, E), a cut C = (S, V \ S) where ∅ ⊂ S ⊂ V , is a partition of vertices into two
non-empty sets. The weight of a cut, w(C), is defined to be the sum of the edge weights
crossing C. The minimum cut problem is to find a cut with the minimum weight, λ. The
exact version of the problem as well as the approximate version have been studied for many
years [56, 94, 96, 97, 99, 121, 132, 160] in the context of centralized models of computation,
resulting in nearly linear time algorithms [96,97,102,121].

Elkin [46] and Das Sarma et al. [31] addressed the problem in the distributed, synchronous
message-passing model. The problem has trivial time complexity of Θ(D) (unweighted di-
ameter) in the LOCAL model, where the message size is unlimited.

In the CONGEST model, Prichard and Thurimella’s 2-edge-connected and 3-edge-connected
components algorithm [151] can be used to find the exact minimum cut for λ ≤ 3. Ghaffari
and Kuhn [65] gave an algorithm that finds a cut of size at most O(ϵ−1λ) with high probability
in O(D) + O(n1/2+ϵ log3 n log log n log∗ n) time. They also gave an algorithm that finds a cut
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of size at most (2 + ϵ)λ w.h.p. in O((D +
√

n log∗ n) log2 n log log n 1
ϵ5 ) time. Das Sarma et

al. [31] showed α-approximating the minimum cut requires Ω̃(D+
√

n) rounds for any α ≥ 1.

In Chapter 6, we present a distributed algorithm for finding an (1+ϵ)-approximate minimum
cut in O((D +

√
n log∗ n)ϵ−5 log3 n) rounds with high probability. Our algorithm draws a

connection between Thorup’s tree packing lemma and Matula’s contraction algorithm. It
can be also be implemented easily in the sequential setting in O(m+nϵ−7 log3 n) time, which
may be simpler than Karger’s O(m + nϵ−4 log3 n)-time approximation algorithm [96], which
uses Gabow’s exact minimum cut algorithm as a subroutine [56]. Moreover, we show that an
exact minimum cut can be computed in O((

√
n log∗ n+D)λ4 log2 n) rounds in the distributed

setting.

Task Allocation Problem Many biological systems are similar to the model of dis-
tributed computation in the sense that they operate without a centralized coordinator [136].
We consider task allocation problems in ant colonies. Cornejo et al. [26] first considered
modeling the task allocation problem from a distributed computing perspective. In their
model, each task i is associated with a fixed demand di. Each ant provides a unit supply of
energy to the task. Also, the ants are able to sense from each task whether it is undersatified
or oversatisfied. They showed that ants can solve the task allocation problem using constant
number of states and O(|T |) bits of memory in O(|T | log |A|) rounds, where T is the set of
tasks and A is the set of ants.

When there are individual variations among the ants, where the energies provided by the
ants to the tasks may be different, [26] pointed out that finding a feasible allocation to
the tasks is NP-hard by a reduction from the partition problem. In Chapter 7, we give a
very simple mechanism for ants to converge to a solution that approximately satisfies the
demands. In particular, for any ϵ ≥ 0, we show that after O(|A|1−ϵ) rounds, the ants converge
to a solution with an O(W |A|1/2+ϵ) additive-error with probability 1−O(1/|A|ϵ), where W

is ratio of the largest to the smallest energies provided. We also show a better bound for
the case when there are no individual variations and when the ants behave determinsitically.
The ants converges to an optimal solution in O(ϵ−2|T | log |T |) rounds with an additive error
of ϵdmax + o(1), where dmax is the largest demand of the tasks.

The techniques involved for both problems are related to the multiplicative weight update
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method. For the minimum cut problem, the greedy tree packing step is implicitly doing the
multiplicative weight update method for finding a near-optimal tree packing. For the task
allocation problem, we also transform the idea of the multiplicative weight update method
into a simple strategy with a modification where the weights are updated stochastically.

1.2.3 Matchings

We consider the matching problems in the sequential setting. Given a weighted graph, the
maximum weight perfect matching (mwpm) problem is to find a perfect matching with the
maximum weight, while the maximum weight matching (mwm) problem is to find a (non-
necessarily perfect) matching with the maximum weight. The mwm problem and the mwpm
are known to be reducible to each other. Given an algorithm for the mwm problem running
in f(n, m, N) time, where N is the largest weight of the edges, it can be used to solve the
mwpm problem in f(n, m, O(nN)) time. On the other hand, given an algorithm for the
mwpm problem running in g(n, m, N) time, it can be used to solve the mwm problem in
g(O(n), O(m), N) time.

Gabow amd Tarjan [61] gave a scaling algorithm for the mwpm problem running in
O(m

√
nα(n) log n log(nN)) time. For bipartite cases, Gabow and Tarjan [60] gave a scaling

algorithm for mwpm problem running in O(m
√

n log(nN)) time.

In Chapter 8, we gave a scaling algorithm for mwpm running in O(m
√

n log(nN)) time
for general graphs, which matches best known bound for bipartite graphs. In Chapter 9,
we gave a scaling algorithm for finding the mwm in bipartite graphs. Our algorithm runs
in O(m

√
n log N) time, which is asymptotically faster than applying Gabow and Tarjan’s

mwpm algorithm to find the mwm, when log N = o(log(nN)).
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Part I

Coloring

Chapter 2

Distributed Algorithms for the Lovász Local Lemma

2.1 Introduction

Consider a system P of independent random variables and a set A of n bad events, where
each A ∈ A depends solely on some subset vbl(A) ⊆ P . For example, in a hypergraph
2-coloring instance, P represents the vertex colors and A the events in which an edge is
monochromatic. The dependency graph GA = (A, {(A, B) | vbl(A)∩ vbl(B) ̸= ∅}) includes
edges between events if and only if they depend on at least one common variable. Let Γ(A)
be A’s neighborhood in GA and Γ+(A) = Γ(A) ∪ {A} be its inclusive neighborhood. The
(general, asymmetric) LLL states [48,158] that if there is a function x : A → (0, 1) such that

Pr(A) ≤ x(A) ·
∏

B∈Γ(A)
(1− x(B))

then Pr(⋂A∈A A) > 0, that is, there is a satisfying assignment to the underlying variables
in which no bad events occur. The symmetric LLL is a useful corollary of the general
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LLL. If p and d are such that Pr(A) ≤ p and |Γ(A)| ≤ d for all A, and ep(d + 1) < 1,
then Pr(⋂A∈A A) > 0. For example, consider a hypergraph in which each edge contains k

vertices and intersects at most d < 2k−1/e− 1 other edges. Under a uniformly random color
assignment P → {red, blue} the probability an edge is monochromatic is p = 2−(k−1), so
ep(d + 1) < 1. The symmetric LLL proves the existence of a satisfying color assignment but
does not yield an efficient algorithm to find one. Beginning with Alon [2] and Beck [12], a
long line of research has sought to find efficient (and ideally deterministic) algorithms for
computing satisfying assignments [2,12,19,29,75–78,106,124,127–129,143,159]. Most of these
results required a major weakening of the standard symmetric LLL constraint ep(d + 1) < 1.
In many applications we consider, the bad events are that the sum of dΘ(1) random variables
deviates away from its expectation. So the probability they are violated is often bounded
by Chernoff-type tail bounds, e.g. exp(−dΘ(1)).

In a relatively recent breakthrough, Moser and Tardos [129] gave an algorithmic proof of
the general asymmetric LLL, with no weakening of the parameters. Their algorithm is
simple though the analysis is not trivial. At initialization the algorithm chooses a random
assignment to the variables P . Call an event A ∈ A violated if it occurs under the current
assignment to the variables. Let F ⊆ A be the set of violated events. The algorithm
repeatedly chooses some A ∈ F and resamples the variables in vbl(A), until F = ∅.

The Distributed LLL Problem We consider Linial’s LOCAL model [144] of distributed
computation in which the distributed network is identical to the dependency graph. In other
words, each node A ∈ A hosts a processor, which is aware of n, the degree bound d, and its
neighborhood Γ(A). Computation proceeds in synchronized rounds in which each node may
send an unbounded message to its neighbors. Time is measured by the number of rounds;
computation local to each node is free. Upon termination each node A must commit to an
assignment to its variables vbl(A) that is consistent with its neighbors, i.e., the nodes must
collectively agree on a satisfying assignment to P avoiding all bad events. We consider the
LOCAL model because we will need to send the assignment of vbl(A) in one message.

Moser and Tardos proposed a parallel version of their resampling algorithm (Algorithm 1),
which can easily be implemented in the LOCAL model. Let GF be the graph induced by the
violated events F under the current variable assignment. They proved that O(log1/ep(d+1) n)
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iterations of Algorithm 1 suffice to avoid all bad events with probability 1− 1/ poly(n), i.e.,
O(log n) iterations suffice if ep(d + 1) is bounded away from 11. (For the sake of a simpler
presentation we shall state many results in the symmetric LLL language. Our algorithms
and Moser-Tardos work for the asymmetric LLL as well.) Moser and Tardos suggested
using Luby’s randomized MIS algorithm [120], which runs in Θ(log n) rounds w.h.p. (which
can also be achieved by [3]), for a total running time of Θ(log n · log1/ep(d+1) n). This is,
intuitively, a very wasteful LLL algorithm since nodes spend nearly all their time computing
MISs rather than performing resampling steps. For certain values of d the running time
can be improved by plugging in an MIS algorithm running in O(d + log∗ n) time [10] or
O(log2 d) + exp(O(

√
log log n)) time w.h.p. [11].2 However, it is not possible to find an MIS

in constant time. Kuhn et al. [109, 110] gave an Ω(min{log d,
√

log n}) lower bound on the
complexity of MIS and other symmetry-breaking problems.

Initialize a random assignment to the variables P .
while F ̸= ∅ do

Compute a maximal independent set I in GF .
Resample each variable in vbl(I) = ⋃

A∈I vbl(A).
end while
Algorithm 1: The Moser-Tardos Parallel Resampling Algorithm. Here F is the set of bad events
occurring under the current variable assignment and GF is the dependency graph induced by F .

New Results We give a new distributed LLL algorithm in the Moser-Tardos resampling
framework that avoids the computation of MISs altogether. Due to its simplicity we are
happy to display the algorithm in its entirety. We assume that nodes possess unique IDs,
which could be assigned in an adversarial manner. Let ΓF(A) be A’s neighborhood in GF .

One can see that I is computed in one round: each node A tells its neighbors whether A ∈ F
under the current variable assignment. Once A receives messages from all neighbors it can
determine if ID(A) is a local minimum in GF . We prove that under the slightly stronger
criterion epd2 < 1, this algorithm halts in O(log1/epd2 n) steps w.h.p. Most applications
of the LLL satisfy the epd2 < 1 criterion, though not all. We give another distributed

1Note that log1/ep(d+1) n could be sublogarithmic or superlogarithmic depending on how close ep(d + 1)
is to 0 or 1.

2These MIS algorithms are significantly more complex than Luby’s and use larger messages.
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Initialize a random assignment to the variables P

while F ̸= ∅ do
Let I = {A ∈ F | ID(A) = min{ID(B) | B ∈ Γ+

F(A)}}
Resample vbl(I) = ⋃

A∈I vbl(A).
end while

Algorithm 2: A Simple Distributed LLL Algorithm

LLL algorithm in the resampling framework that finds a satisfying assignment in O(log2 d ·
log1/ep(d+1) n) time under the usual ep(d + 1) < 1 criterion.

We show that faster algorithms exist when the condition ep(d + 1) < 1 is replaced by a
stronger condition p·f(d) < 1, where f(d) is a faster growing function than e(d+1). However,
it is not clear whether there exists f(d) so that the LLL can be solved in sublogarithmic
time in n, independent of d. Moser and Tardos observed that any parallel algorithm in the
resampling framework requires Ω(log1/p n) resampling steps, even if the dependency graph
has no edges. We combine the resampling framework with a locality approach to give an
O(log n/ log log n) algorithm for an exponential function f(d). On the other hand, we prove
that no constant time distributed LLL algorithm exists and that the LLL for any f(d)
requires Ω(log∗ n) time.

New Applications Existential results in graph coloring [125] (those taking the Rödl nibble
approach) can often be phrased as distributed algorithms in which each step succeeds with
some tiny but non-zero probability, as guaranteed by the LLL. By using our distributed
LLL algorithms we are able to solve a number of graph coloring problems in O(log n) time
or faster.3 Some of these applications require minor changes to existing algorithms while
others are quite involved. Below ∆ is the maximum degree, and ϵ > 0 an arbitrarily small
parameter.

Frugal Coloring A k-frugal vertex coloring is one in which each color appears at most
k times in the neighborhood of any vertex. Pemmaraju and Srinivasan [145] showed

3Suppose H is both the distributed network and the graph to be colored. When invoking the LLL, the
dependency graph GA is not identical to H. Typically bad events in A are associated with H-vertices and
two bad events are adjacent in GA only if the corresponding vertices are at distance O(1) in H. Thus, a
distributed LLL algorithm for GA can be simulated in H with an O(1) slowdown.
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the existence of (∆ + 1)-colorings that are O(log2 ∆/ log log ∆)-frugal, and proved that
(log ∆ · log n/ log log n)-frugal colorings could be computed in O(log n) time. With
some modifications to their proof we show that a O(log2 ∆/ log log ∆)-frugal (∆ + 1)-
coloring can be computed in O(log n) time. Notice that the best existential bound on
the frugality for (∆ + 1)-coloring is O(log ∆/ log log ∆) by Molloy and Reed [126].

Hind, Molloy, and Reed [81] showed there exist β-frugal, O(∆1+ 1
β )-colorings by using

the asymmetric LLL. We show how to turn their proof into a distributed algorithm
that runs in O(log n · log2 ∆) time.

Girth 4 and 5 Kim [104] showed that there exists an (1 + ϵ)∆/ ln ∆-coloring for graphs
of girth 5. In Chapter 3, we will show that triangle-free graphs have (4 + ϵ)∆/ ln ∆-
colorings. Also, we gave distributed algorithms that run in O(log n) rounds for both
problems using our LLL algorithms.

Edge Coloring Dubhashi et al. [39] gave a (1 + ϵ)∆-edge-coloring algorithm running in
O(log n) time, provided that ∆ = (log n)1+Ω(1) is sufficiently large relative to n. In
Chapter 4, we apply our LLL algorithm to show that (1 + ϵ)∆-edge-coloring can be
obtained in O(log∗ ∆ + log n/∆1−o(1)) rounds for ∆ ≥ ∆ϵ, where ∆ϵ is a sufficiently
large constant depending on ϵ.

List-Coloring Suppose each vertex is issued a list of (1 + ϵ)D > Dϵ colors such that each
color appears in at most D lists in the neighborhood of any vertex, where Dϵ is a
sufficiently large constant depending on ϵ. (D need not be close to the degree ∆.)
Reed and Sudakov [153] proved that (1 + ϵ)D-list-colorings exist. We show how to
construct them in O(log∗ D + log n/D1−o(1)) time. Furthermore, for any D and any
constant ϵ > 0, we show that (2e + ϵ)D-list-colorings can be obtained in O(log n) time.

Defective Coloring An f -defective coloring is one in which a vertex may share its color
with up to f neighbors. Barenboim and Elkin [9], and implicitly, Kuhn and Watten-
hofer [111] gave an O(1) time procedure to compute a O(log n)-defective O(∆/ log n)-
coloring. We prove that for any f > 0, an f -defective O(∆/f)-coloring can be com-
puted in O((log n)/f) time.
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2.2 Preliminaries

Let Γr(A) be the r-neighborhood of A (the set of nodes at distance at most r from A,
excluding A) and Γr+(A) = Γr(A) ∪ {A} be its inclusive r-neighborhood. A node set in the
subscript indicates a restriction of the neighborhood to that set, e.g., Γ2+

F (A) = Γ2+(A)∩F .

Consider an execution of a Moser-Tardos-type resampling algorithm. Let C : N→ A be such
that C(i) is the ith event selected by the algorithm for resampling; C is called the record
of the execution. (If the algorithm selects events in independent batches then the events in
each batch can be listed arbitrarily.) A witness tree τ = (T, σT ) is a finite rooted tree where
σT : V (T )→ A labels each vertex in T with an event such that the children of u ∈ T receive
labels from Γ+(σT (u)). A 2-witness tree τ = (T, σT ) is defined in the same way except that
the children of u ∈ T may receive labels from Γ2+(σT (u)). A witness tree (or 2-witness tree)
is proper if the children of a vertex receive distinct labels.

Given a record C, the witness tree τC(t) is constructed as follows. First, create a root node
labelled C(t). Looking backward in time, for each i = t− 1, t− 2, . . . , 1, check if an existing
node is labeled with an event from Γ+(C(i)). If so, let u be one of the deepest such nodes.
Create a new node v labeled C(i) and make it a child of u. Given a witness tree τ , we say
τ occurs in C if there exists an index t such that τC(t) = τ . Moser and Tardos proved the
following lemma:
Lemma 2.2.1. Let τ be a fixed witness tree and C be the record produced by the algorithm.

1. If τ occurs in C, then τ is proper.

2. The probability that τ occurs in C is at most ∏v∈V (τ) Pr(σT (v)).

Similarly, for r ≥ 2, we can define an r-witness tree τ r
C(t) in the same way except that in each

step we attach a node labelled C(i) to the deepest node among nodes labelled Γr+(C(i)).
Also, we say τ r-occurs in C if there exists t ∈ N such that τ r

C(t) = τ . Then Lemma 2.2.1
holds analogously:

Lemma 2.2.2. Let τ be a fixed r-witness tree and C be the record produced by the algorithm.

1. If τ r-occurs in C, then τ is proper.

2. The probability that τ r-occurs in C is at most ∏v∈V (τ) Pr(σT (v)).
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2.3 Algorithms

Recall that the parallel/distributed Moser-Tardos algorithm iteratively selects maximal in-
dependent sets (MIS) of violated events for resampling. They proved that if there is some
slack in the general LLL preconditions then the algorithm terminates in O(log n) rounds of
MIS.

Theorem 2.3.1. (Moser and Tardos) Let P be a finite set of mutually independent random
variables in a probability space. Let A be a finite set of events determined by these variables.
If there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1− ϵ)x(A)
∏

B∈Γ(A)
(1− x(B)),

then the probability any bad event occurs after k resampling rounds of Algorithm 1 is at most
(1− ϵ)k ∑

A∈A
x(A)

1−x(A) .

In other words, if x(A) is bounded away from 1 then O(log 1
1−ϵ

n) resampling rounds suffice,
w.h.p. A distributed implementation of this algorithm takes O(log 1

1−ϵ
n ·MIS(n, d)), where

d is the maximum degree of GA and MIS(n, d) is the time needed to find an MIS in an n-
vertex degree-d graph. It is known that MIS(n, d) = Ω(min{

√
log n, log d}) [109, 110]. Our

algorithms avoid the computation of MISs. In Section 2.3.1 we analyze the simple distributed
LLL algorithm presented in the introduction, which requires slightly weakening the general
LLL conditions. In Section 2.3.2 we present an algorithm that works for the standard LLL
conditions but is slower by a O(log2 d) factor.

2.3.1 A Simple Distributed Algorithm

Recall that in each round of Algorithm 2, a violated event A ∈ F is selected for resampling
if ID(A) is a local minimum in the violated subgraph GF . In order to analyze this algorithm
in the witness tree framework we must establish some connection between the depth of
witness trees and the number of rounds of resampling. Lemma 2.3.2 will let us make such a
connection.

17



Lemma 2.3.2. Suppose an event A is resampled in round j > 1 of Algorithm 2. There must
exist some B ∈ Γ2+(A) resampled in round j − 1.

Proof. Let F ′ and F be the violated event sets just before and after the resampling step at
round j − 1. If A is not in F ′ but is in F then its variables vbl(A) must have been changed
in round j− 1, which could only occur if some B ∈ Γ(A) were resampled. Now suppose A is
in both F ′ and F . It was not resampled in round j − 1 but was in round j, meaning ID(A)
is not a local minimum in ΓF ′(A) but is a local minimum in ΓF(A). This implies that some
neighbor B ∈ Γ(A) with ID(B) < ID(A) is in F ′ but not F , which could only occur if some
C ∈ Γ+(B) ⊆ Γ2+(A) were resampled in round j − 1.

We can now proceed to bound the number of rounds of Algorithm 2 needed to find a satisfying
assignment.

Theorem 2.3.3. (Asymmetric LLL) Let P be a finite set of mutually independent random
variables in a probability space. Let A be a finite set of events determined by these variables.
If there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1− ϵ)x(A)
∏

B∈Γ2(A)
(1− x(B)),

then the probability any bad event occurs after k resampling rounds of Algorithm 2 is at most
(1− ϵ)k ∑

A∈A
x(A)

1−x(A) .

Note the difference with Theorem 2.3.1 is that the product is over all B ∈ Γ2(A) not
B ∈ Γ(A).

Corollary 2.3.4. (Symmetric LLL) Let P be a finite set of mutually independent random
variables in a probability space. Let A be a finite set of events determined by these variables,
such that for ∀A ∈ A

1. Pr(A) ≤ p < 1, and

2. A shares variables with at most d of the other events.

If epd2 < 1, then w.h.p. none of the bad events occur after O(log 1
epd2

n) rounds of Algorithm 2.
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Proof. Setting x(A) = 1/d2 and ϵ = 1− epd2 in Theorem 2.3.3, we have

(1− ϵ)x(A)
∏

B∈Γ2(A)
(1− x(B)) ≥ 1− ϵ

d2 ·
(

1− 1
d2

)|Γ2(A)|

≥ 1− ϵ

d2

(
1− 1

d2

)(d2−1)
≥ 1− ϵ

ed2 ≥ p ≥ Pr(A).

Therefore, the probability a bad event occurs after k rounds of resampling is at most (1− ϵ)k∑
A∈A

x(A)
1−x(A) = (1− ϵ)kn/(d2− 1), which is 1/ poly(n) if k = O(log 1

1−ϵ
n) = O(log 1

epd2
n).

Following Moser and Tardos [129] we analyze the following Galton-Watson process for gen-
erating a r-witness tree T . Fix an event A ∈ A. Begin by creating a root for T labelled A.
To shorten the notation, we let [v] := σT (v). In each subsequent step, consider each vertex
v created in the previous step. For each B ∈ Γr+([v]), independently, attach a child labelled
B with probability x(B) or skip it with probability 1− x(B). Continue the process until no
new vertices are born. We prove a lemma analogous to one in [129].

Lemma 2.3.5. Let τ be a fixed proper r-witness tree with its root vertex labelled A. The
probability pτ that the Galton-Watson process yields exactly the tree τ is

pτ = 1− x(A)
x(A)

∏
v∈V (τ)

x′([v])

where x′(B) = x(B) · ΠC∈Γr(B)(1− x(C)).

Proof. Let Wv ⊆ Γr+([v]) denote the set of inclusive r-neighbors of [v] that do not occur as
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a label of some child node of v. Then,

pτ = 1
x(A) ·

∏
v∈V (τ)

x([v]) ·
∏

u∈Wv

(1− x([u])


= 1− x(A)
x(A) ·

∏
v∈V (τ)

 x([v])
1− x([v]) ·

∏
u∈Γr+([v])

(1− x([u]))


= 1− x(A)
x(A) ·

∏
v∈V (τ)

x([v]) ·
∏

u∈Γr([v])
(1− x([u]))


= 1− x(A)

x(A) ·
∏

v∈V (τ)
x′([v])

Lemma 2.3.6. If for all A ∈ A, we have Pr(A) ≤ (1− ϵ)x(A) ·∏B∈Γr(A)(1−x(B)), then the
probability that any r-witness tree of size at least k occurs is at most (1− ϵ)k ·∑A∈A

x(A)
1−x(A) .

Proof. Let T r
A(k) denote the infinite set of r-witness trees having root labelled A and con-

taining at least k vertices. By Lemma 2.2.2 and the union bound, the probability there exists
a violated event after k resampling rounds is at most

∑
A∈A

∑
τ∈T r

A(k)
Pr(τ r-occurs in C)

≤
∑
A∈A

∑
τ∈T r

A(k)

∏
v∈V (τ)

Pr([v]) by Lemma 2.2.2

≤
∑
A∈A

∑
τ∈T r

A(k)

∏
v∈V (τ)

(1− ϵ)x′([v]) cond. of Thm 2.3.3

≤ (1− ϵ)k
∑
A∈A

x(A)
1− x(A)

∑
τ∈T r

A(k)
pτ by Lemma 2.3.5

≤ (1− ϵ)k
∑
A∈A

x(A)
1− x(A)

The last inequality follows since the Galton-Watson process grows exactly one tree.

Let C be the record of Algorithm 2 and Sj be the segment of the record corresponding to
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resamplings in round j. The following lemma relates the number of resampling rounds with
the occurence of 2-witness trees.

Lemma 2.3.7. If there is still a violated event after k resampling rounds in Algorithm 2
then some 2-witness tree of size at least k occurs in C.

Proof. Let Ak be any event in Sk and t be its position in the record C. By Lemma 2.3.2
there exist events Ak−1, . . . , A1 in Sk−1, · · · , S1 such that for all j < k, Aj ∈ Γ2+(Aj+1). This
implies that Ak−1, . . . , A1 are mapped to distinct nodes in the 2-witness tree τC(t), whose
root is labeled Ak.

Therefore, by Lemma 2.3.7, if there is a violated event after k resampling rounds, then a 2-
witness tree of size at least k occurs. However, by Lemma 2.3.6, it happens with probability
at most (1 − ϵ)k ·∑A∈A

x(A)
1−x(A) . Thus, Theorem 2.3.3 holds. Note that if x(A) is bounded

away from 1, then after O(log 1
1−ϵ

n) rounds, w.h.p. no bad event occurs.

2.3.2 Resampling by Weak MIS

In this section we analyze the efficiency of Moser and Tardos’s Algorithm 1 when a new weak
MIS procedure (Algorithm 3) is used in lieu of an actual MIS. The Weak-MIS procedure
produces, in O(log2 d) time, an independent set S such that the probability that a node
is not in Γ+(S) = S ∪ Γ(S) is 1/ poly(d). The procedure consists of O(log d) iterations
where the probability that a vertex avoids Γ+(S) is constant per iteration. Each iteration
consists of log d phases where, roughly speaking, the goal of phase i is to eliminate vertices
with degree at least d/2i with constant probability. Each phase is essentially one step of
Luby’s MIS algorithm, though applied only to a judiciously chosen subset of the vertices.
See Algoirthm 3.

Our main results are as follows.

Theorem 2.3.8. (Assymmetric LLL) Let P be a finite set of mutually independent random
variables in a probability space. Let A be a finite set of events determined by these variables.
If there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1− ϵ)x(A)
∏

B∈Γ(A)
(1− x(B)),
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then the probability any bad event occurs after k resampling rounds using the Weak-MIS
algorithm is at most n( 1

d+1)k + (1− ϵ)k/2∑
A∈A

x(A)
1−x(A) .

Corollary 2.3.9. (Symmetric LLL) Let P be a finite set of mutually independent random
variables in a probability space. Let A be a finite set of events determined by these variables,
such that for ∀A ∈ A,

1. Pr(A) ≤ p < 1, and

2. A shares variables with at most d of the other events.

If ep(d + 1) < 1, then w.h.p. none of the bad events occur after O(max(logd+1 n, log 1
ep(d+1)

n))
Weak-MIS resampling rounds.

Corollary 2.3.9 follows directly by plugging in x(A) = 1/(d + 1) for all A ∈ A and
k = O(max(logd+1 n, log 1

ep(d+1)
n)). Notice that if 1

ep(d+1) > d + 1, we can apply the faster
simple distributed algorithm, so the running time in Corollary 2.3.9 will be dominated by
O(log 1

ep(d+1)
n · log2 d).

S ← ∅
for iteration 1 . . . , t = 4e2 ln(2e(d + 1)4) do

G′ ← GF \ Γ+(S)
for phase i = 1 . . . ⌈log d⌉ do

Vi ← {v ∈ G′ | degG′(v) ≥ d/2i}.

For each vertex v ∈ G′, set b(v)←

1 with probability pi = 1/( d
2i−1 + 1)

0 otherwise
For each vertex v ∈ G′, if b(v) = 1 and b(w) = 0 for all w ∈ ΓG′(v), set S ← S ∪ {v}.
G′ ← G′ \ (Γ+(S) ∪ Vi) (i.e., remove both Γ+(S) and Vi from G′.)

end for
Let S ′ be the (isolated) vertices that remain in G′.
Set S ← S ∪ S ′

end for
return S

Algorithm 3: Weak-MIS

22



Consider the first iteration of the Weak-MIS algorithm. For each phase i, G′ is the subgraph
of GF containing vertices with degree at most d/2i and not adjacent to the independent set S.
Let Vi = {v ∈ G′ | degG′(v) ≥ d/2i}. Note that every vertex in GF must end up isolated in S ′

or one of the Vi’s. Let (u, v) be an edge in G′. Following Peleg’s analysis [144], define E(u, v)
to be the event that at phase i, b(u) = 0 and b(v) = 1 and for all other neighbors x of u and
v, b(x) = 0. Define E(u) = ⋃

v∈ΓG′ (u) E(u, v) to be the event that exactly one neighbor joins
S in this phase. Since these events are disjoint, we have Pr(E(u)) = ∑

v∈ΓG′ (u) Pr(E(u, v)).

Lemma 2.3.10. If v ∈ Vi, then Pr(E(u)) ≥ 1
4e2 .

Proof. Pr(E(u, v)) ≥ pi(1 − pi)degG′ (u)+degG′ (v) ≥ pi(1 − pi)2d/2i−1 ≥ pie
−2. Since degG′(u) ≥

d/2i, Pr(E(u)) ≥ d
2i pie

−2 ≥ 1
4e2

Therefore, if v ∈ GF \ Γ+(S) at the beginning of iteration l, the probability that v ∈ Γ+(S)
at the end of iteration l is at least 1/(4e2). We say a vertex in GF fails if, after all t =
4e2 ln(2e(d + 1)4) iterations, it is still not in Γ+(S).

Lemma 2.3.11. Let S be an independent set selected by Weak-MIS. If v ∈ F then Pr(Γ+(v)∩
S = ∅) ≤ 1

2e(d+1)4 .

Proof. By Lemma 2.3.10, the probability that v survives iteration ℓ conditioned on it sur-
viving iterations 1 through ℓ−1 is at most 1−1/(4e2). Over t = 4e2 ln(2e(d+1)4) iterations
the probability of failure is at most (1− 1/(4e2))t ≤ e− ln(2e(d+1)4) = 1

2e(d+1)4 .

The next step is to relate the number of rounds of Weak-MIS resampling with the size of
witness trees.

Lemma 2.3.12. Suppose a bad event is violated after k rounds of Weak-MIS resampling and
the maximum depth of the witness trees is t, then there exists a sequence of not necessarily
distinct vertices v1, . . . , vk such that the following hold:

(1) vi ∈ Gi, where Gi is the violated subgraph GF the beginning of round i.

(2) vi+1 ∈ Γ+(vi) for 1 ≤ i ≤ k − 1.

(3) For at least k − t indices 1 < l ≤ k, vl failed in the call to Weak-MIS in round l − 1.
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Proof. For 1 ≤ i ≤ k, let Si be the segment of the record C corresponding to events resampled
at round i. Suppose that an event A is violated after k resampling rounds. Build a witness
tree τ with root labeled A, adding nodes in the usual fashion, by scanning the record C

in time-reversed order. For each j, in decreasing order, attach a node labelled C(j) to the
deepest node in τ whose label is in Γ+(C(j)), if such a node in τ exists. Let vk+1 = A. We
will build vk, vk−1, . . . , v1 in backward manner. For k ≥ i ≥ 1, we claim there is an event
vi ∈ Γ+(vi+1) such that either vi ∈ Si or vi ∈ Gi and vi failed at round i. If vi+1 ̸∈ Gi is
not violated at the beginning of round i, then it must be the case that there exists an event
vi ∈ Γ+(vi+1) resampled at round i to cause vi+1 ∈ Gi+1. On the other hand, if vi+1 ∈ Gi

is violated at the beginning of round i, then either there exists vi ∈ Γ+(vi+1) resampled at
round i or vi+1 failed at round i. In the latter case, we let vi = vi+1. Notice that τ (excluding
its artificial root labeled A) is a witness that occured and thus has depth at most t. Since
in each of the k rounds, either the depth of our witness tree grows or a vertex fails, at least
k − t vertices must have failed in their respective rounds.

Notice that the total possible number of sequences satisfying (2) in Lemma 2.3.12 is at
most n(d + 1)k−1. Given a sequence of vertices P = (v1, . . . , vk) satisfying (2), define X

(i)
P

to be 1 if vi ∈ Gi and vi failed, 0 otherwise. Let XP = ∑k
i=1 X

(i)
P . If a sequence sat-

isfying (1–3) occured, then there exists P such that XP ≥ k − t. Since X
(1)
P , . . . , X

(i−1)
P

are determined by S1, . . . , Si−1 and G1, . . . , Gi−1, E(X(i)
P | X

(1)
P , . . . , X

(i−1)
P ) = E(X(i)

P |
S1, . . . , Si−1, G1, . . . , Gi−1) ≤ q

def= 1
2e(d+1)4 by Lemma 2.3.11. Fixing t = k/2, we have

k − t = k/2 = kq · e(d + 1)4 ≤ E[XP ] · e(d + 1)4. By Lemma A.5 (Conditional Chernoff
Bound):

Pr(XP ≥ k/2) ≤
(

ee(d+1)4−1

(e(d + 1)4)e(d+1)4

) k
2e(d+1)4

≤
(

1
(d + 1)2

)k

.

By the union bound over all possible P satsfying (2), the probability that any such sequence
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in Lemma 2.3.12 occurs is at most

n (d + 1)k−1 ·
(

1
(d + 1)2

)k

≤ n ·
( 1

d + 1

)k

.

Moser and Tardos showed that the probability that any witness tree of size at least t occurs
is at most (1− ϵ)t∑

A∈A
x(A)

1−x(A) . Thus, either a witness tree of depth at least t = k/2 occurs
or there exists a sequence of vertices (as in Lemma 2.3.12) such that t − k = k/2 of them
failed. The probability either of these occurs is at most n ·

(
1

d+1

)k
+ (1 − ϵ)k/2∑

A∈A
x(A)

1−x(A)

by the union bound.

2.3.3 A Sublogarithmic Algorithm

We have seen a faster algorithm for LLL when the general condition ep(d + 1) < 1 is
replaced by a stronger condition p · f(d) < 1, where f(d) is a faster growing function than
e(d + 1). The question of how fast we can do for a stronger condition arises. Does there
exist a sublogarithmic algorithm for faster growing f(d), independent of n? We answer this
affirmatively for an exponential function of d.

Inspired by [4], our approach is a two-stage approach. In the first stage, we run Algorithm 2
for k(n) rounds. Then we identify the dangerous events, who are likely to become violated
if some subset of its neighborhood is resampled. We will show there is a feasible solution by
re-assigning the variables belonging to dangerous events. Moreover, we show the components
induced by the dangerous events are likely to have weak diameter at most k(n). The weak
diameter of a component is the maximum distance w.r.t. the original graph of any pair in the
component. In the second stage, each component of dangerous events computes the answer
independent of others in time proportional to its weak diameter.

Consider an event A. Let P1(A), P2(A) be probabilities such that P1(A)P2(A) = 2d · Pr(A).
Given an assignment of the random variables, we say A is dangerous w.r.t. the current
assignment if resampling of some subset of neighbors causes A to become violated with
probability more than P2(A). We will show that the probability for A to become dangerous
is at most P1(A).

Given that P2(A) is small enough for all A ∈ A, we can find a feasible solution by re-assigning
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the variables belonging to the dangerous vertices. Also, given that P1(A) is small enough,
we will show that the weak diameter of each component after the first stage is at most k

w.h.p. We explain the idea roughly. If we build a 2-witness tree rooted at a dangerous vertex
after the first stage, the 2-witness tree has size at least k. If there exists a path consisting
of dangerous vertices of length k after the first stage, we will show the union of the witness
trees rooted at these vertices has size at least Ω(k log k). Then, we will glue them together
into a 3-witness tree. By choosing k = Θ(log n/ log log n), we would have a 3-witness tree
with size Θ(log n), which does not occur w.h.p.

Theorem 2.3.13 (Asymmetric LLL). Let Pr(A) ≤ P2(A) ≤ 1 and P1(A) = 2d · Pr(A)
P2(A) , where

d is the maximum degree of the dependency graph. If there exists an assignments of reals
x1, x2 : A → (0, 0.99] such that for all A ∈ A

1. P1(A) ≤ (1− ϵ)x1(A)∏B∈Γ3(A)(1− x1(B))

2. P2(A) ≤ x2(A)∏B∈Γ(A)(1− x2(B))

then the LLL problem can be solved in O
(
log1/(1−ϵ) n/ log log1/(1−ϵ) n

)
rounds.

Corollary 2.3.14 (Symmetric LLL). Suppose that for all A ∈ A, Pr(A) ≤ p and A shares
variables with at most d other events in A. Let z = 4ep2dd4. If z < 1, then a satisfying
assignment can be found in O(log1/z n/ log log1/z n) rounds.

Proof of Collorary 2.3.14. For each A ∈ A, let P2(A) = 1
4d
≥ p ≥ Pr(A) and so P1(A) =

2d · Pr(A)
P2(A) ≤ 4pd2d. Let x1(A) = 1/d3, x2(A) = 1/(2d) and 1 − ϵ = 4ep2dd4. First, we check

that condition 1 in Theorem 2.3.13 holds

(1− ϵ)x1(A)
∏

B∈Γ3(A)
(1− x1(A)) = 4ep2dd4 · 1

ed3 ·
(

1− 1
d3

)|Γ3(A)|

≥ 4ep2dd
(

1− 1
d3

)d3−1

≥ 4p2dd = Pr(A).
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Condition 2 also holds similarly,

x2(A)
∏

B∈Γ(A)
(1− x2(A)) ≥ 1

2d
·
(

1− 1
2d

)d

= 1
2d
· 1

2 = P2(A).

Proof Sketch of Theorem 2.3.13. Given an assignment of each variables, we will classify the
vertices into safe vertices and dangerous vertices. An event A is safe if the probability A

becomes violated when any subset of its neighbors resample is at most P2(A). In contrast,
the dangerous vertices are those where there exists a subset of neighbors whose resampling
will cause it to be violated with probability greater than P2(A).

Using conditional probability, we can bound the probability that a vertex becomes dan-
gerous after a random sampling of vbl(A) by P1(A) = 2d Pr(A)/P2(A) (Lemma 2.3.15).
Using Cond. 1 in Theorem 2.3.13, we show in Lemma 2.3.16 that after we resample dan-
gerous vertices using the simple distributed algorithm for k rounds, if there exists a danger-
ous component whose weak diameter is at least k, then a 3-witness tree of size Ω(k log k)
would occur. When k = Θ(log n/ log log n), a 3-witness tree of size O(log n) would occur,
which happens with probability at most 1/ poly(n). Therefore, with high probability, after
O(log n/ log log n) rounds of resampling, the weak diameters of the dangerous components
are bounded by O(log n/ log log n). Finally, a feasible assignment for a dangerous component
can be found in O(log n/ log log n) rounds locally, independent of other dangerous compo-
nents, which can be argued using Cond. 2 in Theorem 2.3.13 and the definition of dangerous
vertices.

Proof of Theorem 2.3.13. Fix ∅ ⊆ D ⊆ Γ(A), let TD denote the set of assignments b for
vbl(A) \ vbl(D) such that b ∈ TD iff when the variables in vbl(A) \ vbl(D) are fixed to be
equal to b, the probability A becomes violated after sampling variables in vbl(D) exceeds
P2(A), that is,

TD = {b | Pr(A | vbl(A) \ vbl(D) = b) > P2(A)}

Given an assignment of the variables of A, we call A “dangerous” if there exists ∅ ⊆ D ⊆ Γ(A)
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such that vbl(A) \ vbl(D) ∈ TD. Otherwise, A is “safe”. Notice that if A is violated then A

is also dangerous, if we choose D = ∅.

Lemma 2.3.15. Pr(A becomes dangerous after (re)sampling vbl(A)) ≤ P1(A).

Proof. By the union bound over each subset of neighbors, the probability that A becomes
dangerous after sampling or resampling variables in vbl(A) is at most

∑
∅⊆D⊆Γ(A)

Pr(vbl(A) \ vbl(D) ∈ TD) =
∑

∅⊆D⊆Γ(A)

∑
b∈TD

Pr(vbl(A) \ vbl(D) = b)

=
∑

∅⊆D⊆Γ(A)

∑
b∈TD

Pr(A ∩ (vbl(A) \ vbl(D) = b))
Pr(A | vbl(A) \ vbl(D) = b)

≤
∑

∅⊆D⊆Γ(A)

∑
b∈TD

Pr(A ∩ (vbl(A) \ vbl(D) = b))
P2(A)

≤
∑

∅⊆D⊆Γ(A)

Pr(A)
P2(A)

≤ 2d · Pr(A)
P2(A) = P1(A).

Notice that if A is safe, then if we resample all the variables of the dangerous events, the
probability that A becomes violated is at most P2(A), by the definition of safe. By the
second condition in Theorem 2.3.13 and the standard asymmetric LLL, there exists a feasible
solution by reassigning only the variables of the dangerous events.

Let E ′ ⊆ E be the edges having at least one endpoint that is dangerous. Let G′ be the graph
induced by E ′. Each component of G′ can compute the feasible solution independent of other
components. (It is tempting to consider the components induced by only the dangerous
vertices. However, when such components C1 and C2 are both adjacent to a safe vertex u,
we have to consider C1 and C2 simultaneously to find an assignment that does not cause u

to occur.)

Next we will show that the weak diameter of each component in G′ is bounded. Note that if
the weak diameter of each component in G′ is at most D, then each component can find the
feasible solution in O(D) time. Each vertex will first learn the topology up to distance D,
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which is possible in the LOCAL model. Then the leader in each component (say the vertex
with the smallest ID) computes the feasible solution locally and then broadcasts the solution
back to other vertices in the component.

Lemma 2.3.16. Suppose that the conditions in Theorem 2.3.13 hold, and there exists a
component of weak diameter at least k. Then after running k rounds of the simple distributed
algorithm, a 3-witness tree of size Ω(k log k) occurs.

Proof. Suppose that there exists u, v in the same component in G′ and distG(u, v) = D ≥ k.
Since u, v are connected in G′, there exists a shortest u-v path Puv of length at least D in G′.
Notice that there are no consecutive safe vertices in Puv by the definition of G′. Recall that
Si is the set of events resampled in round i. Let Lk+1 be the set of dangerous vertices in Puv.
Ideally, one would build |Lk+1| 2-witness trees of depth k, each rooted at each vertex in Lk+1,
and then glue them together into a 3-witness tree of size k · |Lk+1|. However, these 2-witness
trees may overlap, so the final 3-witness tree may be much smaller. In the following, we will
lower bound the size of the union of the 2-witness tree level by level and show that the size
of the final 3-witness tree can be lower bounded.

For each dangerous vertex x in Puv (i.e. x ∈ Lk+1), define Lk+1(x) = {x}. For 1 ≤ i ≤ k,
define Li(x) inductively to be the set of events sampled during round i that are within
distance 2 to any events in Li+1(x). Define Li = ⋃

x∈Puv
Li(x). For each 1 ≤ i ≤ k, we will

show the size of Li is at least D−2
4(k−i+1)+2 .

Notice that Li(x) must be non-empty, because by Lemma 2.3.2, for each k + 1 ≥ j > i and
each vertex wj in Lj, there exists a vertex wj−1 ∈ Sj−1 such that wj−1 ∈ Γ2+(wj). Also,
for all w ∈ Li(x), distG(x, w) ≤ 2(k − i + 1), since by definition of Li(x), there exists a
sequence of vertices (x = vk+1, vk, . . . , vi = w) such that v′

i ∈ Li(x) for k + 1 ≥ i′ ≥ i and
distG(vi′+1, vi′) ≤ 2 for k + 1 > i′ ≥ i.

Let Puv = {x0, x1, . . . x|Puv |}. Let j = 0 if x0 is dangerous; otherwise x1 must be dangerous
and we let j = 1. Repeat the following procedure (see Figure 1a): Select any w ∈ Li(xj).
Note that xj must be dangerous and Li(xj) is well-defined. Let xj′ be the rightmost vertex
in Puv such that w ∈ Li(x′

j) (it can be the case that j′ = j). If xj′+1 is dangerous, set
j ← j′ + 1; otherwise xj′+2 must be a dangerous vertex, then we set j ← j′ + 2. Repeat until
j > |Puv|.
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xjPuv

Li(xj)

xj′ new xj

(a) An illustration of an iteration in the pro-
cedure for lower bounding Li. The dashed
lines are paths with length at most 2(k− i +
1). In this iteration, the difference, ∆, be-
tween the new position and the old position
of j is 5. Therefore, if 2 ·2(k− i + 1) + 2 < 5,
then the detour from xj to x′

j via Li(xj)
would be shorter the distance between xj and
x′

j on Puv.

Li(x)

ysys−1ys−2ys−2 x

(b) An illustration showing that each re-
sampled events in Li is in the 3-witness tree
rooted at ys. The vertices inside the boxes
are the independent set I. The dashed line
is a sequence of vertices, where adjacent ver-
tices have distance at most 2. The arrows
links denote two vertices are within distance
3.

Figure 1

|Li| must be lower bounded by the total number of iterations l in the procedure above.
We will show that we cannot move too far in each iteration, otherwise we would have a
path shorter than distG(u, v) connecting u and v. Let ∆t be the difference of j at the
beginning of iteration t and at the end of iteration t. The procedure terminates only if∑l

t=1 ∆t ≥ |Puv| − 2 (The minus 2 came from the fact that the first and the last vertex in
Puv can be safe). Consider iteration t, if ∆t > 4(k − i + 1) + 2, it must reduce the distance
between u and v by at least ∆t− 4(k− i + 1)− 2. However, the total distance we can reduce
is at most |Puv| − D, for otherwise we would have a path connecting u and v with length
less D, contradicting with distG(u, v) = D. Therefore,

|Puv| −D ≥
l∑

t=1
(∆t − 4(k − i + 1)− 2)

≥ (
l∑

t=1
∆t)− (4(k − i + 1)− 2) l

≥ |Puv| − 2− (4(k − i + 1)− 2) l
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which implies

l ≥ D − 2
4(k − i + 1)− 2 ≥

k − 2
4(k − i + 1)− 2 .

Next, we will show that we can glue all the resampled events in L1, . . . , Lk into a single
3-witness tree. We select an indepedent set I = {y1, . . . , ys} ⊆ Lk+1 by starting from
the leftmost vertex in Lk+1 and repeatly selecting the first non-adjacent vertex in Lk+1.
Therefore, yj+1 is in distance at most 3 from yj for 1 ≤ j < s. Also, each xj ∈ Lk+1 is
adjacent to at least one vertex in I. Since I is an independent set, we can append y1, . . . , ys

to our record artificially. We claim that each node in Li for 1 ≤ i ≤ k corresponds to a node
in the 3-witness tree rooted at ys. For every node w in Li, there must exist x ∈ Lk+1 such
that w ∈ Li(x). Since x is adjacent to some yj ∈ I, it implies w is in the 3-witness tree
rooted at yj. Finally, since yj is a node in the 3-witness tree rooted at ys, w must also be
a node in the 3-witness tree rooted at ys. The 3-witness tree rooted at ys must have size at
least ∑k

i=1
k−2

4(k−i+1)−2 = Ω(k log k).

By chosing k = Ω
(

log1/(1−ϵ) n

log log1/(1−ϵ) n

)
, if there exists a component in G′ with diameter at least

k, then there exists a 3-witness of size at least Ω(log1/(1−ϵ) n) w.h.p. However, by Condition
1 in Theorem 2.3.13 and by Lemma 2.3.6, the probability that such a 3-witness tree occurs
is at most 1/ poly(n). Therefore, we can conclude that after O

(
log1/(1−ϵ) n

log log1/(1−ϵ) n

)
rounds, the

weak diameter of each component in G′ is at most O
(

log1/(1−ϵ) n

log log1/(1−ϵ) n

)
w.h.p. and the solution

can be found in time proportional to the weak diameter.

2.3.4 Lower Bound

Linial [118] proved that in an n-vertex ring, any distributed (log(k) n)-coloring algorithm
requires Ω(k) rounds of communication, even if randomization is used. In particular, O(1)-
coloring a ring requires Ω(log∗ n) time. We prove that Linial’s lower bound implies that even
weak versions of the Lovász Local Lemma cannot be computed in constant time.

Theorem 2.3.17. Let P, A, and GA be defined as usual. Let d be the maximum degree
of any vertex in GA, p = maxA∈A Pr(A) be the maximum probability of any bad event, and
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f : N→ N be an arbitrarily quickly growing function, where f(d) ≥ e(d + 1). If p · f(d) < 1
then Pr(⋂A∈A A) > 0. However, Ω(log∗ |A|) rounds of communication are required for the
vertices of GA to agree on a point in ⋂

A∈A A.

The purpose of the function f is to show that our lower bound is insensitive to significant
weakening of the standard criterion “ep(d + 1) < 1.” We could just as easily substitute
eed

p < 1 or any similar criterion, for example.

Proof. Consider the following coloring procedure. Each vertex in an n-vertex ring selects
a color from {1, . . . , c} uniformly at random. An edge is bad if it is monochromatic, an
event that holds with probability p = 1/c. Let A be the dependency graph for these events
having maximum degree d = 2 and choose c to be (the constant) f(2) + 1, for any quickly
growing function f . It follows from the LLL that a good c-coloring exists since p · f(2) < 1.
However, by [118], the vertices of GA require Ω(log∗ n − log∗ c) = Ω(log∗ n) time to find a
good c-coloring.

It is also possible to obtain conditional lower bounds on distributed versions of the LLL.
For example, the best known randomized O(∆)-coloring algorithm takes exp(O(

√
log log n))

time [11], though better bounds are possible if ∆ ≫ log n [157]. If LLL could be solved in
less than exp(O(

√
log log n)) time then we could improve on [11], as follows. Each vertex in

G selects a color from a palette of size c ≥ 2e∆ uniformly at random. As usual, an edge is
bad if it is monochromatic. The dependency graph of these bad events corresponds to the
line graph of G, which has maximum degree d = 2∆ − 2. Since e(1/c)(d + 1) < 1, a valid
coloring can be found with one invocation of an LLL algorithm.

2.4 Applications

The Lovász Local Lemma has applications in many coloring problems, such as list coloring,
frugal coloring, total coloring, and coloring triangle-free graphs [125]. We give a few examples
of constructing these colorings distributively. In these applications, the existential bounds
are usually achieved by the so called “Rödl Nibble” method or the semi-random method. The
method consists of one or more iterations. Each iteration is a random process and some local
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properties are maintained in the graph. The properties depend on the randomness within a
constant radius. Each property is associated with a bad event, which is the event that the
property fails to hold. The Lovász Local Lemma can then be used to show the probability
none of the bad events hold is positive, though it may be exponentially small in the size of
the graph. This probability can then be amplified in a distributed fashion using a Moser-
Tardos-type resampling algorithm. Notice that we will need to find an independent set (e.g.,
an MIS or Weak-MIS or set of events with locally minimal IDs) in the dependency graph
induced by the violated local properties. Since we assumed the LOCAL model, the violated
local properties can be identified in constant time and the algorithms for MIS/Weak-MIS
can be simulated with a constant factor overhead, where each property is taken care by one
of the processors nearby (within constant distance). The important point here is that the
dependency graph and the underlying distributed network are sufficiently similar so that
distributed algorithms on one topology can be simulated on the other with O(1) slowdown.

Most applications of the LLL demand epd2 < 1 or even weaker bounds. In this case,
the efficient simple distributed algorithm can be applied. (The local properties are often
that some quantities do not deviate too much from their expectations. Thus, the the failure
probability of each local property is often bounded via standard Chernoff-type concentration
inequalities.)

2.4.1 Distributed Defective Coloring

We begin with a simple single-iteration application that uses the local lemma. Let φ : V →
{1, 2, . . . , k} be a k-coloring. Define defφ(v) to be the number of neighbors w ∈ N(v) such
that φ(v) = φ(w). The coloring φ is said to be f -defective if maxv defφ(v) ≤ f . Barenboim
and Elkin ( [9], Open Problem 10.7) raised the problem of devising an efficient distributed
algorithm for computing an f -defective O(∆/f)-coloring.

To warm up, we give a simple procedure for obtaining an f -defective O(∆/f)-coloring in
O(log n/f) time w.h.p., for f ≥ 60 ln ∆. Suppose each vertex colors itself with a color
selected from {1, 2, . . . , ⌈2∆/f⌉} uniformly at random. For every v ∈ N(u), let Xv be 1 if v

is colored the same as u, 0 otherwise. Let X = ∑
v∈N(u) Xv denote the number of neighbors

colored the same as v. Let Au denote the bad event that X > f at u. Clearly, whether Au
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occurs is locally checkable by u in a constant number of rounds. Moreover, the event Au

only depends on the the random choices of u’s neighbors. If Au occured and is selected for
resampling, the colors chosen by u and its neighbors will be resampled. The dependency
graph GA has maximum degree d = ∆2, because two events share variables only if they are
within distance two. Now we will calculate the probability that Au occurs. If we expose the
choice of u first, then Pr(Xv = 1) ≤ f/(2∆) and it is independent among other v ∈ N(u).
Letting M = f/2, we have E[X] ≤ f/2 = M . By Lemma A.4, Pr(X > f) ≤ e−f/6. Let Au

denote the bad event that X > f at u. Therefore, epd2 ≤ e−(f/6−1−4 ln ∆) ≤ e−(f/12), since
f ≥ 60 ln ∆. By using the simple distributed algorithm, it takes O(log1/epd2 n) = O(log n/f)
rounds to avoid the bad events w.h.p.

Next, we show that there is a constant C > 0 such that for any f ≥ C, an f -defective
O(∆/f)-coloring can be obtained in O(log n/f) rounds. For f < C, we can use the (∆ + 1)-
coloring algorithms to obtain 0-defective (proper) (∆ + 1)-colorings that runs in O(log n)
rounds. Let ∆0 = ∆ and ∆i = log3 ∆i−1.

if f < 60 ln ∆i−1 then
Each node in G′ chooses a color from ⌈(1 + 6∆−1/3

i ) · ∆i−1
∆i
⌉ colors uniformly at random.

Let Au denote the event that more than ∆i neighbors of u are colored the same with u.
Run Algorithm 2 until no bad events Au occurs.
Let Gj denote the graph induced by vertices with color j.
For j = 1 . . . , ⌈(1 + 6∆−1/3

i ) · ∆i−1
∆i
⌉, call defective-coloring(Gj, i + 1) in parellel.

else
Obtain an f -defective, (2∆i−1/f)-coloring for G′.

end if
Algorithm 4: defective-coloring(G′, i)

An f -defective O(∆/f)-coloring in G can be obtained by calling defective-coloring(G, 1),
which is described in Algorithm 4. The procedure defective-coloring(G′, i) is a recurisve
procedure whose halting condition is when f ≥ 60 log ∆i−1. When the condition occurs, we
will use the procedure described above to obtain an f -defective (2∆i−1/f)-coloring in G′.
Let l denote the total number of levels of the recursion. The final color of node v is a vector
(c1, c2, . . . , cl), where ci denotes the color received by v at level i. Clearly, such a coloring
obtained by the procedure is f -defective. The total number of colors used is:
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 ∏
1≤i<l

(1 + 6∆−1/3
i ) · ∆i−1

∆i

 · 2∆l−1

f
= 2(∆/f) ·

∏
1≤i<l

1 + 6
log log3 . . . log3 ∆︸ ︷︷ ︸

i−1

 = O(∆/f).

Now we will analyze the number of rounds needed in each level i. Suppose that each vertex
colors itself with a color selected from {1, 2, . . . , ⌈(1 + 6∆−1/3

i ) · ∆i−1
∆i
⌉} uniformly at random.

For every v ∈ N(u), let Xv be 1 if v is colored the same as u, 0 otherwise. Let X =∑
v∈NG′ (u) Xv denote the number of neighbors colored the same as v. Let Au denote the bad

event that X > ∆i at u. The dependency graph GA has maximum degree d = ∆2
i−1, because

two events share variables only if they are within distance two. If we expose the choice of
u first, then Pr(Xv = 1) ≤ ∆i

∆i−1
· 1

1+6∆−1/3
i

and it is independent among other v ∈ NG′(u).
Since the maximum degree of G′ is ∆i−1, E[X] ≤ ∆i · 1

1+6∆−1/3
i

. By Chernoff Bound (Lemma
A.4),

Pr(Au) = Pr(X > ∆i) ≤ Pr(X > (1+6∆−1/3
i )·E[X]) ≤ e−62∆−2/3

i ·E[X]/3 ≤ e−6∆1/3
i = e−6 ln ∆i−1 .

Therefore, epd2 ≤ e− ln ∆i−1 and so Algorithm 2 runs in O(log n/ log ∆i−1) rounds. The total
number of rounds over all levels is therefore

O

(
log n ·

(
1

log ∆ + 1
log log3 ∆

+ . . . + 1
log ∆l−1

+ 1
f

))
= O

(
log n

f

)
.

2.4.2 Distributed Frugal Coloring

A β-frugal coloring of a graph G is a proper vertex-coloring of G such that no color appears
more than β times in any neighborhood. Molloy and Reed [125] showed the following by
using an asymmetric version of the local lemma:

Theorem 2.4.1. For any constant integer β ≥ 1, if G has maximum degree ∆ ≥ ββ then
G has a β-frugal proper vertex coloring using at most 16∆1+ 1

β colors.

Here we outline their proof and show how to turn it into a distributed algorithm that finds
such a coloring in O(log n · log2 ∆) rounds. If β = 1, then simply consider the square
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graph of G, which is obtained by adding the edges between vertices whose distance is 2. A
proper coloring in the square graph is a 1-frugal coloring in G. Since the square graph has
maximum degree ∆2, it can be (∆2 + 1)-colored by simulating distributed algorithms for
(∆ + 1)-coloring.

For β ≥ 2, let k = 16∆1+ 1
β . Suppose that each vertex colors itself with one of the k colors

uniformly at random. Consider two types of bad events. For each edge uv, the Type I
event Au,v denotes that u and v are colored the same. For each subset {u1, . . . , uβ+1} of
the neighborhood of a vertex, Type II event Au1,...,uβ+1 denotes that u1, . . . , uβ+1 are colored
the same. If none of the events occur, then the random coloring is a β-frugal coloring.
For each Type I event Au,v, Pr(Au,v) is at most 1/k. For each Type II event Au1,...,uβ+1 ,
Pr(Au1,...,uβ+1) ≤ 1/kβ. For each bad event A, let x(A) = 2 Pr(A). Notice that x(A) ≤ 1/2,
we have:

x(A)
∏

B∈Γ(A)
(1− x(B)) ≥ x(A)

∏
B∈Γ(A)

exp (−x(B) · 2 ln 2) {(1− x) ≥ e−x·2 ln 2 for x ≤ 1/2}

= x(A) · exp
−2 ln 2 ·

∑
B∈Γ(A)

2 Pr(B)


Since A shares variables with at most (β + 1)∆ Type I events and (β + 1)∆
(

∆
β

)
Type II

events,

∑
B∈Γ(A)

Pr(B) ≤ (β + 1)∆ · 1
k

+ (β + 1)∆
(

∆
β

)
· 1

kβ

<
(β + 1)∆

k
+ (β + 1)∆β+1

β!kβ

= β + 1
16∆

1
β

+ β + 1
β!(16)β

< 1/8 (for ∆ ≥ ββ and β ≥ 2)
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Therefore,

x(A)
∏

B∈Γ(A)
(1− x(B)) ≥ x(A) exp

(
− ln 2

2

)

=
√

2 · Pr(A).

By letting 1 − ϵ = 1/
√

2 in Theorem 2.3.8, we need at most O(log√
2 n) rounds of weak

MIS resampling. In each resampling round, we have to identify the bad events first. Type I
events Au,v can be identified by either u or v in constant rounds, where ties can be broken by
letting the node with smaller ID check it. If {u1, . . . , uβ+1} is in the neighborhood of u, then
the Type II event Au1,...,uβ+1 will be checked by u. If {u1, . . . , uβ+1} is in the neighborhood
of multiple nodes, we can break ties by letting the one having the smallest ID to check it.
All Type II events in the neighborhood of u can be identified from the colors selected by the
neighbors of u. Next we will find a weak MIS induced by the bad events in the dependency
graph. Each node will simulate the weak MIS algorithm on the events it is responsible to
check. Each round of the weak MIS algorithm in the dependency graph can be simulated
with constant rounds. The maximum degree d of the dependency graph is O((β + 1)∆

(
∆
β

)
).

Therefore, we need at most O(log n · log2 d) = O(log n · log2 ∆) rounds, since β is a constant
and (β + 1)∆

(
∆
β

)
≤ (β + 1)∆β+1 = poly(∆).

β-frugal, (∆ + 1)-coloring

The frugal (∆ + 1)-coloring problem for general graphs is studied by Hind, Molloy, and
Reed [81], Pemmaraju and Srinivasan [145], and Molloy and Reed [126]. In particular, the
last one gave an upper bound of O(log ∆/ log log ∆) on the frugality of (∆+1)-coloring. This
is optimal up to a constant factor, because it matches the lower bound of Ω(log ∆/ log log ∆)
given by Hind et al. [126]. However, it is not obvious whether it can be implemented
efficiently in a distributed fashion, because they used a structural decomposition computed by
a sequential algorithm. Pemmaraju and Srinivasan [145] showed an existential upper bound
of O(log2 ∆/ log log ∆). Furthermore, they gave a distributed algorithm that computes an
O(log ∆ · log n

log log n
)-frugal, (∆ + 1)-coloring in O(log n) rounds. We show how to improve it to

find a O(log2 ∆/ log log ∆)-frugal, (∆ + 1)-coloring also in O(log n) rounds.
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They proved the following theorem:

Theorem 2.4.2. Let G be a graph with maximum vertex degree ∆. Suppose that associated
with each vertex v ∈ V , there is a palette P (v) of colors, where |P (v)| ≥ deg(v) + 1. Fur-
thermore, suppose |P (v)| ≥ ∆/4 for all vertices v in G. Then, for some subset C ⊆ V , there
is a list coloring of the vertices in C such that:

(a) G[C] is properly colored.

(b) For every vertex v ∈ V and for every color x, there are at most 9 · ln ∆
ln ln ∆ neighbors of v

colored x.

(c) For every vertex v ∈ V , the number of neighbors of v not in C is at most ∆(1 − 1
e5 ) +

27
√

∆ ln ∆.

(d) For every vertex v ∈ V , the number of neighbors of v in C is at most ∆
e5 + 27

√
∆ ln ∆.

The theorem was obtained by applying the LLL to the following random process: Suppose
that each vertex v has an unique ID. Every vertex picks a color uniformly at random from
its palette. If v has picked a color that is not picked by any of its neighbor whose ID is
smaller than v, then v will be colored with that color. Let qv denote the probability that v

becomes colored. Then, if v is colored, with probability 1− 1/(e5qv), v uncolors itself. This
ensures that the probability that v becomes colored in the process is exactly 1/e5, provided
that qv ≥ 1/e5, which they have shown to be true.

They showed by iteratively applying the theorem for O(log ∆) iterations, an
O(log2 ∆/ log log ∆)-frugal, (∆ + 1)-coloring can be obtained. Let Gi be the graph after
round i obtained by deleting already colored vertices and ∆i be the maximum degree of Gi.
The palette P (u) for each vertex u contains colors that have not been used by its neighbors.
It is always true that |P (v)| ≥ deg(v) + 1. Notice that to apply Theorem 2.4.2, we also
need the condition |P (v)| ≥ ∆/4. The worst case behavior of ∆i and pi is captured by the
recurrences:

∆i+1 = ∆i

(
1− 1

e5

)
+ 27

√
∆i ln ∆i

pi+1 = pi −
∆i

e5 − 27
√

∆i ln ∆i. (2.1)
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They showed the above recurrence can be solved to obtain the following bounds on ∆i and
pi:

Lemma 2.4.3. Let α = (1 − 1/e5). There is a constant C such that for all i for which
∆i ≥ C, ∆i ≤ 2∆0α

i and pi ≥ ∆0
2 αi.

Therefore, |P (v)| ≥ ∆/4 always holds. The two assumptions of Theorem 2.4.2 are always
satisfied and so it can be applied iteratively until ∆i < C, which takes at most log1/α

(
2∆0
C

)
=

O(log ∆) iterations. Since each iteration introduces at most O(log ∆/ log log ∆) neighbors
of the same color to each vertex, the frugality will be at most O(log2 ∆/ log log ∆). In
the end, when ∆i < C, one can color the remaining graph in O(∆i + log∗ n) time using
existing (∆i + 1)-coloring algorithms [10]. This will only add O(1) copies of each color to
the neighborhood, yielding a O(log2 ∆/ log log ∆)-frugal, (∆ + 1)-coloring. In order to make
it suitable for our simple distributed algorithm and achieve the running time of O(log n), we
will relax the criteria of (b),(c),(d) in Theorem 2.4.2:

(b’) For every vertex v ∈ V and for every color x, there are at most 18 · ln ∆0
ln ln ∆0

neighbors of
v colored x.

(c’) For every vertex v ∈ V , the number of neighbors of v not in C is at most ∆(1− 1
e5 ) +

40
√

∆ ln ∆.

(d’) For every vertex v ∈ V , the number of neighbors of v in C is at most ∆
e5 + 40

√
∆ ln ∆.

In (b’), ∆ is replaced by ∆0, which is the maximum degree of the initial graph. Also, the
constant 9 is replaced by 18. In (c’) and (d’), the constant 27 is replaced by 40 and

√
ln ∆ is re-

placed by ln ∆. It is not hard to see that Lemma 2.4.3 still holds and an O(log2 ∆/ log log ∆)-
frugal coloring is still obtainable. Originally, by Chernoff Bound and Azuma’s Inequality,
they showed

Pr
(
# neighbors of v colored x exceeds 9 · ln ∆

ln ln ∆

)
<

1
∆6 (2.2)

and
Pr
(∣∣∣∣∣Pv −

deg(v)
e5

∣∣∣∣∣ > 27
√

∆ ln ∆
)

<
2

∆4.5 (2.3)
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where Pv is the number of colored neighbors of v. Theorem 2.4.2 can be derived from
(2.2) and (2.3). The relaxed version (b’), (c’), and (d’) can be shown to fail with a lower
probability.

Pr
(
# neighbors of v colored x exceeds 18 · ln ∆0

ln ln ∆0

)
<

1
∆12

0
(2.4)

and
Pr
(∣∣∣∣∣Pv −

deg(v)
e5

∣∣∣∣∣ > 40
√

∆ ln ∆
)

<
2

∆9 ln ∆ (2.5)

The bad event Av is when the neighbors of v colored x exceeds 18 · ln ∆0
ln ln ∆0

for some color
x or |Pv − deg(v)

e5 | > 40
√

∆ ln ∆ happens. By (2.4), (2.5), and the union bound, Pr(Av) ≤
(∆ + 1)/∆12

0 + 2/∆9 ln ∆. In their random process, they showed Av depends on variables up
to distance two. Thus, the dependency graph GA has maximum degree d less than ∆4. Note
that

epd2 = e∆8((∆ + 1)/(2∆12
0 ) + 2/∆9 ln ∆)

≤ 1/(2∆0) + 1/(2∆ln ∆)

< 2 ·max(1/(2∆0), 1/(2∆ln ∆))

= max(1/∆0, 1/∆ln ∆).

The number of resampling rounds needed is at most O(log 1
epd2

n), which is at most
ln n

min(ln ∆0,ln2 ∆) ≤
ln n

ln ∆0
+ ln n

ln2 ∆ . Therefore, the total number of rounds needed is at most:

c ln ∆0∑
i=1

(
ln n

ln ∆0
+ ln n

ln2 ∆i

)

≤
c ln ∆0∑

i=1

(
ln n

ln ∆0
+ ln n

ln2(2∆0αi)

)

= c ln ∆0 ·
ln n

ln ∆0
+ ln n

c ln ∆0∑
i=1

1
(ln ∆0 − i ln 1

α
+ ln 2)2

≤ c ln n + ln n ·O
( ∞∑

i=1

1
i2

)
= O(log n)

where c > 0 is some constant, and α = (1− 1/e5).
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2.4.3 Distributed List Coloring

Given a graph G, each vertex v is associated with a list (or a palette) of available colors P (v).
Let degc(v) denote the number of neigbors w ∈ N(v) such that c is P (w). Suppose that
degc(v) is upper bounded by D. The list coloring constant is the minimum K such that for
any graph G and any palettes P (u) for u ∈ G, if |P (u)| ≥ K ·D and degc(u) ≤ D for every
u ∈ G and every c ∈ P (u), then a proper coloring can be obtained by assigning each vertex
a color from its list. Reed [152] first showed the list coloring constant is at most 2e by a
single application of LLL. Haxell [80] showed 2 is sufficient. Later, Reed and Sudakov [153]
used a multiple iterations Rödl Nibble method to show the list coloring constant is at most
1 + o(1), where o(1) is a function of D. Reed’s upper bound of 2e can be made distributed
and constructive with a slighty larger factor, say 2e + ϵ for any constant ϵ > 0. The LLL
condition they need is close to tight and so we will need to use the weak MIS algorithm. The
additional slack needed is due to the ϵ-slack needed in distributed LLL (ep(d + 1) ≤ 1− ϵ).
The constructive algorithm can be easily transformed from their proof. Here we outline
their proof: Suppose |P (v)| ≥ (2e + ϵ)D for all v. Each vertex is assigned a color from its
palette uniformly at random. They showed that with positive probability, a proper coloring
is obtained. Let e = uv ∈ E, and c ∈ P (u) ∩ P (v). Define Ae,c to be the bad event that
both u and v are assigned c. Clearly, p = Pr(Ae,c) = 1/((2e + ϵ)D)2. Also, there are at most
(2e+ϵ)D2 events that depend on the color u picks and at most (2e+ϵ)D2 events that depend
on the color v picks. The dependency graph has maximum degree d = 2(2e+ ϵ)D2−2. Since
ep(d + 1) ≤ 2e/(2e + ϵ) is upper bounded by a constant less than 1, we can construct the
coloring in O(log n · log2 D) rounds by using the weak MIS algorithm.

In the following, we shall show that for any constants ϵ, γ > 0, there exists Dϵ,γ > 0 such
that for any D ≥ Dϵ,γ, any (1 + ϵ)D-list coloring instance can be colored in O(log∗ D ·
max(1, log n/D1−γ)) rounds. The algorithm consists of multiple iterations. Let Pi(u) and
degi,c(u) be the palette and the c-degree of u at end of iteration i. Also, at the end of
iteration i, denote the neighbor of u by Ni(u) and the c-neighbor by Ni,c(u), which are the
neighbors of u having c in their palette. Suppose that each vertex u has an unique ID, ID(u).
Let N∗

i,c(u) denote the set of c-neighbors at the end of iteration i having smaller ID than u.
Let deg∗

i,c(u) = |N∗
i,c(u)|.

In each iteration i, each vertex will select a set of colors Si(u) ⊆ Pi−1(u) and Ki(u) ⊆ Pi−1(u),

41



List-Coloring (G, {πi}, {βi})
1: G0 ← G
2: i← 0
3: repeat
4: i← i + 1
5: for each u ∈ Gi−1 do
6: (Si(u), Ki(u))← Select(u, πi, βi)
7: Set Pi(u)← Ki(u) \ Si(N∗

i−1(u))
8: if Si(u) ∩ Pi(u) ̸= ∅ then color u with any color in Si(u) ∩ Pi(u) end if
9: end for

10: Gi ← Gi−1 \ {colored vertices}
11: until

Algorithm 5

Select(u, πi, βi)
1: Include each c ∈ Pi−1(u) in Si(u) independently with probability πi.
2: For each c, calculate rc = βi/(1− πi)deg∗

i−1,c(u).
3: Include c ∈ Pi−1(u) in Ki(u) independently with probability rc.
4: return (Si(u), Ki(u)).

Algorithm 6

42



which are obtained from Algorithm 6. If a color is in Ki(u) and it is not in Si(v) for any
v ∈ N∗

i−1(u), then it remains in its new palette Pi(u). Furthermore, if Si(u) contains a color
that is in Pi(u), then u colors itself with the color (in case there are multiple such colors,
break ties arbitrarily).

Given πi, the selecting probability for each vertex u to include a color in Si(u), the probability
that u /∈ Si(N∗

i−1(u)) is (1 − πi)deg∗
i−1,c(u). Define βi = (1 − πi)t′

i−1 , where t′
i−1 is an upper

bound on degi−1,c(u) for each vertex u and each color c. Then rc = βi/(1 − πi)deg∗
i−1,c(u) is

always at most 1 and thus it is a valid probability. Therefore, the probability that a color
c ∈ Pi−1(u) remains in Pi(u) is (1−πi)deg∗

i−1,c(u) · rc = βi. As a result, the palette size shrinks
by at most a βi factor in expectation.

Suppose that p′
i is the lower bound on the palette size at the end of iteration i. Then the

probability that u remains uncolored is upper bounded by the probability that any of the
colors in Pi(u) was not seleted to be in Si(u). The probability is roughly (1−πi)p′

i , which we
will define it to be αi. The slight inaccuracy comes from the fact that we are conditioning
on the new palette size |Pi(u)| is lower bounded by p′

i. However, we will show the effect of
this conditioning only affects the probability by a small amount.

Let p0 = (1 + ϵ) · D and t0 = D be the initial palette size and upper bound on c-degree.
In the following, pi and ti are the ideal lower bound of the palette size and the ideal upper
bound of the c-degree at the end of each iteration i. p′

i and t′
i are the approximation of pi

and ti, incoporating the errors from concentration bounds. K is a constant in the selecting
probability that depends on ϵ. T is the threshold on the c-degree before we switch to a
different analysis, since the usual concentration bound does not apply when the quantity is
small. δ = 1/ log D is the error control parameter which is set to be small enough such that
(1± δ)i is 1± o(1) for every iteration i.

πi = 1/(Kt′
i−1 + 1) δ = 1/ log D

αi = (1− πi)p′
i βi = (1− πi)t′

i−1

pi = βipi−1 ti = max(αiti−1, T )

p′
i = (1− δ)ipi t′

i = (1 + δ)iti

K = 2 + 2/ϵ T = D1−0.9γ/2
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Intuitvely, we would like to have ti shrink faster than pi. To ensure this happens, we must
have α1 ≤ β1, which holds under our setting of πi. As we will show, αi shrinks much faster
than βi as i becomes larger. Note that βi is at least a constant, as

βi = (1− 1/(Kt′
i−1 + 1))t′

i−1

= (1− 1/(Kt′
i−1 + 1))(Kt′

i−1)·(1/K)

≥ (e−1)1/K = e−1/K since (1− 1/(x + 1))x ≥ e−1.

Lemma 2.4.4. tr = T after at most r = O(log∗ D) iterations.

Proof. We divide the iterations into two stages, where the first stage consists of iterations
i for which ti−1/pi−1 ≥ 1/(1.1e2/KK). During the first stage, we show that the ratio ti/pi

decreases by a factor of exp
(
−(1− o(1)) ϵ2

4(1+ϵ)

)
in every round.

ti

pi

= αi

βi

ti−1

pi−1

= (1− πi)p′
i−t′

i−1 · ti−1

pi−1
defn. αi, βi

≤ exp
(
−πi · (p′

i − t′
i−1)

)
· ti−1

pi−1
1− x ≤ e−x

≤ exp
(
−(1− o(1)) · 1

K

(
pi

ti−1
− 1

))
· ti−1

pi−1
defn. πi, p′

i

t′
i−1

= (1− o(1)) pi

ti−1

≤ exp
(
−(1− o(1)) · 1

K

(
βipi−1

ti−1
− 1

))
· ti−1

pi−1
defn. pi

≤ exp
(
−(1− o(1)) · 1

K

(
e−1/K(1 + ϵ)− 1

))
· ti−1

pi−1
pi−1/ti−1 ≥ (1 + ϵ)

≤ exp
(
−(1− o(1)) · ((1− 1/K)(1 + ϵ)− 1)

K

)
· ti−1

pi−1
e−x ≥ 1− x

= exp
(
−(1− o(1)) · ϵ2

4(1 + ϵ)

)
· ti−1

pi−1
K = 2(1 + ϵ)/ϵ

Therefore, the first stage ends after at most (1 + o(1))4(1+ϵ)
ϵ2 ln(1.1Ke2/K) iterations. Let j

be the first iteration when the second stage begins. For i > j, we show that 1/αi has an
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exponential tower growth.

αi = (1− πi)p′
i

≤ exp
(
−(1− o(1)) 1

K
· pi

ti−1

)
1− x ≤ e−x

≤ exp
(
−(1− o(1)) 1

K
· βipi−1

ti−1

)
defn. pi

≤ exp
(
−(1− o(1)) 1

K
· βi−1

αi−1
· βipi−2

ti−2

)
pi−1

ti−1
= βi−1

αi−1

pi−2

ti−2

≤ exp
(
−(1− o(1)) 1

K
· e

−2/K

αi−1
· pi−2

ti−2

)
βi ≥ e−1/K

≤ exp (−1/αi−1)
ti−2

pi−2
<

1
1.1Ke2/K

Therefore, 1
αj+log∗ D+1

≥ ee··
·e︸ ︷︷ ︸

log∗ D

≥ D, and so tj+log∗ D+1 ≤ max(αj+log∗ D+1 ·D, T ) = T .

On the other hand, we show the bound on the palette size remains large throughout the
algorithm.

Lemma 2.4.5. p′
i = D1−o(1) for i = O(log∗ D).

Proof. p′
i = (1 − δ)ipi ≥ (1 − δ)i∏i

j=1 βjD ≥ (1 − δ)ie−i/KD = (1 − o(1))D− i
K log D · D =

D1−o(1).

In the following we shall show how to ensure that for each iteration i the palette sizes are
lower bounded by p′

i and the c-degrees are upper bounded by t′
i. For convenience let Hi(u)

denote the event that |Pi(u)| ≥ p′
i and degi,c(u) ≤ t′

i for u and c ∈ Pi−1(u). Let Hi denote
the event that Hi(u) holds for every u ∈ Gi.

Lemma 2.4.6. Suppose that Hi−1 holds, then Pr(|Pi(u)| < (1− δ)βi|Pi−1(u)|) < e−Ω(δ2p′
i).

Proof. Consider a color c ∈ Pi−1(u). The probability that c remains in Pi(u) is exactly βi.
Since the event that c remains in Pi(u) is independent among other colors, by a Chernoff
Bound, Pr(|Pi(u)| < (1− δ)βi|Pi−1(u)|) < e−Ω(δ2pi−1).
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Lemma 2.4.7. Suppose that Hi−1 holds, then Pr(degi,c(u) > (1 + δ) · max(αi ·
degi−1,c(u), T )) < e−Ω(δ2T ) + D · e−Ω(δ2p′

i).

Proof. Let x1, . . . xk ∈ Ni−1,c(u) be the c-neighbors of u, ordered by their ID. Let Ej denote
the event that |Pi(xj)| ≥ p′

i, where Pr(Ej) < e−Ω(δ2p′
i) by Lemma 2.4.6.

Let Xi denote the event that xi remains uncolored after iteration i. Let X⃗j denote
the shorthand for (X1, . . . , Xj). We will show that for any realization of X⃗j−1, Pr(Xj |
X⃗j−1, E1, . . . , Ej) ≤ αi. Then we can apply Lemma A.5, which is a variant of Chernoff bound
that works when conditioning on a sequence of likely events.

Let U2 = Ni−1(Ni,c(u))\Ni,c(u) be the neighbors of the c-neighbors excluding the c-neighbors
themselves (u ∈ U2 unless degi−1,c(u) = 0). First, notice that the events X⃗j−1 and E1 . . . , Ej

are functions of Si(U2), Si(x1), . . . , Si(xj−1), Ki(x1), . . . , Ki(xj). Therefore, we can instead
show that under any realization of Si(U2), Si(x1), . . . , Si(xj−1), Ki(x1), . . . , Ki(xj) subject to
the events E1 . . . , Ej hold, Pr(Xj | Si(U2), Si(x1), . . . , Si(xj−1), Ki(x1), . . . , Ki(xj)) ≤ αi.

Obviously for any c′ ∈ Pi−1(xj),

Pr(c′ ∈ Si(xj) | Si(U2), Si(x1), . . . , Si(xj−1), Ki(x1), . . . , Ki(xj)) = πi.

Therefore,

Pr(Xj | Si(U2), Si(x1), . . . , Si(xj−1), Ki(x1), . . . , Ki(xj))

≤ (1− Pr(c′ ∈ Si(xj) | Si(U2), Si(x1), . . . , Si(xj−1), Ki(x1), . . . , Ki(xj)))|Pi(u)|

≤ (1− πi)p′
i = αi.

Therefore, by Lemma A.5 and Corollary A.2, and note the fact that ∑j Pr(E j) ≤ D ·e−Ω(δ2p′
i),

we have Pr(degi,c(u) > (1 + δ) ·max(αi · degi−1,c(u), T )) ≤ e−Ω(δ2T ) + D · e−Ω(δ2p′
i).

Corollary 2.4.8. Suppose that Hi−1 holds, Pr(H i(u)) ≤ D · e−Ω(δ2T ) + 2D2 · e−Ω(δ2p′
i).

Proof. By taking union bound over the event in Lemma 2.4.6 and the events in Lemma 2.4.7
over each c ∈ Pi−1(u), we get the desired result.
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Let r be the first iteration such that tr = T . If Hr holds, then degr,c(u) ≤ t′
r ≤ (1 + δ)rtr ≤

(1 + o(1))tr ≤ 2T for all u and c. Now we switch to the following analysis, which shows the
algorithm terminates in a constant number of iterations. For i > r, we define t′

i = t′
i−1 · T

p′
i
.

The definition for the rest of parameters remain the same. By Lemma 2.4.5, if D is large
enough, we can assume that p′

i ≥ D1−0.8γ for i = r + ⌈1/(0.1γ)⌉, since r + ⌈1/(0.1γ)⌉ =
O(log∗ D). Then from the definition of t′

i, it shrinks to less than one in ⌈ 1
0.1γ
⌉ iterations,

since T/p′
i ≤ D−0.1γ and t′

r+1/(0.1γ) < (D−0.1γ)⌈1/(0.1γ)⌉ · t′
r < 1.

Now we will show that under this new defintion of ti for i > r, Hi(u) is likely to hold,
provided that Hi−1 holds.

Lemma 2.4.9. Suppose that Hi−1 is true where i > r, then Pr(degi,c(u) > t′
i) < e−Ω(T ) +

D · e−Ω(δ2p′
i)

Proof. Let x1, . . . xk ∈ Ni−1,c(u) be the c-neighbors of u, ordered by their ID in the increasing
order. Let Ej denote the event that |Pi(xj)| ≥ p′

i. Note that Pr(E j) ≤ e−Ω(δ2p′
i). As we have

shown in the proof of Lemma 2.4.7, Pr(Xj | X⃗j, E1, . . . , Ej) ≤ αi. Therefore,

Pr(degi,c(u) > t′
i)

= Pr
(

degi,c(u) >

(
t′
i−1

αit′
i−1

)
· αit

′
i−1

)
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Applying Lemma A.5 and Corollary A.2 with 1 + δ = t′
i/(αit

′
i−1), and noticing that

αi degi−1,c(u) ≤ αit
′
i−1, the probability above is bounded by

≤ exp
(
−αit

′
i−1

(
t′
i

αit′
i−1

ln t′
i

αit′
i−1
−
(

t′
i

αit′
i−1
− 1

)))
+ De−Ω(δ2p′

i)

≤ exp
(
−t′

i

(
ln t′

i

αit′
i−1
− 1

))
+ De−Ω(δ2p′

i)

= exp
(
−ti

(
ln
( 1

αi

)
− ln

(
et′

i−1
t′
i

)))
+ De−Ω(δ2p′

i)

≤ exp
(
−t′

i

(
(1− o(1)) p′

i

Kt′
i−1
− ln

(
et′

i−1
t′
i

)))
+ De−Ω(δ2p′

i) ln 1
αi

= (1− o(1)) p′
i

Kt′
i−1

≤ exp
(
−
(

(1− o(1)) T

K
− t′

i ln(eD)
))

+ De−Ω(δ2p′
i) defn. t′

i and t′
i−1/t′

i < D

≤ exp
(
−T

(
(1− o(1))

K
−

t′
i−1
p′

i

ln(eD)
))

+ De−Ω(δ2p′
i)

≤ exp
(
−T

(
(1− o(1)) 1

K
− 2 ln(eD)

D0.1γ

))
+ De−Ω(δ2p′

i)
t′
i−1
p′

i

≤ 2T

p′
i

≤ 2
D0.1γ

≤ exp (−Ω(T )) + De−Ω(δ2p′
i)

Suppose that Hi−1 holds, by taking the union bound over all the events Pi(u) ≥ p′
i for

all u ∈ Gi−1 and Pr(degi,c(u) > t′
i) for all u ∈ Gi−1 and all c ∈ Pi−1(u), we get that

Pr(H i(u)) ≤ D · e−Ω(T ) + 2D2 · e−Ω(δ2p′
i).

Therefore, we conclude that for each iteration i ≥ 1, if Hi−1 holds, then Pr(H i(u)) ≤
D · exp(−Ω(δ2T )) + 2D2 · exp(−Ω(δ2p′

i)) ≤ exp(−D1−0.95γ) for large enough D. Now we
want to ensure that Hi holds for every iteration i. If Hi−1 is true, then Pr(H i(u)) ≤
exp (−D1−0.95γ). If D1−γ ≥ log n, then each of the bad event occur with probability at
most 1/ poly(n). Since there are O(n) events, by the union bound, Hi holds w.h.p. On the
other hand, if D1−γ ≤ log n, then we can use the LLL algorithm to make Hi hold w.h.p. The
probability of the failure events are bounded by p = exp (−D1−0.95γ). Each event depends
on at most d = O(∆2) other events, since each event only depends on the outcomes of the
random variables in its neighborhood. Therefore, epd2 ≤ exp(−D1−γ) and we can apply the
simple LLL algorithm to make all the events hold w.h.p. in O(log1/epd2 n) ≤ O(log n/D1−γ)
iterations.
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By Lemma 2.4.4 and the fact that ti shrinks to 1 in a constant number of iterations after
i > r, the algorithm uses O(log∗ D) iterations. Each iteration uses max(1, O(log n/D1−γ))
rounds. The total number of rounds is therefore O(log∗ D ·max(1, O(log n/D1−γ))).
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Chapter 3

Coloring in Triangle-Free Graphs

3.1 Introduction

A proper t-coloring of a graph G = (V, E) is an assignment from V to {1, . . . , t} (colors)
such that no edge is monochromatic, or equivalently, each color class is an independent set.
The chromatic number χ(G) is the minimum number of colors needed to properly color G.
Let ∆ be the maximum degree of the graph. It is easy to see that sometimes ∆ + 1 colors
are necessary, e.g., on an odd cycle or a (∆ + 1)-clique. Brooks’ celebrated theorem [17]
states that these are the only such examples and that every other graph can be ∆-colored.
Vizing [170] asked whether Brooks’ Theorem can be improved for triangle-free graphs. In
the 1970s Borodin and Kostochka [16], Catlin [18], and Lawrence [117] independently proved
that χ(G) ≤ 3

4(∆ + 2) for triangle-free G, and Kostochka (see [89]) improved this bound to
χ(G) ≤ 2

3(∆ + 2).

Existential Bounds. Better asymptotic bounds were achieved in the 1990s by using an
iterated approach, often called the “Rödl Nibble”. The idea is to color a very small fraction
of the graph in a sequence of rounds, where after each round some property is guaranteed to
hold with some small non-zero probability. Kim [104] proved that in any girth-5 graph G,
χ(G) ≤ (1 + o(1)) ∆

ln ∆ . This bound is optimal to within a factor-2 under any lower bound on
girth. (Constructions of Kostochka and Masurova [107] and Bollobás [14] show that there
is a graph G of arbitrarily large girth and χ(G) > ∆

2 ln ∆ .) Building on [104], Johansson
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(see [125]) proved that χ(G) = O( ∆
ln ∆) for any triangle-free (girth-4) graph G.1 In relatively

recent work Jamall [86] proved that the chromatic number of triangle-free graphs is at most
(67 + o(1)) ∆

ln ∆ .

Algorithms. Grable and Panconesi [74] gave a distributed algorithm that ∆/k-colors a
girth-5 graph in O(log n) time, where ∆ > log1+ϵ n and k ≤ δ ln ∆ for any ϵ > 0 and some
δ < 1 depending on ϵ.2 Jamall [87] showed a sequential algorithm for O(∆/ ln ∆)-coloring a
triangle-free graph in O(n∆2 ln ∆) time, for any ϵ > 0 and ∆ > log1+ϵ n.

Note that there are two gaps between the existential [86,104,125] and algorithmic results [74,
87]. The algorithmic results use a constant factor more colors than necessary (compared to
the existential bounds) and they only work when ∆ ≥ log1+Ω(1) n is sufficiently large, whereas
the existential bounds hold for all ∆.

New Results. We give new distributed algorithms for (∆/k)-coloring triangle-free graphs
that simultaneously improve on both the existential and algorithmic results of [74,86,87,125].
Our algorithms run in O(log n) time for all ∆ and in O(k + log∗ n) time for ∆ sufficiently
large. Moreover, we prove that the chromatic number of triangle-free graphs is (4+o(1)) ∆

ln ∆ .

Theorem 3.1.1. Fix a constant ϵ > 0. Let ∆ be the maximum degree of a triangle-free
graph G, assumed to be at least some ∆ϵ depending on ϵ. Let k ≥ 1 be a parameter such that
k ≤ 1

4(1−2ϵ) ln ∆. Then G can be (∆/k)-colored, in time O(k+log∗ ∆) if ∆1− 4k
ln ∆ −ϵ = Ω(ln n),

and, for any ∆, in time on the order of

(k + log∗ ∆) · ln n

∆1− 4k
ln ∆ −ϵ

= O(log n).

The first time bound comes from an O(k + log∗ ∆)-round procedure, each round of which
succeeds with probability 1− 1/ poly(n). However, as ∆ decreases the probability of failure
tends to 1. To enforce that each step succeeds with high probability we use our simple

1We are not aware of any extant copy of Johansson’s manuscript. It is often cited as a DIMACS Technical
Report, though no such report exists. Molloy and Reed [125] reproduced a variant of Johansson’s proof
showing that χ(G) ≤ 160 ∆

ln ∆ for triangle-free G.
2They claimed that their algorithm could also be extended to triangle-free graphs. Jamall [87] pointed

out a flaw in their argument.
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distributed algorithm for Lovász Local Lemma in Chapter 2 optimized for the parameters of
our problem.

Theorem 3.1.1 has a complex tradeoff between the minimum threshold ∆ϵ, the number of
colors, and the threshold for ∆ beyond which the running time becomes O(log∗ n). The
following corollaries highlight some interesting parameterizations of Theorem 3.1.1.

Corollary 3.1.2. The chromatic number of triangle-free graphs with maximum degree ∆ is
at most (4 + o(1))∆/ ln ∆.

Proof. Fix an ϵ′ > 0 and choose k = ln ∆/(4 + ϵ′) and ϵ = ϵ′/(2(4 + ϵ′)). Theorem 3.1.1
states that for ∆ at least some ∆ϵ′ , the chromatic number is at most (4 + ϵ′)∆/ ln ∆. Now
let ϵ′ = o(1) be a function of ∆ tending slowly to zero. (The running time of the algorithm
that finds such a coloring is never more than O(log n).)

Corollary 3.1.3. Fix any δ > 0. A (4+δ)∆/ ln ∆-coloring of an n-vertex triangle-free graph
can be computed in O(log∗ n) time, provided ∆ > (ln n)(4+δ)δ−1+o(1) and n is sufficiently large.

Proof. Set k = ln ∆/(4 + δ) and let ϵ = o(1) tend slowly to zero as a function of n. If we
have

∆1−4k/ ln ∆−ϵ = ∆1−4/(4+δ)−ϵ = ∆δ(4+δ)−1−ϵ = Ω(ln n),

or equivalently, ∆ > (ln n)δ−1(4+δ)+o(1), then a (4 + δ)∆/ ln ∆-coloring can be computed in
O(log∗ n) time. (For n sufficiently large and ϵ tending slowly enough to zero, the lower bound
on ∆ also implies ∆ > ∆ϵ.)

Theorem 3.1.1 also shows that some colorings can be computed in sublogarithmic time, even
when ∆ is too small to achieve an O(log∗ n) running time.

Corollary 3.1.4. Fix a δ > 0 and let k = o(ln ∆). If ∆ > (ln n)δ, a (∆/k)-coloring can be
computed in (ln n)1−δ+o(1) time.

Proof. Let ϵ = o(1) tend slowly to zero as a function of n. The running time of Theorem 3.1.1
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is on the order of

(k + log∗ ∆) · ln n

∆1− 4k
ln ∆ −ϵ

= O

(
ln n

∆1−o(1)−ϵ−ln k/ ln ∆

)
= (ln n)1−δ+o(1).

Our result also extends to girth-5 graphs with ∆1− 4k
ln ∆ −ϵ replaced with ∆1− k

ln ∆ −ϵ. This change
allows us to (1+o(1))∆/ ln ∆-color such graphs. Our algorithm can clearly be applied to trees
(girth∞). Elkin [45] noted that with Bollobás’s construction [14], Linial’s lower bound [118]
on coloring trees can be strengthened to show that it is impossible to o(∆/ ln ∆)-color a
tree in o(log∆ n) time. We prove that it is possible to (1 + o(1))∆/ ln ∆-color a tree in
O(log ∆ + log∆ log n) time.

Without modifying the analysis, our results extend to list-coloring triangle-free graphs and
girth-5 graphs. E.g., we can (4+o(1)) ∆

ln ∆ -list-color triangle-free graphs. However, our result
for trees cannot be extended for list-coloring. The algorithm reserves a set of colors for a
final coloring phase and these colors must be in the palette of every vertex. In list-coloring,
it is not possible to reserve such a set of colors.

Technical Overview. Intuitively, consider a vertex u with its ∆ neighbors. Suppose that
each of its neighbor is colored with a color from one of the c∆/ ln ∆ colors uniformly at
random, where c is a constant. Then the expected number of colors not chosen by u’s
neighbor is at least ∆ · (1 − 1/(c∆/ ln ∆))∆ ∼ ∆1−1/c. When c > 1, it is likely there will
be colors not colored by u’s neighbor and so u can be colored by using one of them. The
iterated approaches of [74,86,104,125] manage to achieve the situation where each vertex in
the neighborhood is colored uniformly at random, round by round.

In the iterated approaches, each vertex u maintains a palette, which consists of the colors
that have not been selected by its neighbors. To obtain a t-coloring, each palette consists
of colors {1, . . . , t} initially. In each round, each uncolored u tries to assign itself a color
(or colors) from its palette, using randomization to resolve the conflicts between itself and
the neighbors. The c-degree of u is defined to be the number of its neighbors whose palettes
contain c. In Kim’s algorithm [104] for girth-5 graphs, the properties maintained for each
round are that the c-degrees are upper bounded and the palette sizes are lower bounded.
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In girth-5 graphs the neighborhoods of the neighbors of u only intersect at u and therefore
have a negligible influence on each other, that is, whether c remains in one neighbor’s palette
has little influence on a different neighbor of u. Due to this independence one can bound
the c-degree after an iteration using standard concentration inequalities. In triangle-free
graphs, however, there is no guarantee of independence. If two neighbors of u have identical
neighborhoods, then after one iteration they will either both keep or both lose c from their
palettes. In other words, the c-degree of u is a random variable that may not have any
significant concentration around its mean. Rather than bound c-degrees, Johansson [125]
bounded the entropy of the remaining palettes so that each color is picked nearly uniformly
in each round. Jamall [86] claimed that although each c-degree does not concentrate, the
average c-degree (over each c in the palette) does concentrate. Moreover, it suffices to
consider only those colors within a constant factor of the average in subsequent iterations.

Our (∆/k)-coloring algorithm performs the same coloring procedure in each round, though
the behavior of the algorithm has two qualitatively distinct phases. In the first O(k) rounds
the c-degrees, palette sizes, and probability of remaining uncolored vertices are very well
behaved. Once the available palette is close to the number of uncolored neighbors, the
probability a vertex remains uncolored begins to decrease drastically in each successive round,
and after O(log∗ n) rounds all vertices are colored, w.h.p.

Our analysis is similar to that of Jamall [86] in that we focus on bounding the average
of the c-degrees. However, our proof needs to take a different approach, for two reasons.
First, to obtain an efficient distributed algorithm we need to obtain a tighter bound on the
probability of failure in the last O(log∗ n) rounds, where the c-degrees shrink faster than a
constant factor per round. Second, there is a small flaw in Jamall’s application of Azuma’s
inequality in Lemma 12 in [86], the corresponding Lemma 17 in [87], and the corresponding
lemmas in [88]. It is probably possible to correct the flaw, though we manage to circumvent
this difficulty altogether. See Section 3.6 for a discussion of this issue.

The second phase presents different challenges. The natural way to bound c-degrees using
Chernoff-type inequalities gives error probabilities that are exponential in the c-degree, which
is fine if it is Ω(log n) but becomes too large as the c-degrees are reduced in each coloring
round. At a certain threshold we switch to a different analysis (along the lines of Schneider
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and Wattenhofer [157]) that allows us to bound c-degrees with high probability in the palette
size, which, again, is fine if it is Ω(log n).

In both phases, if we cannot obtain small error probabilities (via concentration inequalities
and a union bound) we revert to a distributed implementation of the Lovász Local Lemma
algorithm. We show that for certain parameters the symmetric LLL can be made to run
in sublogarithmic time. For the extensions to trees and the (∆ + 1)-coloring algorithm for
triangle-free graphs, when we cannot obtain small error probabilities, we will ignore those
bad vertices where error occured. Using the ideas from [11, 12, 154], we can show the size
of each component induced by the bad vertices is at most polylog(n). Each component can
then be colored separately in parallel by the deterministic algorithms [7, 141], which now
runs faster as the size of each subproblem is smaller.

Organization. Section 6.2 introduces some basic probabilistic tools. Section 3.2 presents
the general framework for the analysis. Section 3.3 describes the algorithms and discusses
what parameters to plug into the framework. Section 3.4 describes extensions of the algo-
rithm to graphs of girth 5, trees, and the (∆ + 1)-coloring problem for triangle-free graphs.

3.2 The Framework

Every vertex maintains a palette that consists of all colors not previously chosen by its
neighbors. The coloring is performed in rounds, where each vertex chooses zero or more
colors in each round. Let Gi be the graph induced by the uncolored vertices after round i,
so G = G0. Let Ni(u) be u’s neighbors in Gi and let Pi(u) be its palette after round i. The
c-neighbors Ni,c(u) consist of those v ∈ Ni(u) with c ∈ Pi(v). Call |Ni(u)| the degree of u

and |Ni,c(u)| the c-degree of u after round i. This notation is extended to sets of vertices in
a natural way, e.g., Ni(Ni(u)) is the set of neighbors of neighbors of u in Gi.

Algorithm 9 describes the iterative coloring procedure. In each round, each vertex u selects
a set Si(u) of colors by including each c ∈ Pi−1(u) independently with some probability πi

to be determined later. If some c ∈ Si(u) is not selected by any neighbor of u then u can
safely color itself c. In order to remove dependencies between various random variables (and
thereby give us access to the standard concentration bounds from Section 6.2) we exclude
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colors from u’s palette more aggressively than is necessary. First, we exclude any color
selected by a neighbor, that is, Si(Ni−1(u)) does not appear in Pi(u). The probability that
a color c is not selected by any neighbor is (1 − πi)|Ni−1,c(u)|. Suppose that this quantity
is at least some threshold βi for all c. We force c to be kept with probability precisely βi

by putting c in a keep-set Ki(u) with probability βi/(1− πi)|Ni−1,c(u)|. The probability that
c ∈ Ki(u)\Si(Ni−1(u)) is therefore exactly βi for each c, assuming βi/(1 − πi)|Ni−1,c(u)| is a
valid probability; if it is not then c is ignored. Let P̂i(u) be what remains of u’s palette.
Algorithm 9 has two variants. In Variant B, Pi(u) is exactly P̂i(u) whereas in Variant A,
Pi(u) is the subset of P̂i(u) whose c-degrees are sufficiently low, less than 2ti, where ti is a
parameter that will be explained below.

1: Include each c ∈ Pi−1(u) in Si(u) independently with probability πi.
2: For each c, calculate rc = βi/(1− πi)|Ni−1,c(u)|.
3: If rc ≤ 1, include c ∈ Pi−1(u) in Ki(u) independently with probability rc.
4: return (Si(u), Ki(u)).

Algorithm 7: Select(u, πi, βi)

1: i← 0
2: repeat
3: i← i + 1
4: for each u ∈ Gi−1 do
5: (Si(u), Ki(u))← Select(u, πi, βi)
6: Set P̂i(u)← Ki(u) \ Si(Ni−1(u))
7: if Si(u) ∩ P̂i(u) ̸= ∅ then
8: Color u with any color in Si(u) ∩ P̂i(u)
9: end if

10: (Variant A) Pi(u)← {c ∈ P̂i(u) | |Ni,c(u)| ≤ 2ti}
11: (Variant B) Pi(u)← P̂i(u)
12: end for
13: Gi ← Gi−1 \ {colored vertices}
14: until the termination condition occurs

Algorithm 8: Coloring-Algorithm(G0, {πi}, {βi}, {ti})

The algorithm is parameterized by the sampling probabilities {πi}, the ideal c-degrees {ti}
and the ideal probability {βi} of retaining a color. The {βi} define how the ideal palette
sizes {pi} degrade. Of course, the actual palette sizes and c-degrees after i rounds will drift
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from their ideal values, so we will need to reason about approximations of these quantities.
We will specify the initial parameters and the terminating conditions when applying both
variants in Section 3.3.

3.2.1 Analysis A

Given {πi}, p0 = ∆/k, t0 = ∆, and δ, the parameters for Variant A are derived below.

βi = (1− πi)2ti−1 αi = (1− πi)(1−(1+δ)i−1/2)p′
i

pi = βipi−1 ti = max(αiβiti−1, T ) (3.1)

p′
i = (1− δ/8)ipi t′

i = (1 + δ)iti

Let us take a brief tour of the parameters. The sampling probability πi will be inversely
proportional to ti−1, the ideal c-degree at the end of round i − 1. (The exact expression
for πi depends on ϵ.) Since we filter out colors with more than twice the ideal c-degree, the
probability that a color is not selected by any neighbor is at least (1−πi)2ti−1 = βi. Note that
since πi = Θ(1/ti−1) we have βi = Θ(1). Thus, we can force all colors to be retained in the
palette with probability precisely βi, making the ideal palette size pi = βipi−1. Remember
that a c-neighbor stays a c-neighbor if it remains uncolored and it does not remove c from its
palette. The latter event happens with probability βi. We use αi as an upper bound on the
probability that a vertex remains uncolored, so the ideal c-degree should be ti = αiβiti−1.
Notice that a vertex remains uncolored if it did not choose any of the colors remaining in the
palette, whose size we will show to be at least (1− (1 + δ)i−1/2)p′

i. To account for deviations
from the ideal we let p′

i and t′
i be approximate versions of pi and ti, defined in terms of a

small error control parameter δ > 0. In particular, p′
i and t′

i drift from pi and ti by a (1−δ/8)
and a (1 + δ) factor in each round. Furthermore, certain high probability bounds will fail to
hold if ti becomes too small, so we will not let it go below a threshold T .

When the graph has girth 5, the concentration bounds allow us to show that |Pi(u)| ≥ p′
i

and |Ni,c(u)| ≤ t′
i with certain probabilities. As pointed out by Jamall [86, 87], |Ni,c(u)|

does not concentrate in triangle-free graphs. He showed that the average c-degree, ni(u) =∑
c∈Pi(u) |Ni,c(u)|/|Pi(u)|, concentrates and will be bounded above by t′

i with a certain prob-
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ability. Since ni(u) concentrates, it is possible to bound the fraction of colors filtered for
having c-degrees larger than 2ti using Markov’s inequality.

In the following we formalize this tradeoff between the palette size and the average c-degree.
Let λi(u) = min(1, |Pi(u)|/p′

i), which can be viewed as the amount that |Pi(u)| drifts below
p′

i due to filtering out the colors. Define Hi(u) to be the event that

Di(u) ≤ t′
i,

where, by definition, Di(u) = λi(u)ni(u) + (1− λi(u))2ti.

Define Hi to be the event that Hi(u) holds for all u ∈ Gi.3 Observe that Di(u) can be
interpreted as the average of the c-degrees of Pi(u), including p′

i − |Pi(u)| dummy colors
whose c-degrees are exactly 2ti. Notice that since (1 − λi(u))2ti ≤ Di(u) ≤ t′

i, we have
1− λi(u) ≤ t′

i/(2ti) = (1 + δ)i/2. Therefore,

|Pi(u)| ≥ (1− (1 + δ)i/2)p′
i (3.2)

Recall Pi(u) is the palette consisting of colors c for which |Ni,c(u)| ≤ 2ti.

In the remainder of this section we prove Theorem 3.2.1, which bounds the probability that
Hi(u) holds conditioned on Hi−1.

Theorem 3.2.1. For any vertex u ∈ Gi−1,

Pr(Hi(u) | Hi−1) = Pr(Di(u) ≤ t′
i | Hi−1) ≥ 1−∆e−Ω(δ2T ) − (∆2 + 2)e−Ω(δ2p′

i).

Note that if Pr(Hi(u) | Hi−1) = 1/ poly(n), we can conclude, by the union bound, that
Pr(Hi | Hi−1) is also 1/ poly(n). In general we may need to invoke the Lovász Local Lemma
to show Pr(Hi | Hi−1) is nonzero.

3.2.2 Proof of Theorem 3.2.1

Clearly H0 holds initially. By definition t′
0 = t0 = ∆ and, for all u ∈ G, we have λ0(u) = 1

and D0(u) ≤ ∆. Thus, D0(u) ≤ t′
0, i.e., H0(u) holds for all u. Let i be the current iteration.

3This is equivalent to the induction hypothesis of Jamall [86].
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We will assume throughout this section that Hi−1 holds, that is, all probabilities obtained
are implicitly conditioned on Hi−1. Remember that the transition of the palette at round i

is from Pi−1(u) via P̂i(u) to Pi(u), where P̂i(u) = Ki(u) \ Si(Ni−1(u)) is the palette before
colors c with c-degree larger than 2ti are filtered. Define n̂i(u) = ∑

c∈P̂i(u) |Ni,c(u)|/|P̂i(u)| to
be the average c-degree over the palette P̂i(u). If the following two events hold

• E1(u) : |P̂i(u)| ≥ (1− δ/8)βi|Pi−1(u)|
• E2(u) : n̂i(u) ≤ αiβini−1(u) + δ(1 + δ)i−1ti

then Hi(u) holds as well, as we now argue.

Observe that if E1(u) is true, then the ratio λ̂i(u) = min(1, |P̂i(u)|/p′
i) is at least as large as

λi(u), since by E1(u),

|P̂i(u)|
p′

i

≥ (1− δ/8)βi|Pi−1(u)|
(1− δ/8)βip′

i−1
= |Pi−1(u)|

p′
i−1

.

Therefore,
λ̂i(u) ≥ λi(u) ≥ λi−1(u). (3.3)

Consider D̂i(u) = λ̂i(u)n̂i(u)+(1−λ̂i(u))2ti. Compared to D̂i(u), Di(u) can be viewed as the
average c-degree of the palette obtained by changing those colors in P̂i(u) whose c-degrees
are greater than 2ti to dummy colors with c-degrees exactly 2ti. Since the average only goes
down in this process,

Di(u) ≤ D̂i(u). (3.4)

Notice that ni−1(u) ≤ 2ti and that Hi−1 implies ni−1(u) ≤ Di−1(u) ≤ t′
i−1. We will choose

δ = o(1) sufficiently small so that (1 + δ)i = 1 + o(1) for any iteration index i encountered
in the algorithm. Therefore,

n̂i(u) ≤ αiβini−1(u) + δ(1 + δ)i−1ti by E2(u)

≤ αiβit
′
i−1 + δ(1 + δ)i−1ti

≤ (1 + δ)i−1ti + δ(1 + δ)i−1ti αiβiti−1 ≤ ti

= t′
i ≤ 2ti (1 + δ)i = 1 + o(1) < 2 (3.5)
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Now we have

Di(u) ≤ D̂i(u) by (3.4)

= λ̂i(u)n̂i(u) + (1− λ̂i(u))2ti defn. of D̂i(u)

≤ λi−1(u)n̂i(u) + (1− λi−1(u))2ti by (3.3) and (3.5)

≤ λi−1(u)(αiβini−1(u) + δ(1 + δ)i−1ti) + (1− λi−1(u))2ti by E2(u)

≤ αiβi(ni−1(u) + (1− λi−1(u))2ti−1) + δ(1 + δ)i−1ti ti = αiβiti−1

≤ αiβiDi−1(u) + δ(1 + δ)i−1ti defn. of Di−1(u)

≤ αiβit
′
i−1 + δ(1 + δ)i−1ti Hi−1 : Di−1(u) ≤ t′

i−1

≤ (1 + δ)i−1ti + δ(1 + δ)i−1ti αiβiti−1 ≤ ti

= t′
i defn. of t′

i

It remains to prove that E1(u) and E2(u) hold with sufficiently high probability.

3.2.3 Analysis of E1(u) and E2(u)

In this section we show that if Hi−1 holds (that is, Di−1(x) ≤ t′
i−1 for all x), then events

E1(u) and E2(u) only fail with probability exponentially small in p′
i and T .

The step P̂i(u) ← Ki(u) \ Si(Ni−1(u)) makes each color remain in P̂i(u) with probability
exactly βi independently, therefore E[|P̂i(u)|] = βi|Pi−1(u)|. By Chernoff Bound, we imme-
diately get that E1(u) holds with the following probability:

Lemma 3.2.2. Pr(E1(u)) = Pr
(
|P̂i(u)| ≥ (1− δ/8)βi|Pi−1(u)|

)
≥ 1− e−Ω(δ2p′

i).

The next step is to bound the probability of E2(u). Jamall [86–88] attempted to bound n̂i(u)
by arguing that, for each c, the value of each |Ni,c(u)| is independent of |Ni,c′(u)| for c′ ̸= c.
Thus, the sum ∑

c∈P̂i−1(u) |Ni,c(u)| will concentrate. However, they are not independent since
a vertex x ∈ Ni−1(u) can affect |Ni,c(u)| for all c ∈ Pi−1(x) if x becomes colored in round i.

To fix this, our idea is to break the analysis into two steps. Define the auxiliary c-neighbor
set N̂i,c(u) = {x : x ∈ Ni−1,c(u) and c ∈ P̂i(x)} to be the set of neighbors x ∈ Ni−1,c(u) with
c remaining in P̂i(x) regardless of whether x is colored during round i or not.
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For the first step, we will show that due to the independence among |N̂i,c(u)|, for each
c ∈ Pi−1(u), ∑

c∈P̂i(u) |N̂i,c(u)| will concentrate below β2
i ni−1(u)|Pi−1(u)|. For the second step,

we will calculate the probability of |Ni,c(u)| ≤ αi|N̂i,c(u)| for each c ∈ Pi−1(u) individually.

Finally, by taking the union bound for the first step and the second step for all c ∈ Pi−1(u),
we can prove that ∑

c∈P̂i(u) |Ni,c(u)| concentrates below αiβ
2
i ni−1(u)|Pi−1(u)|, which is about

αiβini−1(u)|P̂i(u)| by Lemma 3.2.2.

Lemma 3.2.3. Pr
(∑

c∈P̂i(u) |N̂i,c(u)| ≤ β2
i |Pi−1(u)|

(
ni−1(u) + δ

4ti−1
))
≥ 1− e−Ω(δ2p′

i).

Proof. Let Yc = |N̂i,c(u)| if c ∈ P̂i(u), and Yc = 0 otherwise. Observe that since G is
triangle-free, two adjacent vertices u and x have disjoint neighborhoods. Also, whether
c ∈ P̂i(u) only depends on the colors selected by its neighbors, not itself. Therefore, Pr(c ∈
P̂i(x)|c ∈ P̂i(u)) = βi for all c ∈ Pi−1(x). By linearity of expectation, E[Yc] = Pr(c ∈
P̂i(u))∑x∈Ni−1,c(u) Pr(c ∈ P̂i(x)|c ∈ P̂i(u)) = β2

i |Ni−1,c(u)|.

It is clear that ∑
c∈P̂i(u) |N̂i,c(u)| = ∑

c∈Pi−1(u) Yc. By linearity of expectation again, we get
that E

[∑
c∈P̂i(u)|N̂i,c(u)|

]
= E

[∑
c∈Pi−1(u) Yc

]
= β2

i ni−1(u)|Pi−1(u)|.

Since each Yc ranges from 0 to 2ti−1 and the {Yc} are independent, by Hoeffding’s inequality
we have

Pr

 ∑
c∈P̂i(u)

|N̂i,c(u)| ≥ β2
i |Pi−1(u)|

(
ni−1(u) + δ

4ti−1

)
= Pr

 ∑
c∈P̂i(u)

|N̂i,c(u)| ≥ E

 ∑
c∈P̂i(u)

|N̂i,c(u)|

+ δ

4β2
i |Pi−1(u)|ti−1


≤ exp

(
−

δ2β4
i t2

i−1|Pi−1(u)|2
8∑c∈Pi−1(u)(2ti−1)2

)

≤ exp
(
−δ2β4

i |Pi−1(u)|
32

)

≤ exp
(
−

δ2β4
i (1− (1 + δ)i−1/2)p′

i−1
32

)
≤ exp

(
−Ω(δ2p′

i)
)

by (3.2) and note βi = Ω(1)
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Next, we are going to bound the number of uncolored neighbors in N̂i,c(u) for each c ∈
Pi−1(u). Note that we are not conditioning on whether c ∈ P̂i(u) at this point. Instead, we
will take the union bound over all c ∈ Pi−1(u) in the end so that the next lemma holds for
all c ∈ Pi−1(u).

Lemma 3.2.4. Fix an iteration i, vertex u, and color c ∈ Pi−1(u). Letting M =
max

(
αi|N̂i,c(u)|, T

)
, then we have

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M

)
≥ 1− e−Ω(δ2T ) −∆e−Ω(δ2p′

i).

Proof. Let E be the event that E1(x) holds for all x ∈ Ni−1,c(u). By Lemma 3.2.2 and the
union bound over each x ∈ Ni−1,c(u), Pr(E) ≤ |Ni−1,c(u)|e−Ω(δ2p′

i) ≤ ∆e−Ω(δ2p′
i). When E

occurs, for all x ∈ Ni−1,c(u), we have:

|P̂i(x)| ≥ (1− δ/8)βi|Pi−1(x)| by E1(x)

≥ (1− δ/8)βi(1− (1 + δ)i−1/2)p′
i−1 by (3.2)

= (1− (1 + δ)i−1/2)p′
i By defn., p′

i = (1− δ/8)βip
′
i−1

Note that the event E is determined only by the following random variables:

• Ki(x), for all x ∈ Ni−1,c(u), and

• Si(w), for all w ∈ Ni−1(Ni−1,c(u)).

Therefore, we can let E = ⋃
ω Eω, where the {Eω} represent all the possible outcomes of these

random variables that imply E . Then, Pr(|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M | E) is exactly

∑
ω

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M | Eω

)
· Pr (Eω | E)

Since ω ̸= ω′ implies Eω ∩Eω′ = ∅, ∑ω Pr(Eω | E) = 1. It is sufficient to bound Pr(|Ni,c(u)| ≤
αi|N̂i,c(u)| + (δ/5)M | Eω) for each Eω. When conditioning on Eω, the neighbor set N̂i,c(u)
is determined and the palette P̂i(x) for each x ∈ N̂i,c(u) is also determined. Furthermore,
since G is triangle-free, Ni−1(Ni−1,c(u)) must be disjoint from N̂i,c(u). This implies that
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conditioning on Eω does not have any influence on Si(x) for x ∈ N̂i,c(u). For all x ∈ N̂i,c(u),
each c ∈ P̂i(x) is selected with probability πi independently.

Therefore, the probability x remains uncolored conditioned on Eω, Pr(x ∈ Ni,c(u) | Eω), must
be independent of all other nodes in N̂i,c(u). Since x is uncolored iff x did not select any
color in P̂i(x),

Pr (x ∈ Ni,c(u) | Eω) ≤ (1− πi)|P̂i(x)| ≤ (1− πi)(1−(1+δ)i−1/2)p′
i = αi.

Therefore, E [Ni,c(u) | Eω] ≤ αi

∣∣∣N̂i,c(u)
∣∣∣. By applying Corollary A.1 with M =

max
(
αi|N̂i,c(u)|, T

)
we get

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M | Eω

)
≥ 1− e−Ω(δ2T )

and, therefore,

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M | E

)
≥ 1− e−Ω(δ2T ).

Since Pr(E) ≤ ∆e−Ω(δ2p′
i), by Lemma A.2, we can conclude that

Pr
(
|Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5)M

)
≥ 1− e−Ω(δ2T ) −∆e−Ω(δ2p′

i).

For convenience we restate Theorem 3.2.1 before proving it. Recall from Section 3.2.1 that
Hi = ⋂

u∈Gi
Hi(u) and Hi(u) is the event that Di(u) ≤ t′

i.

Theorem 3.2.1. For any vertex u ∈ Gi−1,

Pr(Hi(u) | Hi−1) = Pr(Di(u) ≤ t′
i | Hi−1) ≥ 1−∆e−Ω(δ2T ) − (∆2 + 2)e−Ω(δ2p′

i).

Proof. By Lemma 3.2.2, Lemma 3.2.3, Lemma 3.2.4, and the union bound, the following
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hold with probability at least 1−∆e−Ω(δ2T ) − (∆2 + 2)e−Ω(δ2p′
i).

|P̂i(u)| ≥ (1− δ/8)βi|Pi−1(u)| (3.6)∑
c∈P̂i(u)

∣∣∣N̂i,c(u)
∣∣∣ ≤ β2

i |Pi−1(u)|
(

ni−1(u) + δ

4ti−1

)
(3.7)

For all c ∈ Pi−1(u), |Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5) max
(
αiN̂i,c(u), T

)
(3.8)

Therefore,

∑
c∈P̂i(u)

|Ni,c(u)|

≤
∑

c∈P̂i(u)

(
αi|N̂i,c(u)|+ (δ/5) max

(
αi|N̂i,c(u)|, T

))
by (3.8)

≤ (1 + δ/5)αi

 ∑
c∈P̂i(u)

|Ni,c(u)|

+ (δ/5)|P̂i(u)|T max(a, b) ≤ a + b

≤ βi|Pi−1(u)|(1 + δ/5)
(

αiβini−1(u) + δ

4αiβiti−1

)
+ (δ/5)|P̂i(u)|T by (3.7)

≤ 1 + δ/5
1− δ/8 |P̂i(u)|

(
αiβini−1(u) + δ

4αiβiti−1

)
+ (δ/5)|P̂i(u)|T by (3.6)

Therefore,

n̂i(u) =
∑

c∈P̂i(u)

|Ni,c(u)|/|P̂i(u)|

≤ 1 + δ/5
1− δ/8(αiβini−1(u) + (δ/4)αiβiti−1) + (δ/5)T

≤ (1 + δ/2)(αiβini−1(u) + (δ/4)αiβit
′
i−1) + (δ/5)T when δ < 1

≤ (1 + δ/2)(αiβini−1(u) + (δ/4)αiβit
′
i−1) + (δ/5)ti T ≤ ti

≤ αiβini−1(u) + (δ/2 + δ/4 + δ2/8)αiβit
′
i−1 + (δ/5)ti ni−1(u) ≤ t′

i−1

≤ αiβini−1(u) + (δ/2 + δ/4 + δ2/8 + δ/5)(1 + δ)i−1ti αiβit
′
i−1 = ti(1 + δ)i−1

≤ αiβini−1(u) + δ(1 + δ)i−1ti when δ ≤ 2/5
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As we showed in Section 3.2.2, whenever E1(u) and E2(u) hold, Hi(u) holds as well.

3.2.4 Analysis B

Analysis A has a limitation for smaller c-degrees, since the probability guarantee becomes
smaller as ti goes down. Therefore, Analysis A only works well for ti ≥ T , where T is a
threshold for certain probability guarantees. For example, if we want Theorem 3.2.1 to hold
with high probability in n, then we must have T ≫ log n.

To get a good probability guarantee below T , we circumvent Chernoff Bound and calculate
the probability explicitly. Also, the reduction in the c-degrees we aimed to show is slower
than that in Analysis A. In particular, similar to Theorem 12 in [157], the ideal c-degrees
decrease by a factor proportional to the ratio between the initial upper bound on the c-
degrees and the current palette size.

The parameters for Variant B are chosen based on an initial lower bound on the palette
size p0, upper bound on the c-degree t0, and error control parameter δ. The selection
probability is chosen to be πi = 1/(ti−1 + 1) and the probability a color remains in a palette
βi = (1−πi)ti−1 . The ideal palette size and its relaxation are pi = βipi−1 and p′

i = (1− δ)ipi.
The ideal c-degree is ti = max(αiti−1, 1), where αi = 5t0/p′

i.

Define Fi(u) to be the event that

|Pi(u)| ≥ p′
i and, for all c ∈ Pi(u), |Ni,c(u)| < ti.

Let Fi be the event that Fi(u) holds for all u ∈ Gi. When analyzing probabilities in iteration
i we always condition on Fi−1 holding. Although a vertex could lose its c-neighbor if the
c-neighbor becomes colored or loses c in its palette, in this analysis, we only use the former
to bound its c-degree. Moreover, if Fi−1(u) holds then Pr(c /∈ Si(Ni−1(u))) > βi for all
c ∈ Pi−1(u). Thus in Select(u, πi, βi), we will not ignore any colors in the palette. Each color
remains in the palette with probability exactly βi. We will write Pi(u) instead of P̂i(u) in
this section, since they are the same in Variant B.

Theorem 3.2.5. For any vertex u ∈ Gi−1,

Pr (Fi(u) | Fi−1) ≥ 1−∆e−Ω(t0) − (∆2 + 1)e−Ω(δ2p′
i).
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Proof. By the Chernoff bound,

Pr (|Pi(u)| ≥ p′
i) ≥ Pr (|Pi(u)| ≥ (1− δ/8)βi|Pi−1(u)|)

≥ 1− e−Ω(δ2p′
i).

Now fix a c ∈ Pi−1(u). We will derive a bound on the probability that |Ni,c(u)| < ti. Similar
to the proof of Lemma 3.2.4, define E to be the event that

For all x ∈ Ni−1,c(u), |Pi(x)| ≥ p′
i.

By taking the union bound over all x ∈ Ni−1,c(u), Pr(E) ≥ 1 − |Ni−1,c(u)|e−Ω(δ2p′
i) ≥ 1 −

∆e−Ω(δ2p′
i). The event E is determined only by the following random variables:

• Ki(x), for all x ∈ Ni−1,c(u) and

• Si(w), for all w ∈ Ni−1(Ni−1,c(u)).

Let E = ⋃
ω Eω, where the {Eω} represents all the possible outcomes of these random variables

that imply E . Then, Pr(|Ni,c(u)| < ti | E) is exactly

∑
ω

Pr(|Ni,c(u)| < ti | Eω) · Pr(Eω | E)

Since ∑ω Pr(Eω | E) = 1, it is sufficient to bound Pr(|Ni,c(u)| < ti | Eω) for each Eω. When
conditioning on Eω, the palette Pi(x) for each x ∈ Ni−1,c(u) is determined. Furthermore, since
G is triangle-free, Ni−1(Ni−1,c(u)) must be disjoint from Ni−1,c(u). This implies conditioning
on Eω does not have any influence on Si(x) for all x ∈ Ni−1,c(u). For all x ∈ Ni−1,c(u), each
c ∈ Pi(x) is selected with probability πi independently at round i.

Note that x ∈ Ni−1,c(u) remains uncolored iff no c ∈ Pi(x) is selected during round i.
Therefore,

Pr(x ∈ Ni,c(u) | Eω) ≤ (1− πi)|P̂i(x)| ≤
(

1− 1
ti−1 + 1

)p′
i

.
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By the union bound,

Pr (|Ni,c(u)| ≥ ti | Eω) ≤
∑

S⊆Ni−1,c(u)
s.t. |S|=ti

∏
x∈S

Pr(x ∈ Ni,c(u) | Eω)

≤
∑

S⊆Ni−1,c(u)
s.t. |S|=ti

(
1− 1

ti−1 + 1

)p′
iti

< 2t0

(
1− 1

ti−1 + 1

)p′
iti

|Ni−1,c(u)| ≤ t0

≤ 2t0 exp
(
− p′

iti

ti−1 + 1

)
1− x ≤ e−x

≤ 2t0 exp
(
− p′

iti

2ti−1

)
ti−1 + 1 ≤ 2ti−1 for ti ≥ 1

≤ 2t0 exp
(
−αip

′
i

2

)
ti ≥ αiti−1

≤ 2t0 exp
(
−5

2t0

)
defn. of αi

= exp
(
−
(5

2 − ln 2
)

t0

)

Therefore, Pr(|Ni,c(u)| < ti | E) ≥ 1− e−Ω(t0). Since Pr(E) ≥ 1−∆e−Ω(δ2p′
i) we can conclude,

by Lemma A.2, that Pr(|Ni,c(u)| < ti) ≥ 1 − e−Ω(t0) − ∆e−Ω(δ2p′
i). Recall that Fi(u) states

that |Pi(u)| ≥ p′
i and |Ni,c(u)| < ti, for all c ∈ Pi−1(u). By the union bound, we have

Pr (Fi(u)) ≥ 1−∆e−Ω(t0) − (∆2 + 1)e−Ω(δ2p′
i).

3.3 The Coloring Algorithms

Theorem 3.1.1 is established by analyzing a two-phase coloring algorithm: Phase I uses
Analysis A and Phase II uses Analysis B. We will first give the parameters for both phases,
then present the distributed algorithm that makes the induction hypotheses (Hi in Theorem
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3.2.1 and Fi in Theorem 3.2.5) hold with high probability in n, for every round i. Notice
that we use the terms iteration and round interchangeably.

Let ϵ1 = 1− 4k
ln ∆ −

2ϵ
3 and ϵ2 = 1− 4k

ln ∆ −
ϵ
3 . We will show that upon reaching the terminating

condition of Phase I (which will be defined later), we will have |Pi(u)| ≥ ∆ϵ2 for all u ∈ Gi

and |Ni,c(u)| < ∆ϵ1 for all u ∈ Gi and all c ∈ Pi(u). At this point, for a non-constructive
version, we can simply apply the results about list coloring constants [80, 152, 153] to get
a proper coloring, since at this point there is an ω(1) gap between |Ni,c(u)| and |Pi(u)| for
every u ∈ Gi. One can turn the result of [152] into a distributed algorithm with the aid of
our Lovász Local Lemma algorithm to amplify the success probability. However, to obtain
an efficient distributed algorithm we use Analysis B in Phase II.

Since our result holds for large enough ∆, we can assume whenever necessary that ∆ is
sufficiently large. The asymptotic notation will be with respect to ∆.

3.3.1 Parameters for Phase I

In this phase, we use Analysis A with the following parameters: πi = 1
2Kti−1+1 , where K = 4/ϵ

is a constant, p0 = ∆/k, t0 = ∆, and δ = 1/ log2 ∆. This phase ends after the round when
ti ≤ T

def= ∆ϵ1/3.

First, we consider the algorithm for at most the first O(log ∆) rounds. For these rounds, we
can assume the error (1 + δ)i ≤

(
1 + 1

log2 ∆

)O(log ∆)
≤ eO(1/ log ∆) = 1 + o(1) and similarly

(1 − δ/8)i ≥
(
1− 1

8 log2 ∆

)O(log ∆)
≥ e−O(1/ log ∆) = 1 − o(1). We will show the algorithm

reaches the terminating condition during these rounds, where the error is under control.

The probability a color is retained, βi = (1 − πi)2ti−1 ≥ e−1/K , is bounded below by a
constant. The probability a vertex remains uncolored is at most αi = (1− πi)(1−(1+δ)i−1/2)p′

i .
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If we define C = 1/(4Ke1/K), then

αi ≤
(

1− 1
2Kti−1 + 1

)(1−(1+δ)i−1/2)p′
i

≤ exp
(
−(1− (1 + δ)i−1/2)p′

i

(2Kti−1 + 1)

)

≤ exp
(
−(1− (1 + δ)i−1/2)(1− δ/8)ie−1/Kpi−1

(2Kti−1 + 1)

)
p′

i ≥ (1− δ/8)ie−1/Kpi−1

≤ exp(−(1− o(1))Cpi−1/ti−1) defn. of C

Let si = ti/pi be the ratio between the ideal c-degree and the ideal palette size. Initially,
s0 = k and si = αisi−1 ≤ si−1e

−(1−o(1))(C/si−1). Initially, si decreases by roughly C in each
round until the ratio si ≈ C is a constant. Then, si decreases rapidly in the order of iterated
exponentiation. Therefore, it takes O(k + log∗ ∆) rounds to reach the terminating condition
where ti ≤ T . Our goal is to show upon reaching the terminating condition, the palette size
bound pi is greater than T by some amount, in particular, pi ≥ 30e3/ϵ∆ϵ2 .

Lemma 3.3.1. Phase I terminates in (4 + o(1))Ke1/Kk + O(log∗ ∆) iterations, where K =
4/ϵ. Moreover, pi ≥ 30e3/ϵ∆ϵ2 for every iteration i in this phase.

Proof. Let si = ti/pi so that s0 = k. Consider the number of rounds in the following stages:

1. k ≥ si−1 ≥ log∗ ∆: By using the inequality e−x ≤ 1 − x + x2/2 for 0 ≤ x ≤ 1, we get
si ≤ si−1e

−(1−o(1))(C/si−1) ≤ si−1− (1−o(1))(1−C/(2si−1))C ≤ si−1− (1−o(1))C since
si−1 ≥ log∗ ∆. Therefore, this stage takes (1 + o(1))(s0/C) rounds.

2. log∗ ∆ > si−1 ≥ C/1.1: Similarly, si ≤ si−1e
−(1−o(1))(C/Si−1) ≤ si−1 − (1 − o(1))C/2,

where we assumed (1− o(1))C/si−1 ≤ 1.59 and applied Lemma A.1, which states that
e−x ≤ 1 − x/2 for 0 ≤ x ≤ 1.59. This stage takes O(log∗ ∆/C) rounds. Notice that
the constant 1.1 was arbitrarily chosen from numbers greater than 1 and no more than
1.59.

3. C/1.1 > si−1: At this point αi+1 ≤ e−(1−o(1))C/si−1 ≤ e−1. For any j ≥ i, αj ≤
e−(1−o(1))C/sj−1 ≤ e

−(1−o(1)) C
si−1αj−1 ≤ e−1/αj−1 . Therefore, after j = log∗ ∆ more rounds,
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αi+j ≤ 1/∆ and so ti+j ≤ max(αi+jt0, T ) = ∆ϵ1/3 terminates Phase I. This stage takes
log∗ ∆ rounds.

The total number of rounds is (1+o(1))(s0/C)+O(log∗ ∆) ≤ (4+o(1))Ke1/Kk +O(log∗ ∆).
By the definition of pi, at the end of Phase I we have:

pi = p0

i∏
j=1

βj

≥ ∆
k

e
− 1

K

(
(4 + o(1)) Ke1/Kk + O (log∗ ∆)

)
βj ≥ e−1/K

≥ ∆
k

( 1
∆

) (4+o(1))e1/Kk + O(log∗ ∆)
ln ∆

≥ ∆1− 4e1/Kk
ln ∆ − o(1) k < ln ∆

≥ ∆1− 4k
ln ∆ −

1
K

4k
ln ∆

(
1 + 1

K

)
− o(1) by using ex ≤ 1 + x + x2 for |x| ≤ 1

≥ ∆1− 4k
ln ∆ −

ϵ
4 (1− 2ϵ)

(
1 + ϵ

4

)
− o(1) since K = 4/ϵ and 4k

ln ∆ ≤ 1− 2ϵ

≥ ∆1− 4k
ln ∆ − ϵ/4− o(1)

Thus, for large enough ∆, pi is at least 30e3/ϵ∆ϵ2 , which will be enough for the induction
hypothesis to hold with sufficiently high probability. If Hi(u) holds for every u ∈ Gi for
every round i during this phase, we will have |Pi(u)| ≥ (1− (1 + δ)i/2)p′

i ≥ 10e3/ϵ∆ϵ2 for all
u ∈ Gi and |Ni,c(u)| ≤ 2ti < ∆ϵ1 for all u ∈ Gi and all c ∈ Pi(u) in the end of Phase I.

3.3.2 Parameters for Phase II

In Phase II, we will use Analysis B with the following parameters: p0 = 10e3/ϵ∆ϵ2 , t0 = ∆ϵ1

and δ = 1/ log2 ∆. This phase terminates after 3
ϵ

rounds.

First note that the number of rounds 3
ϵ

is a constant. We show p′
i ≥ 5∆ϵ2 for each round

1 ≤ i ≤ 3
ϵ
, so there is always a sufficient large gap between the current palette size and the

initial c-degree, which implies the shrinking factor of the c-degrees is αi = 5t0/p′
i ≤ ∆−ϵ/3.
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Since pi shrinks by at most a βi ≥ e−1 factor every round, p′
i ≥ (1 − δ)ip0

∏i
j=1 βj ≥

((1− δ)e−1)i10e3/ϵ∆ϵ2 ≥ 5∆ϵ2 .

Now since αi ≤ ∆−ϵ/3, after 3
ϵ

rounds, ti ≤ t0
∏i

j=1 αj ≤ ∆
(
∆−ϵ/3

) 3
ϵ ≤ 1. The c-degree

bound, tϵ/3, becomes 1. Recall that the induction hypothesis Fi(u) is the event that |Pi(u)| ≥
p′

i and |Ni,c(u)| < ti for all c ∈ Pi(u). If Fi holds for every round i in Phase II then, in the
end, every uncolored vertex has no c-neighbors, as implied by |Ni,c(u)| < ti ≤ 1. This means
these vertices can be colored with anything remaining in their palettes, which are non-empty.

The leading constant 4 The leading constant 4 stems from filtering out colors whose
c-degree exceeds twice of the ideal. In general, if we filter out colors whose c-degree exceeds
q times the ideal, then the remaining palette has size at least (1− 1/q) of the original one. q

affects how fast the ratio ti/pi decreases for every round. In particular, it decreases roughly
by 1/(q/(1 − 1/q)Ke1/K) for every round. Note that the palette size decreases by a fixed
rate βi ∼ e1/K for each round i and we have to keep it large enough as stated in Lemma 3.3.1
(pi ≥ 30e3/ϵ∆ϵ2). Given that the number of rounds we allow is fixed, the leading constant
we can get depends on how fast the ratio ti/pi decreases. Therefore, we choose q = 2 to
maximize 1/(q/(1− 1/q)Ke1/K), which results in a leading constant of 4.

3.3.3 The Distributed Coloring Algorithm

We will show a distributed algorithm that makes the induction hypothesis in Phase I and
Phase II hold with high probability in n.

Fix the round i and assume the inductive hypothesis holds after round i− 1, which is either
Hi−1 in Phase I or Fi−1 in Phase II. Define A(u) to be the bad event that the induction
hypothesis fails at u, that is, Hi(u) fails in Phase I or Fi(u) fails in Phase II. Let p =
e−∆1− 4k

ln ∆ −ϵ

/(e∆8). By Theorem 3.2.1 and 3.2.5 we have

Pr(A(u)) ≤ max
(

∆e−Ω(δ2T) + (∆2 + 2)e−Ω(δ2p′
i), ∆e−Ω(t0) + (∆2 + 1)e−Ω(δ2p′

i)
)

.
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Therefore,

Pr(A(u)) ≤ ∆e−Ω(δ2∆ϵ1) + (∆2 + 2)e−Ω(δ2∆ϵ2) T = ∆ϵ1 , t0 = ∆ϵ1 , p′
i ≥ ∆ϵ2

≤ exp
(
−Ω

(
δ2∆ϵ1

)
+ O (log ∆)

)/
(e∆8) ϵ1 < ϵ2

≤ exp
(
−Ω

(
δ2∆ϵ1

))/
(e∆8)

≤ exp
−Ω

 ∆ 1
3 ϵ

log4 ∆

 ·∆1− 4k
ln ∆ −ϵ

/(e∆8) defn. ϵ1 and δ

≤ exp
(
−∆1− 4k

ln ∆ −ϵ
)/

(e∆8) = p for large enough ∆

If ∆1− 4k
ln ∆ −ϵ > c log n, then p < 1/nc. By the union bound over u ∈ Gi, the probability that

{A(u)} all fail to occur is at least 1− 1/nc−1. In other words, the induction hypothesis (Hi

or Fi) holds after round i with high probability. In this case, O(k + log∗ ∆) rounds suffice,
because each round succeeds with high probability.

On the other hand, if ∆1− 4k
ln ∆ −ϵ < c log n then we apply our parallel resampling algorithm

(Algorithm 2) to find a point avoiding all the bad events {A(u)}, with high probability. The
symmetric LLL and its algorithmic versions refer to the following objects and parameters.

• A set P of random variables over some domain, which may be different for each variable.

• A set A of “bad” events. Each A ∈ A depends only on some subset vbl(A) ⊆ P of the
variables.

• Define Γ(A) = {A′ | A′ ̸= A and vbl(A′) ∩ vbl(A) ̸= ∅} to be those events that
share variables with A. The Γ function induces an undirected dependency graph G =
(A, {(A, A′) | A′ ∈ Γ(A)}). Let GB be the subgraph induced by B ⊆ A.

• Define d = maxA∈A |Γ(A)| and p = maxA∈A Pr(A) to be the maximum degree in the
dependency graph and the maximum probability of any single bad event.

If A ∈ A occurs under an assignment to P we say it is violated. Our LLL algorithm repeatedly
selects a set of violated events and resamples the variables they depend on, halting when
no events are violated. If |A| = n, by Corollary 2.3.4, the running time of our algorithm is
O(log1/epd2 n).
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Observe that A(u) depends only on random variables selected by u and vertices at distance
1 or 2 from u. It follows that if distGi−1(u, v) ≥ 5 then A(u) and A(v) are independent. Let
G≤4

i−1 be the dependency graph where (u, v) is an edge iff distGi−1(u, v) ≤ 4. The maximum
degree in G≤4

i−1 is clearly less than ∆4.

Therefore, d < ∆4 and p = e−∆1− 4k
ln ∆ −ϵ

/(e∆8). We have epd2 ≤ e−∆1− 4k
ln ∆ −ϵ

. By Corollary
2.3.4, O(log n/∆1− 4k

ln ∆ −ϵ) resampling rounds will be sufficient. Our algorithm for LLL was
described to run on the dependency graph, G≤4

i−1. Though G is the underlying network in
our case, we can simulate our algorithm in G≤4

i−1 with constant factor slowdown.

Each of the O(k + log∗ ∆) rounds consists of O(log n/∆1− 4k
ln ∆ −ϵ) resampling rounds. The

total number of rounds is O (k + log∗ ∆) ·
(
log n/∆1− 4k

ln ∆ −ϵ
)
. Note that this is always at most

O(log n), since ∆1− 4k
ln ∆ −ϵ ≥ ∆ϵ = ∆Ω(1). If ∆1− 4k

log ∆ −ϵ = O(log1−γ n) for some constant γ > 0,
then the running time is sublogarithmic.

3.4 Extensions

3.4.1 Graphs of Girth at Least 5

For graphs of girth at least 5, existential results [104, 125] show that there exists (1 +
o(1))∆/ ln ∆-coloring. Grable and Panconesi [74] gave a distributed algorithm that run
in O(log n) time to find a (∆/k)-coloring for k = O(log ∆) when ∆ ≫ log1+ϵ′

n for some
constant ϵ′ > 0. Since there is a constant hidden in k = O(log ∆), the k = (1+o(1))∆/ ln ∆-
coloring is not obtainable by their algorithm. We close this gap by extending our result for
triangle-free graphs and replacing the leading constant 4 by 1.

Theorem 3.4.1. Fix a constant ϵ > 0. Let ∆ be the maximum degree of a girth-5 graph
G, assumed to be at least some ∆ϵ depending on ϵ. Let k ≥ 1 be a parameter such that
2ϵ ≤ 1 − k

ln ∆ . Then G can be (∆/k)-colored, in time O(k + log∗ ∆) if ∆1− k
ln ∆ −ϵ = Ω(ln n),

and, for any ∆, in time on the order of

(k + log∗ ∆) · log n

∆1− k
ln ∆ −ϵ

= O(log n)

73



In Analysis A, instead of using the inductive hypothesis Hi(u) and Variant A in Phase I, we
shall use Variant B and prove the following induction hypothesis, Qi(u):

|Pi(u)| ≥ p′
i and, for all c ∈ Pi(u), |Ni,c(u)| ≤ t′

i

Define Qi to be the events that Qi(u) holds for all u ∈ Gi. Also, we use definitions with a
slightly different error control:

βi = (1− πi)t′
i−1 αi = (1− πi)p′

i

pi = βipi−1 ti = max(αiβiti−1, T ) (3.9)

p′
i = (1− δ)ipi t′

i = (1 + δ)i∏i
k=1(1− πk)

ti

We use πi = 1/(1 + Kt′
i) as the sampling probability in the ith iteration, where K = 4/ϵ.

As a consequence βi is lower bounded by a constant since

βi = (1− πi)t′
i−1 =

(
1− 1

1 + Kt′
i

)t′
i−1

>

(
1− 1

1 + Kt′
i

)t′
i

> e−1/K .

Notice that since δ = 1/ log2 ∆, for the first i = O(log ∆) rounds we have p′
i = pi(1− δ)i =

(1 − o(1))pi. If we choose ϵ1 = 1 − k
ln ∆ −

2ϵ
3 and ϵ2 = 1 − k

ln ∆ −
ϵ
3 , and end the phase after

the first round i when ti ≤ T
def= ∆ϵ1/3, then

t′
i = (1 + δ)i∏i

k=1(1− πk)
· ti ≤

(
(1 + δ)

1− (1 + K∆ϵ1/3)−1

)i

ti ≤ (1 + o(1))ti.

Then, Lemma 3.3.1 holds similarly except that the algorithm runs in (1 + o(1))Ke1/Kk +
O(log∗ ∆) time. Also, one can prove pi ≥ 30e3/ϵ∆ϵ2 as in the proof of Lemma 3.3.1. The
argument for Phase II afterwards will be the same with that in triangle-free graphs.

The remaining task is to bound the failure probability of Qi(u), when Qi−1 holds. To show
this, notice that it is possible to bound individual c-degrees rather than bounding the average
c-degree in graphs of girth at least 5, since the probability a color remains in each neighbor
has only a weak correlation. Instead of proving Lemma 3.2.3, we prove the following:
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Lemma 3.4.2. Let β′
i = βi

(1−πi) . If Qi−1 holds, then Pr
(
|N̂i,c(u)| ≤ (1 + δ/4)β′

it
′
i−1

)
≥ 1 −

e−Ω(δ2T )

Proof. Let x ∈ Ni−1,c(u). Whether x loses c in its palette depends on whether x’s neighbors
chose c. Since G is a graph with girth at least 5, u is the only common neighbor of vertices
in Ni−1,c(u). The probability that x loses c is almost independent among other vertices in
Ni−1,c(u). Let Ix be the indicator random variable that c ∈ K(x) and all of x’s neighbors
excluding u did not choose c (i.e. c ∈ K(x)\Si(Ni−1,c(x)\{u})). Clearly, Ix are independent
among all x ∈ Ni−1,c(u) and Pr(Ix) = β′

i. Letting I = ∑
x Ix, we have |N̂i,c(u)| ≤ I and

E[I] = β′
i|Ni−1,c(u)|. Therefore,

Pr
(
|N̂i,c(u)| ≤ (1 + δ/4)β′

it
′
i−1

)
≥ Pr

(
I ≤ (1 + δ/4)β′

it
′
i−1

)
|N̂i,c(u)| ≤ I

≥ Pr
(
I ≤ E[I] + (δ/4)β′

it
′
i−1

)
E[I] = β′

i|Ni−1,c(u)| ≤ β′
it

′
i−1

≥ 1− e−Ω(δ2β′
it

′
i−1) β′

it
′
i−1 ≥ E[I] and by Corollary A.1

= 1− e−Ω(δ2T ) β′
i = Ω(1) and t′

i−1 ≥ T

Combined with Lemma 3.2.4, we get the following:

Corollary 3.4.3. If Qi−1 holds, then Pr (∀c ∈ Pi−1(u), |Ni,c(u)| ≤ t′
i) ≥ 1 − 2∆e−Ω(δ2T ) −

∆2e−Ω(δ2p′
i).

Proof. By applying union bound with Lemma 3.4.2 and Lemma 3.2.4 for all c ∈ Pi−1(u), the
following holds with probability at least 1− 2∆e−Ω(δ2T ) −∆2e−Ω(δ2p′

i):

1. |N̂i,c(u)| ≤ (1 + δ/4)β′
it

′
i−1

2. |Ni,c(u)| ≤ αi|N̂i,c(u)|+ (δ/5) max(αi|N̂i,c(u)|, T )
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Then, we have:

|Ni,c(u)| ≤ αiβ
′
i(1 + δ/4)(1 + δ/5)t′

i−1 + (δ/5)T max(a, b) ≤ a + b

≤ αiβ
′
i(1 + δ/4)(1 + 2δ/5)t′

i−1 T ≤ ti ≤ αiβiti−1 ≤ αiβ
′
i(1 + δ/4)ti−1

≤ (1 + δ)αiβ
′
it

′
i−1 δ ≤ 1

= t′
i defn. of β′

i and t′
i

Theorem 3.4.4. For any vertex u ∈ Gi−1, Pr(Qi(u) | Qi−1) ≥ 1 − 2∆e−Ω(δ2T ) − (∆2 +
1)e−Ω(δ2p′

i).

Proof. By Chernoff bound, we can get that Pr(|Pi(u)| ≥ p′
i) = Pr(|Pi(u)| ≥ (1− δ)βip

′
i−1) ≥

Pr(|Pi(u)| ≥ (1 − δ)βi|Pi−1(u)|) ≥ 1 − e−Ω(δ2p′
i). By the union bound and Corollary 3.4.3,

we get that |Pi(u)| ≥ p′
i and |Ni,c(u)| ≤ t′

i−1 for all c ∈ Pi(u) hold with probability at least
1− 2∆e−Ω(δ2T ) − (∆2 + 1)e−Ω(δ2p′

i)

Since pi ≥ C2∆ϵ2 and T = ∆ϵ1/3, the probability Qi(u) fails for u, 2∆e−Ω(δ2T ) + (∆2 +
1)e−Ω(δ2p′

i), is bounded by e−∆1− k
ln ∆ −ϵ

/(e∆8) for large enough ∆. As in Section 3.3, depending
on how small this probability is, one can either apply the union bounds to get a high success
probability or use our resampling algorithm for the Lovász Local Lemma.

3.4.2 Trees

Trees are graphs of infinity girth. According to Theorem 3.4.1, it is possible to get a (∆/k)-
coloring in O(k + log∗ ∆) time if ∆1− k

ln ∆ −ϵ = Ω(log n) and ϵ is a constant less than or equal
to 1

2 · (1 −
k

ln ∆). If ∆1− k
ln ∆ −ϵ = O(log n), we will show that using additional O(q) colors, it

is possible to get a (∆/k + O(q))-coloring in O
(
k + log∗ n + log log n

log q

)
time. In any case, we

can find a (1 + o(1))∆/ ln ∆-coloring in O(log ∆ + log∆ log n) rounds by choosing q =
√

∆
and k = ln ∆/(1 + o(1)).

The algorithm is the same with the framework of Section 3.4.1, except that at the end
of each round we delete the bad vertices, which are the vertices that fail to satisfy the
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induction hypothesis (i.e. Qi(u) in Phase I or Fi(u) in Phase II). The remaining vertices
must satisfy the induction hypothesis. Using the idea from [11, 12, 154], we will show that
after O(k + log∗ ∆) rounds of the algorithm, the size of each component formed by the bad
vertices is at most O (∆4 log n) with high probability.

Barenboim and Elkin’s deterministic algorithm [7] obtains an O(q)-coloring in
O
(

log n
log q

+ log∗ n
)

time for trees (arboricity = 1). We then apply their algorithm on each
component formed by bad vertices. Since the size of each component is at most O(∆4 log n),
their algorithm will run in O

(
log log n+log ∆

log q
+ log∗ n

)
time, using the additional O(q) colors.

Note that this running time is actually O
(

log log n
log q

+ log∗ n
)
, since ∆ = O(log1/(1− k

ln ∆ −ϵ) n) =
O(log1/ϵ n) = logO(1) n.

Define Ai(u) be the event the induction hypothesis fails at u in round i (Qi(u) fails in Phase
I or Fi(u) fails in Phase II). Since k < ln ∆, there exists a constant c1 > 0 such that the
algorithm always finishes in c1 ln ∆ rounds. Let p = 1/(2c1e∆5 ln ∆). By Theorem 3.2.5 and
Theorem 3.4.4 and since T ≥ ∆1− k

ln ∆ − 2ϵ
3 and p′

i ≥ ∆1− k
ln ∆ − ϵ

3 , we have that for large enough
∆,

Pr(Ai(u)) ≤ 2∆e−Ω(δ2T ) + (∆2 + 1)e−Ω(δ2p′
i) ≤ 1/(2c1e∆5 ln ∆) = p

Also note that for u, v ∈ Gi−1, Ai(u) and Ai(v) are independent if distGi−1(u, v) ≥ 5, since
Ai(u) only depends on variables within distance two from u.

Lemma 3.4.5. Let H ⊆ Gi−1 be a connected component with s vertices. There exists a
vertex set V0 ⊆ H such that |V0| = ⌈s/∆4⌉ and for any u, v ∈ V0, distGi−1(u, v) ≥ 5 and
distGi−1(u, V0 \ {u}) = 5.

Proof. Define B(v, i) = {u ∈ H | distGi−1(v, u) ≤ i}. Start with an arbitrary vertex v ∈ H.
Put v in V0 and delete B(v, 4) from H. Select a new vertex v′ from the remaining vertices in
H such that dist(v′, V0) = 5. If the remaining graph is non-empty, then such v′ must exist,
because H is connected. Repeat this procedure until there are ⌈s/∆4⌉ vertices in V0. Since
we delete at most ∆4 vertices in each iteration, the remaining graph will be non-empty until
we find ⌈s/∆4⌉ vertices.

Suppose that there exists a component H containing s bad vertices in the end of the algo-
rithm. Let t = ⌈s/∆4⌉, we can extract such a subset V0 ⊆ H with the property stated in
Lemma 3.4.5. We will show that the total possible number of such V0 will be bounded.
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For any V0, we can map it to a tree with size t in the graph G5
i−1. This is because the vertex

set of V0 is connected in G5
i−1 and we can take any spanning tree of it. The mapping is

injective. Therefore, the total number of possilbe V0 is at most the total possible number
of ways to embed an unordered, rooted tree of t vertices in G5

i−1, which is bounded by
net∆5t [105, p. 397, Exercise 11].

On the other hand, the total possible number schedules for when these t vertices become
bad is at most ct

1 lnt ∆, since each vertex becomes bad in one of at most c1 ln ∆ rounds in
our algorithm. For those u ∈ V0 who become bad at round i, each failure happens with
probability at most p independently. Therefore,

Pr(∃H s.t. |H| ≥ s and v is bad, ∀v ∈ H)

≤
∑

tree T ⊆G5
i−1

|T |=s/∆4

Pr(v is bad, ∀v ∈ T )

≤
∑

tree T ⊆G5
i−1

|T |=s/∆4

∑
B1,...,Bc1 ln ∆⊆T⋃

Bi=T,Bi∩Bj=∅

∏
i

Pr(Bi become bad at round i)

≤
∑

tree T ⊆G5
i−1

|T |=s/∆4

∑
B1,...,Bc1 ln ∆⊆T⋃

Bi=T,Bi∩Bj=∅

∏
i

p|Bi|

=
∑

tree T ⊆G5
i−1

|T |=s/∆4

∑
B1,...,Bc1 ln ∆⊆T⋃

Bi=T,Bi∩Bj=∅

ps/∆4

≤ n
(
(e∆5)(c1 ln ∆)p

)s/∆4

≤ n(1/2)s/∆4

which is at most 1/ poly(n), if s = Ω(∆4 log n). Therefore, with high probability, all bad
components have size at most O(∆4 log n).

3.5 Conclusion

The time bounds of Theorem 3.1.1 show an interesting discontinuity. When ∆ is large we
can cap the error at 1/ poly(n) by using standard concentration inequalities and a union
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bound. When ∆ is small we can use our algorithm for LLL to reduce the failure probability
again to 1/ poly(n).

We showed that χ(G) ≤ (4+o(1))∆/ ln ∆ for triangle-free graphs G. It would be interesting
to see if it is possible to reduce the palette size to (1 + o(1))∆/ ln ∆, matching Kim’s [104]
bound for girth-5 graphs.

3.6 Jamall’s Analysis

There is a small flaw in Jamall’s proof of Lemma 12 in [86], the corresponding Lemma 17
in [87], and the corresponding lemmas in [88]. He defined the following quantities:

dt(u, c): the c-degree of u at the beginning of round t, which corresponds to |Nt−1,c(u)| in
our case.

St(u): the palette of u at the beginning of round t, which corresponds to Pt−1(u) in our
case. Also, he defined st(u) = |St(u)|.

d̃t(u, c): the c-degrees of u just before the cleanup phase (filtering out colors whose c-degrees
are too large) of round t, which corresponds to |Nt,c(u)| in our case.

d̄t(u) := ∑
c∈S̃t(u) d̃t(u, c), which corresponds to n̂t(u) · |P̂t(u)| in our case.

S̃t(u): the palette of u just before the cleanup phase of round t, which corresponds to P̂t(u)
in our case.

In [86, p. 13]:

For concentration of d̄t(u), suppose st(u) = m. Let c1, . . . , cm be the colors
in St(u). Then d̄t(u) may be considered a random variable determined by the
random trials T1, . . . , Tm, where Ti is the set of vertices in Gt that are assigned
color ci in round t. Observe that Ti affects d̄t(u) by at most dt(u, c).

He claimed that each of the random trials Ti only affects d̄t(u) by dt(u, c), which is the range
of the term d̃t(u, c) (i.e. d̃t(u, c) ∈ [0, dt(u, c)]) in the sum d̄t(u) = ∑

c∈S̃t(u) d̃t(u, c). However,

79



this is not necessarily true, since it is possible that a single exposure of Ti can cause all
c-neighbors to become colored. This may affect more than one term in the sum and thus
more than the amount of dt(u, c).

For example, at the initial configuration, where each vertex has the same palette, the c-
degree of u, dt(u, c), are equal for all colors c. Suppose that after exposing T1, . . . , Tm−1,
we have T1 = · · · = Tm−1 = ∅. When we expose Tm, if Tm is also an emptyset, then
d̄t(u) = ∑m

i=1 dt(u, ci). On the other hand, if Tm is exactly the neighbor set of u, then
d̄t(u) = 0, because every neighbor becomes colored. The difference can be as large as∑m

i=1 dt(u, ci) = mdt(u, cm) rather than claimed dt(u, cm). This bound is too large to ap-
ply Azuma’s inequality, because ∑α2

i in their proof can become as large as O(s2
t (u)d2

t (u)).
Perhaps it is possible to fix it by bounding the unlikely events or by considering the aver-
age difference rather then just considering the absolute difference. We presented a different
analysis in this chapter, whose concentration bound also satisfies the demands of an efficient
distributed implementation.
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Chapter 4

Edge Coloring

4.1 Introduction

In this chapter, we focus on the (1 + ϵ)∆-edge-coloring problem in the distributed setting.
We devise a drastically improved algorithm for (1+ϵ)∆-edge-coloring. Using the Rödl nibble
method Dubhashi, Grable, and Panconesi [39] devised a (1 + ϵ)∆-edge-coloring algorithm
for graphs with ∆ = (log n)1+Ω(1) which requires O(log n) time. In this chapter we devise a
(1 + ϵ)∆-edge-coloring algorithm for graphs with ∆ ≥ ∆ϵ (∆ϵ is a constant that depends on
ϵ.) with running time O(log∗ ∆ · max{1, log n

∆1−o(1)}). In particular, for ∆ = (log n)1+Ω(1) the
running time of our algorithm is only O(log∗ n), as opposed to the previous state-of-the-art
of O(log n) [39]. For smaller values of ∆, we will use our distributed algorithm for LLL from
Chapter 2.

As a byproduct of the algorithm, we obtain the first sublogarithmic time algorithm for the
(2∆−1)-edge-coloring problem. Specifically, our algorithm requires exp(O(

√
log log n)) time,

i.e., less than logϵ n time for any ϵ > 0. (In particular, it is far below the Ω(
√

log n) barrier
of [110].) Therefore, our result establishes a clear separation between the complexities of the
(2∆− 1)-edge-coloring and MM problems.
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4.1.1 Related Work

Our algorithm is randomized. The study of distributed randomized edge-coloring was ini-
tiated by Panconesi and Srinivasan [142]. The result of [142] was later improved in the
aforementioned paper of [39].

Significant research attention was also devoted to deterministic edge-coloring algorithms,
but those typically use much more than (1 + ϵ)∆ colors. Specifically, Panconesi and Rizzi
gave a deterministic (2∆ − 1)-edge-coloring algorithm that runs in O(∆ + log∗ n) rounds
[140]. Czygrinow et al. [30] devised a deterministic O(∆ · log n)-edge-coloring algorithm
with running time O(log4 n). More recently Barenboim and Elkin [9] devised a deterministic
O(∆1+ϵ)-edge-coloring algorithm with running time O(log ∆ + log∗ n), and an O(∆)-edge-
coloring algorithm with time O(∆ϵ + log∗ n), for an arbitrary small ϵ > 0.

4.1.2 Technical Overview

We begin by discussing the (1 + ϵ)∆-edge coloring problem. Our algorithm consists of
multiple rounds that color the edges of the graph gradually. Let P (u) denote the palette of
u, which consists of colors not assigned to the edges incident to u. Therefore, an edge uv can
choose a color from P (uv) def= P (u) ∩ P (v). Our goal is to show that P (uv) will always be
non-empty as the algorithm proceeds and we hope to color the graph as fast as possible. If
P (u) and P (v) behave like independent random subsets out of the (1 + ϵ)∆ colors, then the
expected size of P (uv) is at least (ϵ/(1 + ϵ))2 · (1 + ϵ)∆, since the size of P (u) and P (v) is
ϵ/(1+ ϵ) fraction of the original palette. This means if the size of P (uv) concentrates around
its expectation, then it will be non-empty.

We use the following process to color the graph while keeping the palettes behaving randomly.
In each round, every edge selects a set of colors in its palette. If an edge selected a color
that is not selected by adjacent edges, then it will become colored with one such color. The
colored edges will be removed from the graph.

In contrast with the framework of [39,73], where each edge selects at most one color in each
round, selecting multiple colors allows us to break symmetry faster. The idea of selecting
multiple colors independently has been used in [88,172] to reduce the dependency introduced
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in the analysis for triangle-free graphs and locally-sparse graphs. Our analysis is based on
the semi-random method or the so-called Rödl Nibble method, where we show by induction
that after each round a certain property Hi holds w.h.p., assuming Hi−1 holds. In particular,
Hi is the property that the palette size of each edge is lower bounded by pi, and the c-degree
of a vertex, that is, the number of uncolored adjacent edges having the color c in its palette,
is upper bounded by ti. Intuitively, the symmetry is easier to break when the size of the
palette is larger and when the c-degree is smaller. Therefore, we hope that the probability an
edge becomes colored increases with pi/ti. By selecting multiple colors for each edge in each
round, we will capture this intuition and be able to color the graph faster than by selecting
just one single color.

The main technical challenge is to prove the concentration bounds. To this end, we use
exisiting techniques and develop new techniques to minimize the dependencies introduced.
First, we use the wasteful coloring procedure [125]: Instead of removing colors from the
palette that are colored by the neighbors, we remove the colors that are selected by the
neighbors in each round. In this way, we can zoom in the analysis into the 2-neighborhood
of a vertex instead of 3-neighborhood. Also, we use the expose-by-ID-ordering technique
introduced in [145]. In the edge coloring problem, assume that each edge has a unique ID.
In each round, we let an edge become colored if it selected a color that is not selected by
its neighbor with smaller ID. Therefore, the choices of the neighbors with larger ID will not
affect the outcome of the edge. That makes bounding the difference or the variance of the
martingales much simpler when we expose the choices of the edges according to the order of
their ID. Finally, we derive a modification of Chernoff Bound (Lemma A.5) that is capable
to handle the sum of non-independent random variables conditioned on some likely events.
In particular, although the expectation of the i-th random variable may be heavily affected
by the configuration of first i − 1 random variables, our inequality applies if we can bound
the expectation when conditioning on some very likely events that depend on the first i− 1
random variables. When combined with the expose-by-ID-ordering technique, it becomes a
useful tool for the analysis of concentration. (See the proofs of Lemma 4.2.6.)
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4.2 Distributed Edge Coloring

Given a graph G = (V, E), we assume each edge e has a unique identifier, ID(e). For each
edge, we maintain a palette of available colors. Our algorithm proceeds by rounds. In each
round, we color some portion of the graph and then delete the colored edges. Let Gi be the
graph after round i and Pi(e) be the palette of e after round i. Initially, P0(e) consist of all
the colors {1, 2, . . . , (1 + ϵ)∆}. We define the sets Ni(·) : V ∪E → 2E, Ni,c(·) : V ∪E → 2E,
and N∗

i,c(e) : E → 2E as follows. Ni(·) is the set of neighboring edges of a vertex or an edge
in Gi. Ni,c(·) is the set of neighboring edges of a vertex or an edge in Gi having c in its
palette. N∗

i,c(e) is the set of neighboring edges having smaller ID than e and having c in its
palette in Gi.

For clarity we use the following shorthands: degi(·) = |Ni(·)|, degi,c(·) = |Ni,c(·)|, and
deg∗

i,c(e) = |N∗
i,c(e)|, where degi,c(·) is often referred as the c-degree. Also, if F (·) is a set

function and S is a set, we define F (S) = ⋃
s∈S F (s).

Theorem 4.2.1. Let ϵ, γ > 0 be constants. There exists a constant ∆ϵ,γ ≥ 0 and a distributed
algorithm such that for all graphs with ∆ ≥ ∆ϵ,γ, the algorithm colors all the edges with
(1 + ϵ)∆ colors and runs in O(log∗ ∆ ·max(1, log n/∆1−γ)) rounds.

Corollary 4.2.2. For any ∆, the (2∆ − 1)-edge-coloring problem can be solved in
exp(O(

√
log log n)) rounds.

Proof. Let ϵ = 1 and γ = 1/2. By Theorem 4.2.1, there exists a constant ∆1,1/2 such that
for ∆ ≥ max((log n)2, ∆1,1/2), the problem can be solved in O(log∗ ∆) rounds. Otherwise
∆ = O(log2 n) and we can apply the (∆ + 1)-vertex coloring algorithm in [11] to the line
graph of G, which takes O(log ∆ + exp(O(

√
log log n))) = exp(O(

√
log log n))) rounds.

We describe the algorithm of Theorem 4.2.1 in Algorithm 9 for ∆ > (log n)1/(1−γ). In the end
of the section, we show how to generalize it to smaller ∆ by using a distributed algorithm
for contructive Lovász Local Lemma [23]. The algorithm proceeds in rounds. We will define
{πi} and {βi} later. For now, let us think πi is inversely proportional to the c-degrees and
βi is a constant.

In each round i, each edge e selects two set of colors Si(e) and Ki(e) by using Algorithm 10.
Si(e) is selected by including each color in Pi−1(e) with probability πi independently. The
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Edge-Coloring-Algorithm (G, {πi}, {βi})
1: G0 ← G
2: i← 0
3: repeat
4: i← i + 1
5: for each e ∈ Gi−1 do
6: (Si(e), Ki(e))← Select(e, πi, βi)
7: Set Pi(e)← Ki(e) \ Si(N∗

i−1(e))
8: if Si(e) ∩ Pi(e) ̸= ∅ then color e with any color in Si(e) ∩ Pi(e) end if
9: end for

10: Gi ← Gi−1 \ {colored edges}
11: until

Algorithm 9

Select(e, πi, βi)
1: Include each c ∈ Pi−1(e) in Si(e) independently with probability πi.
2: For each c, calculate rc = β2

i /(1− πi)deg∗
i−1,c(e).

3: Include c ∈ Pi−1(e) in Ki(e) independently with probability rc.
4: return (Si(e), Ki(e)).

Algorithm 10
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colors selected by the neighbors with smaller ID than e, Si(N∗
i−1(e)), will be removed from

e’s palette. To make the analysis simpler, we would like to ensure that each color is removed
from the palette with an identical probability. Thus, Ki(e) is used for this purpose. A color
c remains in Pi(e) only if it is in Ki(e) and no neighboring edge with smaller ID selected c.
The probability that this happens is exactly (1−πi)deg∗

i−1,c(e) ·rc = β2
i . Note that rc is always

at most 1 if deg∗
i−1,c(u) ≤ t′

i−1 (defined below), which we later show holds by induction. An
edge will become colored if it has selected a color remaining in Pi(e). Obviously, no two
adjacent edges will be colored the same in the process.

We will assume ∆ is sufficiently large whenever we need certain inequalities to hold. The
asymptotic notations are functions of ∆. Let p0 = (1 + ϵ)∆ and t0 = ∆ be the initial lower
bound on the palette size and initial upper bound on the c-degree of a vertex. Let

πi = 1/(Kt′
i−1) δ = 1/ log ∆

αi = (1− πi)p′
i βi = (1− πi)t′

i−1−1

pi = β2
i pi−1 ti = max(αiβiti−1, T )

p′
i = (1− δ)ipi t′

i = (1 + δ)2iti

K = 4 + 4/ϵ T = ∆1−0.9γ/2

pi and ti are the ideal (that is, expected) lower and upper bounds of the palette size and
the vertex c-degrees after round i. p′

i and t′
i are the relaxed version of pi and ti with error

(1− δ)i and (1 + δ)2i, where δ is chosen to be small enough such that (1− δ)i = 1− o(1) and
(1 + δ)2i = 1 + o(1) for all i we consider, i.e. for i = O(log∗ ∆).

πi is the sampling probability in our algorithm. We will show that αi is an upper bound
on the probability an edge remains uncolored in round i and β2

i is the probability a color
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remains in the palette of an edge depending on ϵ. Since

βi =
(

1− 1
(Kt′

i−1 − 1) + 1

)(Kt′
i−1−1)·

t′
i−1−1

Kt′
i−1−1

≥
(

1− 1
(Kt′

i−1 − 1) + 1

)(Kt′
i−1−1)· 1

K

≥ e−1/K . Since
(
1− 1

x+1

)x
≥ e−1.

Therefore, βi is bounded below by e−1/K , which is a constant. While pi shrinks by β2
i , we

will show ti shrinks by roughly αiβi. Note that p0/t0 ≥ (1 + ϵ) initially. The constant K

is chosen so that e−2/K(1 + ϵ) − 1 = Ω(ϵ) and so αi is smaller than βi initially, since we
would like to have ti shrink faster than pi. Then, αi becomes smaller as the ratio between
ti and pi becomes smaller. Finally, we cap ti by T , since our analysis in the first phase does
not have strong enough concentration when ti decreases below this threshold. Thus, we will
switch to the second phase, where we trade the amount ti decreases (which is supposed to
be decreased to its expectation as in the first phase) for a smaller error probability.

We will show that the first phase ends in O(log∗ ∆) rounds and the second phase ends in a
constant number of rounds. We will discuss the number of rounds in the second phase later
in this section.

Lemma 4.2.3. tr = T after at most r = O(log∗ ∆) rounds.

Proof. We divide the process into two stages. The first is when ti−1/pi−1 ≥ 1/(1.1e3/KK).
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In this stage,

ti

pi

= αi

βi

ti−1

pi−1

= (1− πi)p′
i−t′

i−1+1 · ti−1

pi−1
defn. αi, βi

≤ exp
(
−πi · (p′

i − t′
i−1 + 1)

)
· ti−1

pi−1
1− x ≤ e−x

≤ exp
(
−(1− o(1)) · 1

K

(
pi

ti−1
− 1

))
· ti−1

pi−1
defn. πi, p′

i

t′
i−1

= (1− o(1)) pi

ti−1

≤ exp
(
−(1− o(1)) · 1

K

(
β2

i pi−1

ti−1
− 1

))
· ti−1

pi−1
defn. pi

≤ exp
(
−(1− o(1)) · 1

K

(
e−2/K(1 + ϵ)− 1

))
· ti−1

pi−1
pi−1/ti−1 ≥ (1 + ϵ)

≤ exp
(
−(1− o(1)) · ((1− 2/K)(1 + ϵ)− 1)

K

)
· ti−1

pi−1
e−x ≥ 1− x

= exp
(
−(1− o(1)) · ϵ2

8(1 + ϵ)

)
· ti−1

pi−1
K = 4(1 + ϵ)/ϵ

Therefore, after at most (1 + o(1))8(1+ϵ)
ϵ2 ln

(
1.1Ke3/K

)
rounds, this stage will end. Let j be

the first round when the second stage starts. For i > j, we have

αi = (1− πi)p′
i

≤ exp
(
−(1− o(1)) 1

K
· pi

ti−1

)
1− x ≤ e−x

≤ exp
(
−(1− o(1)) 1

K
· β

2
i pi−1

ti−1

)
defn. pi

≤ exp
(
−(1− o(1)) 1

K
· βi−1

αi−1
· β

2
i pi−2

ti−2

)
pi−1

ti−1
= βi−1

αi−1

pi−2

ti−2

≤ exp
(
−(1− o(1)) 1

K
· e

−3/K

αi−1
· pi−2

ti−2

)
βi ≥ e−1/K

≤ exp (−1/αi−1)
ti−2

pi−2
<

1
1.1Ke3/K
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Therefore, 1
αj+log∗ ∆+1

≥ ee··
·e︸ ︷︷ ︸

log∗ ∆

≥ ∆, and so tj+log∗ ∆+1 ≤ max(αj+log∗ ∆+1 ·∆, T ) = T .

Then, we show the bound on the palette size remains large throughout the algorithm.

Lemma 4.2.4. p′
i = ∆1−o(1) for i = O(log∗ ∆).

Proof. p′
i = (1 − δ)ipi ≥ (1 − δ)i∏i

j=1 β2
j ∆ ≥ (1 − δ)ie−2i/K∆ = (1 − o(1))∆− 2i

K log ∆ · ∆ =
∆1−o(1).

Let Hi(e) denote the event that |Pi(e)| ≥ p′
i and Hi,c(u) denote the event degi,c(u) ≤ t′

i.
Let Hi be the event such that for all u, e ∈ G and all c ∈ Pi(u), Hi,c(u) and Hi(e) hold.
Supposing that Hi−1 is true, we will estimate the probability that Hi(e) and Hi,c(u) are true.

Lemma 4.2.5. Suppose that Hi−1 is true, then Pr(|Pi(e)| < (1− δ)β2
i |Pi−1(e)|) < e−Ω(δ2p′

i).

Proof. Consider a color c ∈ Pi−1(e). The probability c remains in Pi(e) is exactly Pr(c /∈
Si(N∗

i−1(e)))·Pr(c ∈ Ki(e)) = β2
i . Since the event that c remains in the palette is independent

among other colors, by a Chernoff bound, Pr(|Pi(e)| < (1− δ)β2
i |Pi−1(e)|) < e−Ω(δ2p′

i).

Lemma 4.2.6. Suppose that Hi−1 is true, then Pr(degi,c(u) > t′
i) < 2e−Ω(δ2T ) + ∆e−Ω(δ2p′

i).

Proof. Define the auxiliary set

N̂i,c(u) def= {e ∈ Ni−1,c(u) | (c ∈ Ki(e)) and (c /∈ S(N∗
i−1(e) \Ni−1,c(u)))}

and d̂egi,c(u) = |N̂i,c(u)| (see Figure 2a). N̂i,c(u) is the set of edges uv ∈ Ni−1,c(u) that keep
the color c in Ki(uv) and no edges adjacent to v (except possibly uv) choose c. We will first
show that Pr(d̂egi,c(u) ≤ (1 + δ)βi degi−1,c(u)) ≤ e−Ω(δ2T ). Consider e = uv ∈ Ni−1,c(u). The
probability that c ∈ Ki(e) and c /∈ S(N∗

i−1(e) \Ni−1,c(u)) both happen is

(1− πi)2t′
i−1−2

(1− πi)deg∗
i−1,c(v)+deg∗

i−1,c(u)−2 · (1− πi)deg∗
i−1,c(v)−1

≤ (1− πi)t′
i−1−1

(1− πi)deg∗
i−1,c(v)−1 · (1− πi)deg∗

i−1,c(v)−1 = βi.
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Figure 2

c

c

c

N∗
i−1,c(Ni−1,c(u)) \Ni−1,c(u)

Ni−1,c(u)

u

(a) The bold lines denote the edges in N̂i,c(u).
In this example, we assume all the edges in the
bottom have smaller ID than the edges on the
top. The solid square besides an edge e in the
top part denote that c ∈ Ki(e). The character
‘c’ besides an edge e in the bottom part denote
that c ∈ Si(e). The set N̂i,c(u) is determined
by the squares and the c’s.

e1

u

e2

E2:

A

B

C

D

Pi(e2)

E1: Pi(e1)

(b) An illustration showing the probability
that e2 selects a color c′ ∈ Pi(e2) is unaffected
when conditioning on E1, E2, and whether e1
is colored or not. Note that e1, e2 ∈ N̂i−1,c(u)
and ID(e1) < ID(e2). E1 is a function of Ki(e1)
and the colors chosen by the edges in A and B.
E2 is a function of Ki(e2) and the colors chosen
by the edges in C and D. Thus, conditioning
on them does not affect the probability e2 se-
lect c′. Furthermore, whether e1 is colored does
not depend on whether e2 selects the colors in
Pi(e2), but only possibly depends on whether
the colors in the grey area (Pi−1(e2) \ Pi(e2))
are selected.

Let e1, . . . , ek be the edges in Ni−1,c(u) and let e′
1, . . . , e′

k′ be the edges in N∗
i−1,c(Ni−1,c(u)) \

Ni−1,c(u). Clearly, d̂egi,c(u) is determined solely by Ki(e1), . . . , Ki(ek) and Si(e′
1), . . . , Si(e′

k′).

Define the following sequence:

Y j =


∅ j = 0

(Ki(e1), . . . , Ki(ej)) 1 ≤ j ≤ k(
Y k, Si(e′

1), . . . , Si(e′
j−k)

)
k < j ≤ k + k′

Let Vj be
Var

(
E[d̂egi,c(u) | Y j−1]− E[d̂egi,c(u) | Y j]

∣∣∣ Y j−1
)

.
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We will upper bound Vj and apply the concentration inequalities of Lemma A.8. For 1 ≤ j ≤
k, the exposure of Ki(ej) affects d̂egi,c(u) by at most 1, so Vj ≤ 1 and ∑1≤j≤k Vj ≤ t′

i−1. For
k < j ≤ k + k′, the exposure of Si(ej) affects d̂egi,c(u) by at most 2, since edge e′

j is adjacent
to at most 2 edges in Ni−1,c(u). Since the probability ej selects c is πi, Vj ≤ 4πi. (We make a
query about whether c is contained in Si(ej). For an yes/no query, the variance is bounded
by pyes · C2, if the function is C-Lipschitz and pyes is the probability that the answer to the
query is yes [39, 40].) Therefore, ∑k<j≤k+k′ Vj ≤ 4k′πi ≤ 4t′2

i−1πi = 4t′
i−1/K ≤ 4t′

i−1. The
total variance, ∑1≤j≤k+k′ Vj, is at most 5t′

i−1.

We apply Lemma A.8 with M = 2, t = δβit
′
i−1, and σ2

j = Vj to get

Pr(d̂egi,c(u) > (1 + δ)βit
′
i−1)

≤ Pr(d̂egi,c(u) > βi degi−1,c(u) + t) degi−1,c(u) ≤ t′
i−1

≤ exp
(
− t2

2(∑k+k′
j=1 σ2

j + 2t/3)

)

= exp
(
− t2

2(5t′
i−1 + 2t/3)

)

≤ exp
(
−

δ2β2
i t′2

i−1
2(5t′

i−1 + 2(δβit′
i−1)/3)

)
= exp

(
−Ω(δ2t′

i−1)
)

Next, we show Pr(degi,c(u) > (1 + δ)αid̂egi,c(u)) ≤ ∆e−Ω(δ2p′
i) + e−Ω(δ2T ). Let e1, . . . , ek ∈

N̂i,c(u) listed by their ID in increasing order. Let Ej denote the likely event that |Pi(ej)| ≥ p′
i.

Notice that Pr(c ∈ Pi(ej) | ej ∈ N̂i,c(u)) ≥ Pr(c ∈ Pi(ej)) ≥ βi and Pr(c′ ∈ Pi(ej) |
ej ∈ N̂i,c(u)) = Pr(c′ ∈ Pi(ej)) ≥ βi for all other c′ ̸= c and c′ ∈ Pi−1(ej). Therefore,
E[|Pi(ej)| | ej ∈ N̂i,c(u)] ≥ βi|Pi−1(ej)| ≥ βip

′
i−1.

By Lemma 4.2.5, Pr(Ej) ≤ e−Ω(δ2p′
i). Let Xj be the event that ej is not colored after this

round and let Xj be the shorthand for (X1, . . . , Xj). We will show that

max
Xj−1

Pr(Xj |Xj−1, E1, . . . , Ej) ≤ αi

and so we can apply Lemma A.5, a Chernoff-type tail bound when conditioning on a sequence
of very likely events. First, we argue that for any Xj−1 and c′ ∈ Pi(ej), Pr(c′ ∈ Si(ej) |
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Xj−1, E1, . . . , Ej) = πi (see Figure 2b). Since c′ ∈ Pi(ej), c′ is not chosen by any of the
edges e1, e2, . . . , ej−1. Therefore, whether these edges become colored does not depend on
whether they choose c′ or not. Furthermore, conditioning on E1, . . . , Ej has no effect on the
probability ej selects c′, because the palette sizes of e1, . . . ej do not depend on the colors
chosen by ej, but only the choices of the edges with smaller ID. Therefore, we have:

Pr(Xj |Xj−1, E1, . . . , Ej)

=
∏

c′∈Pi(ej)
Pr(c′ /∈ Si(ej) |Xj−1, E1, . . . , Ej)

= (1− πi)|Pi(ej)| ≤ (1− πi)p′
i Ej is true

= αi

Notice that by Lemma 4.2.5, ∑j Pr(E j) ≤ ∆e−Ω(δ2p′
i). By Lemma A.5 and Corollary A.2, we

have:

Pr(degi,c(u) > αi · d̂egi,c(u) + δ max(αi · d̂egi,c(u), T ))

≤ e−Ω(δ2T ) + ∆e−Ω(δ2p′
i)

By the union bound, the probability that both degi,c(u) ≤ αi·d̂egi,c(u)+δ max(αi·d̂egi,c(u), T )
and d̂egi,c(u) ≤ (1 + δ)βit

′
i−1 hold is at least 1− 2e−Ω(δ2T ) −∆e−Ω(δ2p′

i). When both of them
are true:

degi,c(u)

≤ (1 + δ)αiβit
′
i−1 + δ max((1 + δ)αiβit

′
i−1, T )

≤ (1 + δ)αiβit
′
i−1 + δ max((1 + δ)αiβit

′
i−1, ti) T ≤ ti

≤ (1 + δ)αiβit
′
i−1 + δ(1 + δ)2i−1ti ≤ t′

i defn. ti and t′
i

Second Phase Suppose that Hr holds at the end of iteration r, where r is the first round
where tr = T and so degr,c(u) ≤ t′

r ≤ 2T for all u and c. Now we will show the algorithm
terminates in a constant number of rounds. For i > r, let t′

i = t′
i−1 · T

p′
i
.
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Recall that Hi(e) denotes the event that |Pi(e)| ≥ p′
i and Hi,c(u) denotes the event that

degi,c(u) ≤ t′
i (Notice that t′

i has a different definition when i > r than that when 0 ≤ i ≤ r).
Also recall Hi denotes the event that Hi(e) and Hi,c(u) are true for all u, e ∈ Gi and all
c ∈ Pi(u). If ∆ is large enough, then we can assume that p′

i ≥ ∆1−0.8γ by Lemma 4.2.4.
Then from the definition of t′

i, it shrinks to less than one in ⌈ 1
0.1γ
⌉ rounds, since T/p′

i ≤ ∆−0.1γ

and t′
r+1/(0.1γ) < (∆−0.1γ)⌈1/(0.1γ)⌉ · t′

r < 1.

Suppose that Hi−1 is true, we will estimate the probability that Hi(e) and Hi,c(u) are true.
Consider a color c ∈ Pi−1(e). It is retained in the palette with probability exactly β2

i , so
E[|Pi(e)|] ≥ β2

i |Pi−1(e)| ≥ β2
i p′

i−1. Since each color is retained in the palette independently,
by a Chernoff Bound, Pr(|Pi(e)| < (1− δ)β2

i · p′
i−1) < e−Ω(δ2p′

i).

Lemma 4.2.7. Suppose that Hi−1 is true where i > r, then Pr(degi,c(u) > t′
i) < e−Ω(T ) +

∆e−Ω(δ2p′
i).

Proof. We will now bound the probability that degi,c(u) > t′
i. Let e1, . . . , ek ∈ Ni−1,c(u),

listed by their ID in increasing order. Let Ej denote the likely event that |Pi(ej)| ≥ p′
i.

Notice that Pr(E j) ≤ e−Ω(δ2p′
i) by Lemma 4.2.5. For each ej ∈ Ni,c(u), let Xj denote the

event that ej is not colored. As we have shown previously Pr(Xj | Xj−1, E1, . . . , Ej) ≤ αi,
therefore,

Pr(degi,c(u) > t′
i)

= Pr
(

degi,c(u) >

(
t′
i

αit′
i−1

)
· αit

′
i−1

)
.
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Applying Lemma A.5 and Corollary A.2 with 1 + δ = t′
i/(αit

′
i−1), and noticing that

αi degi−1,c(u) ≤ αit
′
i−1, the probability above is bounded by

exp
(
−αit

′
i−1

(
t′
i

αit′
i−1

ln t′
i

αit′
i−1
−
(

t′
i

αit′
i−1
− 1

)))
+ ∆e−Ω(δ2p′

i)

≤ exp
(
−t′

i

(
ln t′

i

αit′
i−1
− 1

))
+ ∆e−Ω(δ2p′

i)

= exp
(
−ti

(
ln
( 1

αi

)
− ln

(
et′

i−1
t′
i

)))
+ ∆e−Ω(δ2p′

i)

≤ exp
(
−t′

i

(
(1− o(1)) p′

i

Kt′
i−1
− ln

(
et′

i−1
t′
i

)))
+ ∆e−Ω(δ2p′

i) ln 1
αi

= (1− o(1)) p′
i

Kt′
i−1

≤ exp
(
−
(

(1− o(1)) T

K
− t′

i ln(e∆)
))

+ ∆e−Ω(δ2p′
i) defn. t′

i and t′
i−1/t′

i < ∆

≤ exp
(
−T

(
(1− o(1))

K
−

t′
i−1
p′

i

ln(e∆)
))

+ ∆e−Ω(δ2p′
i)

≤ exp
(
−T

(
(1− o(1)) 1

K
− 2 ln(e∆)

∆0.1γ

))
+ ∆e−Ω(δ2p′

i)
t′
i−1
p′

i

≤ 2T

p′
i

≤ 2
∆0.1γ

≤ exp (−Ω(T )) + ∆e−Ω(δ2p′
i)

4.2.1 Union bound or constructive Lovász Local Lemma

We want to ensure that Hi holds for every round i. If Hi−1 is true, then Pr(H i(e)) ≤
exp (−∆1−0.95γ) and Pr(H i,c(u)) ≤ exp (−∆1−0.95γ). If ∆1−γ ≥ log n, then each of the bad
event occur with probability at most 1/ poly(n). Since there are at most O(n3) events, by
the union bound, Hi holds w.h.p. On the other hand, if ∆1−γ ≤ log n, then one can use
the constructive Lovász Local Lemma (LLL) to make Hi hold w.h.p. Suppose that the
probability each event happens is at most p and each event is dependent with at most d

other events. If ep(d + 1) < 1, the LLL guarantees that the probability none of the events
happen is positive. In Chapter 2, we showed that if a stronger condition of LLL, epd2 < 1,
is satisfied, then the assignment can be constructed more efficiently, in O(log1/epd2 n) rounds
w.h.p.
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Now, each of the bad events H i,c(u) or H i(e) is dependent with other events only if their
distance is at most 3. (The distance between two edges is the distance in the line graph; the
distance between a vertex and an edge is the distance between the vertex and the further
endpoint of the edge). Since there are O(∆) events on each vertex and O(1) events on each
edge, each event depends on at most d = O(∆3 ·∆) = O(∆4) events. Let p = exp(−∆1−0.95γ)
be an upper bound on the probability of each bad event. Now we have epd2 ≤ exp(−∆1−γ).
Therefore, we can make Hi hold in O(log1/epd2 n) ≤ O(log n/∆1−γ) rounds w.h.p. This
completes the proof of Theorem 4.2.1.

Note that our proof for Theorem 4.2.1 does not rely on all the palettes being identical.
Therefore, our algorithm works as long as each palette has at least (1 + ϵ)∆ colors, which is
known as the list-edge-coloring problem.
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Chapter 5

The (∆ + 1)-Coloring Problem

5.1 Introduction

The study of the (∆ + 1)-coloring problem can be traced back to the seminal works of
Luby [120] and Alon, Babai and Itai [3], who devised O(log n)-time algorithms for Maximal
Independent Set problem. Luby [120] showed a reduction from the (∆ + 1)-coloring problem
to MIS problem, so that the (∆ + 1)-coloring problem can be solved in O(log n) rounds.

Remarkably, even though these problems have been intensively investigated for the last
three decades (see Section 4.1.1 for a short overview of some of the most related results), the
logarithmic bound [3, 120] remains the state-of-the-art to this date. Indeed, the currently
best-known algorithm for these problems (due to Barenboim et al. [11]) requires O(log ∆) +
exp(O(

√
log log n)) time. However, for ∆ = nΩ(1) this bound is no better than the logarithmic

bound of [3, 120].

In this chapter, we give a sublogarithmic algorithm for (∆ + 1)-vertex-coloring in (1 − ϵ)-
locally sparse graphs. A graph G = (V, E) is said to be (1−ϵ)-locally sparse if for every vertex
v ∈ V , its neighborhood Γ(v) = {u | (v, u) ∈ E} induces at most (1−ϵ)

(
∆
2

)
edges. We devise

a (∆ + 1)-vertex-coloring algorithm for (1− ϵ)-locally sparse graphs that runs in O(log∗ ∆ +
log 1/ϵ) rounds for any ϵ > 0, provided that ϵ∆ = (log n)1+Ω(1). Without this restriction on
the range of ∆ our algorithm has running time O(log(1/ϵ)) + exp(O(

√
log log n)).

Our result shows that the only “hurdle” that stands on our way towards a sublogarithmic-
time (∆+1)-vertex-coloring algorithm is the case of dense graphs. In particular, these graphs
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must have arboricity1 λ(G) > (1− ϵ)∆/2, for any constant ϵ > 0. (Note that λ(G) ≤ ∆/2.)
Remarkably, graphs with arboricity close to the maximum degree are already known to be
the only hurdle that stands on the way towards devising a deterministic polylogarithmic-time
(∆+1)-vertex-coloring algorithm. Specifically, Barenboim and Elkin [8] devised a determin-
istic polylogarithmic-time algorithm that (∆+1)-vertex-colors all graphs with λ(G) ≤ ∆1−ϵ,
for some constant ϵ > 0.

Moreover, this result also implies that (2∆ − 1)-edge coloring can be solved in eO(
√

log log n)

rounds. It is easy to see that in a line graph of degree ∆ = 2(∆′− 1) (∆′ is the degree of its
underlying graph) every neighborhood induces at most (∆′−1)2 = (∆/2)2 = (1/2+1/2(∆−
1))
(

∆
2

)
edges. Hence, our (∆+1)-vertex-coloring algorithm requires only exp(O(

√
log log n))

time for ∆′ ≥ 2. (For ∆′ = O(1) a graph can be (2∆′ − 1)-edge-colored in O(∆′ + log∗ n) =
O(log∗ n) time, using a classical (2∆′ − 1)-edge-coloring algorithm of Panconesi and Rizzi
[140].)

The notion of (1−ϵ)-locally sparse graphs was introduced by Alon, Krivelevich and Sudakov
[4] and was studied also by Vu [172]. Distributed vertex-coloring of sparse graphs was studied
in numerous papers. See, e.g., [7, 10,11,21,149,157], and the references therein.

Technical Overview We use a twofold approach. We will first analyze just one round of
the standard trial algorithm, where each vertex randomly selects exactly one color from its
palette. We show that because the neighborhood is sparse, at least Ω(ϵ∆) pairs of neighbors
will be assigned the same color, and so the palette size will concentrate at a value Ω(ϵ∆) larger
than its degree. Then by using the idea of selecting multiple colors, we develop an algorithm
that colors the graph rapidly. In this algorithm, instead of selecting the colors with a uniform
probability as in the edge coloring algorithm, vertices may select different probabilities that
are inversely proportional to their palette sizes. Note that Schneider and Wattenhofer [157]
showed that (1 + ϵ)∆-vertex coloring problem can be solved in O(log(1/ϵ) + log∗ n) rounds
if ∆≫ log n. However, it is not clear whether their proof extends directly to the case where
palettes can be non-uniform as in our case.

1The arboricity λ(G) of a graph G is the minimum number of edge-disjoint forests required to cover the
edge set of G.
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5.2 Coloring (1 − ϵ)-Locally Sparse Graphs with ∆ + 1
colors

In this section and the following section we switch contexts from edge coloring to vertex
coloring. Now the palette after round i, Pi(u), is defined on the vertices rather than on
the edges. Gi is the graph obtained by deleting those already colored vertices. Also, we
assume each vertex has an unique ID, ID(u). Redefine the set functions Ni(u) : V → 2V ,
Ni,c(u) : V → 2V , N∗

i,c(u) : V → 2V to be the neighboring vertices of u, the neighboring
vertices of u having c in their palettes, and the neighboring vertices of u having smaller ID
than u and having c in their palette.

G is said to be (1 − ϵ)-locally sparse if for any u ∈ G, the number of edges spanning the
neighborhood of u is at most (1 − ϵ)

(
∆
2

)
(i.e. |{xy ∈ G | x ∈ N(u) and y ∈ N(u) }| ≤

(1− ϵ)
(

∆
2

)
).

Theorem 5.2.1. Let ϵ, γ > 0 and G be a (1 − ϵ)-locally sparse graph. There exists a
distributed algorithm that colors G with ∆ + 1 colors in O(log∗ ∆ + log(1/ϵ) + 1/γ) rounds
if (ϵ∆)1−γ = Ω(log n).

Corollary 5.2.2. Let ϵ > 0 and G be a (1 − ϵ)-locally sparse graph. G can be properly
colored with (∆ + 1) colors in O(log(1/ϵ) + eO(

√
log log n)) rounds.

Proof. Let γ = 1/2. If ϵ∆ = Ω(log2 n), Theorem 5.2.1 gives an algorithm that runs in
O(log∗ ∆ + log(1/ϵ)) rounds. Otherwise if ϵ∆ = O(log2 n), the (∆ + 1)-coloring algorithm
given in [11] runs in O(log ∆ + eO(

√
log log n)) = O(log log n

ϵ
+ eO(

√
log log n)) = O(log (1/ϵ) +

eO(
√

log log n)) rounds.

First we assume that each vertex u ∈ G has ∆ neighbors. If a vertex u has less than ∆
neighbors, we will attach ∆−deg(u) imaginary neighbors to it. We will analyze the following
process for just a single round. Initially every vertex has palette P0(u) = {1, . . . ∆ + 1}.
Each vertex picks a tentative color uniformly at random. For each vertex, if no neighbors
of smaller ID picked the same color, then it will color itself with the chosen color. Now
each vertex removes the colors that are colored by its neighbors. Let deg1(u) and P1(u)
denote the degree of u and the palette of u after the first round. The idea is to show
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that |P1(u)| ≥ deg1(u) + Ω(ϵ∆), then we can apply the algorithm in the previous section.
Intuitively this will be true, because of those neighbors of u who become colored, some
fraction of them are going to be colored the same, since the neighborhood of u is not entirely
spanned.

Let N(u) denote u’s neighbors. For x, y ∈ N(u), we call xy a non-edge if xy /∈ E. For
x, y ∈ N(u) where ID(x) < ID(y), we call xy a successful non-edge w.r.t. u if the following
two condition holds: First, xy is not an edge and x and y are colored with the same color.
Second, aside from x, y, no other vertices in N(u) with smaller ID than y picked the same
color with x, y. We will show that w.h.p. there will be at least ϵ∆/(8e3) successful non-edges.
Then |P1(u)| ≥ ∆ + 1− (∆− deg1(u)) + ϵ∆/(8e3) ≥ deg1(u) + ϵ∆/(8e3).

Lemma 5.2.3. Fix a vertex u ∈ G. Let Z denote the number of successful non-edges w.r.t. u.

Pr(Z < ϵ∆/(8e3)) ≤ e−Ω(ϵ∆)

Proof. We will assume without loss of generality that the neighborhood of u has exactly
(1− ϵ)

(
∆
2

)
edges. This can be assumed without loss of generality, because we can arbitrarily

add edges to its neighborhood until there are (1 − ϵ)
(

∆
2

)
edges. If Z ′ is the number of

successful non-edges in the modified scenario, then Z statistically dominates Z ′, i.e. Pr(Z ≥
z) > Pr(Z ′ ≥ z). Given the same outcomes of the random variables, if a pair xy is a
successful non-edge in the modified scenario, then it must also be a successful non-edge in
the original scenario.

We will first show that the expected number of successful non-edges is at least ϵ∆/(4e3).
Then we will define a martingale sequence on the 2-neighborhood of u. After showing the
variance ∑i Vi has the same order as its expectation, O(ϵ∆), we will apply the method of
bounded variance (Lemma A.8) to get the stated bound.

Given a non-edge xy in the neighborhood of u, the probability it is successful is at least
(1− 1/(∆ + 1))3∆−2 · (1/(∆ + 1)) = (1− 1/(∆ + 1))3∆−1 · (1/∆) ≥ e−3/∆. The expectation
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(assuming ∆ > 1)

E[Z] =
∑

xy /∈E
x,y∈N(u)

Pr(xy is successful)

≥ ϵ∆(∆− 1)
2 · e

−3

∆ = ϵ(∆− 1)
2e−3 ≥ ϵ∆

4e−3

We will define the martingale sequence on the 2-neighborhood of u and then show the
variance ∑i Vi has the same order with its expectation, O(ϵ∆). Let {u0 = u, u1, . . . uk} be
the vertices in the 2-neighborhood of u, where vertices with distance 2 are listed first and
then distance 1. The distance 1 vertices are listed by their ID in increasing order. Let Xi

denote the color picked by ui. Given X i−1, let Di,si
be |E[Z |X i−1, Xi = si]− E[Z |X i−1]|

and Vi be Var(E[Z |X i]− E[Z |X i−1] |X i−1). Note that (see [40])
√

Vi ≤ max
si

Di,si
≤ max

si,s′
i

|E[Z |X i−1, Xi = si]− E[Z |X i−1, Xi = s′
i]|

Also, E[Z | X i] = ∑
x,y∈N(u),xy /∈E E[xy is successful | X i]. We discuss the cases whether ui

is a neighbor of u separately. If ui /∈ N(u), whether ui chose si or s′
i only affects on those

non-edges xy such that at least one of x or y is adjacent to ui. Let Ei denote such a set of
non-edges. If xy ∈ Ei, then

|E[xy is successful |X i−1, Xi = si]− E[xy is successful |X i−1, Xi = s′
i]| ≤ 2/(∆ + 1)2

because they only differ when both x and y picked si or s′
i. Thus, maxsi

Di,si
≤ 2|Ei|/(∆+1)2.

Notice that |Ei| ≤ ϵ∆2 and ∑
i |Ei| ≤ ϵ∆2 · (2∆) ≤ 2ϵ∆3, since each of two endpoints of

a non-edge can be incident to ϵ∆2 edges in those Ei. This implies ∑i |Ei|2 ≤ 2ϵ2∆5, since
the sum is maximized when each |Ei| is either 0 or ϵ∆2. Therefore, ∑i:ui∈N(N(u))\N(u) Vi ≤∑

i 4|Ei|2/(∆ + 1)4 ≤ 8ϵ2∆.

On the other hand, if ui ∈ N(u), we will first bound Di,si
= |E[Z |X i]− E[Z |X i−1]|

for a fixed si. Then we will bound Vi = ∑
si

Pr(Xi = si) · D2
i,si

. Again, we break
Z into sum of random variables ∑uaub /∈E,ua,ub∈N(u) Xuaub

, where Xuaub
is the event that

the non-edge uaub is successful. The indices a, b are consistent with our martingale se-
quences. Without loss of generality, we assume a < b and so ID(ua) < ID(ub). Let
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Di,si,ab = |E[Xuaub
|X i−1, Xi = si]− E[Xuaub

|X i−1]|. In order to derive an upper bound
for (∑Di,si,ab)2, we divide the non-edges ua, ub into five cases.

1. a < b < i: In this case, the color chosen by ui does not affect E[Xuaub
], because ui has

a higher ID. Thus, Di,si,ab = 0.

2. i < a < b: In this case,

Di,si,ab ≤ |E[Xuaub
|X i−1, Xi = si]− E[Xuaub

|X i−1, Xi = s′
i]| ≤ 2/(∆ + 1)2

because they only differ when ua and ub both picked si or s′
i. There are at most ϵ∆2

edges affected. Therefore, ∑i<a<b Di,si,ab ≤ 2ϵ.

3. a < i < b: If E[Xuaub
| X i−1] = 0, then E[Xuaub

| X i−1, Xi = si] = 0, which creates
no difference. If E[Xuaub

| X i−1] is not zero, then it is the case that ua has picked its
color uniquely among (N(u) ∩ {u1, . . . , ui−1}) ∪N∗(ua). Therefore, E[Xuaub

|X i−1] =
(1 − 1/(∆ + 1))b−i · 1/(∆ + 1). If ua chose si, then E[Xuaub

| X i−1, Xi = si] = 0.
Otherwise, E[Xuaub

| X i−1, Xi = si] = (1− 1/(∆ + 1))b−i−1 · 1/(∆ + 1). In the former
case, the difference is at most 1/(∆ + 1). In the latter case, the difference is at most
(1− 1/(∆ + 1))b−i−1 · 1/(∆ + 1)− (1− 1/(∆ + 1))b−i · 1/(∆ + 1) ≤ 1/(∆ + 1)2. Notice
that among the non-edges uaub with a < i < b, only those with ua uniquely colored si

among (N(u) ∩ {u1, . . . , ui−1}) fits into the former case. Denote the edge set by Esi
,

we have ∑a<i<b Di,si,ab ≤ ϵ + |Esi
|/(∆ + 1). Also note that ∑si

|Esi
| ≤ ϵ∆2, since Esi

is disjoint from Es′
i

if si ̸= s′
i.

4. a = i < b: In this case,

Di,si,ab ≤ |E[Xuaub
|X i−1, Xi = si]− E[Xuaub

|X i−1, Xi = s′
i]| ≤ 2/(∆ + 1)

because they are different only when ub picked si or s′
i. There are at most deg(ui) def=

∆− deg(ui) non-edges affected. Therefore, ∑a=i<b Di,si,ab ≤ deg(ui)/(∆ + 1).

5. a < i = b: In this case, E[Xuaub
| X i−1, Xi = si] is either 1 or 0. Note that E[Xuaub

|
X i−1] is at most 1/(∆ + 1). Therefore, if si is the color picked by ua and ua is the
only vertex that picked si among u1 . . . , ui−1, then Di,si,ab is at most 1. Otherwise,
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it is at most 1/(∆ + 1). Let µsi
be the indicator variables whether there exists such

a ua that colored si. We have ∑a<i=b Di,si,ab ≤ µsi
+ deg(ui)/(∆ + 1). Note that∑

si
µsi
≤ deg(ui).

Now we are ready to bound the variance Vi. For readability we let ∆1 = ∆ + 1.

Vi =
∑
si

Pr(Xi = si) ·D2
i

≤
∑
si

1
∆1
·

 ∑
a<b<i

Di,si,ab +
∑

i<a<b

Di,si,ab +
∑

a<i<b

Di,si,ab +
∑

a=i<b

Di,si,ab +
∑

a<b=i

Di,si,ab

2

≤
∑
si

1
∆1
·
(

3ϵ + |Esi
|

∆1
+ 2deg(ui)

∆1
+ µsi

)2

≤ 7
∆1
·
∑
si

(3ϵ)2 +
(
|Esi
|

∆1

)2

+
(

2deg(ui)
∆1

)2

+ µ2
si


The last inquality follows since (x1 + x2 + x3 + x4)2 ≤ 7(x2

1 + x2
2 + x2

3 + x2
4). Note that∑

si
(3ϵ)2 ≤ 9∆1ϵ

2, ∑si

( |Esi |
∆1

)2
≤ ϵ∆, ∑si

(
2deg(ui)

∆1

)2
≤ 4deg(ui)2

∆1
, and ∑

si
µ2

si
≤ deg(ui).

Therefore,

Vi ≤
7

∆1

(
9∆1ϵ

2 + ϵ∆ + 4deg(ui)2

∆1
+ deg(ui)

)

Now notice that ∑i deg(ui) ≤ ϵ∆2 and ∑
i deg2(ui) is a sum of convex functions, which is

maximized when each term is either 0 or the maximum. Therefore, ∑i deg2(ui) ≤ ϵ∆3. We
have ∑

i:ui∈N(u)
Vi ≤ 7(9ϵ∆ + ϵ∆ + 4ϵ∆ + ϵ∆) ≤ 105ϵ∆

In order to apply Lemma A.8, we have to bound maxsi
Di,si

. Notice that for any two outcome
vectors X, X ′ that only differ at the i’th coordinate, Z differs by at most 2. That is, by
changing the color of a vertex x ∈ N(u) from si to s′

i, the number of successful non-edges
can only differ by 2. First, this is true if x = u or x is at distance 2 from u, since it can
only create at most one sucessful edge when x unselects si and destroy one when x selects
s′

i. When x ∈ N(u), we consider the effect when x unselects the color si. It can create or
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destroy at most 1 successful non-edge. It creates a successful non-edge yz only when x, y, z

picked si and no other vertices in N(u) with smaller ID than y, z picked si. It destroys a
non-edge when xy was a successful non-edge that both colored si. Note that if such a y

exists, there can be at most one, by the definition of successful non-edge. Similarly, it can
create or destroy at most 1 successful non-edge when x picks s′

i. It can be shown that this
2-Lipschitz condition implies Di,si

≤ 2 [40, Corollary 5.2].

Applying A.8 with t = ϵ∆/(8e3) and M = 2, we get that

Pr(Z < ϵ∆/(8e3)) = Pr(Z < ϵ∆/(4e3)− t)

≤ exp
(
− t2

2(105ϵ∆ + 8ϵ2∆ + 2t/3)

)
= exp(−Ω(ϵ∆)).

Therefore, by Lemma 5.2.3, for any u ∈ G,

Pr
(
|P1(u)| < deg1(u) + ϵ

8e3 ·∆
)
≤ e−Ω(ϵ∆)

If ϵ∆ = Ω(log n), then Pr(|P1(u)| < deg1(u) + ϵ
8e3 · ∆) ≤ e−Ω(ϵ∆) ≤ 1/ poly(n). By the

union bound, |P1(u)| ≥ deg1(u) + ϵ
8e3 · ∆) holds for all u ∈ G with high probability. If

(ϵ∆)1−γ = Ω(log n), we show the rest of the graph can be colored in O(log∗ ∆+log(1/ϵ)+1/γ)
rounds in the next section.

5.3 Vertex Coloring with deg(u) + ϵ∆ Colors

In this section we consider the vertex coloring problem where each vertex has ϵ∆ more colors
in its palette than its degree. The goal is to color each vertex by using a color from its palette.
Note that the palette of each vertex may not necessarily be identical and can have different
sizes.

Theorem 5.3.1. Given ϵ, γ > 0, and G, where each vertex u ∈ G has a palette containing
at least deg(u)+ ϵ∆ colors and (ϵ∆)1−γ = Ω(log n). There exists a distributed algorithm that
colors G properly in O(log∗ ∆ + 1/γ + log(1/ϵ)) rounds.
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Corollary 5.3.2. Suppose that each vertex u ∈ G has a palette containing at least deg(u)+ϵ∆
colors, then G can be properly colored in O(log(1/ϵ) + eO(

√
log log n)) rounds.

Proof. Let γ = 1/2. If ϵ∆ = Ω(log2 n), Theorem 5.3.1 gives an algorithm that runs in
O(log∗ ∆ + log(1/ϵ)) rounds. Otherwise if ϵ∆ = O(log2 n), the (∆ + 1)-coloring algorithm
given in [11] runs in O(log ∆ + eO(

√
log log n)) = O(log log n

ϵ
+ eO(

√
log log n)) = O(log (1/ϵ) +

eO(
√

log log n)) rounds.

We will define di in Algorithm 11 later. Algorithm 11 is modified from Algorithm 9. The
first modification is that instead of running it on the edges, we run it on vertices. Second,
instead of removing all colors picked by the neighbors from the palette, we only removes
colors that are actually colored by their neighbors. Third, instead of selecting colors with
identical probabilty for each vertex, the vertices may select with different probabilities.

Vertex-Coloring-Algorithm(G, {di})
1: G0 ← G
2: i← 0
3: repeat
4: i← i + 1
5: for each u ∈ Gi−1 do
6: Include each c ∈ Pi−1(u) in Si(e) independently with probability
7: πi(u) = 1

|Pi−1(u)| ·
di−1+ϵ∆
di−1+1 .

8: If Si(u) \ Si(N∗
i−1(u)) ̸= ∅, u color itself with any color in Si(u) \ Si(N∗

i−1(u)).
9: Set Pi(u)← Pi−1(u) \ {c | a neighbor of u is colored c}.

10: end for
11: Gi ← Gi−1 \ {colored vertices}
12: until

Algorithm 11

Due to the second modification, at any round of the algorithm, a vertex always has ϵ∆ more
colors in its palette than its degree. The intuition of the third modification is that if every
vertex selects with an identical probability, then a neighbor of u having a palette with very
large size might prevent u to become colored. To avoid this, the neighbor of u should choose
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each color with a lower probability. Define the parameters as follows:

d0 = ∆ T = (ϵ∆)1−γ αi = e
− di−1+ϵ∆

8(di−1+1)

di =

max(1.01αidi−1, T ) if di−1 > T

T
ϵ∆ · di−1 otherwise

Let Hi(u) denote the event that degi(u) ≤ di after round i. Let Hi denote the event that
Hi(u) holds for all u ∈ Gi−1, where Gi−1 is the graph induced by the uncolored vertices after
round i− 1. Note that when Hi−1 is true,

πi(u) = 1
|Pi−1(u)| ·

di−1 + ϵ∆
di−1 + 1 ≤

1
|Pi−1(u)| ·

degi−1(u) + ϵ∆
degi−1(u) + 1 ≤

1
degi−1(u) + 1

Notice that u remains uncolored iff it did not select any color in Pi−1(u) \ Si(N∗
i−1(u)). We

will show that the size of Pi−1(u) \ Si(N∗
i−1(u)) is at least |Pi−1(u)|/8 and so the probability

u did not become colored is at most (1− πi(u))|Pi−1(u)|/8 ≤ αi. Then, the expected value of
degi(u) will be at most αidi−1. Depending on whether di−1 > T , we separate the definition
of di into two cases, because we would like the tail probability that di deviates from its
expectation to be bounded by e−Ω(T ).

Lemma 5.3.3. di < 1 for some i = O(log∗ ∆ + 1/γ + log(1/ϵ)).

Proof. We analyze how di decreases in three stages. The first stage is when di−1 > ϵ∆/33.
During this stage,

di = 1.01αidi−1

≤ 1.01 exp
(
− di−1 + ϵ∆

8(di−1 + 1)

)
· di−1

≤ 1.01 exp (−1/16) · di−1 di−1 ≥ 1

≤ 0.99 · di−1

Therefore, this stage ends in O(log(1/ϵ)) rounds. The second stage starts at first r1 such
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that T < dr1−1 ≤ ϵ∆/33. When i > r1:

αi ≤ 1.01 · exp
(
−di−1 + ϵ∆

16di−1

)

≤ 1.01 · exp
(
− ϵ∆

16di−1

)

≤ exp
( 1

32

)
· exp

(
− ϵ∆

16di−1

)

≤ exp
(
− ϵ∆

32di−1

)
di−1 ≤ ϵ∆/33 ≤ ϵ∆

≤ exp
(
− ϵ∆

33αi−1di−2

)

≤ exp
(
− 1

αi−1

)
di−2 ≤ ϵ∆/33

Therefore, 1
αr1+log∗(1.01∆)+1

≥ ee··
·e︸ ︷︷ ︸

log∗(1.01∆)

≥ 1.01∆, and so dr1+log∗(1.01∆)+1 ≤

max(1.01αr1+log∗(1.01∆)+1∆, T ) ≤ T .

The third stages begins at the first round r2 such that dr2−1 = T . If i ≥ r2, then di =
T
ϵ∆ · di−1 ≤ (ϵ∆)−γ · di−1. Therefore, dr2+1/γ+1 < (ϵ∆)−1 · T < 1. The total number of rounds
is O(log(1/ϵ) + log∗ ∆ + 1/γ).

Lemma 5.3.4. Suppose that Hi−1 holds, then Pr(degi(u) > di) ≤ e−Ω(T ) + ∆e−Ω(ϵ∆).

Proof. Let P̂i(x) def= Pi−1(x) \ Si(N∗
i−1(x)) denote the current palette of x excluding the

colors chosen by its neighbors. We will first show that E[|P̂i(x)|] ≥ |Pi−1(x)|/4. Define
w(c) = ∑

y∈N∗
i−1,c(x) πi(y). We defined w(c) to simplify the calculation because we will argue

that when ∑c∈Pi−1(x) w(c) is fixed, some inequality is minimized when each of the summand
equals to ∑c∈Pi−1(x) w(c)/|Pi−1(x)|. The probability c is not chosen by any of x’s neighbors
with smaller ID is

∏
y∈N∗

i−1,c(x)
(1− πi(y)) ≥ min

π′
i:(
∑

y∈N∗
i−1,c

(x) π′
i(y))=w(c)

∏
y∈N∗

i−1,c(x)
(1− π′

i(y))

106



which is minimized when π′
i(y) = w(c)/ deg∗

i−1,c(u), so the quantity above is

≥
(

1− w(c)
deg∗

i−1,c(x)

)deg∗
i−1,c(x)

=
(

1− w(c)
deg∗

i−1,c(x)

)deg∗
i−1,c

(x)
w(c) ·w(c)

≥
(1

4

)w(c) w(c)
deg∗

i−1,c(x) ≤
1
2

Note that the reason that w(c)
deg∗

i−1,c(x) ≤
1
2 is πi(y) ≤ 1

degi−1(y)+1 ≤
1
2 for y ∈ N∗

i−1,c(x). There-
fore,

E[|P̂i(x)|] =
∑

c∈Pi−1(x)
Pr(c /∈ Si(N∗

i−1(x)))

≥
∑

c∈Pi−1(x)

(1
4

)w(c)

≥ min
w′:
∑

w(c)=
∑

w′(c)

∑
c∈Pi−1(x)

(1
4

)w′(c)

which is minimized when w′(c) are all equal, that is, w′(c) = ∑
c′∈Pi−1(x) w(c′)/|Pi−1(x)|,

hence

≥ |Pi−1(x)| ·
(1

4

)∑
c∈Pi−1(x) w(c)/|Pi−1(x)|
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We show the exponent is at most 1, so that E[|P̂i(x)|] ≥ |Pi−1(x)|/4. The exponent

∑
c∈Pi−1(x)

w(c)/|Pi−1(x)| =

∑
y∈N∗

i−1(x)

|Pi−1(x) ∩ Pi−1(y)|
|Pi−1(y)| · di−1 + ϵ∆

di−1 + 1 ·
1

|Pi−1(x)|

≤
∑

y∈Ni−1(x)

di−1 + ϵ∆
di−1 + 1 ·

1
|Pi−1(x)|

≤ di−1 + ϵ∆
di−1 + 1 ·

degi−1(x)
|Pi−1(x)|

≤ 1 degi−1(x)
|Pi−1(x)| ≤

di−1

di−1 + ϵ∆

Notice that the event whether the color c ∈ Si(N∗
i−1(x)) is independent of other colors, so

by a Chernoff Bound:

Pr(|P̂i(x)| < |Pi(x)|/8) ≤ e−Ω(|Pi−1(x)|)

= e−Ω(ϵ∆).

Let x1 . . . xk ∈ Ni−1(u) be the neighbors of u, listed by their ID in increasing order. Let Ej be
the event that |P̂i(xj)| ≥ |Pi(x)|/8 for all x ∈ Ni−1(u). We have shown that Pr(E j) ≤ e−Ω(ϵ∆).
Let Xj denote xj is not colored after this round. We will show that:

max
Xj−1

Pr(Xj |Xj−1, E1, . . . , Ej) ≤ αi

Let c′ ∈ P̂i(xj). First we argue that Pr(c′ ∈ Si(xj) | Xj−1, E1, . . . , Ej) = πi(u). Since
c′ ∈ P̂i(xj), c′ is not chosen by any of x1, . . . , xj−1. Whether X1, . . . , Xj−1 hold does not
depend on whether c′ ∈ Si(xj). Furthermore, the events E1 . . . Ej−1 do not depend on the
colors chosen by xj, since xj has higher ID than x1, . . . , xj−1. Also, Ej does not depend on

108



the colors chosen by xj either. Therefore, Pr(Xj |Xj−1, E1, . . . , Ej) = πi(u) and we have:

Pr(Xj |Xj−1, E1, . . . , Ej)

=
∏

c′∈Pi(ej)
Pr(c′ /∈ Si(ej) |Xj−1, E1, . . . , Ej)

≤ (1− πi(u))|Pi−1(u)|/8 Ej is true

≤ exp
(
− di−1 + ϵ∆

(di−1 + 1)|Pi−1(u)| ·
|Pi−1(u)|

8

)
1− x ≤ e−x

≤ αi

If di−1 > T , by Lemma A.5 and Corollary A.2,

Pr(degi(u) > max(1.01αidi−1, T ))

≤ Pr(degi(u) > max(1.01αi degi−1(u), T ))

≤ e−Ω(T ) + ∆e−Ω(∆).

Otherwise we have di = T
∆ϵ
· di−1 ≤ (ϵ∆)−γ · T . By Lemma A.5 and Corollary A.2 with
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1 + δ = T/(αiϵ∆),

Pr (degi(u) > di)

≤ Pr
(

degi(u) >
T

αiϵ∆
· αidi−1

)
≤ exp

(
−αidi−1 ·

(
T

αiϵ∆
ln T

αiϵ∆
−
(

T

αiϵ∆
− 1

)))
+ ∆e−Ω(ϵ∆)

≤ exp
(
−di

(
ln T

eαiϵ∆

))
+ ∆e−Ω(ϵ∆)

≤ exp
(
−di

(
ln 1

αi

− ln
(

eϵ∆
T

)))
+ ∆e−Ω(ϵ∆)

≤ exp
(
−di

(
ϵ∆

16di−1
− ln(e(ϵ∆)γ)

))
+ ∆e−Ω(ϵ∆) defn. αi

≤ exp
(
−T

(
1
16 −

di

T
· ln(e(ϵ∆)γ)

))
+ ∆e−Ω(ϵ∆) defn. di

≤ exp
(
−T

(
1
16 −

1
(ϵ∆)γ

· ln(e(ϵ∆)γ)
))

+ ∆e−Ω(ϵ∆)

≤ exp (−Ω(T )) + ∆e−Ω(ϵ∆)

In both cases, we have Pr(degi(u) > di+1) ≤ exp(−Ω(T )) + ∆ exp(−Ω(ϵ∆))

Since (ϵ∆)1−γ = Ω(log n), Pr(H i(u)) ≤ exp(−Ω(T )) + ∆ exp(−Ω(ϵ∆)) ≤ 1/ poly(n). By
union bound Hi holds with high probability. After O(log∗ ∆ + log(1/ϵ) + 1/γ) rounds,
degi(u) = 0 for all u w.h.p., and so the isolated vertices can color themselves with any colors
in their palette.
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Part II

Other Distributed Optimization
Problems

Chapter 6

Almost-Tight Distributed Minimum Cut Algorithms

6.1 Introduction

The minimum cut is an important measure of networks. It determines, e.g., the network
vulnerability and the limits to the speed at which information can be transmitted. While
this problem has been well-studied in the centralized setting (e.g. [56, 94–97, 99, 121, 132,
160]), very little is known in the distributed setting, especially in the relevant context where
communication links are constrained by a small bandwidth – the so-called CONGEST model
(cf. Section 6.2).

Consider, for example, a simple variation of this problem, called λ-edge-connectivity: given an
unweighted undirected graph G and a constant λ, we want to determine whether G is λ-edge-
connected or not. In the centralized setting, this problem can be solved in O(m + nλ2 log n)
time [56], thus near-linear time when λ is a constant. (Throughout, n, m, and D denotes
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the number of nodes, number of edges, and the network diameter, respectively.) In the
distributed setting, however, non-trivial solutions are known only when λ ≤ 3; this is due
to algorithms of Pritchard and Thurimella [151] which can compute 2-edge-connected and
3-edge-connected components in O(D) and O(D + n1/2 log∗ n) time, respectively, with high
probability1. This implies that the λ-edge-connectivity problem can be solved in O(D) time
when λ = 2 and O(D + n1/2 log∗ n) time when λ = 3.

For the general version where input graphs could be weighted, the problem can be solved
in near-linear time [95–97, 121] in the centralized setting. In the distributed setting,
the first non-trivial upper bounds are due to Ghaffari and Kuhn [65], who presented
(2 + ϵ)-approximation O((

√
n log∗ n + D)ϵ−5 log2 n log log n)-time and O(ϵ−1)-approximation

O(D + n
1
2 +ϵ poly log n)-time algorithms. These upper bounds are complemented by a lower

bound of Ω(D + n1/2/ log n) for any approximation algorithm which was earlier proved by
Das Sarma et al. [31] for the weighted case and later extended by [65] to the unweighted
case. This means that the running times of the algorithms in [65] are tight up to a polylog n

factor. Yet, it is still open whether we can achieve an approximation factor less than two in
the same running time, or in fact, in any sublinear (i.e. O(D + o(n))) time.

Results. In this chapter, we present improved distributed algorithms for computing the
minimum cut both exactly and approximately. Our exact deterministic algorithm for finding
the minimum cut takes O((

√
n log∗ n+D)λ4 log2 n) time, where λ is the value of the minimum

cut. Our approximation algorithm finds a (1 + ϵ)-approximate minimum cut in O((D +
√

n log∗ n)ϵ−5 log3 n) time with high probability. (If we only want to compute the (1 + ϵ)-
approximate value of the minimum cut, then the running time can be slightly reduced to
O((
√

n log∗ n + D)ϵ−5 log2 n log log n).) As noted earlier, prior to this work there was no
sublinear-time exact algorithm even when λ is a constant greater than three, nor sublinear-
time algorithm with approximation ratio less than two. Table 1 summarizes the results.

Techniques. The starting point of our algorithm is Thorup’s tree packing theorem [165,
Theorem 9], which shows that if we generate Θ(λ7 log3 n) trees T1, T2, . . ., where tree Ti is the

1We say that an event holds with high probability (w.h.p.) if it holds with probability at least 1 − 1/nc,
where c is an arbitrarily large constant.
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minimum spanning tree with respect to the loads induced by {T1, . . . , Ti−1}, then one of these
trees will contain exactly one edge in some minimum cut (see Algorithm 6.4 for the definition
of load). Since we can use the O(

√
n log∗ n + D)-time algorithm of Kutten and Peleg [114]

to compute the minimum spanning tree (MST), the problem of finding a minimum cut is
reduced to finding the minimum cut that 1-respects a tree; i.e., finding which edge in a given
spanning tree defines a smallest cut (see the formal definition in Section 6.3). Solving this
problem in O(D +

√
n log∗ n) time is the first key technical contribution of this work. We do

this by using a simple observation of Karger [97] which reduces the problem to computing
the sum of degrees and the number of edges contained in a subtree rooted at each node.
We use this observation along with Garay, Kutten and Peleg’s tree partitioning [64, 114] to
quickly compute these quantities. This requires several (elementary) steps, which we will
discuss in more detail in Section 6.3.

The above result together with Thorup’s tree packing theorem immediately imply that we can
find a minimum cut exactly in O((D +

√
n log∗ n)λ7 log3 n) time. By using Karger’s random

sampling result [96] to bring λ down to O(log n/ϵ2), we can find a (1 + ϵ)-approximate
minimum cut in O((D +

√
n log∗ n)ϵ−14 log10 n) time. These time bounds unfortunately

depend on large factors of λ, log n and 1/ϵ, which make their practicality dubious. Our second
key technical contribution is a new algorithm which significantly reduces these factors by
combining Thorup’s greedy tree packing approach with Matula’s contraction algorithm [121].
In Matula’s (2 + ϵ)-approximation algorithm for the minimum cut problem, he partitioned
the graph into components according to the spanning forest decomposition by Nagamochi and
Ibaraki [132]. He showed that either a component induces a (2 + ϵ)-approximate minimum
cut, or the minimum cut does not intersect with the components. In the latter case, it is
safe to contract the components. Our algorithm uses a similar approach, but we partitions
the graph according to Thorup’s greedy tree packing approach instead of the spanning forest
decomposition. We will show that either (i) a component induces a (1 + ϵ)-approximate
minimum cut, (ii) the minimum cut does not intersect with the components, or (iii) the
minimum cut 1-respect a tree in the tree packing. This algorithm and analysis will be
discussed in detail in Algorithm 6.4. We note that our algorithm can also be implemented
in the centralized setting in O(m + nϵ−7 log3 n) time. It is slightly worse than the current
best O(m + nϵ−3 log3 n) by Karger [95].
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Reference Time Approximation
Pritchard&Thurimella [151] O(D) for λ ≤ 2 exact
Pritchard&Thurimella [151] O(

√
n log∗ n + D) for λ ≤ 3 exact

This work O((
√

n log∗ n + D)λ4 log2 n) exact
Das Sarma et al. [31] Ω(

√
n

log n
+ D) any

Ghaffari&Kuhn [65] O((
√

n log∗ n + D)ϵ−5 log2 n log log n) 2 + ϵ
This work O((

√
n log∗ n + D)ϵ−5 log3 n) 1 + ϵ

Table 1: Summary of results for minimum cut.

6.2 Preliminaries

Communication Model. We use a standard message passing network model called CON-
GEST [144]. A network of processors is modeled by an undirected unweighted n-node graph
G, where nodes model the processors and edges model O(log n)-bandwidth links between the
processors. The processors (henceforth, nodes) are assumed to have unique IDs in the range
of {1, . . . , poly(n)} and infinite computational power. We denote the ID of node v by ID(v).
Each node has limited topological knowledge; in particular, it only knows the IDs of its
neighbors and knows no other topological information (e.g., whether its neighbors are linked
by an edge or not). Additionally, we let w : E(G)→ {1, 2, . . . , poly(n)} be the edge weight
assignment. The weight w(uv) of each edge uv is known only to u and v. As is commonly
done in the literature (e.g., [64, 65, 103, 114, 119, 133]), we will assume that the maximum
weight is poly(n) so that each edge weight can be sent through an edge (link) in one round.

There are several measures to analyze the performance of distributed algorithms. One funda-
mental measure is the running time defined as the worst-case number of rounds of distributed
communication. At the beginning of each round, all nodes wake up simultaneously. Each
node u then sends an arbitrary message of B = log n bits through each edge uv, and the
message will arrive at node v at the end of the round. (See [144] for detail.) The running
time is analyzed in terms of number of nodes and the diameter of the network, denoted by
n and D respectively. Since we can compute n and 2-approximate D in O(D) time, we will
assume that every node knows n and the 2-approximate value of D.
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Minimum Cut Problem. Given a weighted undirected graph G = (V, E), a cut C =
(S, V \ S) where ∅ ( S ( V , is a partition of vertices into two non-empty sets. The
weight of a cut, denoted by w(C), is defined to be the sum of the edge weights crossing C;
i.e., w(C) = ∑

u∈S,v /∈S w(uv). Throughout the chapter, we use λ to denote the weight of
the minimum cut. A (1 + ϵ)-approximate minimum cut is a cut C whose weight w(C) is
such that λ ≤ w(C) ≤ (1 + ϵ)λ. The (approximate) minimum cut problem is to find a cut
C = (S, V \ S) with approximately the minimum weight. In the distributed setting, this
means that nodes in S should output 1 while other nodes output 0.

Graph-Theoretic Notations. For G = (V, E), we define V (G) = V and E(G) = E.
When we analyze the correctness of our algorithms, we will always treat G as an unweighted
multi-graph by replacing each edge e with w(e) by w(e) copies of e with weight one. We
note that this assumption is used only in the analysis, and in particular we still allow only
O(log n) bits to be communicated through edge e in each round of the algorithm (regardless
of w(e)). For any cut C = (S, V \ S), let E(C) denote the set of edges crossing between S

and V \ S in the multi-graph; thus w(C) = |E(C)|. Given an edge set F ⊆ E, we use G/F

to denote the graph obtained by contracting every edge in F . Given a partition P of nodes
in G, we use G/P to denote the graph obtained by contracting each set in P into one node.
Note that E(G/P) may be viewed as the set of edges in G that cross between different sets
in P . For any U ⊆ V , we use G | U to denote the subgraph of G induced by nodes in U . For
convenience, we use the subscript ∗H to denote the quantity ∗ of H; for example, λH denote
the value of the minimum cut of the graph H. A quantity without a subscript refer to the
quantity of G, the input graph.

6.3 Distributed Algorithm for Finding a Cut that 1-
Respects a Tree

In this section, we solve the following problem: Given a spanning tree T on a network G

rooted at some node r, we want to find an edge in T such that when we cut it, the cut
defined by edges connecting the two connected component of T is smallest. To be precise,
for any node v, define v↓ to be the set of nodes that are descendants of v in T , including v.
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Let Cv = (v↓, V \ v↓). The problem is then to compute c∗ = minv∈V (G) w(Cv). The main
result of this section is the following.

Theorem 6.3.1. There is an O(D+n1/2 log∗ n)-time distributed algorithm that can compute
c∗ as well as find a node v such that c∗ = w(Cv).

In fact, at the end of our algorithm every node v knows w(Cv). Our algorithm is inspired
by the following observation used in Karger’s dynamic programming [97]. For any node v,
let δ(v) be the weighted degree of v, i.e. δ(v) = ∑

u∈V (G) w(u, v). Let ρ(v) denote the total
weight of edges whose end-points’ least common ancestor in T is v. Let δ↓(v) = ∑

u∈v↓ δ(u)
and ρ↓(v) = ∑

u∈v↓ ρ(u).

Lemma 6.3.2 (Karger [97] (Lemma 5.9)). w(Cv) = δ↓(v)− 2ρ↓(v).

Our algorithm will make sure that every node v knows δ↓(v) and ρ↓(v). By Theorem 6.3.2,
this will be sufficient for every node v to compute w(Cv). The algorithm is divided in several
steps, as follows.

Step 1: Partition T into Fragments and Compute “Fragment Tree” TF . We use
the algorithm of Kutten and Peleg [114, Section 3.2] to partition nodes in tree T into O(

√
n)

subtrees, where each subtree has O(
√

n) diameter2 (every node knows which edges incident
to it are in the subtree containing it). This algorithm takes O(n1/2 log∗ n + D) time. We
call these subtrees fragments and denote them by F1, . . . , Fk, where k = O(

√
n). For any i,

let ID(Fi) = minu∈Fi
ID(u) be the ID of Fi. We can assume that every node in Fi knows

ID(Fi). This can be achieved in O(
√

n) time (the running time is independent of D) by
a communication within each fragment. Figure 3a illustrates the tree T (marked by black
lines) with fragments (defined by triangular regions).

Let TF be a rooted tree obtained by contracting nodes in the same fragment into one node.
This naturally defines the child-parent relationship between fragments (e.g. the fragments
labeled (5), (6), and (7) in Figure 3b are children of the fragment labeled (0)). Let the

2To be precise, we compute a (
√

n + 1, O(
√

n)) spanning forest, where each tree in the spanning forest
contains at least

√
n + 1 nodes and has diameter bounded O(

√
n). Also note that we in fact do not need

this algorithm since we obtain T by using Kutten and Peleg’s MST algorithm, which already computes the
(
√

n + 1, O(
√

n)) spanning forest as a subroutine. See [114] for details.
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root of any fragment Fi, denoted by ri, be the node in Fi that is nearest to the root r in
T . We now make every node know TF : Every “inter-fragment” edge, i.e. every edge (u, v)
such that u and v are in different fragments, either node u or v broadcasts this edge and
the IDs of fragments containing u and v to the whole network. This step takes O(

√
n + D)

time since there are O(
√

n) edges in T that link between different fragments and so they can
be collected by pipelining. Note that this process also makes every node know the roots of
all fragments since, for every inter-fragment edge (u, v), every node knows the child-parent
relationship between two fragments that contain u and v.

Step 2: Compute Fragments in Subtrees of Ancestors. For any node v let F (v) be
the set of fragments Fi ⊆ v↓. For any node v in any fragment Fi, let A(v) be the set of
ancestors of v in T that are in Fi or the parent fragment of Fi (also let A(v) contain v). (For
example, Figure 3c shows A(15).) We emphasize that A(v) does not contain ancestors of v

in the fragments that are neither Fi nor the parent of Fi. The goal of this step is to make
every node v know (i) A(v) and (ii) F (u) for all u ∈ A(v).

First, we make every node v know F (v): for every fragment Fi we aggregate from the leaves
to the root of Fi (i.e. upcast) the list of child fragments of Fi. This takes O(

√
n + D) time

since there are O(
√

n) fragments to aggregate and each fragment has diameter O(
√

n). In
this process every node v receives a list of child fragments of Fi that are contained in v↓. It
can then use TF to compute fragments that are descendants of these child fragments, and
thus compute all fragments contained in v↓.

Next, we make every node v in every fragment Fi know A(v): every node u sends a message
containing its ID down the tree T until this message reaches the leaves of the child fragments
of Fi. Since each fragment has diameter O(

√
n) and the total number of messages sent inside

each fragment is O(
√

n), this process takes O(
√

n) time (the running time is independent
of D). With the following minor modifications, we can also make every node v know F (u)
(the fragment that u is in) for all u ∈ A(v): Initially every node u sends a message (u, F ′),
for every F ′ ∈ F (u), to its children. Every node u that receives a message (u′, F ′) from its
parent sends this message further to its children if F ′ /∈ F (u). (A message (u′, F ′) that a
node u sends to its children should be interpreted as “u′ is the lowest ancestor of u such that
F ′ ∈ F (u′)”.)
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Step 3: Compute δ↓(v). For every fragment Fi, we let δ(Fi) = ∑
v∈Fi

δ(v) (i.e. the sum
of degree of nodes in Fi). For every node v in every fragment Fi, we will compute δ↓(v)
by separately computing (i) ∑u∈Fi∩v↓ δ(u) and (ii) ∑Fj∈F (v) δ(Fj). The first quantity can be
computed in O(

√
n) time (regardless of D) by computing the sum within Fi (every node v

sends the sum ∑
u∈Fi∩v↓ δ(u) to its parent). To compute the second quantity, it suffices to

make every node know δ(Fi) for all i since every node v already knows F (v). To do this,
we make every root ri know δ(Fi) in O(

√
n) time by computing the sum of degree of nodes

within each Fi. Then, we can make every node know δ(Fi) for all i by letting ri broadcast
δ(Fi) to the whole network.

Step 4: Compute Merging Nodes and T ′
F . We say that a node v is a merging node if

there are two distinct children x and y of v such that both x↓ and y↓ contain some fragments.
In other words, it is a point where two fragments “merge”. For example, nodes 0 and 1 in
Figure 3a are merging nodes since the subtree rooted at node 0 (respectively node 1) contains
fragments (5), (6), and (7) (respectively (5) and (6)).

Let T ′
F be the following tree: Nodes in T ′

F are both roots of fragments (ri’s) and merging
nodes. The parent of each node v in T ′

F is its lowest ancestor in T that appears in T ′
F (see

Figure 3d for an example). Note that every merging node has at least two children in T ′
F .

This shows that there are O(
√

n) merging nodes. The goal of this step is to let every node
know T ′

F .

First, note that every node v can easily know whether it is a merging node or not in one round
by checking, for each child u, whether u↓ contains any fragment (i.e. whether F (u) = ∅).
The merging nodes then broadcast their IDs to the whole network. (This takes O(

√
n) time

since there are O(
√

n) merging nodes.) Note further that every node v in T ′
F knows its

parent in T ′
F because its parent in T ′

F is one of its ancestors in A(v). So, we can make every
node know T ′

F in O(
√

n+D) rounds by letting every node in T ′
F broadcast the edge between

itself and its parent in T ′
F to the whole network.

Step 5: Compute ρ↓(v). We now count, for every node v, the number of edges whose
least common ancestors (LCA) of their end-nodes are v. For every edge (x, y) in G, we claim
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that x and y can compute the LCA of (x, y) by exchanging O(
√

n) messages through edge
(x, y). Let z denote the LCA of (x, y). Consider three cases (see Figure 3e).

Case 1: First, consider when x and y are in the same fragment, say Fi. In this case we know
that z must be in Fi. Since x and y have the lists of their ancestors in Fi, they can find z by
exchanging these lists. There are O(

√
n) nodes in such list so this takes O(

√
n) time. In the

next two cases we assume that x and y are in different fragments, say Fi and Fj, respectively.

Case 2: z is not in Fi and Fj. In this case, z is a merging node such that z↓ contains Fi and
Fj. Since both x and y know T ′

F and their ancestors in T ′
F , they can find z by exchanging

the list of their ancestors in T ′
F . There are O(

√
n) nodes in such list so this takes O(

√
n)

time.

Case 3: z is in Fi (the case where z is in Fj can be handled in a similar way). In this case
z↓ contains Fj. Since x knows F (x′) for all its ancestors x′ in Fi, it can compute its lowest
ancestor x′′ such that F (x′′) contains Fj. Such ancestor is the LCA of (x, y).

Now we compute ρ↓(v) for every node v by splitting edges (x, y) whose LCA is v into two
types (see Figure 3f): (i) those that x and y are in different fragments from v, and (ii) the
rest. For (i), note that v must be a merging node. In this case one of x and y creates a
message ⟨v⟩. We then count the number of messages of the form ⟨v⟩ for every merging node
v by computing the sum along the breadth-first search tree of G. This takes O(

√
n + D)

time since there are O(
√

n) merging nodes. For (ii), the node among x and y that is in the
same fragment as v creates and keeps a message ⟨v⟩. Now every node v in every fragment Fi

counts the number of messages of the form ⟨v⟩ in v↓ ∩Fi by computing the sum through the
tree Fi. Note that, to do this, every node u has to send the number of messages of the form
⟨v⟩ to its parent, for all v that is an ancestor of u in the same fragment. There are O(

√
n)

such ancestors, so we can compute the number of messages of the form ⟨v⟩ for every node v

concurrently in O(
√

n) time by pipelining.

6.4 Minimum Cut Algorithms

This section is organized as follows. In Section 6.4.1, we review properties of the greedy
tree packing as analyzed by Thorup [165]. We use these properties to develop a (1 + ϵ)-
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approximation algorithm in Section 6.4.2. We show how to efficiently implement this al-
gorithm in the distributed setting in Section 6.4.3 and in the sequential setting in Section
6.4.4.

6.4.1 A Review of Thorup’s Work on Tree Packings

In this section, we review the duality connection between the tree packing and the partition
of a graph as well as their properties from Thorup’s work [165].

A tree packing T is a multiset of spanning trees. The load of an edge e with respect to
T , denoted by LT (e), is the number of trees in T containing e. Define the relative load to
be ℓT (e) = LT (e)/|T |. A tree packing T = {T1, . . . , Tk} is greedy if each Ti is a minimum
spanning tree with respect to the loads induced by {T1, . . . , Ti−1}.

Given a tree packing T , define its packing value pack_val(T ) = 1/ maxe∈E ℓT (e). The
packing value can be viewed as the total weight of a fractional tree packing, where each tree
has weight 1/ maxe∈E LT (e). Thus, the sum of the weight over the trees is |T |/ maxe∈E LT (e),
which is pack_val(T ). Given a partition P , define its partition value part_val(P) =
|E(G/P)|

|P|−1 . For any tree packing T and partition P , we have the weak duality:

pack_val(T ) = 1
maxe∈E ℓT (e)

≤ 1
maxe∈E(G/P) ℓT (e)

≤ |E(G/P)|∑
e∈E(G/P) ℓT (e) (since max ≥ avg)

≤ |E(G/P)|
|P| − 1

(since each T ∈ T contains at least |P| − 1 edges crossing P)

= part_val(P)

The Nash-Williams-Tutte Theorem [135,168] states that a graph G contains minP⌊ |E(G/P)|
|P|−1 ⌋

edge-disjoint spanning trees. Construct the graph G′ by making |P| − 1 parallel edges for
every edge in G. It follows from the Nash-Williams-Tutte Theorem that G′ has exactly
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|E(G/P)| edge-disjoint spanning trees. By assigning each spanning tree a weight of 1/(|P|−
1), we get a tree packing in G whose packing value equals to |E(G/P)|

|P|−1 . Therefore,

max
T

pack_val(T ) = min
P

part_val(P).

We will denote this value by Φ. Let T ∗ and P∗ denote a tree packing and a partition with
pack_val(T ∗) = Φ and part_val(P∗) = Φ. Karger [97] showed the following relationship
between Φ and λ (recall that λ is the value of the minimum cut).

Lemma 6.4.1. λ/2 < Φ ≤ λ

Proof. Φ ≤ λ is obvious because a minimum cut is a partition with partition value exactly λ.
Consider an optimal partition P∗. Let Cmin be the smallest cut induced by the components
in P∗. We have

λ ≤ w(Cmin) ≤
∑

S∈P∗ |E(S, V \ S)|
|P∗|

≤ 2|E(G/P∗)|
|P∗|

< 2Φ.

Thorup [165] defined the ideal relative loads ℓ∗(e) on the edges of G by the following.

1. Let P∗ be an optimal partition with part_val(P∗) = Φ.

2. For all e ∈ G/P∗, let ℓ∗(e) = 1/Φ.

3. For each S ∈ P∗, recurse the procedure on the subgraph G|S.

Define the following notations:

EX
◦δ = {e ∈ E | ℓX(e) ◦ δ}

where X can be T or ∗, and ◦ can be <, >, ≤, ≥, or =. For example, E∗
<δ denote the set

of edges with ideal relative loads smaller than δ.

Lemma 6.4.2 ( [165], Lemma 14). The values of Φ are non-decreasing in the sense that for
each S ∈ P ∗, ΦG|S ≥ Φ
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Corollary 6.4.3. Let 0 ≤ l ≤ 1/Φ. Each component H of the graph (V, E∗
≤l) must have

edge-connectivity of at least Φ.

Proof. Accroding to how the ideal relative load was defined and Lemma 6.4.2, we must have
ΦH ≥ Φ. By Lemma 6.4.1, λH ≥ ΦH ≥ Φ.

Thorup showed that the relative loads of a greedy tree packing with a sufficient number of
trees approximate the ideal relative loads, due to the fact that greedily packing the trees
simulates the multiplicative weight update method. He showed the following lemma.

Lemma 6.4.4 ( [165], Proposition 16). A greedy tree packing T with at least (6λ ln m)/ϵ2

trees, ϵ < 2 has |ℓT (e)− ℓ∗(e)| ≤ ϵ/λ for all e ∈ E.

6.4.2 Algorithms

In this section, we show how to approximate the value of the minimum cut as well as how
to find an approximate minimum cut.

Algorithm for computing minimum cut value. The main idea is that if we have a
nearly optimal tree packing, then either λ is close to 2Φ or all the minimum cuts are crossed
exactly once by some trees in the tree packing.

Lemma 6.4.5. Suppose that T is a greedy tree packing with at least 6λ ln m/ϵ2 trees, then
λ ≤ (2 + ϵ) ·pack_val(T ). Furthermore, if there is a minimum cut C such that it is crossed
at least twice by every tree in T , then (2 + ϵ) · pack_val(T ) ≤ (1 + ϵ/2)λ.

Proof. By Lemma 6.4.4 and Lemma 6.4.1, 1/pack_val(T ) ≤ 1/pack_val(T ∗) + ϵ/λ ≤
2/λ + ϵ/λ. Therefore, λ ≤ (2 + ϵ) · pack_val(T ).

If each tree in T crosses C at least twice, we have ∑e∈C ℓT (e) ≥ 2. Therefore,

2/λ ≤
∑
e∈C

ℓT (e)/w(C) ≤ max
e∈C

ℓT (e) ≤ 1/pack_val(T )

2 · pack_val(T ) ≤ λ

(6.1)

multiplying both sides by (1 + ϵ/2), we have (2 + ϵ) · pack_val(T ) ≤ (1 + ϵ/2)λ.
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Using Lemma 6.4.5, we can obtain a simple algorithm for (1+ϵ)-approximating the minimum
cut value. First, greedily pack Θ(λ log n/ϵ2) trees and compute the minimum cut that 1-
respects the trees (using our algorithm in Section 6.3). Then, output the smaller value
between the minimum cut found and (2 + ϵ) · pack_val(T ). The running time is discussed
in Section 6.4.3.

Algorithm for finding a minimum cut. More work is needed to be done if we want
to find the (1 + ϵ)-approximate minimum cut (i.e. each node wants to know which side
of the cut it is on). Let ϵ′ = Θ(ϵ) be such that (1 − 2ϵ′) · (1 − ϵ′) = 1/(1 + ϵ). Let
la = (1− 2ϵ′)/pack_val(T ). We describe our algorithm in Algorithm 12.

1: Find a greedy tree packing T with (6λ ln m)/ϵ′2 trees in G.
2: Let C∗ be the minimum cut among cuts that 1-respect a tree in T .
3: Let la = (1− 2ϵ′)/pack_val(T ).
4: if (V, ET

<la) has more than (1− ϵ′)|V | components then
5: Let Cmin be the smallest cut induced by the components in (V, ET

<la).
6: else
7: Let Cmin be the cut returned by Approx-Min-Cut(G/ET

<la).
8: end if
9: Return the smaller cut between C∗ and Cmin.

Algorithm 12: Approx-Min-Cut(G)

The main result of this subsection is the following theorem.

Theorem 6.4.6. Algorithm 12 gives a (1 + ϵ)-approximate minimum cut.

The rest of this subsection is devoted to proving Theorem 6.4.6. First, observe that if a
minimum cut is crossed exactly once by a tree in T , then C∗ must be a minimum cut.
Otherwise, C is crossed at least twice by every tree in T . In this case, we will show that
the edges of every minimum cut will be included in ET

≥la . As a result, we can contract
each connected component in the partition (V, ET

<la) without contracting any edges of the
minimum cuts.
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If (V, ET
<la) has at most (1− ϵ′)|V | components, then we contract each component and then

recurse. The recursion can only happen at most O(log n/ϵ) times, since the number of nodes
reduces by a (1 − ϵ′) factor in each level. On the other hand, if (V, ET

<la) has more than
(1−ϵ′)|V | components, then we will show that one of the components induces an approximate
minimum cut.

Lemma 6.4.7. Let C be a minimum cut such that C is crossed at least twice by every tree
in T . For all e ∈ C, ℓT (e) ≥ (1− 2ϵ′)/pack_val(T ).

Proof. The idea is to show that if an edge in E(C) has a small relative load, then the average
relative load over the edges in E(C) will also be small. However, since each tree cross E(C)
twice, the average relative load should not be too small. Otherwise, a contradiction will
occur.

Let l0 = mine∈C ℓ∗(e) be the minimum ideal relative load over the edges in E(C). Consider
the subgraph (V, E∗

≤l0). E(C) must contain some edges in a component of (V, E∗
≤l0), say

component H. Notice that two endpoints of an edge in a minimum cut must lie on different
sides of the cut. Therefore, C ∩H must be a cut of H. By Corollary 6.4.3, w(C ∩H) ≥ Φ.
Therefore, more than Φ edges in C have ideal relative loads equal to l0. Since the maximum
relative load of an edge is at most 1

Φ , ∑e∈C ℓT ∗(e) ≤ Φ·l0+(λ−Φ)· 1
Φ = Φ·l0+ λ

Φ−1 < Φ·l0+1,
where the last inequality follows by Lemma 6.4.1 that λ < 2Φ.

On the other hand, since each tree in T crosses C at least twice, ∑e∈C ℓT (e) ≥ 2. By Lemma
6.4.4, ∑e∈C ℓ∗(e) ≥ 2− ϵ′. Therefore, Φ · l0 + 1 > 2− ϵ′, which implies

l0 ≥ (1− ϵ′) · 1
Φ >

1
Φ −

2ϵ′

λ
λ < 2Φ

≥ 1/pack_val(T )− 3ϵ′

λ
By Lemma 6.4.4

Therefore, by Lemma 6.4.4 again, for any e ∈ E(C), ℓT (e) ≥ l0 − ϵ′/λ > 1/pack_val(T )−
4ϵ′/λ ≥ (1− 2ϵ′)/pack_val(T ), where the last inequality follows from equation (6.1).

Lemma 6.4.8. Let Cmin be the smallest cut induced by the components in (V, ET
<la). If

(V, ET
<la) contains at least (1− ϵ′)|V | components, then w(Cmin) ≤ (1 + ϵ)λ.
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Proof. Let comp(V, ET
<la) denote the collection of connected components in (V, ET

<la), and
n′, the number of connected components in (V, ET

<la). By an averaging argument, we have

w(Cmin) ≤
∑

S∈comp(V,ET
<la

) |E(S, V \ S)|
n′ = 2|E(G/ET

<la)|
n′ ≤

2|E(G/ET
<la)|

(1− ϵ′) · |V | (6.2)

Next we will bound |E(G/ET
<la)|. Note that for each e ∈ E(G/ET

<la), ℓT (e) ≥ (1 −
2ϵ′)/pack_val(T ).

∑
e∈E(G/ET

<la
)
ℓT (e) ≥ |E(G/ET

<la)| · (1− 2ϵ′) ·
(

1
pack_val(T )

)

≥ |E(G/ET
<la)| · (1− 2ϵ′) · 2

λ
. (by (6.1)) (6.3)

On the other hand,

∑
e∈E(G/ET

<la
)
ℓT (e) ≤ |V | − 1, (6.4)

since each tree in T contains |V | − 1 edges. Eqaution (6.3) and (6.4) together imply that

|E(G/ET
<la)| ≤ λ · |V |

2(1− 2ϵ′) .

By plugging this into (6.2), we get that

w(Cmin) ≤ λ

(1− 2ϵ′)(1− ϵ′) ≤ (1 + ϵ)λ .

6.4.3 Distributed Implementation

In this section, we describe how to implement Algorithm 12 in the distributed setting. To
compute the tree packing T , it is straightforward to apply |T | minimum spanning tree
computations with edge weights equal to their current loads. This can be done in O(|T |(D+
√

n log∗ n)) rounds by using the algorithm of Kutten and Peleg [114].

We already described how to computes the minimum cut that 1-respects a tree in O(D +
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√
n log∗ n) rounds in Section 6.3. To compute la, it suffices to compute pack_val(T ). To do

this, each node first computes the largest relative load among the edges incident to it. By
using the upcast and downcast techniques, the maximum relative load over all edges can be
aggregated and broadcast to every node in O(D) time. Therefore, we can assume that every
node knows la now. Now we have to determine whether (V, ET

<la) has more than (1− ϵ′)|V |
components or not. This can be done by first removing the edges incident to each node with
relative load at least la. Then label each node with the smallest ID of its reachable nodes by
using Thurimella’s connected component identification algorithm [166] in O(D +

√
n log∗ n)

rounds. The number of nodes whose label equals to its ID is exactly the number of connected
component of the subgraph. This number can be aggregated along the BFS tree in O(D)
rounds after every node is labeled.

If (V, ET
<la) has more than (1 − ϵ′)|V | components, then we will compute the cut values

induced by each component of (V, ET
<la). We show that it can be done in O(D +

√
n) rounds

in Section 6.5. On the contrary, if (V, ET
<la) has less than (1 − ϵ′)|V | components, then we

will contract the edges with load less than la and then recurse. The contraction can be easily
implemented by setting the weights of the edges inside contracted components to be −1,
which is strictly less than the load of any edges. The MST computation will automatically
treat them as contracted edges, since an MST must contain exactly n′−1 edges with weights
larger than −1, where n′ is the number of connected components. 3

Time analysis. Suppose that we have packed t spanning trees throughout the entire algo-
rithm, the running time will be O(t(D +

√
n log∗ n)). Note that t = O(ϵ−3λ log2 n), because

we pack at most O(ϵ−2λ log n) spanning trees in each level of the recursion and there can be
at most O(ϵ−1 log n) levels, since the number of nodes reduces by a (1 − ϵ′) factor in each
level. The total running time is O(ϵ−3λ log2 n · (D +

√
n log∗ n)).

Dealing with graphs with high edge connectivity. For graphs with λ = ω(ϵ−2 log n),
we can use the well-known sampling result from Karger [96] to construct a subgraph H

that perserves the values of all the cuts within a (1 ± ϵ) factor (up to a scaling) and has
λH = O(ϵ−2 log n). Then we run our algorithm on H.

3We note that the MST algorithm of [114] allows negative-weight edges.
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Lemma 6.4.9 ( [95], Corollary 2.4). Let G be any graph with minimum cut λ and let
p = 2(d + 2)(ln n)/(ϵ2λ). Let G(p) be a subgraph of G with the same vertex set, obtained
by including each edge of G with probability p independently. Then the probability that the
value of some cut in G(p) has value more than (1 + ϵ) or less than (1− ϵ) times its expected
value is O(1/nd).

In particular, let ϵ′ = Θ(ϵ) such that (1 + ϵ) = (1 + ϵ′)2/(1− ϵ′). First we will compute λ′, a
3-approximation of λ, by using Ghaffari and Kuhn’s algorithm. Let p = 6(d + 2) ln n/(ϵ′2λ′)
and H = G(p). Since p is at least 2(d + 2) ln n/(ϵ′2λ), by Lemma 6.4.9, for any cut C,
w.h.p. (1 − ϵ′)p · wG(C) ≤ wHi

(C) ≤ (1 + ϵ′)p · wG(C). Let C∗ be the (1 + ϵ′)-approximate
minimum cut we found in H. We have that w.h.p. for any other cut C ′,

wG(C∗) ≤ 1
p
·wHi

(C∗)
1− ϵ′ ≤

1
p
·(1 + ϵ′)λH

1− ϵ′ ≤ 1
p
·(1 + ϵ′)wHi

(C ′)
1− ϵ′ ≤ (1 + ϵ′)2

1− ϵ′ ·wG(C ′) = (1+ϵ)wG(C ′)

Thus, we will find an (1 + ϵ)-approximate minimum cut in O(ϵ−5 log3 n(D +
√

n log∗ n))
rounds.

Computing the exact minimum cut. To find the exact minimum cut, first we will
compute a 3-approximation of λ, λ′, by using Ghaffari and Kuhn’s algorithm [65] in
O(λ log n log log n(D +

√
n log∗ n)) rounds.4 Now since λ ≤ λ′ ≤ 3λ, by applying our al-

gorithm with ϵ = 1/(λ′ + 1), we can compute the exact minimum cut in O(λ4 log2 n(D +
√

n log∗ n)) rounds.

Estimating the value of λ. As described in Section 6.4.2, we can avoid the recursion
if we just want to compute an approximation of λ without actually finding the cut. This
gives an algorithm that runs in O(ϵ−2λ log n · (D +

√
n log∗ n)) time. Also, the exact value

of λ can be computed in O((λ3 + λ log log n) log n(D +
√

n log∗ n)) rounds. Notice that the
λ log log n factor comes from Ghaffari and Kuhn’s algorithm for approximating λ within a
constant factor. Similarly, using Karger’s sampling result, we can (1 + ϵ)-approximate the
value of λ in O(ϵ−5 log2 n log log n(D +

√
n log∗ n)) rounds.

4Ghaffari and Kuhn’s result runs in O(log2 n log log n(D +
√

n log∗ n)) rounds. However, without using
Karger’s random sampling beforehand, it runs in O(λ log n log log n(D +

√
n log∗ n)) rounds, which will be

absorbed by the running time of our algorithm for the exact minimum cut.
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6.4.4 Sequential Implementation

We show that Algorithm 12 can be implemented in the sequential setting in O(ϵ−3λ(m +
n log n) log n) time. To get the stated bound, we will show that the number of edges decreases
geometrically each time we contract the graph.

Lemma 6.4.10. If (V, ET
<la) has less than (1 − ϵ′)|V | components, then |E(G/ET

<la)| ≤
|E(G)|/(1 + ϵ′).

Proof. Consider a component S of (V, ET
<la). Since E(S) ⊆ ET

<la and |T ∩ E(S)| ≥ |S| − 1,
we have |S| − 1 ≤ ∑

e∈S ℓT (e) < la|E(S)|. By summing this inequality over all components
of (V, ET

<la), we have

la|ET
<la | ≥ |V | − |V (G/ET

<la)| > |V | − (1− ϵ′)|V | = ϵ′|V | (6.5)

If we sum up the relative load over each e ∈ E(G/ET
<la), we have

la|E(G/ET
<la)| ≤

∑
e∈E(G/ET

<la
)
ℓT (e) ≤ |V | (6.6)

Dividing (6.5) by (6.6), we have |ET
<la|/|E(G/ET

<la)| > ϵ′ and therefore, |E(G/ET
<la)| <

(|ET
<la|+ |E(G/ET

<la)|)/(1 + ϵ′) = |E(G)|/(1 + ϵ′).

Let MST(n, m) denote the time needed to find an MST in a graph with n-vertices and m-
edges. Note that Karger [97] showed that the values of the cuts that 1-respect a tree can be
computed in linear time. The total running time of Algorithm 12 will be

O

(
ϵ′−2λ log n ·

∞∑
i=0

MST(n(1− ϵ′)i, m/(1 + ϵ′)i)
)

.

We know that MST(n, m) = O(m) by using the randomized linear time algorithm from [98]
and notice that ϵ = Θ(ϵ′), the running time will be at most O(ϵ−3λm log n).

If the graph is dense or the cut value is large, we may want to use the sparsification results
to reduce m or λ. First estimate λ up to a factor of 3 by using Matula’s algorithm [121] that
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runs in linear time. By using Nagamochi and Ibaraki’s sparse certificate algorithm [132],
we can get the number of edges down to O(nλ). By using Karger’s sampling result, we can
bring λ down to O(log n/ϵ2). The total running time is therefore O(m + ϵ−7n log3 n) (by
plugging λ = log n/ϵ2 and m = n log n/ϵ2 in the running time in the previous paragraph). 5

6.5 Finding cuts with respect to connected compo-
nents

In this section, we solve the following problem. We are given a set of connected components
{H1, H2, . . . , Hk} of the network G (each node knows which of its neighbors are in the same
connected component), and we want to compute, for each i, the value w(Ci) where Ci is the
cut with respect to Hi; i.e., Ci = (V (Hi), V (G) \ V (Hi)). Every node in Ci should know
w(Ci) in the end. We show that this can be done in O(n1/2 +D) rounds. The main idea is to
deal with “big” and “small” components separately, where a component is big if it contains
at least n1/2 nodes and it is small otherwise. There are at most n1/2 big components, and
thus the cut value information for these components can be aggregated quickly through the
BFS tree of the network. The cut value of each small component will be computed locally
within the component. The detail is as follows.

First, we determine for each component Hi whether it is big or small, which can be done
by simply counting the number of nodes in each component, such as the following. Initially,
every node sends its ID to its neighbors in the same component. Then, for n1/2 + 1 rounds,
every node sends the smallest ID it has received so far to its neighbors in the same component.
For each node v, let sv be the smallest ID that v has received after n1/2 + 1 rounds. If sv

is v’s own ID, it construct a BFS tree Tv of depth at most n1/2 + 1, and use Tv to count
the number of nodes in Tv. (There will be no congestion caused by this algorithm since no
other node within distance n1/2 + 1 from v will trigger another BFS tree construction.) If
the number of nodes in Tv is at most n1/2, then v broadcasts to the whole network that the
component containing it is small.

5In this case, we can also use Prim’s deterministic MST algorithm without increasing the total running
time. This is because Prim’s algorithm runs in O(m + n log n) time, the n log n term will be absorbed by m,
as we have used m = n log n/ϵ2.
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Now, to compute w(Ci) for a small component Hi, we simply construct a BFS tree rooted at
the node with smallest ID in Ci and compute the sum ∑

u∈V (Hi),v /∈V (Hi) w(u, v) through this
tree. To compute w(Ci) for a big component Hj, we compute the sum∑

u∈V (Hi),v /∈V (Hi) w(u, v)
thorough the BFS tree of network G. Since there are at most n1/2 big components, this takes
O(n1/2 + D) time.
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Chapter 7

Distributed Task Allocation in Ant Colonies with
Individual Variation

7.1 Introduction

Social insect biology and distributed computing both study how goals are achieved without
a centralized coordinator. While that in the latter, the nodes can usually perform complex
computation, it is not necessarily true in the former. In this chapter, we study simple task
allocation algorithms in the decentralized setting. We aim to capture the behavior of task
allocation in ant colonies. We also hope it motivates the development of simple algorithms
in distributed computing which are favorable for implementation.

In ant colonies, the task allocation problem involves assigning a task to each ant in a dis-
tributed way with the main goal of satisfying the demands of all tasks. The first attempt at
modeling the task allocation problem from a distributed computing perspective was in [26].
In their model, each task has a static demand and the goal is for each ant to choose a task in
such a way that the sum of the work units provided to each task meets its demand. Further-
more, each ant receives a binary feedback from the environment, indicating, for each task,
whether the task is over-satisfied or under-satisfied. Under the assumption that the work
provided by each ant is uniform, [26] shows that the ants can solve the task allocation prob-
lem in O(|T | log |A|) rounds using a constant number of states and O(|T |) bits of memory
per ant, where A is the set of ants and T is the set of tasks.

Biologists have also worked on formally modeling the ant task allocation process from a
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distributed perspective. For example, [15] models the ants’ response to the environment
as a fixed threshold that determines when an ant starts and stops working on a task; ants
from different castes are assumed to have different thresholds for different tasks. Also, [72]
and [139] explicitly model the interaction patterns among ants and also between ants and
the environment in order to define the behavior of an individual ant. Furthermore, [146]
investigates the trade-off between the sensitivity to the environment and the response time
of ants, and how these aspects of the task allocation process are influenced by the colony
size and the rules that govern the individual ants.

In this chapter, we present a distributed task allocation algorithm that captures the individ-
ual variation of ants in terms of the work units they provide to different tasks. As discussed
in [26], this problem is NP-hard; however, we provide a very simple mechanism for the ants
to approximately satisfy the demands of each task, provided that the original set of demands
is satisfiable. In particular, we show that after O(|A|1−ϵ) rounds, the ants converge to a
solution that satisfies the demands with an O(W |A|1/2+ϵ) additive error with probability at
least 1 − O(1/|A|ϵ), where W is the ratio between the largest and the smallest number of
work units possibly provided by the ants. The task allocation process is similar to simulated
annealing, where in each round, each ant switches to the current most promising task with
some probability, and that probability diminishes in each subsequent round. The current
most promising task for a given ant is the task with the largest deficit (difference between
the demand and the work provided already) weighted by the work units the ant is capable
of providing for the task. In the case of no individual variation between the ants, this task
allocation process converges to all tasks being satisfied with ϵdmax + o(1) additive error in
O(ϵ−2|T | log |T |) rounds, where dmax is the largest demand of the tasks. Such a bound is
consistent with the proposed model and conclusions of [146], which conjecture that the re-
sponse time of ants in the task allocation process does not depend on the colony size or it is
very insensitive to it. The main technique in our analyses is derived from the multiplicative
weight update method for solving linear programs [5,150,173] with some modifications in or-
der to apply the method to the setting of ants with limited computation and communication
abilities.
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7.2 Definitions and Problem Statement

Each ant a ∈ A, where |A| is the set of all ants, has a state q ∈ Q = {q⊥, q1, q2, · · · , qk},
where q⊥ indicates that ant a is not working on any task and each state qi, for i ∈ {1, · · · , k},
indicates that ant a is working on task i. Each task i ∈ T = {1, . . . , k} has an integer energy
demand di that represents the minimum number of ants required to work on task i in order
to satisfy the task. Clearly, in order for all demands to be met, there should be sufficiently
many ants in the colony.

We assume the execution of any algorithm solving the task allocation problem proceeds in
synchronous rounds, starting with round 1; we use round 0 to refer to the state of the system
initially, at the beginning of the execution. For each i ∈ {1, · · · , k} ∪ {⊥} and each round
r, let A

(r)
i denote the set of ants in state qi at the end of round r. Let w

(r)
i = ∑

a∈A
(r)
i

wai be
the total energy supplied to task i, where wai is the energy provided by ant a to task i. We
define w(r) = (w(r)

⊥ , w
(r)
1 , . . . , w

(r)
k ) and d = (0, d1, . . . , dk).

Let Xr = (r, w(r), d) denote the environment of round r. At the end of each round r, each
ant a receives feedback f(Xr, a) from the environment. Since randomness usually plays a
role in the environment, the value of f can also be a random variable. We assume f consists
of two components (f1, f2), where f1(Xr, a) is a local feedback from the task ant a is working
on, and f2(Xr, a) is a global feedback from the environment, providing alternative tasks to
which ant a may switch.

Each ant is modeled as a finite state machine with transition function δ : Q×({0, 1}×T )→ Q;
in other words, each ant’s new state is determined by its old state and the environment input
function f = (f1, f2). Let q be the current state of some ant a, and let q′ be the resulting
state of ant a after applying δ. In each round r, q′ is determined as follows: q′ = q if
f1(Xr, a) = 1, and q′ = f2(Xr, a) if f1(Xr, a) = 0. Informally speaking, each ant continues
working on its current task if the environment input is 1 (the ant is successful at the task),
or switches to task f2(Xr, a) if the environment input is 0 (the ant is not successful at the
task). That is, f1 indicates whether the ant should switch, and f2 indicates which new task
the ant should choose.
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Problem Statement: For each round r, w(r) satisfies all tasks if di ≤ w
(r)
i for each

i ∈ {1, . . . k}. For each round r, w(r) satisfies all tasks with an additive error of θ, if
w

(r)
i ≥ di − θ for each i ∈ {1, . . . k}. An algorithm solves the task allocation problem (with

an additive error of θ) by the end of round r, if w(r′) satisfies all tasks (with an additive
error of θ) for each round r′ ≥ r.

7.3 Task Allocation with Individual Variation

We assume ants may have different capabilities at each task. Each ant a ∈ A is associated
with a weight vector wa = (wa1, . . . , wa|T |), where wai denotes the energy provided by ant
a to task i. Let xa = (xa1, . . . , xa|T |) be the indicator vector of a where xai = 1 if ant a is
working on task i, otherwise xai = 0. The goal is to satisfy the demands of each task i, that
is, ∑a∈A wai · xai ≥ di. However, as discussed in [26], this problem is NP-hard even if there
is a centralized coordinator. We show that under a simple feedback function f = (f1, f2),
the ants converge to an approximate feasible solution, provided that the original system is
fractionally satisfiable: Given the demands of the tasks and the energy vector of each ant,
there exists (non-necessarily integral) xa for each a such that

1. For each a, ∑i xai ≤ 1 and 0 ≤ xai ≤ 1.

2. For each i, ∑a∈A wai · xai = di.

The feedback functions f1, f2 are defined in the following:

f1(Xr, a) =

0 with prob. 1
r+1

1 with prob. 1− 1
r+1

f2(Xr, a) =

arg maxj waj · (dj − w
(r)
j ) if maxj waj · (dj − w

(r)
j ) ≥ 0

⊥ otherwise

In contrast to the busy-success model, f1 does not depend on the demand of the task.
Instead, here f1 tells r/(r + 1) fraction of the ants to continue to do the same task uniformly
at random. The other 1/(r + 1) fraction of ants will switch to the task returned by f2.
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Initially, the ants are more likely to switch tasks. The system becomes more and more stable
as the rounds proceed.

The feedback function f2(Xr, a) then returns the task that needs the most work to be satisfied
at the end of round r, weighted by the capability of the ant at the task, i.e. f2(Xr, a) =
arg maxi wai ·

(
di − w

(r)
i

)
; or f2 returns ⊥ if no tasks needs more work. One can imagine that

there is a home nest to where the foragers return at the end of every round r. The foragers
have some chances of being recruited by following the trail with the heaviest pheromone.
We may assume that the amount of pheromone on the trail leading to task i is a function of
w

(r)
i and di, in this case, di − w

(r)
i . An ant may respond differently to different pheromones.

It responds more sensitively to the pheromone of the task it could perform better.

Our result shows that the ants converge to an assignment with O(W |A|1/2+ϵ) additive error
O(|A|1−ϵ) rounds with probability 1 − O(1/|A|ϵ), where W is the ratio between the largest
energy to the smallest energy ants could provide. (W.l.o.g., we can assume the smallest
energy is 1 and the largest energy is W .) Note that in the case that di = ω(W |A|1/2+ϵ) for
a task i, the work on task i converges to (1− o(1))di after O(|A|1−ϵ) rounds.

We also show a better bound in this model when the ants’ weights are homogeneous and f1

is deterministic. The deterministic version of f1 tells 1/(r + 1) fraction of the ants working
on each task to stop. That is, f1 can be any function such that for each i ∈ T ∪ {⊥},∑

a∈A
(r)
i

f1(Xr, a) = ⌊w(r)
i · r

r+1⌋. When |A| = ∑
i di, the ants converges to an assignment with

ϵdmax + o(1) additive error after O(ϵ−2|T | log |T |) rounds, where dmax is the largest demand
of the tasks.

Our analysis of the task allocation process is derived from the multiplicative weight update
method for solving linear programs [5, 150, 173] with a couple of modifications in order
to apply the method to the setting of ants with limited computation and communication
abilities. For example, in our setting, ants do not explicitly memorize the weights of the
multiplicative weight update method. Instead, each ant switches to the most promising task
with some probability and that step corresponds to updating the weights in the multiplicative
weight update method. Such a process of updating the probabilities without explicitly
remembering the weights was originally introduced in greedy tree packing algorithms for
minimum cuts [97, 165]. One challenge in our approach of using the multiplicative weights
update method is dealing with the errors introduced after each weight update due to the
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fact that ants switch tasks probabilistically. To account for these errors, we resort to the
Chebyshev-type pessimistic estimator instead of the Chernoff-type pessimistic estimator as
originally used in the analysis for multiplicative weight method [173]. Also, we expect that
the method for determining the most promising task would be more complicated if we were to
use Chernoff-type pessimistic estimator. The bound for the deterministic and homogeneous
model is derived using the Chernoff-type pessimistic estimator.

Lemma 7.3.1. Let W = maxa ||wa||∞ be the maximum energy provided by the ant over each
task. Under the above setting of f1 and f2, for any ϵ ≥ 0, if t = Θ (|A|1−ϵ), with probability
at least 1−O

(
1

|A|ϵ
)
, w(t) satisfies the demands d with an additive error of Θ(W |A|1/2+ϵ).

Proof. First, notice that w
(r+1)
j = ∑

a∈A
(r)
j

waj · [f1(Xr, a) = 1] + ∑
a∈A[f2(Xr, a) = j] ·

[f1(Xr, a) = 0] · waj. The expectation of w(r+1), E[w(r+1)
j ] = (w(r)

j · r + ∑
a∈A[f2(Xr, a) =

j] · waj)/(r + 1). We show the following inequality holds for 0 ≤ t′ < t:

∑
j

((t′ + 1)(E[w(t′+1)
j ]− dj))2 ≤

∑
j

(t′(w(t′)
j − dj))2 + 4(W |A|)2. (7.1)
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∑
j

((t′ + 1)(E[w(t′+1)
j ]− dj))2

=
∑

j

(
t′(w(t′)

j − dj) + (
∑

a

[f2(Xt′ , a) = j] · waj − dj)
)2

≤
∑

j

(
(t′(w(t′)

j − dj))2 + 2(t′(w(t′)
j − dj)) · (

∑
a

[f2(Xt′ , a) = j] · waj − dj)

+(
∑

a

[f2(Xt′ , a) = j] · waj − dj)2
)

≤
∑

j

(
(t′(w(t′)

j − dj))2 + 2(t′(w(t′)
j − dj)) · (

∑
a

[f2(Xt′ , a) = j] · waj − dj)
)

+ 4(W |A|)2

≤
∑

j

(t′(w(t′)
j − dj))2 + 2(t′(w(t′)

j − dj)) · (
∑

a

[f2(Xt′ , a) = j] · (
∑
j′

xaj′) · waj − dj)


+ 4(W |A|)2 since ∑j′ xaj′ ≤ 1 and f2(Xt′ , a) = j implies w
(t′)
j − dj ≤ 0

≤
∑

j

(
(t′(w(t′)

j − dj))2 + 2(t′(w(t′)
j − dj)) · (

∑
a

xaj · waj − dj)
)

+ 4(W |A|)2

by defn. of xa and since f2(Xt′ , a) = maxj waj · (dj − w
(t′)
j )

=
∑

j

(t′(w(t′)
j − dj))2 + 4(W |A|)2

Given w
(r)
j for each task j, the variance (the randomness comes from the feedback function

f1(Xr, a)) of w
(r+1)
j , Var(w(r+1)

j ) ≤ W 2 · (w(r)
j +∑

a[f2(Xr, a) = j]) · 1
r+1 · (1−

1
r+1). Therefore,

∑
j

Var(w(r+1)
j ) ≤ 2 ·W 2 · |A| · 1

r + 1 ·
(

1− 1
r + 1

)
(7.2)

Define the following Chebyshev-type pessimistic estimator, where t is the total number of
rounds and t′ iterates from 0 to t:

Φ(t′) =
∑

j(t′2)(w(t′)
j − dj)2 + 4(t− t′) ·W 2 · |A|2 + 2t(t− t′)|A|W 2

4t2W 2|A|1+2ϵ
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First, note that

Φ(0) ≤ 4t ·W 2|A|2 + 2t2|A|W 2

4t2W 2|A|1+2ϵ

≤ |A|
1−2ϵ

t
+ 1

2|A|2ϵ

≤ O

(
1
|A|ϵ

)

Now we will show that the expected value of Φ(t′) does not increase as t′ increase.

E[Φ(t′ + 1)] =
∑

j E[((t′ + 1)(w(t′+1)
i − di))2] + 4(t− t′ − 1) ·W 2|A|2 + 2t(t− t′ − 1)|A|W 2

4t2W 2|A|1+2ϵ

Consider the term ∑
j E[((t′ + 1)(w(t′+1)

j − dj))2],

∑
j

E[((t′ + 1)(w(t′+1)
j − dj))2]

=
∑

j

E[((t′ + 1)(E[w(t′+1)]− dj) + (t′ + 1)(w(t′+1)
j − E[w(t′+1)

j ]))2]

=
∑

j

((t′ + 1)(E[w(t′+1)
j ]− dj))2 +

∑
j

(t′ + 1)2 E[(w(t′+1)
j − E[w(t′+1)

j ])2]

=
∑

j

((t′ + 1)(E[w(t′+1)
j ]− dj))2 +

∑
j

(t′ + 1)2 · Var(w(t′+1)
j )

≤
∑

j

((t′ + 1)(E[w(t′+1)
j ]− dj))2 + (t′ + 1)2 · 2W 2|A|/(t′ + 1) by (7.2)

≤
∑

j

(t′(w(t′)
j − dj))2 + 4W 2|A|2 + 2(t′ + 1)W 2 · |A| by (7.1)

Therefore, E[Φ(t′ + 1)] ≤ Φ(t′). Repeatedly applying the argument, we have E[Φ(t)] ≤
E[Φ(t − 1)] ≤ . . . ≤ Φ(0) < O

(
1

|A|ϵ
)
. By Markov’s inequality, with probability at least
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1−O
(

1
|A|ϵ

)
:

1 > Φ(t) =
∑

j

t · (w(t)
j − dj)

2tW |A|1/2+ϵ

2

This implies w
(t)
j ≥ dj − (2W

√
|A|

1+ϵ
) for each task j.

7.3.1 A Better Bound for Homogeneous and Deterministic Model

In this section, we show under the following assumptions, we can obtain better bounds on
the convergence time and the error. First we assume that the energy provided by each ant
to each task is the same, i.e. wai = 1 for all a ∈ A and i ∈ T . Second, we assume f1

behaves determinstically, that is, f1 is an arbitrary function such that for each i ∈ T ∪ {⊥},∑
a∈A

(r)
i

f1(Xr, a) = ⌊w(r)
i · (r/(r + 1))⌋. Third, we assume that |A| = ∑

i di.

Lemma 7.3.2. Under the setting with the deterministic setting of f1, after t =
Θ (ϵ−2|T | · log |T |) rounds, w(t) satisfies the demands d with an additive error of (ϵ · dmax +
t/|A|).

Proof. For convenience, we define x
(r)
j = w

(r)
j /|A| to be the fraction of ants working at

task j at the end of round r. Define µj = dj/|A| and µ = dmax/|A|. Define the following
Chernoff-type pessimistic estimator:

Φ(t′) = e−ϵµ(t−t′)

(1− ϵ)−(t/|A|)(t′)+µ(t−t′+1)−ϵµt

∑
j

(1− ϵ)x
(t′)
j ·t′

(1− ϵ)µj(t′−1)

First, note that

Φ(0) ≤ e−ϵµt

(1− ϵ)(1−ϵ)µt+µ

∑
j

1
(1− ϵ)−µj

≤ exp(−ϵµt− ((1− ϵ)µt + µ) · ln(1− ϵ)) · |T |

≤ exp(−ϵ2µt/2− µ ln(1− ϵ)) · |T | ≤ 1/ poly(|T |) < 1
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Now we will show that Φ(t′) does not increase as t′ increase. Let K(t′) =
e−ϵµ(t−t′)

(1−ϵ)−(t/|A|)(t′)+µ(t−t′+1)−ϵµt . Let j∗ = f2(Xt′ , a) be the task returned by the feedback function
that is independent of a. Note that by definition of f1 and f2, for t′ < t, we have:

w(t′+1) ≥ ⌊w(t′) · (t′/(t′ + 1))⌋+ [j = j∗] · |A| · (1/(t′ + 1))

w(t′+1) ≥ w(t′) · (t′/(t′ + 1))− 1 + [j = j∗] · |A| · (1/(t′ + 1))

(t′ + 1) · w(t′+1) ≥ w(t′) · t′ − (t′ + 1) + [j = j∗] · |A|

(t′ + 1) · x(t′+1) ≥ x(t′) · t′ − t/|A|+ [j = j∗] (7.3)

Therefore,

Φ(t′ + 1)

= K(t′ + 1) ·
∑

j

(1− ϵ)x
(t′+1)
j ·(t′+1)

(1− ϵ)µjt′

≤ K(t′ + 1) ·
∑

j

(1− ϵ)x
(t′)
j ·t′−t/|A| · (1− ϵ)[j=j∗]

(1− ϵ)µjt′ by (7.3)

= K(t′ + 1) ·
∑

j

(1− ϵ)x
(t′)
j ·t′−µjt′−t/|A| · (1− [j = j∗] · ϵ)


≤ K(t′ + 1) ·

∑
j

(1− ϵ)x
(t′)
j ·t′−µjt′−t/|A| · (1− ϵ · µj)

 j∗ = max
j

µjt
′ − x

(t′)
j t′

= K(t′ + 1) ·
∑

j

(1− ϵ)x
(t′)
j ·t′−µjt′−t/|A| · (1− ϵ)µj · (1− ϵ · µj)

(1− ϵ)µj


≤ K(t′ + 1) ·

∑
j

(1− ϵ)x
(t′)
j ·t′−µj(t′−1)−t/|A| · e−ϵµj

(1− ϵ)µj

 1− x ≤ e−x

≤ K(t′ + 1) ·
∑

j

(1− ϵ)x
(t′)
j ·t′−µj(t′−1)−t/|A| · e−ϵµ

(1− ϵ)µ

 µ ≥ µj and e−ϵ

1−ϵ
≥ 1

≤ K(t′) ·

∑
j

(1− ϵ)x
(t′)
j ·t′

(1− ϵ)µj(t′−1)


= Φ(t′)
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Therefore, Φ(t) ≤ Φ(t− 1) ≤ . . . ≤ Φ(0) < 1, hence

1 > Φ(t)

=
∑

j

1
(1− ϵ)µ−ϵµt−t2/|A| ·

(1− ϵ)x
(t)
j ·t

(1− ϵ)µj(t−1)

≥
∑

j

1
(1− ϵ)µj−ϵµt−t2/|A| ·

(1− ϵ)x
(t)
j ·t

(1− ϵ)µj(t−1) µ ≥ µj

≥
∑

j

(1− ϵ)x
(t)
j ·t

(1− ϵ)µjt−ϵµt−t2/|A|

This implies that x
(t)
j ≥ µj−ϵµ−t/|A| for all j, which in turns implies w

(t)
j ≥ dj−ϵdmax−t/|A|

for all j. Note that when |A| = ∑
j dj, the time bound is O(ϵ−2|T | log |T |) since |A|/dmax ≤

|T |.

7.4 Discussion and Future Work

We have presented a model that is capable of achieving an approximate optimal solution for
the task allocation problem with individual variation. However, the error and the conver-
gence time do not match that for the homogeneous and deterministic model. In particular,
it would be interesting to see if the additive error can be as small as Θ(dmax +log |T |), which
will match the bound achieved by the randomized rounding technique in the centralized
setting. Another direction to pursue in is to consider a a fixed probability of switching tasks
rather than a probability that decreases over time. The analysis of the resulting algorithm
would be useful in the setting of demands varying over time. We also hope that the resulting
convergence time is independent or insensitive to |A| which would make it consistent with
the conjecture in [146].
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Part III

Matching

Chapter 8

A Scaling Algorithm for Maximum Weight Perfect
Matching in General Graphs

8.1 Introduction

Graph matching problems have always played a pivotal role in theoretical computer science,
from the development of linear programming duality theory [82, 92, 113], polyhedral combi-
natorics [41], social choice theory [62], and the definition of the complexity class P [42]. In
1965 Edmonds [41, 42] proved that on general (non-bipartite) graphs, both the maximum
cardinality matching and maximum weight matching problems could be solved in polyno-
mial time. Some of the subsequent work on general weighted graph matching focused on
developing faster implementations of Edmonds’ algorithm [52, 55, 57, 63, 101, 116] whereas
others pursued alternative techniques such as cycle-canceling [27], weight-scaling [54,61], or
an algebraic approach using fast matrix multiplication [28].

Computing an optimum (maximum or minimum) matching is the bottleneck in many ap-
plications. For example, the only non-trivial part of Christofides’ 3/2-approximate Metric
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TSP algorithm [22] is to compute a minimum weight perfect matching on a certain sub-
metric, represented as a complete graph. Edmonds and Johnson [43] reduced Kwan’s [115]
Chinese Postman problem, namely to find a shortest tour visiting all edges at least once, to
weighted matching. Very recently Gabow, and Sankowski [58] proved that the complexity of
computing undirected single-source shortest paths (with arbitrary weights, but no negative
cycles) is no more than that of weighted matching. Faster matching algorithms therefore
lead directly to faster algorithms for solving numerous combinatorial optimization problems.

In this chapter we present a new scaling algorithm for solving the weighted matching problem
on general graphs. In Sections 8.1.1–8.1.3 we review matching terminology and the history of
weighted matching algorithms; in Section 8.1.4 we summarize our contributions and survey
the rest of the chapter.

8.1.1 Terminology

The input is a graph G = (V, E, ŵ) where |V | = n, |E| = m, and ŵ : E → R assigns a real
weight to each edge. A matching M is a set of vertex-disjoint edges. A vertex is free if it
is not adjacent to an M edge. An alternating path is one whose edges alternate between M

and E \M . An alternating path P is augmenting if it begins and ends with free vertices,
which implies that M ⊕ P

def= (M ∪ P ) \ (M ∩ P ) is also a matching and has one more
edge. The weight of M is the sum of its individual edge weights: ŵ(M) def= ∑

e∈M ŵ(e).
The maximum cardinality matching (mcm) and maximum weight matching (mwm) problems
are to find a matching M maximizing |M | and ŵ(M), respectively. The maximum weight
perfect matching (mwpm) problem is to find a perfect matching M (or, in general, one
with maximum cardinality) maximizing ŵ(M). In this chapter we assume that ŵ : E →
{0, . . . , N} assigns non-negative integer weights bounded by N . Assuming non-negative
weights is without loss of generality since we can simply subtract mine∈E{ŵ(e)} from every
edge weight, which does not affect the relative weight of two perfect matchings. Moreover,
the minimum weight perfect matching problem is reducible to mwpm, simply by substituting
−ŵ for ŵ. All mwpm algorithms can be used to solve mwm in the same time bound but the
complexities of the two problems are not known to be identical.
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8.1.2 Edmonds’ Algorithm

Edmonds’ mwpm algorithm begins with an empty matching M and consists of a sequence
of search steps, each of which performs zero or more dual adjustment, blossom shrinking,
and blossom dissolution steps until a tight augmenting path emerges or the search detects
that |M | is maximum. (Blossoms, duals, and tightness are reviewed in Section 8.2.) The
overall running time is therefore O(n · Edm(m, n)), where Edm(m, n) is the cost of one
search. On bipartite graphs Edmonds’ search procedure encounters no blossoms: it re-
sembles Kuhn’s Hungarian search. Whereas a Hungarian search is essentially computing
single-source shortest paths, and can therefore be implemented efficiently using Dijkstra’s
algorithm [33] with a Fibonacci heap [50], Edmonds’ search requires sophisticated data
structures to determine when blossoms must be shrunk and dissolved. Following [57, 63],
Gabow [55] gave an algorithm for Edmonds’ search running in O(m + n log n) time, that is,
linear time whenever m = Ω(n log n). Many, though not all, of the data structure problems
become simpler on integer-weighted graphs when there is a known bound t on the number
of dual adjustments, or equivalently, the weighted length of the shortest augmenting path.
Gabow [54] showed that one of Edmonds’ searches takes O(t + SplitFindmin(m, n)) time,
where SplitFindmin(m, n) is the complexity of a constrained priority queue-type prob-
lem called split-findmin, which is used to manage blossom dissolution. The best bound on
SplitFindmin(m, n) (for real-weighted inputs) is O(n+m log α(m, n)) [147], where α is the
slowly growing inverse-Ackermann function. However, Thorup [162] showed that split-find
on integer-weighted inputs can be implemented in optimal O(n + m) time using Fredman
and Willard’s atomic heaps [51].

8.1.3 Scaling Algorithms

The problem with Edmonds’ mwpm algorithm is that it finds augmenting paths one at a
time, apparently dooming it to a running time of Ω(mn). Gabow [54] showed that this
Ω(mn) barrier could be broken using the scaling technique of Edmonds and Karp [44]. The
idea is to expose the edge weights one bit at a time. In the ith scale the goal is to compute an
optimum matching with respect to the i most significant bits of ŵ. The reason this method
is efficient is because an optimal solution at scale i−1 yields an additive O(n) approximation

145



to an optimal solution at scale i, making the general weighted problem closely resemble a
sequence of log N unweighted matching problems. Gabow’s algorithms (for bipartite and
general mwpm) ran in O(mn3/4 log N) time, which beat O(mn) but still left much room for
improvement. The O(m

√
n)-time mcm algorithm of Micali and Vazirani [122,169] provides

a natural de facto lower bound on the performance of any scaling algorithm for mwpm.

Gabow and Tarjan [60,61] loosened the requirement that the algorithm find an exactly opti-
mal solution at each scale. Since an additive O(n) error is already introduced just by exposing
the ith bit of ŵ, it suffices if the output at the end of the (i−1)th scale was itself erroneous up
to an additive O(n). The Gabow-Tarjan mwpm algorithms [60,61] run in O(m

√
n log(nN))

time on bipartite graphs and O(m
√

nα(n, m) log n log(nN)) time on general graphs. Over the
years other researchers [38, 68,138] developed alternative O(m

√
n log(nN))-time algorithms

for bipartite mwpm, though the O(m
√

nα(n, m) log n log(nN))-time bound of for general
graphs has resisted all improvement. It has seen no asymptotic speedup,1 nor has it been
simplified in either its design or analysis.

It is straightforward to reduce mwm to mwpm without increasing m, n, or N asymptotically,
but no similarly efficient reduction in the reverse direction is known; see [36]. Indeed, there
is some evidence that mwm may, in some situations, be slightly easier than mwpm. Kao,
Lam, Sung, and Ting [93] gave two reductions from bipartite mwm to bipartite mcm. The
first makes N black-box calls to an mcm algorithm whereas the second makes a single call
to an mcm algorithm but on a graph with up to O(Nn) vertices and O(Nm) edges. Huang
and Kavitha [84] and Pettie [148] proved that even on general graphs, mwm could be solved
with N calls to an mcm algorithm. In Chapter 9, we gave a scaling algorithm for bipartite
mwm running in O(m

√
n log N) time, which is asymptotically faster than [60] whenever

log N = o(log(nN)).
1(aside from those implied by better split-findmin technology. The α(m, n) here reflects Gabow’s split-

findmin structure [54]. It can be reduced to log α(m, n) [147]. Thorup [162] noted that when the input
consists of integers (rather than reals) the split-findmin data structure can perform all operations in amortized
O(1) time using Fredman and Willard’s atomic heaps [51], thereby yielding an O(m

√
n log n log(nN))-time

implementation of the Gabow-Tarjan mwpm algorithm.
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Table 2

Maximum Weight Perfect Matching on General Graphs

Year Authors Time Complexity & Notes
1965 Edmonds mn2

1974 Gabow
1976 Lawler n3

1976 Karzanov n3 + mn log n

1978 Cunningham & Marsh poly(n)
1982 Galil, Micali & Gabow mn log n

1985 Gabow mn3/4 log N integer weights
1989 Gabow, Galil & Spencer mn log log logd n + n2 log n d = 2 + m/n

1990 Gabow mn + n2 log n

1991 Gabow & Tarjan m
√

nα(n, m) log n log(nN) integer weights
Cygan, Gabow2012 & Sankowski Nnω randomized, integer weights

new Edm(m, n, N) ·
√

n log(nN) integer weights
m
√

n log(nN)

Maximum Weight Matching on Bipartite and General Graphs

Year Authors Time Complexity of mwm(m, n, N)
folklore/trivial mwpm(2m + n, 2n, N)

mcm(Nn, Nm) bipartite, integer weights

1999 Kao, Lam, Sung & Ting N · mcm(m, n) bipartite, integer weights
→ Nm

√
n/κ κ = log n

log(n2/m) , [49]
→ Nnω randomized, [130]
→ Nm10/7 · polylog(n) randomized, [123]

2012 Huang & Kavitha N · mcm(m, n) integer weights

2012 Pettie
→ Nm

√
n/κ κ = log n

log(n2/m) , [67]
→ Nnω randomized, [79, 130]

Chapter 9 m
√

n log N bipartite, integer weights
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8.1.4 New Results

We develop a new scaling approach for solving mwpm in general graphs that circumvents
some inefficiencies and conceptual difficulties in Gabow and Tarjan’s algorithm [61]. By
synthesizing ideas from Gabow’s original O(mn3/4 log N)-time scaling algorithm for mwpm
and a liquidationist approach, our algorithm for mwpm runs in O(m

√
n log(nN)) time for all

m, n, and N . The algorithm is not exactly simple, but its analysis and proof of correctness
are entirely elementary.

Organization In Section 8.2 we give a reasonably detailed technical tour of our algo-
rithm, which covers Edmonds’ LP formulation of mwpm, the structure of blossoms, the
scaling technique of Gabow and Gabow-Tarjan, and the difficulties of improving the Gabow-
Tarjan algorithm. in Section 8.3, we present our Hybrid mwpm algorithm running in
O(m

√
n log(nN)). We conclude with some open problems in Section 8.4.

8.2 A Brief History of Matching Algorithms

8.2.1 Odd Set Constraints and Blossoms

The mwpm problem can be expressed as an integer linear program

maximize
∑
e∈E

x(e) · ŵ(e)

subject to x(e) ∈ {0, 1}, for all e ∈ E

and
∑
e⊃v

x(e) = 1, for all v ∈ V .

The integrality constraint lets us interpret x as the membership vector of a set of edges
and the ∑e⊃v x(e) = 1 constraint enforces that x represents a perfect matching. Birkhoff’s
theorem [13] (see also von Neumann [171]) implies that in bipartite graphs the integrality
constraint can be relaxed to x(e) ∈ [0, 1]. The basic feasible solutions to the resulting LP
correspond to perfect matchings. However, this is not true of non-bipartite graphs! Edmonds
proposed exchanging the integrality constraint for an exponential number of the following
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odd set constraints, which are obviously satisfied for every x that is the membership vector
of a matching.

∑
e⊂B

x(e) ≤ ⌊|B|/2⌋, for all B ⊂ V , |B| ≥ 3 odd.

Edmonds proved that the basic feasible solutions to the resulting LP are integral and there-
fore correspond to perfect matchings. Weighted matching algorithms work directly with the
dual LP. Let y : V → R and z : 2V → R be the vertex duals and odd set duals.

minimize
∑
v∈V

y(v) +
∑

B⊂V :
|B|≥3 is odd

z(B) · ⌊|B|/2⌋

subject to z(B) ≥ 0, for all odd B ⊂ V ,

ŵ(u, v) ≤ yz(u, v) for all (u, v) ∈ E,

where, by definition, yz(u, v) def= y(u) + y(v) +
∑

B⊃{u,v}
z(B).

We generalize the yz dual function to an arbitrary set S ⊆ V of vertices as follows.

yz(S) =
∑
u∈S

y(u) +
∑

B⊆S

z(B) · ⌊|B|/2⌋ +
∑

S⊂B

z(B) · ⌊|S|/2⌋.

Note that yz(V ) is exactly the dual objective function.

Edmonds’ algorithm [41, 42] maintains a dynamic matching M and dynamic laminar set
Ω ⊂ 2V of odd sets, each associated with a blossom subgraph. Informally, a blossom is an
odd-length alternating cycle (w.r.t. M), whose constituents are either individual vertices or
blossoms in their own right. More formally, blossoms are constructed inductively as follows.
If v ∈ V then the odd set {v} induces a trivial blossom with edge set ∅. Suppose that for some
even ℓ ≥ 2, A0, . . . , Aℓ are disjoint odd sets associated with blossoms EA0 , . . . , EAℓ

. If there
are edges e0, . . . , eℓ ∈ E such that ei ∈ Ai ×Ai+1 (modulo ℓ + 1) and ei ∈M if and only if i

is odd, then B = ⋃
i Ai is an odd set associated with the blossom EB = ⋃

i EAi
∪{e0, . . . , eℓ}.

Because ℓ is even, the alternating cycle on A0, . . . , Aℓ has odd length, leaving A0 incident
to two unmatched edges, e0 and eℓ. One can easily prove by induction that |B| is odd and
that EB ∩M matches all but one vertex in B, called the base of B. The base of B is the
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same as the base of A0. Remember that E(B) = E ∩
(

B
2

)
, the edge set induced by B, may

contain many non-blossom edges not in EB. Define n(B) = |B| and m(B) = |E(B)| to be
the number of vertices and edges in the graph induced by B.

The set Ω of active blossoms is represented by rooted trees, where leaves represent vertices
and internal nodes represent nontrivial blossoms. A root blossom is one not contained in
any other blossom. The children of an internal node representing a blossom B are ordered
by the odd cycle that formed B, where the child containing the base of B is ordered first.
Edmonds [41, 42] showed that it is often possible to treat blossoms as if they were single
vertices, by shrinking them. We obtain the shrunken graph G/Ω by contracting all root
blossoms and removing the edges in those blossoms. To dissolve a root blossom B means
to delete its node in the blossom forest and, in the contracted graph, to replace B with
individual vertices A0, . . . , Aℓ.

Blossoms have numerous properties. Our algorithms use two in particular.

1. The subgraph on EB is critical, meaning it contains a perfect matching on B\{v}, for
each v ∈ B. Phrased differently, any v ∈ B can be made the base of B by choosing
the matching edges in EB appropriately.

2. As a consequence of (1), any augmenting path P ′ in G/Ω extends to an augmenting
path P in G, by replacing each non-trivial blossom vertex B in P ′ with a corresponding
path through EB. Moreover, Ω is still valid for the matching M ⊕P , though the bases
of blossoms intersecting P may be relocated by augmenting along P . See Figure 4 for
an example.

8.2.2 Relaxed Complementary Slackness

Edmonds’ algorithm maintains a matching M , a nested set Ω of blossoms, and duals y :
V → Z and z : 2V → N that satisfy Property 8.2.1. Here w is a weight function assigning
even integers; it is usually not the same as the input weights ŵ.

Property 8.2.1. (Complementary Slackness)
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(a) (b)

Figure 4: Matched edges are thick, unmatched edges thin. Left: B is a blossom consisting of 7
sub-blossoms, 4 of which are trivial (vertices) and the other three non-trivial blossoms. The path
P ′ = (u1, u2, B, u3) is an augmenting path in the shrunken graph G/{B}. Right: augmenting
along P ′ in G/{B} enlarges the matching and has the effect of moving the base of B to the vertex
matched with u3.
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1. Granularity. z(B) is a nonnegative even integer for each B ∈ Ω, and y(u) is an integer
for each vertex u.

2. Active Blossoms. |M ∩ EB| = ⌊|B|/2⌋ for all B ∈ Ω. If B ∈ Ω is a root blossom then
z(B) > 0; if B /∈ Ω then z(B) = 0. Non-root blossoms may have zero z-values.

3. Domination. yz(e) ≥ w(e), for each e = (u, v) ∈ E.

4. Tightness. yz(e) = w(e), for each e ∈M ∪ ⋃B∈Ω EB.

Lemma 8.2.2. If Property 8.2.1 is satisfied for a perfect matching M , blossom set Ω, and
duals y, z, then M is necessarily a mwpm w.r.t. the weight function w.

The proof of Lemma 8.2.2 follows the same lines as Lemma 8.2.4, proved below.

The Gabow-Tarjan algorithms and their successors [36,38,60,61,68,138] maintain a relaxation
of complementary slackness. By using Property 8.2.3 in lieu of Property 8.2.1 we introduce
an additive error as large as n. This does not prevent us from computing exact mwpms but
it does necessitate additional scales. Before the algorithm proper begins we compute the
extended weight function w̄(e) = (n+1)ŵ(e). Because the weight of every matching w.r.t. w̄

is a multiple of n + 1, if w̄(M) is provably within n of optimal then M must be exactly
optimal w.r.t. w̄ and hence ŵ as well.

Property 8.2.3. (Relaxed Complementary Slackness) Property 8.2.1(1,2) holds and Prop-
erty 8.2.1(3,4) are replaced with

3. Near Domination. yz(e) ≥ w(e)− 2 for each edge e = (u, v) ∈ E.

4. Near Tightness. yz(e) ≤ w(e), for each e ∈M ∪ ⋃B∈Ω EB.

The next lemma shows that a perfect matching satisfying Property 8.2.3 will be a good
approximation of the maximum weight perfect matching.

Lemma 8.2.4. If Property 8.2.3 is satisfied for some perfect matching M, blossom set Ω,
and duals y, z, then w(M) ≥ w(M∗)− n.
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Proof. By Property 8.2.3 (near tightness and active blossoms) and the definition of yz,

w(M) ≥
∑
e∈M

yz(e) =
∑
u∈V

y(u) +
∑
B∈Ω

z(B) · |M ∩ E(B)| =
∑
u∈V

y(u) +
∑
B∈Ω

z(B) · ⌊|B|/2⌋.

Since the mwpm M∗ puts at most ⌊|B|/2⌋ edges in any blossom B ∈ Ω,

w(M∗) ≤
∑
u∈V

y(u) +
∑
B∈Ω

z(B) · |M∗ ∩ E(B)|+ 2|M∗| Property 8.2.3 (near domination)

≤
∑
u∈V

y(u) +
∑
B∈Ω

z(B) · ⌊|B|/2⌋+ n. |M∗| = n/2, Non-negativity of z

Therefore, we have w(M) ≥ w(M∗)− n.

8.2.3 Edmonds’ Search

Suppose we have a matching M , blossom set Ω, and duals y, z satisfying Property 8.2.1
or 8.2.3. The goal of Edmonds’ search procedure is to manipulate y, z, and Ω until an
eligible augmenting path emerges. At this point |M | can be increased by augmenting along
such a path (or multiple such paths), which preserves Property 8.2.1 or 8.2.3. The definition
of eligible needs to be compatible with the governing invariant (Property 8.2.1 or 8.2.3) and
other needs of the algorithm. In our algorithms we use several implementations of Edmonds’
generic search: they differ in their governing invariants, definition of eligibility, and data
structural details. For the time being the reader can assume Property 8.2.1 is in effect and
that we use Edmonds’ original eligibility criterion [41].

Criterion 1. An edge e is eligible if it is tight, that is, yz(e) = w(e). (If Property 8.2.1 is
satisfied then all matched and blossom edges are tight.)

Let Eelig be the set of eligible edges and Gelig = (V, Eelig)/Ω be the graph obtained by
contracting all root blossoms and discarding ineligible edges. We consider a slight variant
of Edmonds’ search that looks for augmenting paths only from a specified set F of free
vertices, that is, each augmenting path must have at least one end in F and possibly both.
The search iteratively performs Augmentation, Blossom Shrinking, Dual Adjustment, and
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Blossom Dissolution steps, halting after the first Augmentation step that discovers at least
one augmenting path. We require that the y-values of all F vertices have the same parity
(even/odd). This is needed to keep y, z integral and allow us to perform discrete dual
adjustment steps without violating Property 8.2.1 or 8.2.3. See Figure 5 for the pseudocode.

There is considerable flexibility in implementing Edmonds’ search. If the edge weights are
unbounded then we have no a priori upper bound on the number of dual adjustments needed
to find an augmenting path. In such situations Edmonds’ search is implemented with the
assistance of a special priority queue that keeps track of which dual adjustment steps induce
a change in the structure of Gelig. This can be the dissolution of a blossom or the creation
of a new eligible edge, which, in turn, could create a new blossom or augmenting path. We
use PQSearch to refer to the best implementation of Edmonds’ search with such a priority
queue, which can handle an unbounded number of dual adjustments. When there are at most
t = O(m) dual adjustments we can implement the underlying priority queue with an array
of t buckets, which support insert, deletemin, and decreasekey in optimal constant time.
We refer to this implementation of Edmonds’ algorithm as BucketSearch. Aside from
the priority queue, all other non-trivial data structures can be implemented to run in linear
time [54,59,162].

Regardless of what t is or how the dual adjustments are handled, we still have options for how
to implement the Augmentation step. Under Criterion 1 of eligibility, the Augmentation step
always extends M to a maximum cardinality matching in the subgraph of Gelig induced by
V (M)∪F . This can be done in O((p + 1)m) time if p ≥ 0 augmenting paths are found [59],
or in O(m

√
n) time, independent of p, using the Micali-Vazirani algorithm [122, 169] or

Gabow-Tarjan cardinality matching algorithm [61, §10].

8.2.4 Relaxed Complementary Slackness

Each scale of the Gabow-Tarjan mwpm algorithm maintains Property 8.2.3 (Relaxed Com-
plementary Slackness) which requires a correspondingly relaxed criterion for eligibility.
Roughly speaking, an edge is eligible if the inequalities of Property 8.2.3(near domination,
near tightness) hold with equality.

Criterion 2. An edge e is eligible in if at least one of the following holds.
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EdmondsSearch(F ) Precondition: {y(u) | u ∈ F} must all be of the same
parity.

Repeatedly perform Augmentation, Blossom Shrinking, Dual Adjustment, and
Blossom Dissolution steps until a halting condition is reached.

• Augmentation:
While Gelig contains an augmenting path from some free vertex in F , find such
a path P and set M ←M ⊕ P . Update Gelig.

• Blossom Shrinking:
Let Vout ⊆ V (Gelig) be the vertices (that is, root blossoms) reachable from free
vertices in F by even-length alternating paths; let Ωnew be a maximal set of
(nested) blossoms on Vout. (That is, if (u, v) ∈ E(Gelig)\M and u, v ∈ Vout, then
u and v must be in a common blossom in Ωnew.) Let Vin ⊆ V (Gelig)\Vout be
those vertices reachable free vertices in F by odd-length alternating paths. Set
z(B)← 0 for B ∈ Ωnew and set Ω← Ω ∪ Ωnew. Update Gelig.

• Dual Adjustment:
Let V̂in, V̂out ⊆ V be original vertices represented by vertices in Vin and Vout.
The y- and z-values for some vertices and root blossoms are adjusted:

y(u)← y(u)− 1, for all u ∈ V̂out.
y(u)← y(u) + 1, for all u ∈ V̂in.
z(B)← z(B) + 2, if B ∈ Ω is a root blossom with B ⊆ V̂out.
z(B)← z(B)− 2, if B ∈ Ω is a root blossom with B ⊆ V̂in.

• Blossom Dissolution:
After dual adjustments some root blossoms may have zero z-values. Dissolve
such blossoms (remove them from Ω) as long as they exist. Update Gelig.

Figure 5: A generic implementation of Edmonds’ search procedure. Data structural issues are
ignored, as is the eligibility criterion, which determines Gelig.

155



Search Procedure Invariants and Eligibility Time Bound and Data Structures
Property 8.2.1, Criterion 1

PQSearch
Property 8.2.3, Criterion 3

O((p + 1)m + n log n) [55,59]

BucketSearch Property 8.2.3, Criterion 3 O(t + (p + 1)m) [54,59,162]

SearchOne Property 8.2.3, Criterion 2 O(m) [59,61,162]

ShellSearch Props. 8.2.1, 8.2.8, Criterion 1 O(t + m ·min{
√

n, p + 1}) [54,122,169]

Table 3: Here m and n are the number of edges and vertices involved in the search, p ≥ 0 is the
number of augmenting paths discovered in the final augmentation step, and t the number of dual
adjustments performed. The running time of PQSearch is independent of t. The running time of
SearchOne is independent of p; it can only be applied for t = 1 dual adjustment.

1. e ∈ EB for some B ∈ Ω.

2. e /∈M and yz(e) = w(e)− 2.

3. e ∈M and yz(e) = w(e).

Criterion 2(1) guarantees that eligible augmenting paths in the shrunken graph Gelig =
(V, Eelig)/Ω correspond to eligible augmenting paths in G. A key consequence of Crite-
rion 2(2,3) is that augmenting along an eligible augmenting path P in Gelig makes all edges
in P ineligible. Thus, an efficient implementation of the Augmentation step need only find a
maximal set of augmenting paths from F , not a maximum set of such paths.2 The procedure
SearchOne(F ) is used only in conjunction with Property 8.2.3 and Criterion 2 of eligibility.
It performs precisely one dual adjustment step and might not find any augmenting paths.
See Figure 6.

Lemma 8.2.5. After the Augmentation step of SearchOne(F ) (using Criterion 2 for eli-
gibility), Gelig contains no eligible augmenting paths from an F -vertex.

Proof. Suppose that, after the Augmentation step, there is an augmenting path P from an F -
vertex in Gelig. Since Ψ was maximal, P must intersect some P ′ ∈ Ψ at a vertex v. However,
after the Augmentation step every edge in P ′ will become ineligible, so the matching edge
(v, v′) ∈M is no longer in Gelig, contradicting the fact that P consists of eligible edges.

2In the context of flow algorithms [71], this distinction is analogous to the difference between blocking
flows and maximum flows.
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SearchOne(F ) Precondition: {y(u) | u ∈ F} must all be of the same parity.

• Augmentation:
Find a maximal set Ψ of vertex-disjoint augmenting paths from F in Gelig.
Set M ←M ⊕ (⋃P ∈Ψ P ).

• Perform Blossom Shrinking and Dual Adjustment steps from F , then Blossom
Dissolution, exactly as in EdmondsSearch.

Figure 6

It is possible to efficiently execute PQSearch/BucketSearch while maintaining Prop-
erty 8.2.3 but, like Gabow and Tarjan [61], we need to introduce a third eligibility criterion to
deal with a subtle issue arising from dissolved blossoms. When a blossom B is formed under
Criterion 2 its matched edges are tight and its unmatched e ∈ EB have yz(e) = w(e) − 2.
If B (as a shrunken vertex) participates in an augmenting path the matched/unmatched
status of some edges in EB will be reversed. If, after a subsequent dual adjustment step,
B is dissolved, the reversed edges in EB will no longer be eligible according to Criterion 2.
However, implementations of PQSearch/BucketSearch rely on the fact that the sub-
graph of G reachable from F grows monotonically as dual adjustments are performed. In
particular, if P is an eligible alternating path in G from some vertex in F a dual adjustment
cannot make P ineligible. Thus, to use PQSearch/BucketSearch with Property 8.2.3
we use Criterion 3 of eligibility.

Criterion 3. An edge is eligible if yz(e) = w(e) or yz(e) = w(e)− 2.

8.2.5 EdmondsSearch and Properties 8.2.1 and 8.2.3

Edmonds’ original algorithm searches from a single free vertex and does the maximum
amount of dual adjustment that does not violate Property 8.2.1. Our variant differs in
a few minor respects. We search from a specified set F of free vertices. We will show that
Property 8.2.1 or 8.2.3 is maintained by EdmondsSearch(F ), assuming that w assigns
only even weights and that the y-values of F -vertices have the same parity.

Lemma 8.2.6. If Property 8.2.1 is satisfied and the y-values of vertices in F have the same
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parity, then Property 8.2.1 remains satisfied after EdmondsSearch(F ) under Criterion 1
for eligibility.

Proof. Property 8.2.1 (granularity) is obviously maintained, since we are always adjusting
y-values by 1 and z-values by 2. Property 8.2.1 (active blossoms) is also maintained since
all the new root blossoms discovered in the Blossom Shrinking step are in Vout and will have
positive z-values after adjustment. Furthermore, each root blossom whose z-value drops to
zero is removed.

Consider the tightness and the domination conditions of Property 8.2.1. First note that
if both endpoints of e lie in the same blossom, yz(e) will not change until the blossom is
dissolved. When the blossom was formed, the blossom edges must be eligible (tight). The
augmentation step only makes eligible edges matched, so tightness is satisfied.

Consider the effect of a dual adjustment on an edge e = (u, v), whose endpoints lie in
different blossoms. We divide the analysis into the following four cases. Refer to Figure 7
for illustrations of the cases.

1. Both u and v are in V̂in ∪ V̂out and e ∈M . We cannot have both u, v ∈ V̂out (otherwise
they would be in a common blossom, since e is eligible) nor can both be in V̂in, so
u ∈ V̂in, v ∈ V̂out and yz(e) is unchanged.

2. Both u and v are in V̂in ∪ V̂out and e /∈ M . If at least one of u or v is in V̂in, then
yz(e) cannot decrease and domination holds. Otherwise we must have u, v ∈ V̂out.
In this case, e must be ineligible, for otherwise an augmenting path or a blossom
would have been found. Ineligibility implies yz(e) ≥ w(e) + 1 but something stronger
can be inferred. Since the y-values of free vertices have the same parity, all vertices
reachable from free vertices by eligible alternating paths also have the same parity.
Since w(e) is even (by assumption) and yz(e) is even (by parity) we can conclude
that yz(e) ≥ w(e) + 2 before dual adjustment, and therefore yz(e) ≥ w(e) after dual
adjustment.

3. u but not v is in V̂in ∪ V̂out and e ∈ M . This case cannot happen since in this case,
u ∈ V̂in and e must be ineligible, but we know all matched edges are tight.
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Figure 7: Thick edges are matched, thin unmatched. Dashed edges (whether thick or thin) are
ineligible. Solid vertices are in V̂in ∪ V̂out; all other vertices are dashed. Case (3) can only occur
under Criteria 2 or 3 of eligibility.

4. u but not v is in V̂in∪ V̂out and e /∈M . If u ∈ V̂in, then yz(e) increases and domination
holds. Otherwise, u ∈ V̂out and e must be ineligible. In this case, we have yz(e) ≥
w(e) + 1 before the dual adjustment and yz(e) ≥ w(e) afterwards.

Lemma 8.2.7. If Property 8.2.3 is satisfied and the y-values of vertices in F have the same
parity, then Property 8.2.3 remains satisfied after EdmondsSearch(F ) under Criteria 2
or 3 for eligibility.

Proof. The proof is similar to that of the previous lemma, except that we replace the tightness
and domination by near tightness and near domination. We point out the differences in the
following. An edge e can be included in a blossom only if it is eligible. An eligible edge must
have yz(e) = w(e) or yz(e) = w(e) − 2. Augmentations only make eligible edges matched.
Therefore near tightness is satisfied after the Augmentation step.

When doing the dual adjustment, the following are the cases when yz(e) is modified after
the dual adjustment. In Case 2 of the previous proof, when u, v ∈ V̂out but e is ineligible
we must, by parity, have yz(e) ≥ w(e) before the dual adjustment and yz(e) ≥ w(e) − 2
afterwards. Case 3 may happen in this situation. It is possible that u ∈ V̂in and e ∈ M is
ineligible. Then we must have yz(e) ≤ w(e)−1 before the dual adjustment and yz(e) ≤ w(e)
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afterwards. In Case 4, when u ∈ V̂out, we have yz(e) ≥ w(e)− 1 before the dual adjustment
and yz(e) ≥ w(e)− 2 afterwards.

8.2.6 The Scaling Routine of Gabow and Gabow-Tarjan

The (i−1)th scale of the Gabow-Tarjan algorithm [61] ends when we have a perfect matching
M ′ satisfying Property 8.2.3 with respect to some y′, z′, Ω′, and weight function w′. Here
w′(e) consists of the i − 1 high order bits of w̄(e), with a trailing zero bit to ensure that it
is even. By Lemma 8.2.4 w′(M ′) and y′z′(V ) differ by at most n. To begin the ith scale
the Gabow-Tarjan algorithm reveals the ith bit of each edge weight, yielding w, and sets
y ← 2y′ + 2, z ← 2z. Now w(M ′) and yz(V ) differ by O(n) but M ′ is no longer a good
matching since it does not satisfy Property 8.2.3. When the graph is bipartite Gabow and
Tarjan [60] can simply discard M ′—it is the y-values that are important—and start afresh
at scale i with an empty matching. In general graphs, however, one can discard M ′ but
getting rid of the old blossom structure Ω′ is more problematic. Gabow [54] gave a method
to dismantle old blossoms while maintaining Property 8.2.1, which led to an O(mn3/4 log N)-
time algorithm. Gabow and Tarjan’s method [60] is based on Property 8.2.3, which is more
efficient but whose analysis is more complex by orders of magnitude.

Gabow [54] noted that old blossoms could be eliminated via translations, which preserve
(near) domination. Translating B ∈ Ω′ by an integer ∆ means setting

z(B)← z(B)− 2∆, assuming z(B) ≥ 2∆,

y(u)← y(u) + ∆, for all u ∈ B.

From a global perspective, a translation by ∆ increases the dual objective yz(V ) by ∆ =
−⌊|B|/2⌋ ·2∆+ |B| ·∆. From a local perspective, a translation has no effect on yz(e) if e has
both or neither endpoint in B; it increases it by ∆ if e has one endpoint in B. Thus, blossom
translations are compatible with Property 8.2.1 or Property 8.2.3 so long as no matched
edge in the ith scale straddles an undissolved blossom in Ω′. If some e ∈ M did straddle
B ∈ Ω′, translating B could violate (near) tightness. After discarding the matching at the
beginning of a scale, the algorithms of Gabow [54] and Gabow-Tarjan [61] fail to satisfy
the full blossom criterion of Property 8.2.1(2) or Property 8.2.3(2), that is, that z(B) > 0
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implies |E(B) ∩M | = ⌊|B|/2⌋. The algorithms of [54, 61] satisfy Property 8.2.8 in lieu of
Property 8.2.1/8.2.3(2).

Property 8.2.8. Let Ω′ denote the set of as-yet undissolved blossoms from the previous scale
and Ω, M be the blossom set and matching from the current scale.

1. Ω′ ∪ Ω is a laminar (hierarchically nested) set.

2. There do not exist B ∈ Ω, B′ ∈ Ω′ with B′ ⊆ B.

3. No e ∈M has exactly one endpoint in some B′ ∈ Ω′.

4. If B ∈ Ω and z(B) > 0 then |EB ∩ M | = ⌊|B|/2⌋. An Ω-blossom is called a root
blossom if it is not contained in any other Ω-blossom. All root blossoms have positive
z-values.

We have the option to liquidate all existing blossoms—just translate each B ∈ Ω′ by z(B)/2—
but it is impossible to place any useful upper bound on the dual objective yz(V ) afterward.
Remember that the efficiency of scaling algorithms depends on the fact that yz(V ) is an
additive O(n) approximation of w(M∗).

Gabow [54] observed that the two high level goals of a scaling mwpm algorithm (dismantling
the old Ω′ at scale i − 1 and generating a new M, Ω at scale i) are actually not at odds
but provide mutual support for each other. Dual adjustments (performed during Edmonds’
searches) reduce yz(V ) and can help offset increases in yz(V ) caused by blossom translations.
On the other hand, blossom translations help to enforce Property 8.2.8(3) by preventing edges
straddling undissolved Ω′ blossoms from violating domination. By correctly interleaving
Edmonds’ searches and old blossom translations, both goals can be achieved efficiently,
without causing great distortions to the dual objective yz(V ). Below we explain Gabow’s
framework [54] for dismantling old blossoms, modified versions of which are used in [61] and
in one of our mwpm algorithms.

The old blossom set Ω′ is represented as a forest of rooted trees, with vertices at the leaves.
Gabow [54] proposed to dismantle Ω′ according to a major path decomposition of the blossom
forest. A subblossom B′ of B is called a major child if |B′| > |B|/2. Clearly each blossom
has at most one major child. A blossom B that is not the major child of its parent is the root
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of a major path. The major path of B is obtained by starting at B, iteratively moving from
the current node to its major child, so long as it exists. The algorithms of [54,61] dismantle
Ω′ by visiting each blossom B in postorder, calling DismantlePath(B) if B is the root
of a major path. The DismantlePath(B) procedure ultimately dissolves B and every old
blossom contained in B, and may along the way alter the matching M , the new blossom set
Ω, and duals y, z.

When DismantlePath(B) is first called the major path rooted at B consists of undissolved
blossoms B1 ⊂ B2 ⊂ · · · ⊂ Bk = B with positive z-values. The graph induced by Bj\Bj−1

is called a shell, denoted G(Bj, Bj−1). All shells contain an even number of vertices, except
for G(B1, ∅). Imagine executing some implementation of EdmondsSearch(F ) on the free
vertices F of some shell G(C, D). Each dual adjustment step decrements the y-values of
vertices in V̂out, which could cause a straddling edge (u, v) to violate (near) domination,
where either

• u ∈ C\D and v ∈ D, or

• u ∈ C\D and v ̸∈ C.

By translating C by 1 and D by 1 we increase yz(u, v) for both types of straddling edges,
thereby preserving Property 8.2.3(near domination). Edges straddling undissolved Ω′ blos-
soms are automatically regarded as ineligible, which preserves Property 8.2.8(3). When the
z-value of an Ω′ blossom becomes zero it is dissolved, which has the effect of merging two
adjacent shells.

The scaling algorithms of [54,61] differ in numerous details, but both consist of rounds, each
of which involves performing some number of steps of Edmonds’ search on each remaining
shell. Progress is made by either reducing yz(B), matching vertices by finding augmenting
paths, or dissolving Ω′ blossoms. Eventually one of two events occurs: either (i) B and all its
old subblossoms dissolve (due to translations), or (ii) there is exactly one free vertex inside
the largest as-yet undissolved blossom. If (i) occurs the DismantlePath(B) routine halts
immediately. If (ii) occurs a single Edmonds’ search is conducted from v, which ultimately
gets rid of each old blossom, either by dissolving it or making it a new blossom.

The analysis of DismantlePath(B) vaguely resembles the blocking-flow type analyses of
cardinality matching algorithms [83, 100, 122, 169]. Gabow’s original algorithm [54] uses
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(a) (b)

Figure 8: Left: x is a free vertex in the shell (C, D). A dual adjustment increments and decrements
some y-values in the shell. If y(u) is decremented this could cause a violation of (near) domination
at yz(u, v) when v ∈ D or v ̸∈ C. Right: to restore domination we translate both C and D by
1. This involves decrementing z(C) and z(D) by 2, incrementing y(v) by 2 for all v ∈ D, and
incrementing y(u) by 1 for all u ∈ C\D.

Property 8.2.1 and Criterion 1 of eligibility. It is argued that yz(B) is non-increasing over
time, and that because yz(B) is within O(n(B)) of optimal, after (n(B))ϵ rounds, at most
O((n(B))1−ϵ) free vertices remain in undissolved blossoms inside B. A round that discovers
p ≥ 1 augmenting paths takes O(m(B) ·min{

√
n(B), p+1}) time, so taking ϵ = 1/4 balances

the total cost of DismantlePath(B) at O(m(B)(n(B))3/4).

The Gabow-Tarjan DismantlePath(B) routine is more efficient but dramatically more
complicated in its analysis. They enforce Property 8.2.3 rather than Property 8.2.1 and
use Criteria 2 and 3 of eligibility rather than Criterion 1. The upshot is that each
round takes near-linear time (rather than up to O(m(B)

√
n(B)) time) but yz(B) is no

longer so well behaved! Gabow and Tarjan [61] proved that after all previous calls to
DismantlePath(B′) complete (where B′ is a strict descendant of the major path of B)
yz(B) could diverge from the optimum by as much as O(n(B) log n(B)). A blocking flow-
type argument shows that after

√
n(B) log n(B) rounds there are O(

√
n(B) log n(B)) free

vertices in undissolved old blossoms, leading to a bound of roughly O(m(B)
√

n(B) log n(B))
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for the call to DismantlePath(B). It is straightforward to show that the sum of these
costs, over all major path roots B ∈ Ω′, is roughly O(m

√
n log n).

8.2.7 A Tour of Our Hybrid mwpm Algorithm

Our algorithm synthesizes ideas from Gabow’s original scaling algorithm [54] the simple-
minded liquidation approach mentioned in the paper, which yields a running time of
O(m

√
n log(nN)) for all m, n, and N . Our algorithm is based on a few elementary ideas,

which must be applied in concert. Blossoms are put in two categories according to a threshold
τ = τ(n).

Definition 8.2.9. A blossom B is small if n(B) ≤ τ and large otherwise, where τ = τ(n)
is a parameter of the algorithm.

The number of large root blossoms at any given time is clearly less than n/τ . At the end of
scale i−1 we guarantee that the sum of large blossoms’ z-values is O(n). Thus, liquidating all
large blossoms at the beginning of scale i increases yz(V ) by O(n), which is tolerable. Small
blossoms’ z-values are unbounded, but small blossoms have the advantage of being small,
which allows us to process them using algorithms that would ordinarily be too inefficient.

After all large blossoms are liquidated we reweight the graph, setting

w(u, v)← w(u, v)− y(u)− y(v) for all (u, v) ∈ E and

y(u)← 0 for all u ∈ V .

This transformation clearly affects the weight of every perfect matching by the same amount,
and therefore does not affect which matchings are mwpms.

We need to cheaply dismantle all small blossoms without screwing up the dual objective
yz(V ) by more than O(n). By using Gabow’s procedure (with Property 8.2.1 and Criterion 1)
we can do exactly that in O(m(B)(n(B))3/4) time for each maximal small B ∈ Ω′, which is
O(mτ 3/4) time in total.

At this point in the algorithm there are no old blossoms, all new blossoms in Ω are necessarily
small, and yz(V ) is within O(n) of optimal. We now switch from satisfying Property 8.2.1
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to Property 8.2.3. It is possible to compute a perfect matching M and blossom set Ω
satisfying Property 8.2.3, in O(m

√
n) additional time. However, doing so could violate the

assumption that the sum of z-values of large blossoms is O(n). Our solution is to perform τ

dual adjustments, which will make the number of free vertices O(n/τ). Now we switch from
satisfying Property 8.2.1 to Property 8.2.3. The first

√
n≪ τ dual adjustments are made by

calling SearchOne(F )
√

n times on the current set F of all free vertices, using Criterion 2
of eligibility. At this point there are O(

√
n) free vertices. We perform the remaining τ −

√
n

dual adjustments with calls to BucketSearch(F ), using Criterion 3 of eligibility. Since
each call (except possibly the last) finds at least one augmenting path, the total cost to
find p augmenting paths is O(τ + m(p + 1)) = O(m

√
n). The standard blocking flow-type

argument shows that after τ dual adjustments, there are at most O(n/τ) free vertices. It
is convenient to assume that a scale terminates with a perfect matching, even if it is made
perfect artificially. To that end we match each remaining free vertex with an artificial zero
weight edge to a new artificial mate.

At the end of the last scale we have a perfect matching, but in a graph where many vertices are
matched with artificial edges and mates. In the final perfection step we discard all artificial
nodes and edges, revealing O((n/τ) log(nN)) free vertices (O(n/τ) for each of log((n + 1)N)
scales), then run PQSearch from each free vertex until an augmenting path is discovered.
The total cost per scale is

• O(n) time to liquidate large blossoms and reweight the graph.

• O(τ 3/4m) time to dismantle small blossoms by Gabow’s procedure.

• O(
√

nm) to perform τ dual adjustments.

Together with the time for the perfection step, the total cost of the algorithm is

O
([

mτ 3/4 + m
√

n + (n/τ)(m + n log n)
]

log(nN)
)

.

In order for the cost per scale to be O(m
√

n) we can set τ to be anything in the range
[
√

n log n, n2/3].
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Remark 8.2.10. One might think the algorithm would be improved (perhaps just in the lower
order terms) if we dismantled small blossoms using a variant of the Gabow-Tarjan algorithm
using Property 8.2.3 rather than a variant of Gabow’s algorithm using Property 8.2.1. Such a
substitution would indeed speed up the dismantling of small blossoms, but it could increase the
dual objective yz(V ) by Ω(n log τ) = Ω(n log n), which would no longer allow us to reduce the
number of free vertices to O(

√
n) in O(m

√
n) time. In this sense Gabow’s original algorithm

is stronger than Gabow-Tarjan because it guarantees the dual objective is non-increasing over
time.

8.3 The Hybrid Algorithm

The Hybrid algorithm is presented in Figure 9. Recall that τ is the threshold distinguishing
large and small blossoms. The graph at the ith scale of Hybrid, Gi, may include many
artificial vertices and zero-weight edges accumulated in scales 1, . . . , i−1. We use V = V (Gi)
and E = E(Gi) to refer to the vertex and edge set of the current graph.

Let w′, y′, z′, M ′, Ω′ be the edge weights, dual variables, matching and blossom set at the
end of the previous scale. In the first scale, w′, y′, z′ = 0 and M ′, Ω′ = ∅, which satisfies
Property 8.2.3. Remember that both Ω′ and Ω may contain weighted blossoms; the z function
counts all weighted blossoms in Ω ∪ Ω′ whereas z′ only counts Ω′.

8.3.1 Correctness

Lemma 8.3.1. Consider an edge e ∈ V (Gi) at scale i.

• After Step 2 (Scaling), w(e) ≤ yz(e). Moreover, if e ∈ M ′ ∪ ⋃B′∈Ω′ EB′ then w(e) ≥
yz(e)− 6. (In the first scale, w(e) ≥ yz(e)− 6 for every e.)

• After Step 4 (Large Blossom Liquidation), w(e) ≤ yz(e) = ∑
B′∈Ω′:e∈E(B′) z(B′). Fur-

thermore, w(e) is even for all e ∈ E and y(u) is odd for all u ∈ V .

Therefore, Property 8.2.1 holds after Large Blossom Liquidation.
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Hybrid(G, ŵ)

• G0 ← G, y ← 0, z ← 0, Ω← ∅.

• For scales i = 1, · · · , ⌈log((n + 1)N)⌉, run the following steps.

Initialization

1. Set Gi ← Gi−1, y′ ← y, z′ ← z, M ← ∅, Ω′ ← Ω, and Ω← ∅.

Scaling

2. Set w(e) ← 2(w′(e) + (the ith bit of w̄(e))) for each edge e, set y(u) ←
2y′(u) + 3 for each vertex u, and z(B′)← 2z′(B′) for each B′ ∈ Ω′.

Large Blossom Liquidation

3. For each large B′ ∈ Ω′, dissolve B′ by setting y(u) ← y(u) + z(B′)/2, for
each u ∈ B′, then setting z(B′)← 0.

4. Reweight the graph:
w(u, v)← w(u, v)− y(u)− y(v) for each edge (u, v) ∈ E

y(u)← 0 for each vertex u ∈ V

Small Blossom Dissolution

5. Run Gabow’s Algorithm on each maximal small blossom B′ ∈ Ω′.

Free Vertex Reduction

Let F always denote the current set of free vertices and δ the number of
dual adjustments performed in Steps 6 and 7.

6. Run SearchOne(F )
√

n times.
7. While δ < τ and M is not perfect, call BucketSearch(F ), terminating

when an augmenting path is found or when δ = τ .

Perfection

8. Delete all artificial free vertices. For each remaining free vertex u, create
an artificial û with y(û) = τ and a zero-weight matched edge (u, û) ∈M .

• Finalization Delete all artificial vertices in G⌈log((n+1)N)⌉. For each free vertex
u, run PQSearch({u}) to find an augmenting path matching u.

Figure 9
The Hybrid algorithm.
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Proof. At the end of the previous scale, by Property 8.2.3(near domination), y′z′(e) ≥ w′(e)−
2. After the Scaling step,

yz(e) = 2y′z′(e) + 6 ≥ 2w′(e) + 2 ≥ w(e).

If e ∈M ′ ∪ ⋃B′∈Ω′ EB′ was an old matching or blossom edge then

yz(e) = 2y′z′(e) + 6 ≤ 2w′(e) + 6 ≤ w(e) + 6.

In the first scale, yz(e) = 6 and w(e) = 0 or 2 for each edge e ∈ E.

Step 3 will increase some yz-values and w(e) ≤ yz(e) will be maintained. After Step 4,
w(u, v) will decrease by y(u) + y(v), so

w(u, v) ≤
∑

B′∈Ω′:
(u,v)∈E(B′)

z(B′).

From Property 8.2.3(1) in the previous scale, after Step 2 y-values are odd and z-values
are multiples of 4, so y-values remains odd after Step 3. Since initially w(e) is even, w(e)
remains even after Step 4.

Lemma 8.3.2 lists the salient properties of Gabow’s algorithm; it is proved in Section 8.3.3.

Lemma 8.3.2. Suppose that all y-values of the free vertices have the same parity and Prop-
erty 8.2.1 holds. After calling Gabow’s Algorithm on B ∈ Ω′, where yz(e) ≥ w(e) for all
e ∈ B and yz(e) ≤ w(e) + 6 for all e ∈ EB, we have:

• All the old blossoms B′ ⊆ B are dissolved.

• The y-values of the free vertices have the same parity and Property 8.2.1 holds.

• yz(V ) does not increase.

Futhermore, Gabow’s Algorithm runs in O(m(B)(n(B))3/4) time.

Lemma 8.3.3. (Correctness) The Hybrid algorithm will return the maximum weight perfect
matching of G.
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Proof. First we claim that at the end of each scale i, M is a perfect matching in Gi and
Property 8.2.3 is satisfied. By Lemma 8.3.1 and Lemma 8.3.2, Property 8.2.1 is satisfied
after the Small Blossom Dissolution step. By Lemma 8.2.7, The Free Vertex Reduction step
maintains Property 8.2.3. The perfection step adds/deletes the artificial free vertices and
edges to make the matching M perfect. The newly added edges have w(e) = yz(e), and so
Property 8.2.3 is maintained at the end of scale i.

Therefore, Property 8.2.3 is satisfied at the end of scale ⌈log((n + 1)N)⌉. By Lemma 8.2.7,
each call to PQSearch in the Finalization step also maintains Property 8.2.3 while making
the matching perfect. After Finalization, w(M) ≥ w(M∗) − n. Note that in the last scale
w(e) = 2w̄(e) for each edge e, so w̄(M) ≥ w̄(M∗) − n/2. Since w̄(e) is a multiple of n + 1,
w̄(M) = w̄(M∗).

8.3.2 Running time

Next, we analyze the running time.

Lemma 8.3.4. The sum of z-values of large blossoms at the end of a scale is at most 2n.

Proof. The Small Blossom Liquidation step only operates on subgraphs of at most τ vertices
and therefore cannot create any large blossoms. Every dual adjustment performed in the
Free Vertex Reduction step increases the z-values of at most n/τ large root blossoms, each
by exactly 2. (The artificial vertices introduced in the Perfection step of previous scales are
pendants and cannot be in any blossom.) There are at most τ dual adjustments in Free
Vertex Reduction, which implies the lemma.

Lemma 8.3.5. Let M ′ be the matching obtained in the previous scale and M ′′ be any match-
ing. We have w(M ′′) ≤ w(M ′) + 8n −∑u/∈V (M ′′) y(u) after the Small Blossom Dissolution
step of Hybrid.

Proof. Consider the perfect matching M ′ obtained in the previous scale, whose blossom set
Ω′ is partitioned into small and large blossoms, denoted Ω′

SM and Ω′
LG. For the first scale,

we let M ′ be any perfect matching and Ω′ = ∅.
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When we dissolve a blossom B′ ∈ Ω′, there will be one M ′-edge incident to its base such that
yz(u, v) increases by z(B′)/2 = z′(B′). Define K to be the increase in the dual objective due
to Large Blossom Liquidation,

K =
∑

B′∈Ω′
LG

z′(B′).

By Lemma 8.3.4, K ≤ 2n. Let y0, z0 denote the duals right before the Small Blossom Dis-
solution step. Let y, z, Ω denote the duals and blossom set after Small Blossom Dissolution.

w(M ′) ≥ −6|M ′| −K +
∑

e∈M ′
y0z0(e) Lemma 8.3.1

= −8n + y0z0(V ) K ≤ 2n

≥ −8n + yz(V ) By Lemma 8.3.2

= −8n +
∑
u∈V

y(u) +
∑

B′∈Ω
z(B′) · ⌊|B′|/2⌋

≥ −8n +
∑

u/∈V (M ′′)
y(u)

+
 ∑

u∈V (M ′′)
y(u) +

∑
B′∈Ω

z(B′) · ⌊|B′|/2⌋


≥ −8n +
∑

u/∈V (M ′′)
y(u) +

∑
e∈M ′′

yz(e)

≥ −8n +
∑

u/∈V (M ′′)
y(u) + w(M ′′) Property 8.2.1 (domination)

Lemma 8.3.6. Let y5, z5 be the duals after Step 5, just before the Free Vertex Reduction
step. Let M be the matching after Free Vertex Reduction and f be the number of free vertices
with respect to M . Suppose that there exists a perfect matching M ′ such that w(M) ≤
w(M ′) + 8n−∑u/∈V (M) y5(u). Then, f ≤ 10n/τ .

Proof. Let y, z, Ω denote the duals and blossom set after Free Vertex Reduction. By Prop-

170



erty 8.2.3 (near domination),

w(M ′) ≤
∑

e∈M ′
(yz(e) + 2)

=
∑
u∈V

y(u) +
∑

e∈M ′

∑
B∈Ω:

e∈E(B)

z(B) + 2|M ′|

≤
∑
u∈V

y(u) +
∑
B∈Ω

z(B) · ⌊|B|/2⌋+ 2n (#artificial vertices) ≤ n

≤

 ∑
u∈V (M)

y(u) +
∑
B∈Ω

z(B) · ⌊|B|/2⌋
+

∑
u/∈V (M)

y(u) + 2n

=
∑
e∈M

yz(e) +
∑

u/∈V (M)
y(u) + 2n

≤ w(M) +
∑

u/∈V (M)
y(u) + 2n near tightness

= w(M) +
∑

u/∈V (M)
y5(u)− fτ + 2n y(u) = y5(u)− τ

= w(M ′) + 10n− fτ by assumption of M ′

Therefore, fτ ≤ 10n, and f ≤ 10n/τ .

Therefore, because Lemma 8.3.5 holds for any matching M ′′, we can apply Lemma 8.3.6 to
show the number of free vertices after Free Vertex Reduction is bounded by O(n/τ).

Theorem 8.3.7. Hybrid computes an mwpm in time

O((m
√

n + mτ 3/4 + (m + n log n)(n/τ)) log(nN)).

Proof. Initialization, Scaling, and Large Blossom Liquidation still take O(n) time. By
Lemma 8.3.2, the Small Blossom Dissolution step takes O(m(B)(n(B))3/4) time for each
maximal small blossom B ∈ Ω′, for a total of O(mτ 3/4). We now turn to the Free Vertex
Reduction step. After

√
n iterations of SearchOne(F ), we have performed ⌈

√
n⌉ units of

dual adjustment from all the remaining free vertices. By Lemma 8.3.5 and Lemma 8.3.6,
there are at most 10n/⌈

√
n⌉ = O(

√
n) free vertices. The difference between w(M) and yz(V )

is O(n), so we can implement BucketSearch with an array of O(n) buckets for the priority
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queue. A call to BucketSearch(F ) that finds p ≥ 0 augmenting paths takes O(m(p + 1))
time. Only the last call to BucketSearch may fail to find at least one augmenting path,
so the total time for all such calls is O(m

√
n).

By Lemma 8.3.6 again, after the Free Vertex Reduction, there can be at most 10n/τ free
vertices. Therefore, in the Finalization step, at most (10n/τ)⌈log((n + 1)N)⌉ free vertices
emerge after we remove artificial vertices. It takes O((m + n log n)(n/τ) log(nN)) time to
rematch them with PQSearch [55]. So the total running time is O((m

√
n + mτ 3/4 + (m +

n log n)(n/τ)) log(nN)).

The running time of Hybrid is not particularly sensitive to the implementation of
PQSearch. Setting τ =

√
n log n, we get a running time of O(m

√
n log(nN)) using Gabow’s

implementation [55] or its slower predecessors [57,63].

8.3.3 Gabow’s Algorithm

The input is a maximal old small blossom B ∈ Ω′ containing no matched edges, where
yz(e) ≥ w(e) for all e ∈ B and yz(e) ≤ w(e)+6 for all e ∈ EB. Let T denote the old blossom
subtree rooted at B. The goal is to dissolve all the old blossoms in T and satisfy Property
8.2.1 without increasing the dual objective value yz(V ). Gabow’s Algorithm achieves this in
O(m(B)(n(B))3/4) time. This is formally stated in Lemma 8.3.2.

Gabow’s Algorithm decomposes T into major paths. Recall that a child B1 of B2 is a major
child if |B1| > |B2|/2. A node R is a major path root if R is not a major child, so B is a
major path root. The major path P (R) rooted at R is obtained by starting at R and moving
to the major child of the current node, so long as it exists.

Gabow’s Algorithm is to traverse each node R in T in postorder, and if R is a major path root,
to call DismantlePath(R). The outcome of DismantlePath(R) is that all remaining old
sub-blossoms of R are dissolved, including R. Define the rank of R to be ⌊log n(R)⌋. Suppose
that DismantlePath(R) takes O(m(R)(n(R))3/4) time. If R and R′ are major path roots
with the same rank, then they must be disjoint. Summing over all ranks, the total time to
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DismantlePath(R): R is a major path root.

Let F be the set of free vertices that are still in undissolved blossoms of R.

1. While P (R) contains undissolved blossoms and |F | ≥ 2,

• Sort the undissolved shells in non-increasing order by the number
of free vertices, excluding those with less than 2 free vertices. Let
S1, S2, . . . , Sk be the resulting list.
• For i← 1 . . . k, call ShellSearch(Si).

2. If P (R) contains undissolved blossoms (implying |F | = 1)

• Let ω be the free vertex in R. Let B1 ⊂ · · · ⊂ Bℓ be the undissolved
blossoms in P (R) and calculate T = ∑

i z(Bi)/2.
• For i = 1, 2, . . . , ℓ, set

y(u)← y(u) + z(Bi)/2, for each u ∈ Bi,
z(Bi)← 0.

• Call PQSearch({ω}), halting after T dual adjustments.

dissolve B and its sub-blossoms is therefore

O

⌊log n(B)⌋∑
r=1

m(B) · (2r+1)3/4

 = O
(
(m(B)(n(B))3/4

)
.

Thus, our focus will be on the analysis of DismantlePath(R).

The procedure DismantlePath(R)

Because DismantlePath is called on the sub-blossoms of B in postorder, upon calling
DismantlePath(R) the only undissolved blossoms in R are those in P (R). Let C, D ∈
P (R)∪ {∅} with C ⊃ D. The subgraph induced by C\D is called a shell, denoted G(C, D).
Since all blossoms have an odd number of vertices, G(C, D) is an even size shell if D ̸= ∅
and an odd size shell if D = ∅. It is an undissolved shell if both C and D are undissolved, or
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ShellSearch(C, D)

Let C∗ ⊇ C be the smallest undissolved blossom containing C.
Let D∗ ⊆ D be the largest undissolved blossom contained in D, or ∅ if none
exists.
Let F ∗ be the set of free vertices in G(C∗, D∗).

Repeat Augmentation, Blossom Shrinking, Dual Adjustment, and Blossom Dis-
solution until a halting condition occurs.

• Augmentation:
Extend M to contain an mcm in the subgraph G(C∗, D∗) and update F ∗.

• Blossom Shrinking:
Find and shrink blossoms reachable from F ∗, exactly as in Edmonds’ algorithm.

• Dual Adjustment:
Peform dual adjustments (from F ∗) as in Edmonds’ algorithm, and perform a
unit translation on C∗ and D∗ as follows:

z(C∗)← z(C∗)− 2
z(D∗)← z(D∗)− 2 if D∗ ̸= ∅

y(u)← y(u) + 2 for all u ∈ D∗

y(u)← y(u) + 1 for all u ∈ C∗ \D∗

• Blossom Dissolution:
Dissolve root blossoms in Ω with zero z-values as long as they exist. In addition,

If z(C∗) = 0, set Ω′ ← Ω′\{C∗} and update C∗.
If z(D∗) = 0, set Ω′ ← Ω′\{D∗} and update D∗.
Update F ∗ to be the set of free vertices in G(C∗, D∗).

Halting Conditions:

1. The Augmentation step discovers an augmenting path.

2. G(C∗, D∗) absorbs vertices already searched in the same iteration of
DismantlePath.

3. C∗ was the outermost undissolved blossom and dissolves during Blossom Dis-
solution.

Figure 10: ShellSearch(C, D)
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C is undissolved and D = ∅. We call an undissolved shell atomic if there is no undissolved
blossom C ′ ∈ Ω′ with D ⊂ C ′ ⊂ C.

The procedure DismantlePath(R) has two stages. The first consists of iterations. Each
iteration begins by surveying the undissolved blossoms in P (R), say they are Bk ⊃ Bk−1 ⊃
· · · ⊃ B1. Let the corresponding atomic shells be Si = G(Bi, Bi−1), where B0

def= ∅ and let
fi be the number of free vertices in Si. We sort the (Si) in non-increasing order by their
number of free vertices and call ShellSearch(Si) in the order, but refraining from making
the call unless Si contains at least two free vertices.

The procedure ShellSearch(C, D) is simply an instantiation of EdmondsSearch with
the following features and differences.

1. There is a current atomic shell G(C∗, D∗), which is initially G(C, D), and the Aug-
mentation, Blossom Formation, and Dual Adjustment steps only search from the set
of free vertices in the current atomic shell. By definition C∗ is the smallest undissolved
blossom containing C and D∗ the largest undissolved blossom contained in D, of ∅ if
no such blossom exists.

2. An edge is eligible if it is tight (Criterion 1) and in the current atomic shell. (Tight
edges that straddle the shell are specifically excluded.)

3. Each unit of dual adjustment is accompanied by a unit translation of C∗ and D∗, if
D∗ ̸= ∅. This may cause either/both of C∗ and D∗ to dissolve if their z-values become
zero, which then causes the current atomic shell to be updated.

4. Like EdmondsSearch, ShellSearch halts after the first Augmentation step that
discovers an augmenting path. However, it halts in two other situations as well. If C∗

is the outermost undissolved blossom in P (R) and C∗ dissolves, ShellSearch halts
immediately. If the current shell G(C∗, D∗) ever intersects a shell searched in the same
iteration of DismantlePath(R), ShellSearch halts immediately. Therefore, at the
end of an iteration of DismantlePath(R), every undissolved atomic shell contains at
least two vertices that were matched (via an augmenting path) in the iteration.

Blossom translations are used to preserve Property 8.2.1(domination) for all edges, specif-
ically those crossing the shell boundaries. We implement ShellSearch(C, D) using an
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array of buckets for the priority queue, as in BucketSearch, and execute the Aug-
mentation step using the Micali-Vazirani [122, 169] algorithm or Gabow-Tarjan cardinal-
ity matching algorithm [61, §10]. Let t be the number of dual adjustments, G(C∗, D∗)
be the current atomic shell before the last dual adjustment, and p ≥ 0 be the number of
augmenting paths discovered before halting. The running time of ShellSearch(C, D) is
O(t+m(C∗, D∗) ·min{p+1,

√
n(C∗, D∗)}). We will show that t is bounded by O(n(C∗, D∗)))

as long as the number of free vertices inside G(C∗, D∗) is at least 2. See Corollary 8.3.13.

The first stage of DismantlePath(R) ends when either all old blossoms in P (R) have
dissolved (in which case it halts immediately) or there is exactly one free vertex remain-
ing in an undissolved blossom. In the latter case we proceed to the second stage of
DismantlePath(R) and liquidate all remaining old blossoms. This preserves Property 8.2.1
but screws up the dual objective yz(R), which must be corrected before we can halt. Let
ω be the last free vertex in an undissolved blossom in R and T = ∑

i z(Bi)/2 be the
aggregate amount of translations performed when liquidating the blossoms. We perform
PQSearch({ω}), halting after exactly T dual adjustments. The search is guaranteed not
to find an augmenting path. It runs in O(m(R) + n(R) log n(R)) time [55].

To summarize, DismantlePath(R) dissolves all old blossoms in P (R), either in stage
1, through gradual translations, or in stage 2 through liquidation. Moreover, Property
1 is maintained throughout DismantlePath(R). In the following, we will show that
DismantlePath(R) takes O(m(R)(n(R))3/4) time and the dual objective value yz(S) does
not increase for every S such that R ⊆ S. In addition, we will show that at all times, the
y-values of all free vertices have the same parity.

Properties

We show the following lemmas to complete the proof of Lemma 8.3.2. Let y0, z0 denote the
initial duals, before calling Gabow’s Algorithm.

Lemma 8.3.8. Throughout DismantlePath(R), we have y(u) ≥ y0(u) for all u ∈ R.
Moreover, the y-values of free vertices in R are always odd.

Proof. We will assume inductively that this holds after every recursive call of
DismantlePath(R′) for every R′ that is a non-major child of a P (R) node. Then, it
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suffices to show y(u) does not decrease and the parity of free vertices always stays the same
during DismantlePath(R). Consider doing a unit of dual adjustment inside the shell
G(C∗, D∗). Every vertex in D∗ has its y-value increased by 2, every vertex in C∗ either has
its y-value unchanged or increased by 1 or 2. The y-values of the free vertices in C∗ remain
unchanged.

Consider that in the second stage of DismantlePath(R), when artificially liquidating
blossom Bi, y(ω) increases by z(Bi)/2. Therefore, y(ω) increases by T before the call
to PQSearch({ω}). Define w′(u, v) = yz(u, v) − w(u, v). The eligible edges must have
w′(u, v) = 0. We can easily see that when we dissolve Bi and increase the y-values of ver-
tices in Bi, the w′-distance from ω to any vertex outside the largest undissolved blossom
Bℓ increases by z(Bi)/2. Therefore, the total distance from ω to any vertex outside Bℓ in-
creases by T after dissolving all the blossoms. Since every other vertex inside Bℓ is matched,
PQSearch({ω}) will perform T dual adjustments and halt before finding an augmenting
path. We conclude that y(ω) is restored to the value it had before the second stage of
DismantlePath(R).

Lemma 8.3.9. If Property 8.2.1 (granularity, tightness, and domination) and Property
8.2.8 are satisfied and y-values of the free vertices have the same parity, then Prop-
erty 8.2.1(granularity, tightness, and domination) and Property 8.2.8 hold after calling
ShellSearch(C, D).

Proof. First we will argue that Property 8.2.1 holds after calling ShellSearch(C, D).
The current atomic shell G(C∗, D∗) cannot contain any old blossoms, since we are calling
DismantlePath(R) in postorder. Because we are simulating EdmondsSearch(F ∗) from
the set F ∗ of free vertices in G(C∗, D∗), whose y-values have the same parity, by Lemma 8.2.7,
Property 8.2.1 holds in G(C∗, D∗). It is easy to check that Property 8.2.1(1,2) (granularity,
active blossoms) hold in G. Now we only need to check Propery 8.2.1(3,4) (domination and
tightness) for the edges crossing C∗ or D∗. By Property 8.2.8, there are no crossing matched
edges and all the newly created blossoms lie entirely in G(C∗, D∗). Therefore, tightness must
be satisfied. The translations on blossoms C∗ and D∗ keep the yz-values of edges straddling
C∗\D∗ non-decreasing, thereby preserving domination.

Now we claim Property 8.2.8 holds. We only consider the effect on the creation of new
blossoms, since the dissolution of C∗ or D∗ cannot violate Property 8.2.8. Since edges
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straddling the atomic shell G(C∗, D∗) are automatically ineligible, we will only create new
blossoms inside G(C∗, D∗). Since G(C∗, D∗) does not contain any old blossoms and the
new blossoms in G(C∗, D∗) form a laminar set, Property 8.2.8(1,2) hold. Similarly, the
augmentation only takes place in G(C∗, D∗) which does not contain old blossoms, Property
8.2.8(3) holds.

Lemma 8.3.10. Consider an execution of EdmondsSearch(F ) when Property 8.2.1 is
satisfied, using Criterion 1 of eligibility. Each unit of dual adjustment decreases yz(S) by
|F |, if S ⊇ V̂in ∪ V̂out.

Proof. Since V̂in∪ V̂out ⊆ S, no matched edges cross S. By Property 8.2.1(tightness) yz(S) =
w(M ∩ S) + ∑

u∈S\V (M) y(u). A dual adjustment preserves tightness, reducing the second
term by |F |.

Lemma 8.3.11. For any S such that R ⊆ S, yz(S) never increases throughout
DismantlePath(R).

Proof. Consider a dual adjustment in ShellSearch(C, D). Let F ∗ be the set of free vertices
in the current atomic shell G(C∗, D∗). By Lemma 8.3.10, the search inside G(C∗, D∗) de-
creases yz(S) by |F ∗|. The translation on C∗ increases yz(S) by 1. If D∗ ̸= ∅, the translation
of D∗ also increases yz(S) by 1. Therefore, a dual adjustment in ShellSearch decreases
yz(S) by |F ∗| − 2, if D∗ ̸= ∅, and by |F ∗| − 1 if D = ∅. Since G(C∗, D∗) contains at least 2
free vertices, yz(S) does not increase during DismantlePath(R).

Suppose the second stage of DismantlePath(R) is reached, that is, there is exactly one free
vertex ω in an undissolved blossom in R. When we liquidate all remaining blossoms in R,
yz(S) increases by T . As shown in the proof of Lemma 8.3.8, PQSearch({ω}) cannot stop
until it reduces yz(ω) by T . By Lemma 8.3.10 this decreases yz(S) by T , thereby restoring
yz(S) back to its value before the second stage of DismantlePath(R).

The following lemma considers a not necessarily atomic undissolved shell G(C, D) at some
point in time, which may, after blossoms dissolutions, become an atomic shell. Specifically, C

and D are undissolved but there could be many undissolved C ′ ∈ Ω′ for which D ⊂ C ′ ⊂ C.
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Lemma 8.3.12. Consider a call to DismantlePath(R) and any shell G(C, D) in R.
Throughout the call to DismantlePath, so long as C and D are undissolved (or C is
undissolved and D = ∅) yz(C)− yz(D) ≥ y0z0(C)− y0z0(D)− 3n(C \D).

Proof. If D = ∅, we let D′ be the singleton set consisting of an arbitrary vertex in C.
Otherwise, we let D′ = D. Let ω be a vertex in D′. Due to the structure of the blossoms, we
can find a perfect matching Mω that is also perfect when restricted to D′ \ {ω} or C ′ \D′,
for any C ′ ∈ Ω′ with C ′ ⊃ D′. By Lemma 8.3.1, every e ∈Mω ∩ER has y0z0(e) ≤ w(e) + 6.
Therefore,

∑
e∈Mω∩E(C\D′)

w(e) ≥
∑

e∈Mω∩E(C\D′)
y0z0(e)− 6n(C \D′)/2

=
∑

u∈V (C\D′)
y0(u) +

∑
C′∈Ω′:
D′⊂C′

z0(C ′) · |C
′ ∩ C| − |D′|

2 − 3n(C \D′)

= y0z0(C)− y0z0(D′)− 3n(C \D′).

On the other hand, by the domination condition of Property 8.2.1, we have

∑
e∈Mω∩E(C\D′)

w(e)

≤
∑

e∈Mω∩E(C\D′)
yz(e)

=
∑

u∈V (C\D′)
y(u) +

∑
C′∈Ω′:
D′⊂C′

z(C ′) · |C
′ ∩ C| − |D′|

2 +
∑
B∈Ω

z(B) · |Mω ∩ E(B ∩ C \D′)|

≤
∑

u∈V (C\D′)
y(u) +

∑
C′∈Ω′:
D′⊂C′

z(C ′) · |C
′ ∩ C| − |D′|

2 +
∑

B∈Ω:
B⊂C

z(B) · ⌊ |B| − |B ∩D′|
2 ⌋
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Consider a B ∈ Ω that contributes a non-zero term to the last sum. By Property 8.2.8,
Ω ∪ Ω′ is laminar so either B ⊆ D or B ⊆ C \D. In the first case B contributes nothing to
the sum. In the second case we have |B ∩D′| ≤ 1 (it can only be 1 when D = ∅ and D′ is a
singleton set intersecting B) so it contributes exactly z(B) · ⌊|B|/2⌋. Continuing on,

=
∑

u∈V (C\D′)
y(u) +

∑
C′∈Ω′:
D′⊂C′

z(C ′) · |C
′ ∩ C| − |D′|

2 +
∑

B∈Ω:
B⊂(C\D)

z(B) · ⌊ |B|2 ⌋

= yz(C)− yz(D′).

Therefore, yz(C)−yz(D′) ≥ y0z0(C)−y0z0(D′)−3n(C, D′). When D = ∅ we have yz(D′) =
y(ω) ≥ y0(ω). Therefore, regardless of D, yz(C)−yz(D) ≥ y0z0(C)−y0z0(D)−3n(C, D).

Corollary 8.3.13. The number of dual adjustment in ShellSearch(C, D) is bounded by
O(n(C∗ \D∗)) where G(C∗, D∗) is the current atomic shell when the last dual adjustment is
performed.

Proof. We first claim that the recursive call of DismantlePath(R′) on the descendants
R′ of P (R) does not decrease yz(C∗) − yz(D∗). If R′ ⊂ D∗, then any dual adjustments
done in DismantlePath(R′) changes yz(C∗) and yz(D∗) by the same amount. Otherwise,
R′ ⊂ G(C∗, D∗). In this case, DismantlePath(R′) has no effect on yz(D∗) and does not
increase yz(C∗) by Lemma 8.3.10. Therefore, yz(C∗)− yz(D∗) ≤ y0z0(C∗)− y0z0(D∗).

First consider the period in the execution of ShellSearch(C, D) when D∗ ̸= ∅. During
this period ShellSearch performs some number of dual adjustments, say k. There must
exist at least two free vertices in G(C∗, D∗) that participate in all k dual adjustments. Note
that a unit translation on an old blossom C ′′ ∈ Ω′, where D∗ ⊆ C ′′ ⊆ C∗, has no net effect
on yz(C∗) − yz(D∗), since it increases both yz(C∗) and yz(D∗) by 1. By Lemma 8.3.10,
yz(C∗) − yz(D∗) decreases by at least 2k due to the dual adjustments. By Lemma 8.3.12,
yz(C∗)− yz(D∗) decreases by at most 3n(C∗ \D∗), and so k ≤ 3/2 · n(C∗ \D∗).

Now consider the period when D∗ = ∅. Let G(C ′, D′) to be the current atomic shell just
before the smallest undissolved blossom D′ dissolves and let k′ be the number of dual ad-
justments performed in this period, after D′ dissolves. By Lemma 8.3.10, all prior dual
adjustments have not increased yz(C∗). There exists at least 3 free vertices in C∗ that par-
ticipate in all k′ dual adjustments. Each translation of C∗ increases yz(C∗) by 1. By
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Lemma 8.3.10, yz(C∗) decreases by at least 3k′ − k′ = 2k′ due to the k′ dual adjust-
ments and translations performed in tandem. By Lemma 8.3.12, yz(C∗) can decrease by
at most 3n(C∗), so k′ ≤ 3/2 · n(C∗). The total number of dual adjustments is therefore
k + k′ ≤ 3/2(n(C ′ \D′) + n(C∗)) < 3n(C∗).

The following two lemmas are adapted from [54, Lemmas 2.4 and 2.5].

Lemma 8.3.14. For any ϵ > 0, the number of iterations of DismantlePath(R) with
|F | ≥ (n(R))ϵ is O((n(R))1−ϵ).

Proof. Consider an iteration in DismantlePath(R). Let f be the number of free vertices
before this iteration. Call an atomic shell big if it contains more than 2 free vertices. We
consider two cases depending on whether more than f/2 vertices are in the big atomic shells
or not. Suppose big shells do contain more than f/2 vertices. The free vertices in an atomic
shell will not participate in any dual adjustment only if some adjacent shells have dissolved
into it. When a shell containing f ′ free vertices dissolves into (at most 2) adjacent shells and
the call to ShellSearch immediately halts, it must be the case that it prevents at most
2f ′ other free vertices from participating in a dual adjustment, due to the order we search
the shells. Therefore, at least f/6 free vertices in the big shells participate in at least one
dual adjustment. Let Si be a big even shell with fi free vertices. If they are subject to a
dual adjustment then yz(R) decreases by at least (fi−2) ≥ fi/2 by Lemma 8.3.10, since the
shell is big. If Si is a big odd shell then the situation is even better: by Lemma 8.3.10 yz(R)
is reduced by (fi − 1) ≥ 2

3fi. Therefore, yz(R) decreases by at least f/12.

The case when more than f/2 free vertices are in small atomic shells can only happen O(log n)
times. In this case, there are at least ⌊f/4⌋ small shells. In each shell, there must be vertices
that were matched during the previous iteration. Therefore, in the previous iteration, there
must have been at least f + 2⌊f/4⌋ free vertices. This can only happen O(log n) times, since
the number of free vertices shrinks by a constant factor each time it happens.

By Lemma 8.3.11, yz(R) does not increase in the calls to DismantlePath on the descen-
dants of P (R). By Lemma 8.3.12, since yz(R) decreases by at most 3n(R), the number of
iterations with |F | ≥ (n(R))ϵ is at most 12(n(R))1−ϵ + O(log n) = O((n(R))1−ϵ).

Lemma 8.3.15. DismantlePath(R) takes at most O((m(R)n(R))3/4) time.
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Proof. Recall that ShellSearch is implemented just like BucketSearch, using an ar-
ray for a priority queue. This allows all operations (insert, deletemin, decreasekey) to be
implemented in O(1) time, but incurs an overhead linear in the number of dual adjust-
ments/buckets scanned. By Corollary 8.3.13 this is ∑i O(n(Si)) = O(n(R)) per iteration.
By Lemma 8.3.14, there are at most O((n(R))1/4) iterations with |F | ≥ (n(R))3/4. Consider
one of these iterations. Let {Si} be the shells in the end of iteration. The augmentation takes∑

i O(m(Si)
√

n(Si)) = O(m(R)
√

n(R)) time. Therefore, the total time of these iterations is
O(m(R)(n(R))3/4). There can be at most (n(R))3/4 more iterations afterwards, since each
iteration matches at least 2 free vertices. Therefore, the cost for all subsequent Augmen-
tation steps is O(m(R)(n(R))3/4). Finally, the second stage of DismantlePath(R), when
one free vertex in an undissolved blossom remains, takes O(m(R)+n(R) log n(R)) time [55].
Therefore, the total running time of DismantlePath(R) is O(m(R)(n(R))3/4).

Let us summarize what has been proved. By the inductive hypothesis, all calls to
DismantlePath preceding DismantlePath(R) have (i) dissolved all old blossoms in R

excluding those in P (R), (ii) kept the y-values of all free vertices in R the same parity
(odd) and kept yz(R) non-increasing, and (iii) maintained Properties 8.2.1 and 8.2.8. If
these preconditions are met, the call to DismantlePath(R) dissolves all remaining old
blossoms in P (R) while satisfying (ii) and (iii). Futhermore, DismantlePath(R) runs in
O(m(R)(n(R))3/4) time. This concludes the proof of Lemma 8.3.2.

8.4 Conclusion

We have presented a new scaling algorithm for mwpm on general graphs that runs in
O(m

√
n log(nN)) time, which is the first significant improvement to Gabow and Tarjan’s

1991 algorithm [61]. Our algorithm is momentarily optimal in the sense that, before it
can be improved, one would have to first improve the bipartite weighted matching algo-
rithms [38, 60, 68, 138], which also run in O(m

√
n log(nN)) time, but are much simpler due

to the absence of blossoms. Moreover, each scale of our algorithm runs in O(m
√

n) time,
matching the best mcm algorithm for general graphs [122,169], so up to the O(log(nN)) fac-
tor, ours cannot be improved without first improving the Micali-Vazirani algorithm. These
observations are merely meant to point out algorithmic barriers, not claim hard lower bounds.
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Indeed, Mądry’s [123] recent Õ(m10/7)-time algorithm for max-flow on unit-capacity networks
implies that mcm on bipartite graphs can be solved in the same time bound. The logical
next step is to generalize it to min-cost flow (and hence bipartite mwpm), and eventually to
mwpm on general graphs, which is a bidirected flow problem.

We are not aware of any experimental implementations of either Gabow’s algorithm [54]
or the Gabow-Tarjan algorithm [61], so it remains an open question whether the scaling
technique can offer any practical speedups over implementations of Edmonds’ algorithm.
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Chapter 9

A Scaling Algorithm for Maximum Weight Matching
in Bipartite Graphs

9.1 Introduction

The input is a weighted bipartite graph G = (V, E, w) where |V | = 2n, |E| = m, w : E → R.
A matching M is a set of vertex-disjoint edges. The maximum weight matching (mwm)
problem is to find a matching M such that w(M) = ∑

e∈M w(e) is maximized among all
matchings, whereas the maximum weight perfect matching (mwpm) problem requires every
vertex to be matched.

The mwpm problem and the mwm are reducible to each other [60]. To reduce from the
problem of mwm to mwpm, obtain G̃ by making two copies of G and add a zero weight edge
between each two copies of vertex. Then, G̃ is still bipartite and a mwpm in G̃ gives a mwm
in G. Conversely, to reduce from the problem of mwpm to mwm, we simply add nN to the
weight of each edge, where N is the maximum weight of the edges. This will guarantee that
the mwm found is perfect.

Figure 1 shows the previous results on these problems. The first procedure for solving the
mwpm problem dates back to 150 years ago by Jacobi [85]. However, the procedure was
not discovered until recently [137]. In the 1950s, Kuhn [112] and Munkres [131] developed
the “Hungarian” algorithm to solve the mwpm problem, where the former credited it to the
earlier works of König and Egerváry. Later in [6], Balinski and Gomory gave an alternate
approach to this problem, the primal method. The previous approaches grow the matching
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from empty while maintaining the feasibility of the dual program. In contrast, the primal
method maintains the perfect matching from the beginning and fixes the infeasible dual
solution along the way.

Bipartite Weighted Matching
Year Author Problem Running Time Notes
1865 Jacobi
1955 Kuhn
1957 Munkres

mwpm poly(n)

1964 Balinski & Gomory
1970 Edmonds & Karp(⋆)

1971 Tomizawa(⋆) mwpm mn log n Using binary heaps

1977 Johnson(⋆) mwpm mn logd n Using d-ary heaps, d = 2m/n

mwpm mn3/4 log N1983 Gabow
mwm Nm

√
n

N = max. integer weight

1984 Fredman & Tarjan(⋆) mwpm mn + n2 log n Using Fibonacci heaps
1988 Gabow & Tarjan
1992 Orlin & Ahuja

mwpm m
√

n log(nN) integer weights

1996 Cheriyan & Mehlhorn mwpm n2.5 log(nN)( log log n
log n )1/4

1999 Kao, Lam, Sung & Ting mwm Nm
√

n( log(n2/m)
log n ) integer weights

2002 Thorup(⋆) mwpm mn integer weights, randomized
2003 Thorup(⋆) mwpm mn + n2 log log n integer weights

integer weights, randomized2006 Sankowski mwpm Nnω

ω = matrix mult. exponent
new result mwm m

√
n log N integer weights

Table 4: Previous results on the mwpm and mwm problems. Algorithms that solve mwpm also
solve mwm with the same running time. Conversely, algorithms that solve mwm can be used to
solve mwpm, while the factor N becomes nN in the running time. (*) denotes implementations of
the Hungarian algorithm using different priority queues.

Later, Edmonds and Karp [44] and, independently, Tomizawa [167], observed that imple-
menting the Hungarian algorithm for mwpm amounted to computing single-source shortest
paths n times on a nonnegatively weighted graph. The running time of their algorithm
depends on the best implementation of Dijkstra’s algorithm, which has been improved over
time [50,91,163,164].

Faster algorithms are known when the edge weights are bounded integers in [−N, N ], and
a word RAM model with log n + log N word size is assumed. Gabow [53] gave a scaling
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approach for the mwpm problem, where he also showed the mwm problem can be solved in
O(Nm

√
n) time. Gabow and Tarjan [60] improved the scaling approach to solve the mwpm

in O(m
√

n log(nN)) time. Later, Orlin and Ahuja [138] gave another algorithm with the
same running time.

There are several faster algorithms for dense graphs. Cheriyan and Mehlhorn [20] exploited
the RAM model and used a bit compression technique to implement Orlin and Ahuja’s
algorithm. Kao et al. [93] showed that the mwm problem can be decomposed into mwm
problems with uniform weights, where a faster algorithm for the maximum cardinality
matching problem in [49] can be applied. Extending from [79, 130], Sankowski gave an
algebraic approach to solve this problem [155]. For general graphs, the relevant works are
in [42,52,54,55,57,61,63,79,130]

In this paper, we look at the mwm problem with bounded integers in [0, N ], because
negative weights can always be ignored. We present a new scaling algorithm that runs
in O(m

√
n log N) time. Our algorithm improves the previous bound of O(Nm

√
n) by

Gabow [53] and O(m
√

n log (nN)) by Gabow and Tarjan [60], which stood for over 20 years.
Other algorithms by [93] and [155] are not strongly polynomial and outperform ours only
when N = O(1) and the graph is very dense. The former requires m = ω(n2−ϵ) for any
ϵ > 0, whereas the latter requires m = ω(nω−1/2), which is ω(n1.876) by the current fastest
matrix multiplication technology [25]. Though our improvement is small, it indicates that
the mwm problem might be easier than the mwpm problem.

Our approach consists of three phases. The first phase uses a search similar to one iteration
of [60] to find a good initial matching. The second phase is the scaling phase. In contrast
to [60], where they run up to log(nN) scales to ensure the solution is optimal, we run
only up to log N scales. Then, the third phase makes the solution optimal by fixing the
absolute error left by the first two phases. In some sense, our first and third phase have the
effect equivalent to 0.5 log n scales of the Gabow-Tarjan algorithm [60], thereby saving the
additional log n scales. Like Balinski and Gomory’s algorithm [6], our algorithm adjusts the
matching throughout the second and third phases instead of finding a new one in each scale.
In addition, as in [66], we bound our running time by using Dilworth’s Lemma, in particular,
that every partial order has a chain or anti-chain of size Ω(

√
n).
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9.1.1 Definitions and Preliminaries

A matching M is a set of vertex-disjoint edges. A vertex is free if it is not incident to an M

edge, otherwise it is matched. If a vertex u is matched, denote its mate by u′. The mwm
problem can be expressed as the following integer linear program, where x represents the
incidence vector of a matching.

maximize
∑
e∈E

w(e)x(e)

subject to 0 ≤ x(e) ≤ 1, x(e) is an integer ∀e ∈ E (9.1)∑
e=uv∈E

x(e) ≤ 1 ∀u ∈ V

It was shown that basic solutions to the linear program are integral. The dual of the linear
program is as follows.

minimize
∑
u∈V

y(u)

subject to y(e) ≥ w(e) ∀e ∈ E (9.2)

y(u) ≥ 0 ∀u ∈ V

where we define y(uv) def= y(u) + y(v)

By the complementary slackness condition, M and y are optimal iff ∀e ∈ M , y(e) = w(e)
and for all free vertices u, y(u) = 0. In the MWPM problem, the third inequality in the LP
becomes equality, ∑e=uv∈E x(e) = 1,∀u ∈ V . Therefore, the condition y(u) ≥ 0,∀u ∈ V is
dropped in the dual program. If ∀e ∈M , y(e) = w(e), then M and y are optimal.

Definition 9.1.1. Given δ0, let δi = δ0/2i, wi(e) = δi⌊w(e)/δi⌋. The eligibility graph G[c, d]
at scale i is the subgraph of G containing all edges e satisfying either e /∈M and y(e) = wi(e)
or e ∈M and wi(e) + cδi ≤ y(e) ≤ wi(e) + dδi.

An alternating path (or cycle) is one whose edges alternate between M and E \M . Our
algorithm consists of three phases, and we let δ0 = 2⌊log(N/

√
n)⌋ and the number of scales

L = ⌈log N⌉, so that w(e) = wL(e) for all e ∈ E. An augmenting walk/path/cycle is defined
differently in each phase:
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1. Phase I: The phase operates at scale 0. An augmenting walk refers to an alternating
path in G[1, 1] with free endpoints. For convenience, call such a path an augmenting
path.

2. Phase II: The phase operates at scales 1 . . . L. An augmenting walk is either an al-
ternating cycle in G[1, 3] or an alternating path in G[1, 3] whose end vertices have 0
y-values. For convenience, call the former an augmenting cycle and the latter an aug-
menting path. Notice that an endpoint of an augmenting path can be either free or
matched. If an endpoint is matched, then we require its mate to be contained in the
path as well.

3. Phase III: The phase operates at scale L. An augmenting walk is in G[0, 1] and defined
the same as Phase II with one more restriction: The walk P must contain at least one
matched edge that is not tight. That is, y(e) ̸= wL(e), for some e ∈ P ∩M .

Given an augmenting walk P , by augmenting M along P , we get a matching M ⊕ P =
(M \P )∪ (P \M). Given a subgraph H ⊆ G and a vertex set X ⊆ V , let Vodd(X, H) denote
the set of vertices reachable through an odd-length alternating path in H starting with an
unmatched edge that incidents to a vertex in X, and Veven(X, H) be the set reachable
via an even-length alternating path. For convenience, sometimes we denote a singleton {x}
by x. Let −→G denote the directed graph obtained by orienting edges e from left to right if
e /∈ M , from right to left if e ∈ M . Every alternating path in G must be a path in −→G and
vice versa.

9.2 Algorithm

Property 9.2.1. Throughout scale i ∈ [0, L], we maintain matching M and dual variables
y satisfying the following:

1. (Granularity of y) y(u) is a nonnegative multiple of δi.

2. (Domination) y(e) ≥ wi(e) for all e ∈ E.
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3. (Near Tightness) y(e) ≤ wi(e) + 3δi for e ∈M . At the end of scale i, it is tightened
so that y(e) ≤ wi(e) + δi for e ∈M .

4. (Free Vertex Duals) The y-values of free vertices are 0 at the end of scale i.

Lemma 9.2.2. Let M∗ be the optimal matching. If M and y satisfy Property 9.2.1 at the
end of the scale L, then w(M) ≥ w(M∗) − nδL. Furthermore, when M is perfect and M∗

is the optimal perfect matching, the same inequality holds if y(e) ≥ w(e) for all e ∈ E and
y(e) ≤ w(e) + δL for e ∈M .

Proof.

w(M) =
∑
e∈M

w(e)

≥
∑
e∈M

y(e)− nδL near tightness

=
∑
u∈V

y(u)− nδL free vertex duals

≥
∑

e∈M∗
y(e)− nδL non-negativity

≥
∑

e∈M∗
w(e)− nδL domination

= w(M∗)− nδL

If M and M∗ are perfect, then we can skip from the second line to the fourth line, since∑
e∈M y(e)− nδL = ∑

e∈M∗ y(e)− nδL.

The goal of each phase is as follows. Phase I finds the initial matching and dual variables
satisfying Property 9.2.1 for scale i = 0. Phase II maintains Property 9.2.1 after entering
from scale i − 1 to i, for i ∈ [1, L]. In particular, we want to have y(e) ≤ wi(e) + δi for all
e ∈ M at the end of each scale. Phase III tightens the near tightness condition to exact
tightness for all e ∈M after scale L so that y(e) = wL(e) = w(e) for all e ∈M .
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9.2.1 Phase I

In this phase, our algorithm will be working on G[1, 1] so that if one augments along an
augmenting walk, all edges of the walk become ineligible.

Our algorithm maintains an invariant: All free left vertices, F , have equal and minimal
y-values among left vertices and all free right vertices have zero y-values. After the ini-
tialization, Property 9.2.1(4) is violated. We fix it by repeating the augmentation/dual
adjustment steps until all vertices in F have zero y-values. The procedure described in the
pseudocode is a modified Gabow-Tarjan algorithm [60] for one scale, where we always adjust
dual variables by δ0 in each iteration and stop when free vertices have zero y-values rather
than when the matching is perfect.

Initialization:
M ← ∅.

Set y(v)←

2⌊log N⌋ if v is a left vertex
0 otherwise

.

repeat
Augmentation:
Find a maximal set P of augmenting paths in G[1, 1] and set M ←M ⊕ P .
Dual Adjustment:
Let F be the left free vertices.
For all v ∈ Veven(F, G[1, 1]), set y(v)← y(v)− δ0.
For all v ∈ Vodd(F, G[1, 1]) set y(v)← y(v) + δ0.

until F = ∅ or y(F ) = 0

After the augmentation step, there will be no augmenting paths in G[1, 1], which implies no
free vertex is in Vodd(F, G[1, 1]). Therefore, our invariant that right free vertices have zero
y-values is maintained after the dual adjustment. Also, since all y-values of free vertices
on the left will be decreased in every dual adjustment, they must be minimal among all
left vertices. The number of augmentation/dual adjustment steps will be bounded by the
number of total possible dual adjustments, which is 2⌊log N⌋/δ0 ≤ 2

√
n. Thus, Phase I takes

O(m
√

n) time.

In addition, the definition of eligibility on G[1, 1] ensures that if there exists e ∈ M such
that y(e) = w0(e) + δ0 before the dual adjustment, then y(e) cannot be increased after
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the adjustment. Therefore, y(e) ≤ w0(e) + δ0 for e ∈ M , near tightness is maintained
throughout this phase. Likewisely, if e /∈ M and y(e) = w0(e), then y(e) does not decrease
during the adjustment. Also, due to the definitions of Veven and an alternating path, y(e)
does not decrease for all e ∈M . Thus, y(e) ≥ w0(e) for all e ∈ E, domination is maintained
throughtout this phase.

9.2.2 Phase II

At the beginning of scale i ∈ [1, L], we set y(u)← y(u) + δi for all left vertices u and do not
change the y-values for all right vertices, so Property 9.2.1(2) (domination) is maintained.
So is Property 9.2.1(3) (near tightness):

y(e)← y(e) + δi

≤ wi−1(e) + δi−1 + δi by Property 9.2.1(3) at the end of scale i− 1

≤ wi(e) + 3δi since δi−1 = 2δi and wi−1(e) ≤ wi(e)

However, Property 9.2.1(4) may be violated, because now the y-values of left free vertices
are δi. Hence, we will run one iteration of augmentation/dual adjustment step on G[1, 3]
described in the pseudocode of Phase I to reduce them to zero. By the same reasoning in
Phase I, domination and near tightness (y(e) ≤ wi(e) + 3δi,∀e ∈ M) will not be violated
during the step, which implies Property 9.2.1 is now all maintained.

Next, we will repeat the augmentation/dual adjustment steps described in Section 9.2.2 and
9.2.2 on G[1, 3] until y(e) ≤ wi(e) + δi for all e ∈M , or equivalently, until M ∩G[2, 3] = ∅.

There are two reasons that we consider G[1, 3] rather than other definitions for eligibility.
First, as in Phase I, since the definition of eligibility does not include matched tight edges,
all edges of an augmenting walk become ineligible after we augment along it. Second, when
doing the dual adjustment, we will not create any more matched edges in G[2, 3] (though
they might be in G[1, 3]), since the propagation of dual adjustments along the eligible edges
e ensures that y(e) will not be increased for e ∈ M ∩ G[1, 3]. This will be explained in
Lemma 9.2.8.
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Phase II - Augmentation

When augmentation is called in Phase II, we need to eliminate all augmenting walks from
the eligibility graph G[1, 3]. This can be divided into two stages. In the first stage we
eliminate the augmenting cycles, whereas in the second stage we eliminate the augmenting
paths. Notice that unlike in Phase I, augmenting paths here may start or end with matched
edges.

In the first stage, we will find a maximal set of vertex-disjoint augmenting cycles C, which
can be done by using a modified depth first search, cycle_search(x). We will inflict
cycle_search(x) on every matched vertex x that has not been visited in previous searches.
Recall that x′ is the mate of x.

Mark u and u′ as visited
for every unmatched edge u′v do

if v is visited and v is an ancestor of u in the search tree then
Add the cycle consisting of the path from v to u′ and the edge u′v to C.
Back up the search until leaving cycle_earch(v) so the parent of v is on the top of
the stack.

else if v is not visited then
Call cycle_search(v).

end if
end for

Algorithm 13: cycle_search(u)

Lemma 9.2.3. The algorithm finds a maximal set of vertex-disjoint augmenting cycles C.
Moreover, if we augment along every cycle in C, then the graph G[1, 3] contains no more
augmenting cycles.

Proof. Suppose the algorithm did not find a maximal set of vertex-disjoint augmenting cycles,
let C be such a cycle that is vertex-disjoint from all cycles in C. Let C = (v1, v2, . . . vk, v1)
so that v1 is the vertex first entered in the search. Let t be the largest index such that vt

is visited by the search before the search backs up from v1. Since vt is not contained in
any cycles in C, the search must discover the next vertex of vt in C. If t < k, then vt+1 is
visited. If t = k, then we discovered a cycle containing the edge vkv1. Both cases lead to a
contradiction.

192



Furthermore, if there exists a cycle C after augmentation, then this cycle must share a vertex
v with some cycle C ′ ∈ C due to the maximality of C. However, if v is contained in C, then
C contains v and its mate. This contradicts the fact that there will be no eligible matched
edge that incidents to v after the augmentation on C ′.

Figure 11: An example illustrating starting vertices and maximal augmenting paths in G[1, 3].
The plain edges denote unmatched edges, while the curled ones denote matched edges. The shaded
vertices denote vertices with zero y-values. Vertex u1, v1, and v2 are starting vertices. The path
P = v2u3v3u4v4 is an augmenting path. However, it is not a maximal augmenting path, since either
u1v2u3v3u4v4 or v1u2v2u3v3u4v4 is an augmenting path containing P .

In the second stage, we will eliminate all the augmenting paths in G[1, 3]. This is done by
finding a maximal set of vertex-disjoint maximal augmenting paths. A maximal augmenting
path is an augmenting path that cannot be extended to a longer one (see Figure 11). Note
that we require such a path to be maximal, for otherwise it is possible that after we augment
along a path, an endpoint of the path becomes free and is now an endpoint of another
augmenting path.

Consider the graph −→G [1, 3]. It must be a directed acyclic graph, since G[1, 3] does not contain
an augmenting cycle now. A vertex is said to be a starting vertex if it has zero y-value and
it is either a left free vertex or a right matched vertex. Therefore, a starting vertex is a
possible starting point of an augmenting path in −→G [1, 3]. Let S be the set of all starting
vertices. We will initiate the search on every unvisited vertex in S in topological order of
−→
G [1, 3]. The way we initiate the search on x depends on whether x is free or not. If x is free,
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we will just call path_search(x). Otherwise, we will call path_search(x′). It is guaranteed
that path_search(x) is called on left vertices.

{Recall that x is the starting vertex and P is the maximal set of maximal augmenting
paths we have found so far.}
Mark u as visited.
for every unmatched edge uv do

if v is free {v is a right free vertex} then
Add the path from x to v to P and terminate the search.

else if v is not visited then
Call path_search(v′).

end if
end for
if y(u) = 0 {u is a left matched vertex} then

Add the path from x to u to P and terminate the search.
end if

Algorithm 14: path_search(u)

If there exists an augmenting walk from x to v and v is not free, our search will explore
the possibility that it can be extended from v before it is added to P . If v is free, then
it is impossible to extend the path. Furthermore, since we initiated the starting vertices in
topological order, it is guaranteed that the path cannot be extended from x either. Therefore,
the augmenting path found in our algorithm must be maximal.

Lemma 9.2.4. After we augment along every path in P, the graph G[1, 3] contains no more
augmenting paths.

Proof. Suppose that there exists an augmenting path Q after the augmentation. Then by
the maximality of P , there must be some augmenting path in P sharing vertices with Q.
There can be two cases. Case 1: There exists P ∈ P and v ∈ P ∩ Q such that v is not an
endpoint of either P or Q. In this case, by our definition of an augmenting path, P contains
v and its mate before the augmentation on P and Q contains v and its mate after the
augmentation. However, after the augmentation on P , there should be no eligible matched
edge that incidents to v, thus Q cannot contain both v and its mate. Case 2: For all P ∈ P ,
either Q∩ P = ∅ or Q and P intersect on their endpoints. Let P be the earliest path added
to P such that P and Q intersect. Let x be the endpoint where they intersect, and xP and
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xQ be the other endpoints of P and Q. If xP = xQ then there was an augmenting cycle,
which is not possible. If xP is a starting vertex, then path_search(xP ) should have found
a longer augmenting path than P , since PQ is a longer one. On the other hand, if x is a
starting vertex, it must be a right matched vertex and becomes free after augmentation, so
xQ must also be a starting vertex. Since our search is called in topological order on starting
vertices, xQ must be called before x, which implies that the first augmenting path found
that intersects Q contains xQ but not x.

Phase II - Dual Adjustment

Let B be the set of violated matched edges that need to be tightened before the end of scale
i, that is, B = {e ∈ M : y(e) − wi(e) > δi} = G[2, 3] ∩M . Define the badness, f(e), to be
the amount edge e has violated. That is, f(e) is (y(e) − wi(e) − δi)/δi for e ∈ B, f(e) is 0
for e /∈ B. Let f(B) = ∑

e∈B f(e) be the total badness of B. Then B is empty if and only
if f(B) = 0, since f(e) > 0 for e ∈ B. The goal of dual adjustment is to tighten Property
9.2.1(3), namely, to decrease f(B) to 0.

A B′ ⊆ B is said to be a chain if there is an eligible alternating path containing B′. On the
other hand, B′ is said to be an anti-chain if for any m1, m2 ∈ B′ such that m1 ̸= m2, there
exists no eligible alternating path containing them.

Lemma 9.2.5. For any t > 1, there exists B′ ⊆ B such that either B′ is a chain with
f(B′) ≥ ⌈t⌉ or B′ is an anti-chain with |B′| ≥ ⌈f(B)/2t⌉. Moreover, such B′ can be found
in linear time.

Proof. This lemma basically follows from Dilworth’s Lemma [34]. First obtain −→G [1, 3] by
orienting the edges in G[1, 3] and assign the length to be f(e) for every e ∈

−→
G [1, 3]. Then,

−→
G [1, 3] must be a directed acyclic graph since we have no augmenting cycles.

Let S denote the vertices with zero in-degrees. Compute the longest path from S to every
vertex in −→G [1, 3], which can be done in linear time in topological order. If there exists a path
P having length at least ⌈t⌉, then P ∩ B must be a chain with f(P ∩ B) ≥ ⌈t⌉. Otherwise,
for every uv ∈ B (assume that v is the left vertex), the length of the longest path from
S to v is in the range of [1, ⌈t⌉ − 1]. Since f(e) ≤ 2 for e ∈ B, we must have at least
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⌈|B|/t⌉ ≥ ⌈f(B)/2t⌉ such v having the same longest distance from S. If the distance is
k, then the set B′ = {uv ∈ B : v is a left vertex and the longest distance from S to v is k}
must be an anti-chain. For u1v1, u2v2 ∈ B, if there is an alternating path containing them in
G[1, 3], there must be a path from u1v1 to u2v2 or from u2v2 to u1v1 in −→G [1, 3] so the longest
distance from S to v1 and v2 must be different.

Below we show that if B′ is a chain we can decrease the total badness by f(B′) in linear
time. On the other hand, if B′ is an anti-chain, then we can decrease the total badness by
|B′|/2 also in linear time.

Phase II - Dual Adjustment - Anti-chain Case

Definition 9.2.6. A vertex x is said to be dual adjustable if for every v ∈ Vodd(x, G[1, 3]), v

is not free and for every v ∈ Veven(x, G[1, 3]), y(v) > 0.

Lemma 9.2.7. For every e = uv ∈ B, either u is adjustable or v is adjustable or both.
Furthermore, all adjustable vertices can be found in O(m) time.

Proof. First, if e = uv ∈ B and u and v are both not adjustable, then by our definition of
adjustable, there exist vertices w and x having zero y-values where w  u → v  x is an
augmenting path. However, this contradicts the fact that there are no augmenting paths
after the augmentation step.

To find the adjustable vertices, it is rather convenient to mark up all those unadjustable
vertices. Let Ṽ = {v : v is free or v is matched and y(v′) = 0}, and mark all vertices as
unadjustable in Vodd(Ṽ , G[1, 3]). This can be done in linear time.

Let B′ ⊆ B be an anti-chain. We call antichain_adjust(B′) to adjust the dual variables.
In the procedure, we will pick a set of dual adjustable vertices X that are adjacent to B′

and on the same side, then do a dual adjustment starting at X. Since by Lemma 9.2.7, for
any e = uv ∈ B′ either u is adjustable or v is adjustable or both, we can guarantee that
|X| ≥ |B′|/2. See Figure 12 for an example.

Lemma 9.2.8. The dual adjustment starting at X will not break Property 9.2.1(1), 9.2.1(2),
or 9.2.1(4). Furthermore, it makes Property 9.2.1(3) tighter by decreasing f(B) by |X|.
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Let Ṽ = {v : v is free or v is matched and y(v′) = 0}.
Mark vertices in V \ Vodd(Ṽ , G[1, 3]) as adjustable vertices.
Let XL = {u : uv ∈ B′ and u is a left adjustable vertex},
XR = {u : uv ∈ B′ and u is a right adjustable vertex}.
If |XR| > |XL|, then let X = XR; otherwise let X = XL.
Dual adjustment starting at X:
For all v ∈ Veven(X, G[1, 3]), set y(v)← y(v)− δi.
For all v ∈ Vodd(X, G[1, 3]), set y(v)← y(v) + δi.

Algorithm 15: antichain_adjust(B′)

Figure 12: An example of an eligible graph that illustrates an anti-chain and adjustable vertices.
(a) The light shaded vertices denote vertices with zero y-values. The shaded matched edges form
an anti-chain of size 3. The dark shaded vertices are adjustable vertices of the anti-chain. (b) The
dark vertices denote X, the selected vertices for the dual adjustment. Vertices marked with ‘e’ and
‘o’ denote vertices in Veven(X, G[1, 3]) and Vodd(X, G[1, 3]) respectively.

Proof. Since every vertex in X is adjustable, every vertex v ∈ Vodd(X, G[1, 3]) must have
y(v) > 0, implying y(v) will be non-negative after subtracting δi. Thus, Property 9.2.1(1) is
maintained. In addition, by the definitions of an alternating path and Veven, Veven(X, G[1, 3])
cannot contain a free vertex. Therefore, no dual variables of free vertices are adjusted,
meaning Property 9.2.1(4) is maintained. Since all vertices in X are on the same side, y(e)
can change by at most δi. We only need to check:

1. If e = uv is tight before the adjustment, Property 9.2.1(2) (domination) holds for e

after the adjustment: If e /∈ M , then e is eligible. If the y-value of an endpoint gets
subtracted by δi then another endpoint must be added by δi, which means y(e) does
not decrease. If e ∈M , then it is not possible for u or v to be in Veven(x, G[1, 3]), since
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e is ineligible and we start with an unmatched edge. Therefore, domination holds on
e after the adjustment.

2. f(B) decreases by |X|: If e is tight before the adjustment, then increasing y(e) by δi

contributes nothing to f(B). If e is not tight, then e is eligible and f(e) cannot be
increased either, since if one endpoint gets added by δi, then another endpoint must
be subtracted by δi. Furthermore, if e ∈ B′ and e is incident to a vertex in X, then
one endpoint of e is in Veven(X, G[1, 3]) and the other cannot be in Vodd(X, G[1, 3]),
because B′ is an anti-chain. Therefore, f(e) decreases by exactly 1.

Therefore, by doing the dual adjustment starting at X, we can decrease f(B) by at least
|B′|/2.

Phase II - Dual Adjustment - Chain Case

In the chain case, there exists an alternating path containing B′. Take P to be the minimal
alternating path containing B′ so that P starts and ends with edges in B′. If we augment
along P , then the edges in B′ no longer contribute to f(B) since they become unmatched,
and new M -edges contribute nothing to f(B). However, the endpoints of P , say u and
v, become free while possibly having positive y-values. Hence we will need to make them
matched by augmentation or decrease their y-values to zero. In this subsection, we relax our
definition of augmenting path such that the y-value of each endpoint is 0 except if it is u or
v. We perform a search similar to Phase I on u until an augmenting path Pu starting from
u is found or y(u) becomes zero (which is a degenerated case when Pu = {u}). After the
search, we will not augment Pu immediately but perform another search again on v to find an
augmenting path Pv. Now if there exists an augmenting path Q in G[0, 3] whose endpoints
are u and v, then we will augment along it. See Figure 13 for an example. Otherwise, we
let Q = Pu ∪ Pv and then augment along Q. In this case, we must have Pu ∩ Pv = ∅, for
otherwise an augmenting path in G[0, 3] between u and v exists. In the searches, we will use
G[0, 3] as the eligibility graph, which ensures the weight of the new matching we get does
not decrease. Below we describe how the search works.
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Let x ∈ {u, v} be the free vertex that we perform the search on. If there exists an aug-
menting path in G[0, 3] starting at x, then we will stop. Recall that the other endpoint of
x can be either free or matched. On the other hand, if there is no augmenting path, then
let γ be the minimum of min{y(z) : z ∈ Veven(x, G[0, 3])} and min{y(v1v2) − wi(v1v2) :
v1 ∈ Veven(x, G[0, 3]) and v2 /∈ Vodd(x, G[0, 3])}. Then, add γ to the y-value of every vertex
in Vodd(x, G[0, 3]) and subtract γ from vertices in Veven(x, G[0, 3]). Keep repeating the ad-
justment until we find an augmenting path starting at x. Similar to one iteration in the
Hungarian algorithm, this process is equivalent to computing shortest paths from x, which
is described in Algorithm 16, search(x).

If x is a right vertex, set −→G ← −→GT (reverse the edges).

For each e ∈
−→
G , assign a new weight w′(e) =

y(e)− wi(e) if e /∈M

0 if e ∈M

Compute the distance d(z) from x to z for every z ∈
−→
G , where d(z) = ∞ if z is not

reachable from x.

Let h(z) =


d(z) if z is free and not on the same side as x

d(z) + y(z) if z is on the same side as x

∞ otherwise
.

Let zmin be the vertex such that h(z) is minimum, and let ∆ = h(zmin).
Let Px be the shortest path from x to zmin.

Set y(z)←

y(z)−max{0, ∆− d(z)} if z is on the same side as x

y(z) + max{0, ∆− d(z)} if z is not on the same side as x

return Px

Algorithm 16: search(x)

In search(x), ∆ is the amount of dual adjustment needed before an augmenting path opens
up. The augmenting path starts from x and ends at some zmin, where zmin can be either a
free vertex on the opposite side of x or a zero y-valued matched vertex on the same side as x.
For the former situation, the dual adjustment needed is d(zmin). For the latter situation, we
not only need to reach zmin but also need to decrease its y-value to 0, so the dual adjustment
needed is d(zmin) + y(zmin). After finding ∆, we will adjust the dual variables accordingly.
search(x) returns an augmenting path Px starting at x.

By Property 9.2.1(1), d(z) must be a non-negative multiple of δi. Since our goal of computing
the shortest path is to find ∆, we can just compute those d(z) which are no more than ∆.
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Figure 13: An example illustrating procedures for the chain case. Edges are shown with their
new weight w′. The shaded vertices are free vertices with zero y-values. (a) After augmenting along
P , u and v became free while having positive y-values. (b) search(u) adjusted ∆u = 4δi and found
an augmenting path Pu. (c) search(v) adjusted ∆v = 4δi and found Pv. (d) Augmentation along
Q. This is the case where there exists an augmenting path Q between u and v in G[0, 3], which
happens to be Pv in the example.

This can be done in O(m + ∆/δi) time by using an array as a priority queue in Dijkstra’s
algorithm. (See Dial’s implementation [32].)

Lemma 9.2.9. Augmenting along P and then Q does not decrease the weight of the matching
and ∆u+∆v ≤ 3nδi, where ∆u and ∆v are the amount of dual adjustments done in search(u)
and search(v). Thus, the search can be done in O(m) time.

Proof. Suppose M is the original matching, M ′ is the matching obtained by augmenting
along P , and M ′′ is the final matching after augmenting along Q. Let w′′(e) = y(e)− wi(e)
(notice that w′′ differs from w′ on the matched edges). For a quantity q denote its value
before both searches by qold and after both searches by qnew. After the searches, we must
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have:

wi(Q \M ′) =
∑

e∈Q\M ′

ynew(e) tightness on unmatched edges

= ynew(u) + ynew(v) +
∑

e∈M ′∩Q

ynew(e) (*)

= ynew(u) + ynew(v) + wi(M ′ ∩Q) + w′′
new(Q ∩M ′) defn. of w′′

new

Therefore,
wi(M ′′) = wi(M ′) + ynew(u) + ynew(v) + w′′

new(Q ∩M ′) (9.3)

(*) holds because beside u and v, the other possible difference of vertices in Q\M ′ and Q∩M ′

are those with zero y-values, which are the endpoints of Pu and Pv when Q = Pu ∪ Pv.

Similarly, before the searches, we have:

wi(M) = wi(M ′) + yold(u) + yold(v)− w′′
old(P \M ′) (9.4)

The amount of dual adjustments is at most the distance between u and v, so ∆u + ∆v ≤
w′′

old(P \M ′) ≤ 3nδi. Moreover:

wi(M ′′) ≥ wi(M ′) + ynew(u) + ynew(v) by (9.3) and w′′
new(Q ∩M ′) ≥ 0

= wi(M ′) + yold(u) + yold(v)−∆u −∆v

≥ wi(M ′) + yold(u) + yold(v)− w′′
old(P \M ′)

= wi(M) by (9.4)

Lemma 9.2.10. At most O(
√

n) rounds of augmentation and dual adjustment are required
to reduce f(B) to 0.

Proof. When f(B) = b, choose t =
√

b/2. Either we can obtain an anti-chain B′ of size at
least ⌈

√
b⌉ and decrease f(B) by ⌈

√
b/2⌉, or we can obtain a chain B′ such that f(B′) ≥

⌈
√

b/2⌉ and decrease f(B) by f(B′). In any case, we can decrease f(B) by ⌈
√

b/2⌉. The
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number of rounds is at most T (b), where T (b) = T (b− ⌈
√

b/2⌉) + 1 for b > 0 and T (b) = 0
for b = 0. It can be shown by induction that T (b) ≤ 4

√
b, so that T (b) ≤ 4

√
b ≤ 4

√
2n.

9.2.3 Phase III

The procedure for Phase III is similar to that for Phase II, but with several differences.
First, instead of operating on G[1, 3], we will operate on G[0, 1] in this phase. Second, in the
augmentation step, the definition of augmenting walks is modified such that the walk must
contain at least one matched edge that is not tight. One exception is that an augmenting
path in G[0, 3] of the chain case still refers to the old definition in Phase II, where we do not
require it to contain at least one non-tight edge. Third, the way we find augmenting walks
will be different from Phase II, since a tight edge in an augmenting walk will not become
ineligible after an augmentation.

Phase III - Augmentation

Lemma 9.2.11. Each augmentation along the augmenting walk in G[0, 1] increases the
weight of M. Consequently, there can be at most

√
n augmenting walks in Phase III.

Proof. Let M be the original matching and M ′ be the matching after augmentation. Suppose
P is an augmenting walk. We must have ∑v∈M∩P y(v) = ∑

v∈M ′∩P y(v), regardless of whether
P is an augmenting cycle or an augmenting path. Since P contains at least one non-tight
matched edge, w(M ∩ P ) <

∑
v∈M∩P y(v) = ∑

v∈M ′∩P y(v) = w(M ′ ∩ P ). Since all weights
are integers, the weight of the matching is increased by at least one.

After Phase II, δL = 2⌊log N/
√

n⌋−⌈log N⌉ ≤ 1/
√

n. By Lemma 9.2.2, we have w(M) ≥ w(M∗)−
nδL ≥ w(M∗) −

√
n. Since each augmentation increases the weight of M by at least one,

and by Lemma 9.2.9, the weight of M does not decrease in dual adjustment steps, there can
be at most

√
n augmentations.

We have to ensure that no augmenting walks exist in G[0, 1] after the augmentation step.
Since an augmenting walk may contain tight matched edges in G[0, 1], Lemma 9.2.3 and
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Lemma 9.2.4 no longer guarantee augmenting along a maximal set of augmenting cy-
cles/paths will break up all eligible cycles/paths. However, by Lemma 9.2.11, we only need
to find one augmenting walk in time O(m) if it exists.

This can be done by the following procedure. First, obtain −→G [0, 1] by orienting the edges
of G[0, 1]. If there is an augmenting cycle, then the cycle must contain a non-tight edge,
say e. Also, the endpoints of e must be strongly connected in −→G [0, 1]. Therefore, to detect
such cycles, run a strongly connected component algorithm first and then check whether the
endpoints of non-tight edges are strongly connected.

Second, to detect an augmenting path, run the algorithm in O(m) time described in Lemma
9.2.7 to determine whether v is adjustable for all v ∈ G. If there exists a non-tight matched
edge uv such that both u and v are not adjustable, then there must be an augmenting path
containing uv. Therefore, an augmenting walk can be found in O(m) time, if one exists, and
the total time spent on augmentation during Phase III is O(m

√
n).

Phase III - Dual Adjustment

In Phase III, our goal is to tighten all non-tight edges. Thus, these edges are considered to
be violated. That is, B = {e ∈ M : y(e) − wi(e) = δi} = G[1, 1] ∩M . The definition of
badness, f(e), is changed to (y(e) − wi(e))/δi accordingly. In Lemma 9.2.7, if u and v are
both unadjustable, it is true that there will be an augmenting path containing a non-tight
edge, which is uv. This will contradict with the fact that there are no augmenting paths
after the augmentation step. Therefore, the lemma still works.

The other difference is Lemma 9.2.5, where the graph −→G may contain zero-length cycles or
zero-length paths now. However, that does not affect how we select a chain or an anti-chain.
The difference is that the graph may not be a DAG now but we still need to compute the
length of the longest path from S to every vertex in linear time, where S is the set of vertices
with zero in-degrees. This can be done by the following procedure:

1. Find the strongly connected components of −→G [0, 0].

2. For each strongly connected component C in −→G [0, 0], contract C into one vertex in
−→
G [0, 1], because all vertices in C are supposed to have the same length of longest path
from S in −→G [0, 1].
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3. Compute the longest path in the new contracted graph, which is a DAG.

Lemma 9.2.8, Lemma 9.2.9, and Lemma 9.2.10 all hold if we replace G[1, 3] by G[0, 1], and
the existence of tight augmenting cycles/paths does not affect their correctness. Thus, the
total time spent on dual adjustment in Phase III for f(B) to reach zero is still O(m

√
n).

9.2.4 Maximum Weighted Perfect Matching

Suppose a perfect matching exists in G. By the reduction described in Section 9.1, where we
added nN weight to every edge, we can solve the MWPM problem in O(m

√
n log(nN)) time.

This does not improve the previous bound in [60]. However, below we give an algorithm
that uses fewer scales, ⌈log(

√
nN)⌉ instead of ⌈log(nN)⌉. This is done by modifying the

algorithm for mwm, where we maintain the following:

Property 9.2.12. Let δ0 = 2⌊log N⌋, L = ⌈log(
√

nN)⌉. At the end of each scale i ∈ [0, L],
we maintain a perfect matching M with the following:

1. (Granularity of y) y(u) is a multiple of δi.

2. (Domination) y(e) ≥ wi(e) for all e ∈ E.

3. (Near Tightness) y(e) ≤ wi(e) + 3δi. At the end of scale i, it is tightened so that
y(e) ≤ wi(e) + δi,

For scale i = 0, find a perfect matching M using the Hopcroft-Karp algorithm in O(m
√

n)
time [83], and assign y(u)← δ0 to all left vertices u, y(v)← 0 to all right vertices v.

Next, begin Phase II for scale i ∈ [1, L] and Phase III at the end of scale L with the following
modifications:

1. An augmenting walk only refers to an alternating cycle. We no longer consider aug-
menting paths so that we always keep the matching M to be perfect. More precisely,
in the augmentation step, we no longer run path_search(x). In the dual adjustment
step, if it is the anti-chain case, then either side of an edge in B′ is adjustable, since
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now we allow the dual variables to have negative values. Therefore, for an anti-chain
B′ we can always decrease f(B) by |B′|.

In the chain case, the endpoints of P , say u and v, are freed temporarily. Here, we
must force the search(x) to find an augmenting path to connect u and v back. This
can be done by only doing search(u) until the augmenting path in G[0, 3] between u

and v opens up (e.g. force zmin to be v), which is always possible since we no longer
need to keep y-values non-negative.

2. When f(B) = b, choose t =
√

b/2. Either we can obtain an anti-chain B′ of size at
least ⌈

√
b/2⌉ and decrease f(B) by ⌈

√
b/2⌉, or we can obtain a chain B′ such that

f(B′) ≥ ⌈
√

b/2⌉ and decrease f(B) by f(B′). In any case, we can decrease f(B) by
⌈
√

b/2⌉, so the number of rounds is at most T (b) = T (b−⌈
√

b/2⌉)+1. It can be shown
by induction, T (b) ≤ 2

√
2b ≤ 4

√
n.

3. When Phase II ends at scale L, the result of Lemma 9.2.11 also holds. Since δL =
2⌊log N⌋−⌈log(

√
nN)⌉ ≤ 1/

√
n, by Lemma 9.2.2, w(M) ≥ w(M∗) − nδL ≥ w(M∗) −

√
n.

Thus, the matching can be improved at most
√

n times.

Therefore, the algorithm runs in ⌈log(
√

nN)⌉ scales, where each scale takes O(m
√

n) time.
The reason why we cannot achieve the same bound as the mwm problem is because Phase
I does not apply. It is still unknown whether the MWPM problem can be solved in
O(m

√
n log N) time.

9.3 Discussion

We believe that finding the mwm is easier than finding the MWPM. In Chaper 8, we gave
a scaling algorithm that solves the MWPM problem on general graphs in O(m

√
n log(nN))

time. It is an interesting open problem whether the mwm on general graphs can be found
also in O(m

√
n log N) time.

There are some reasons why it seems not possible to extend this algorithm directly to the
general graph case, where there are blossoms. When we find an augmenting walk passing a
blossom node, the edges inside the blossom become ineligible. This no longer guarantees that
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augmenting along the next augmenting walk passing this blossom will increase the weight of
the matching, which makes Lemma 9.2.11 inapplicable.
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Appendix A

Tools

Lemma A.1. e−x ≤ 1− x/2 for 0 ≤ x ≤ 1.59.

Proof. Let f(x) = e−x− 1 + x/2. f(0) = 0 and f(1.59) ≤ 0. f ′(x) = 1/2− e−x, f ′(x) is zero
only when x = ln 2 ≤ 1.59. Since f(ln 2) ≤ 0, f(x) ≤ 0 for 0 ≤ x ≤ 1.59.

The following lemma shows when conditioning on a very likely event B, the probability of
an event can only be affected by a small amount.

Lemma A.2. Let A, B be two events, |Pr(A)− Pr(A|B)| ≤ Pr(B).

Proof. Pr(A) = Pr(B) Pr(A|B) + Pr(B) Pr(A|B) = Pr(A|B) + Pr(B)(Pr(A|B)− Pr(A|B)).
Therefore, |Pr(A)− Pr(A|B)| ≤ Pr(B).

See Dubhashi and Panconesi [40] for proofs of Lemma A.3, Lemma A.4, and related concen-
tration bounds.

Lemma A.3. (Hoeffding’s Inequaliy) Let X1, . . . , Xn be independent random variables such
that ai ≤ Xi ≤ bi for 1 ≤ i ≤ n. Let X = ∑

i Xi, then for any t > 0,

Pr(X > E[X] + t) ≤ e
− 2t2∑

i
(bi−ai)2
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Lemma A.4. (Chernoff Bound) Let X1, . . . , Xn be indicator variables such that Pr(Xi =
1) = p. Let X = ∑n

i=1 Xi. Then, for δ > 0:

Pr(X ≥ (1 + δ) E[X]) <

[
eδ

(1 + δ)(1+δ)

]E[X]

Pr(X ≤ (1− δ) E[X]) <

[
eδ

(1− δ)(1−δ)

]E[X]

The two bounds above imply that for 0 < δ < 1, we have:

Pr(X ≥ (1 + δ) E[X]) < e−δ2 E[X]/3

Pr(X ≤ (1− δ) E[X]) < e−δ2 E[X]/2.

Corollary A.1. Let X1, . . . , Xn be indicator variables such that Pr(Xi) = pi. Let X =∑n
i=1 Xi. If M ≥ E[X] and 0 < δ ≤ 1, then

Pr(X > E[X] + δM) ≤ e−δ2M/3

Proof. Without loss of generality, assume M = t E[X] for some t ≥ 1, we have

Pr(X > E[X] + δM) ≤
[

etδ

(1 + tδ)(1+tδ)

]E[X]

by Lemma A.4

=
[

eδ

(1 + tδ)(1+tδ)/t

]M

≤
[

eδ

(1 + δ)(1+δ)

]M

(∗)

≤ e−δ2M/3 eδ

(1+δ)(1+δ) ≤ e−δ2/3 for 0 < δ < 1

Inequality (*) follows if (1 + tδ)(1+tδ)/t ≥ (1 + δ)(1+δ), or equivalently, ((1 + tδ)/t) ln(1 +
tδ) ≥ (1 + δ) ln(1 + δ). Letting f(t) = ((1 + tδ)/t) ln(1 + tδ) − (1 + δ) ln(1 + δ), we have
f ′(t) = 1

t2 (δt− ln(1 + δt)) ≥ 0 for t > 0. Since f(1) = 0 and f ′(t) ≥ 0 for t > 0, we must
have f(t) ≥ 0 for t ≥ 1.

Lemma A.5. Let E1, . . . , En be (likely) events and X1, . . . , Xn be indicator variables such
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that for each 1 ≤ i ≤ n and X = ∑n
i=1 Xi,

max
Xi−1

Pr(Xi |X i−1, E1, . . . Ei) ≤ p

where X i denotes the shorthand for (X1, . . . , Xi).1 Then for δ > 0:

Pr
(

(X > (1 + δ)np) ∩
(⋂

i

Ei

))
≤
[

eδ

(1 + δ)(1+δ)

]np

and thus by the union bound,

Pr(X > (1 + δ)np) ≤
[

eδ

(1 + δ)(1+δ)

]np

+
∑

i

Pr(Ei).

Proof. For now let us treat Ei as 0/1 random variables and let E = ∏
i Ei. For any t > 0,

Pr
(

(X > (1 + δ)np) ∩
(⋂

i

Ei

))
= Pr

((
n∏

i=1
Ei

)
· exp(tX) > exp(t(1 + δ)np)

)

≤ E[(∏n
i=1 Ei) · exp(tX)]

exp(t(1 + δ)np)

= E[(∏n
i=1 Ei · exp(tXi))]

exp(t(1 + δ)np) (A.1)

We will show by induction that

E
[(

k∏
i=1
Ei exp(tXi)

)]
≤ (1 + p(et − 1))k

1We slightly abuse the notation that when conditioning on the random variable Xi, it means Xi may
take arbitrary values, whereas when conditing on the event Ei, it means that Ei happens.

210



When k = 0, it is trivial that E[E ] ≤ 1.

E
[(

k∏
i=1
Ei exp(tXi)

)]
≤ E

[(
k−1∏
i=1
Ei exp(tXi)

)
· E [Ek exp(tXk) |Xi−1, E1, . . . , Ek−1]

]

= E
[(

k−1∏
i=1
Ei exp(tXi)

)
· Pr(Ek) · E [exp(tXk) |Xi−1, E1, . . . , Ek]

]

≤ E
[(

k−1∏
i=1
Ei exp(tXi)

)
· E [exp(tXk) |Xi−1, E1, . . . , Ek]

]

= E
[(

k−1∏
i=1
Ei exp(tXi)

)
· (1 + Pr(Xk |X i−1, E1, . . . , Ek)(et − 1))

]

≤ E
[(

k−1∏
i=1
Ei exp(tXi)

)
· (1 + p(et − 1))

]

= E
[(

k−1∏
i=1
Ei exp(tXi)

)]
· (1 + p(et − 1))

≤ (1 + p(et − 1))k

Therefore, by (A.1),

Pr
(

(X > (1 + δ)np) ∩
(⋂

i

Ei

))
= E[E ·∏n

i=1 exp(tXi)]
exp(t(1 + δ)np)

≤ (1− p(et − 1))n

exp(t(1 + δ)np)

≤ exp(np(et − 1))
exp(t(1 + δ)np)

=
[

exp(δ)
(1 + δ)1+δ

]np

.

The last equality follows from the standard derivation of Chernoff Bound by choosing t =
ln(1 + δ).

Corollary A.2. Suppose that for any δ > 0,

Pr
(

(X > (1 + δ)np) ∩
(⋂

i

Ei

))
≤
[

eδ

(1 + δ)(1+δ)

]np
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then for any M ≥ np and 0 < δ < 1,

Pr
(

(X > np + δM) ∩
(⋂

i

Ei

))
≤
[

eδ

(1 + δ)(1+δ)

]M

≤ e−δ2M/3

Proof. Without loss of generality, assume M = tnp for some t ≥ 1, we have

Pr
(

(X > np + δM) ∩
(⋂

i

Ei

))

≤
[

etδ

(1 + tδ)(1+tδ)

]np

=
[

eδ

(1 + tδ)(1+tδ)/t

]M

≤
[

eδ

(1 + δ)(1+δ)

]M

(∗)

≤ e−δ2M/3 eδ

(1+δ)(1+δ) ≤ e−δ2/3 for 0 < δ < 1

Inequality (*) follows if (1 + tδ)(1+tδ)/t ≥ (1 + δ)(1+δ), or equivalently, ((1 + tδ)/t) ln(1 +
tδ) ≥ (1 + δ) ln(1 + δ). Letting f(t) = ((1 + tδ)/t) ln(1 + tδ) − (1 + δ) ln(1 + δ), we have
f ′(t) = 1

t2 (δt− ln(1 + δt)) ≥ 0 for t > 0. Since f(1) = 0 and f ′(t) ≥ 0 for t > 0, we must
have f(t) ≥ 0 for t ≥ 1.

Lemma A.6 ( [40], Azuma’s inequality). Let f be a function of n random variables
X1, . . . , Xn such that for each i, any X i−1, any ai and a′

i,

|E[f |X i−1, Xi = ai]− E[f |X i−1, Xi = a′
i]| ≤ ci

then
Pr(|f − E[f ]| > t) ≤ 2e−t2/(2

∑
i

c2
i ).

Lemma A.7 ( [40], Corollary 5.2). Suppose that f(x1, . . . , xn) satisfies the Lipshitz property
where |f(a)− f(a′)| ≤ ci whenever a and a′ differ in just the i-th coordinate. If X1, . . . , Xn
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are independent random variables, then

|E[f |X i−1, Xi = ai]− E[f |X i−1, Xi = a′
i]| ≤ ci

Lemma A.8 ( [40], Equation (8.5)). Let X1, . . . , Xn be an arbitrary set of random variables
and let f = f(X1, . . . , Xn) be such that E[f ] is finite. For 1 ≤ i ≤ n, suppose there exists σ2

i

such that for any X i−1,

Var(E[f |X i]− E[f |X i−1] |X i−1) ≤ σ2
i

Also suppose that there exists M such that for 1 ≤ i ≤ n, |E[f | X i] − E[f | X i−1]| ≤ M .
Then,

Pr(f > E[f ] + t) ≤ e
− t2

2(
∑n

i=1 σ2
i

+Mt/3) .
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Appendix B

Publications Arising from this Dissertation

• A. Dornhaus, N. Lynch, T. Radeva, and H.-H. Su. Distributed task allocation in ant
colonies. submitted.

• R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for weighted matching in general
graphs. CoRR, abs/1411.1919, 2015.

• M. Elkin, S. Pettie, and H.-H. Su. (2∆-1)-edge-coloring is much easier than maximal
matching in the distributed setting. In Proc. 26th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 355–370, 2015.

• D. Nanongkai and H.-H. Su. Almost-tight distributed minimum cut algorithms. In
Proc. 28th Symposium on Distributed Computing (DISC), pages 439–453. 2014.

• K.-M. Chung, S. Pettie, and H.-H. Su. Distributed algorithms for Lovász local lemma
and graph coloring. In Proc. 33rd ACM Symposium on Principles of Distributed Com-
puting (PODC), pages 134–143, 2014.

• S. Pettie and H.-H. Su. Distributed coloring algorithms for triangle-free graphs. In-
formation and Computation, 243(0):263 – 280, 2015. Preliminary version appeared in
40th Intl. Colloq. on Automata, Languages and Programming (ICALP), pages 681–693,
2013.

• R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in bipartite
graphs. In Proceedings 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1413–1424, 2012.
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[99] D. R. Karger and C. Stein. An Õ(n2) algorithm for minimum cuts. In Proc. 25th ACM
Symposium on Theory of Computing (STOC), pages 757–765, 1993.

[100] A. V. Karzanov. On finding maximum flows in networks with special structure and
some applications [in Russian]. In Mathematical Issues of Production Control, vol-
ume 5, pages 81–94. Moscow State University Press, Moscow, 1973. English translation
available from the author’s website.

[101] A. V. Karzanov. Efficient implementations of Edmonds’ algorithms for finding match-
ings with maximum cardinality and maximum weight. In A. A. Fridman, editor, Studies
in Discrete Optimization, pages 306–327. Nauka, Moscow, 1976.

[102] K. Kawarabayashi and M. Thorup. Deterministic global minimum cut of a simple
graph in near-linear time. CoRR, abs/1411.5123, 2014.

[103] M. Khan and G. Pandurangan. A fast distributed approximation algorithm for mini-
mum spanning trees. Distributed Computing, 20(6):391–402, 2008.

[104] J. H. Kim. On brooks’ theorem for sparse graphs. Combinatorics, Probability and
Computing, 4:97–132, 1995.

222



[105] D. E. Knuth. The art of computer programming, volume 1 (3rd ed.): fundamental
algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1997.

[106] K. Kolipaka and M. Szegedy. Moser and Tardos meet Lovász. In Proceedings 43rd
ACM Symposium on Theory of Computing (STOC), pages 235–244, 2011.

[107] A. V. Kostochka and N. P. Mazuronva. An inequality in the theory of graph coloring.
Metody Diskret. Analiz., 30:23–29, 1977.

[108] K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. Distributed coloring in
Õ(
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